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Abstract

Collaboration in the Architecture, Engineering and Construction (AEC) industry
is characterized by the involvement of numerous project partners, the utilization
of diverse data formats and the frequent exchange of heterogeneous yet highly
interconnected resources. Information is often exchanged monolithic, via individ-
ual files, documents and container formats, but many applications require more
detailed, fine-grained data access.
The current literature exhibits a strong interest in solving these issues, for example,
using Semantic Web technologies or the centralization of information through
Common Data Environments and Model Servers. Despite these advancements,
there remains a need for interfaces that provide direct, detailed access to specific
resources and are easy to integrate.
GraphQL, a popular web API technology, enables precise data access and is
known for its clarity and user-friendliness. This thesis explores the design and
implementation of a GraphQL API to assess its suitability in the Building Information
Modeling (BIM) context. Five specific use case scenarios, addressing typical data
exchange needs in the industry, were defined and served as the foundation for
developing and testing the API.
The results show that GraphQL offers significant potential for the construction in-
dustry, as it greatly facilitates access to diverse and interconnected resources. This
capability is essential for enhancing collaboration and improving data exchange in
future projects.
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Zusammenfassung

Zusammenarbeit in der Architektur-, Ingenieur- und Bauindustrie (AEC) umfasst
die Koordinierung zahlreicher Projektpartner und den häufigen Austausch het-
erogener, und dennoch stark vernetzter Ressourcen. Informationen werden oft
monolithisch als Dateien oder über Containerformate ausgetauscht, obwohl ein
feinerer Datenzugriff für viele Anwendungsgebiete notwendig wäre.
Die aktuelle Literatur zeigt, dass ein großes Interesse daran besteht diese Prob-
leme zu lösen, beispielsweise durch den Einsatz von Semantic-Web Technologien
oder durch die Zentralisierung von Informationen mit Hilfe von Common Data
Environments und Model Servern. Trotz der Fortschritte in diesen Bereichen
besteht weiterhin ein Bedarf an Schnittstellen, die direkten, fein-granularen Zugriff
auf spezifische Ressourcen ermöglichen und gleichzeitig verhältnismäßig einfach
zu integrieren sind.
GraphQL ist eine API Architektur und Abfragesprache, deren Popularität in den
letzen Jahren stark zugenommen hat. GraphQL ermöglicht einen präzisen Daten-
zugriff und ist bekannt für Verständlichkeit und Benutzerfreundlichkeit. Im Rahmen
dieser Arbeit wurde eine GraphQL API entwickelt und untersucht um die Eignung
dieser Technologie im Kontext von Building Information Modelling zu bewerten.
Dazu wurden fünf spezifische Anwendungsszenarien, die typische Anforderun-
gen der Branche abdecken, definiert und als Grundlage für die Entwicklung und
Erprobung der API verwendet.
Die Ergebnisse zeigen, dass GraphQL großes Potenzial für die Bauindustrie bietet,
da es den Zugang zu heterogenen und stark vernetzten Ressourcen erheblich
erleichtert. Dies ist entscheidend, um die Zusammenarbeit im Bauwesen zu
verbessern und den Datenaustausch für zukünftigen Projekten zu optimieren.
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Chapter 1

Introduction

1.1 Problem Statement

Building Information Modeling (BIM) projects are characterized by the collaboration
of many different project partners and stakeholders often with diverging motives
and objectives. Several disciplines have to collaborate on large and complex
projects, where the work performed in one discipline is dependant on the work
carried out in other disciplines.
Structural engineering might be bound by the architect’s design, ensuring that the
building’s structure aligns with the aesthetic and functional vision. Mechanical,
Electrical and Plumbing (MEP) engineers need to integrate their systems without
compromising the structural integrity or aesthetic vision. Civil and geotechnical
engineers must coordinate with both, structural engineers and architects, to en-
sure that the site infrastructure supports the building’s design and functionality.
Construction managers rely on the detailed plans provided by these disciplines to
plan and coordinate construction, while this entire process should adhere to the
constraints of a given budget.
Constant communication, coordination and data exchange between all partners
is required to navigate this web of inter-dependencies, where any change in one
area usually affects multiple other disciplines and triggers numerous additional
changes.

The project data resulting from this complex structure, consists of highly intercon-
nected resources such as 3D models, material data, analysis reports, standards,
specifications, project and construction schedules, among others. Even though
the disciplines are dependent on one another, each discipline organizes and repre-
sents its design knowledge and related resources in a way that best suits its own
specific purposes.
Collaboration and data management for large projects are therefore an important
task and are tackled commonly through technologies like Common Data Environ-
ment (CDE), Model Server or other platform solutions that enable centralised data
storage and facilitate information exchange.
Traditionally, the data management and exchange in this context happens on the

1



Figure 1.1: Web of collaboration and data exchange in the Architecture Engineering
Construction (AEC) industry.

basis of files and documents or container formats. With an information granularity
like this, smaller knowledge entities usually cannot be handled. To update, ex-
tend, or retrieve parts of a BIM model, entire files, for example, have to be up- or
downloaded to or from the centralized storage solution. This approach implies that
accessing information about a specific entity (e.g., a single building element in
the model) the entire model containing the entity in question has to be retrieved.
Increasing project complexity and interdisciplinary dependencies that can be ob-
served in current projects further complicate accessing and providing the desired
design information. This leads to problems, such as exchanging more information
than necessary, making it difficult to implement and track changes consistently
and often making access to specific, detailed information unnecessarily complex.
This indicates a general demand in the AEC industry for powerful interfaces to
integrate and exchange information of this kind in a fine-grained manner. One
technology that enables the implementation of such interfaces in a web-based
environment is GraphQL.

1.2 GraphQL as an API Language

GraphQL is a query language and an architectural Application Programming
Interface (API) paradigm and as such an efficient alternative to query languages
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like Structured Query Language (SQL) as well as API technologies like REST. It
shares similarities with the Representational State Transfer (REST) architecture
but in contrast to REST, GraphQL APIs expose the entire underlying data via a
single endpoint and offers clients precise control over the returned data. Originally
developed by Facebook, it is now maintained by the non-profit Linux Foundation.
In recent years, GraphQL gained notable popularity in the industry (Postman, 2023)
and there is a rising interest in utilising graph-based technologies in the BIM context.
Graph-based solutions promise to offer distinct advantages, especially when it
comes to tasks like sub-model querying or accessing specific model elements
without the need to traverse and read the entire model. Version control and
tracking of changes are also promising applications of graph-based technologies
and show that representing and processing building models as graphs brings a lot
of potential.
GraphQL aligns with this development as it provides the means to interact with
interconnected information of any kind, while offering a great flexibility in the
specific representation that can be used to store information. Because of this,
GraphQL seems like a suitable choice as a query language and API paradigm in
the built environment.

1.3 Research Questions

This thesis consists of two separate parts. The first part provides a literature review
and overview of existing methods related to data exchange, collaboration and
GraphQL as a technology (chapters 2 and 3). The second main part presents the
proposal and implementation of a GraphQL API (chapters 4 and 5). The first part
describes the technical background and seeks to address the following research
questions:

- What is the current state of research on fine-grained data access to hetero-
geneous, highly interconnected knowledge within the AEC industry?

- Have previous studies explored the application of GraphQL in the AEC
domain?

The second part focuses on developing and evaluating a GraphQL API. With an
emphasis on exploring GraphQLs capabilities to query interconnected data in the
AEC context. This case study aims to:

- Explore the feasibility of using a GraphQL API to query heterogeneous
resources as they are commonly found in the BIM context.
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- Subsequently examine the usefulness, advantages and limitations of this
approach.

To this end, the prototypical GraphQL API will be tested against queries developed
from specific user scenarios. These user scenarios encompass typical requests,
ranging in complexity from simple queries to the retrieval of complex interlinked
resources.

1.4 Outline

Chapter 2 delves into the literature and current research on fine-grained access to
heterogeneous knowledge representations, as well as GraphQL and associated
technologies within the BIM context. A strong focus is placed on topics related to
the Semantic Web and Linked Data. These technologies are currently considered
the leading means by several researchers for integrating heterogeneous domain
data and accessing interconnected resources, not only in the AEC domain but in
other industries as well. Existing approaches to using GraphQL specifically in the
BIM context are also examined.
Chapter 3 provides a comprehensive introduction to GraphQL as both, an API
architecture design and as a query language. It introduces the terminology and
concepts related to GraphQL, as well as offers a brief overview of the predominant
alternative regarding API design, which is REST.
Chapter 4 illustrates the approach of utilizing GraphQL in the context of BIM and
the AEC industry, providing the general design philosophy and direction of the
implementation developed as part of this thesis.
Chapter 5 provides a detailed description of the case study conducted as part of
this thesis. This includes a general introduction and overview of the GraphQL API
that was developed and implemented, as well as a more detailed illustration of
design decisions, difficulties and solutions.
Chapter 6 discusses the results, accomplishments and difficulties of the imple-
mented API, examining the usefulness of GraphQL for accessing heterogeneous
resources in the BIM environment. The limitations of the proposed approach and
GraphQL as a technology in the context of BIM are also investigated in this section.
Chapter 7 provides a conclusion and outlook of the entire project, which includes
the theoretical foundation and practical implementation.
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Chapter 2

Related Works and Background

This chapter reviews current research on aspects that are related to this thesis.
While the use of GraphQL in the AEC industry naturally stands out as a primary
topic, as the title of this thesis indicates, there are only a few examples where
GraphQL has been applied in the AEC context.
As a result, the scope is broadened to include other graph-based and web-related
technologies that either share similarities with GraphQL or serve as alternatives for
addressing specific challenges. This includes, primarily, principles related to the
Semantic Web. Additionally, this chapter introduces key concepts that are essential
for understanding the subsequent sections, providing the necessary background.
For instance, it includes an overview of the data models used in the case study
presented in chapter (chapter 5). Furthermore, the chapter also illustrates current
collaboration and data exchange practices, highlighting the issues a GraphQL API
may address, as well as the requirements for an API within the BIM environment.

2.1 BIM as Interconnected Knowledge Representa-
tions in the Built Environment

In the AEC industry, collaboration and data management have historically been
characterized by the use of monolithic models within proprietary environments.
Each discipline uses different – most of the time proprietary – software tools and
stores its resources in various (proprietary) data formats. The use of different
environments often hinders efficient and lossless data exchange, which is an
integral part of almost every building project.
Historically, the exchange of information was done via (physical) documents like
blueprints, plans, tables and similar, which imposes several issues regarding the
consistency of shared models especially with increasing project size and complex-
ity. Even though BIM technologies have been developed over decades to address
these issues, bilateral document-based data exchange still remains a common
form of collaboration to this day. Although documents are usually exchanged in a
digital domain rather than on paper, some of the same problems still exist.
In practice collaboration typically involves the cumbersome process of exchanging
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entire models in the form of files, despite the highly interconnected and hierarchical
structured nature of building projects. This practice is further complicated by the
diverse needs of various stakeholders, each working on separate but intercon-
nected partial models. This section reviews the current state of these practices,
examining the limitations of existing methods and exploring how GraphQL might
offer a more efficient and flexible solution for managing heterogeneous resources
in the AEC industry.

2.1.1 BIM Maturity Levels

The BIM Task Group, funded by the UK government, developed a BIM Maturity
Model to describe and classify the stages of BIM technology development. This
model has gained popularity due to its clear and practical depiction of how data
can be exchanged at various levels of granularity given the level of development
of the BIM technologies used. In order to understand the collaboration require-
ments, it is important to consider the evolution of collaboration across the different
maturity levels, in particular the vision of ’ideal’ collaboration and data exchange
as described by the highest maturity level (level 3). This vision serves as a target
definition that can guide the development of future technologies.

The following paragraph will give a short overview of the concept and the individual
maturity levels following Borrmann, König, et al. (2021), given the topic of this
thesis, the focus will be on data exchange.

- Level 0
Level 0 describes the traditional data exchange of (printed) documents in the
form of 2D-drawings.

- Level 1
The data exchange of level 1 adds the possibility to exchange 3D-model files,
while still relying on 2D-drawings for certain information. Both level 0 and
1 happen on a bilateral level. The data is somehow transferred from one
project partner to the other.

- Level 2
BIM Maturity Level 2 is characterised by the use of BIM software tools by all
involved disciplines. Generally independent discipline models are created
using proprietary software. The data exchange happens on the file level
using centralized solutions like CDE.

- Level 3
Level 3 is the final maturity level envisioned. The main difference to level
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2 is the granularity of the data exchange. Information should be stored in
a centralized location and should be accessible on the element level. This
increases control over access rights, tracking of changes, exchange of partial
resources and similar cases. For example, at Level 2, a building model is
transferred between stakeholders using files. When a stakeholder makes
changes to their version of the model, these changes need to be commu-
nicated to other project partners through the exchange of the entire model
file. Each partner may then need to update their own designs accordingly. In
contrast, Level 3 allows changes to be made directly to a centralized model,
with all stakeholders working on the same version in real time.

According to Rasmussen et al. (2021) the vast majority of projects still happen on
the maturity levels 0 to 2 depending on the country and the involved companies.
Data is usually stored in a central, web-based location accessible to all project
partners and is exchanged using formats like Industry Foundation Classes (IFC).
Although, there is a lot of active research in this area, the access and exchange
of information on the element level as envisioned by maturity level 3 is still to be
established in practice. As a major prerequisite, this requires the development of
methods and interfaces to access and connect information on the data level.

2.1.2 Current State of Collaboration and Data Exchange

Jaskula et al. (2024) provides a comprehensive analysis of current practices and
challenges regarding collaboration in large scale construction projects. The paper
includes a thorough literature review combined with user surveys to identify the
current issues that are commonly encountered in AEC projects. This serves as a
foundation to identify and list key characteristics and current issues of collaboration
and data exchange in this field.
The AEC industry is inherently multidisciplinary, requiring collaboration among
various professionals and stakeholders. Effective collaboration in this sector is
shaped by the following several key requirements and prerequisites:

Diverse Disciplines and Software Tools
The AEC industry includes a multitude of disciplines, each utilizing specialized
software tools tailored to the specific requirements of the discipline (Borrmann,
Beetz, et al., 2021). Architects, engineers, project managers and construction
specialists work on separate products using specialised software tools, which must
somehow be combined into a single finished product: the building. This diversity
leads to the existence of various different knowledge representations and data
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formats, creating challenges for information exchange and communication. The
heterogeneity of software tools poses significant challenges for interoperability.

Integration of Multiple, Highly Interconnected Resources
A fundamental aspect of collaboration in the AEC industry is the integration of
multiple discipline models to create a single, consistent building model (Schapke et
al., 2021). This integration necessitates the use of highly interconnected resources,
where each discipline’s contributions must align and synchronize with others. The
successful merging of a unified building model relies on the precise and seamless
coordination of various discipline-specific models. Typically, a large amount of data
from several sources needs to be integrated and coordinated. Research indicates,
that the use of a single centralized source of truth for all disciplines throughout the
entire project life cycle is not practical (Jaskula et al., 2023). The findings indicate
that in real-world examples, several CDE solutions are used over the life cycle
of a building. This further emphasises the need for uniform interfaces in order to
integrate information across these data silos.

Frequent and Extensive Data Exchange
Collaboration in the AEC industry involves frequent and extensive data exchange.
As each discipline’s progress often depends on the outputs of others, efficient
and lossless exchange of information is vital. For instance, structural engineers
may need architectural designs to proceed with their calculations, while Heating,
Ventilation, and Air Conditioning (HVAC) specialists require structural layouts
to plan their systems. This interdependence underscores the need for robust
mechanisms to facilitate continuous and efficient data exchange. In practice, this
frequently occurs through channels without proper documentation and traceability
like emails, meeting, reports or generalized cloud storage solutions (Soman &
Whyte, 2020). According to Jaskula et al. (2024) 47% of interviewees named the
lack of interoperability as an issue in large scale projects.

Collaboration Over the Entire Life Cycle
The need for collaboration extends beyond the design and construction phases to
incorporate the entire life cycle of a building. Collaboration must be maintained
from initial design through to construction, operation, and eventual decommission-
ing, which in the case of building projects usually spans over several decades.
This requirement, however, relates more to the longevity of the underlying technical
infrastructure and services than the development of novel data exchange mecha-
nisms and is therefore of lower importance for the topic of this thesis compared to
the other issues.

Data Granularity
Another important topic not mentioned in detail by Jaskula et al. (2024) is data
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granularity. It refers to the level of detail, at which information is accessible. It is
very common to exchange information at the level of entire files. In practice, BIM
models, for example, usually are exchanged as entire files using the IFC exchange
format.
Several tasks, however, rely on data management and data access at a finer
level, this includes, for example, version control (Esser et al., 2022) or model
coordination (Schapke et al., 2021). These tasks require access to or traceability
of single objects or entities, like e.g., singular building elements. Enabling data
access on the object level is stated as a general goal for BIM development by
several researchers, e.g. (Werbrouck, Senthilvel, Beetz, & Pauwels, 2019) and is
one of the defined requirements for BIM maturity level 3 (see section 2.1.1).

All of these topics highlight the importance of standardized, high-performance
interfaces that enable the integration, retrieval, authoring, and coordination of
heterogeneous resources. Additionally, they provide an initial set of criteria for
evaluating interfaces. Following these general requirements, interfaces should
be flexible (to account for various data structures and user scenarios), uniform
(provide a reliable, standardised and documented way of interacting with the
resources) and allow fine-grained data access.

BIM Model Server

One approach to combat the described difficulties in collaboration is the use of
model servers. The basic premise is to „... collect all data of a building model
in a shared representation“ (Jørgensen et al., 2008) . All relevant model data
is stored, and hosted in a centralised location, combining and coordinating all
discipline models. This idea is not new and the first model servers based on
the IFC data format have been successfully implemented in the early 2000s
(Kiviniemi et al., 2005). Depending on the actual implementation, these server
implementations and available clients offer different functionalities, ranging from
simple information retrieval to full-fetched model authoring. Beetz et al. (2010)
present an implementation of an open-source model server aimed at enabling
storage, maintenance and querying of building models based on the IFC data
format. Instead of using a file-based representation as the persistence layer, the
model data is imported into a object-relational database for easier access and
more efficient querying. The server implementation offers a web API based on
the Simple Object Access Protocol (SOAP) protocol that supports remote server
integration in third-party applications. Even though it was developed around 2010
it is still under active development with the latest release being dated at February
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6, 20231.
The use of model servers is suggested numerous times in the literature as a
solution to various problems related to file-based data exchange (Beetz et al.,
2010; Solihin & Eastman, 2016) and is one step towards BIM maturity level 3. The
following advantages can be identified:

Integrating multiple discipline models
A model server provides a centralized location, where partial models from different
disciplines such as architecture, structural, mechanical and electrical engineer-
ing, plumbing, and others, can be stored, accessed and integrated for efficient
collaboration and data exchange, as well as for tasks such as clash detection.

Simplify data exchange
Model servers can simplify the exchange of information. Providing a centralized
data storage for all stakeholders to access is already a major improvement over
bilateral, file-based data exchange. In this way, a model server offers similar
benefits compared to a CDE restricted to building model data.

Enable partial model exchange
Most model server implementations provide a mechanism to query and filter
the model in a way that allows the retrieval (and potentially export) of partial
models (Kiviniemi et al., 2005). This can theoretically range from entire discipline
sub-models up to singular building elements. If and how these partial models
can be exported or exchanged is, however, entirely dependent on the specific
implementation and in most cases, tried and tested exchange mechanisms such
as IFC are used.

In the recent years, this concept has evolved further and several companies in
the industry have developed platforms for collaboration and data exchange that
go beyond simple model servers and provide functionality for the entirety of the
project management cycle in the building sector, including model server, document
management, cost management and so on. Products like BimCloud2, BIM3603 or
BIM+4 can be seen as examples.

However, there still seem to be open questions about standardized data exchange
between proprietary software solutions. This is particularly challenging if the
information is exchanged on a level more fine-grained than file-based. Without
the integration of standardized and accessible interfaces into these platforms

1https://github.com/opensourceBIM/BIMserver, accessed: 24.08.2024
2https://graphisoft.com/de/teamwork/bimcloud, accessed: 03.08.2024
3https://www.autodesk.com/bim-360/, accessed: 03.08.2024
4https://www.allplan.com/de/produkte/allplan-bimplus/, accessed: 03.08.2024

10

https://github.com/opensourceBIM/BIMserver
https://graphisoft.com/de/teamwork/bimcloud
https://www.autodesk.com/bim-360/
https://www.allplan.com/de/produkte/allplan-bimplus/


collaboration and data exchange exhibits the same well-known issues whenever
information needs to leave the proprietary environment.

One general limitation that most model server approaches share is the lack of
support for federated heterogeneous resources. Usually, there is a persistence
layer in the form of a database that is responsible for the permanent storage of
model data and all related information. In a way, this acts as a centralized data
storage even if the database itself can be set up in a federated way. It still requires
the resources to be (1) uploaded to the server and (2) compatible with the storage
scheme of the database. Typically, it does not provide the means to integrate truly
distributed resources as Linked Data technologies would make possible. This
issue can be somewhat mitigated by integrating standardized and well documented
interfaces to enable integration from outside the environment.

Common Data Environments

CDEs are another answer to the issues in collaboration and data exchange
sketched above and are commonly used in bigger projects. Looking at the advan-
tages, CDE share similarities with model servers that are discussed in the previous
section. Both are based on the idea of centralizing data used by different project
partners to increase consistency and simplify collaboration. A CDE provides a
unified location to store, exchange and manage information related to a project
and is specified in the ISO 19650-1 (2018) standardization. The primary focus are
the data exchange and information consistency between disciplines (Preidel et al.,
2018).
Even though there are conceptual similarities with model servers, a CDE is not
required to provide fine-grained access to building model information. The data
management and exchange usually happens on the level of files or even container
formats which can contain multiple files accompanied by metadata (Preidel et al.,
2018).
Jaskula et al. (2023) investigate and compare different CDE solutions that are cur-
rently used in the industry and conclude that there is the need to include multiple
CDEs throughout the life cycle of a single project. Which in turn shows the need
for standardized interfaces to exchange information not only inside a single CDE
but between different CDEs. Jaskula et al. (2024) however, identify the lack of
interoperability as one of the issues associated with the use of these proprietary
CDE platform solutions. CDEs play a vital role in enabling collaboration and data
exchange in the AEC industry, however data exchange often still happens on the
level of documents. Moreover, there is little support for interoperability between
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different CDEs, respectively interfaces to enable data integration from outside the
CDE.

2.1.3 Data Models

Data modeling describes the process of formally describing an abstracted part
of reality. A data model consists of the description of relevant classes, with
corresponding attributes and the description of the relationships existing between
classes (Artus et al., 2021).
The case-study implementation of this thesis uses two different types of resources:
IFC and BIM Collaboration Format (BCF). Both are very common formats in the
AEC industry and both aim to enable standardised exchange of information. While
IFC was developed to exchange geometric, topological, and syntactic information
about building models between different project partners, BCF is used for issue
management and as a means to collaborate on existing problems, desired changes,
and the coordination of tasks and solutions (Schapke et al., 2021). The GraphQL
schema should reflect the information (or relevant parts of the information) provided
by these two data types. An understanding of the internal structure and knowledge
represented is necessary to inform the design of the GraphQL schema. Therefore,
the following sections provide a brief introduction to both IFC and BCF

IFC

IFC is the dominant exchange format for building models. Almost all proprietary
software products for creating, editing, and analyzing building models support the
import and export of models in the IFC data format.
IFC, a data format developed by buildingSMART, is designed to be a neutral, open
standard for the exchange of BIM models. The first version was released in 1997,
and the current version is IFC 4.3, with ongoing development towards IFC 5.
IFC employs the data modeling language EXPRESS, which adheres to object-
oriented principles. These include the use of classes (referred to as entities in
IFC), attributes, relationships, and concepts, like inheritance to define the data
model. Figure 2.1 depicts how the IFC entity IfcWall is described in EXPRESS. It
highlights the extensive inheritance structure in IFC. For example, IfcWall inherits
attributes from multiple super classes, including GlobalId, OwnerHistory, Name,
and Description, which are inherited from the IfcRoot entity. A unique feature of the
EXPRESS data modeling language is the definition of inverse relationships. Unlike
direct relationships, which reference another entity through an attribute, inverse
relationships indicate that another entity is referencing this entity. This simplifies the
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Figure 2.1: Definition of the IfcWall entity in the data modelling language EX-
PRESS.
Source: https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/
ifcsharedbldgelements/lexical/ifcwall.htm
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Figure 2.2: Objectified relationship in IFC.
Source: https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/
ifcproductextension/lexical/ifcrelfillselement.htm

navigation to related entities without the need to add new information (Borrmann,
Beetz, et al., 2021). Related to this is the concept of objectified relationships, which
enables the modeling of relationships between two entities as separate objects.
The main advantage of this approach is that it allows additional information to be
attached to the connection between the two entities. An example of this concept
is shown in figure 2.2. IfcRelFillsElement connects a IfcOpeningElement with
the entity IfcElement, signifying that this opening is being (partially) filled by a
specific IfcElement instance. These concepts will be of further importance for the
case-study described in the chapter 5 in general, and the relationships between
the IFC schema and the design of the GraphQL schema in particular.

IFC was developed to facilitate the exchange of comprehensive building models,
aiming to meet the modeling requirements of all sub-disciplines to describe an
integrated overall model. As a consequence the schema, as well as instance
models, are quite extensive and complex. IFC instance models can be serialized
in several ways. The most widely used format is the STEP Physical File (SPF),
based on ISO 10303-21 (2016), which provides clear text encoding of EXPRESS
data models. Depending on the specific use case, other serializations may be
more appropriate. Other popular encodings use Extensible Markup Language
(XML), JavaScript Object Notation (JSON) or Resource Description Framework
(RDF) to represent IFC model data.
JSON, for instance, is a highly popular data format that many web developers
are familiar with. The use of well-known data formats facilitates access and thus
enables improved integration of the IFC data model into other applications. In the
context of Semantic Web and Linked Data a RDF based serialization like turtle
(.ttl) would be more appropriate to represent IFC model data.
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BCF

BCF regulates the exchange of model-based communication regarding issues,
change requests, and similar matters (Schapke et al., 2021). It is a relatively
simple data format that makes it possible to create and exchange so called topics
related to specific viewpoints based on specific IFC models. A topic can relate
to certain building elements via the IFC attribute GlobalId and include additional
information, such as comments, which can be used as a communication channel
about specific issues. There are several relationships that can be established
between an IFC model and BCF, which are discussed in detail in section 5.3.3.
Two approaches are defined by buildingSMART to exchange BCF information
between project partners:

- A file based exchange; based on XML and ZIP

- A RESTful web API; an extensive specification of all endpoints including
required and allowed query parameters as well as the exact structure of the
response body in the JSON format is provided on GitHub5.

The case study uses the file-based approach to represent and store BCF. This
was chosen to avoid the need to include either a third-party server or a custom
server implementation.

2.1.4 Early and Late Binding

Overview

This thesis uses building models represented in the IFC format specifically in
the STEP clear text encoding according to ISO 10303-21 (2016). There are two
possible methods to structure the access to such files and organize access to the
underlying information – early binding and late binding. This chapter provides an
overview of both approaches and discusses them in the context of GraphQL. It
is important to note that the concepts of early and late binding might not strictly
apply to the context of a GraphQL API and schema design. There are, however,
interesting similarities that can help categorize different approaches in schema
design according to these concepts.
Binding in this context usually refers to the mapping of the EXPRESS definitions to
a programming language that is used to process the model information. GraphQL,
however, is not a programming language and can be seen in this context more like

5https://github.com/buildingSMART/BCF-API, accessed: 05.08.2024
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a data modeling language. The GraphQL schema is usually not strictly aligned
with the data structure of the resources which also means that in most cases
there is no direct mapping between classes/entities in the resources to types in
the GraphQL schema. The following description of the early and late binding
approaches follows the introduction provided by Amann et al. (2021).

Early Binding

Early binding refers to the mapping of IFC entities to entities of the host program-
ming language, this means all IFC entities have a corresponding entity in the
host language. This can be done manually but most of the time it is preferable
to automate this process using a code generator. The generator takes a specific
IFC schema and produces definitions of the corresponding entities in the host
language. "As a rule, EXPRESS entities are mapped to classes in object-oriented
programming languages, inheritance is implemented using inheritance syntax and
references are created using pointers" Amann et al. (2021). In our specific case
the host language is GraphQL, which already has a few limitations to overcome. In
order to be able to create an early binding (a representation of the IFC schema in
GraphQL), the following concepts have to be represented adequately in GraphQL:

1. EXPRESS-entities: EXPRESS-Entities can be represented as GraphQL
types, which are very similar to classes in Object Oriented Programming
(OOP).

2. Explicit references: Types in GraphQL can use other GraphQL types as
member variables. Using this, we can represent explicit references between
entities.

3. Inverse relationships: Many connections between IFC entities are based
on inverse relationships. This allows connecting entities without the use of
a specific link in the entity definition. There is no concept similar to inverse
relationships in GraphQL and all connections that exist between an entity A
and an entity B have to be made explicit in the form of type attributes.

4. Objectified relationships: IFC uses objectified relationships, e.g., to con-
nect a wall to its corresponding material. These references are a little bit less
straight forward to map to graphQL, but can be done in two different ways:
(1) Represent the implicit reference as its own type that references both the
wall and the material. (2) Make the material an explicit reference of the wall.

5. Inheritance: GraphQL has no native support for inheritance. The closest we
can emulate inheritance is by either using interfaces or directives. Inheritance
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Algorithm 2.1: Representation of the IFC entity IfcWall in GraphQL
1 type IfcWall {
2 globalId: ID!
3 ownerHistory: IfcOwnerHistory
4 name: String
5 describtion: String
6 objectType: String
7 ObjectPlacement: IfcObjectPlacement
8 representation: IfcProductRepresentation
9 tag: String

10 predefinedType: IfcWallTypeEnum
11 }

can be emulated by using directives6. Some of the features offered by
inheritance can be achieved this way.

While it seems possible to create an explicit mapping between the IFC schema
and GraphQL, implementations would need to overcome the mentioned issues.
Listing 2.1 illustrates how an IFC entity could be mapped to GraphQL.

IfcWall, however, also has multiple (up to 24) inverse attributes that are used to
further define information about material, the building structure this wall is located
in, potential openings and more. This is vital information, which would need to be
made explicit in the GraphQL schema, greatly increasing its size.

Late Binding

Late binding uses the Standard Data Access Interface (SDAI), which is specifically
defined for the programming languages C, C++ and Java and in general in an
abstract form. This approach follows the general premise to omit the step of direct
mapping step between IFC schema and host language, providing a generic way
of representing and accessing individual entities. This approach offers greater
flexibility in exchange for expressiveness (Amann et al., 2021).
In a strict sense, this specification does not seem easily transferable to GraphQL,
since GraphQL relies on the definition of a static schema that has to be known
before starting the server and can not be changed on the fly. However, the general
principles of late binding can still be applied to the GraphQL schema design.
Following these principles, entities are represented in the GraphQL schema in
a generic way that enables a flexible definition of all corresponding attributes
and relationships. Autodesk seems to follow this approach for their GraphQL

6https://nelsondominguez.hashnode.dev/inheritance-in-graphql-when-and-how-to-use-it, ac-
cessed: 10.07.2024
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API implementation, with a very generalized and flexible schema design. The
difference between both approaches will be discussed in more detail in the context
of the case study implementation in chapter 5.

2.2 Graph-Based Representations in the Web Con-
text

When talking about heterogeneous, domain-specific knowledge representation,
Linked Data is often proposed to enable collaboration and interoperability on the
data level. There is extensive research on incorporating Semantic Web and Linked
Data technologies into the building and construction sector. The next section
provides a closer look at some approaches and offers a general introduction into
Linked Data and associated technologies like RDF, Web Ontology Language
(OWL) and SPARQL Protocol And RDF Query Language (SPARQL).

2.2.1 Semantic Web Technologies: Linked Data, RDF, OWL,
SPARQL

Linked Data within the context of the Semantic Web is a concept that was first
introduced by Tim Berners-Lee (Berners-Lee, 2006). The main idea behind it
is to define a method for extending the web from linking documents to a web of
data, where resources are defined more fine-grained and are connected at the
data level. It relies on using Unique Resource Identifiers (URIs) to identify entities
and establish connections between them. The knowledge is represented in RDF,
a schema to describe data in the form of triples consisting of subject, predicat
and object, which represents a common concept of first-order logic (de Bruijn &
Heymans, 2010). The links between the subject and object can thereby carry
additional semantic information which distinguishes them from normal hyperlinks.
The Semantic Web allows to attach meaning to data in a machine readable way
that enables querying and automated reasoning. The efforts to establish data
access and data exchange at element level in the BIM context have an equivalent
(or precursor) in this evolution from the classic web to the so-called Web of Data.
Therefore, it is not surprising, that there are substantial effort to apply Semantic
Web technologies to the construction industry.
The Semantic Web builds on a suite of technologies known as the Semantic Web
Stack. This includes RDF, Resource Description Framework Schema (RDFS),
OWL and SPARQL The next paragraphs provide an overview of the concept of the
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Semantic Web and the associated technologies, outlining the current development
and use of Linked Data principles in the AEC industry. The following section is
based on the Linked Data overview from Bizer et al. (2023) as well as the official
documentation (Hartig, Champin, et al., 2024) and design issues of the World
Wide Web Consortium (W3C) (Berners-Lee, 2006).

Semantic Web
The concept relies on the core principle of using Unique Resource Identifiers
(URIs) to identify and link resources. Both, resources and links, are represented
using the Resource Description Framework (RDF). In contrast to the classic
document oriented web approach, links can be established between individual
elements rather than between files. To achieve this, Linked Data relies on data
being represented in the RDF format.

RDF
RDF is the predominant data model used to represent resources in the context
of the Semantic Web. Information is represented in the form of triples, which
create a logical connection between the Subject, Predicat and Object. This simple
principle allows describing a link between two elements, making it possible to form
extensive knowledge graphs that are directed, labeled and highly interconnected.
RDF is based on formal logic (predicate logic, first-order logic) allowing powerful
automated reasoning over RDF graphs (de Bruijn & Heymans, 2010). RDF
is extended by RDFS to add vocabulary that allows the formulation of simple
ontologies. There are several serializations available for the RDF data format,
including N-Triples, Turtle, JSON-LD and XML.

OWL
OWL extends the syntax of RDF and RDFS with additional vocabulary to allow
the definition of so-called ontologies. Ontologies can be used to describe domain
knowledge, its concepts and the relationships between them (OWL Working Group,
2012). OWL attaches semantic meaning to data. The current version (OWL 2)
was developed by the W3C OWL Working Group7 in 2009. Pauwels and Terkaj
(2016) point out the similarities between OWL and EXPRESS as a data modeling
language. Both are used to define information and semantics about a domain
and relationships between concepts and entities. However, OWL is part of the
Semantic Web Stack and therefore offers a suite of general tools for semantic
interpretation, reasoning, data exchange and querying. Pauwels and Terkaj (2016)
conclude that given the similarities, it should be possible to represent IFC data as
RDF graphs, opening up the possibility to use the already existing software tools
available as part of the Semantic Web.

7https://www.w3.org/2007/OWL/wiki/OWL_Working_Group, accessed: 23.07.2024
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SPARQL
SPARQL is a query language recommended by the W3C as the standard for
querying resources represented in RDF (Harris & Seaborne, 2013). In this way,
it can be seen as the equivalent of SQL for relational databases. SPARQL will
be discussed in more detail than the other Linked Data technologies, since it can
be directly compared to GraphQL as a query language. A query is formulated by
defining a pattern using RDF syntax, where any part of the triple can be marked as
a variable. This pattern is then matched against the graph store and the selected
parameters are returned for all matching resources. Listing 2.2 shows a simple
query expressed in SPARQL, executed on a small data set represented in RDF,
including the result of the query. The example is taken from Hartig, Taelman,
et al. (2024) and uses the popular friend of a friend (foaf) ontology8. A prefix
definition is used to simplify the notation and avoid repeating the same resource
Unique Resource Locators (URLs) in multiple places. The query consists of a
SELECT statement, describing what information is requested and a WHERE
statement, providing the condition in the form of a graph pattern. This pattern
is matched against the currently active graph for this query (Hartig, Taelman,
et al., 2024). The query returns all requested parameters for all sub-graphs that
matched successfully against the provided pattern. While a query of this simplicity
is relatively easy to comprehend, the complexity rises significantly with more
complicated requests.

SPARQL also supports the use of the following concepts:

- Optional patterns
It is possible to define patterns that may exist but do not have to exist be for
a query to match successfully.

- Filters
Filters can be used to match strings with Regular Expressions (regexs) or to
restrict numerical values.

- Negation
Two types of negation are natively available through the use of filters: EX-
ISTS/ NOT EXISTS, which filters based on the existence of patterns and
MINUS, which removes possible solutions from the result.

- Aggregation
This feature allows directly returning aggregate values in the query results.
This includes building sums, averages, counts and more. Obtaining aggre-

8http://xmlns.com/foaf/spec/, accessed: 10.08.2024
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Algorithm 2.2: Simple SPARQL query.
1

2 DATA
3 PREFIX foaf: <http://xmlns.com/foaf/0.1/> .
4 _:a foaf:name "Johnny Lee Outlaw" .
5 _:a foaf:mbox <mailto:jlow@example.com> .
6 _:b foaf:name "Peter Goodguy" .
7 _:b foaf:mbox <mailto:peter@example.org> .
8 _:c foaf:mbox <mailto:carol@example.org> .
9

10 QUERY
11 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
12 SELECT ?name ?mbox
13 WHERE
14 { ?x foaf:name ?name .
15 ?x foaf:mbox ?mbox }
16

17

18 RESULT
19 "Johnny Lee Outlaw" <mailto:jlow@example.com>
20 "Peter Goodguy" <mailto:peter@example.org>

gated results is a vital functionality for several userscenarios. Especially in
the AEC industry, where tasks like quantity take-off play a major part.

- Create, Update and Remove RDF graphs
Through the addition of SPARQL update, it is possible to perform all Create,
Read, Update, Delete (CRUD) operations on a graph store using SPARQL.
Besides reading it is therefore possible to create, update and delete re-
sources through the query language directly.

Given these functionalities, SPARQL is a very powerful query language. Its ex-
pressiveness allows it to retrieve arbitrary sub-graphs through the aforementioned
pattern matching.
There are, however, limitations to SPARQL as a query language that hinder its ef-
fectiveness and practical use in some scenarios. The first one is especially relevant
for the AEC industry with its diverse data formats and exchange requirements.

1. According to Harris and Seaborne (2013) SPARQL "...can be used to express
queries across diverse data sources, whether the data is stored natively as
RDF or viewed as RDF via middleware". The resources have to be accessible
in one way or another in the form of RDF graphs. This is not an unusual
limitation for query languages, as, for example, SQL is also dependent
on the data being represented as a relational, table-based data store. It
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shows, however, one of the strengths of GraphQL as a query language in
comparison. GraphQL is not dependent on a specific data format but can be
used to query diverse data stores.

2. SPARQL is associated with a steep learning curve (Werbrouck, Senthilvel,
Beetz, Bourreau, et al., 2019) and is considered to be cumbersome to
implement for developers not completely familiar with the Semantic Web
and its technologies. If the target resource data is related to BIM it will
most likely be in the IFC data format, specifically using ifcOWL or equivalent
ontologies to store the information as an RDF graph. Familiarity with these
concepts (which are complicated and complex on their own) is therefore
additionally required to construct meaningful and consistent queries Guo
et al. (2020). This highly limits the potential use of SPARQL even though
it is a very powerful language. The threshold for developers to implement
SPARQL queries and interfaces is therefore hindering its usability.

2.2.2 Semantic Web Technologies in the Context of BIM

As a response to the complexity of not only SPARQL, but other query languages as
well, Guo et al. (2020) have proposed a method to automatically create SPARQL
queries from the data requirements of the users. They use keywords provided
by the user in conjunction with string matching to construct the actual SPARQL
query. The query is executed on IFC data, which must be converted into a RDF
representation beforehand (because of limitation number one).
A different approach is proposed by Zhang et al. (2018) by extending the SPARQL
vocabulary in order to simplify querying of building data.
Through the use of Linked Data in the the context of building models, „... resources
can be linked to each other not only within the realm of a single model or file, but
across file boundaries and networks“ (Pauwels et al., 2018) . This opens up the
possibility of aggregating a model from several distributed partial models. Each
discipline can work on their design separately, while sub-models are combined to
form the meta-model through links (Pauwels et al., 2018).
The Semantic Web stack additionally offers a suite of well established software,
tools and query engines already tested in other industries, that could be used in
the construction environment.
Pauwels and Terkaj (2016) highlight the similarities between IFC as a schema
specification and ontologies expressed in OWL built on RDF. Unsurprisingly, a
lot of research is focusing on the integration of BIM into the Linked Data world.
Since building models are usually exchanged using the IFC format, there are
multiple approaches to map the IFC schema into an ontology represented in RDF.
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The following two sections will examine two approaches of representing building
information in RDF, using dedicated ontologies.

2.2.3 ifcOWL

Due to the similarities between OWL and EXPRESS as data modelling languages
and the potential benefits, that Semantic Web technologies can yield for the AEC
industry, there have been a lot of attempts to create a mapping from the IFC
schema to ontologies expressed in OWL. Pauwels and Terkaj (2016) provide an
extensive overview of the existing approaches and also present their own definition
of an ontology for the IFC data model. This ontology, named ifcOWL, seems to see
the most use and recognition compared to the other alternatives. Their approach is
to follow the original IFC specification defined in a specific IFC schema as closely
as possible to be able to transform model data from IFC to RDF and vice versa
without any loss of information.
A detailed mapping between concepts, data types, entities, rules and so forth,
between IFC schema and OWL is created to mirror the structure of a building model
expressed through IFC in RDF. Based on this ontology an implementation of the
conversion procedure between IFC and RDF has been developed and published by
the author Pauwels (2023). This tool takes a IFC model serialized in the SPF format
(ISO 10303-21, 2016) and outputs the RDF representation serialized as turtle file
(Prud’hommeaux & Carothers, 2014). One of the main strengths of transforming
IFC into ifcOWL is the possibility of seamlessly connecting the building model with
information that would otherwise be out of scope, e.g., additional information about
materials, sensor data or GIS data (Pauwels et al., 2017). After conversion, the
resulting RDF graph can be queried using SPARQL. SPARQL, as the recomended
query language to interact with Linked Data will be discussed in more detail in the
following section (2.3).

Although this approach is very promising, it does not seem to be widely used
in practice. On their official website buildingSMART advises against the use of
ifcOWL in practice with the remark that it "... was an acadamic experiment that
concluded that IFC is difficult to represent in other formats than EXPRESS." As
a reason they state that ifcOWL is "full of exceptions and particularities" (build-
ingSMART, 2024). Werbrouck, Senthilvel, Beetz, Bourreau, et al. (2019) state that
the direct mapping between IFC and OWL produces a very large and complex
ontology that, therefore, lacks the flexibility to deal with topics outside the defined
schema, which is usually a building stone of the Semantic Web concept. Ras-
mussen et al. (2021) mention that adhering strongly to the IFC schema defined in
express produces a very complex ontology that is inconsistent with best practices
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established in the context of Linked Data and the Semantic Web, which leads
to the inefficient reasoning. This also means that existing tools to interact with
Linked Data can not be used to their full potential. Rasmussen et al. (2021) also
note that by converting the entire IFC schema into a single ontology, modularity
and extensibility (usually major strengths of Linked Data) are not incorporated in
the design. This requires a user to handle the entire ontology even if only a few
concepts are needed for a specific use case.

While ifcOWL may not be used by the industry for the reasons mentioned above,
the development of numerous mappings between IFC and OWL still shows a need
for technologies that allow to interconnect heterogeneous resources and enable
efficient and powerful querying.

2.2.4 Building Topology Ontology: BOT

As a response to the shortcomings of ifcOWL, an alternative ontology was created
in collaboration with the original author of ifcOWL, presented by Rasmussen
et al. (2021). This ontology aims to provide a minimal set of definitions that
are necessary to describe the topology of a building. It is intentionally kept as
lean as possible with the idea of being easily expandable with specific domain
ontologies, wherever required by the use case. To put the extent into perspective:
ifcOWL consists of 1331 classes and 1599 properties, while the proposed Building
Topology Ontology (BOT)consists of only 7 classes with 14 properties. As a result it
will likely not be specific enough to be used on its own for the majority of specialized
disciplinary use cases. However, it provides an easy to understand framework
to describe the bare necessities of the building topology and include additional
specialized ontologies from other domains, wherever necessary. This approach
facilitates reliance on already existing (and potentially established) ontologies from
other disciplines, thereby increasing interoperability and avoiding inconsistencies
between domains.

2.3 Interfaces to Access Heterogeneous Building
Data

There is a need for interfaces to access heterogeneous resources that enable
seamless interoperability between diverse stakeholders. This need is prevalent
across numerous industries but is especially crucial to the field of Architecture
Engineering Construction (AEC). Construction projects are characterised by the
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collaboration of a wide range of different project partners, using various software
tools and data management solutions. Since the technologies discussed above
are not exclusive to the AEC industry, however, it may be beneficial to also consider
existing solutions in other areas of expertise. Given that this thesis focuses on
web-based technologies, the review will be limited to web-based data exchange
and access mechanisms. Special emphasis will be placed on Linked Data and
related technologies, such as RDF, OWL and the query language SPARQL.

GraphQL is often viewed as an alternative or competitor to established Linked
Data technologies. Therefore, it is therefore important to explore the capabilities
and limitations of Linked Data in the AEC industry and identify any shortcomings
that might be mitigated using GraphQL.

Costin and Eastman (2019) explore the requirements and mechanisms enabling
interoperability in the context of "smart and sustainable urban systems" in combi-
nation with Internet of Things (IoT). They emphasize the need for interoperability
with its enormous potential in reducing costs. A lack of interoperability leads to
redundant processing and storage of resources, which increases project costs
and time investment. The greater the role of collaboration, the more critical this
issues becomes. As a potential solution to this problem, they identify the use of
APIs. Lastly, they state the need for the possibility to exchange data in order to be
able to integrate different systems.

The official query language for accessing Linked Data stored as RDF triples is
SPARQL. SPARQL is a powerful query language but is considered cumbersome
and complex to work with (Werbrouck, Senthilvel, Beetz, Bourreau, et al., 2019).
There is a signigicant barrier for developers to implement SPARQL and include
it into their projects (Verborgh, 2018). As a result, the Linked Data stack offers
powerful capabilities, but its adoption on a larger scale is limited by the steep
learning curve of the associated technologies.
When discussing API design, one important aspect is accessibility. An API has to
be integrated into other products, to be considered useful. Lowering the entry bar-
rier to key technologies is, for this reason, more important than it may initially seem.
It is therefore, understandable that a lot of focus is placed on exploring and devel-
oping more user-friendly ways of interacting with Linked Data or interconnected
data in general.

Werbrouck, Senthilvel, Beetz, Bourreau, et al. (2019) undertake an extensive com-
parison between SPARQL and two GraphQL-based technologies: HyperGraphQL
and GraphQL-LD. They apply all three approaches to query a Linked Building Data
model and compare them according to criteria like federated querying, reverse
querying, updating functionality and so on. Both GraphQL-LD and HyperGraphQL
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are technologies that extend the GraphQL specification to support querying (and
mutation) of Linked Data. The approaches of both technologies are, however,
quite different.

GraphQL-LD, introduced by Taelman et al. (2018), translates the incoming
GraphQL query into valid SPARQL and performs a traditional SPARQL query
on the resources. As a result, there is no need to set up a GraphQL schema,
which is generally a key part of any GraphQL API (ref GraphQL). This schema-
less setup also means that there is no introspection feature (ref introspection),
which normally communicates to the user of the API (developer) which queries
(types and fields) are available. This is because GraphQL-LD enables the user to
query the entirety of the existing resources as long as they are available through
SPARQL. GraphQL acts in this case only as the query language the client uses to
communicate with the API, simplifying the communication compared to SPARQL.
Consequently, there is no need to set up a GraphQL server; the translation from
GraphQL to SPARQL can happen on the client application.
HyperGraphQL, on the other hand, adheres more closely to the original GraphQL
specification. A schema is created (automatically) and is linked using a meta-
model to the Linked Data resources. This means every type and field has to
be mapped to a corresponding Linked Data URI. This approach offers GraphQL
features like introspection and allows the API developer to control access to the
underlying data in a fine-grained manner.
A similar approach to HyperGraphQL can be observed in existing proprietary
software products like TopBraid9 and Stardog10 (Taelman et al., 2019). These
publications show that GraphQL is a popular choice for querying RDF triple stores
instead of using SPARQL, the officially recommended query language. Taelman
et al. (2019) identify and illustrate four different approaches to access RDF using
GraphQL.
When considering GraphQL as a alternative to SPARQL, it is important to note that
GraphQL is not limited to resources described in RDF. The use of flexible resolver
functions allows for the integration of resources from numerous sources and with
very diverse structure. GraphQL lacks on the other side some of the flexibility and
expressive power that come with SPARQL as a query language.

One of the limitations of Linked Data in the context of AEC projects is the lack of an
innate access control mechanism. The web of data and associated technologies
are designed to form an open, accessible web of resources where it is possible to
directly follow the links from one resource to another. However, access control is a
vital requirement for projects in the AEC industry to ensure the data sovereignty

9https://topbraidcomposer.org/html/, accessed: 10.07.2024
10https://www.stardog.com, accessed: 10.07.2024
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and property of the stakeholders. Restricting access to resources is not inherent
in the principles of Linked Data and has to be implemented separately. Villata et al.
(2011), for example, present a method of implementing fine-grained access control
by creating a dedicated ontology and enforcing it using SPARQL queries. Kamateri
et al. (2014) propose a access control framework for Linked Data in the context
of medical information, which is highly sensitive regarding privacy concerns. By
comparison, REST APIs have access control mechanisms that are exceptionally
mature and thoroughly validated in practical use.
Since GraphQL was developed on the basis of the established REST paradigm,
its access control mechanism can be adapted from REST. This means that it is
possible to draw back on authorisation and authentication mechanisms that have
been developed, evolved and proven to be secure and reliable in practice.

When GraphQL is compared to other query languages, a brief mention of SQL is
warranted since it is a very popular query language. There are approaches for
utilizing SQL and relational Databases in the context of BIM. Several resources
in the AEC context can be represented very well in form of a relational database.
Building model data, however, is usually described in an object-oriented manner
with entities, properties, associations and so on, that are not easily representable
in an table-based relational manner (Li et al., 2016). In recent years, there has
been active discussions in the technical community about storing IFC data in a
relational database11, as well as the development of an appropriate database
schema12. One proposal is given with ifcSQL, a SQLite database schema for IFC
by Bock and Eder (2024). However, buildingSMART classifies this encoding of
IFC data as "experimental/unsupported" in contrast to e.g., the RDF variants .ttl
and .rdf.

2.4 Summary and Research Gap

This literature review explores key topics related to collaboration practices and
data exchange in the AEC industry. Specific focus is on the application of Linked
Data technologies (indluding RDF, OWL and SPARQL) as well as the current and
potential use of GraphQL as an interface for accessing heterogeneous building
data. This addresses research questions 1 and 2 posed in chapter 1:

- What is the current state of research on fine-grained data access to hetero-
geneous, highly interconnected knowledge within the AEC industry?

11https://community.osarch.org/discussion/1535/ifc-stored-as-sqlite-and-mysql, accessed:
01.08.2024

12https://forums.buildingsmart.org/t/ifc-for-relational-databases-ifcsql/1524
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- Have previous studies explored the application of GraphQL in the AEC
domain?

The review highlights a significant interest in applying Linked Data technologies
within the built environment. RDF and OWL are essential building blocks in repre-
senting and linking heterogeneous resources. Several methodologies have been
proposed for converting IFC to OWL, enabling more seamless data integration and
interoperability. Despite the advantages, using SPARQL for querying, Linked Data
poses challenges, particularly due to its complexity. These limitations suggest the
need for more intuitive and user-friendly querying solutions.

The centralization of knowledge as a single source of truth, using technologies like
CDEs or model server, was also identified as a possible approach to enable and
improve collaboration and data exchange in the AEC industry. Even though these
are established solutions in the industry, there are still difficulties, especially if
information exchange between different platform solutions is necessary. Additional
issues arise from file based data exchange, which does not offer fine-grained
access to information and is, however, still prevalent in many large scale projects.

GraphQL is emerging as a promising alternative for querying linked building data.
Its flexibility and efficiency in managing complex queries position it as a viable
solution to some of the shortcomings associated with SPARQL. The literature
indicates some recognition of GraphQL’s potential to enhance data accessibility
and user experience in the built environment sector. Compared to the rising
popularity of GraphQL there are, however, surprisingly little attempts to integrate
this technology in the AEC industry. Most approaches are based on using GraphQL
as an interface to access Linked Data representations (Taelman et al., 2018;
Werbrouck, Senthilvel, Beetz, & Pauwels, 2019). One of the few examples, where
GraphQL is used outside the Semantic Web context is given by Clemen et al.
(2021), who developed a methodology to enable the integration of standardized
data catalogues into software tools through GraphQL. However, the simultaneous
integration of different, diverse data structures and knowledge representations,
which is one of the strengths of GraphQL, is missing from the literature in this
area. As GraphQL gained significant traction in recent years, there are plenty
of examples regarding the application of GraphQL, but far less research in the
context of BIM and CDE. Although, some methods and technologies might be
transferable from other areas, the AEC industry with its specific characteristics
might require unique solutions.

Most of the current research that combines BIM with graph-based technologies
focuses on topics like model coordination (Zhao et al., 2020), version control
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(Esser et al., 2022) or model-to-graph conversion (Tauscher & Crawford, 2018;
Zhu et al., 2023).

This thesis aims to fill this gap by proposing a methodology utilizing GraphQL to
query heterogeneous information in the context of BIM. This is done by imple-
menting a prototypical GraphQL API and testing it against specific predefined user
scenarios, exploring the advantages and disadvantages of GraphQL in the AEC
industry.
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Chapter 3

Basics of GraphQL

Since the following sections – the descriptions (chapter 4) of the approach and
the implementation of a GraphQL API (chapter 5) – require an understanding of
GraphQL’s terminology and core concepts, this chapter provides an introduction
and overview of GraphQL as a query language and API architecture. GraphQL can
be seen as a response to several shortcomings of the REST paradigm for specific
use cases, making it valuable to examine its similarities and differences towards
REST. Before delving into GraphQL, a brief introduction of REST is warranted,
which is still the most used API paradigm.

3.1 Application Programming Interfaces

An API is a component of a software that exposes data and functionality through
an interface to other applications. It enables "interactions between computer
programs and allow them to exchange information" (Masse, 2011). Since this
thesis focuses on web-related context, API specifically refers to web API. A web
API is an API that is accessible via the internet. Most current web APIs implement
either the REST or GraphQL paradigms.

3.2 REST

Published by Fielding (2000), REST remains the predominant architectural
paradigm for web APIs to this day. According to the Postman State of the API
Report1, REST is leading the list of most-used API architectures by a large margin,
ahead of webhooks, GraphQl, SOAP and WebSockets. In order to be considered
RESTful, an API needs to adhere to the following principles (Fielding, 2000):

1. Client-Server relationship:
REST defines the relationship between a client and a server. The client
initiates the conversation by sending a request to the server, which then
sends back the appropriate response.

1https://www.postman.com/state-of-api/api-global-growth/, accessed: 28.06.2024
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2. Stateless:
All the information necessary to respond to a request must be included in the
request itself. The server does not keep track of information about the state
of a client session. This ensures scalability and enables a federated server
architecture. There is no need for a specific client to communicate with a
specific server for subsequent requests, since a request is independent of
previous requests.

3. Cache:
RESTful APIs must be cacheable: The response to a request is saved. If
the same exact request occurs again, this saved response is send instead of
generating a new response. Implementing this behavior has several benefits,
such as reducing server load, minimizing network traffic and hiding network
failures. Caching can be implemented on both the client and on the server
side.

4. Uniform Interface:
This constraint describes the use of URLs to identify and address resources.
Every resource available through a REST API has a specific URL, through
which it can be identified and accessed. It further demands that requests be
self-describing, for example, through the specification of Hypertext Transfer
Protocol (HTTP) methods.

5. Layered System:
The API should support or implement a layered architecture. This increases
scalability and simplifies the implementation of, e.g., security features.

Following the fourth constraint, each request must specify a HTTP method to
inform the server of the intent of the request. The methods commonly recognized
by APIs are GET, POST, PUT and DELETE which correspond to the already
mentioned basic Create, Read, Update, Delete (CRUD) operations.

3.2.1 Limitations of the REST Paradigm

REST is extremely popular as an API architecture and is one of the integral building
blocks of the web as we use it today. There are, however, limitations that have led
to the development of alternative API architectures better suited for specialized
scenarios. These limitations are discussed in more detail in the following section,
since GraphQL directly addresses some of these issues.

Over- and Under-Fetching
When using a REST API, there is a high possibility that the information provided
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Figure 3.1: General structure of the client-server relationship using a RESTful API.

by a specific endpoint may not be needed in its entirety by the client. Frequently,
only parts of a resource are required for a specific client application. Since every
resource is accessible through a specific URL, there is no possibility for the client
to request only parts of a resource; the resource is always returned in full. As a
result, more information than necessary gets exchanged between client and server.
This leads to unnecessary network traffic and the need to implement additional
logic on the client side to filter the information. This is known as over-fetching.
On the other hand, if a client needs more information than what is available through
a single endpoint, multiple independent requests to different endpoints must be
sent, and the responses must be merged on the client side. This phenomenon is
called under-fetching.

A small example to illustrate this issue: the World Time API2 provides informa-
tion about the current time based on a specific timezone with an endpoint for
each timezone. A HTTP GET request to the endpoint http://worldtimeapi.org/api/
timezone/Europe/Berlin will return information about the Central European Time
(CET), including the current time and date (for this time zone) in different formats,
current week number, a Coordinated Universal Time (UTC) offset and more. The
actual returned result is depicted in listing 3.1. If the client application is only
reliant on, e.g., the "datetime" parameter, all the additional information would be
superfluous (over-fetching). If, on the other hand, the client application needs to
include information about multiple time zones, a separate request must be made
for each individual time zone (under-fetching).

This is a very small example and the amount of over-fetched data can be much
higher in practice. However, the principle remains the same: it demonstrates that
often there is no exact match of the client need and the provided endpoints.

2http://worldtimeapi.org, accessed: 30.07.2024
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Algorithm 3.1: Response body from the WorldTimeAPI endpoint http://worldtimeapi.
org/api/timezone/Europe/Berlin

1 {
2 "abbreviation": "CEST",
3 "client_ip": "xxx.x.x.xxx",
4 "datetime": "2024-07-30T08:47:05.403089+02:00",
5 "day_of_week": 2,
6 "day_of_year": 212,
7 "dst": true,
8 "dst_from": "2024-03-31T01:00:00+00:00",
9 "dst_offset": 3600,

10 "dst_until": "2024-10-27T01:00:00+00:00",
11 "raw_offset": 3600,
12 "timezone": "Europe/Berlin",
13 "unixtime": 1722322025,
14 "utc_datetime": "2024-07-30T06:47:05.403089+00:00",
15 "utc_offset": "+02:00",
16 "week_number": 31
17 }

Multiple Endpoints
Efforts to avoid over-fetching and under-fetching typically result in the definition of
numerous endpoints to ensure fine-grained access to the underlying data. How-
ever, this can lead to a certain level of complexity within the API, making the
system harder to maintain and understand. Developers must carefully manage
and document these endpoints to avoid potential issues and inconsistencies. Addi-
tionally, balancing the granularity of data access with performance considerations
remains a significant challenge.

Multiple Roundtrips for Interconnected Resources
Since every resource has its own separate endpoint, interconnected resources
can not be requested in a single request. If a resource references a different
resource, this reference will be included in the response to the initial request. The
referenced resource must then be requested in a subsequent request, resulting
in one additional round trip between client and server for each level of nested
references. Assuming a server provides two resources, A and B, each with its
own endpoint. Resource A references resource B through the URL at which B is
accessible. To illustrate: Resource A could be a JSON file with information about
an author. This file contains a list of URLs referencing all the books associated
with the author. Resource B could be a JSON file containing information about a
specific book written by the aforementioned author. The communication flow to
retrieve information about the author and their book would be as follows:

1. Client sends a request to endpoint A
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2. Server responds with resource A

3. Client processes the response and extracts the reference to resource B from
resource A

4. Client then requests resource B

5. Server responds with resource B

This communication includes two round trips between client and server at the
level of the REST API communication (excluding HTTP-specific overhead in the
communication such TLS handshake to establish encryption among others). The
resulting communication flow between client and server, in the general case of
related or referenced resources, is depicted in figure 3.2. For highly interconnected
resources, this issue can lead to significant network traffic and complex logic
that must be implemented on the client side in order to access all the required
resources, making the client-server interaction complicated and time-consuming.

Figure 3.2: Requesting related resources using a REST API

3.3 GraphQL Overview

GraphQL is both an API architecture paradigm and a data query language
(GraphQL, 2021). It was developed by Facebook and made available to the
public3 in 2015. It has gained significant attention since and quickly established

3https://github.com/graphql, accessed: 05.07.2024
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itself as a respectable alternative to the most prevalent API architectures. It offers
unique advantages over alternatives and is used by many mayor companies to
manage and structure access to their data. The next sections will demonstrate
how GraphQL works as an API architecture and query language.
The following sections are based on the official GraphQL specification (GraphQL,
2021), the GraphQL documentation4 as well as documentations of established
GraphQL frameworks like Apollo5 and Ariadne6.
GraphQL can be used to support all CRUD operations, using the default types
query (to read data) and mutation (to create, update and delete data). The API
developed in the context of this thesis will only support queries and omits the
implementation of mutations, similar to other examples from the literature (Hyper-
GraphQL, 2021; Taelman et al., 2018). Mutations will be covered in less detail
in the following introduction to GraphQL since they are less relevant for this spe-
cific project. It is, however, possible to extend the presented API in the future
to additionally support making changes to the data, instead of only reading the
resources.

3.4 API Structure

GraphQL (similar to REST) provides a specification for the structure of a client-
server relationship. The communication is initiated by the client as a request. The
server listens for incoming requests, processes them and sends a response to the
client.
While GraphQL is not bound to a specific protocol, it is predominantly served over
HTTP. Implementations should support the HTTP methods GET and POST ac-
cording to the official best-practice recommendations7. In both cases, a GraphQL
query will be included as payload. When using GET, the query is included as a
query parameter named query. The query is encoded as a string and passed to
the server as part of the URL. Using the POST method, the GraphQL query is
included in the request body. The content type should be set to application/json in
this case.
The main difference between GraphQL and REST lies in how resources are identi-
fied and accessed. While REST provides URLs for resources, GraphQL describes
the available resources as an entity graph (see section 3.6). This entity graph has

4https://graphql.org, accessed: 14.08.2024
5https://www.apollographql.com/docs/, accessed: 14.08.2024
6https://ariadnegraphql.org/docs/intro, accessed: 14.08.2024
7https://graphql.org/learn/best-practices/, accessed: 13.08.2024
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a single root node for querying (called the Query type), which serves as the entry
point to the graph. As a result, the GraphQL API is served over a single endpoint.

GraphQL, as an API paradigm, shares a lot of similarities with REST and is
therefore easy to integrate into existing REST API ecosystems. GraphQL is
usually served using the same communication protocol (HTTP) as REST. There
are caching mechanisms for GraphQL and GraphQL follows the constraint of
statelessness that is a requirement for REST APIs (for a description, see section
3.2). Specific methods of combining GraphQL with REST APIs are illustrated in
section 3.5.

GraphQL offers the following distinct advantages over alternative technologies and
specifically REST APIs:

- The required resources can be specified with fine-grained precision, which
avoids over-fetching.

- Multiple resources can be requested and combined using a single query on
the client side, avoiding under-fetching.

- Related resources can be requested in a single request by following links in
the schema directly.

- The client application is able to control the extent and structure of the re-
sponse.

3.5 Combining GraphQL with REST API

The GraphQL architecture is not necessarily a competing technology with the
REST paradigm. Most companies that are implementing GraphQL seem to be us-
ing a combination of both technologies for different tasks8. Apollo, a company that
provides one of the most extensive and widely used implementations for GraphQL,
suggests a method for combining both paradigms in their official documentation.
The recommended approach is to use REST APIs for backend data services and
implement GraphQL as a middle layer between backend services and frontend
applications. Following this approach, GraphQL is used as a common abstraction
layer for all frontend applications that aggregates diverse backend services into a
single endpoint.
Another approach that can be observed in the industry is to provide a GraphQL

8https://www.apollographql.com/docs/technotes/TN0044-graphql-and-rest-together/,
accessed: 28.06.2024
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(a) GraphQl alongside REST Endpoints. (b) GraphQl as middle layer.

Figure 3.3: Combining GraphQl and RESTful Endpoints

Figure 3.4: Structure of a GraphQL API.

endpoint alongside REST endpoints. In this way, GraphQL can also be integrated
into existing REST APIs, either providing a different, powerful method to access
the already provided resources or extending the APIs functionality. Both integration
approaches are illustrated in figure 3.3.

3.6 Schema

At the heart of a GraphQL API implementation stands the GraphQL schema. The
schema is usually written in GraphQL’s own language and defines the structure of
the resources that are available through the API. The resources are described in
an object-oriented approach and follow a graph-like structure, where parameters of
one object can link to another object. Although it is possible to model the GraphQL
schema following the existing structure of the resources, the schema does not
need to adhere to the structure of the underlying knowledge representations. A
predominant design philosophy in the community is to develop the schema based
on the user scenarios rather than the underlying resource structure.
This philosophy ensures that the API does not provide services or expose re-
sources that are never required by any real use case. By focusing on actual
requirements, the API remains lean and efficient, avoiding the overhead of un-
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necessary functionality. As a consequence, the exact amount and structure of
resources exposed are tailored to meet the specific needs of the client applica-
tion, optimizing network performance and the utilization of resources. However,
following this philosophy often requires manual designing the schema.

The resources are linked to the schema in an extremely flexible manner, allowing
the restructuring, restriction, expansion and combination of different resources into
a single GraphQL API. This flexibility enables the API to be tailored precisely to
the needs of the expected use cases.

One important design decision is determining, how closely the resource structure
and the GraphQL schema should be coupled. There are two general approaches:

1. Modeling the schema strictly following the structure of the resources: In this
approach the schema is deduced from the schema underlying the existing
resources. There needs to be a mapping from the data modeling language
that describes the resources to GraphQL.
Advantages:

- The process can be automated.

- No consideration is necessary in designing the schema, since it will be
deduced from the resource schema.

Disadvantages:

- Can lead to a excessively bulky schema that supports types and fields
that are not required by any use case.

- For an automatic approach, there must be a consistent and uniform
definition of the structure of the resources.

2. Align the schema with the needs of the user and use cases: This approach
requires manually designing a schema depending on the proposed use case
of the API. Consequently, it can produce a schema that is leaner, clearer,
more concise and more user-friendly.

3.6.1 Types

In GraphQL, the class-like entities mentioned above are referred to as "types".
Every type has one or more fields, with each field having a defined name and
data type. This type system corresponds directly to the concept of OOP, imple-
mented in several programming languages. Types can be compared to classes
in this context, while fields can be seen as their member variables. Following
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Algorithm 3.2: Data Modelling in GraphQl
1 type Wall {
2 globalId: ID!
3 name: String
4 volume: Float
5 material: [Material]
6 }

this analogy, there are implementations of GraphQL frameworks that make use
of this similarity by allowing the developer to design the schema using classes
from the framework’s programming language, instead of using GraphQL itself as a
language to describe the schema. This approach is called "code-first" in contrast
to the "schema-first" approach. In Python, a popular framework for developing
GraphQL APIs code-first is Graphene9; there are, however, implementations of
code-first approaches available in almost any major programming language that
offers GraphQL implementations. This thesis, however, follows the schema-first
approach, using GraphQL as a language to formulate the schema, including all
type definitions. The data type of a field can be one of the following:

- One of the scalar data types supported by GraphQL: Int (32-bit integer),
Float (signed double-precision), String (UTF-8), Boolean or ID (similar to a
String but not supposed to be human-readable).

- A different custom GraphQL type defined somewhere in the schema.

- An enumeration (3.6.2).

- A list containing either a scalar data type or a custom GraphQL type. However,
lists can only contain a single type.

All fields can be marked as required, including lists as well as the content of the list
itself. It is convention to name the types in GraphQL, starting with an uppercase
letter, while field names start with a lowercase letter. The following sections adhere
to this naming convention, which means, for example, "Author" refers to a type,
while "author" refers to a field.

3.2 shows a simplified example of an IfcWall type being modeled in GraphQL that
showcases different available language concepts. The field ’globalId’ is required,
signified by the ’!’. A query is not allowed to return ’null’ for this field. The fields
’name’ and ’volume’ refer to available scalar types, while ’predefinedType’ refers to
a custom type that has to be defined elsewhere in the schema definition. ’Material’
refers to a list of the custom type ’Material’.

9https://graphene-python.org, accessed: 05.07.2024
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Algorithm 3.3: Enumeration in GraphQl
1 enumeration IfcWallTypeEnum {
2 SOLIDWALL,
3 STANDARD,
4 POLYGONAL,
5 ELEMENTEDWALL,
6 RETAININGWALL,
7 }

3.6.2 Enumeration

GraphQL supports the definition of enumerations. An enumeration restricts the
available values for a field to a predefined selection. A query for this field must
return one of the specified values (or ’null’: if the field is not required). Listing 3.3
shows a simplified example of the IfcWallTypeEnum mentioned in listing 3.2.

3.6.3 Interfaces

Interfaces are a common concept in many object-oriented programming languages,
serving as a blueprint for other classes by defining a set of common attributes and
methods. In GraphQL, an interface plays a similar role. Interfaces are defined
similarly to types, using the interface keyword. A type can then implement an
interface, by including all the fields specified by that interface. For example, in
Listing 3.4, both Apple and Orange implement the Fruit interface, meaning they
must include all the fields defined in the Fruit interface, though they can also add
additional fields.
While an interface can be used like any other type in the GraphQL schema, it
can not be instantiated directly. In other words, there is no Fruit type that can be
returned to the client – only Apple and Orange can be returned. When processing
a request, the server must therefore determine whether an element that conforms
to the Fruit interface is an Apple or an Orange before returning it to the client. This
provides flexibility to the specific type that a field can have. By defining a field’s
type as an interface, that field can be resolved to any object that implements the
interface. The concept of inheritance, which is missing from GraphQL, can also be
mimicked to some extent using interfaces.
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Algorithm 3.4: Interfaces in GraphQL
1 interface Fruit {
2 name: String
3 price: Float
4 }
5

6 type Apple implements Fruit {
7 name: String
8 price: Float
9 variety: String

10 }
11

12 type Orange implements Fruit {
13 name: String
14 price: Float
15 }

3.6.4 Union Type

The union operator allows grouping multiple types within the schema, enabling a
single field to return one of several types classified under a single union. When a
query returns a union type, the result can be any one of the types included in that
union.
Before the query result is sent to the client, the union must be resolved using a
type resolver. This process involves determining the specific GraphQL type of the
returned element. The developer is responsible for implementing this resolution
logic, which can involve identifying the type by, for example, checking for unique
fields associated with each type in the union. The example in listing 3.5 defines a
query called hardware, which returns a list of Hardware elements. Hardware is
defined as a union of two types: CPU and RAM. This allows the query to return a
list that can include both types. Unlike interfaces, types within a union do not need
to share any common fields.

3.6.5 Schema Federation

Generally speaking, one centralized schema is required for any GraphQL API.
This schema has to explicitly include all types, queries and mutations that will be
exposed to the client. All of this must be known at server start, which means that if
any changes occur to the schema during operation, the server hosting the schema
and GraphQL endpoint needs to be restarted. This is true for most GraphQL
frameworks.
Some frameworks offer the possibility to create federated schemata to somehow
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Algorithm 3.5: The union type in GraphQL
1 type Query {
2 hardware: [Hardware]
3 }
4

5 union Hardware = CPU | RAM
6

7 type CPU {
8 name: String
9 clockFrequency: Float

10 cores: Int
11 }
12

13 type RAM {
14 size: Int
15 brand: String
16 }

mitigate the issues arising from the need to have one singular, complete schema
at a centralized location.

Figure 3.5 depicts an example of schema federation as provided by the Apollo
framework. Similar concepts are available in other frameworks as well. In this
example, two schemata are merged into a so-called super-graph. This super-graph
is an aggregated schema containing schemata 1 and 2, as well as metadata about
routing requests to the correct sub-graph. This additional information is removed to
obtain a different schema intended to be exposed to the client, forming the overall
schema on which all client queries are based upon. Even though the combined
schema consists of two separate sub-graphs in this example, it still functions as
a single, central point for all queries. Which also means it must be constructed
before a server start or reload.
This still does not provide a flexible way to dynamically integrate GraphQL
schemata from different sources into a single endpoint. The main advantage
this approach offers is the ability to create sub-schemata independently from each
other. This is useful, for example, when two different disciplines have their own
dedicated schemata and want to keep separate responsibility and accountability,
while still combining both schemata into a single-combined graph. While this
concept is not used or implemented in the following case study, it is included be-
cause it addresses a key aspect of collaboration in the AEC industry. Collaboration
in this context is characterized by multiple different stakeholders, each working
on separate parts of a bigger product. This means, several disciplines create
their own sub-models, which are developed separately but must be combined into
a single BIM model. Using schema federation, as mentioned above, provides
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Figure 3.5: Schema federation approach as implemented by the Apollo framework.

the means to create sub-schemata independently and still form a combined API,
following the requirement of collaboration in the AEC industry.

3.7 Queries and Mutations

Queries provide the possibility to retrieve information from the API, while mutations
allow making changes to the underlying data, like creating, updating or deleting
resources.
Queries are defined using the special Query type and every GraphQL API must
have a Query type defined. It is special by providing an entry point to the GraphQL
schema. Other than that, it behaves exactly like any other custom type defined
in the schema. Each query requested by a client starts at this root node, which
specifies further available queries as the fields of this root type, defining the name
and return type of each available query.
Mutations are very similar to queries. A GraphQL API can define a mutation
type, acting as the entry point to all available mutations. It is established best-
practice to use a mutation for all operations that evoke a change to the server-side
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resources10. This corresponds to the use of HTTP methods in REST APIs: even
though it is possible to create a new resource as a response to a GET request, it
is a common convention to use the POST method for a scenario like this.

3.8 Resolver

Resolvers are the link between the GraphQL schema and the resources that should
be exposed through the API. Each field defined in the schema has a corresponding
resolver function. This resolver function is called when and only when a field is
requested as part of a query. Fields that are not requested are also not resolved.
This modular architecture is one of the reasons why GraphQL is so successful and
performant. The resolvers are organized in a hierarchical order, following exactly
the structure of the entity graph defined by the GraphQL schema. This hierarchy
starts at the query root node. The first resolver that is called, is the resolver
defined for the specific field defined on the Query type that a client is requesting.
This resolver then calls all resolvers next in line, providing its own result as an
input. This is commonly known as the "resolver chain". Since, however, there
can be multiple fields requested on the same nesting level, "resolver tree" would
be a better fitting description. This concept can be better demonstrated using an
example. Figure 3.6 shows a typical GraphQL query requesting information about
an author-based on the name of the author, including a list of all books associated
with this author containing the title and ISBN for each one. The GraphQL schema
for this example is very simple and depicted in listing 3.7. It consists of two types,
Author and Book, and provides a single query called author, that returns a single
element of type Author given a name.

The first resolver that is called, when this query is processed by the server, is the
resolver bound to the author field of the Query type. This resolver then calls the
resolver functions for the name and books fields of the Author type. Finally, the
resolvers for title and ISBN on the Book type get called (in parallel) for every Book
item in the list. Starting at the root node, the resolver functions traverse the entity
graph until a leaf node is reached. A leaf node in this context is a field that can
be resolved to one of the simple data type, like String, Boolean, Float and more.
The corresponding hierarchical resolver structure can be seen in figure 3.6. It
demonstrates the tree-like structure commonly called "resolver chain".

Because of this modular structure, a specific resolver has very limited information
about the query result in general. The results of all child resolver are not known
during resolving of a specific field. A resolver furthermore has no knowledge about

10https://graphql.org/learn/queries/, accessed: 20.07.2024
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Figure 3.6: "Resolver Chain" or "Resolver Tree" originating from the query defined
in 3.6.

any sibling resolvers. Both of these facts will become important in chapter 5 when
it comes to the implementation of functionality like aggregation that is dependent
on the result of multiple resolvers.

Algorithm 3.6: Query demonstrating the resolver chain.
1 query AuthorAndBooks($name: String){
2 author(name: $name){
3 name
4 books {
5 title
6 ISBN
7 }
8 }
9 }

The exact structure and nomenclature of resolver functions vary between different
frameworks. Resolver functions in the Ariadne11 framework, for example, use two
positional input arguments, while the same function in the Apollo12 framework
defines four input arguments. There are, however, common elements between

11https://ariadnegraphql.org, accessed: 13.08.2024
12https://www.apollographql.com, accessed: 13.08.2024
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Algorithm 3.7: Simple schema.
1 type Query {
2 author(name: String): Author
3 }
4

5 type Author {
6 name: String
7 books: [Book]
8 }
9

10 type Book {
11 title: String
12 ISBN: ID
13 }

all frameworks that are specified in the official documentation13. The following
information is commonly included in the resolver arguments:

1. An object holding the result of the parent resolver.

2. A context object carrying information common to the entire query and all
resolver functions. This Object can be accessed from within all field resolvers.

3. Information about the query itself, like the Abstract Syntax Tree (AST) repre-
sentation of all requested fields, including all parameters the client defined.

4. Arguments provided to the field (if there are any).

Every function that adheres to this structure can be used as a resolver function
by binding it to a specific field of the schema. This binding happens before server
start. Most frameworks offer "fallback" or "default" resolvers to reduce the number
of custom resolver functions that need to be implemented. These default resolvers
are triggered when no specific resolver is defined for a field. Typically, the fallback
resolver checks if the result from the parent resolver contains a key matching the
field name. If a matching key is found, the field is resolved to the corresponding
value. These kind of resolvers are extensively used in the case study (chapter 5),
which, however, requires the parent resolvers to return objects that already contain
information about the children.

13https://graphql.org/learn/execution/, accessed: 10.08.2024
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3.9 Introspection

The introspection system is a distinctive feature of GraphQL, offering a way to
explore the schema and all the queries that the API supports. Through this feature,
a client can inspect the schema of a GraphQL API, reviewing all type definitions,
fields, and associated data types. For example, it provides details on the interfaces
a type implements and lists acceptable values for enumerations.
This capability is particularly useful during client application development, as
developers can leverage introspection to discover the available queries before
implementing them. This is one of the reasons GraphQL is often considered
self-documenting; the schema, combined with introspection, reveals all available
resources, serving a function that would typically require a formal API documenta-
tion.
However, introspection is sometimes disabled in production environments for se-
curity reasons to prevent the exposure of detailed information about the internal
resource structures.

47



Chapter 4

Proposed Methodology

The fundamental idea is to explore the usability and usefulness of GraphQL in the
context of the AEC industry. To this end, the potential of querying heterogeneous
data, as typically found in construction projects, through a GraphQL interface is
examined. This chapter outlines the general methodology for using GraphQL in the
BIM context. An exemplary implementation of the principles discussed is presented
in the next chapter. The following case study will implement both aspects, GraphQL
as a query language and an API architecture. This approach ensures that the full
potential of GraphQL is examined and its usefulness evaluated in all facets. This
observation is crucial, as previous projects have shown the possibility of using
GraphQL as solely a query language without implementing a complete GraphQL
API, e.g., by translating a GraphQL query into a different query language (Taelman
et al., 2018).

4.1 General Approach

The approach focuses on developing and implementing a GraphQL API at a
proof-of-concept level, with an emphasis on creating a user-friendly experience
centered around specific user scenarios. These scenarios are defined before
the implementation process, helping to establish the scope and requirements of
the API. Based on these scenarios, a GraphQL schema is designed to establish
the necessary data structures for querying. Following the schema design, re-
solver functions are implemented to link the GraphQL schema with the underlying
resources, determining how data is retrieved and returned in response to user
queries. These queries are also derived from the initial user scenarios. Finally,
the entire setup is integrated into a GraphQL framework, coupled with a minimal
server implementation, to enable testing of the API’s querying capabilities. The
resulting API is then used to query heterogeneous resources within the context of
the user scenarios and its effectiveness in answering the user queries is evaluated.

Two general implementation approaches were considered, which enable the use
of GraphQL in the BIM context:
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First Approach Candidate: Common Graph Representation
The first approach (illustrated in figure 4.1) relies on a conversion step for all
resources that translates the entire data into a common graph representation.
This could be a representation in RDF or any graph database. The connections
that exist between different resources are then defined on the data level (e.g.,
integrating edges into the resulting graph). This homogenization of the data
structures would make it possible to use existing solutions for graph querying.
For instance, if all resources are represented in RDF, Linked Data technologies
like SPARQL can be used to access the information. If the data is stored in a
Neo4j1 database, Cypher can be used for data access. In this approach, GraphQL
would primarily function as a query language that allows the user to define queries,
providing an easy-to-understand syntax, which would then be translated into
a different query language to interact with the underlying data. A very similar
approach was already presented and tested by Taelman et al. (2018) (see chapter
2). Even though they did not use different sources of information, the basic principle
remains the same. This approach, however, is hindered in its usefulness by the
need to represent all relevant resources in a graph representation. Although there
are software tools to convert, for example, IFC into a RDF representation or import
IFC models into a graph database, other resources might not be easily converted
or would at least require significant additional effort during implementation. While
GraphQL is used mainly because of its ease-of-use query language, its underlying
mapping to Linked Data technologies means it inherits the limitations associated
with these approaches. This includes the limitations of SPARQL as a query
language and Linked Data in general.

Figure 4.1: API architecture using conversion of data resources into graph repre-
sentations.

Second Approach Candidate: Resource Connection on the Resolver Level
The second approach (illustrated in figure 4.2) involves implementing a more
traditional GraphQL API without the need to convert resources into different data

1https://neo4j.com, accessed: 15.07.2024
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formats. Instead, a GraphQL schema is defined to represent and reflect the
connections between resources at the data level. In this way, resources are flexibly
coupled using the GraphQL schema and accessed directly through GraphQL
resolver functions.
These resolver functions can access resources directly or utilize intermediate
interpretation layers and interfaces. This approach requires the manual design and
development of a GraphQL schema. While this might be more labour-intensive for
a large schema, it offers more flexibility and control over the data provided and the
links between resources.

Even though both approaches seem promising, this thesis focuses on the second
approach for two main reasons:

- it leverages the full strengths of a manually designed schema and can
therefore be more easily tailored to specific user scenarios.

- it provides a higher flexibility in the resources that can be integrated without
the need for any additional data conversion.

Figure 4.2: API architecture using a classical GraphQL implementation with data
access through resolver functions.

4.2 Application of GraphQL for IFC and BCF

Two types of resources will be used in the case study: IFC and BCF. These data
formats are widely used for information exchange in the BIM context, representing
the diverse knowledge structures commonly found in the industry. Although this
thesis focuses on these two data formats, the proposed methodology is transferable
to other types of resources without changing the general structure and API design.
IFC and BCF are chosen because they are both:
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- established data formats, specifically designed to enable information ex-
change in the AEC industry.

- open-source data formats with thorough documentation, which greatly facili-
tates integrating them into custom projects.

- interconnected, which enables API design and testing against interconnected
resources.
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Chapter 5

Implementation

5.1 Overview

This chapter describes the actual implementation of the proposed GraphQL API.
The resulting software has limited functionality and serves as a proof-of-concept
to showcase the feasibility of the approach, only supporting the use cases defined
in the following section. This chapter includes some code examples for better
understanding of the underlying conceptual work.

The general implementation steps are depicted in figure 5.1. The initial step
involves defining the user scenarios, which establishes the scope and extent of
the API. This step significantly influences both, the schema design and resolver
implementation. Although the flow chart lists server and framework setup as the
next step, it is not necessary to include it at this exact stage. It can be developed
in parallel to the schema design, which does not depend on either the specific
server implementation nor the GraphQL framework used. While server setup is
required for hosting the API without affecting other steps directly, the framework
setup directly impacts the specific resolver implementation and should therefore
precede this step. The next step is schema design, one of the most critical aspects
of implementing a GraphQL API, as the schema defines all resources and possible
queries that will be exposed through the API in great detail. Closely linked to the
schema design is the implementation of resolver functions. These functions bridge

Figure 5.1: Flow chart of the implementation process.
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the gap between the resources and the GraphQL schema, by defining how each
schema field is populated with data. Finally, user queries should be formulated
and tested against the API to evaluate the success and feasibility of the approach.
The next sections cover these individual steps in more detail, discussing the
challenges encountered and the design decisions made along the way.

5.2 User Scenarios

In order to explore the capabilities of the proposed approach, five distinct use
cases are defined to showcase typical requests. These scenarios are designed
to represent a wide range of potential interactions that might be expected from
an API of this kind. The use cases are implemented and demonstrated in the
following sections, providing concrete examples of the API in action without the
need to support the entire IFC schema or develop a complete API. The use cases
begin with a simple request and gradually increase in complexity to fully explore
the capabilities of GraphQL within the BIM environment. Each use case will be
presented as a task and then translated into corresponding GraphQL queries in
the subsequent sections.

1. Return global id and IFC type for all building elements that are men-
tioned in a specific BCF.
This request includes simple access to information from two different re-
sources and merging it into one single response.

2. Return the author, status and information about all comments for all
BCF topics that relate to a specific building element.
This is the inverse of the first scenario, which comes with a different level
of complexity. While building elements are directly referenced inside a BCF
topic by their Global Unique ID (GUID), IFC building elements have no direct
reference to BCF topics related to them.

3. Return the total volume of all walls in a specific building storey.
In this scenario, it is assumed that the volume is available in a property set.
The request for a total volume requires aggregating results, which is not
natively supported by GraphQL and must be implemented at the schema and
resolver level. This request also requires a filtering mechanism to access
only elements belonging to a specific storey.

4. Return material information and calculate volume of a specific wall.
In this scenario, it is assumed that there is no volume information available
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in a property set and therefore needs to be calculated from the provided
geometry.

5. Return all walls with a specific material, which are mentioned by a
specific author through BCF.
This scenario exhibits the highest complexity, as it requires a filtered list of
walls based on BCF parameters. It involves connecting both resources (IFC
and BCF) and applying filters to both. There are two filter conditions included:
(1) filtering walls by material, and (2) filtering walls by the author of the BCF
topic they are mentioned in.

5.3 Schema Design

Schema design is a central aspect of API implementation, as it dictates the
available resources and defines the possible structures for queries and responses.
The schema developed for this implementation is specifically tailored to meet the
requirements of the five defined use cases. Consequently, many parts of the
resource structure are omitted and not represented in the GraphQL schema, as
only the types necessary for the specific use cases are supported. The schema
can be easily extended to accommodate a broader range of use cases and
provide access to additional parts of the resource. However, a comprehensive
implementation for querying IFC models or BCFs in a generalized manner, falls
outside the scope of this thesis.
Based on the use cases, two distinct data sources are identified: the IFC model
and BCF (For a description of these models see section 2.1.3). While it is not
necessary to maintain this distinction within the GraphQL schema, it is practical
to implement them as separate sub-schemata and then model the relationships
between them. Consequently, the schema implementation for the IFC model
and for BCF can be addressed separately, followed by an examination of the
connections that should be established between the two.

The schema design process can be broadly characterized by two key design
decisions:

1. Should the schema reflect the structure of the underlying resources, or
should it be designed with a user-centric approach in mind? The GraphQL
schema is not required to adhere to the structure of the resources it exposes.
It can (be designed to) mirror the underlying resource structures exactly or
be completely based on the user scenarios the API is designed for. While
these two options provide extreme approaches, any middle approach is also
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feasible. It therefore has to be decided, how much both, the use cases and
the resources, influence the schema design. In the GraphQL community
it seems to be consensus to model the schema base on user needs while
examples from research in the field of AEC exhibit a strong adherence to the
underlying resource structure.

2. Should the schema be manually crafted, or should an automatic generation
mechanism be employed? Manual schema design provides much more
control over the exposed resources. If, however, an exact mapping between
the GraphQL schema and the underlying resource structure is aimed for,
automatic schema generation greatly reduces the implementation work. In
this regard, both design decisions are dependent on each other.

For simplicity, in this case study, the mapping is created manually, implementing
only the necessary parts of the IFC schema required for the proof-of-concept
defined by the use cases. This manual approach offers the advantage of controlling
which aspects of the IFC schema are exposed to the user, resulting in a lean API
that provides only the information relevant to the use case. Instead of parsing
and exposing the entire IFC schema, the focus can be on specific entities of
interest while omitting those that are not needed. This streamlines the schema,
reducing complexity and eliminating unnecessary details from the documentation
and schema introspection.
By keeping this process manual, the GraphQL schema can be loosely coupled
with the IFC schema. This flexibility allows entities and parameters to be omitted,
added, or modified according to the specific use case, something that would not
be possible with a fully automated approach.

5.3.1 GraphQL Schema for IFC

The IFC schema is very extensive, providing a large number of types, entities,
enumerations etc., with a complex hierarchical structure of inheritance and rela-
tionships. In the scope of this thesis, it is not feasible to represent all of this in the
GraphQL schema. The schema is focused on supporting the following concepts
from the IFC model:

1. IfcBuildingElement with some consideration to its super-classes like IfcRoot
(use cases 1 - 5)

2. IfcBuildingStorey (use case 3)

3. IfcWall is supported in higher detail, acting as an example how other model
elements could be represented in GraphQL (use cases 3 - 5).
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Figure 5.2: Relationship between IfcWall and Material

Following these main concepts, the schema supports some types that are con-
nected to those entities as attributes. For example, IfcBuildingElement possesses
the attribute OwnerHistory of type IfcOwnerHistory, which is also included in the
schema even though, it is not strictly necessary regarding the user scenarios.

After examining which parts of the model need to be included, the next consid-
eration is how closely the GraphQL schema should follow the IFC schema (see
also section 3.6). IFC is designed to be used as an extensive and exhaustive
exchange format for building models. It aims to provide many different disciplines
with an integrated way of describing information. One result of this design goal is
a relatively complicated structure of the information embedded in the data format.

The following example demonstrates this complexity: In IFC, the connection
between an element and its material is not straightforward, as there are multiple
different but complex ways to link a wall to its material. One of the possibilities is
depicted in figure 5.2.
The IfcWall entity does not posses a material property that would link the wall
element directly to its material. Instead, the link is realised using an objectified
relationship instance of type IfcRelAssocciatesMaterial. This relationship object
instance points to an instance of IfcWall, as well as to an instance of IfcMateri-
alSetUsage, which points to IfcMaterialLayerSet. IfcMaterialLayerSet has a list
of IfcMaterialLayers as a property, which in return point to a specific IfcMaterial
instance acompanied by a layer thickness. The IfcMaterial then possesses the
material name as an attribute. This structure offers a lot of flexibility, describing
different situations and dependencies between a wall and its material. According to
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the official documentation1, the data model is organized in this manner to "... keep
relationship specific properties directly at the relationship and (...) later handle
relationship specific behavior ".
While this may be an appropriate structure to precisely describe the material and
its relationship to the IfcWall element in an holistic approach that should cover all
possible BIM related use cases, it is not very suitable for user-friendly querying.
Depending on the user scenario, it might be favourable to have a direct and clear
relationship between a building element and the material it consists of. Since the
GraphQL schema can be as far decoupled from the IFC schema as necessary, it
is possible to add the material information directly to the GraphQL IfcWall type.
This way a single query can request a wall instance with the material information
directly attached. This exchanges some of the flexibility the IFC schema offers
with a concise definition, suitable for simple querying, where the information that
has to be exchanged is limited by design.
The schema does not reflect the entire inheritance structure provided by IFC,
but makes use of interfaces to mimic some of the inheritance relationships e.g.,
between IfcRoot, IfcBuildingElement and IfcWall.

IfcBuildingElement is defined to be "... an abstract entity that cannot be instan-
tiated"2. It is therefore appropriate to implement the IfcBuildinglElement as an
interface in GraphQL, since there will never be an instance of type IfcBuildingEle-
ment in the model. Instances that inherit from IfcBuildingElement will always have
one of the sub-types of IfcBuildingElement as their types. Interfaces in GraphQL
behave very similar to this. A query can define an interface as the return type. The
query result must be resolved to a specific type, implementing the interface, at run
time. In this way, an interface can never be returned directly to the client, without
resolving its type first. Introducing this interface is very beneficial, as a query can
then return a list of building elements with different types, as long as all of them
implement the IfcBuildingElement interface. This is necessary because (unlike in
Python or JavaScript, where the resolver functions are implemented) a GraphQL
list can only contain elements of a single type. While this is, of course, not an
uncommon concept in other programming languages, the most popular languages
for the implementation of GraphQL APIs are JavaScript and Python, which makes
it worthwhile noting this difference.
Designing the schema around user scenarios means that the GraphQL schema
will not encompass the entire IFC data model, omitting most IFC entities. This is
unproblematic, as long as the queries are limited to accessing only the elements

1https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/
ifckernel/lexical/ifcrelationship.htm, accessed: 10.07.2024

2https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/schema/
ifcproductextension/lexical/ifcbuildingelement.htm, accessed: 10.07.2024
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Figure 5.3: Simplified depiction of the GraphQL schema representing the neces-
sary information from the IFC data model.

IfcRoot IfcObjectDefinition IfcObject IfcProduct IfcElement IfcBuildingElement IfcWall

Figure 5.4: Inheritance schema for IfcWall.

defined in the GraphQL schema. However, BCF topics can reference any building
element through its GUID, which raises the question how to handle referenced
element types not included in the GraphQL schema. For example, a topic might ref-
erence an instance of IfcSlab, which is not represented in the simplified GraphQL
schema.
One approach could be to restrict the elements a topic can reference in this case
study to instances of IfcWall, since this entity is thoroughly represented in the
GraphQL schema. However, this would involve controlling the resources, which the
project aims to avoid. Instead, a fallback type was included in the schema to repre-
sent all building elements generically without specific GraphQL type representation.
The IFC schema follows a similar concept with the entity IfcBuildingElementProxy,
which is used to represent building elements that are not (yet) defined in the IFC
schema.
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5.3.2 GraphQL Schema for BCF

The specification for BCF is far less extensive than IFC. Therefore, most of the
BCF structure was mapped to a GraphQL schema, following the buildingSMART
specification very closely3.

The BCF specification outlines a structure that seems suitable to be mimicked in
GraphQL. There is no complex inheritance hierarchy and the overall structure is
well understandable for human actors. Additionally, the existence of a REST API
specification4, describing the access to BCF over HTTP is another implication that
the BCF structure can be represented as-is through a web API. Therefore, the BCF
structure was mapped to GraphQL without changing, adding or removing any fields.
Although, the schema is a nearly complete representation of the BCF specification,
the manner in which the user can interact with the resources will entirely depend on
the queries (and mutations), that are defined on top of the schema. At this stage,
only the specified use cases are supported and not all interaction mechanisms
defined for the REST API by buildingSMART are considered.
This demonstrates the possibility for a loose and a close coupling between resource
structure and GraphQL schema and shows that both can be suitable depending
on the resources and use cases. A visual representation of the resulting schema
can be found in the appendix.

The BCF specification includes a few instances of mutually exclusive attributes.
Following is an example. The DocumentReference element contains two attributes,
which are mutually exclusive: DocumentGuid and URL. The DocumentGuid is
used, if the referenced document is included in the BCF, the URL is used when
an external document is referenced. GraphQL does not support the definition
of mutually exclusive fields. A user can therefore request both fields if they are
existent in the schema. This issue does not really affect querying, as the API only
ever returns a single value for either one of the fields (there only ever exists a value
for one of the fields in the resource). A deeper problem arises due to the fact that
the existence of one of the attributes is required. Either DocumentGuid or URL
must be present but never both. It is however not possible to mark the fields in the
GraphQL schema as required since one of them will always be missing by design.
A solution to accurately map this relationship to the GraphQL schema has (to
the best of my knowledge,) not been proposed, and there appears to be little
to no consideration of this problem within the GraphQL community. As a result,
this behaviour has to be implemented on the resolver level or through the use of
directives.

3https://github.com/buildingSMART/BCF-XML, accessed: 10.08.2024
4https://github.com/BuildingSMART/BCF-API, accessed: 20.07.2024
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Algorithm 5.1: Solve by introducing a union
1 type PerspectiveCamera {
2 cameraViewPoint: Vector3D!
3 cameraDirection: Vector3D!
4 cameraUpVector: Vector3D!
5 viewToWorldScale: Float!
6 aspectRatio: Float!
7 }
8

9 type OrthogonalCamera {
10 cameraViewPoint: Vector3D!
11 cameraDirection: Vector3D!
12 cameraUpVector: Vector3D!
13 fieldOfView: Float!
14 aspectRatio: Float!
15 }
16

17 union Camera = PerspectiveCamera | OrthogonalCamera
18

19 type Visualization {
20 components: Components
21 camera: Camera!
22 lines: [Line]
23 clippingPlanes: [ClippingPlane]
24 bitmap: [Bitmap]
25 }

A similar issue occurs with the mutually exclusive definition of OrthogonalCamera
and PerspectiveCamera. A possible solution is addressed, using the union type
in GraphQL. A union called Camera is introduced which combines Orthogonal-
Camera and PerspectiveCamera and can be used as a single value to the camera
argument of the visualization information (see listing 5.1). This way the camera
attribute can be marked as required and can still only take either one of the types.

Besides the issues mentioned above and the obvious differences that arise from
mapping between two not completely congruent knowledge descriptions, the
GraphQL schema clearly deviates in a few points from the specification:

1. The RelatedTopics Element creates a connection from the topic at hand to
related topics. In the specification, this is realised by providing a list of topic
GUIDs while in the GraphQL schema this is implemented as a list of Topics.
This allows the client to directly get all the information about a related Topic
in a single request to an arbitrary nesting level of related topics.
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2. Mutually Exclusive Attributes can not easily be modelled in the schema,
even more so if one of the fields is required. These kinds of relationships are
not reflected in the schema.

3. Mutually Exclusive Elements are joined together using a Union definition.

Because the GraphQL schema representing BCF is kept as close as possible to
the official specification, it can be adjusted and extended to create a GraphQL-
based alternative to the BCF REST API.
This would encompass primarily defining all required queries (utilizing the REST
API specification as a reference) and implementing the corresponding resolver
functions.

5.3.3 Combining the IFC and BCF related Schemata

There are several connections that can be drawn between an IFC model and
related BCF. This thesis focuses on the following key relationships:

1. BCF topics can link to one or more building components inside an IFC model
by referencing the GlobalUniquId attribute.

2. Topics can be linked to a IfcSpatialStructureElement instance through the
GlobalUniquId. This reference can be made for every file reference. It
specifies the spacial structure element a topic is in relation to, e.g., which
building storey the topic is referring to.

3. Building elements (like e.g., instances of IfcWall) can implicitly link to one or
more topics. This information is not present in the model itself but can be
inferred by the topic pointing to it.

These relationships are represented directly in the designed GraphQL schema.
Just as described in the BCF specification, the Topic type in the GraphQL schema
also directly references IFC elements by GUID. This is achieved through the
visualization field and related references. The reference to the IfcSpatialStruc-
tureElement is managed in a comparable way. The implicit connection between
building elements in the IFC model and BCF topics is made explicit by referencing
the Topic type as a field within the IfcBuildingElement type.
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5.4 Designing the Queries

When designing the queries a distinction between query as defined within the
GraphQL schema and query as formulated and executed by the client application
must be made. Both share the same name and are expressed using GraphQL as
a language. It is important, however, not to confuse these two concepts.
The GraphQL schema specifies all available queries through the fields of a special
Query type. These schema-designed queries serve as entry points for the client
application to interact with the schema.
The query the client formulates uses one of these schema-defined entry points
and then traverses the schema to request information related to the original query.
Both of these concepts are obviously connected but are not the same.
Given the defined user scenarios, five queries need to be constructed. These
(five) user queries must handle complex combinations of several interconnected
resources, rather than just requesting single, clearly defined resources. Following
this general distinction, there are two tasks:

1. Design the schema queries to ensure that they can provide the information
required to fulfill the user scenarios.

2. Design the actual client queries to precisely address the specific question
posed by each scenario.

Both of these tasks are interconnected and dependant on each other and have to
be developed in combination, with the queries defined in the schema providing
the basis and entry point for any query the client needs to execute. The next two
sections discuss two general concepts, which are vital for most basic querying
tasks.

5.4.1 Aggregation

Aggregation is a vital concept for many basic tasks in BIM. Aggregation is the
process of creating statements or summaries about a collection of items, including
statistics, sums and calculations of any kind. Aggregation is particularly significant
in areas such as quantity take off. Questions like ’What is the number of windows
in a specific building storey?’ or ’What is the total volume of all walls in a given
building?’ require some form of result aggregation.
User scenario 3 is reliant on this concept, by requesting the "total volume of all
walls". Unlike SQL, which offers built-in aggregation functions (COUNT, SUM, AV-
ERAGE, MIN, MAX), GraphQL lacks inherent aggregation functionality. Scenario 3
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Algorithm 5.2: Simple query returning a list of IfcWall elements
1 type Query {
2 ifcwalls: [IfcWall]
3 }

Algorithm 5.3: Use of a wrapper return type to attach additional information to a
collection of elements.

1 type Query {
2 ifcwalls: IfcWalls
3 }
4

5 type IfcWalls {
6 elements: [IfcWall],
7 count: Int,
8 volume(calc: Boolean): Float
9 }

will serve as an example to demonstrate the issues and possible solutions to aggre-
gation in GraphQL. A straightforward schema-defined query providing access to a
list of IfcWall elements is shown in listing 5.2. Designing the query in this way does
not offer the possibility to include aggregated information about the query result.
The query returns a list of IfcWall elements to the client, any additional information,
like the total number of returned elements would need to be calculated on the
client application. One solution to include additional information about a collection
of elements is to define a wrapper type, which includes the original collection
alongside additional fields for aggregated values or other (meta)data. Instead of
returning a list of IfcWall elements directly, the query defines this wrapper type as
the return value (5.3). Note that the query does only return a single element of
type IfcWalls, which then contains a list of the individual wall elements.
This return wrapper contains fields for aggregated values: (1) count (representing
the total number of returned elements) and (2) volume (representing the total
volume of all walls summed up). However, resolving these fields is still not trivial.
In GraphQL a resolver function is not aware of sibling fields, let alone their resolver
functions. This means, that the volume field does not have access to the result
of the resolver of the elements field, although the volume is dependant on this
information.
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Algorithm 5.4: Making use of parameters to implement filtering functionality.
1 type Query {
2 ifcwalls(storey: String): IfcWalls
3 }

5.4.2 Filtering

Another important concept, which is required to answer the use cases is filtering.
Filtering is required to restrict the results depending on some condition. It is
a standard functionality and part of almost any GraphQL API implementation.
Filtering, just like aggregation is not build into GraphQL and has to be integrated
through the schema and the resolver levels. Since filtering is such a standard
technology, required by almost any application, there are established solutions
and best practices regarding its implementation. Filtering is usually enabled on
the schema level by attaching a parameter to the query that should return filtered
results. This parameter (or multiple parameters) can be used by the resolver
function to restrict the results returned by the query. Listing 5.4 shows the already
known example of the ifcwalls query now containing an additional parameter called
storey that enables filtering the walls according to the building storey in which they
are located. It is important to note that this alone does not offer any functionality.
It just enables the client application to include additional information in the query,
in this case a parameter called storey of type string. Any actual filtering must
happen in the resolver function that is responsible for enriching this query with
information. The fact that filtering implementation is left to the developer means
that any arbitrary filtering mechanism can be implemented, e.g., key-word based,
full-text search and/or regex.

There are other functionalities that are part of almost any real world API implemen-
tation, like pagination, as well as mechanism for authentication and authorization.
Since both of these are not required to support the defined user scenarios, there
will be no implementation of these concepts as part of this case study.

5.4.3 Implementing User Scenarios

Incorporating the principles introduced above, the following queries as listed in
figure 5.5 need to be defined in the schema in order to enable answering the
user scenarios. It is important to note, that these queries do not provide all the
information needed to satisfy the user scenarios directly but act as entry points to
the entity graph defined by the schema. For example, the topics query returns a list
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Algorithm 5.5: All available queries as defined in the GraphQL schema.
1 type Query {
2 ifcwalls(storey: String): IfcWalls,
3 ifcwall(globalId: ID!): IfcWall,
4 topics: [Topic]
5 topic(guid: ID!): Topic
6 }
7 }

of Topic elements, the user query can then define all the fields of the Topic element
it wants included in the result. These fields point to other types in the schema,
which in turns point to others and so on. With only these four queries defined on
the schema level a variety of different queries requesting various different parts of
the resources can be constructed and executed.

These queries, defined in the schema, form the basis for formulating user requests
based on the user scenarios. Each user request starts with one of the defined
queries and further includes connected types to address all aspects of the scenario.
Each one is shortly presented below.

User Scenario 1: Return global id and IFC type for all building elements that are
mentioned in a specific BCF.
This query (code listing 5.6) starts at the topic query defined in the schema and
takes a parameter of type ID to identify a single topic by its GUID. The IFC ele-
ments, the topic refers to, are connected in a relatively counter-intuitive way: The
topic contains visualization information, which contains a parameter called compo-
nents, providing information about all referenced components. The Components
type contains a parameter called selection, containing a list of elements of type
Component. Each component refers to a specific IFC element and includes a pa-
rameter with the GUID pointing to this element. This convoluted way of referencing
IFC GUIDs comes from the original BCF specification and was directly adopted.
It would be possible to attach the referenced IFC GUIDs to the topic in a more
obvious and direct way. It was, however, a design decision for implementing the
schema to follow the BCF specification as closely as possible.

User Scenario 2: Return the author, status and information about all comments
for all BCF topics that relate to a specific building element.
This query (code listing 5.7) starts at the ifcwall schema-query, providing an IFC
GUID to access a specific building element. This query returns a single element of
type IfcWall. The query further specifies, which field is needed from this element
(topics field) and which fields are needed for all nested elements, including, for
example, information about each comment of each topic.
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Algorithm 5.6: GraphQL query supporting user scenario 1.
1 query Topic($guid: ID!) {
2 topic(guid: $guid) {
3 visualization {
4 components {
5 selection {
6 element {
7 globalId
8 type
9 }

10 }
11 }
12 }
13 }
14 }

Algorithm 5.7: GraphQL query supporting user scenario 2.
1 query Ifcwall($globalId: ID!) {
2 ifcwall(globalId: $globalId) {
3 topics {
4 creationAuthor
5 topicStatus
6 comments {
7 author
8 comment
9 date {

10 ISO8601
11 }
12 }
13 }
14 }
15 }

User Scenario 3: Return the total volume of all walls in a specific building storey.
The query for scenario 3 (code listing 5.8) is less verbose than the previous
two, which however does not reflect the complexity of the implementation (this
applies especially to the resolver level). The entry point into the entity graph in
this scenario is the ifcwalls query, which returns a list of IfcWall elements inside a
return wrapper and can be filtered using a string, specifying the building storey.
A single (aggregation) field is requested on this return wrapper, which is the sum
of the volume of all filtered elements. This volume field comes with a parameter,
controlling if the volume for each wall should be calculated or read from a property
set if it exists. The elements themselves are not included in the response, since
the scenario does not required it.
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Algorithm 5.8: GraphQL query supporting user scenario 3.
1 query Ifcwalls($storey: String, $calc: Boolean) {
2 ifcwalls(storey: "Level 1") {
3 volume(calc: false)
4 }
5 }

User Scenario 4: Return material information and calculate volume of a specific
wall.
The fourth query (code listing 5.9) shares similarities with scenario 2, as information
is requested about a single (IfcWall) element. The requested fields are volume
and material. In contrast to scenario 3, where the volume was available as part of
a property set, here the volume must be calculated based on the geometry of the
element.

Algorithm 5.9: GraphQL query supporting user scenario 4.
1 query CalculateVolume($globalId: ID!, $calc: Boolean) {
2 ifcwall(globalId: $globalId) {
3 volume(calc: true)
4 material {
5 name
6 thickness
7 }
8 }
9 }

User Scenario 5: Return all walls with a specific material that are mentioned by a
specific author through BCF.
The query for scenario 5 (code listing 5.10) makes use of two filtering parameters:
material and mentioned_by. Since the resolver chain starts at the root query and
works its way down to the leaf nodes, the filtering must be done at the top level of
the resolver for the ifcwalls query. This means, that the resolver function bound to
this field of the Query type needs to implement the necessary filters without any
knowledge of the result of any child resolvers. While this is easily achievable in
this use case, it highlights that filtering, based on the results of child resolvers, is
not a trivial task in GraphQL.

While these five user queries have been worked out in detail to provide examples,
the current schema and resolver implementation allow the construction of many
more varied client queries without adding any new types and/or resolver functions.
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Algorithm 5.10: GraphQL query supporting user scenario 5.
1 query WallsByMaterialAndBcfAuthor($material: String,

$mentioned_by: String) {
2 ifcwalls(material: $material, mentioned_by: $mentioned_by) {
3 elements {
4 globalId
5 material {
6 name
7 }
8 }
9 }

10 }

5.5 Implementation of Resolver Functions

Implementing the resolver functions is the main programming task, besides setting
up the infrastructure for the API in general (server setup, routing, setup of the
specific GraphQL framework and similar tasks). Implementing the schema includes
most of the general design decisions and already predefines the required resolver
functions as well as their input parameters and return structure. In general every
field of the schema has an associated resolver function. Most frameworks, however,
provide default or fallback resolver functions for trivial fields (see section 3.8). A
fallback resolver can be used if the parent resolver returns a dictionary containing
a key with the exact field name. Most type resolvers make use of this feature
and return a dictionary already containing information about most fields under the
correct key (the name of the field). A lot of resolvers can be omitted because of
this, which greatly reduces the necessary implementation work.
The resolver functions rely on the Python package IfcOpenShell to interact with
both the IFC building model, as well as the BCF in XML format. The concrete
implementation details of the resolver functions are not crucial for the general
concept of the API. However, there are a few resolver functions that are worth
examining in more detail.

5.5.1 IfcWalls Resolver

The resolver for the ifcwalls query is the most comprehensive, as the IfcWall type
is implemented in the GraphQL schema with the greatest detail, and most user
scenarios rely on this type. Derived from the user scenarios, this resolver function
includes three (optional) parameters: storey (to support scenario 3), as well as
material and mentioned_by (to support scenario 5).
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The resolver function must (for each parameter): (1) check if the parameter is
given and if so (2) filter the result accordingly. Since a resolver function has no
way of accessing the result of any child resolvers down the chain, this filtering
mechanism must be implemented at the top level of the ifcwalls query resolver.

5.5.2 Volume Resolver

The resolver function for the volume field of the IfcWall type occupies a unique role
due to its increased complexity and the need to support both retrieving the volume
from property sets and calculating it based on the geometric representation.
Reading the information from property sets presents the problem that there is no
uniform standardization regarding how and under what name the volume is stored.
This means that both, the name of the property set and the name of the required
parameter must be known beforehand. Property sets have a GUID, a name, and
contain a list of properties, each identified by a name and associated with a value.
They are utilized to attach information that extends beyond the IFC schema to IFC
instances. BIM authoring tools commonly use property sets to attach information
exactly like volume information to building elements, following an internal nomen-
clature. A wall modeled in Revit, for example, might carry information about its
volume in a property set named "PSet_Revit_Dimensions" under the key "Volume",
while the same information coming from ArchiCAD might be found in a property
set named "ArchiCADQuantities" with the key "Volume (Net)".
For this case study the model with all its property sets and name values is known.
Correctly providing this information in a general case may not be trivial without
losing the semantics of the property. This means, integrating property sets into
GraphQL types in an abstract manner without attaching meaning to the properties
is easily achieved. This could be done, for example, by using a list of key-value
pairs as the value of a field called propert_sets. However, associating the correct
property with the appropriate field in the GraphQL schema could be non-trivial.
Calculating the volume is done using the geometry processing library OpenCas-
cade5, more specifically the Python wrapper Pythonocc-core6.

5.5.3 Resolver Optimization

The modular architecture of resolvers can sometimes result in sub-optimal be-
havior within the resolver chain. A common scenario in which this occurs, is
when a query requests a list of elements stored in a relational database. In this

5https://dev.opencascade.org, accessed: 08.08.2024
6https://github.com/tpaviot/Pythonocc-core, accessed: 08.08.2024
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case, each resolver acts independently, often managing a separate database
connection to retrieve the necessary information for its specific field. As a result,
multiple individual requests are sent to the database, rather than consolidating
the information into a single query. This approach can lead to inefficiencies and
unnecessary overhead. This issue is a common occurrence in many projects
and is widely known as the n+1 problem. It happens when a query requesting a
list of n elements leads to n+1 database requests. Facebook has introduced a
solution called DataLoader, available on GitHub7. This approach involves creating
an intermediary layer between resolver functions and the persistence layer, tasked
with handling data access. The primary goal of this layer is to enhance data ac-
cess performance through two key functionalities: caching and batching. Caching
involves storing the results of frequently requested data, allowing subsequent
requests for the same resource to be served from the cache, thereby avoiding
repeated data access. Batching, on the other hand, combines multiple requests
within a specific timeframe into one single database query, significantly improving
performance compared to processing each request individually.
A more specific problem, which was encountered during implementation also
stems from the modular resolver design. Consider a query, that returns a list
of IfcWall elements, where a material field is requested for each element. The
material resolver takes the GUID of an element and uses IfcOpenShell to (1) load
the model, (2) find the material for the specific element, (3) close the file, and (4)
return the material information. This way the resolver is completely atomic and
does not rely on anything other than the element GUID. As a result, the IFC file is
opened and read once for every element in the list, which is extremely slow. In
order to solve this, the IFC file is loaded into memory by the route handler and is
attached to the context object. The context provides information common to all
resolvers for a specific query (see chapter 3). This way, every resolver function
has access to the model without the need to read it first. Another advantage is
the fact, that this way the server’s route handler can manage which file is getting
loaded for which query. The same approach was applied to the BCF, which gets
decompressed and read by the route handler and attached to the query’s context
object.

5.6 GraphQL Frameworks

There are GraphQL frameworks available for almost all popular programming lan-
guages. The official GraphQL documentation lists libraries for languages including
but not limited to: JavaScript, Go, Python, C#, C++, PHP, Rust and many more.

7https://github.com/graphql/dataloader, accessed: 01.08.2024
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Two frameworks were tested as part of the case study based on two different
environments: Ariadne which is available as a Python package and Apollo based
on Node.js and JavaScript/TypeScript. Besides personal preference and familiarity
with specific programming languages, the choice of a specific framework is not
that influential. Both frameworks tested are fully capable of supporting the defined
user scenarios. This can also be expected for other available alternatives. The
final implementation of this case study relies on the Ariadne framework because
it is available in Python. There are no competitive alternatives for the process-
ing, authoring and querying of IFC models similar to IfcOpenShell available for
Node.js. As a result, Python is used to interact with the IFC models. Implementing
the server logic and GraphQL layer in the same language means, the resolver
functions can access the resources directly (with the use of IfcOpenShell), instead
of requiring an additional intermediate layer.

Figure 5.5: Two possible application designs depending on the choice of frame-
works and software tools.

An alternative was explored using Node.js and Apollo to set up and host the
GraphQL API, while still interacting with IFC using Python. This means, that
there needs to be communication established between the GraphQL back-end
and a Python process, providing access to the resources. An illustration of both
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approaches is shown in figure 5.5. This communication layer can be established
in a number of ways: The first option is to set up an intermediate API that can
be used to manage the access to the IFC model and provide a means to access
specific information. This can be implemented, e.g., as a REST API service. The
advantage is the clear separation between data access and resolver function
implementation with a clearly defined interface in between. This makes it possible
to change implementation specifics for the data access without affecting the
resolver layer, as long as the original REST endpoints remain available. The
second option (which is the one that was tested in the context of this case study)
relies on executing Python scripts directly from Node.JS, using child processes.
To this end a main Python script was implemented and set up to function as a
command line program, accepting input parameters that control which exact query
should be executed on the IFC model instance. The query is then executed inside
a Python environment, making it possible to use tools like IfcOpenShell. The
results can be communicated back to the parent process in different ways:

- Via files: write the result to a JSON file and notify the parent process when
the writing operation is done and the file is closed. The parent process
(resolver function) can then open the file and resolve the field it is responsible
for with the JSON object directly.

- Via stdio streams: the child process can directly send data to the parent
process (and vice versa) using the stdin and stdout streams. The parent
process then needs to parse the incoming stream. This avoids the need to
write and read actual files to storage, increasing the speed of interaction.

Any of the above solutions to integrate two different programming languages
consists of two separate processes with an additional layer in between, greatly
complicating the whole process of data access. While this would be appropriate for
a production setting, it seems to be too much effort for too little benefit in the context
of a small case study. Which is why both, the GraphQL API and data access logic
where ultimately implemented using Python as a programming language. This
goes to show, that the available functionality in the host programming language
regarding the resolver functions might be a key parameter, influencing the decision
about the GraphQL framework.

5.6.1 Interpretation Layer

Implementing access to raw data sources can be cumbersome and labour-
intensive. The IFC model instances used in this case study are available in
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a clear text encoding with the information being relatively easy accessible in gen-
eral. Extracting the information in a consistent and stable manner, however, can
be quite complicated depending on the structure and data model of the resources.
Usually, there are existing libraries that facilitate the data access for almost all
common data formats. IFC is no exception, offering various libraries available
that provide developers with simplified reading and authoring utilities. This means
that most of the time, the intricacies of accessing and parsing data from different
sources can be outsourced to established libraries. This allows developers to
focus on new tasks by building on the work of others.
Probably the most popular library for IFC processing through code (at least when it
comes to prototyping) is IfcOpenShell, providing easy access to information stored
in IFC and handy utility functionality.
In general, there is usually an intermediate interpretation layer on top of the raw
resources. This layer can consist of multiple levels of abstraction itself. IfcOpen-
Shell for example is build upon other libraries (like Eigen, Boost, OpenCascade
and more) that are responsible for different parts of its functionality. An example of
this layered structure is demonstrated in figure 5.6.
Even though the use of third-party libraries like IfcOpenShell greatly simplifies the

Figure 5.6: Data access orginized in layers.

implementation and development process, a GraphQL API is not reliant on these
libraries. There is no technical reason against implementing custom parsing logic
or even implementing access to raw data sources directly at the resolver functions
level. This is not really relevant to the specific implementation offered by this case
study, as there are excellent libraries that enable data access to the resources
used. It highlights however, that GraphQL is agnostic to the persistence layer as
well as the specific access mechanisms. Resolver functions can integrate almost
any data format into the API with or without the use of intermediate interpretation
layers.
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Figure 5.7: Dedicated client to test and explore the GraphQL endpoint.

5.7 GraphQL Client and Executing the Queries

The final steps are to host the GraphQL API, send the queries defined in the
previous section as request payload and examine the result. The hosting is done
locally using a simple Flask8 server. The query payload is handed over to the
GraphQL framework which executes the query against the entity graph, constructs
the result, and returns it back to the Flask route handler. This query result is
then returned as JSON back to the client. Queries can be send to the endpoint
using HTTP POST requests. This can be done from client applications (using
browser APIs like fetch) from API testing tools like Postman or using dedicated
GraphQL clients (such as GraphiQL or Apollo Explorer). These clients offer the
advantages of visualizing the introspection result, providing a documentation of
available queries and fields. Figure 5.7 provides a depiction of the user interface
that is provided by the Apollo Explorer. It includes introspection information and
offers a simple interface to construct queries and examine the results.

This concludes the description of the provided implementation. A discussion of the
results and limitations, as well as possible alternative design decisions, is provided
in the next chapter.

8https://flask.palletsprojects.com/en/3.0.x/, accessed: 02.08.2024

74

https://flask.palletsprojects.com/en/3.0.x/


Chapter 6

Discussion

BIM projects are characterized by the collaboration of many different project
partners and stakeholders. The resources are heterogeneous and often highly
interdependent, with varying representations of information between different
disciplines. CDEs, model server, and Sematic Web technologies are some of
the solutions to enable collaboration in this difficult environment. This thesis
summarizes the main research findings about collaboration and data exchange
technologies in the AEC industry and proposes a solution using GraphQL. This
solution is tested against five use cases.

6.1 Achievements

The implemented GraphQL API is able to satisfy all requirements defined by the
user scenarios in chapter 5. Some specific behaviors are not trivial to implement
using GraphQL, e.g., filtering based on the result of child resolvers, which affected
scenario 5. However, working queries could be constructed for all five scenarios
and provide the requested information adequately. Commonly used API function-
alities, such as filtering and aggregation, have successfully been implemented
and deployed on heterogeneous resources. This demonstrates, that GraphQL
is suitable for the use in a BIM context (research question 3). Several details
are left open in the official GraphQL specification. This includes, e.g., popular
features in data querying like filtering and pagination. What may seem like a
disadvantage at first glance, actually offers a great flexibility in the integration of
various heterogeneous resources. By leaving the implementation of these features
to the respective developer, they can be adequately tailored for any data structure.
This avoids scenarios, where a specific solution would not be suitable for a specific
use case or a distinct data model because there is no predefined solution.
The exact same circumstance can, however, also be construed as a downside of
GraphQL in general, depending on the use case of the API. Quality-of-life features
are not provided automatically, which can be a disadvantage if all a user requires
is a working product with minimal effort. Especially, if the use case will not benefit
from the flexibility this design offers.
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Figure 6.1: GraphQL schema with a generic representation of building elements.

6.2 Possible Different Approach in Schema Design

The relationship between resources and schema implemented as part of this
master thesis can be labeled as an early-binding approach. The available model
elements are represented explicitly in the GraphQL schema (which acts as the
host language in this analogy). This analogy may not be entirely viable in the
context of the GraphQL schema, it provides however, a useful lens to categorize
different schema design approaches. In contrast to this, a late-binding approach is
also conceivable and has been evidently implemented for a commercial GraphQL
API by the company Autodesk1.
Since this seems to be the first publicly available solution of a GraphQL API to
access building model information a closer look was taken on the structure of this
API and specifically the schema designed for this API. The comparison between
the API implemented as part of this case study and the API developed by Autodesk
reveals a fundamentally different approach to schema design, with distinct or even
opposing advantages and disadvantages.

Autodesk takes a more generic approach when it comes to schema design. The
rough structure and contents of the schema are demonstrated in figure 6.1. Model
elements are generically treated as so-called elements.
The GraphQL schema (which is static) has to be able to represent very diverse
element types. An element might be a wall, a window, a door, etc. These different
element types come with different attributes attached.
In order for the schema to be able to represent diverse element types with divers
attributes, the following approach was chosen: the element attributes are not
modelled as a part of the GraphQL schema but rather are represented as a list of
properties. Each property is essentially a key-value pair (with added supplementary
information).
This approach offers the possibility to represent arbitrary element types while still
keeping the GraphQL schema concise and lean. The downside is, that it looses
some of the strength of GraphQL on the element level. Since the properties of

1https://aps.autodesk.com/en/docs/fdxgraph/v1/developers_guide/overview/, accessed:
14.08.2024
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the elements are not represented as individual fields in GraphQL, they can not
link to other GraphQL types. As a result, they can not be linked to other objects
directly. A link could be established using a property, but a relationship of this kind
can not be followed directly inside a single request, since this connection is not
represented in the entity graph.

6.3 Limitations of the proposed approach

In order to fully answer research question 4, the limitations of the approach have
to be examined as well. As a proof-of-concept implementation, the proposed
GraphQL API can not be seen as a finished product. Several key features that
any API should posses, are omitted in order to decrease complexity. These can
be seen as limitations originating from the defined scope of the thesis and could
easily be solved by extending the implementation.

Scope Limitations:

1. Key features are not implemented. This includes pagination, authentication,
authorization and managing multiple files and projects.

2. There is only a very limited support of the resource schema. Only a handful
of the classes available in IFC are represented in the GraphQL schema.

Besides obvious and deliberate gaps in the implementation, there are general
technical challenges that a GraphQL API in this context would need to cope with.

Technical Challenges:

1. Adding pagination and filtering complicates the schema: Common
pagination results like cursor-based pagination require additional information
to be embedded into the schema. This is commonly done by adding fields like
item count or cursor information to return types. Usually this is accompanied
by creating wrapper types to hold this additional information. As a result the
schema contains fields, that are not part of the exposed resources but must
be included as "helper " fields to enable advanced querying functionalities.
This complicates the schema by introducing additional fields and nesting
levels, obfuscating the actual information provided by the API. This is a
common issue and extending the schema to solve this is usually accepted.
However, it is worth noting that this takes away some of the appeal of
GraphQL, which is providing a very concise and self documenting description
of the exposed resources.
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2. Schema design requires extensive of effort: An intelligently designed
schema is one of the main advantages of GraphQL, providing an easy to
understand structure to access potentially complex data structures. How-
ever, designing a schema this manner requires a lot of manual work. The
alternative is automatic schema generation, which can be observed in some
of the examples from current research 2. This approach, however, often
forgoes the advantages of a manually designed schema completely, exactly
mimicking the (complicated) data model of the resources.

3. Static schema: The GraphQL schema is centralized and static and can
therefore not be created dynamically. Any changes to the schema require a
server reload of some kind.

4. No global identifiability of resources: Contrary to Linked Data, types in
GraphQL can not be uniquely identified and addressed in a global context.

5. Centralized schema: A GraphQL API requires a central schema. Schema
federation is possible but mainly refers to the workflow of creating one
combined schema across different teams (see section 3.6.5).

6.4 Scalability and Application to Other Data Models

This section discusses the potential for extending the proposed method and
applying it to more extensive use cases. With small prototypical implementations,
there is always the question of whether or not the same principles can be applied
to more complex scenarios. Future projects will need to determine how well the
principles presented here can be applied to other areas. There are, however,
general observations that can already be made about extending the case study or
applying the same principles to different areas/domains.

6.4.1 Scaling

There are several ways to extend and scale the proposed implementation. Two
categories will be discussed: The first one involves scaling the technical infras-
tructure that provides the basis for any API (vertical and horizontal scaling). The
second one involves extending the API itself by, e.g., scaling the GraphQL schema,
adding support for different data models, and so on.

Scaling Distributed Systems
Distributed systems in general can be scaled vertically and horizontally. Vertical
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scaling refers to increasing the capabilities of existing infrastructure, e.g., by
upgrading hardware, installing more server RAM and so on. Horizontal scaling
refers to adding additional server instances to divide the load upon multiple points
(server cluster).
Vertical scaling is naturally possible for almost any API and server architecture
since increasing hardware capabilities do not change the structure of the API in
terms of technical details like routing and load balancing. It just means that the
existing system can answer quicker, store more information in memory, and so on.
Vertical scaling is more complex and usually requires additional logic to divide and
balance the load across multiple servers. According to the best-practices section
of the official documentation, GraphQL supports horizontal scaling, however, the
implementation of this feature is left to the API developers. The documentation
refers to companies operating GraphQL APIs under extremely high loads.
Scaling server systems is not unique to GraphQL but follows the same principles
for any kind of architecture, which goes into a technical area that is outside the
scope of this thesis.

6.4.2 Extending the Schema

Extending the schema is an obvious way of broadening the presented imple-
mentation. The IFC schema offers approximately 800 entities and can represent
building elements and concepts from numerous different disciplines. Transferring
these existing concepts to GraphQL offers abundant opportunities to develop and
support new user scenarios without the need to integrate new data models.

6.4.3 Transfer to other Data Models

IFC and BCF were used as the supported data models for this case study. However,
there should be no difficulty in integrating other data sources into an API like this.
As long as the knowledge can be accessed and parsed in the target environment,
e.g., by resolver functions, any representation can be used. Examples from
recent research have shown that GraphQL can successfully be used to interact
with knowledge represented in RDF (Taelman et al., 2018; Werbrouck, Senthilvel,
Beetz, Bourreau, et al., 2019). Several public GraphQL APIs showcase that various
different resources and data storage schemes can be used as a persistence layer.
Relational Databases, No-SQL, REST APIs, other GraphQL APIs, in-memory
data, and file systems can be used to store the data. GraphQL is especially useful
for structured data that can be represented in the JSON format. Even though the
official specification (GraphQL, 2021) does not require a specific serialization for
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the result, JSON is by far the most common one. Data that can’t be adequately
represented this way, such as images or PDF documents, is more problematic to
include in an API like this.
Since exchanging information through files is still a major part of collaboration in
the AEC industry, this might be a drawback of the architecture. It is somewhat
mitigated by the fact that GraphQL can easily be combined with REST endpoints
(see section 3.5). REST is, in contrast to GraphQL, very flexible when it comes to
the data format of the response. The media-type header offers the possibility to
distinguish between numerous data formats when sending a response. The client
will check this header and treat and interpret the data accordingly.
One solution that is used in production is utilizing REST alongside GraphQL to
handle tasks related to entire files, such as file uploads and downloads.
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Chapter 7

Conclusion and Outlook

Collaboration and data exchange are important topics in the AEC industry. Con-
struction projects are characterized by the collaboration of various different stake-
holders with diverging motives. Even though centralized data management and
exchange solutions are applied in almost all large scale projects, exchange of
information still commonly happens on the document level. This granularity of
data exchange has been identified as an issue by many in research. Enabling
information access on the data level is solving several issues in collaboration.
All of this indicates a high demand for interfaces, which enable and facilitate an
exchange of information in a fine-grained manner.

GraphQL gained a lot of popularity in recent years, both as a query language and
as an API architecture. As such it provides one way of defining and implementing
the mentioned interfaces in a web-context. Other approaches to improve collabo-
ration practises in the AEC industry are not yet solving all existing issues. This
includes centralizing the information as a single source of truth, e.g., through the
use of CDEs and model servers as well as using Semantic Web technologies to
enable fine-grained data access to highly interconnected resources.
GraphQL is praised for its simplicity as a query language, lowering the threshold to
be integrated by developers. It furthermore aims to solve several issues associated
with the REST architectural paradigm, which is still the predominant architecture
for web APIs.
A GraphQL API was developed as part of this thesis and was tested against spe-
cific user scenarios. This proof-of-concept implementation was carried out in order
to examine the usefulness of GraphQL in the context of BIM. While the resulting
implementation has a limited scope by design, it demonstrates that GraphQL
can be used to access heterogeneous, interconnected domain data, like building
models in the IFC format and issue management information in form of BCF.

Even though GraphQL is compared to SPARQL as a query language, it is not
in competition with the technologies associated with Linked Data in general. On
the contrary, there are several approaches combining GraphQL and Linked Data
replacing SPARQL as the query mechanism with a user-friendly, accessible alter-
native. Linked Data is one of the representation of resources that can be integrated
using GraphQL instead of a competing technology.
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Something similar can be stated for GraphQL compared to REST as an API archi-
tecture. Although GraphQL was designed to address shortcomings of REST, it
should not be understood as an exclusive alternative, as both technologies can be
combined well.
GraphQL seems to be a suitable building block to enable fine-grained information
exchange and provides the means to implement user-friendly web APIs, which
can help to improve the current practices of collaboration in the AEC industry.

Providing standardized, user-friendly interfaces to access heterogeneous data
seems in high demand when looking at current research and the current state of
collaboration in the AEC industry. GraphQL is known for its flexibility and valued for
its simplicity as a query language. There are, however, very few approaches using
GraphQL in the context of BIM. Most, if not all, of the currently available examples
in research use solely Linked Data to represent the resources, while one of the
compelling arguments for GraphQL is its flexibility when it comes to knowledge
representations. While this thesis provides promising results at a proof-of-concept
level, there are several topics that seem to offer potential for further research,
either by extending the presented methodology or by exploring related questions
that were outside the scope of this thesis. A few promising ideas are featured
below.

- This thesis shows that GraphQL can be utilized to interact with both IFC
and BCF data formats, and is able to adequately represent the connections
between both resources. Future research could explore GraphQL in com-
bination with different data models. In general, extending the use case
by adding to the schema, implementing support for additional data models
could be beneficial to investigate the usefulness of GraphQL for bigger and
more complex scenarios.

- Exploring the potential of federated schema design appears promising,
especially when considering the requirements for collaboration.

- Another interesting idea could be to further build on the schema design for
BCF that was implemented as part of this case-study, potentially creating a
GraphQL BCF API implementation that is a counterpart to the BCF REST
API specification.

- Automatic schema generation is a topic that was merely touched by this
thesis. While other research used this approach (e.g., to create a GraphQL
schema from a given ontology), there is a need for further research to
determine its usefulness in the BIM context for other data models as well.

82



Generally, GraphQL seems to have significant potential in the context of BIM, both
as a query language and as a API architectural paradigm. However the specific
use-cases and benefits still need to be further examined.
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Appendix A

Bezeichnung des Anhangs
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Figure A.1: Visual representation of the GraphQL schema for BCF.
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