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Abstract

Reinforcement learning often uses neural networks to solve
complex control tasks. However, neural networks are sensi-
tive to input perturbations, which makes their deployment in
safety-critical environments challenging. This work lifts recent
results from formally verifying neural networks against such
disturbances to reinforcement learning in continuous state
and action spaces using reachability analysis. While previous
work mainly focuses on adversarial attacks for robust rein-
forcement learning, we train neural networks utilizing entire
sets of perturbed inputs and maximize the worst-case reward.
The obtained agents are verifiably more robust than agents
obtained by related work, making them more applicable in
safety-critical environments. This is demonstrated with an
extensive empirical evaluation of four different benchmarks.

1 Introduction
In recent years, deep reinforcement learning using neural net-
works has significantly improved in solving complex control
tasks (Mnih et al. 2015; Andrychowicz et al. 2020; Lillicrap
et al. 2016). In many control tasks, state and action spaces are
continuous, high-dimensional, and can be influenced by un-
certainties such as sensor noises (Kober, Bagnell, and Peters
2013). However, such uncertainties present a severe chal-
lenge in reinforcement learning when storing policies as neu-
ral networks, which are sensitive to small perturbations in
the input (Szegedy et al. 2014). This may lead to instabilities
and safety violations of the controlled system: Fig. 1 (left)
shows simulations of a navigation task where small input per-
turbations lead to trajectories that enter an unsafe set. Robust
reinforcement learning algorithms aim to train controllers
that are robust against input perturbations.

Related works on robust reinforcement learning (Zhang
et al. 2021a; Huang et al. 2017; Deshpande, Minai, and Ku-
mar 2021; Mandlekar et al. 2017; Lütjens, Everett, and How
2020; Zhang et al. 2021b) propose a competitive framework
with an adversary (Moos et al. 2022; Pinto et al. 2017): In
observation-robust algorithms, the adversary exploits the
sensitivity of neural networks by choosing the worst-case
observation for the current policy (Moos et al. 2022). The
worst-case observation is often hard to compute (Madry et al.
2018); thus, different naive and gradient-based methods have
been proposed to generate adversarial observations (Pattanaik
et al. 2018; Mandlekar et al. 2017; Huang et al. 2017; Zhang
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Figure 1: Comparison of standard and our novel set-based
reinforcement learning on a navigation task. Left: Some tra-
jectories of the standard agent intersect with the obstacle.
Right: We can formally verify the safety of our robust agent.1

et al. 2021a). For example, gradient-based methods often
utilize the fast gradient sign method to approximate the worst
input (Goodfellow, Shlens, and Szegedy 2015).

The obtained agents should be formally verified for safe
deployment in safety-critical environments. Formal methods
for neural networks have made significant progress in recent
years (Manzanas Lopez et al. 2023; Brix et al. 2023), making
it possible to verify entire neural network control systems:
This is often achieved by (i) modeling the disturbed state of
the system as a continuous set, (ii) computing the correspond-
ing output set of the neural networks, and (iii) enclosing the
evolution of the environment over time using reachability
analysis. If the obtained reachable set does not violate any
given specifications, the neural network control system is
verified as shown in Fig. 1 (right).

The propagation of sets through neural networks can also
be integrated into the training process to obtain neural net-
works that are robust against input uncertainties for classifi-
cation tasks (Gowal et al. 2019; Koller, Ladner, and Althoff
2024). This is achieved by driving the entire output set to the
target using a set-based loss, thereby training the accuracy

1Video: https://t1p.de/f8pqs



and robustness of the neural network. This work lifts these
results to reinforcement learning. To summarize, our main
contributions are:

• A novel set-based reinforcement learning algorithm based
on the well-established deep deterministic policy gradient
algorithm (Lillicrap et al. 2016) to train verifiable robust
agents (Fig. 1).

• To do so, a novel set-based loss for regression tasks is
developed using a rigorous analysis of the underlying set
propagation.

• Our modular approach makes it possible to train all indi-
vidual components in a set-based fashion.

• An extensive evaluation including a comparison with state-
of-the-art adversarial training methods on four different
control benchmarks.

2 Preliminaries
Notation
We write vectors as lowercase letters, matrices as uppercase
letters, sets as calligraphic letters, and probability distribu-
tions as scriptfont letters. The set of natural numbers up to
n ∈ N is written as [n] = {1, 2, . . . , n} ⊂ N. A multidi-
mensional interval is denoted by I = [l, u] ⊆ Rn, where
l ≤ u holds elementwise for l, u ∈ Rn. The gradient of a
function f w.r.t. a variable x is denoted by ∇xf(x, ·). The
i-th element of a vector v ∈ Rn is written as v(i). The ele-
ment in the i-th row and j-th column of a matrix is M(i,j),
M(i,·) refers to the i-th row, and M(·,j) refers to the j-th
column. The identity matrix is denoted by In ∈ Rn×n, and
the vector that only contains ones or zeros is denoted by 1
or 0. The operator diag : Rn → Rn×n returns a diagonal
matrix with the vector elements on its diagonal; operation
sgn : Rn×m → {−1, 0, 1}n×m determines the sign of each
matrix element. The horizontal concatenation of two matrices
A ∈ Rn×m and B ∈ Rn×p is denoted by [A B]. We write
the expected value of a random variable x under the condition
y ∼ Y as Ey∼Y [x(y)].

Neural Networks
A feed-forward neural network Nθ : Rn0 → Rnκ with learn-
able parameters θ consists of κ ∈ N alternating linear and
activation layers, where the k-th layer has nk ∈ N output
neurons. The output y = Nθ(x) ∈ Rnκ is computed by
propagating an input x ∈ Rn0 through all layers.

Definition 1 (Neural Network, (Bishop and Nasrabadi 2006,
Sec. 5.1)). Given a neural network Nθ and an input x ∈ Rn0 ,
the output y = Nθ(x) ∈ Rnκ is computed by

h0 = x, hk = Lk(hk−1) for k ∈ [κ], y = hκ,

where

Lk(hk−1) =

{
Wk hk−1 + bk if k-th layer is linear,
σk(hk−1) otherwise,

with weights Wk ∈ Rnk×nk−1 , biases bk ∈ Rnk , and ele-
mentwise activation functions σk(·).
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Figure 2: Illustration of the structure of the deep deterministic
policy gradient algorithm; ➀ and ➁ show the components
that are augmented through our set-based training (Sec. 3).

Deep Deterministic Policy Gradient
We focus on continuous control tasks with a multidimen-
sional state space S and action space A (Januszewski et al.
2021; Recht 2019). Our set-based reinforcement learning
approach is based on the deep deterministic policy gradient
algorithm (Lillicrap et al. 2016), which consists of an actor
µϕ : S → A with parameters ϕ and a critic Qθ : S ×A → R
with parameters θ. At each time step t, the actor observes
the current state of the system st ∈ S and returns an action
at = µϕ(st) ∈ A, which controls the system until the next
time step t+1. Using the reward function r : S×A → R and
the probabilistic state transition dynamics p(st+1 | st, at),
the environment returns a reward rt and its next state st+1

(Fig. 2). These transitions (st, at, rt, st+1) are stored in a
buffer B for training (Fig. 2). The training objective is to find
the policy that maximizes the discounted cumulative reward
from the initial state s0 (Silver et al. 2014, Eq. 8):

J(µϕ) = Est∼ρµ

[ ∞∑
i=0

γi r(st, µϕ(st))

]
, (1)

with discount factor γ ∈ [0, 1] and where ρµ denotes the
discounted state visitation distribution for policy µ (Lillicrap
et al. 2016, Sec. 2). The critic neural network Qθ approxi-
mates the expected total discounted reward for action at in
state st (Lillicrap et al. 2016, Eq. 3):

Qθ(st, at) = Est∼ρµ [r(st, at) + γ Q(st+1, µ(st+1))]. (2)

As the actor is deterministic, Qθ can be learned off-policy
by adding a random exploration noise to obtain a stochastic
policy β (Lillicrap et al. 2016, Eq. 4):

L(θ) = Est∼ρβ ,at∼β

[
(Qθ(st, at)− yt)

2
]
, (3)

with targets (Lillicrap et al. 2016, Eq. 5)

yt = r(st, at) + γ Qθ(st+1, µϕ(st+1)). (4)

The actor is trained using the policy gradient (Lillicrap et al.
2016, Eq. 6):

∇ϕJ(µϕ) ≈ Est∼ρβ

[
∇at

Qθ(st, at)
∣∣
at=µϕ(st)

∇ϕµϕ(st)
]
.

(5)



Set-Based Computations
We model uncertainties using zonotopes due to their favorable
computational complexity of the required operations:
Definition 2 (Zonotope (Girard 2005)). Given a center c ∈
Rn and generators G ∈ Rn×q , a zonotope Z is defined as:

Z = ⟨c,G⟩Z =

c+

q∑
j=1

βjG(·,j)

∣∣∣∣∣∣βj ∈ [−1, 1]

 ⊂ Rn.

Given a zonotope Z ⊂ Rn, a matrix A ∈ Rm×n, and a
vector b ∈ Rm, the affine map is computed by (Althoff 2010,
Sec. 2.4)

AZ + b = {Ax+ b |x ∈ Z} = ⟨Ac+ b, AG⟩Z . (6)
The bounds l, u ∈ Rn of the enclosing interval of the
zonotope, i.e., Z ⊆ [l, u], are computed by (Althoff 2010,
Prop. 2.2)

l = c− |G|1, u = c+ |G|1, (7)
and the diameter of the enclosing interval of a zonotope is
given by

dia(Z) := u− l = 2 |G|1. (8)
For some derivations, we write lnDia(G) := ln(2 |G|1) and
lnDia′(G) := ∇G lnDia(G) = diag(|G|1)−1

sgn(G) to
make them more readable and concise.

The Minkowski sum of a zonotope Z = ⟨c,G⟩Z and an
interval I = [l, u] is computed by (Althoff 2010, Prop. 2.1
and Sec. 2.4):
Z ⊕ I = {x1 + x2 | x1 ∈ Z, x2 ∈ I}

= ⟨c+ 1/2(u+ l), [G diag(1/2(u− l))]⟩Z .
(9)

Moreover, we calculate the Cartesian product of two zono-
topes as in (Lützow and Althoff 2023, Sec. II.C).

Set Propagation through Neural Networks
Computing the exact output set Y∗ = Nθ(X ) of a neural
network for a given input set X ⊂ Rn0 is computationally
hard, i.e. for neural networks with ReLU-activation it is NP-
hard (Katz et al. 2017). Thus, an enclosure of the output set
Y ⊇ Y∗ is computed by conservatively propagating the input
set through the layers of the neural network:
Proposition 1 (Neural Network Set Propagation (Singh et al.
2018)). Given an input set X , the output set of a neural
network can be enclosed as:

H0 = X ,
H∗

k ⊆ Hk = enclose(Lk,Hk−1) for k ∈ [κ],
Y∗ ⊆ Y = Hκ.

The operation enclose(Lk,Hk−1) encloses the output
set of the k-th layer given the input setHk−1. If the layer Lk

is linear, the affine map (6) is applied:
enclose(Lk,Hk−1) = WkHk−1 + bk. (10)

Otherwise, the output set of an activation layer is enclosed
by approximating its element-wise activation function with a
linear function with slope mk ∈ Rnk and adding an appro-
priate approximation error [d, d] for each dimension in the
enclosing interval [lHk−1

, uHk−1
] ⊇ Hk−1:

enclose(Lk,Hk−1) = diag(mk)Hk−1 ⊕ [d, d]. (11)

Set-Based Training of Neural Networks
Set-based training augments the standard training of a neural
network with set-based computing: We construct an input
set Xi around each training sample xi modeling the uncer-
tainty, which is typically an ℓ∞-ball around xi. Ideally, the
corresponding output set Yi of the neural network is as small
as possible around the target yi. Therefore, a set-based loss
combines a regular training loss with a norm of the output set
to penalize its size (Koller, Ladner, and Althoff 2024). Thus,
the backpropagation uses set-based computing to update the
parameters of the neural networks.

Problem Statement
Given a reinforcement learning task with uncertain initial
states s0 ∈ S0 ⊂ Rn, the training objective of an observation-
robust agent µϕ is to maximize the discounted cumulative
rewards of the worst-case observation within the ℓ∞-ball
St = ⟨st, ϵ In⟩Z around the current state st :

ϕ∗ = argmax
ϕ

Est∼ρµ

[ ∞∑
t=0

γt min
s̃t∈St

r(st, µϕ(s̃t))

]
. (12)

3 Set-Based Reinforcement Learning
We lift standard actor-critic reinforcement learning to set-
based reinforcement learning by using set-based training
for the actor and the critic (SA-SC), which corresponds to
a set-based evaluation of ➀ in Fig. 2. During training, we
propagate entire sets through the actor and the critic, and
apply a set-based loss to increase the robustness of the actor.
To this end, we extend the critic loss (3), policy gradient (5),
and the replay buffer to sets. The main steps are also provided
in Alg. 1.

Given the current observation st of the actor, we add uncer-
tainty by constructing the ℓ∞-ball with perturbation radius
ϵ ∈ R+ around st:

St = ⟨st, ϵ I⟩Z . (13)

The set of actions of the actor is enclosed by propagating the
set of observations St through the actor (Prop. 1):

At = ⟨cAt , GAt⟩Z = enclose(µϕ,St). (14)

For the off-policy training of the critic, we perturb the set
of actions with random exploration noise et (Lillicrap et al.
2016, Eq. 7): Ãt := At + et, and compute the corresponding
set of critic outputs:

Qt = ⟨cQt , GQt⟩Z = enclose(Qθ,St × Ãt). (15)

The environment receives the perturbed center of the action
set cÃt

:= cAt
+ et and returns the reward r(st, cÃt

) as well
as the next state st+1, which are stored in the replay buffer B
as transition (st, Ãt, rt, st+1).

For the training of the critic neural network, we randomly
sample n transitions from the buffer to get temporarily un-
correlated samples. For each transition i ∈ [n], we compute
the targets yi using (4) and extend the set-based loss (Koller,
Ladner, and Althoff 2024, Def. 4.1) to regression tasks:



Proposition 2 (Set-Based Regression Loss). Given an output
set Qi = ⟨cQi , GQi⟩Z ⊂ R and a target yi ∈ R, the set-
based regression loss is defined as

EReg(yi,Qi) =
1

2
(cQi

− yi)
2︸ ︷︷ ︸

standard training loss

+
ηQ
ϵ

lnDia(GQi
)︸ ︷︷ ︸

volume loss

,

with weighting factor ηQ ∈ R and perturbation radius ϵ ∈
R+. The gradient of EReg(yi,Qi) w.r.t. Qi is computed by:

∇QiEReg(yi,Qi) =
〈
c− yi,

ηQ
ϵ

lnDia′(GQi)
〉
Z

.

Proof. See technical appendix.

The derivation of the set-based loss function is deferred
to Sec. 4. Intuitively, the set-based regression loss minimizes
the half-squared error (Bishop and Nasrabadi 2006, Eq. 5.14)
for the center of the output set and simultaneously improves
the robustness by decreasing the volume of the output set.
This is achieved by enforcing smaller absolute values in the
generator matrix of the output sets.

The actor neural network is trained using a set-based policy
gradient, which is also represented by a set:
Definition 3 (Set-Based Policy Gradient SA-SC). Given
states Si with the corresponding actions Ai = ⟨cAi

, GAi
⟩Z

and critic outputs Qi = ⟨cQi
, GQi

⟩Z , a set-based policy
gradient is defined as

∇AiJSet(µϕ) :=
〈
∇cAi

JSet(µϕ),−
ηµ
ϵ
∇GAi

JSet(µϕ)
〉
Z
,

where

∇cAi
JSet(µϕ) = Esi∼ρβ

[
∇cAi

cQi

]
and ∇GAi

JSet(µϕ) = Esi∼ρβ

[
ω lnDia′(GAi)

+ (1− ω) ∇GAi
lnDia′(GQi

)
]

with weighting factors ηµ ∈ R+, ω ∈ [0, 1] and perturbation
radius ϵ ∈ R+.

The set-based policy gradient of the center ∇cAi
JSet(µϕ)

corresponds to the standard deep deterministic policy gradi-
ent (5). For the set-based policy gradient of the generator ma-
trix∇GAi

JSet(µϕ), we deploy a weighted sum with factor ω
consisting of two gradients to minimize the volume: The first
term reduces the volume of the actions Ai, and the second
term reduces the volume of the critic outputs Qi, which we
backpropagate through the critic to obtain the gradients in the
space of the actions (Fig. 2). Finally, given the gradients w.r.t
the output of the actor and the critic, we can update the re-
spective parameters using set-based backpropagation (Koller,
Ladner, and Althoff 2024, Prop. 14). Thereby, the set-based
policy gradient simultaneously trains an accurate and robust
actor.

Moreover, we can significantly speed up the training by
setting ω = 1, which corresponds to only using set-based
training for the actor, while standard (point-based) training
is used for the the critic (SA-PC). This corresponds to a set-
based evaluation of ➀ in Fig. 2. Thus, the set propagation
through the critic neural network can be omitted, and we do
not need to store entire sets of actions Ai in the buffer B. In
this case, we can simplify the set-based policy gradient:

Definition 4 (Set-Based Policy Gradient SA-PC). For a set
of states Si with the corresponding set of actions Ai =
⟨cAi

, GAi
⟩Z , a set-based policy gradient is defined as

∇Ai
JSet(µϕ) :=

〈
∇cAi

JSet(µϕ),−
ηµ
ϵ
∇GAi

JSet(µϕ)
〉
Z
,

where

∇cAi
JSet(µϕ) = Esi∼ρβ

[
∇cAi

Qθ(si, cAi)
]

and ∇GAi
JSet(µϕ) = Esi∼ρβ

[
lnDia′(GAi

)
]

with weighting factor ηµ ∈ R+ and perturbation ϵ ∈ R+.

Algorithm 1: Set-based reinforcement learning.
1 Randomly initialize Qθ, µϕ with θ, ϕ
2 Initialize replay buffer B
3 for episode = 1, . . . , maxEpisodes do
4 Get initial observation s0
5 for t = 0, 1, . . . , maxSteps do
6 // Obtain new transition
7 St ← ⟨st, ϵ I⟩Z // perturb state (13)
8 At ← enclose(µϕ,St) // evaluate actor (14)
9 Ãt ← At + et with et ∼ E // add noise (15)

10 rt ← r(st, cÃt
) // obtain reward

11 st+1 ← execute action cÃt
// obtain next state

12 Store transition (st, Ãt, rt, st+1) in B
13 // Training step
14 Sample batch of n transitions from B
15 Compute target yi for each transition i // (4)
16 Update critic using regression loss // Prop. 2
17 Update actor using policy gradient // Def. 3

4 Derivation of Set-Based Loss Functions
In this section, we motivate the choice of our set-based loss
function (Prop. 2) and our set-based policy gradients (Def. 3
and 4). Please note that the training goal (12) is defined using
probability theory, whereas our training algorithm (Alg. 1)
only uses set-based computing. To this end, we connect set-
based computing and probability theory by assuming a prob-
ability distribution over the considered sets. While maxi-
mizing probabilities is a standard procedure to derive loss
functions (Bishop and Nasrabadi 2006, Sec. 1.2.5), lifting
it to set-based computing has the unique advantage of in-
tegrating formal methods into the training process. For our
derivations, we make use of a conditional posterior distribu-
tion, which can be rewritten to be proportional to a likelihood
function and a prior distribution (Bishop and Nasrabadi 2006,
Eq. 1.44):

cond. posterior ∝ likelihood · prior. (16)

This reformulation is used as the posterior and is not directly
obtainable, but we can assume distributions for the likelihood
and the prior to get an estimate. In our case, the likelihood
corresponds to the standard (point-based) training goal, and
the prior penalizes the volume of the computed sets. As these



sets are represented by zonotopes and thus point-symmetric,
we additionally assume that the expected value over a zono-
tope is its center:

Ez∼Z [z] = c. (17)

Set-Based Regression Loss
We sample random transitions i ∈ [n] from the buffer B to
obtain a state si and the corresponding actions ãi ∼ Ãi. For
each transition, we use (15) to obtain the critic outputQi and
use (4) to obtain the target yi for each critic output qi ∼ Qi

using the rewards and next states stored in the buffer.
To train the critic Qθ, we want to maximize the probability

pθ(qi|yi, si, ãi, β−1). Unfortunately, this probability can not
be computed directly. Hence, we model this probability as a
conditional posterior using (16):

pθ(qi|yi, si, ãi, β−1)︸ ︷︷ ︸
cond. posterior

∝ p(yi|qi, β−1)︸ ︷︷ ︸
likelihood

pθ(qi|si, ãi)︸ ︷︷ ︸
prior

. (18)

For the prior, we assume that qi is uniformly distributed over
the interval [lQi

, uQi
] ⊇ Qi ⊂ R, as Prop. 1 is also defined

over the enclosing interval. Thus, the prior is given by

pθ(qi|si, ãi) = U (qi|lQi
, uQi

) = dia(Qi)
−1. (19)

As the critic learns a regression task, we assume that the
targets yi are normally distributed with mean qi and variance
β−1 to obtain the likelihood function (Bishop and Nasrabadi
2006, Eq. 1.60):

p(yi|qi, β−1) = N (yi|qi, β−1)

=
√

β/2π exp
(
−β/2 (qi − yi)

2
)
.

(20)

Since we observe not a single qi but an entire set Qi,
we use the expected value Eqi∼Qi

[qi] = cQi
(17) in the

likelihood function (Bishop and Nasrabadi 2006, Sec. 10.3).
Thus, we obtain the following term to be maximized:

pθ(qi|yi, si, ãi, β−1) ∝ p(yi|cQi
, β−1) pθ(qi|si, ãi) (21)

Finally, we apply the negative logarithm and set β =

(ηQ/ϵ)
−1 to obtain our set-based loss (Prop. 2):

− ln
(
p(yi|cQi

, β−1) pθ(qi|si, ãi)
)

(20), (19)
= − ln

(
N (yi|qi, β−1) dia(Qi)

−1
)

∝ β/2 (cQi − yi)
2 + lnDia(GQi)

Prop. 2
∝ EReg(yi,Qi).

(22)

We choose β that way for easier fine-tuning (Koller, Ladner,
and Althoff 2024, Def. 7).

Set-Based Policy Gradient
For a state si sampled from the buffer B, we derive the set-
based policy gradient analogous to (Xiao and Wang 2022), to
maximize the probability of an action ai ∼ Ai being optimal
given si – which is again not directly obtainable. Thus, we
introduce a binary variable oi indicating whether ai is optimal
and abbreviate oi = 1 by oi (Xiao and Wang 2022, Sec. 3.1).

We again model this probability as a conditional posterior
over the action output using (16):

pϕ,θ(ai|oi, si, qi, α)︸ ︷︷ ︸
cond. posterior

∝ p(oi|qi, α)︸ ︷︷ ︸
likelihood

pϕ,θ(ai|qi, si)︸ ︷︷ ︸
prior

.
(23)

The likelihood is assumed to be exponentially distributed
with parameter α ∈ R+ (Xiao and Wang 2022, Sec. 3.2):

p(oi|ai, qi, α) = exp(α−1 qi). (24)
The prior is also modeled as a conditional posterior (16):

pϕ,θ(ai|qi, si)︸ ︷︷ ︸
cond. posterior

= pθ(qi|ai, si)︸ ︷︷ ︸
likelihood

pϕ(ai|si)︸ ︷︷ ︸
prior

, (25)

where the likelihood function of qi and the prior for ai are uni-
form distributions over the enclosing intervals [lQi , uQi ] ⊇
Qi ⊂ R and [lAi , uAi ] ⊇ Ai ⊂ RnAi analogous to (19):

pθ(qi|ai, si) = U (qi|lQi
, uQi

) = dia(Qi)
−1,

pϕ(ai|si) = U (ai|lAi , uAi) =

nAi∏
j=1

dia(Ai)
−1
(j).

(26)

Please note that these two probabilities correspond to the
evaluation of the actor and the critic, respectively. For the
likelihood function of (23), the expected value Eqi∼Qi

[qi] =
cQi

(17) is used, and taking the logarithm obtains us:

ln(p(oi|cQi
, α) pϕ(ai|si) pθ(qi|ai, si))

(24), (26)
= ln(exp(α−1 cQi

))

+ ln

 nκ∏
j=1

dia(Ai)
−1
(j)

+ ln
(
dia(Qi)

−1
)

= α−1cQi
− 1⊤ lnDia(GAi

)− lnDia(GQi
)

(27)

The set-based policy gradient for SA-SC (Def. 3) is derived
by differentiation, where we again set the weighting factor
α = (ηµ/ϵ)

−1 for easier fine-tuning (Koller, Ladner, and
Althoff 2024, Def. 7). Moreover, we introduced a factor ω ∈
[0, 1] to weight the gradients of the prior terms of Ai and Qi.

Derivation of SA-PC For SA-PC only the actor is trained
using set-based training, while the critic uses standard (point-
based) training (➀ in Fig. 2). Thus, we can drop the prior for
the critic output qi as this is no longer evaluated set-based and
use the expected value Eai∼Ai

[ai] = cAi
for the likelihood:

p(ai|oi, si, α, ϕ)︸ ︷︷ ︸
cond. posterior

∝ p(oi|si, cAi , α)︸ ︷︷ ︸
likelihood

pϕ(ai|si)︸ ︷︷ ︸
prior

. (28)

Applying the logarithm while keeping our assumption on the
likelihood function and the prior obtains us:

ln(p(oi|si, cAi , α) pϕ(ai|si))

(24), (26)
= α−1Qθ(si, cAi

) + ln

nAi∏
j=1

dia(Ai)
−1
(j)


= α−1Qθ(si, cAi)− 1⊤ lnDia(GAi).

(29)

The set-based policy gradient for SA-PC (Def. 4) is derived
by differentiation and choosing α as above. This also corre-
sponds to setting ω = 1 in Def. 3.
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Figure 3: Probability density function of a zonotope propa-
gated through a neural network with ReLU-activations: Exact
density function obtained via sampling (blue), interval enclo-
sure (yellow), and the density of sets obtained using Prop. 1
with uniformly distributed βj ∼ U (−1, 1) (Def. 2) (green).

Expectation Preserving Image Enclosure
For (21), (27) and (29), we simplify the likelihood with the
expected value of the neural network output, i.e., the center.
This simplification is justified with Prop. 3. In Fig. 3, we plot
the probability distributions of a set propagation and visualize
the expected value for the first neuron of each layer. The ex-
pected value is trivially preserved for linear layers as they are
computed exactly. For nonlinear layers, we observe that the
expected value of the interval enclosure (red vertical line in
third plot) is preserved through the enclosure (green vertical
line; Prop. 1), with only small deviations to the true expected
value. Formally, this is stated in the following proposition:

Proposition 3 (Tight Expectation-Preserving Set Propaga-
tion). Given a neural network and an input set Hk−1 with
the enclosing interval [lk−1, uk−1] ⊇ Hk−1, the expected
value of the enclosure of the output set of the k-th layer is

Ehk∼Hk
[hk] = Ehk−1∼U (lk−1,uk−1)[Lk(hk−1)],

with Hk = enclose(Lk,Hk−1). Moreover, for neural net-
works with only ReLU-activations, the approximation errors
are minimal with approximation slope mk = (σk(uk−1)−
σk(lk−1))/(uk−1 − lk−1).

Proof. See technical appendix.

5 Evaluation
We use the MATLAB toolbox CORA (Althoff 2015) to im-
plement our novel set-based reinforcement learning algo-
rithm and compare the SA-PC and the SA-SC implementa-
tion against standard (point-based) training (PA-PC) and two
state-of-the-art adversarial methods: Naive- and Grad-based
implementations from (Pattanaik et al. 2018, Alg. 2 and 4),
which compute adversarial attacks to approximate the worst-
case observation within a perturbation set (12).

For our evaluation, we use reachability analysis using
CORA to compute all reachable states until a specified time
horizon tend ∈ R+, enclosing all states within the time in-
terval [0, tend]. We add uncertainties (13) at each time step
t ∈ [tend] and consider all uncertainties from [0, t] to formally
verify the behavior of an agent over time (Fig. 1). As this

process is outer-approximative, we can compare the different
training approaches using a lower bound of the worst-case
return of the set of states St = ⟨ct, Gt⟩Z obtained by CORA.
For reward functions of the form r(st, at) = w⊤ |st − s∗|,
we can use set-based computing to obtain this lower bound:

V µ(s0) =

tend∑
t=0

γt max
st∈St

w⊤|st − s∗|

(6),(8)
=

tend∑
t=0

γt
(
w⊤|ct − s∗|+ dia(w⊤St)/2

)
.

(30)

The evaluation is done with three different benchmarks and
an additional one included in the technical appendix:

1D Quadrocopter The state is s = [z ż]
⊤, with altitude

z, vertical velocity ż, and dynamics (Yuan et al. 2022):

ṡ =
[
ż a+1

2m − g
]⊤

, (31)

with action space a ∈ [−1, 1], gravity g = 9.81,
and mass m = 0.05. Starting from initial states s0 ∈
[[−4 0]

⊤
, [4 0]

⊤
], the quadrocopter is stabilized at s∗ =

0; the reward function is r(st, at) = −[1 0.01]|st+1 − s∗|.

Inverted Pendulum The state is s =
[
θ θ̇

]⊤
, with angle

θ, angular velocity θ̇, and dynamics (Krasowski et al. 2023):

ṡ =
[
θ̇ g

l sin(θ) + 1
ml2 a

]⊤
, (32)

with action space a ∈ [−15, 15], gravity g = 9.81, mass m =
1, and length l = 1. The goal to stabilize the pendulum in the
upright position s∗ = 0; the reward function is r(st, at) =
−[1 0.01] |(st+1 − s∗)|.
Navigation Task We use a unicycle model with states s =
[x y θ v]

⊤ and dynamics (Lopez et al. 2022):

ṡ =
[
v cos(θ) v sin(θ) a(1) a(2)

]⊤
, (33)

with action space a ∈ [−1,1]. From starting point s0 =

[3 3 0 0]
⊤, the task is to navigate to the goal s∗ = 0

without colliding with an obstacle O = [1, 2 · 1]. The reward
function is r(st, at) = −[1 1 0 0] |st+1 − s∗| − c, with
c = 1 if st+1 ∈ O and otherwise c = 0.

Every benchmark is trained with 5 different random seeds.
We use neural networks with ReLU activations and two hid-
den layers of 64 and 32 neurons for the actor and critic net-
works. The output layer of the actor has an additional hyper-
bolic tangent activation to match the action space. All other
hyperparameters are listed in the technical appendix.

We compare the performance of the obtained agents for an
increasing perturbation ϵtest:
• With increasing ϵtest, the algorithms SA-PC and SA-SC

show a better V µ(s0) on all benchmarks compared to the
PA-PC, Naive and Grad algorithms (Fig. 4).

• The SA-PC implementation trains more conservative ac-
tors, which perform best for large ϵtest while having a
worse V µ(s0) for small ϵtest compared to all other im-
plementations. The conservative SA-PC actor for the 1D
Quadrocopter is the most robust but reaches the goal later
using lower vertical velocities (Fig. 5).
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Figure 5: Quad. 1D: Comparison of the reachable altitudes z
and vertical speeds ż for ϵtest = 0.15.

• For the SA-SC implementations, V µ(s0) is comparable
to PA-PC for small ϵtest. For increasing ϵtest, SA-SC with
ω = 0.5 shows similar behavior as SA-PC. For SA-SC
with ω = 0, V µ(s0) decreases faster (Fig. 4).

• The V µ(s0) of the Grad and Naive methods are similar
to PA-PC. This may relate to the strength of the proposed
attacks in Grad and Naive training (Pattanaik et al. 2018),
which are strongly dependent on the quality of the trained
critic (Zhang et al. 2021a, Sec. 3.5). For the 1D Quadro-
copter, Fig. 6 compares V µ(s0) with the return under the
adversarial attacks of the Naive and Grad algorithms. The
Naive and Grad training methods perform best for the
respective attacks but not for entire noise sets.

• Our proposed set-based reinforcement learning can be di-
rectly extended for the Twin Delayed Deep Deterministic
policy gradient algorithm (TD3) (Fujimoto, van Hoof, and
Meger 2018) and other ensemble algorithms (Januszewski
et al. 2021). Fig. 4b shows a similar performance of the
set-based TD3 implementation for the 1D Quadrocopter.

Set-based reinforcement learning can be efficiently com-
puted batch-wise on a GPU, but the memory load remains
challenging. Especially for SA-SC, storing entire action sets
in B is memory-consuming. The large number of generators
slows down the computations. The different runtimes for 10
learning epochs are listed in Tab. 1 and were run on a server
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Figure 6: Quad. 1D: Comparison of the return under Naive
and Grad attacks with V µ(s0).

Table 1: Training times [s/10 epochs]

Benchmark PA-PC Naive Grad SA-PC SA-SC
1D Quad. 1.58 2.10 1.98 2.77 7.92
Pendulum 1.82 2.04 2.02 2.87 7.66
Nav. Task 2.35 2.89 2.84 4.35 12.43

with two AMD EPYC 7763 64 core processors, 2 TB RAM,
and an NVIDIA A100-PCIE 40 GB GPU.

6 Conclusion
To the best of our knowledge, we introduce the first set-
based observation-robust reinforcement learning algorithm.
Unlike other algorithms that rely on adversarial inputs, our
approach is unique in its use of set-based neural network
training, working with entire sets of inputs and gradients.
The set-based losses are motivated by a rigorous analysis of
the underlying set-propagation. Our experimental results on
different benchmarks demonstrate the efficacy of set-based
reinforcement learning. Particularly, set-based reinforcement
learning allows the formal verification of trained controllers
even for large perturbation sets, which is essential for their
deployment in safety-critical environments. Consequently,
set-based reinforcement learning is an effective, novel ap-
proach for training robust neural network controllers.
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Table 2: Training parameters for PA-PC, SA-PC and SA-SC.

Parameter DDPG TD3

Actor learning rate 1 · 10−4 1 · 10−4

Critic learning rate 1 · 10−3 1 · 10−3

Critic L2 weight regularization λQ 0.01 0
Discount factor γ 0.99 0.99
Target update factor τ 0.05 0.05
Exploration noise std. deviation σ 0.1 0.1, 0.2
Batchsize 64 64
Buffersize 1 · 106 1 · 106
Episodes 2000 2000
Perturbation radius ϵ 0.1 0.1
Actor weighting factor ηµ 0.1 0.1
Critic weighting factor ηQ 0.01 0.01

A Evaluation Details
Hyperparameters
Tab. 2 show the training hyperparameters.

Additional Benchmark
2D Quadrocopter The state of the system is defined as
s =

[
x ẋ z ż θ θ̇

]⊤
, with horizontal displacement

x, horizontal velocity ẋ, altitude z, vertical velocity ż, angle
θ, angular velocity θ̇ and dynamics (Yuan et al. 2022):

ṡ =



ẋ

sin(θ)
ã(1)+ã(2)

m
ż

cos(θ)
ã(1)+ã(2)

m − g

θ̇
l(ã(2)−ã(1))√

2Jy

, (34)

where ã = (1 + 1
2 a)

mg
2 with action a ∈ [−1,1] ⊂ R2. The

constant g = 9.81 defines gravity, m = 0.027 is the mass of
the quadrocopter, l = 0.0397 and Jy = 1.4 · 10−4 defines
the arm length of the propeller mount and the moment of
inertia around the y axis. The reward function is given by
r(st, at) = −[1 0.01 1 0.01 0 0]|st+1 − s∗|, with
the goal to stabilize the quadrocopter at s∗ = 0. Fig. 7 com-
pares the lower bounds V µ(s0) for the different training
algorithms.

B Proofs of Sec. 3
Proposition 2. Given an output set Qi = ⟨cQi

, GQi
⟩Z ⊂ R

and a target yi ∈ R, the set-based regression loss is defined
as

EReg(yi,Qi) =
1

2
(cQi

− yi)
2︸ ︷︷ ︸

standard training loss

+
ηQ
ϵ

lnDia(GQi
)︸ ︷︷ ︸

volume loss

,

with weighting factor ηQ ∈ R and perturbation radius ϵ ∈
R+. The gradient of EReg(yi,Qi) w.r.t. Qi is computed by:

∇Qi
EReg(yi,Qi) =

〈
c− yi,

ηQ
ϵ

lnDia′(GQi
)
〉
Z

.
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Figure 7: Comparison of V µ(s0) for Quadrocopter 2D.

Proof. The gradient w.r.t. a zonotope is represented as a
zonotope as well, consisting of the gradient w.r.t. the center
and the gradient w.r.t. the generator matrix (Koller, Ladner,
and Althoff 2024, Def. 8). Hence, the gradient of the set-
based regression is:

∇Qi
EReg(yi,Qi)

=
〈
∇cQi

EReg(yi,Qi),∇GQi
EReg(yi,Qi)

〉
Z

=
〈
cQi
− yi,

ηQ
ϵ

diag(|GQi
|1)−1

sgn(GQi
)
〉
Z
.

=
〈
cQi
− yi,

ηQ
ϵ

lnDia′(GQi
)
〉
Z
.

C Proofs of Sec. 4
Proposition 3. Given a neural network and an input set
Hk−1 with the enclosing interval [lk−1, uk−1] ⊇ Hk−1, the
expected value of the enclosure of the output set of the k-th
layer is

Ehk∼Hk
[hk] = Ehk−1∼U (lk−1,uk−1)[Lk(hk−1)],

with Hk = enclose(Lk,Hk−1). Moreover, for neural net-
works with only ReLU-activations, the approximation errors
are minimal with approximation slope mk = (σk(uk−1)−
σk(lk−1))/(uk−1 − lk−1).

Proof. We split cases on the type of layer Lk.
Case (1): Linear layer The expected value is preserved by

linearity of the expectation:

Ehk∼Hk
[hk]

(17)
= ck = Wk ck−1 + bk

= Wk Ehk−1∼U (lk−1,uk−1)[hk−1] + bk

= Ehk−1∼U (lk−1,uk−1)[Wk hk−1 + bk]

= Ehk−1∼U (lk−1,uk−1)[Lk(hk−1)].

Case (2): ReLU layer Activation functions are applied
element-wise, thus we consider each dimension individu-
ally; to avoid clutter, we drop the dimension index x(i).



We distinguish between three cases: (2a) lk−1, uk−1 ≤ 0,
(2b) lk−1, uk−1 ≥ 0, (2c) lk−1 < 0 < uk−1. For cases
(i) and (ii), ReLU is linear, thus by linearity of the expec-
tation the expected value is preserved. For case (iii), we
approximate the ReLU activation function with the affine
map mk x + tk. We first derive a condition to ensure pre-
serving the expected value. After that we show the slope that
minimizes the approximation errors is:

mk =
ReLU(uk−1)− ReLU(lk−1)

uk−1 − lk−1
=

uk−1

uk−1 − lk−1
.

(35)
The expected value is preserved if the offset tk to satisfies
the condition:

Ehk∼Hk
[hk]

!
= E[ReLU(hk−1)]

⇐⇒ ck = E[ReLU(hk−1)]

⇐⇒ mk ck−1 + tk = E[ReLU(hk−1)] (36)
⇐⇒ tk = E[ReLU(hk−1)]

−mk ck−1,
with hk−1 ∼ U (lk−1, uk−1). Hence, we fix the offset tk
w.r.t. the slope mk. Moreover, to find the optimal slope
mk, we compute the expected value E[ReLU(hk−1)] us-
ing the probability density function fHk

for the distribution
of ReLU(U (lk−1, uk−1)). Therefore, we first compute the
probability mass below 0 using the cumulative distribution
function (Hinton and Ghahramani 1997; Socci, Lee, and Se-
ung 1997):

FU (lk−1,uk−1)(0) =

∫ 0

−∞
fU (lk−1,uk−1)(hk−1) dhk−1

=

∫ 0

lk−1

1

uk−1 − lk−1
dhk−1

=
−lk−1

uk−1 − lk−1
.

The probability mass is concentrated as a peak at zero using
the Dirac delta δ(x) (Au and Tam 1999):

δ(x) =

{
∞ x = 0,
0 else,

∫ ∞

−∞
f(x) δ(x) dx = f(0).

Thus, the probability density function is:

fHk
(hk) =

{
1−lk−1 δ(hk)
uk−1−lk−1

, 0 ≤ hk < uk−1,
0 otherwise

Thus, the expected value of the transformed distribution is:
Ehk−1∼U (lk−1,uk−1)[ReLU(hk−1)]

=

∫ ∞

−∞
ReLU(hk−1) fHk

(ReLU(hk−1)) dhk−1

=

∫ uk−1

0

hk fHk
(hk) dhk

=

∫ uk−1

0

hk
1− lk−1 δ(hk)

uk−1 − lk−1
dhk

=
h2
k

2 (uk−1 − lk−1)

∣∣∣∣uk−1

0

=
u2
k−1

2 (uk−1 − lk−1)
.

Hence,

tk
(36)
=

u2
k−1

2 (uk−1 − lk−1)
−mk ck−1

(7)
=

1

2

(
u2
k−1

(uk−1 − lk−1)
−mk (uk−1 + lk−1)

)
.

(37)

We now find the slope mk that minimizes the approxi-
mation errors; by satisfying (36) we ensure preserving the
expected value. For concise notation, we abbreviate the ap-
proximation error at x with slope mk by

dx(mk) := |(mk x+ tk)− ReLU(x)|. (38)

We optimize the slope mk for minimal approximation errors:

min
mk

max
x∈[lk−1,uk−1]

dx(mk).

With (Koller, Ladner, and Althoff 2024, Prop. 7), we
know that the approximation error are located at x ∈
{lk−1, 0, uk−1}; hence, we rewrite:

min
mk

max
x∈{lk−1,0,uk−1}

dx(mk).

From lk−1 < 0 < uk−1, we can simplify

dlk−1
(mk) = |mk lk−1 + tk|,

d0(mk) = |tk|,
duk−1

(mk) = |mk uk−1 + tk − uk−1|.
(39)

Moreover, we know that that at least one approximation error
is greater 0:

dlk−1
(mk) > 0 ∨ d0(mk) > 0 ∨ duk−1

(mk) > 0.

Hence, the optimal slope mk is located at an intersection of
two error functions dx1

(mk) = dx2
(mk) ≥ dx3

(mk) with
{x1, x2, x3} = {lk−1, 0, uk−1}. Thus, for each intersection
we find the optimal slope:

Case (2c.i): dlk−1
(mk) = d0(mk)

d0(mk) = dlk−1
(mk)

(39)⇐⇒ |tk| = |mk lk−1 + tk|
⇐⇒ t2k = (mk lk−1 + tk)

2

⇐⇒ 0 = (mk lk−1)
2 + 2mk lk−1 tk

(37)⇐⇒ 0 = m2
k −

uk−1

uk−1 − lk−1
mk

⇐⇒ mk = 0 ∨mk =
uk−1

uk−1 − lk−1
.

Case (2c.ii): dlk−1
(mk) = duk−1

(mk)

dlk−1
(mk) = duk−1

(mk)

(39)⇐⇒ |mk lk−1 + tk| = |mk uk−1 + tk − uk−1|
⇐⇒ (mk lk−1 + tk)

2 = (mk uk−1 + tk − uk−1)
2

(37)⇐⇒ mk uk−1 lk−1 = uk−1

u2
k−1

uk−1 − lk−1
− u2

k−1

⇐⇒ mk =
uk−1

uk−1 − lk−1
.



Case (2c.iii): d0(mk) = duk−1
(mk)

d0(mk) = duk−1
(mk)

(39)⇐⇒ |tk| = |mk uk−1 + tk − uk−1|
⇐⇒ t2k = (mk uk−1 + tk − uk−1)

2

(37)⇐⇒ −m2
k lk−1 +mk

(
lk−1 (2uk−1 − lk−1)

uk−1 − lk−1

)
=

u2
k−1

uk−1 − lk−1
+ uk−1

⇐⇒ mk = 1 ∨mk =
uk−1

uk−1 − lk−1
.

In each case, we show (35).


