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Abstract

As the complexity of the scientific problems we want to study increases, machine learning
(ML) is helping to automate, accelerate and enhance traditional workflows. This is achieved by
combining existing scientific understanding with ML, a relatively new field known as scientific
machine learning (SciML). This thesis explores the integration of ML with physics-based model-
ing to overcome the limitations of traditional computational methods in engineering and science.
The work is motivated by the challenges of applying ML in scientific domains, including the
scarcity of large labeled datasets, noise in data, difficulties in generalization, and the complex-
ity of coupling ML models with non-differentiable, physics-based simulations. To address these
issues, we propose a suite of novel strategies that combines SciML with probabilistic modeling
and differentiable physics. These strategies are then used to address challenging computational
physics and engineering applications.

Firstly, we propose strategies for turbulence closure modeling. We propose a probabilis-
tic, data-driven closure model for Reynolds-Averaged Navier-Stokes (RANS) simulations. The
model integrates a RANS solver with a ML model, enabling end-to-end gradient-based learn-
ing through an adjoint-based differentiable solver. The ML model is designed with hard con-
straints to ensure physical symmetry and invariance, and it employs fully Bayesian learning
using sparse, indirect data such as mean velocity and pressure. The closure model incorporates
both a parametric component, using neural-network-based tensor basis functions, and a stochas-
tic component for aleatoric model uncertainties. The model is demonstrated to produce accurate
probabilistic predictions, even in regions with significant model errors, as evidenced by its per-
formance in the backward-facing step benchmark problem, which involves flow re-circulation
and separation.

Next, we develop a holistic optimization framework that combines concrete mixture design
and structural simulation, consisting of empirical data, semi-analytical models, physics-based
models, and ML techniques. This framework includes a model discovery method using varia-
tional Bayes expectation-maximization, which identifies the relationships between design vari-
ables and model parameters by making use of noisy and incomplete experimental data and finite
element simulations. The framework is applied to the design of a concrete beam, achieving a
balance between minimizing environmental impact and meeting performance criteria.

Finally, we propose a novel optimization algorithm recognizing the complexities of opti-
mizing black-box, stochastic, high-dimensional, and computationally expensive physics-based
models. This algorithm incorporates techniques such as efficient gradient estimation, multi-
fidelity methods, and adaptive Monte Carlo sampling, enabling it to handle complex physics-
based models involved in the optimization process. The algorithm is validated against academic
benchmark problems and successfully applied to a real-world case of optimizing wind farm lay-
out. We demonstrate that the proposed algorithm outperforms the state-of-the-art solvers in
high-dimensional cases.
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Zusammenfassung

Mit der zunehmenden Komplexität der zu untersuchenden wissenschaftlichen Probleme trägt
maschinelles Lernen (ML) dazu bei, traditionelle Arbeitsabläufe zu automatisieren, zu beschleu-
nigen und zu verbessern. Dies wird durch die Kombination bestehender wissenschaftlicher Erken-
ntnisse mit ML erreicht, einem relativ neuen Bereich, der als wissenschaftliches maschinelles
Lernen (SciML) bekannt ist. Diese Dissertation untersucht die Integration von ML in die physik-
basierte Modellierung, um die Grenzen traditioneller rechnergestützter Methoden in Ingenieur-
wissenschaften und Naturwissenschaften zu überwinden. Die Motivation für diese Arbeit ergibt
sich aus den Herausforderungen bei der Anwendung von ML in wissenschaftlichen Bereichen,
einschließlich des Mangels an großen vorklassifizierten Datensätzen, Rauschen in den Daten,
Schwierigkeiten bei der Generalisierung und der Komplexität der Kopplung von ML-Modellen
mit nicht-differenzierbaren, physikbasierten Simulationen. Um diese Probleme zu überwinden,
schlagen wir eine Reihe neuartiger Strategien vor, die SciML mit probabilistischer Model-
lierung und differenzierbaren, physikalischen Systemen kombinieren. Diese Strategien werden
anschließend verwendet, um anspruchsvolle Anwendungen in der numerischen Physik und im
Ingenieurwesen zu lösen.

Zunächst präsentieren wir Strategien für die Modellieung von Turbulenzschließungen. Wir
haben ein probabilistisches, datengetriebenes Schließungsmodell für Reynolds-gemittelte Navier-
Stokes (RANS)-Simulationen entwickelt. Das Modell integriert ein Lösungsverfahren für RANS
mit einem maschinellen Lernmodell (ML), das ein end-to-end, gradientenbasiertes Lernen durch
ein adjungiertes, differenzierbares Lösungsverfahren ermöglicht. Das ML-Modell wird harter
Bedingungen entworfen, um physikalische Symmetrie und Invarianz zu gewährleisten, und es
verwendet einen vollständigen, bayesianischen Lernansatz unter Verwendung von unvollständi-
gen, indirekten Daten wie mittlerer Geschwindigkeit und Druck. Das Schließungsmodell enthält
sowohl eine parametrische Komponente, die auf neuralen Netzwerk-basierten Tensorbasisfunk-
tionen beruht, als auch eine stochastische Komponente zur Berücksichtigung von aleatorischen
Modellunsicherheiten. Es wird gezeigt, dass das Modell auch in Bereichen mit erheblichen Mod-
ellfehlern genaue, probabilistische Vorhersagen liefert, wie am Beispiel der Strömungsrückführung
und -trennung beim rückwärts gerichteten Stufenproblem demonstriert wird.

Als Nächstes entwickeln wir ein ganzheitliches Optimierungsverfahren, das Betonmischungs-
planung und Struktursimulation kombiniert und aus empirischen Daten, semi-analytischen Mod-
ellen, physikbasierten Modellen und maschinellen Lerntechniken besteht. Dieses Verfahren um-
fasst eine Modell-Discovery-Methode, die einen bayesschen Erwartungs-Maximierungs Algorith-
mus verwendet und die Beziehungen zwischen Designvariablen und Modellparametern durch die
Nutzung von verrauschten und unvollständigen experimentellen Daten und Finite-Elemente-
Simulationen identifiziert. Das Verfahren wird auf das Design eines Betonbalkens angewendet,
um ein Gleichgewicht zwischen der Minimierung der Umweltbelastung und der Erfüllung der
Leistungskriterien zu erreichen.

Abschließend entwickeln wir einen neuartigen Optimierungsalgorithmus, der die Komplexität
der Optimierung von Black-Box-, stochastischen, hochdimensionalen und rechnerisch aufwändi-
gen physikbasierten Modellen berücksichtigt. Dieser Algorithmus integriert Techniken wie ef-
fiziente Gradientenabschätzung, Methoden mit unterschiedlicher Genauigkeit und adaptives
Monte-Carlo-Sampling, und ermöglicht so die Handhabung komplexer, physikbasierter Mod-
elle im Optimierungsprozess. Der Algorithmus wird an akademischen Benchmark-Problemen
validiert und erfolgreich auf das reale Fallbeispiel der Optimierung einer Windpark-Anordnung
angewendet. Wir zeigen, dass der entwickelte Algorithmus in hochdimensionalen Fällen den
Stand der Technik übertrifft.
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Not to be absolutely certain is, I think, one of
the essential things in rationality.

Am I an Atheist or an Agnostic?
Bertrand Russell

1
Introduction

1.1 Motivation and overview

Scientists and engineers have long been fascinated by the complexity of natural and physical
systems. The quest to understand and predict the behavior of these systems has been a driving
force behind many scientific discoveries and technological advancements. A fundamental goal
in any scientific and engineering discipline is the development of models that can accurately
simulate the behavior of natural or physical systems. By observing the flow of water, Albert
Einstein could formulate a simplified mental model of the river’s complex dynamics. Einstein’s
anecdotal observations of a river’s flow from a bridge illustrate the critical role of models in
understanding nature. This approach parallels Leonardo da Vinci’s detailed sketches of fluid
eddies [1], where he captured their intricate patterns and behaviors.

These models can be understood as abstractions of the relationships between input factors
or parameters (causes) and output variables (effects) of the system. The general framework of
such a model is given in Figure 1.1. A key characteristic of these models is that their structure
is deeply rooted in scientific understanding of the system, expressed through fundamental equa-
tions, domain-specific laws, rules or heuristics. In the rest of the thesis, these models are referred
to as physics-based models. For instance, the model might be available in the form of governing
equations given as an ordinary differential equation (ODE), partial differential equation (PDE),
or a consortium of different models that are linked together. These diverse forms of scientific
knowledge are essential components of models used in numerous application domains, including
fluid dynamics, epidemiology, hydrology, geoscience, ecology, material science, climate science,
and particle physics, to name a few. To elaborate the pipeline further, consider an example in
computational fluid dynamics (CFD). The inputs could be the geometry of the domain, the
boundary conditions, and the fluid properties. The model could be the Navier-Stokes equations
or the Reynolds-averaged Navier-Stokes equations (RANS) [2], solved using some numerical
method like the finite volume method (FVM) or the finite element method (FEM). The outputs
could be the velocity, pressure, and temperature fields. In material science, the inputs could be
the composition of the material, the processing conditions, and the microstructure, while the
outputs could be the mechanical, thermal, and chemical properties.

The pipeline given in Figure 1.1 is essential for several downstream scientific tasks. These
tasks include model discovery, inference, optimization, uncertainty quantification, and reduced
order modeling (ROM), to name a few. These tasks are essential for scientific discovery, en-
gineering design, and policy-making. More details about these scientific tasks are provided in
Section 2.2.

Scientific and engineering fields, traditionally driven by advancements in domain-specific
theories, are increasingly keen to leverage machine learning (ML) methods to aid the tasks dis-
cussed above and accelerate scientific breakthroughs [3–8]. Machine learning essentially involves
the development of algorithms that can learn patterns and relationships between the input and

3



Chapter 1. Introduction

Inputs/
parameters

Model
(e.g., PDEs)

Output/
Predictions

Figure 1.1: A simplified framework for modeling physical systems.

output. Most machine learning algorithms rely on very large datasets that are easy to obtain
or readily available (big data). While this is, in general, a good strategy for applications where
the aforementioned vast amount of data is available (e.g., computer vision, natural language
processing) and has been shown to lead to very promising results [9–11], these ”black-box”
machine learning models have several limitations when applied to scientific problems. First,
cutting-edge black-box ML methods, such as deep learning, require extensive supervision with
large labeled datasets, which are rarely available in scientific contexts. Benchmark ML datasets
like ImageNet contain millions of labeled images [11], a scale not feasible in most scientific
problems. Second, real-world scientific data often span only a narrow segment of the possible
data distributions. Consequently, even if a black-box ML model performs well on labeled data
during cross-validation, it may struggle with out-of-sample data, leading to poor generalization.
Third, black-box models rely solely on data for supervision and are not inherently linked to
scientific theories. This detachment can result in solutions that contradict established scientific
knowledge, rendering them scientifically invalid. Finally, due to their design, black-box models
lack the capacity to uncover novel scientific insights from data. They do not contribute to the
broader goal of advancing our understanding of scientific systems through the discovery of new
knowledge.

Infusing domain knowledge in ML To address the limitations posed by the black-box
ML methods in the scientific domain, there is a growing interest in the scientific community
to integrate scientific knowledge into the ML frameworks. This shift is motivated by several
benefits. Unlike traditional ML application areas, such as computer vision and natural language
processing, which typically operate in a big data setting, scientific applications of ML usually fall
under the small data regime, as the data is often obtained through costly numerical simulations
or experiments. The data thus obtained are usually scarce, noisy or incomplete. The necessary
information for model inference/learning can be supplemented by the knowledge of governing
equations and underlying physical principles in the form of inductive bias. Incorporating phys-
ical knowledge and constraints directly can thus reduce the reliance on the training data. This
approach of combining scientific knowledge and machine learning techniques is an emerging field
known by several names, e.g., Scientific Machine Learning (SciML) [5, 6, 12], Physics Informed
Machine Learning [13], Knowledge Guided Machine Learning [14]. In this thesis, we will use
SciML to refer to the approach. As shown in Figure 1.2, the SciML approach aims to combine
the strengths of data-driven (e.g., black-box ML) and physics-based approaches (e.g., FEM,
finite difference method (FDM)) to develop models that are interpretable, generalizable, data
parsimonious, and robust. SciML research is being carried out across a diverse range of disci-
plines and scientific objectives, for example in climate science [15–17], fluid dynamics [4,18–20],
biology [21] and particle physics [22], and expectations are rising for SciML to accelerate sci-
entific discovery and address humanity’s biggest challenges [3, 5–7]. The SciML strategies can
be adopted based on the amount of scientific knowledge available. For example, in cases where
the governing phenomenological equations are entirely known, it would be directly possible,
given enough computational power, to simulate and reproduce the system entirely. However, in
several cases, even though the governing equations are known, the high-level global dynamics
are still not well understood. Consider the case of turbulent flow described by the Navier-Stokes
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1.1. Motivation and overview

equations. The Navier-Stokes equations are well known, but the turbulent flow is still not well
understood and is a major unsolved problem [23]. The turbulent flow physics depicts multiscale
and highly non-linear behavior. This makes it almost impossible to simulate/measure highly
chaotic small scales, even though their impact on the physical phenomenon is critical. These
small scales are more prevalent when the advection forces become increasingly dominant over
diffusion, i.e., the Reynolds number increases (the flow becomes more chaotic). On the other
hand, the mean-flow properties or the largest, coherent scales can still be simulated and ob-
served, but we do not have a consistent theory to prove fundamental flow properties based on
these, nor describe the detailed interactions among turbulent structures and phenomena they
imply. This problem is colloquially called the closure problem [24], which is omnipresent when
simulating multiscale systems. Addressing this problem in fluid turbulence is one of the ma-
jor goals of this thesis. In the cases where partial information is available, or where the data
is scarce, noisy, or incomplete, the physical knowledge can be used to regularize the learning
process and improve the model performance. In the cases where governing equations are not
known, the abundance of data can be used to infer the underlying physical laws from the data,
e.g., social sciences and neuroscience.

Infusing inductive biases into machine learning methods, especially deep learning frame-
works, is a challenging task. A popular approach to employing inductive bias is using physical
laws as a regularization term, serving as a soft constraint to augment the loss function. The loss
function is essentially the objective function that the ML algorithm seeks to optimize during
the training efforts. A well-known example of adding inductive bias is Physics Informed Neural
Networks (PINNs) [25], which penalizes deviations from governing laws as a residual term in
model optimization. Another example includes approaches that learn an entire family of solu-
tions by incorporating certain inputs of the PDE as inputs to the network, e.g., Deep Operator
Networks (DeepONets) [26] and Fourier Network Operators (FNO) [27]. These approaches have
been extensively utilized across scientific computation applications like fluid mechanics, mate-
rial science, etc. However, these methods might allow the physics constraints to be violated to
a certain extent. To address this, there are approaches that modify the design of ML models to
treat these constraints as hard constraints. These often involve altering the neural network ar-
chitecture to conform to invariances and symmetries in the predictions. For example, revisiting
the fluid turbulence example, [28] proposed rotationally invariant tensor basis neural networks
for estimating the Reynolds stress anisotropy tensor in turbulent flows. They ensured the neural
network’s predictions remained the same when the input axes of the flow were rotated by noting
that the anisotropy tensor lies on a basis of isotropic tensors and using the neural network to
predict the coefficients of the tensor in this basis. This approach provided more accurate flow
predictions than a generic neural network architecture, leading to wide adoption [29,30]. Hybrid
approaches are also gaining popularity [14, 31]. They aim to integrate both physics-based and
ML models tightly in a hybrid fashion to achieve superior predictive performance compared to
models relying solely on ML or scientific methods.

Probabilistic Modeling The setting we are interested in involves complex physical systems
that are partially observed and whose behavior could be hard to model or totally unknown.
The inherent uncertainty associated with this setting necessitates a departure from the clas-
sical deterministic realm of modeling and scientific computation, and, consequently, our main
building blocks can no longer be crisp deterministic numbers and governing laws, but instead
we must operate with probabilistic models [32]. The adoption of the probabilistic approach also
addresses a common challenge of ML application in the scientific domain. This challenge is the
need to account for different types of uncertainties [33], such as aleatoric (irreducible, stems
from the inherent system stochasticity) and epistemic (reducible, stems from incomplete knowl-
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Figure 1.2: A pictorial representation of the trade-off between data-driven (black-box) and physics-
based approaches. The scientific machine learning (SciML) approach aims to combine the strengths
of both approaches to develop models that are interpretable, generalizable, data parsimonious and
robust. Note: The area of each block carries no quantitative meaning.

edge) uncertainties, as the scientific domains typically demand high accuracy and reliability in
predictions. This amalgamation of the probabilistic approach and SciML can serve as a powerful
tool to address several scientific tasks like inference, model discovery etc., across scientific and
engineering disciplines [8,34,35] (summarily illustrated in Figure 1.3), which we address in this
work.

Differentiable Physics When tasks involving learning, inference, or optimization require
the use of physics-based models, obtaining the gradient of the loss function with respect to the
model parameters is a significant challenge [36]. The gradients are essential in most cases be-
cause real-world physics-based models typically have high-dimensional parameter spaces. In high
dimensions, gradient-based methods are generally preferred over gradient-free methods [37]. Fur-
thermore, when uncertainty is involved in inference or optimization, the physics-based models
need to be queried an even greater number of times (e.g., sampling based expectation compu-
tation), thereby increasing the necessity for gradients. The challenges are prevalent in existing
complex legacy codes that often mature over years and do not incorporate the aforementioned
gradients. Recently, there has been a surge in efforts to make physics-based models differen-
tiable, a concept known as differentiable physics [36, 38–40]. This is a key component in the
hybrid approaches of scientific machine learning (SciML) and has found applications across
engineering and computational physics [22, 31, 39, 41–44]. Differentiability is most commonly
achieved through methods such as: a) the adjoint method [45], b) rewriting the physics-based
model in a differentiable programming language like PyTorch, JAX, or TensorFlow to obtain
gradients via automatic differentiation [46], c) training a differentiable surrogate model, or d) fi-
nite differences. Each of these methods has its benefits and shortcomings, which will be explored
in detail in this thesis.
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1.2. Contributions

Challenges addressed This thesis aims to combine the strengths of Scientific Machine Learn-
ing, probabilistic modeling, and differentiable physics to tackle challenging applications in com-
putational physics and engineering, as illustrated in Figure 1.3. Our research is driven by the
following challenges and questions:

(i) Closure modeling: Closure problems [24] arise when a physical model that describes certain
quantities of interest is created, which depends on quantities that are not of prime interest
but whose effect cannot be neglected. In this work, we are particularly interested in closure
problem in turbulent fluid flow. In particular, we want to answer: What kind of data should
be used for learning, directly or indirectly (e.g., observations are implicitly dependent on
a forward solver) observed? What to do in the limit of small data? How to parametrize
the closure model? Can we use some prior physical knowledge to aid the learning process?
How to best quantify the inaccuracies of the model?

(ii) Physics informed learning: How can we efficiently combine the paradigms of Machine
Learning and Physics-based models to develop hybrid models that can leverage the strengths
of both approaches? In the limit of small data, how can we best use the available scientific
knowledge to regularize the learning process, make it data parsimonious and improve the
model performance?

(iii) Probabilistic modeling: How can we account for the noise in data or model inaccuracies in
the learning process in an efficient fashion, and how can we quantify the uncertainties in
the predictions? As and when more data becomes available, how can we leverage the data
in a Bayesian setting to improve the reliability and accuracy of the predictions? Inference
in a probabilistic setting can be crippled by computational challenges, especially when
physics-based models are involved. What can we do in these scenarios? Do we need a
differentiable solver or do we need to make a smart selection of inference algorithms?

(iv) Differentiable physics: How can we incorporate physics-based models in ML models in
a differentiable manner, so that the models can be trained end-to-end using gradient-
based optimization methods? How can we optimize high-dimensional, complex, stochastic
and expensive to evaluate systems under uncertainty, where the objective function is a
black-box function? Can we bypass this need for differentiability?

(v) Scaling to real-world problems: What are the challenges associated with scaling learn-
ing/inference/optimization strategies to complex real-world cases, and how best to address
them? Can we find some lower-dimensional latent embeddings?

1.2 Contributions

This section presents the author’s contributions aimed at addressing the challenges posed in
the previous section by proposing novel strategies for uncertainty quantification, scientific ma-
chine learning, and optimization for computational physics and engineering applications. The
contributions are presented in the form of the author’s publications, and a broad theoretical
background with an up-to-date literature survey of the dynamic field of SciML and probabilistic
modeling presented in Chapter 2.

The following publications have been published (or submitted/accepted for publication)
prior to the submission of this thesis:
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Figure 1.3: A very high-level graphical overview of the aim of this thesis. The goal is to pro-
pose novel strategies that combine machine learning with scientific understanding (e.g., governing
equations, symmetries, invariances etc.) to develop scientific machine learning models aided by dif-
ferentiable physics, which are then tightly coupled with probabilistic approaches (combination of
strategies given in blue). These strategies are then used in addressing challenging computational
physics and engineering applications.

(i) Atul Agrawal and Phaedon-Stelios Koutsourelakis. A probabilistic, data-driven closure
model for RANS simulations with aleatoric, model uncertainty. Journal of Computational
Physics, page 112982, 2024 (Paper A [47])

(ii) Leon Riccius, Atul Agrawal, and Phaedon-Stelios Koutsourelakis. Physics-informed tensor
basis neural network for turbulence closure modeling. Workshop on Machine Learning and
the Physical Sciences (NeurIPS 2023), 2023 (Paper B [48])

(iii) Atul Agrawal, Erik Tamsen, Phaedon-Stelios Koutsourelakis, and Joerg F Unger. From
concrete mixture to structural design–a holistic optimization procedure in the presence of
uncertainties. Data-Centric Engineering, pages 1–32, 2024 (Paper C [49])

(iv) Atul Agrawal, Kislaya Ravi, Phaedon-Stelios Koutsourelakis, and Hans-Joachim Bun-
gartz. Multi-fidelity constrained optimization for stochastic black-box simulators. Work-
shop on Machine Learning and the Physical Sciences (NeurIPS 2023), 2023 (Paper D [50])

(v) Atul Agrawal, Kislaya Ravi, Phaedon-Stelios Koutsourelakis, and Hans-Joachim Bun-
gartz. Stochastic black-box optimization using multi-fidelity score function estimator.
Machine Learning: Science and Technology, 6(1):015024, jan 2025 (Paper E [51])

To position our contributions in the broad skeleton of SciML, the publications are categorized
based on the SciML problems, SciML methodologies employed and application domain of focus.
This categorization is presented in the table 1.1. To this end and in light of the categorization,
below we provide a brief summary of the major accomplishments in this cumulative thesis.

We approach the turbulence closure problem in Paper A [47] and Paper B [48]. We realized
addressing the closure problem required overlap of all the three broad strategies i.e., SciML,
probabilistic modeling, and differentiable physics (as discussed in Figure 1.3). Closure modeling
requires mapping the effect of small scales on the large scales which involves non-trivial nonlinear
approximations, for which the hybrid approach of SciML serves to be a very promising candidate
[52]. Also, in the context of closure modeling, latent(unobserved) variables are to be inferred
and the model is learned using potentially limited/sparse, noisy or indirectly observed data,
suggesting a probabilistic approach. Furthermore, owing to the high dimensional parametric
space in multiscale problems, a gradient-based learning scheme is often desired, suggesting the
need for differentiable physics. In particular, Paper A [47] attempts to touch on all the challenges
posed in Section 1.1 in the context of turbulence closure modeling, and has the following main
contributions:
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1.2. Contributions

Chapter SciML problem
(What?)

Methodology
(How?)

Application

Paper A [47] Closure modeling
(model discovery),
Uncertainty Quantifica-
tion, Inverse problem

Hybrid approach,
Physics guided ML
architecture, differen-
tiable physics

Turbulence closure
problem

Paper B [48] Closure modeling
(model discovery),
Inverse problem

Physics guided ML ar-
chitecture

Turbulence closure
problem

Paper C [49] Uncertainty Quantifica-
tion, Inverse problem,
model discovery, Opti-
mization

Hybrid approach Design optimization
of concrete mixture
and concrete struc-
ture

Paper D [50] Optimization Differentiable physics Academic examples

Paper E [51] Optimization Differentiable physics Academic examples,
windfarm layout op-
timization

Table 1.1: Categorization of the contributions by the author in this work based on the SciML
problems, methodologies employed, and application domain of focus. Further details and other
related works on the SciML problems, and methodologies are given in Section 2.2 and the respective
publication by the author.

• We propose a probabilistic, data-driven closure model for Reynolds-Averaged Navier-
Stokes simulations.

• Learning is performed in a Bayesian setting, with indirect high-fidelity data of mean
velocity/pressure as the training data.

• It follows the hybrid approach of SciML, i.e., it combines the RANS solver and ML model
in a tightly coupled fashion. To enable end-to-end gradient-based learning, it makes use
of an adjoint-based differentiable RANS solver.

• The ML model is designed in such a way that physical constraints, such as symmetry and
invariance, are treated as hard constraints.

• It infers the statistics of a reduced latent variable that can automatically identify regions
where closure is incorrect and provides stochastic corrections.

• The training is data parsimonious and the probabilistic predictive estimates envelop the
reference values obtained from higher-fidelity simulations.

Paper B [48] address the challenges (i) and (ii) (as given in Section 1.1) and has the following
main contributions:

• This work introduces Physics Informed Tensor Basis Neural Network (PI-TBNN), which
extends the TBNN framework with an extensive feature set and an inductive bias in
the form of a physics-informed addition to the loss function (soft constraint) to improve
anisotropy tensor predictions.

• Learning is performed with sparse observations of the Reynolds stress tensor.
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Chapter 1. Introduction

• The ML model is designed in such a way that physical constraints, such as symmetry and
invariance, are treated as hard constraints.

• The proposed machine learning method significantly enhances anisotropy tensor predic-
tions in unseen challenging cases involving surface curvature and flow separation.

In Paper C [49] we present a methodological paper that attempts to synthesize physics-based
models, empirical relations and experimental data which are generally employed in a disjointed
manner in the design of structural systems made of concrete. The paper attempts to address the
challenges (ii), (iii), (iv) and (v) (as given Section 1.1). It has the following main contributions:

• The introduction of a systematic design framework for precast concrete that promotes
sustainability.

• The development of a holistic optimization framework that combines mixture design and
structural simulation, consisting of semi-analytical models, finite-element solvers and ma-
chine learning models.

• Amodel discovery method to learn missing links between concrete mixture design variables
and parameters appearing in physics-based models by making use of noisy and incomplete,
experimental data and finite element simulations.

• An optimization framework that can handle black-box solvers, non-linear constraints as
well as parametric uncertainties in the workflow.

• Application in the mixture design of a concrete beam with the objective being the Global
Warming Potential while satisfying a variety of performance constraints.

Paper D [50] and Paper E [51] propose efficient strategies to perform constraint optimization
when a stochastic black-box physics-based model is involved. The Paper D [50] presents a
precursory work, which is then expanded in Paper E [51]. The Paper D [50] addresses challenge
(iv) (as given in Section 1.1) and has the following main contributions:

• We propose an algorithm for stochastic constraint optimization with objectives and con-
straints involving black-box physics-based models.

• The algorithm relies on efficient gradient estimation with variance reduction strategies.

• To alleviate the problem of multiple evaluations of the expensive physics-based models thus
leading to a trade-off between computational cost and accuracy, multi-fidelity strategies
are proposed.

• The proposed method performs better than standard black-box optimization methods on
average, demonstrating improved robustness and quality of the optimum when tested on
academic examples.

Paper E [51] inherits the contributions from the Paper D [50], addresses challenges (iv) and
(v) and extends it by providing the following main contributions:

• Achieves well-behaved convergence properties and better quality of the optimum by using
natural gradients in the gradient estimation process.

• Utilizes smartly chosen heuristics to efficiently handle multi-modalities, as demonstrated
using academic examples.
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1.3. Scope of this work

• Provides a detailed mathematical analysis of method convergence.

• Implements an adaptive sample size for gradient estimation, reducing the number of solver
calls needed to arrive at the optimum in numerical tests.

• Includes an expanded academic example set to test the method against standard baselines
for the algorithm’s ability to handle different types of optimization challenges like multi-
modality, constraints, behavior in valleys, and dimension scalability.

• Demonstrates improved performance in a real-world complex case of wind farm layout
optimization, outperforming the standard baseline method in terms of robustness and the
quality of the optimum.

A summary of the publications is given in Chapter 3 along with the author’s individual
contributions. The full text of the publications is attached in the respective appendix chapters
in Part III.

1.3 Scope of this work

This thesis encapsulates aspects from applied mathematics, uncertainty quantification, machine
learning, computational physics, scientific computing and optimization. We tried to maintain a
balance between theoretical rigor and ease of explanation, and breadth and depth of the topics
being discussed. In terms of putting concepts in perspective, we provided a wide overview of
the concepts being discussed, while directing the reader to the relevant literature for further
reading. For reasons of brevity, this thesis does not give a detailed introduction to the scien-
tific and engineering applications being addressed. For instance, the turbulence phenomenon,
fluid dynamics and the numerical strategies to solve the corresponding governing equations like
the finite volume method, finite element method, etc. are not discussed in detail. All of this
is well-documented in the literature. Similarly, computational challenges involved in concrete
technology are also well studied. Our aim is mostly to discuss the novel strategies proposed in
this work, how they address the challenges posed when physics-based models are coupled with
machine learning frameworks, and the promise they bring in the context of the broader scientific
machine learning, uncertainty quantification and optimization literature.

1.4 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 provides the necessary back-
ground relevant to this thesis. In particular, we commence with probabilistic modeling and
uncertainty quantification, covering broad areas such as uncertainty propagation and Bayesian
inference. Then, we discuss Scientific Machine Learning (SciML), the problems addressed by
SciML, major categorizations of SciML, and related topics like differentiable physics and closure
modeling. In Chapter 3, we summarize the publications presented as part of this thesis along
with the author’s contributions. The thesis concludes in Chapter 4, where we summarize the
findings from the aforementioned publications and provide an outlook for future research. The
appendix chapters A, B, C, D and E in part III provides the full text of the publications.
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If you wish to make an apple pie from scratch,
you must first invent the universe.

Carl Sagan

2
Background

In this chapter, we overview the fundamental concepts and methodologies used in this work and
provide relevant literature suggestions for further reading. We start with a brief introduction
to the Bayesian probability theory and Uncertainty Quantification in Section 2.1. The section
motivates the need for probabilistic modeling, discusses the types of uncertainties, and briefly
discusses uncertainty propagation and Bayesian inference. In Bayesian inference, we discuss
the prior, likelihood, and posterior, and the role of the Bayes theorem in updating the prior
knowledge with the observed data. We also discuss the Markov Chain Monte Carlo (MCMC)
methods and the variational inference methods used in Bayesian inference. Then in Section 2.2,
we discuss Scientific Machine Learning (SciML) and the promise it offers. More specifically, we
discuss the major scientific tasks addressed by SciML like inverse problems, model discovery,
surrogate modeling, reduced order modeling, optimization etc. We provide a brief overview
of Machine Learning (ML) and methods being developed in SciML like the Physics-Informed
Neural Networks (PINNs), Deep Operator Networks (DeepONets), hybrid models etc. We also
discuss closely related topics like differentiable physics and closure modeling. We remark that
in the literature on uncertainty quantification, machine learning, and physics-informed machine
learning different notations are commonly used. In this work, we use a unified notation that
should be clear from the context, while trying to keep standard notations whenever possible.

2.1 Bayesian probability theory and Uncertainty Quantification

Probabilistic reasoning is essential not only in scenarios where stochastic phenomena are being
studied but also in any context where reasoning must be conducted with finite and incomplete
information. This need arises because, in many real-world situations, we lack full knowledge
or face inherent randomness, requiring us to make informed decisions or predictions based on
available data. As quoted by [32], probabilistic methods are the “logic of science”. It provides
a structured way to quantify uncertainty, enabling more reliable and nuanced decision-making
across various fields, from science and engineering to economics and social sciences. When
probability theory is used in the context of plausible reasoning (or degree of belief), it is referred
to as Bayesian probability theory [53]. The Bayesian probability theory is a mathematical
framework for representing uncertain beliefs and updating these beliefs in the light of new
evidence. Another comprehensive term employed in this thesis is the Uncertainty Quantification
(UQ), which roughly put by [54] is “the coming together of probability theory and statistical
practice with ‘the real world’.” To put it differently, “A more precise definition of UQ is the end-
to-end study of the reliability of scientific inferences” [55]. UQ is in general a vast field with ever
changing landscape, more so nowadays with the advent of ML and AI. Quoting Sullivan [54],
“UQ is much more about problems, methods and ‘good enough for the job’. There are some
very elegant approaches within UQ, but as yet no single, general, over-arching theory of UQ.”
In light of the insight, the present section provides a brief overview of the methods relevant only
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Chapter 2. Background

to this thesis. We will limit ourselves to two broad objectives. First, the forward propagation
of uncertainty (discussed in Section 2.1.3). Second, the inverse problem of estimating the input
parameters θ given the corrupted or noisy output ŷ (discussed in Section 2.1.4). These two
broad objectives overlap and cover other problems also. Consider for example, one might have
to solve an inverse problem to produce or improve some model parameters, and then use those
parameters to propagate some other uncertainties forward, and hence produce a prediction
that can be used for decision support in some certification problem. We do not attempt to
discuss basic concepts of probability theory and defer the reader to [32, 54, 56–58] instead. For
probabilistic machine learning, the reader is referred to [59–61].

2.1.1 Notational conventions

In this work, we deal with complex, non-linear and multiscale systems like turbulent flows for
example. These problems are typically governed by a model f representing e.g., a complex and
nonlinear ODE/PDE system derived from first principles. The analytical solution to this model
is very rarely available, hence numerical approximation is performed by employing discretization
strategies, which is then solved numerically. Thus such models implicitly enter the inference/op-
timization. Let us say the discretization operators describing the model f are given by fh, for
the sake of brevity we drop the subscript in the subsequent discussions. The model f depends on
fixed deterministic inputs x like time, spatial coordinates, initial, boundary condition etc., and
stochastic inputs θ. Since x is fixed, we drop this notation and denote the model as f ≡ f(θ),
with the outputs given by y in space Y, so we have y = f(θ). We further assume that the
model f is a bounded and measurable function w.r.t. the Lebesgue measure. The input random
vector θ is continuous, characterized by a propability density function (PDF) p(θ) defined in an
appropriate probability space with support Θ, i.e., θ ∈ Θ. Also θ = (θ1, . . . , θdθ) ⊂ Rdθ , where
dθ is referred to as the stochastic dimention. Additionally, the components of θ are assumed to
have finite expectations and variances.

2.1.2 Sources and Types of Uncertanity

Determining how much uncertainty there is in a model’s output, and identifying where this
uncertainty comes from, is crucial in many areas of science and engineering, particularly when
it comes to making decisions in the real world. For instance, in aircraft design, understanding the
level of uncertainty in aerodynamic performance predictions under varying input scenarios (e.g.,
wind conditions), helps engineers mitigate risks and design more efficient, safer aircraft. The
discipline of uncertainty quantification has evolved over many years, encompassing a wealth
of research from numerous scientific fields. This body of work spans statistical and machine
learning methodologies, including Bayesian modeling and variational inference. We typically
divide sources of predictive uncertainty into two groups, the first is aleatoric (or irreducible),
which is the inherent uncertainty of the system. It says the model’s behavior is truly random
and is characterized by the fact that no more information about the model and its parameters
can reduce this uncertainty. Examples of such uncertainty are the chaotic behavior of some
nonlinear dynamic systems and the turbulent behavior of fluids. The second is epistemic (or
reducible), which stems from incomplete knowledge (discussed more in the paragraph below).
While both categories are integral to the study of scientific systems, the intricacies of uncertainty
quantification in Scientific Machine Learning (SciML) are particularly nuanced. In SciML, the
challenge is heightened as uncertainties can emerge and multiply due to the combination of data
and scientific theory, potentially leading to compounded errors. Next, we will delve into the two
primary sources of uncertainty within SciML contexts.
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2.1. Bayesian probability theory and Uncertainty Quantification

Model Uncertanity In engineering and physical systems, one typically has a model to de-
scribe some system of interest, then epistemic uncertainty is often further subdivided into model
form and parametric uncertainty. In model form uncertainty, one has significant doubts that
the model is even structurally correct. In parametric uncertainty, one believes that the form of
the model reflects reality well, but one is uncertain about the correct values to use for particu-
lar parameters in the model. For instance, both these types of uncertainties are very common
whenever a closure model is used in a simulation [24,52]. In this case, the closure model is often
a simplified version of the true physics (model form uncertainty), and the parameters in the
closure model are often not known exactly (parametric uncertainty). This is a very active line of
research in the field of turbulence closure modeling [4, 20, 24], where we also contribute (Paper
A [47]).

Model form and parametric uncertainty can also appear in ML models. For example, given a
finite set of data samples, several choices of ML hypotheses (model structures and parameters)
can fit the data, resulting in model form uncertainty. However, not every parameter selection
in these ML models may be capable of producing predictions that align with scientific knowl-
edge, even if they perfectly match the available data. Excluding such scientifically incompatible
solutions from the pool of potential hypotheses could potentially aid in diminishing model uncer-
tainty. Therefore, in SciML problems, scientific knowledge can serve as an additional supervisory
mechanism to decrease the uncertainty in model predictions caused by the choice of ML model
parameters that contradict established knowledge.

Data Uncertainty This deals with the measurement noise due to the errors in sensor pre-
cision (aleatoric uncertainty). This is intrinsic to the process of collecting observations. For
instance, in the context of fluid dynamics, the velocity measurements obtained from a Particle
Image Velocimetry (PIV) system are subject to measurement noise. This noise can be due to
the resolution of the camera, the quality of the laser sheet, or the seeding particles. In addition
to measurement noise, data uncertainty can also arise from the sparsity of the data. In many
scientific applications, the data is often sparse, and the model must make predictions in regions
where no data is available. This is a common challenge in fluid dynamics, where the data is
often expensive to collect and is limited to a few locations. In such cases, the model must make
predictions in regions where no data is available.

2.1.3 Uncertainty Propagation: an overview

Following the notational convention introduced in Section 2.1.1, assuming f is well posed1, the
task of uncertainty propagation amounts to quantifying the effect of input θ uncertainty on
the output y of the forward model, i.e., determining the induced probability distribution p(y)
on the output space Y. Uncertainty is thus propagated through f in the direction input →
model → output. This task is typically complicated by p(θ) being a complicated distribution
(e.g., multimodel distribution, heavy tail), or f being non-linear, expensive to evaluate, and
implicitly defined (e.g., solving a PDE to get the solution field). Because p(y) can be a very
high-dimensional object, it is often more practical to identify some specific outputs of interest
obtained by the action of a functional on y. For brevity, we refrain from introducing a new
notation and assume that from the context it should be clear that y can represent both the
output of a function f and the output of a functional (then f would be a composite function).
For example, in a fluid flow problem, the input can be a stochastic boundary condition, the
model can be a fluid flow solver, the outputs can be pressure and fluid velocity and the output

1The forward mapping is assumed to be well-posed i.e., a solution exists, it is unique and the solution depends
continuously on the data.
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Chapter 2. Background

of interest can be the drag force on the body, i.e., the integrated surface pressure in direction
of the fluid flow.

Uncertain
parameter
θ ∼ p(θ)

Forward model
f(·)

Output
y := f(θ) ∼ p(y)

Quantity
of interest
(e.g., E[y])

Figure 2.1: Forward uncertainty propagation workflow. We sample input from its prior distribution
p(θ), solve the forward model f (can be an ODE, PDE solved with Finite element methods for
example) to obtain the output of interest y for each sample. The propagation of the sample from
the input distribution through the model to the output of interests y gives rise to the probability
distribution of y given by p(y). Finally, the quantities of interest are computed from the ensemble
of the forward model calls.

For the forward uncertainty propagation, it is common to compute robustness measures [62]
such as expectation E[·] and variance Var[·] or standard deviation Std[·]. given by:

Ep(θ)[y] :=

∫
Θ
y(θ)p(θ) dθ, (2.1)

Var[y] := E[y2]− (E[y])2, Std[y] :=
√

Var[y]. (2.2)

Such quantities are often called quantities of interest (QoI). For example, QoI can include
expected rainfall amounts for a specified area, expected temperature increase over a future time
period, or bounds on void fraction distributions that guarantee specified performance levels
and safety margins in a nuclear reactor. The workflow of the forward uncertainty propagation
is shown in Figure 2.1. Note that in this thesis we might drop the subscript from Ep(θ)[·] for
brevity, without the loss of meaning.

Commonly, the uncertainty propagation techniques are broadly the following categories. a)
Direct evaluation for linearly parametrized models, for example in image processing and X-
ray tomography. The QoIs like expectation and variance can be computed explicitly in closed
form in this case. b) Sampling methods. These methods, including Monte Carlo techniques,
are commonly employed to propagate uncertainties in nonlinear problems. (discussed more in
next to subsequent paragraphs). c) Perturbation method [54], Taylor expansions of the model
response or QoI, truncated to a certain degree, are evaluated at the mean of the parameters.
To simplify the implementation, expansions are usually limited to the first or second order.
However, this can restrict the accuracy of the technique in scenarios where the relationship
between inputs and responses is highly nonlinear. and d) Spectral representations, the uncertain
input is represented in a manner that facilitates the evaluation of moments and distributions
for QoI, usually by stochastic Galerkin and collocation methods [63]. Spectral expansions are
employed to exploit the smoothness associated with the high-dimensional parametric spaces,
to improve the convergence of techniques used to specify realizations used to specify QoI (e.g.,
Karhunen-Loéve expansions [63], Polynomial Chaos [64]). For more details, interested readers
are referred to Chapter 9, 10 [56] and Chapter 12, 13 [54].

Intrusive and Non-Intrusive Based on the type of physical model involved, the uncertainty
propagation methodologies can also be categorized as intrusive and non-intrusive [54]. Intru-
sive techniques necessitate modifications to the model’s core operators, subsequently requiring
alterations to the simulation code itself. Many times the solution to simulations is slow and
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2.1. Bayesian probability theory and Uncertainty Quantification

expensive to obtain, and the deterministic solution method cannot be modified. Many com-
plex simulation codes or so-called legacy codes are not amenable to such intrusive methods
of UQ. Consequently, intrusive UQ methods are not considered within our scope. Conversely,
non-intrusive approaches, such as Monte Carlo (MC) sampling or collocation-based strategies,
rely on sets of independent, high-fidelity evaluations that treat the underlying models as black
boxes. Our investigation is strictly focused on non-intrusive algorithms for propagating uncer-
tainty. Henceforth, the term ’ forward uncertainty propagation’ in this document will exclusively
denote non-intrusive methods.

Monte Carlo and Quasi Monte Carlo methods This thesis mostly deals with non-linear
problems with correlated parameters or sufficiently large parameter dimensions, which makes
the Monte Carlo (MC) methods a natural choice for uncertainty propagation [56,65]. Essentially
the MC method provides approximation to the integral given by Eq. (2.1) in the form of sample-
based integration. Its accuracy does not depend on the dimension of the integration domain
(dim(θ)), but rather on the variance of the output and the number of samples. The other
two forms of the integral approximation are classical grid-based quadrature in which nodes
of the parameter space are determined in a deterministic fashion (e.g., univariate quadrature,
Gaussian quadrature etc.) and quasi-Monte Carlo (QMC) methods [66] (discussed later in more
detail). The grid-based quadrature suffers from the curse of dimensionality, i.e., they require
exponentially many evaluations of the integrand as a function of the dimension of the integration
domain. Remarkably, however, the curse of dimensionality can be entirely circumvented by
resorting to sampling based strategies like MC or QMC method — provided, of course, that it
is possible to draw samples from the measure w.r.t. which the integrand is to be integrated.

The MC method works by drawing samples from the input parameter distribution and
evaluating the model at each sample. The distribution of the output is then estimated by
computing the empirical distribution of the model evaluations. To approximate the integral
given in Eq. (2.1) by the vanilla Monte Carlo method, the algorithm is given as:

• sample θ(i) ∼ p(θ) for i = 1, 2, . . . , S,

• unbiased estimate of the integral is given by I ≈ IS = 1
S

∑S
i=1 y(θ

(i)),

which converges by the law of large numbers for S → ∞ to IS → I, where S is the number of
samples drawn from the input distribution. The sampling based methods are intuitive, easy to
implement and they are non-intrusive. As an additional advantage, their efficiency is indepen-
dent of the number of parameters since one can simultaneously sample from each parameter
distribution. The disadvantage of sampling methods is that they typically exhibit relatively
slow convergence rates, and thus a large number of physical model realizations are required
to construct a reasonable statistical ensemble. The challenge is exacerbated when the model is
computationally expensive to evaluate as in engineering and physics applications dealt with in
the present thesis. For example, MC methods have an O(S−1/2) convergence rate. In contrast,
QMC methods have a convergence rate close to O(S−1). To be precise, the convergence rate of

the QMC is O
(
(logS)dθ

S

)
. This elucidates that for the convergence rate of the QMC to be smaller

than the MC, the parametric dimension dθ needs to be small and the number of samples S needs
to be large. The QMC methods are ’approximately random’ in the sense that they are deter-
ministic, but they are designed to mimic the properties of random numbers. The QMC methods
are based on the idea of low-discrepancy sequences [54], which are deterministic sequences that
have better coverage properties than random sequences. In practice, it is almost always possible
to select an appropriate low-discrepancy sequence, to ensure that QMC performs at least as well
as MC (and often much better) [67]. Another class of algorithms that improves upon the vanilla
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MC estimator is the Multi-Fidelity Monte Carlo (MFMC) [68]. MFMC exploits the fact that in
most problems we have available surrogate or low-fidelity models which approximate the given
high-fidelity model, thus reducing the variance of standard MC sampling via an expression that
depends only on the correlation coefficients and computational costs of the underlying hierarchy
of models. For a detailed treatment of MFMC, the reader is referred to [68].

In summary, we motivated forward uncertainty propagation and discussed methods in brief.
For an extended and more in-depth discussion, the interested reader is referred to [54,56,63,66,
69]. In the next section, we will discuss the Bayesian inverse problem of estimating the input
parameters given the output data.

2.1.4 Bayesian Inference

This section provides an introduction at a high level to the backward propagation of uncertainty
in the solution of inverse problem. More specifically, we will provide a Bayesian probabilistic
perspective to the inverse problems involving parameter estimation and regression.

Following the notational convention introduced in Section 2.1.1, the task of Bayesian infer-
ence is to estimate the input parameters θ of the model f for fixed inputs given some observations
of the output ŷ which may be corrupted or unreliable in some way. In the Bayesian Inference
context, let Y ∈ RN be a separable Banach space that represents the space of observations.
Since the parameter and data spaces are finite-dimensional, this configuration enables the use
of densities with respect to the Lebesgue measure. Very often we do not actually observe f(θ),
but some noisy corrupted version of it, given by ŷ ∈ Y . The noise is assumed to be additive
and characterized by a non-degenerate Gaussian distribution with mean zero and covariance
matrix Σ, with Σ being symmetric and positive definite. The task for the inverse problem thus
amounts to identifying the parameter θ for the equation

ŷ = f(θ) + η, η ∼ N (0,Σ). (2.3)

The above is typically ill-posed2 [70], due to, a) the presence of noise in the data with adversely
affects the solution stability, b) the availability of only small data which is often not enough to
allow the identification of a unique parameter in high-dimensional space Θ, and c) non-convex
function f can have an infinite amount of inverse mapping solutions. All these scenarios are
prevalent in scientific and engineering applications. The ill-posedness can be cured by regular-
ization, such as Tikhonov regularization [71]. However, the regularization parameter is often
difficult to choose, and the regularization can introduce bias in the solution [59]. Furthermore,
this approach does not provide a measure of uncertainty in the estimated parameters. Taking a
probabilistic viewpoint alleviates these difficulties. Jayes aptly observed “probability distribu-
tions are carriers of incomplete information” [32]. In this thesis, we adopt a Bayesian approach
to address the ill-posedness of the inverse problem.

Bayes’ Theorem If probability is a measure of the degree of belief about a proposition, then
Bayes’ theorem is a rule for updating that belief in the light of new evidence. The theorem is
named after Thomas Bayes, who first formulated it in the 18th century. Although Bayes’ theorem
is a straightforward consequence of the definitions of conditional probabilities or densities, its
significance cannot be overstated. This theorem is fundamental to the process of inference
that underpins probabilistic reasoning and machine learning. Therefore, we will explore several
implications and properties that are implicitly contained within Bayes’ theorem.

2An inverse problem is deemed ill-posed if it does not satisfy one or more of the following criteria: a) Existence:
A solution exists. b) Uniqueness: The solution is unique. c) Stability: The solution changes continuously with the
input data.
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2.1. Bayesian probability theory and Uncertainty Quantification

Let us consider the parameters θ being distributed according to a prior distribution p(θ).
We assume θ is stochastically independent of the noise η. The forward model f(·) provides
possible explanation of the data D = {ŷi}Ni=1, that is embedded in a likelihood function
p(D|θ) =

∏N
i=1N (ŷi|f(θ),Σ) (since we assume a Guassian additive noise). We intend to make

statements about the plausibility of parameters (and/or competing models/hypotheses) given
the observation of a dataset D. The posterior distribution of the parameters can now be com-
pounded using the Bayes’s formula:

p(θ|D)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(D|θ)

prior︷︸︸︷
p(θ)

p(D)︸ ︷︷ ︸
evidence

, θ ∈ Θ, D ∈ Y .

where, p(D) =

∫
Θ
p(D|θ)p(θ) dθ,

(2.4)

provided 0 < p(D) < ∞. In the given setting, i.e., non-degenerate Gaussian additive noise,
finite-dimensional data space, one can show that the evidence is always finite and bounded away
from 0. This implies the existence of the posterior measures [72]. Following our discussion of
the Bayesian approach remedying the ill-posedness of the inverse problem, [72] also establishes
that Bayesian inverse problems of this type are always well-posed (also see Chapter 6 [54]).
Bayes theorem is in contrast to the maximum likelihood approach which seeks to identify the
parameters θ∗ that satisfy θ∗ = argmaxθ p(D|θ). The maximum likelihood approach does
not provide a measure of uncertainty in the estimated parameters as opposed to the Bayesian
approach.

Before we move forward, we will discuss the three densities introduced in this context i.e.,
the prior, likelihood and the evidence. The prior density reflects our knowledge about the pa-
rameters before we make an observation. Intuitively, the prior regularizes the inverse problem,
restricting the space in which the sought parameters lie. For instance, the prior can encode
spatial correlation structure in parameters in problems pertaining to fluid mechanics. The like-
lihood function quantifies the probability (or probability density) of observing a specific dataset,
given the parameters and the model/hypothesis. In conjunction with the prior, the likelihood
scores plausibility of the parameters θ by their ability to explain the observed data D. The
evidence is the normalization constant that ensures the posterior integrates to 1. It is the prob-
ability of observing the data averaged over all possible parameter values. The evidence is often
intractable in practice, as it involves integrating the likelihood over the entire parameter space,
thus necessitating the use of approximation methods discussed in Section 2.1.5.

After obtaining the posterior distribution (or a sufficiently accurate approximation), one
may employ it to make predictions by means of posterior predictive distributions. The posterior
predictive distribution is the distribution of a new observation ŷ′ given the observed data D. It
is obtained by integrating the likelihood over the posterior distribution of the parameters:

p(ŷ′|D) =

∫
Θ
p(ŷ′|θ)p(θ|D) dθ. (2.5)

The above essentially marginalizes out the epistemic uncertainty in our model parameters. The
posterior predictive p(ŷ′|D) and posterior p(θ|D) capture all the relevant information available
about the model and model predictions given the data D. This information is crucial for making
predictions, informing decisions, and evaluating competing designs in the engineering domain.
Moreover, one may evaluate any arbitrary expectation contingent on the inferred parameter θ
now accessible by the posterior distribution and an arbitrary forward model f̃ . Following our
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discussions and notations from Section 2.1.3, the quantity of interest E[y] can now be computed
as E[y] =

∫
Θ y(θ)p(θ|D) dθ. To summarize, we provide a visual representation of the Bayesian

inference workflow leading to the posterior predictive in Figure 2.1.

Observed data
D := f(θ) + η

Forward model
f(·)

Likelihood
p(D|f(θ))

Posterior distribution
p(θ|D) := p(D|f(θ))p(θ)

p(D)

Prior distribution
θ ∼ p(θ)

Sample
posterior

θ ∼ p(θ|D)

Forward model
f̃(·)

Output
y := f̃(θ) ∼ p(y)

Quantity
of interest
(e.g., E[y])

Inference Algo.
(e.g., VI, MCMC)

Figure 2.2: Bayesian parameter inference and posterior predictive. (rectangle with rounded edges)
Given the forward model f(·), prior density p(θ), and the experiemntal data D affected by the
experiemntal noise η, the Bayesian approach finds a posterior density p(θ|D) for the parameters θ.
(rectangle with sharp edges) The posterior is then used to sample the parameters and evaluate any
arbitrary forward model f̃ to obtain the quantity of interest E[y].

Before we move to the next section, we will briefly introduce some concepts that are relevant
to the inference algorithms.

On the choice of prior The choice of the prior is a crucial step when applying Bayes’ theo-
rem. One may opt for a broad, less informative prior or choose a more restrictive, informative
prior that confines parameters to a specific range. In the context of physical systems, the lat-
ter is often preferred due to existing knowledge about parameter characteristics—for instance,
certain parameters must be non-negative, or physical constraints may limit parameters to spe-
cific intervals. When such prior information is available, it is advantageous to incorporate it
by selecting an appropriate prior. In scenarios where the parameter space is high-dimensional
and only a few parameters are expected to deviate from zero, it is advisable to use priors that
enforce sparsity. These priors typically have heavy tails, which help prevent overfitting by pro-
moting a sparse representation of the parameters. A widely used method in this context is the
Automatic Relevance Determination (ARD) [73] framework and its extensions [74–76], which
effectively identifies and isolates the most relevant variables in a model. Specifically, we define
an independent Gaussian prior over parameter θi. Each such Gaussian has an independent vari-
ance governed by a precision hyperparameter αi. The values for αi are determined iteratively by
maximizing the marginal likelihood function after integrating out θ. Oftentimes, the Gamma
distribution is allocated to the hyperparameter α to promote a light tailed θ prior [77, 78].
Through this optimization process, some αi values may become infinitely large, causing their
corresponding parameter vectors θi to approach zero (the posterior distribution converges to a
delta function at zero), resulting in a sparse solution. The θi that remains finite are considered
relevant for modeling the data distribution. Thus, the Bayesian approach naturally balances
enhancing the data fit and simplifying the model by diminishing the influence of certain θi. We
explore the ARD on turbulence closure problem in Paper A [47].

Exact inference Sometimes, an appropriate choice of prior can also render the inference
problem tractable, remedying the need for approximation, termed as exact inference. In partic-
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ular, if the prior is conjugate to the likelihood, with an analytically tractable likelihood (e.g.,
no dependence on implicit FE solver), the posterior will be analytically tractable. In general,
this will be the case when the prior and likelihood are from the same parametrized family e.g.,
the exponential family. For example, a Gaussian prior combined with aN analytically tractable
Gaussian likelihood leads to a Gaussian posterior as well, the expression for which can be
obtained in closed form.

Hierarchical probabilistic models and Probabilistic graphical models In many sci-
entific and engineering applications, the data is often collected from multiple sources, each with
its own set of uncertainties. Hierarchical probabilistic models [79, 80] are a powerful tool for
modeling such complex data structures. In a hierarchical model, the data is assumed to be
generated from a series of conditional distributions, each conditioned on the parameters of the
level above it, i.e., all unknown parameters are treated probabilistically thus following a fully
Bayesian approach. This structure allows for the incorporation of prior knowledge about the
data-generating process at multiple levels of abstraction. Hierarchical models are particularly
useful when the data is sparse or noisy, as they can help to regularize the estimation process
and improve the robustness of the results.

Furthermore, hierarchal models can be conveniently represented by probabilistic graphical
models (PGMs) [59, 81]. PGMs are a powerful tool for representing complex probabilistic rela-
tionships between variables compactly and intuitively. They provide a graphical representation
of the dependencies between variables in a model, making it easier to understand and reason
about the model structure. In a PGM, nodes represent random variables, and edges represent
probabilistic dependencies between variables. The structure of the graph encodes the conditional
independence relationships between variables, which can be exploited to simplify the compu-
tation of the posterior distribution. A particular type of PGM expedient for our discussion
is given by a Bayesian network which can be represented as a directed acyclic graph (DAG),
encoding conditional independence assumptions. For instance and following the previous dis-
cussions and notations, the joint distribution between the observables ŷ, the parameters θ and
the hyperparameter α (precision to the ARD prior) can be given as

p(ŷ,θ,α) = p(ŷ|θ,α)p(θ|α)p(α). (2.6)

The corresponding graphical model is given in Figure 2.3. Expectation Maximization [82] al-
gorithm (see Section 2.1.9) is widely adopted for the hierarchical probabilistic models. While
graphical models and corresponding specialized inference algorithms have a rich history, we will
refer the reader to [81,83].

α θ ŷ

Figure 2.3: Probabilistic graphical model representing the joint probability distribution over the
three random variables. The nodes shaded grey are the observed variables and nodes in no shade
are the latent/unobserved variables.

Kullback-Leibler divergence In the realm of probabilistic reasoning and machine learning,
it becomes essential to consider how one might quantify the information contained within prob-
ability distributions, or evaluate the discrepancy of information encoded between two distinct
distributions, p(x) and q(x) for a random variable x. The Kullback-Leibler (KL) divergence [84]
is a widely adopted measure of the information lost when q(x) is used to approximate p(x). Let
us consider two densities p, q ∈ P with P the set of all admissible probability density functions
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(with assumed identical support), the divergence measure D[·∥·] : P × P → R+
0 , then the KL

divergence is defined as

DKL (p∥q) = −
∫

p(x) log q(x) dx−
(
−
∫

p(x) log p(x) dx

)
= Ep(x)

[
log

p(x)

q(x)

]
. (2.7)

The KL divergence satisfies the following:

• DKL (p∥q) ≥ 0 with equality if and only if p(x) = q(x) almost everywhere.

• The KL divergence is not symmetric, i.e., DKL (p∥q) ̸= DKL (q∥p).

• The KL divergence is not a metric, i.e., it does not satisfy the triangle inequality.

Although KL divergence does not define a proper metric in the general case (due to lack of
symmetry and triangle equality), it can nonetheless be regarded as a statistical distance, i.e.,
as quantifying the discrepancy of information encoded in p and q. In conjugation with Jensen’s
inequality [85], the KL divergence is a key tool in probabilistic machine learning as we will see
in the following sections and Paper A [47] and Paper E [51].

Entropy and information The entropy provides a measure of the uncertainty associated
with a random variable x ∼ p(x). For both discrete and continuous variables, the entropy is
defined as

H[p] = Ep(x)[− log p(x)]. (2.8)

For continuous variables, this is also called the differential entropy. Correspondingly, the entropy
collapses to zero for degenerate distributions which place their entire probability mass on a single
outcome, and the entropy increases as probabilities are assigned more equally to all possible
values of x. Another way to see entropy as a measure of uncertainty in a random variable is

H[p] = DKL (p∥u) + const., (2.9)

where u is a uniform distribution. Since DKL (p∥u) ≥ 0, the less like a uniform distribution p
is, the smaller will be the entropy. Since the uniform distribution contains the least information
a priori about which state p(x) is in, the entropy is therefore a measure of the a priori uncer-
tainty in the state occupancy. For a discrete distribution, the entropy is positive, whereas the
differential entropy can be negative.

The cross-entropy is a related concept, which measures the average number of bits needed
to encode the outcomes of a random variable x when we use a model q(x) to approximate
the true distribution p(x). The cross-entropy ultimately equates to the previously introduced
KL divergence. Classical loss functions (e.g. discriminative classification problems) in machine
learning often entail cross-entropy, as it defines the only non-constant term of the Kullback-
Leibler divergence in the context of fixed empirical data distributions. Entropy and the related
concepts pertain to the field of information theory, pioneered by Shannon in 1948 [86]. The field
has since found applications in a wide range of fields, including machine learning, statistics, and
physics. The concepts of entropy and information are fundamental to understanding the behav-
ior of probabilistic models and the trade-offs between model complexity and generalization. For
a more detailed discussion, the reader is referred to [57].
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2.1. Bayesian probability theory and Uncertainty Quantification

2.1.5 Approximate Inference

The bottleneck of the evidence is the central problem in the Bayesian Inference. For most
probabilistic models, we will not be able to compute marginals or posteriors exactly, so we must
resort to using approximate inference [87]. There are many different algorithms, that trade
off speed, accuracy, simplicity, and generality, see for example Figure 2.4. These algorithms are
reliant on numerical optimization strategies. Owing to the recent boom in ML, both approximate
inference and numerical optimization have seen substantial advances [46,88]. Recently, there has
been the emergence of probabilistic programming and associated numerical frameworks [89,90],
which seek to provide a more automated construction of probabilistic models and execution of
(approximate) probabilistic inference. In the following sections, we will provide a broad overview
and limit ourselves to discussing approximate inference strategies relevant to the work presented
in the thesis.

Point-based
estimates

(Section 2.1.6)

Laplace approximation
(Section 2.1.7)

Variational Inference
(Section 2.1.8)

Monte Carlo methods
(Section 2.1.10)

Computational Cost

In
fe
re
n
ce

Q
u
al
it
y

Figure 2.4: Comparision of commonly used approximate inference methods based on computational
cost and inference quality. Note, the figure doesn’t explicitly point toward a linear relationship.

2.1.6 Point-based approximation

Point-based approximations, such as maximum likelihood estimate (MLE) and maximum a pos-
teriori (MAP), are one of the most rough approximations to Bayesian inference [91]. The MLE
is a point estimate of the parameters that maximizes the likelihood function, while the MAP
estimate is a point estimate that maximizes the posterior distribution. The MLE is given by

θ∗
MLE = argmax

θ
p(D|θ). (2.10)

However, the MLE does not account for the prior information, which can lead to overfitting,
especially for a small number of samples. The MAP estimate, on the other hand, incorporates
the prior information and is given by

θ∗
MAP = argmax

θ
p(θ|D) = argmax

θ
p(D|θ)p(θ). (2.11)

It’s very common to operate in the log-space, as the log-likelihood is often easier to work with.
So the MLE and MAP estimates are often computed as

θ∗
MLE = argmax

θ
log p(D|θ), θ∗

MAP = argmax
θ

log p(D|θ) + log p(θ). (2.12)
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and then it is assumed that the posterior puts 100% of its probability on this single value:

p(θ|D) = δ(θ − θ∗
MAP), (2.13)

where δ(·) is the Dirac delta function. The MAP estimate is often used in practice when the
full posterior distribution is intractable and can be seen as a compromise between the MLE and
the full Bayesian posterior, as it incorporates the prior information while still providing a point
estimate. Additionally, the MAP estimate doesn’t need to compute the normalization constant
of the posterior, the evidence term, as it doesn’t depend on the parameter θ. However, MAP
has a subtle drawback. It is not invariant to the reparametrization of probability distributions.
The MLE does not suffer from this since the likelihood is a function, not a probability density.
Bayesian inference does not suffer from this problem either, since the change of measure is taken
into account when integrating over the parameter space.

The advantage of point-based estimates is they can benefit from the variety of optimization
algorithms available [92], even more so due to the push of the ML community. However, the
point-based estimates are not able to capture the full uncertainty in the parameters, which is a
key feature of the Bayesian approach. The point-based estimates are also sensitive to the choice
of the prior, and the MAP estimate can be biased towards the prior.

2.1.7 Laplace approximation

Laplace approximation [93, 94] is a method for approximating the posterior distribution with
a multivariate Gaussian distribution centered around the mode of the posterior. The Laplace
approximation is based on the second-order Taylor expansion of the log-posterior around the
mode. It approximates the posterior as

p(θ|D) ≈ q(θ) = N (θ|θ∗
MAP,H

−1), (2.14)

where H is the Hessian of the log-posterior evaluated at the MAP estimate θ∗
MAP. So it is

a two-step procedure, firstly an optimization procedure to find the MAP estimate, and then
approximate the curvature of the posterior at that point based on the Hessian. Compared to
point-based approximations, such as MAP, the Laplace approximation also estimates the under-
lying uncertainties around the θ∗

MAP. The only additional computational cost is the computation
of the Hessian (or the approximation of it) at θ∗

MAP. The Laplace approximation is a good choice
when the posterior is unimodal and the mode is a good representation of the posterior. However,
the Laplace approximation can be inaccurate when the posterior is multimodal or has long tails.
For example, when the posterior is skewed and the parameter lies in a constrained interval, the
Laplace approximation will be inaccurate. Fortunately, we can solve this latter problem by using
a change of variable.

2.1.8 Variational Inference

In this section, we discuss variational inference (VI) [87], also known as Variational Bayes. VI
is an optimization-based method used for posterior inference that offers substantial modeling
flexibility, potentially leading to more precise approximations. The technique focuses on approx-
imating complex and often intractable probability distributions, such as the posterior p(θ|D)
with a tractable approximate distribution q(θ). This is particularly useful in cases when the like-
lihood function involves physical models, as the likelihood would not be analytically tractable.
The goal is to find the best approximation q(θ) that minimizes some discrepancy D between
the true posterior p(θ|D) and the approximate distribution q(θ) given by

q∗ = argmin
q∈Q

D(q, p), (2.15)
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whereQ is some tractable family of distributions, e.g., fully factorized distributions. We optimize
over the parameters ξ (also known as the variational parameters) of the approximate distribution
q rather than optimizing over the functions. The discrepancy D is often the Kullback-Leibler
divergence (Section 2.1.4), which in this context is given by

D(q, p) = DKL (q(θ|ξ)∥p(θ|D)) = Eq(θ|ξ)

[
log

q(θ|ξ)
p(θ|D)

]
. (2.16)

From the above and Eq. (2.4), the inference problem can be reformulated as an optimization
problem:

ξ∗ = argmin
ξ

DKL (q(θ|ξ)∥p(θ|D)) (2.17)

= argmin
ξ

Eq(θ|ξ)

[
log q(θ|ξ)− log

(
p(D|θ)p(θ)

p(D)

)]
(2.18)

= argmin
ξ

Eq(θ|ξ) [log q(θ|ξ)− log p(D|θ)− log p(θ)]︸ ︷︷ ︸
−F(ξ)

+ log p(D) (2.19)

where F(ξ) is the evidence lower bound (ELBO) or the variational free energy. The ELBO is
a lower bound on the log-evidence log p(D), since DKL (q∥p) ≥ 0, we have F(ξ) ≤ log p(D).
Therefore by maximizing the ELBO, the KL divergence is minimized, making the variational
posterior q closer to the true posterior. Also note that the log-evidence log p(D) is a constant
with respect to the parameters ξ of the approximate distribution, and hence it does not affect
the optimization, so we drop it. Therefore, the optimization problem can now be written as

ξ∗ = argmax
ξ

F(ξ) = argmax
ξ

Eq(θ|ξ) [log p(D|θ) + log p(θ)− log q(θ|ξ)] . (2.20)

The ELBO can be written in terms of DKL (q(θ|ξ)∥p(θ)) as:

F(ξ) = Eq(θ|ξ) [log p(D|θ)]−DKL (q(θ|ξ)∥p(θ)) . (2.21)

This can be seen as a trade-off between the likelihood of the data and the complexity of the
approximate distribution. We can also write the ELBO as the following:

F(ξ) = Eq(θ|ξ) [log p(D,θ)]︸ ︷︷ ︸
expected log joint

+H(q(θ))︸ ︷︷ ︸
entropy

. (2.22)

The above form of the ELBO can be interpreted as the expected log-joint probability of the data
and the parameters plus the entropy of the approximate distribution. The entropy term acts as
a regularizer, preventing the approximate distribution from collapsing to a point mass, while
the first term encourages it to be a joint MAP configuration. Convergence to a local maximum
of F is guaranteed due to the fact that the KL divergence is convex and F is consequently
concave [59].

On choosing the form of variational posterior One may choose any form of approximate
posterior (in a tractable family) depending on the problem at hand. Broadly, there are two
main approaches for choosing the form of the variational posterior. In the first approach, we
pick a convenient functional form, such as multivariate Gaussian, and then optimize the ELBO
using gradient-based methods. A Gaussian is employed due to its tractability and the fact that
it is fully characterized by its mean and covariance, in which case the variational parameter
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ξ = {µ,Σ}. This is different from the Laplace approximation, since in VI, we optimize Σ, rather
than equating it to the Hessian. In the second approach, a common and simple choice for the
approximate posterior is the mean field approximation, where the approximate posterior q(θ) is
partitioned into disjoint groups. This factorized form of the densities corresponds to the mean
field approximation. With an origin in statistical physics [95], the mean-field approximation
assumes that the interactions between the variables are weak, and hence the variables can be
treated as independent. The mean-field approximation is given by

q(θ) =

dθ∏
i=1

qi(θi). (2.23)

The qi(θi) may or may not be of the same kind of probability distribution. When dθ is the size
of θ, the mean-field approximation is also known as the fully factorized approximation. When
it is not, it is known as the structured mean-field approximation. This factorization decision
is usually based on the specifics of the problem at hand. The mean-field approximation is a
good choice when the posterior is approximately factorizable, and the computational cost is a
concern. However, it can be inaccurate when the posterior is highly correlated or multimodal. For
example, if q uses a diagonal covariance matrix (corresponding to the mean field approximation),
we see that the approximation is overconfident (i.e., narrow posterior variance), which is a well-
known flaw of variational inference, due to the mode-seeking nature of minimizing DKL (q∥p)
[61].

Recently, normalizing flows [96] have gained popularity in VI, as they provide a flexible way
to model complex distributions, thus providing a more accurate posterior approximation than
Gaussian VI’. The idea is to transform a simple distribution, such as a Gaussian, into a more
complex distribution by applying a series of invertible transformations.

Challenges in Optimization Due to Gradient Availability The ELBO is maximized
using numerical optimization strategies which relies on the efficient computation of the gra-
dients, the gradients of the ELBO with respect to the variational parameters ξ in this case.
Unfortunately, the gradient is hard to compute since

∇ξF(ξ) = ∇ξEq(θ|ξ) [log p(D|θ) + log p(θ)− log q(θ|ξ)]
̸= Eq(θ|ξ) [∇ξ log p(D|θ) +∇ξ log p(θ)−∇ξ log q(θ|ξ)] , (2.24)

i.e., the gradient operator does not commute with the expectation operator in this case. However,
to circumvent this issue, we have two main approaches. The first approach is the reparametriza-
tion trick [97], which allows us to write the expectation as an expectation over a simple dis-
tribution, such as a Gaussian. The trick is to rewrite the random variable θ ∼ q(θ|ξ) as some
differentiable and invertible transformation g of another random variable ϵ ∼ p(ϵ), which does
not depend on parameters θ, i.e., θ = g(ϵ, ξ). For example, considering the case of Gaussian
variational posterior with Σ = LLT , where L is the lower triangular matrix after Cholesky
decomposition. Then we can write θ = µ+Lϵ, where ϵ ∼ N (0, 1). This allows us to write the
expectation as

Eq(θ|ξ)[F̃(θ)] = Ep(ϵ)[F̃(g(ϵ, ξ))], (2.25)

with F̃(θ) = log p(D|θ) + log p(θ)− log q(θ|ξ). Hence the gradients are given as

∇ξF(ξ) = ∇ξEq(θ|ξ)[F̃(θ)] = ∇ξEp(ϵ)[F̃(g(ϵ, ξ))] = Ep(ϵ)[∇ξF̃(g(ϵ, ξ))]. (2.26)
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With the Monte Carlo estimator, the gradient can therefore be estimated as:

∇̂ξF(ξ) ≈ 1

S

S∑
s=1

∇ξF̃(g(ϵ(s), ξ)), with ϵ(s) ∼ p(ϵ). (2.27)

This is called the reparametrized gradient or the pathwise derivative [98]. Usually, this gra-
dient is approximated using the Monte Carlo method, which is then propagated through the
computational graph using the backpropagation algorithm. To this end, any kind of stochastic
optimizers, such as Adam [88] or RMSprop [99] can be used.

The second approach is called blackbox variational inference (BBVI) [100, 101] which esti-
mates the gradient by the score function estimator [102], also known as the reinforce algorithm.
The score function estimator is a general-purpose method for estimating gradients of expecta-
tions, and it can be used when the reparametrization trick is not applicable. This is relevant
for the scenarios when point wise evaluation of F̃(θ) is possible but the gradient evaluation is
not. For example, this is very common whenever physics/engineering models are involved in the
inference task. To elaborate further, in such cases, the log-likelihood term log p(D|θ) involves a
physics-based model f(·) which acts as an observation operator, which can be evaluated at a
point but the gradient of the model might not be available. The physics-based model might not
be differentiable by design or model gradients/adjoints are cumbersome/non-existent. In such
cases, the score function estimator can be used to estimate the gradient of the ELBO. Using
the log derivative trick [103] on the Eq. (2.24), the score function estimator is given by

∇ξF(ξ) = Eq(θ|ξ) [∇ξ log q(θ|ξ) (log p(D|θ) + log p(θ)− log q(θ|ξ))] . (2.28)

We then compute a Monte Carlo approximation to this:

∇̂ξF(ξ) ≈ 1

S

S∑
s=1

∇ξ log q(θ
(s)|ξ)

(
log p(D|θ(s)) + log p(θ(s))− log q(θ(s)|ξ)

)
, (2.29)

The score function estimator is unbiased but has high variance, and it requires a large
number of samples (standard error in MC estimate is O(1/

√
S)) to obtain an accurate estimate

of the gradient. Alternatively, we can use control variates or variance reduction techniques to
reduce the variance of the gradient estimate. The choice of the variance reduction technique
depends on the problem at hand and the computational resources available. This is a vast area
of research and we refer the reader to [69,87] for a more detailed discussion of control variates.

Many probabilistic programming libraries these days support reparametrizable distribu-
tions and can automatically handle the reparametrization trick. For example, Pyro [89] and
TensorFlow Probability [104] provide a wide range of reparametrizable distributions and auto-
matic differentiation tools to compute the gradients of the ELBO. In the backend, they con-
struct a computational graph [105] of the probabilistic model and accordingly employ e.g.,
reparametrization/BBVI, construct the gradient estimate and perform the optimization. Avail-
ability of gradients and estimating them is a central issue in ML and optimization tasks involving
engineering/physics-based models, and researchers have proposed several strategies to overcome
this. A seamless fusion of the paradigms of probabilistic programming [90] and differentiable pro-
gramming [36] is the need of the hour to accelerate scientific discovery by capitalizing on the
advances in machine learning [6]. In this thesis, we tried to address the aforementioned issue in
Paper A [47], Paper D [50] and Paper E [51]. In particular, we propose adjoint based strategies
to deal with gradient issues in Paper A [47] to enable an inference task, and in Paper E [51],
we propose a general-purpose algorithm to perform black-box optimization. The gradient issue
is also discussed in Section 2.2.10 and more details can be found in [36,103,105].
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Stochastic VI For the dataset D, the log likelihood of the data is given by log p(D|θ) =∑N
n=1 log p(yn|θ), where N is the number of data points. For large datasets, the ELBO can be

computationally expensive to compute, as it requires evaluating the log-likelihood for each data
point. In such cases, we can use stochastic optimization methods to approximate the ELBO.
The idea is to use a mini-batch of data points to compute an unbiased estimate of the ELBO.
The stochastic ELBO is given by

F(ξ) =
N

M

M∑
m=1

Eq(θ|ξ) [log p(ym|θ) + log p(θ)− log q(θ|ξ)] , (2.30)

where M is the mini-batch size. The stochastic ELBO is an unbiased estimate of the true ELBO,
and as the mini-batch size increases, the estimate becomes more accurate. Stochastic Variational
Inference (SVI) [106] is a powerful tool for scaling up variational inference to large datasets,
and it is widely used in practice. The optimization of the stochastic ELBO can be done using
stochastic gradient descent (SGD) or its variants, such as Adam [88] or RMSprop [99]. The
choice of the optimizer and learning rate is crucial for the convergence of the algorithm. The
learning rate should be chosen carefully to ensure that the optimization converges to a local
maximum of the ELBO. The optimization can be further improved by using techniques such
as learning rate schedules, early stopping, and momentum. We explore the application of SVI
with suitable adjustments to the turbulence closure problem in Paper A [47].

In summary, we have motivated the VI, discussed more important concepts broadly and
introduced algorithms relevant to the thesis. Note that the VI has a very rich literature and is
a rapidly evolving field. For more details, the interested reader is directed to reviews [87, 107],
and books e.g., [59, 61,108].

2.1.9 Expectation Maximization

The Expectation-Maximization (EM) [82] is an algorithm designed to compute the MLE or
MAP parameter estimate for probability models that have missing data and/or hidden/latent
variables (as in Figure 2.3). The EM algorithm is widely used in machine learning and statistics
for estimating the parameters of probabilistic models, such as mixture models, hidden Markov
models, and Gaussian mixture models. Following the preceding notations, suppose we have a
latent variable model of the form

p(ŷ1:N , z1:N |θ) =
N∏

n=1

p(ŷn|zn,θ)p(zn|θ), (2.31)

where z1:N are the latent variables (see Figure 2.5). The EM algorithm is used to maximize the
likelihood of the observed data ŷ1:N with respect to the model parameters θ. Since the latent
variables zn are hidden, we marginalize them out to get the per sample log marginal likelihood:

log p(ŷn|θ) = log

∫
p(ŷn|zn,θ)p(zn|θ) dzn. (2.32)

Unfortunately, computing this integral is usually intractable. Fortunately, the ELBO is its lower
bound:

log p(ŷn|θ) ≥ F(ξn,θ) = Eqξn (zn)
[log p(ŷn|zn,θ) + log p(zn|θ)− log qξn(zn)] . (2.33)

For all the samples, we can thus perform the following optimization:

θ∗ = argmax
θ

N∑
n=1

F(ξn,θ). (2.34)
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To this end, the EM algorithm performs the optimization by alternating between the fol-
lowing two steps:

• E-step: Fix θ and maximize the ELBO w.r.t. the variational parameters ξn to give us
qξn(zn).

• M-step: Maximize the ELBO (using the new ξn) w.r.t. the model parameters θ.

θ

z1

zN

ŷ1

ŷN

...
...

Figure 2.5: Graphical model with latent random variables z1:N and observed data ŷ1:N . The
global deterministic parameter θ is given with rectangles, the local latent variables z1:N are given
with circles, and the observed data ŷ1:N are given with shaded circles. The arrows indicate the
dependencies between the variables.

The traditional EM algorithm assumes the posterior to be analytically tractable, as well
as generally the required expectations with respect to this distribution. The Variational-Bayes
Expectation-Maximization (VB-EM) algorithm is the generalization of the EM algorithm, where
instead of being able to identify qξ1:N (·) in the E-step in closed form as the posterior, we conduct
approximate inference (e.g., VI/MCMC) to approximate the posterior. This is possible as the
EM algorithm permits incomplete or sparse updates [109], i.e., none of the two optimization
problems implied by the E-step and M-step need to be solved fully in each iteration. In most of
the real world cases with the likelihood involving physics-based models, the E-step is intractable,
and hence the VB-EM algorithm is used. We explore the application of the VB-EM algorithm
in Paper C [49].

2.1.10 Sampling-based Inference

While VI is fast, it can lead to an approximate posterior that is overconfident and potentially
biased, since it is restricted to a specific functional form q ∈ Q. A more flexible class of algorithms
are the sampling-based inference algorithms which in general provide a better quality inference
than the VI, but at the cost of higher computational complexity (see Figure 2.4). The sampling-
based inference algorithms use a non-parametric approximation in terms of a set of samples. The
key issue is creating the posterior samples θs ∼ p(θ|D) efficiently without having to evaluate
the normalization constant p(D) =

∫
p(θ,D) dθ.

Non-iterative Monte Carlo methods, including rejection sampling and importance sampling,
which generate independent samples from some target distribution can be adopted for the
inference. The trouble with these methods is that they often do not work well in high dimensional
spaces [110]. Therefore, a very popular sampling based inference algorithm in Bayesian statistics
and machine learning is the Markov Chain Monte Carlo (MCMC) [110]. MCMC methods are
a class of algorithms that generate samples from the target density function (e.g., the posterior
distribution in Bayesian statistics) by constructing a Markov chain3 that has the target density

3For a random variable x1:T , xt captures all the relevant information about the state of the system, i.e.,
p(x1:T ) = p(x1)

∏T
t=2 p(xt|xt−1)
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function as its stationary distribution. A widely adopted MCMC algorithm is the Metropolis-
Hastings (MH) algorithm [111]. It is a general-purpose algorithm that can be used to sample
from any distribution, provided that the proposal distribution is chosen appropriately. The basic
idea behind MH is as follows: we start at a random point in parameter space, and then perform
a random walk, by sampling new states (parameters) from a proposal distribution q(θ′|θ). If
q is chosen carefully, the resulting Markov chain distribution will satisfy the property that the
fraction of time we visit each point in space is proportional to the posterior probability. The key
point is that to decide whether to move to a newly proposed point θ

′
or to stay in the current

point θ, we only need to evaluate the unnormalized density ratio

p(θ|D)

p(θ′|D)
=

p(D|θ)p(θ)/p(D)

p(D|θ′)p(θ′)/p(D)
=

p(D,θ)

p(D,θ′)
. (2.35)

As can be observed, this bypasses the need to compute the normalization constant p(D), which
as discussed earlier is often intractable. The algorithm needs as input the function that computes
the (log) joint density p(θ,D) (e.g., the log-likelihood involving the forward model f(·) and the
prior.) and the proposal distribution q(θ′|θ) which decides which state to visit next. Commonly,
Gaussian proposal distribution is used, i.e., q(θ′|θ) = N (θ′|θ, σI), this is called the random
walk Metropolis algorithm, where σ is the standard deviation of the proposal distribution. The
choice of the proposal distribution is crucial for the convergence of the algorithm. If the proposal
distribution is too narrow, the algorithm will take a long time to explore the parameter space,
while if the proposal distribution is too wide, the algorithm will accept a large number of
proposals, leading to a high rejection rate. There are strategies to counter this dependence
of the proposal distribution (via adaptively adjusting the σ for example), such as the adaptive
Metropolis algorithm [112], the delayed rejection algorithm [113] and Delayed Adaptive Rejection
Metropolis (DRAM) [114](we explore its application in Paper C [49]).

However, high-dimensional distributions or distributions with complex geometries can be
an issue. In such cases, more advanced MCMC algorithms, such as Hamiltonian Monte Carlo
(HMC) [115] and Gibbs sampling [116], can be used. The HMC relies on the gradient computa-
tion of the log joint ∇θ log p(θ,D) (given the unknowns are continuous) to guide the proposals
into the regions of space with higher probability. This makes the HMC a good choice for sam-
pling from high-dimensional distributions with complex geometries. The No-U-Turn (NUTS)
algorithm [106] is an extension of the HMC algorithm that automatically tunes the step size
and the number of leapfrog steps, making it more efficient than the HMC algorithm. Due to its
speed and ability to handle high-dimensional, the NUTS algorithm is widely used in practice
and is the default sampling algorithm in many probabilistic programming libraries, such as
Stan [117], Pyro [89] and PyMC3 [118]. The Gibbs sampling is a good choice when models have
a conditional independence structure, as it samples from the conditional distributions of the pa-
rameters given the other parameters. In cases when the data is arriving in a continual, unending
stream, as in state-space models, Sequential Monte Carlo (SMC) [119, 120] can be used. SMC
performs inference using a sequence of different distributions, from simpler to more complex,
with the final distribution being equal to the target posterior. The SMC algorithm is widely
used in practice for inference in state-space models and other time-series models. The choice of
the sampling-based inference algorithm depends on the problem at hand and the computational
resources available. In this section, we tried to provide a broad perspective and further details
can be found in [69,110]. An interactive visualization of many of these algorithms in 2d can be
found here4.

4http://chi-feng.github.io/mcmc-demo/app.html
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2.1.11 Summary

We introduced various sources and types of uncertainties, introduced the paradigm of UQ,
and briefly discussed uncertainty propagation. After that, we provided a broad overview of the
Bayesian Inference, discussed Variational inference and sampling-based inference in brief and
directed the reader to the relevant literature.

The choice of inference algorithms is non-trivial. As discussed in Figure 2.4, different ap-
proximate inference algorithms make different tradeoffs between speed, accuracy, generality,
simplicity, etc. This makes it hard to compare them on an equal footing. One approach is to
evaluate the accuracy of the approximation q(θ) by comparing it to the true posterior p(θ|D),
computed offline with an exact method. We are usually interested in accuracy vs speed trade-
offs, which we can compute by evaluating DKL (p(θ|D)∥qt(θ)), where qt(θ) is the approximate
posterior after t units of compute time. Unfortunately, it is usually impossible to compute the
true posterior. A simple alternative is to evaluate the quality in terms of its prediction abilities
on out-of-sample observed data, similar to cross-validation. For methods on accessing the VI,
see [121, 122], and for MCMC, see [123]. A general comparison and advice on VI and MCMC
algorithms can be found in [87].
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2.2 Probabilistic and Scientific Machine Learning

In this section, we aim to provide a snapshot of SciML research. We begin by briefly introducing
machine learning in Section 2.2.1. Then we provide a snapshot of the major scientific tasks that
can benefit from the SciML approaches. These are fundamental and essential tasks carried out
across science, and they traditionally have long-standing general and domain-specific challenges
associated with them. The tasks differ generally in terms of what is available e.g., governing
equations, ground-truth observations, mechanistic model etc. In particular, we will briefly dis-
cuss forward simulation improvement (Section 2.2.2), inversion (Section 2.2.3), scientific/model
discovery (Section 2.2.4), surrogate forward modeling (Section 2.2.5), reduced order modeling
(Section 2.2.6), closure modeling (Section 2.2.7), and optimization involving physics-based mod-
els (Section 2.2.8). Then we discuss the different strategies that can be used to address these
tasks in Section 2.2.9, followed by a discussion on differentiable physics in Section 2.2.10 which
is a key enabler for many SciML approaches. For a more detailed treatment of the broad field
of SciML, the reader is directed to [12–14,19,124].

2.2.1 Brief overview of Machine Learning

Machine learning is a field of artificial intelligence that focuses on developing algorithms that al-
low computers to learn from and make predictions or decisions based on data. It involves various
techniques and models that enable systems to improve their performance over time without be-
ing explicitly programmed for every task. Machine learning can be broadly categorized into three
types: supervised learning, unsupervised learning, and reinforcement learning [61]. In supervised
learning, algorithms are trained on labeled data, where the input comes with corresponding out-
put labels. The goal is to learn a mapping from inputs to outputs that can be applied to new,
unseen data. Common applications include image classification [11], speech recognition [125],
and predictive analytics [126]. Unsupervised learning deals with unlabeled data, aiming to dis-
cover underlying patterns or structures without predefined labels. Techniques such as clustering
and dimensionality reduction are used to group similar data points or reduce the complexity of
data. This approach is often used in anomaly detection, customer segmentation, and exploratory
data analysis. Reinforcement learning involves training algorithms to make a sequence of deci-
sions by interacting with an environment. The algorithm learns to achieve a goal by receiving
feedback in the form of rewards or penalties. This method is widely used in robotics, game
playing, and autonomous systems.

Deep Learning is a subset of machine learning that utilizes Neural Networks (NN) with multi-
ple hidden layers to model complex, non-linear relationships and handle large, high-dimensional
datasets. Physical systems often involve intricate interactions and dependencies that are chal-
lenging to capture with traditional analytical methods. DNNs can automatically learn these
relationships from data, enabling them to accurately predict outcomes and identify underlying
patterns. However, these methods require substantial computational resources due to the high
number of parameters and huge number of data points involved. Huge data requirement serves
as a major bottleneck whenever data is to be generated from expensive physics-based models.
This is where scientific machine learning comes into play, which aims to combine the strengths
of machine learning with the knowledge of physical laws to address these challenges, discussed in
Section 2.2.9. Recent advancements in GPU technology and the availability of automatic differ-
entiation frameworks have significantly benefited Deep Learning. Neural Networks are central to
most deep learning algorithms. Initially developed to mimic the human brain, a neural network
typically employs a large number of parameters and requires a substantial training dataset. The
primary advantage of NNs is their flexibility, as they can act as universal approximators. To
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provide a brief overview, in this section, we will discuss feed-forward neural networks (FFNN),
which are just a drop in the huge ocean of available Deep Learning architectures. For a more
comprehensive overview, refer to the works by LeCun [127] and Goodfellow [128].

A feed-forward neural network (FFNN) is a class of NN where the connections between the
nodes do not form cycles. The network consists of an input layer, one or more hidden layers, and
an output layer, with each layer comprising several nodes (neurons). Mathematically, consider
a FFNN with L layers. The input to the network is denoted by x ∈ Rn, where n is the number
of input features, and the output is denoted by y ∈ Rm, where m is the number of output
features. For each layer l (where l = 1, 2, . . . , L), the following computations are performed:
h(l) = W(l)a(l−1)+b(l) where, h(l) ∈ Rnl is the pre-activation vector for layer l, W(l) ∈ Rnl×nl−1

is the weight matrix for layer l, b(l) ∈ Rnl is the bias vector for layer l, a(l−1) ∈ Rnl−1 is
the activation vector from the previous layer, and nl is the number of nodes in layer l, with
learnable parameters joinlty denoted by ω = {W,b}. Now, an activation function is introduced
to introduce non-linearity into the model. The activation function is applied element-wise to
the pre-activation vector h(l) to obtain the activation vector a(l), given by a(l) = σ(h(l)). Here,
σ is an activation function, such as the sigmoid function σ(z) = 1

1+e−z , the hyperbolic tangent
function σ(z) = tanh(z), or the Rectified Linear Unit (ReLU) function σ(z) = max(0, z). The
output of the network is given by y = a(L). The operations performed are exemplarily illustrated
in the Figure 2.6. We note that we could also treat all parameters as random variables and thus
turn the neural network into a Bayesian neural network.

Thus, the structure allows FFNNs to approximate complex, non-linear functions and is the
basis for their powerful representation capabilities.

x1

x2

x3

h1

h2

y1

Inputs

Hidden Nodes

Output

Figure 2.6: A simple feed-forward neural network.

2.2.2 Forward simulation improvement

One essential task is carrying out physics-based simulation to describe the system under study.
The task essentially involves predicting certain properties of the system given some input condi-
tions of the system. This is done by solving the governing equations of the system. For example,
in the context of fluid dynamics, this would involve solving the Navier-Stokes equations.

For several scientific problems, the governing equations are given by a set of (partial) differ-
ential equations. In many cases, the system can be described by

G[u(x);µ] = J (x), x ∈ Ω,

Bk[u(x);µ] = bk(x), x ∈ Γk ⊂ ∂Ω,
(2.36)

where k = 1, 2, . . . , nb, nb is the number of boundary conditions, G is a differential operator,
Bk is a set of of boundary operators, Ω is the domain of interest, Γk are the boundaries of
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the domain, u(x) ∈ Rdu is the solution field with x being a d dimentional input vector in the
domain Ω, µ is a set of parameters, J (x) is right hand side (e.g., a source function) and bk is
a set of boundary conditions. Many different differential equations can be represented in this
form, including those with time-dependence (notation corresponding to time is dropped here for
simplicity. If we include it, we will have u(x, t) and the initial conditions) or time-independence,
and linear or nonlinear operators. For brevity in the downstream discussions, without loss of
generality, we cast the problem given in Eq. (2.36) to the form

F [u;φ] = 0, (2.37)

where F is e.g., the PDE operator containing the spatial and temporal derivatives and φ
represents the physical parameters or parametrized initial or boundary conditions, i.e., φ =
{J (x), b1(x), . . . , bnb

(x),µ}. Comparing it to the notations introduced in Section 2.1.1, the
output y takes the form of a solution of the PDE u and the function f in this case is the PDE
operator F . Since input parameters in Section 2.1.1 is a random variable θ, which is not always
the case in this setting, we introduce a new notation φ.

Simulating complex, multi-scale, and multi-physics systems as described by the equations
above poses significant challenges, primarily due to the extensive computational resources
required. These simulations demand sophisticated implementations using discretization tech-
niques, such as finite difference, finite element, or spectral methods, and can consume millions
of CPU hours on the most advanced supercomputers. To mitigate these high computational
costs, several general and domain-specific strategies have been developed [129,130]. Techniques
such as adaptive mesh refinement, subgrid parameterizations, and reduced-order modeling are
commonly employed. However, these methods typically necessitate a trade-off: reducing com-
putational demands often means accepting a lower fidelity in the approximation of the physical
system being simulated.

In the Section 2.2.9, we will discuss how SciML brings promise to address these challenges in
the forward simulation by allowing the possibility to learn from previous simulations, providing
more powerful computational shortcuts whilst having less impact on the simulation fidelity.
Additionally, several real-world multiscale systems are crippled by the so-called closure problem
(discussed in Section 2.2.7), where some quantities and processes cannot be fully prescribed
despite their effects on the simulation’s accuracy. SciML offers a promising solution to this
problem by learning the closure terms by combining traditional (physics-based) modeling with
data-driven (machine-learned) techniques.

2.2.3 Inversion

The goal of the inversion task is to estimate a set of latent parameters of a system given a
set of real-world observations of the system. Following the framework given by Eq. (2.37), it
amounts to estimating φ given u and F . For example, in the context of fluid dynamics, this
could involve estimating the viscosity of a fluid given some velocity/pressure observations of the
flow. Inverse problems can be challenging for a number of reasons. Firstly, the problem is often
ill-posed, meaning that the solution may not be unique or stable (also discussed in Section 2.1.4).
Secondly, the problem may be computationally expensive, requiring many forward simulations to
estimate the parameters. Finally, the problem may be high-dimensional, with many parameters
to estimate.

SciML offers a number of strategies to address these challenges. For example, one could
use a Bayesian approach to estimate the parameters (see Section 2.1.4), which would provide a
probabilistic estimate of the parameters and quantify the uncertainty in the estimate [47, 131,
132]. Alternatively, one could use a surrogate model to approximate the forward simulation,
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reducing the computational cost of the inversion [26, 133, 134]. Finally, one could use a hybrid
approach, combining physics-based and data-driven models to estimate the parameters [43,47].
These approaches are discussed in more detail in the following sections.

2.2.4 Scientific/model discovery

There are many situations where we lack a complete understanding of the system itself, meaning
we are uncertain how to define our physical model F given in Eq. (2.37). For instance, we
still do not have an adequate model of many processes within the earth’s climate system or to
understand the complexities of the human brain. Learning about a system, such as by discovering
its governing equations, is powerful because it can provide a general model of the system. This
can be seen as a different type of inversion problem where the entire physical model, or at least its
unknown parts, is inferred from observations of the system. This process is often very challenging
and inherits many of the difficulties associated with inversion tasks mentioned earlier.

SciML is aiding this discovery by allowing us to automate the process and/or learn about
complex processes. SciML approaches focus on discovering theories or equations that are con-
sistent with our existing knowledge of scientific systems. Discovering governing equations from
data goes back in time [135], but the recent advancements in deep learning and probabilistic
modeling have made this process more efficient and accurate [136]. For example, the recently
introduced framework of Sparse Identification of Non-linear Dynamics (SINDy) [137] that can
select a parsimonious structure of the model of a dynamical system in an appropriate basis of
feature transformations. Another example can be identifying the closure model [24] (see Section
2.2.7) for a system by learning the missing terms in the governing equations.

2.2.5 Surrogate forward modelling

The primary objective of surrogate forward modeling is to build computationally efficient ML-
based surrogates of a physics-based forward model [22, 138] (see Eq. (2.37)). Although F is
assumed to be accurate, the original function might be complex and specific to a particular
design problem, whereas surrogate models are usually simpler and drawn from generic classes
of functions, such as various neural network architectures used in deep learning [134]. The sur-
rogate’s parameters are determined through a training process to imitate the original function.
The training only requires access to the mechanistic forward model F to produce synthetic
simulations of the solution vector u instead of ground-truth observations of u.

In deep-learning-based surrogates, automatic differentiation [46] is inherently available within
the machine learning framework. Surrogates can be differentiable even if the original function is
not, and their evaluation, including derivatives, is significantly faster due to vectorization and
hardware parallelism in GPUs and TPUs [3]. The availability of gradients thus bypasses the
issues posed due to the lack of the gradients as discussed in Section 2.2.10. However, training
surrogates requires numerous evaluations of the original function, scaling with the number of
design parameters. Additionally, a poorly trained surrogate can introduce bias in subsequent
analyses.

2.2.6 Reduced order Modeling

Reduced-order modeling (ROM) seeks to create a simplified representation of the physics-based
model F using lower-dimensional forms of the relationships between the inputs φ and outputs
u. Like surrogate modeling, it relies on synthetic data from a high-fidelity, complete model.
However, rather than just replacing F with a computationally efficient surrogate, reduced-
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order modeling aims to uncover a reduced set of equations or relationships that capture most
of the system’s dynamics.

For instance, in fluid dynamics, a system might have a low-rank structure with a low-
dimensional manifold within high-dimensional data. Reduced-order models exploit this to de-
velop more manageable models for the system’s spatio-temporal evolution [139]. This approach
requires full knowledge of the governing equations of F to learn their reduced representations,
unlike surrogate forward modeling, which does not need complete knowledge of these equa-
tions. The goals of reduced-order modeling are twofold: to enhance computational efficiency in
forward modeling and to discover key relationships between inputs and outputs. In several real-
world cases, ROM leads to unclosed terms in the equation system which is colloquially referred
to as the closure problem (see Section 2.2.7). The unclosed terms demand further modeling,
which can be done using SciML techniques. ROM has extensive literature in fluid dynamics,
structural mechanics, and other fields, with applications in real-time simulations, uncertainty
quantification, and optimization. For more details, the reader is directed to [124,140].

2.2.7 Closure Modeling

Closure problems are omnipresent [24,52]. They arise when a physical model that describes cer-
tain quantities of interest is created, which depends on quantities that are not of prime interest
but whose effect cannot be neglected. This can be understood in the context of multiscale prob-
lem in which the quantities of interest are associated with large scales, but depend on quantities
associated with small scales. If these small scales are not resolved, the large-scale equations
are unclosed. A notable example can be found in numerical weather prediction, which aims to
forecast tomorrow’s weather based on the physical laws governing fluid dynamics and today’s
atmospheric conditions. Although these laws theoretically encompass all pertinent physics, in
practice, certain phenomena like cloud formation occur on such small spatial and temporal
scales that it is impossible to accurately resolve (simulate) them on a computer. Despite this,
their impact on weather is significant.

Closure models are referred to by various names across different fields [24]. The term clo-
sure is most common in the fluid dynamics community which also spearheaded the research,
specifically addressing the turbulence closure problem [2,4, 141] and often known as subgrid or
subgrid-scale (SGS) models. In numerical weather prediction and climate science, this concept is
termed parameterization, with the development of accurate and stable parameterizations being
a major challenge [142]. This terminology is also used in general circulation models, includ-
ing those for the atmosphere and oceans [16]. In materials science, molecular dynamics, and
computational biology, the concept is referred to as coarse graining [132,143].

Typically the construction of closure models consists of two steps: (i) postulating a model
form ansatz; and (ii) fitting/learning/inferring model parameters on the basis of the available
data. Mapping the effect of small scales on the large scales involves non-trivial approximation,
which is typically strongly nonlinear. Therefore machine learning methods form a promising
approach to address the closure problem, given their ability to approximate complex functions.
Consequently, a hybrid approach (ref. Section 2.2.9.3) to the closure problem has become a
popular research field, involving a combination of a physics-based model (e.g., differential equa-
tions) describing the large scales and a machine-learning based model (e.g., neural network)
to approximate the effect of the small scales. Such approaches fall within the realm of what
is now known as scientific machine learning. Combining physics-based models with machine
learning models is essentially the idea behind SciML. Additionally, when any sort of model is
learned, it is important to quantify the uncertainty in the model predictions (see Section 2.1).
This is particularly important in the context of closure models, where the model is used to
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predict quantities that are indirectly observed and potentially limited/sparse. Therefore, this
implies adopting a probabilistic approach to the closure problem. Furthermore, owing to the
high dimensional parametric space in multiscale problems, a gradient based learning scheme is
often desired. This necessitates the need for differentiable physics to enable the flow of gradi-
ents between machine learning model and the physics-based model which is discussed in Section
2.2.10.

Mathematical Formulation To provide a formal treatment to the closure modeling, con-
sider the physical system given by Eq. (2.37) as the full model. The space and time discretized
version of the full model is given is referred to as the high fidelity model. The degree of free-
dom or spectral content of the solution u can be reduced, e.g., through filtering, averaging or
projection via a reduction operator A to obtain a reduced field ũ:

ũ = A[u]. (2.38)

Now the task amounts to calculating the accurate approximation to ũ. Since F [ũ;φ] ̸= 0 (as
the operators A and F doesn’t commute), ũ is not generally a solution. A common approach
is introducing a parameterized reduced model

F̃ω[ṽ;φ] = 0, (2.39)

which describes an approximation ṽ ≈ ũ that does not depend on u. Here ω denotes parameters
of parameterized functions (e.g., neural networks, polynomials, etc.) that need to be learned. The
solution to Eq. (2.39) generally would not yield the reduced field ũ, since ũ requires knowledge
of the full solution u (ref. Eq. (2.38)). This model F̃ω should be much faster to solve than the
original high fidelity model, while retaining most of the accuracy. Naturally, the challenge now
amounts to discovering an expression for F̃ω which is non-trivial owing to the often nonlinear
and chaotic behavior of the full model F , thus placing the closure modeling in the setting of
model discovery (also see Section 2.2.4). Introducing a commutator error C, we get

F [ũ;φ] +C[u, ũ;φ] = 0. (2.40)

Now the commutator error C can be approximated by a closure model Cω[ũ;φ], giving the
expression of F̃ω by

F̃ω[ṽ;φ] := F [ṽ;φ] +Cω[ṽ;φ] = 0, (2.41)

Oftentimes, the F operator involves the divergence of the stress tensor (e.g., fluid flow and
material science applications), thus the closure model takes the form ∇·Cω[ṽ;φ]. For instance,
in the context of the Reynolds-averaged Navier-Stokes (RANS) equations with Smagorinsky
model [2], the reduced model is given by

F̃ω[ṽ;φ] :=
∂v

∂t
+∇ · (v ⊗ v)−∇ · (2νS(v)) +∇p̄︸ ︷︷ ︸

F [·]

−∇ · (νt(ω)S(v))︸ ︷︷ ︸
∇·Cω [·]

, (2.42)

where S(ṽ = 1
2(∇ṽ+(∇ṽ)T ) represents the strain rate tensor, p denotes the pressure and νt(ω)

represents the eddy viscosity parameterized by a NN. The goal may amount to fine-tuning the
parameters ω such that the solution ṽ matches as closely as possible to mean velocity/pressure
ũ obtained from the high fidelity model e.g., Large Eddy Simulation (LES)/Direct Numerical
Simulation (DNS). Thus we have a hybrid approach wherein the resulting PDE consists of the
known physics (F [ṽ;φ]), plus learned physics (neural network approximation to the closure
model).
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Learning For approaching the closure problem in terms of the objective function that is
being minimized, two broad strategies exist [52], a priori learning and a posteriori learning
(also illustrated in Figure 2.7). In a priori learning, a limited number of training solutions u
are generated by solving the high fidelity model, from which ũ can be extracted by applying
the filtering operator A[·]. These training solutions are then used to train the closure model Cω

by minimizing some loss function e.g., mean squared error, i.e., L := ∥Cω[ũ;φ]−C[u, ũ;φ]∥2.
In addition, this means that a priori learning amounts to residual minimization. The main
advantage of the a priori approach is the relative ease of training (no differentiable solvers
needed). However, a major disadvantage of this approach is that the solution of the reduced
model is not part of the error metric, so instability and drift can lead to inaccurate solutions
(termed as model-data inconsistency) [141,144]. This a priori approach is extensively employed
in the fluid dynamics community [28–30,48,145,146].

An alternative approach that addresses some of the issues of a priori learning is a posteriori
learning. Here, in addition to the possibility of residual minimization of the PDE, a posteriori
learning offers a second possibility, namely solution error minimization i.e., L := ∥ṽω − ũ∥2.
This involves solving the reduced order model equations F̃ω to get the solution vector ṽω and
the training data ũ generated from high fidelity models. This leads to a major advantage as
one directly targets the accurate approximation of ũ, which is typically the quantity one is
interested in. For instance, in RANS, one would be more interested in an accurate representa-
tion of the mean fields, i.e., the pressure and the velocity predictions rather than an accurate
Reynolds stress (the unclosed term in RANS). This approach has been shown to improve sta-
bility compared to a priori learning, thus addressing the problem of the model consistency in
a priori learning [141, 144]. However, involving the solver in the training process makes the
optimization problem more difficult to solve, and differentiable solvers are typically needed. In
order to compute ∂L/∂ω, the Jacobian ∂ṽ/∂ω is needed. This requires code that solves F̃ω

to be differentiable, or that an adjoint solver is available, which provides a major implemen-
tational bottleneck. In addition to a posteriori learning, the approach is known under various
other names, such as solver-in-the-loop [39], end-to-end learning [41, 42], differentiable physics,
and online learning [40,43]. The differentiable physics is further discussed in the Section 2.2.10.

φ Physics model
F (u;φ)

u
Reduction operator

A[u] ũ

Loss function
L(·)

Optimizer

PDE residual
F̃ω(ṽ;φ)

ṽ

ω
ω

Figure 2.7: A graphical comparison between the a priori and posteriori closure modeling ap-
proaches. The output of the high fidelity physical model is passed through a reduction operator to
get ground truth solution ũ. In green, is the a priori learning approach, where the closure model is
trained to minimize the discrepancy between the closure term Cω(ũ;φ) and the true closure term
or the commutator error C[u, ũ;φ]. In blue, is a posteriori learning approach, where the closure
model is trained to minimize the residual of the PDE (given by Eq. (2.41)) and the discrepancy
between the solution vector ṽ and the ground truth ũ. The optimizer updates the parameters ω of
the closure model.

38



2.2. Probabilistic and Scientific Machine Learning

Physical constraints The reduced model forms for F̃ω vary in the extent of incorporated
known physics. Depending on the application, further integration of physical knowledge into F̃ω

or the objective function is often possible through various possible approaches in SciML, dis-
cussed in Section 2.2.9. This further integration ensures that the physical laws like conservation
and invariance are satisfied. An example is tensor-basis neural networks (TBNNs) [28, 145] for
the turbulence closure problem which models the closure term as a linear expansion of strain
and rotation tensors following Pope’s generalized eddy viscosity hypothesis [147] while ensuring
the Galleian invariance.

For more details on the closure problem and SciML strategies to address it, the reader
is directed to [24, 52, 148, 149]. In Paper B [48], we use the SciML paradigm to address the
turbulence closure problem and employ a-priori training and TBNN based hard constraints. In
Paper A [47], we combined the three paradigms: probabilistic modeling, SciML and differentiable
physics to address the turbulence closure problem. Additionally, we employ a-posteriori training
and TBNN based hard constraints.

2.2.8 Optimization involving physics-based models

Optimization is a fundamental task in science and engineering, where the goal is to find the best
design or set of parameters that optimize a given objective function. In the context of physics-
based models, optimization can be used to find the optimal design of a system that minimizes
drag, maximizes efficiency, or achieves some other desired outcome. Optimization problems
can be deterministic or involve uncertainty, and they can be constrained or unconstrained.
The optimization process can be computationally expensive, especially when the objective and
constraint functions are not differentiable, as is often the case with physics-based models. SciML
approaches can help address these challenges [22, 138, 150, 151] by providing efficient methods
for gradient estimation, surrogate modeling, and uncertainty quantification.

Deterministic Optimization In deterministic optimization, we are interested in finding the
optimal design to minimize (or maximize) a given objective (potentially involving a complex
physics-based model), possibly under specific constraints. Following the notation introduced in
Section 2.1.1 (with slight notational abuse), the optimization problem can be written as

min f(φ)

s.t. ci(φ) ≤ 0, i = 1, . . . , nc,
(2.43)

where φ ∈ Rddet is the deterministic design variable (here, we assume the forward model doesn’t
have any stochastic inputs), f(φ) : Rddet → R is the scalar valued objective function, and
{ci : Rddet → R}nc

i=1 are the set of constraint functions. For example, considering Navier-Stokes
example, the optimization problem could involve finding the optimal wing shape that minimizes
drag. The optimization pipeline is graphically illustrated in Figure 2.8. As can be seen from
the figure, the optimization process proceeds iteratively, updating the current best design and
objective until convergence.

Extensive literature exists on various optimization approaches depending on the characteris-
tics of the objective and constraint functions. Examples include linear optimization, convex op-
timization, and nonlinear optimization [92]. Most of the methods rely on derivative information
regarding the objective and constraint functions. However, when the objective and constraint
functions are not differentiable, as is mostly the case when any sort of physics-based model is
involved, gradient-free optimization methods [152] are used.
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Deterministic
parameter

φ

Optimization
Optimal design

φ∗

Forward model
f(·)

Output
y := f(φ)

update

Figure 2.8: A graphical illustration of deterministic optimization involving physics-based models.
Note that we dropped the constraint notation for ease of representation.

Optimization under uncertainty The optimization under uncertainty (OUU) attempts to
answer the following question: What is the optimal choice of deterministic inputs (of the physical
model) which yields the best value for a chosen output statistic, given the inherent stochastic
parameters? Revisiting the Navier-Stokes example, the OUU problem would involve finding
the optimal design (on average for example) of a wing shape that minimizes drag, given the
uncertainty in the air density and velocity. The OUU can also be viewed as a generalization
of deterministic optimization, where random variables are added to the optimization problem.
This addition of randomness introduces complexity to the problem, which is why such problems
are often referred to as stochastic optimization. The goal of OUU is to find a robust solution
that remains effective despite the uncertainties present in the system, leading to the alternative
term robust optimization. The resulting OUU problem can be formulated as

min Rf (φ,θ)

s.t. Rci(φ,θ) ≤ 0, i = 1, . . . , nc,
(2.44)

where θ is a random variable as defined earlier in Section 2.1.1, Rf and Rci are measures of
robustness or risk [62] for objective and constraint functions, respectively.

When physics-based models are used in the optimization, the uncertainty encapsulated by
the random vector θ can arise from various sources, such as model parameters, boundary con-
ditions, or initial conditions. OUU is particularly important in engineering design, where the
performance of a system can be affected by uncertainties in the environment, materials, or op-
erating conditions. By incorporating uncertainty into the optimization process, engineers can
design systems that are more reliable, efficient, and cost-effective. Assume the objective and
constraints to be square integrable with respect to φ, i.e., the variance is finite. The most
commonly used robustness measure is the expected value of the objective function, which is
minimized over the random variables. This leads to the formulation of the expected value op-
timization problem, which is a special case of OUU. The expected value optimization problem
can be written as

min Eθ[f(φ,θ)]

s.t. Eθ[ci(φ,θ)] ≤ 0, i = 1, . . . , nc.
(2.45)

The expected objective value yields an average-optimized design, while the set of expected
constraint values indicates expected feasibility.

The OUU workflow is graphically illustrated in Figure 2.9. In the figure, on a high level,
there exist three layers contributing to the computational cost which is a major challenge in
OUU, more so when a physical model is involved. The first is the physical model f(·) itself which
in most physics and engineering cases can be prohibitively expensive to carry out the OUU. In
such scenarios, resorting to ROMs (Section 2.2.6) or surrogate models (Section 2.2.5) are very
common. The second is the OUU layer (dashed arrow in the Figure 2.9) which benefits from
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fast convergence i.e., requiring least amount of optimization steps. This is contingent on the
availability and the quality of gradients which can be obtained using adjoint methods or other
gradient estimation techniques (if not available inherently, as is often the case with physics-based
models). To address the issue of differentiability whenever physics-based models are involved in
optimization/inference, the field of differentiable physics has emerged, which is also a central
pillar of this thesis. We will discuss this in Section 2.2.10. There exist both gradient-based and
gradient-free methods for OUU [37, 92]. The gradient-based methods are more efficient and
require fewer function evaluations, but they are sensitive to the quality of the gradients. The
gradient-free methods, on the other hand, are more robust but require more function evaluations.
The choice of method depends on the specific problem and the computational resources available.
The third layer (solid arrow in the Figure 2.9) is the uncertainty propagation layer which is also
computationally expensive. This layer is responsible for propagating the uncertainty in the
system through the physical model. The computational cost of this layer can be reduced by
using multi-fidelity methods [68] for example. We address the second and the third layer in
Paper E [51]. Summarallily, to enable the OUU with gradient-based methods, we introduce
an efficient method for well-behaved gradient estimation coupled with multi-fidelity methods.
Optimization is a vast field. For further details, the reader is directed to [36,37,92,152–154].

Deterministic
parameter

φ

Optimization under
Uncertainty

Optimal design
φ∗

Uncertain
parameter

θ

Forward model
f(·)

Output
y := f(φ,θ) ∼ p(y)

Quantity
of interest
(e.g., E[y])

update

Figure 2.9: A graphical illustration of optimization under uncertainty. The inner loop (in solid
arrow) is the forward uncertainty propagation (given in Section 2.1.3) and follows similar notation
as in Figure 2.1, and the outer loop (in dashed arrow) is the optimization loop.

2.2.9 Overview of methods in SciML

In this section, we will provide a broad overview of SciML approaches and their high level
categorization, but before that, we will motivate the need for the wide spectrum of algorithms.
Adhering to physical laws like conservation and invariance is crucial for the widespread use of
machine learning models in computational physics. Data-driven models that comply with these
laws enhance interpretability, generalization, robustness, and data efficiency. Consequently, there
is a concerted effort to develop algorithms with embedded constraints to avoid violating physical
laws. Based on the degree to which the scientific principles are enforced, constraints in data-
driven models can be soft or hard. Soft constraints use data augmentations or weak penalties in
loss functions to approximate constraint satisfaction. An example is Physics Informed Neural
Networks (PINNs) (discussed in Section 2.2.9.1), which penalize deviations from governing laws
as a residual term in model optimization. These models are typically easier to construct and
integrate into existing workflows. Conversely, hard constraints involve designing machine learn-
ing models to inherently satisfy constraints (see Section 2.2.9.4), an example is the tensor-basis
neural networks (TBNNs) [28, 145]. Though these algorithms require more time for construc-
tion, training, and deployment, they ensure constraint satisfaction during both interpolation
and extrapolation.

The methods commonly used to infuse scientific knowledge into the ML can also be cate-
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gorized on a high level based on different ways to incorporate the scientific knowledge, e.g., by
adding the knowledge of the governing equations in the loss function itself (see Section 2.2.9.1,
Section 2.2.9.2), by adjusting the architecture of the NN so as to conform to physics (see Sec-
tion 2.2.9.4), and by using hybrid methods which integrates both physics-based and ML models
tightly in a hybrid fashion (see Section 2.2.9.3, and also Section 2.2.10 as the hybrid approaches
mostly necessitate differentiable physics).

We will now discuss a few well-adopted methods and/or methods relevant to this thesis in
the following sections. We would like to point out that we discuss only a handful of methods
here, and the field is vast with many more methods and approaches that are being developed
and used in practice, with different ways to categorize them. To point out a few, [155, 156]
combined the probabilistic methods with SciML by introducing physical features in the loss
function in a Bayesian setting. They achieved this by making the probabilistic model privy to
the physical constraints by means of pseudo-observed nodes in the probabilistic graphical model,
thus allowing to decide how strong the constraints are enforced by setting the relevant standard
deviation of the virtual observable. Another recent and very promising direction is the foundation
models [157] for scientific domains. These generalist models are pretrained, at-scale, on large
datasets drawn from a diverse set of data distributions. They leverage the intrinsic ability of
neural networks to learn effective representations from pretraining and are then deployed on
a variety of downstream tasks by finetuning them on a few task-specific samples. Examples of
foundation models for scientific domains include robotics [158], chemistry [159], biology [21],
climate [15,17] and medicine [160]. Very recently, [161] proposed a foundation model for PDEs.
They claim to outperform the baselines in terms of sample efficiency and accuracy, and claim
to generalize well to unseen and unrelated PDEs. For a more detailed treatment of the broad
field of SciML, the reader is directed to [12–14,19,124].

2.2.9.1 Physics-Informed Neural Networks

Following the discussions in the surrogate modeling section (Section 2.2.5), to train the ML-
based surrogate of F , along with simulation data produced by F , one can also leverage the
governing equations of the physics-based model if it is available. This gives surrogate models
that are generalizable as well as scientifically consistent. One of the promising lines of research
in SciML for surrogate modeling includes the development of physics-informed neural networks
(PINNs) [25] for solving PDEs in a more computationally efficient way than existing physics-
based solvers.

PINNs model the solution of a PDE with a neural network and incorporate the residual of the
PDE as an additional term in the loss function as a soft constraint, which is minimized to find
the optimal parameter values. The method, therefore, can be described as a collocation method
that employs a neural network as the trial function. Following the notations in Eq. (2.37),
PINNs aim to model the solution uω(x) with a NN with parameters ω. The loss function for
the PINNs is given by

LPINNs = Lboundary + Lphysics, (2.46)

where Lboundary is the boundary loss term that measures the discrepancy between the pre-
dicted solution and the observed data in a domain (typically at the boundaries), and Lphysics

is the physics loss term that measures the discrepancy between the predicted solution and the
governing PDE. The physics loss term is given by

Lphysics =
1

Ncol

Ncol∑
i=1

∥F [uω(xi);φ]∥2, (2.47)
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where Ncol are the number of collocation points in the domain, {xi} are the set of points sampled
over the entire domain. The boundary loss term is given by

Lboundary =
1

Nb

Nb∑
i=1

∥uω(xi)− uobs(xi)∥2, (2.48)

where Nb is the number of data points at the boundary, xi are the spatial coordinates of
the data points, and uobs(xi) are the observed data at the boundaries. Intuitively, the physics
loss pushes the neural network to learn a solution which is consistent with the underlying
differential equation, while the boundary loss attempts to ensure the solution is unique by
matching the solution to the known boundary conditions. Due to its ease of implementation
and ability to leverage the governing equations, PINNs have been successfully applied to a wide
range of problems in scientific computing, including fluid dynamics, heat transfer, and structural
mechanics to name a few [5,130,162,163].

2.2.9.2 Operator learning for physics

This section discusses approaches that incorporate governing equations into their loss functions,
wherein they learn an entire family of solutions by including certain inputs of the PDE (e.g.,
φ in Eq. (2.37)) as inputs to the network. This is unlike the PINNs, which only learn a single
solution. These methods are particularly useful when the governing equations are known but
the initial or boundary conditions are not. Consequently, they do not require retraining for new
simulations and provide a fast surrogate model during inference. Mathematically, the objective
is to learn an operator that maps function spaces to function spaces, rather than just a single
function. More specifically, the objective is to approximate the solution operator Gsol : Θ → U
with an operator Gsol,ω : Θ → U parameterized by tunable ω, where Θ is the space of input
functions and U is the space of solutions.

These approaches include algorithms that approximate a discretization, on a fixed grid of
the underlying solution operator. These can be based on convolutions [164], graph neural net-
works [151,165], or transformer architectures [166,167]. Other operator learning algorithms are
neural operators which can directly process function space inputs and outputs. These include
physics-informed deep operator networks [168] which essentially conditioned PINNs on input
functions of the differential equation by using the Deep Operator Network (DeepONet) archi-
tecture introduced by [26]. They showed that this approach was able to learn fast and accurate
surrogate models of the solution to a nonlinear diffusion-reaction system given the source term
of the equation as input, and of the solution to Burgers equation given the initial condition
as input. Towards a similar goal, [27, 133] proposed Fourier Neural Operators (FNOs) that
learn an operator to map between function spaces by using a series of stacked Fourier layers,
where the input to each layer is Fourier transformed and truncated to a fixed number of Fourier
modes. They showed that FNOs could learn the solution to the Navier-Stokes equations and
the Schrödinger equation with high accuracy and efficiency.

2.2.9.3 Hybrid approaches

Hybrid approaches aim to integrate both physics-based and machine learning (ML) approaches
to achieve superior predictive performance compared to models relying solely on ML or scientific
methods. As introduced in [14], there are two primary types of hybrid-science-ML modeling
techniques. The first type, known as combination-based approaches, involves simultaneously
running both the science-based and ML models to generate enhanced output variable estimates
with improved predictive accuracy compared to the actual observations (addressing the scientific
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task discussed in Section 2.2.2). Differently put, in this approach, physics-based models are fed
into the ML model that finally predicts the target variables. An example of this is the long-
standing practice in the scientific community of using statistical methods, often linear regression,
to model the residuals of science-based models, a technique known as residual or discrepancy
modeling. This method provides better predictive accuracy than using science-only or ML-only
models.

The second type is embedding-based approaches, where ML models are intricately integrated
within the framework of the science-based model to estimate intermediate quantities and pa-
rameters that are challenging to determine directly due to high computational costs. In other
words, ML methods are trained to predict parameters of physics-based models, which when fed
into the forward models produce better estimates of the output variables. An example of this is
closure modeling (see Section 2.2.7), where ML models are used to estimate the closure terms in
the governing equations of the physical model, which are often challenging to determine directly
due to the high computational costs associated with resolving the small-scale physics [4,47,52].

The hybrid approaches are reliant on a seamless flow of gradient information between the
ML model and the physics-based model, which necessitates the need for differentiable physics.
Attaining differentiability is challenging, especially for the legacy solvers as it poses massive
implementational effort. A typical scenario for the hybrid approach is illustrated in the Figure
2.10 in the context of differentiable physics, and more details can be found in Section 2.2.10.

2.2.9.4 Physics guided ML architecture

Physics guided ML architecture is the set of approaches that change the architecture of the ML
algorithm so that it incorporates scientific constraints. Instead of treating the ML algorithm
as a black-box, we modify its design to adhere to these constraints in a hard fashion. For deep
learning techniques, this often involves altering the neural network architecture. Integrating
scientific principles in this manner can limit the range of models the algorithm can learn,
leading to more generalizable and interpretable models. From a machine learning standpoint,
this introduces a strong inductive bias into the model.

There are several possible directions for building SciML architectures. We will discuss a
few here. First, one can design ML architectures that encode known forms of invariances and
symmetries in the predicted outputs of the system. For example, [28,145] proposed rotationally
invariant tensor basis neural networks for estimating the Reynolds stress anisotropy tensor in
turbulent flows. They ensured the neural network’s prediction stayed the same when the input
axes of the flow were rotated, by noting that the anisotropy tensor lies on a basis of isotropic
tensors and by using the neural network to predict the coefficients of the tensor in this basis.
They found that this approach provided more accurate flow predictions than a generic neural
network architecture. Second, in applications where scientific knowledge is available in the form
of relationships between physical variables, SciML architectures can be designed to encode such
knowledge in the connectivity patterns of nodes in a neural network architecture. An example
of previous research in this direction includes the framework of physics-guided architecture of
Long Short Term Memory (LSTM) (PGA-LSTM) models [169] that can encode monotonic
relationships between density and depth of water as connections between LSTM node features
in the illustrative application of lake temperature modeling. Third, SciML architectures can
also be constructed where the sequence of intermediate features extracted at the hidden layers
of a neural network are informed by scientific knowledge. An example of previous work in this
direction is the framework of PhyNet [170] developed for modeling multi-phase flow, where
the features extracted at the hidden layers of the network correspond to physically meaningful
intermediates in the known scientific pathway from inputs to outputs.
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2.2.10 Differentiable physics

A more potent hybrid methodology in the SciML (see Section 2.2.9.3) involves elucidating the
inner workings of a conventional algorithm (e.g., physics-based models) and seamlessly embed-
ding machine learning (ML) models within it. This integration facilitates a finer balance between
the two paradigms. ML can be employed in areas where problem-solving remains ambiguous
or where the conventional process is computationally intensive, while traditional components
are preserved where robust and interpretable results are essential. This approach frequently
enhances the performance of the traditional workflow, with the added benefit that the ML com-
ponents are easier to train, more interpretable, and demand fewer parameters and less training
data compared to a purely ML-driven approach.

A general approach to doing so is to make the physics-based model differentiable, i.e., collo-
quially known as differentiable physics [39, 40, 43]. We require the embedding of these physical
computations and/or simulations into the probabilistic graphical model and therefore the com-
putational graph defined by it, thus combining the paradigms of probabilistic programming and
differentiable programming [46]. Quoting [36], “Differentiable programming is a programming
paradigm in which complex computer programs (including those with control flows and data
structures) can be differentiated end-to-end automatically, enabling gradient-based optimiza-
tion of parameters in the program.” In particular, the central realization of this field is that
many traditional scientific algorithms can be written as a composition of basic and differen-
tiable mathematical operations (such as matrix multiplication, addition, subtraction, etc), and
that modern automatic differentiation and differential programming languages [46] make it easy
to track and backpropagate the gradients of these outputs with respect to their inputs. This
unlocks the possibility of inserting and training gradient-based ML components (such as neural
networks, SVI, etc.) within traditional workflows, whereas otherwise it may have been difficult
to do so. This is particularly important in several of the challenges discussed in the thesis and
addressed by the authors work, like the closure problem (see Section 2.2.7 and Paper A [47]),
Bayesian inference (see Section 2.1.4, Paper A [47] and Paper C [49]), and optimization involv-
ing physics-based based simulators (see Section 2.2.8 and Paper E [51]). A typical scenario of
the need for differentiable physics is illustrated in Figure 2.10. We categorize the ways to make
a physical simulator differentiable in three main ways: i) rewriting the physics-based model in
a differentiable programming language like PyTorch, JAX, or TensorFlow to obtain gradients
via automatic differentiation (Section 2.2.10.1), ii) the adjoint method (Section 2.2.10.2), and
iii) surrogate models (Section 2.2.5). Finite differences are in principle also possible but re-
quire for the simple forward difference n+1 simulations for one gradient estimate with n being
the dimensionality of the parameter space. This is computationally expensive and not feasible
for high-dimensional parameter spaces. Recently, automatic differentiable (AD) compiler meth-
ods [171] have emerged, providing gradients of legacy codes written in C, C++, Fortran, etc.
These methods are in their early stages of development and the reader is directed to [171] for
more details.

2.2.10.1 Automatic Differentiation

Automatic differentiation [36,46] (or also algorithmic differentiation) essentially refers to the au-
tomated differentiation of computer programs, i.e., providing gradients and higher-order deriva-
tives without any additional implementation overhead and ideally for a numerical cost roughly
comparable to the forward pass. The elementary operations involved in automatic differenti-
ation are represented by a directed acyclic graph (DAG). In this graph, nodes correspond to
elemental operations, while edges represent the inputs and outputs between preceding and suc-
ceeding nodes. Gradient information can be acquired in multiple ways: forward mode automatic
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û

Gradient
∇ωL

Optimizer

∂L
∂u

∂u
∂φ !!

∂φ
∂ω

Figure 2.10: Graphical model for the hybrid approach of SciML i.e., involving both physics models
and neural networks. Notation follows from our previous discussions. The observed data is given by
û. The loss function L(·) can be e.g., MSE, ELBO, likelihood, etc. The gradient computation of the
loss function w.r.t the neural network parameters ω is usually impeded by the lack of gradients of
the phsyics-based model (in red). Addressing this impediment is the goal of differentiable physics.

differentiation relies on tangent linear code, propagating linear perturbations through the model
and hence directional derivatives. However, this approach becomes prohibitively expensive for
higher dimensions.

More applicable to our problem is reverse mode automatic differentiation, which begins with
a forward pass to compute all nodal values of the DAG. It then uses the linearized model to
backpropagate gradient information in the form of the adjoint value. This method is analogous
to the backpropagation algorithm commonly used in neural networks and the adjoint partial
differential equation (PDE) approach (see discussion in the following section). The implemen-
tation of reverse mode automatic differentiation is most commonly achieved by overloading the
forward operations with their corresponding backward operations. This is done by defining the
forward operations in a way that they store the necessary information for the backward pass.
The backward pass then uses this information to compute the gradients. This is the approach
taken by modern automatic differentiation libraries like PyTorch [172], TensorFlow, and JAX.
Thus, one way to bypass the gradient bottleneck posed in Figure 2.10 is to rewrite the physics-
based simulator using a framework allowing automatic differentiation. However, this might pose
significant implementation challenges, often involving extensive modifications to legacy codes.

2.2.10.2 The Adjoint Method

From the viewpoint of automatic differentiation we can consider the discretized solution of the
partial differential equation as a node in the computational graph. Following Figure 2.10, the
mapping is from the parameters of the PDE φ ∈ Rdφ to the solution of the PDE u ∈ Rdu . In
contrast to explicit layers such as exemplarily feedforward or convolutional layers, the mapping
implied by the discretized partial differential equation is only defined implicitely by a numerical
residual F (u;φ) = 0, which acts as an implicit layer [173]. We assume F ∈ Rdu from a suitable
numerical discretization scheme. To this end, the objective amounts to computing gradients of
some functional L(·) involving the PDE w.r.t the parameters φ, e.g., the functional can be the
ELBO with the joint distribution involving the PDE, or the MSE.

We now consider the mathematical formulation of the adjoint method, employing the hybrid
approach illustrated in the computational graph depicted in Figure 2.10. Following the notations
in Figure 2.10, the gradient of the functional L w.r.t the parameters ω can be computed by the

46



2.2. Probabilistic and Scientific Machine Learning

chain rule as

dL
dω

=
∂L
∂u

∂u

∂φ

∂φ

∂ω
. (2.49)

The bottleneck in the above is the derivative of the solution of the PDE w.r.t. to the parameters,
i.e., ∂u/∂φ (marked red in Figure 2.10). This is where the adjoint method comes into play. For
the solution and parameter to satisfy the PDE, the residual must vanish, i.e., F (u;φ) = 0.
Differentiating the residual w.r.t. the parameters φ gives

∂F

∂φ
=

∂F

∂u

du

dφ
+

∂F

∂φ
= 0 (2.50)

=⇒ J =
du

dφ
= −

(
∂F

∂u

)−1 ∂F

∂φ
, (2.51)

given ∂F /∂u is invertible. Now the gradient of the functional w.r.t. the parameters can be
computed as

dL
dφ

=
∂L
∂u

[
−
(
∂F

∂u

)−1 ∂F

∂φ

]
. (2.52)

Taking the hermitian transpose of the above equation, we get(
dL
dφ

)T

= −
(
∂F

∂φ

)T (
∂F
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)−T (
∂L
∂u

)T

. (2.53)

Let us gather the solution of the inverse Jacobian acting on a vector, and define it to be a new
variable:

λ =

(
∂F

∂u

)−T (
∂L
∂u

)T

. (2.54)

=⇒
(
∂F

∂u

)T

λ =

(
∂L
∂u

)T

. (2.55)

This relationship is the adjoint equation (or adjoint system) associated with the PDE F (u;φ) =
0. The adjoint equation is a linear PDE that can be solved to obtain the adjoint vector λ ∈ Rdu .

In practice, the Jacobian matrix
(
∂F
∂u

)T
is never stored in memory as it can be huge, instead the

action of the Jacobian on the vector is computed.
(
∂F
∂u

)T
is commonly referred to as the adjoint

operator. By taking the transpose, we reverse the flow of information in the equations system.
For example, if a tracer is advected downstream (and so information about upstream conditions
is advected with it), the adjoint PDE advects information in the reverse sense, i.e. upstream.
In fact, the adjoint system is the same idea as the reverse mode of algorithmic or automatic
differentiation. Each component of the solution will have a corresponding adjoint variable. For
example, if F is the Navier-Stokes equations, and u is the tuple of velocity and pressure, then
λ is the tuple of adjoint velocity and adjoint pressure. The adjoint variable can then be used to
compute the gradient of the loss function w.r.t. the parameters ω as

dL
dω

= −λT ∂F

∂φ

∂φ

∂ω
, (2.56)
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where the last of the gradient matrix is obtained by the neural network auto-differentiation.
Usually, solving the adjoint system is extremely efficient when there are a small number of func-
tionals (outputs), and a large number of parameters (inputs), as the adjoint method is generally
independent of the number of parameters. This situation is very common PDE constrained op-
timization, where there is usually one functional (output), but many parameters. For further
details, the reader is directed to [174] and to Paper A [47], where we employ the adjoint method
to make the RANS solver differentiable and use it to solve the closure problem.
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3
Summary of Publications

This chapter provides short summaries of the publications that are part of this thesis. The
summaries are intended to provide a brief overview of the research problem, methodology, and
the main results of the publication. The summaries are organized in the order in which the
publications are attached in full in the thesis. The publications are attached in full in respective
appendix chapters in Part III.
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Chapter 3. Summary of Publications

3.1 Paper A

A probabilistic, data-driven closure model for RANS simulations with aleatoric,
model uncertainty

A. Agrawal, P.S. Koutsourelakis

Summary

The paper presents a novel, probabilistic, data-driven closure model for Reynolds-Averaged
Navier-Stokes (RANS) simulations. The model leverages a hybrid approach that tightly inte-
grates a RANS solver with a machine learning (ML) model, enabling end-to-end gradient-based
learning through an adjoint-based differentiable solver. The ML model is designed with hard
constraints to ensure physical symmetry and invariance, and it employs Bayesian learning us-
ing sparse, indirect data such as mean velocity and pressure, rather than direct Reynolds stress
data. The closure model incorporates both a parametric component, using neural-network-based
tensor basis functions, and a stochastic component that accounts for aleatoric model uncertain-
ties. A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order
to identify regions in the problem domain where the parametric closure is insufficient, allowing
for stochastic corrections to the Reynolds stress tensor. The proposed approach uses Stochastic
Variational Inference with Monte Carlo estimates and the reparameterization trick, combining
the parametric sensitivities from the differentiable RANS solver with automatic differentiation
from the neural network. The model is shown to produce accurate, probabilistic predictions
even in regions with significant model errors, as demonstrated in the complex case of flow re-
circulation and separation, the backward-facing step benchmark problem. In most cases, very
good agreement with the reference values were achieved and in all cases these were enveloped
by the credible intervals computed.

Contribution

(AA): Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation,
Visualization, Writing – original draft, Writing – review & editing. (PSK): Supervision, Writing
– review & editing.

Reference

Atul Agrawal and Phaedon-Stelios Koutsourelakis. A probabilistic, data-driven closure model
for RANS simulations with aleatoric, model uncertainty. Journal of Computational Physics,
page 112982, 2024

3.2 Paper B

Physics-Informed Tensor Basis Neural Network for Turbulence Closure Modeling
L. Riccius, A. Agrawal, P.S. Koutsourelakis

Summary

This work introduces Physics Informed Tensor Basis Neural Network (PI-TBNN), which ex-
tends the TBNN framework with an extensive feature set and an inductive bias in the form of
a physics-informed addition to the loss function. The addition to the loss function acts as a soft
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3.3. Paper C

constraint, designed to enhance predictions of the anisotropy tensor in turbulent flow simula-
tions, thereby improving the model’s ability to predict complex turbulence behaviors, which are
often beyond the capability of traditional Linear Eddy Viscosity Models (LEVMs). The model
is further refined by enforcing physical constraints such as symmetry and invariance as hard
constraints (already proposed in the TBNN framework), ensuring consistency with fundamental
fluid dynamics principles. Learning is performed using sparse observations of the Reynolds stress
tensor from various flow configurations, allowing the model to generalize effectively even in chal-
lenging scenarios. The proposed PI-TBNN method demonstrates significant improvements over
the TBNN in predicting anisotropy tensors in unseen flow configurations, particularly in cases
involving surface curvature and flow separation, which are traditionally difficult for LEVMs to
handle. These advancements are visually confirmed using barycentric map visualizations and
quantified by comparing relevant error matrices.

Contribution

(LR): Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation,
Visualization, Writing – original draft, Writing – review & editing. (AA): Conceptualization,
Methodology, Writing – review & editing. (PSK): Supervision, Writing – review & editing.

Reference

Leon Riccius, Atul Agrawal, and Phaedon-Stelios Koutsourelakis. Physics-informed tensor ba-
sis neural network for turbulence closure modeling. Workshop on Machine Learning and the
Physical Sciences (NeurIPS 2023), 2023

3.3 Paper C

From concrete mixture to structural design - a holistic optimization procedure in
the presence of uncertainties

A. Agrawal, E. Tamsen, J. F. Unger, P.S. Koutsourelakis

Summary

This work introduces a systematic design framework aimed at promoting sustainability within
the precast concrete industry. By employing a holistic optimization procedure, the framework
seamlessly integrates concrete mixture design with structural simulations in a joint, forward
workflow that is ultimately designed to be inverted. This approach allows for the exploration of
new concrete mixtures beyond traditional ranges, ensuring that the design process accommo-
dates various uncertainties, whether aleatoric or epistemic, particularly when calibrating phys-
ical models or identifying gaps in the workflow. One of the central challenges in this process is
inverting the established causal relationships, especially when dealing with physics-based models
that often lack derivative or sensitivity information, or when design constraints are present. To
address these challenges, the work advocates for the use of Variational Optimization, enhanced
with specific extensions and heuristics, to overcome the difficulties of handling black-box solvers
and non-linear constraints within the workflow, while also managing parametric uncertainties.
The framework also includes a model discovery method that leverages noisy and incomplete
experimental data, along with finite element simulations, to learn the missing links between
concrete mixture design variables and the parameters used in physics-based models. The ap-
plicability of this comprehensive optimization framework is demonstrated through the design
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of a precast concrete beam. The objective of this design is to minimize the Global Warming
Potential while adhering to performance constraints such as load-bearing capacity, demolding
time, and maximum temperature during hydration, all in accordance with Eurocode standards.
This approach is not only relevant to the precast concrete industry but is also transferable to
various other materials, structural, and mechanical design problems.

Contribution

(AA): (Machine learning aspects) Methodology, Software, Visualization, Writing – review &
editing (E.T.): (material science application aspects) Methodology, Software, Visualization,
Writing – review & editing. (J.F.U.): Supervision, Writing – review & editing, code review
(PSK): Supervision, Writing – review & editing

Reference

Atul Agrawal, Erik Tamsen, Phaedon-Stelios Koutsourelakis, and Joerg F Unger. From concrete
mixture to structural design–a holistic optimization procedure in the presence of uncertainties.
Data-Centric Engineering, pages 1–32, 2024

3.4 Paper D

Multi-fidelity Constrained Optimization for Stochastic Black-Box Simulators
A. Agrawal, K. Ravi, P.S. Koutsourelakis, H.J. Bungartz

Summary

This work presents a novel algorithm, Scout-Nd (Stochastic Constrained Optimization for N di-
mensions), designed for stochastic constraint optimization where both objectives and constraints
involve black-box physics-based models. The algorithm addresses the challenges inherent in
optimization problems involving physics-based simulators that are stochastic, computationally
expensive, multi-modal and operate in high-dimensional parameter spaces. Traditional optimiza-
tion methods often rely on gradient information, which is typically unavailable in such legacy
black-box codes. To overcome the difficulty of unavailable gradients in legacy black-box codes,
the algorithm utilizes efficient gradient estimation techniques that incorporate variance reduc-
tion strategies to improve accuracy and stability. Additionally, to balance the trade-off between
computational cost and accuracy, the method integrates multi-fidelity strategies, reducing the
need for multiple evaluations of expensive physics-based models. The proposed method demon-
strates superior performance compared to standard black-box optimization methods, showcasing
enhanced robustness and quality of the optimized solutions. The effectiveness of Scout-Nd is
validated through standard benchmarks, where it consistently outperforms existing techniques,
highlighting its potential for robust and efficient parameter optimization in complex design
processes.

Contribution

(AA): Methodology, Software, Visualization, Writing – review & editing (K.R.): Methodol-
ogy, Software, Visualization, Writing – review & editing. (P.S.K): Methodology, Supervision,
Writing – review & editing (HJB): Supervision, Writing – review.
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3.5. Paper E

Reference

Atul Agrawal, Kislaya Ravi, Phaedon-Stelios Koutsourelakis, and Hans-Joachim Bungartz.
Multi-fidelity constrained optimization for stochastic black-box simulators. Workshop on Ma-
chine Learning and the Physical Sciences (NeurIPS 2023), 2023

3.5 Paper E

Stochastic Black-Box Simulator Optimization using Multi-Fidelity Score Function
Estimator

A. Agrawal, K. Ravi, P.S. Koutsourelakis, H.J. Bungartz

Summary

The paper extends our previously proposed SCOUT-Nd algorithm by incorporating several
key enhancements. By utilizing natural gradients in the gradient estimation process, the algo-
rithm achieves well-behaved convergence properties and produces a higher quality of optima,
demonstrated through numerical examples. To efficiently manage multi-modal optimization
landscapes, smart heuristics are employed, which have been validated through a series of aca-
demic examples. The study provides a detailed mathematical analysis of the method’s conver-
gence, ensuring the robustness of the approach. Additionally, an adaptive sample size mechanism
for the gradient estimation is implemented, significantly reducing the number of solver calls re-
quired to reach the optimum in numerical tests. The adaptive sample size is also adapted to
the multi-fidelity framework of the Scout-Nd algorithm. The algorithm’s capabilities are further
tested against an expanded set of academic examples, comparing its performance on challenges
such as multi-modality, constraints, valley behavior, and dimension scalability. In all these tests,
the algorithm demonstrates superior performance in parameter optimization compared to ex-
isting black-box optimization methods. Additionally, we showcase the algorithm’s efficacy in a
complex real-world application: optimizing wind farm layout. It outperforms standard baseline
methods in both robustness and the quality of the achieved optimum. Also, in this case the
multi-fidelity framework of SCOUT-Nd produced comparable accuracy at a one-third cost.

Contribution

(AA): Methodology, Software, Visualization, Writing – review & editing (K.R.): Methodol-
ogy, Software, Visualization, Writing – review & editing. (P.S.K): Methodology, Supervision,
Writing – review & editing (HJB): Supervision, Writing – review.

Reference

Atul Agrawal, Kislaya Ravi, Phaedon-Stelios Koutsourelakis, and Hans-Joachim Bungartz.
Stochastic black-box optimization using multi-fidelity score function estimator. Machine Learn-
ing: Science and Technology, 6(1):015024, jan 2025
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Pippin: ”I didn’t think it would end this way.”
Gandalf: ”End? No, the journey doesn’t end
here.[...]”

The Lord of the Rings: The Return of the King
J.R.R. Tolkien [176]

4
Summary and conclusion

In this chapter, we recap the motivation behind the thesis, and the contributions made, and we
point out the major outstanding challenges and the future work that can be done to address
these challenges. The thesis is motivated by the promise ML brings to advance scientific and
engineering disciplines. However, the quest to combine ML with scientific models is crippled
because of several pitfalls. To point out a few, the lack of large labeled datasets in scientific
applications, datasets spanning only a narrow segment of possible data distributions leading to
poor generalization abilities, predictions being scientifically invalid, presence of noise in data,
and difficulty coupling ML models with scientific models because of lack of differentiability of
the physics-based models.

In this thesis, we aim to address the above challenges by proposing novel strategies that
combine machine learning with scientific understanding (e.g., governing equations, symmetries,
invariances etc.) to develop scientific machine learning models aided by the differentiable physics,
which are then tightly coupled with probabilistic approaches. These strategies are used in ad-
dressing challenging computational physics and engineering downstream tasks like inference,
uncertainty quantification, and optimization for complex applications like turbulence closure
modeling, concrete material and structural design, and windfarm layout optimization. Data
from physical systems can be sparse and expensive to obtain. Numerical simulations are com-
putationally costly as the dimensions involved are, in general, very high, whereas the time and
spatial scales of interest are very small. Experiments are equally expensive and can be infeasible
given the spatial scales of the system. Adding domain scientific knowledge i.e., governing equa-
tions and underlying physical principles in the form of inductive bias supplements the need for
extensive labeled data, thus making the learning data parsimonious. Furthermore, adding physi-
cal knowledge to the ML models improves the generalization abilities and makes the predictions
scientifically valid. The differentiability of physics-based models facilitates the integration of
ML models with scientific models, allowing for inference and optimization in high-dimensional
parameter spaces that would otherwise be computationally infeasible. However, while physics-
based inductive bias can improve ML models, it can also be problematic if the bias is incorrect,
potentially leading to inaccurate predictions. To mitigate this risk, we adopt probabilistic ap-
proaches, specifically the Bayesian approach, in this thesis. The probabilistic approach helps in
accounting for different types of uncertainties arising due to noisy data, model misspecification,
and the inherent stochasticity in the physical systems. In scientific and engineering applications,
quantifying uncertainty in predictions is crucial for informed decision-making, and probabilistic
approaches are instrumental in achieving this goal. The rest of the chapter is organized as fol-
lows: Section 4.1 summarizes the scientific achievements of the author and Section 4.2 discusses
the outstanding challenges and future work.
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Chapter 4. Summary and conclusion

4.1 What was achieved

The author’s scientific achievements are presented in the form of a) publications summarized in
Chapter 3, given in full in the Part III and categorized in Table 1.1, and b) broad theoretical
background with an up-to-date literature survey of the dynamic field of SciML and probabilistic
modeling presented in Chapter 2.

In this thesis, we started by approaching turbulence in fluid mechanics which as famously
quoted by Feynman [177] is “the most important unsolved problem of classical physics”. The
study of fluid turbulence gave birth to several fields in computational mathematics [23, 24].
In this thesis, we drew ideas from SciML, differentiable physics and probabilistic modeling
to propose novel strategies to address the turbulence closure problem (Paper A [47] and Paper
B [48]). We later extended the broad ideas to material and structural design optimization (Paper
C [49]). The later investigation led us to study optimization under uncertainty for black box
physics-based models (Paper D [50] and Paper E [51]).

In Paper A [47] and Paper B [48], we approached the turbulence closure problem in fluid
mechanics employing the aforementioned strategies. In Paper A [47] we addressed all the chal-
lenges discussed in Section 1.1 in the context of turbulence closure modeling. In this context,
the challenges have a significant overlap. In particular, we proposed a probabilistic, data-driven
closure model for Reynolds-Averaged Navier-Stokes (RANS) simulations. Learning is conducted
in a Bayesian framework, utilizing sparse indirect high-fidelity data of mean velocity and pres-
sure as the training data. The model follows a hybrid approach of Scientific Machine Learning
(SciML), combining the RANS solver and the machine learning model in a tightly coupled
manner. To facilitate end-to-end gradient-based learning, an adjoint-based differentiable RANS
solver is developed. The proposed closure consists of two parts. First, neural-network-based
tensor basis functions that are dependent on the rate of strain and rotation tensor invariants.
This is complemented by latent, random variables which account for aleatoric model errors. The
machine learning model is designed to incorporate physical constraints, such as symmetry and
invariance, as hard constraints. Sparsity-inducing prior is used in order to identify the regions
in the problem domain where the parametric closure is insufficient and in order to quantify the
stochastic correction to the Reynolds stress tensor. We demonstrated the computation of prob-
abilistic predictive estimates for all output quantities of the trained RANS model, illustrating
their accuracy on a separated flow in the backward-facing step benchmark problem. The results
showed very good agreement with reference values, with all cases falling within the computed
credible intervals. The Paper B [48] addressed challenges (i) and (ii) (ref. Section 1.1), extends
the work of [28] by incorporating violation of realizability constraints of the anisotropic part of
Reynolds stress tensor as a hard constraint. Here the learning is performed with sparse observa-
tions of the Reynolds stress tensor. We demonstrated that the proposed enhancements improve
anisotropy tensor predictions in unseen challenging cases involving surface curvature and flow
separation.

In Paper C [49], we addressed challenges (ii), (iii), (iv) and (v) (ref. Section 1.1). We pre-
sented an optimization framework that integrates physics-based models, empirical relations,
and experimental data, which are typically used separately in the design of concrete structural
systems. This framework combines concrete mixture design and structural simulation, utilizing
semi-analytical models, finite-element solvers, and machine learning models. Additionally, we
introduced a model discovery method using the Variational Bayes Expectation-maximization
scheme to learn the missing links between concrete mixture design variables and parameters in
physics-based models using noisy and incomplete experimental data. Our optimization frame-
work is capable of handling black-box solvers, non-linear constraints, and parametric uncer-
tainties. Finally, we demonstrated the application of this framework in the mixture design of a
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concrete beam, minimizing the global warming potential while satisfying various performance
constraints. The framework presented is demonstrated on the specific design problem, but it is
general and can be applied to other design problems involving complex material systems.

Motivated by the challenging problem of (constrained) optimization involving black-box,
stochastic, high-dimensional, and expensive-to-evaluate physics-based models, we proposed a
novel optimization algorithm in Paper D [50] and extended it in Paper E [51]. Both of the
papers are aimed at addressing challenges (iv) and (v) (ref. Section 1.1). The proposed algo-
rithm relies on efficient gradient estimation using score function estimates with suitable variance
reduction strategies. To balance computational cost and accuracy, the algorithm incorporates
several state-of-the-art techniques. These include multi-fidelity methods for gradient estima-
tion, natural gradients to enhance convergence properties and optimum quality, Quasi-Monte
Carlo (QMC) methods for gradient estimation, and a novel adaptive Monte Carlo sample-size
selection for the gradient estimation. The algorithm is tested against several standard baseline
algorithms on a suite of benchmark problems involving different types of optimization challenges
like multi- modality, constraints, behavior in valleys, dimension scalability, etc. The results show
that the proposed algorithm outperforms the state-of-the-art optimization algorithms. The pro-
posed algorithm could also handle very complex multi-modal surfaces and high-dimensional
optimization problems. The algorithm is tested on a real-world complex case of wind farm lay-
out optimization problem, where the objective is to maximize the expected energy production
of the wind farm while satisfying the constraints on the turbine locations. The results show
that the proposed algorithm outperforms the state-of-the-art optimization algorithms in terms
of robustness and quality of the optimum.

4.2 Outstanding challenges and future work

We discuss the challenges and the potential future direction to address those challenges in detail
in the respective publication. Here, we provide a brief overview from a broader and overarching
perspective.

• Spatial awareness. The neural network based closure model in Paper A [47] and Paper
B [48] follows a locality assumption, which is a very strong assumption for flows that
exhibit strong inhomogeneity. Non-local features of the velocity field might be needed
to better inform the model. This could be achieved by employing models that embed a
certain sense of spatial awareness, e.g., the Convolutional Neural Networks (CNN). In the
context of turbulence closure modeling, vector-cloud neural networks (VCNN) [178] with
the appropriate embedding of invariance properties seems promising.

• Challenges posed by differentiability. The end-to-end training in Paper A [47] hinges
on the availability of a differentiable RANS solver. Also, the optimization of the concrete
beam design in Paper C [49] relies on the gradient information from the material and
structural simulation joint workflow. Rewriting a complex solver such as the RANS in a
differentiable programming language like JAX or PyTorch would be non-trivial endeavor.
The challenge of obtaining gradients in a more general setting, where the solver is not
differentiable, remains open for many legacy solvers. There exist solvers written using
differentiable programming languages, but these solvers are often written for a specific
application/use case, limited in their capabilities and are not as accurate as legacy solvers.
There is a growing need for differentiable solvers that are accurate, general, and can be
used across various applications, with [38] taking the initial steps towards this goal. So we
resorted to obtaining the gradients by the adjoint method in Paper A [47], which required
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appropriate adjustments in both the solver and the inference algorithm. The challenge is
further compounded when the solver is to be coupled with a probabilistic programming
framework like Pyro [89]. These infrastructural and implementational hurdles pose a major
challenge for researchers to adopt the end-to-end training paradigm in a probabilistic
setting. Recently, automatic differentiable (AD) compiler methods [171] have emerged,
providing gradients of legacy codes written in C, C++, Fortran, etc. These methods could
potentially be used to obtain gradients of legacy solvers addressed in the present thesis,
which could then be coupled with e.g., probabilistic programming frameworks.

• Interpretability and generalization. The machine learning closure models discussed
in Paper A [47] and Paper B [48] are generally represented by neural networks that are
limited in their sense of interpretability. However, interpretability is a key requirement for
machine-learned closure models to find their way into engineering practice. Consequently,
recent research efforts [179, 180] are focused on developing interpretable, closed-form ex-
pressions for the closure model. For example, techniques such as sparse linear regression
with a physics-informed library of candidate functions are being employed. Beyond inter-
pretability, generalizability is a crucial research area essential for the widespread adoption
of trained closure models across various scenarios. Developing a model trained on specific
parameters (e.g., Reynolds number), geometries, boundary conditions, and initial condi-
tions, and then successfully applying it beyond this parameter set, is often regarded as the
holy grail of closure modeling research. However, achieving this level of generality remains
an open problem [4,52].

• Network architectures. Choosing the right network architecture and optimizing its
parameters is often more of an art than a science. In this thesis, an extensive study has
not been performed on the choice of different network architectures used in the Paper
A [47], Paper B [48] and Paper C [49] because new architectures are appearing continu-
ously and because it is still highly non-trivial which one to choose. To elaborate further,
the neural network architectures used in Paper A [47] and Paper B [48] are relatively
simple, consisting of a few fully connected layers. More complex architectures, such as
graph neural networks (GNNs) or transformer networks, could potentially capture the
underlying physics more effectively. For example, GNNs and CNNs have been shown to
be effective in learning the structure of the data and could be used to learn the spatial
relationships in the flow field [151]. Similarly, transformer networks have been shown to
be effective in capturing long-range dependencies in the data and could be used to cap-
ture the interactions between different parts of the flow field [17]. Exploring these more
complex architectures could potentially lead to more accurate and generalizable closure
models.

• Benchmark datasets. The quality of the models learned in Paper A [47] and Paper
B [48] are reliant on the quality of the training data. Unfortunately, the field of flow physics
lacks a suitable large dataset such as ImageNet for photos [11]. The reason for this lack is
that the scientific data is generally high-dimensional. To set this into perspective, GPT-3
was trained with six hundred gigabytes of text data. In contrast, BLASTNet [181], a recent
dataset for fluid flows and the largest of its kind is five terabytes. Prior to BLASTNet, the
largest dataset was the Johns Hopkins Turbulence Database [182] which is limited in flow
configurations provided thus limiting the generalization abilities of the models trained on
it. The lack of benchmark datasets in scientific applications is a major bottleneck for the
development of machine learning models. Efforts towards creating benchmark datasets for
scientific applications are necessary to advance the field of scientific machine learning.
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4.2. Outstanding challenges and future work

• Dimensionality. The dimensionality reduction of the stochastic discrepancy terms in
Paper A [47] utilized a pre-determined and uniform division of the problem domain into
subdomains. The model’s accuracy could be significantly improved with a learnable and
adaptive scheme that focuses on areas with the most pronounced model deficiencies, where
stochastic corrections are most necessary. This would require a more sophisticated treat-
ment of the sparsity inducing prior.

• Extension to other applications. The approach presented in Paper C [49] is transfer-
able to several other materials, structural and mechanical problems. Such extensions could
readily include more complex design processes with an increased number of parameters
and constraints (the latter due to multiple load configurations or limit states in a real
structure). Furthermore, this procedure could be applied to problems involving a com-
plete structure (e.g., bridge, building) instead of a single element and potentially entailing
advanced modeling features that include multiscale models to link material composition
to material properties or improve the computation of the global warming potential using
a complete life cycle analysis. The black-box optimization approach presented in Paper
D [50] and Paper E [51] can be tested on other challenging real-world applications within
the scope of the proposed method, such as particle physics [138]. However, if the physics-
based models are prohibitively expensive, the gradient estimation can benefit from further
variance reduction, potentially achievable through importance sampling.

This thesis bridges some of the gaps and tackles some of the challenges in the broad field of
SciML. However, the field of SciML is rapidly evolving, and numerous research questions extend
beyond the scope of this thesis. These questions are crucial for future exploration. For instance,
will the most effective SciML approaches offer general techniques applicable across various
domains, or will they remain highly domain-specific? What is the optimal balance between
hard-coded physical principles and learned components in designing SciML algorithms? Can
SciML contribute new perspectives and ideas to the field of ML? Answering these questions
requires a truly interdisciplinary effort. Consequently, SciML is an exciting and fast-growing
field, with many discoveries still to come, and its impact on various domains is likely to grow
as the field continues to develop. Similar to the role played by internet-scale data in computer
vision and text translation problems in revolutionizing the field of deep learning research, we
anticipate the richness of challenges and opportunities encountered in SciML will influence the
next major revolution in ML research.
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ers, Milan Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general
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Riebesell, Xavier R Advincula, Mark Asta, William J Baldwin, Noam Bernstein, et al.
A foundation model for atomistic materials chemistry. arXiv preprint arXiv:2401.00096,
2023.

[160] Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn,
Fan Zhang, Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini
models in medicine. arXiv preprint arXiv:2404.18416, 2024.
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We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations 
that incorporates aleatoric, model uncertainty. The proposed closure consists of two parts. A 
parametric one, which utilizes previously proposed, neural-network-based tensor basis functions 
dependent on the rate of strain and rotation tensor invariants. This is complemented by latent, 
random variables which account for aleatoric model errors. A fully Bayesian formulation is 
proposed, combined with a sparsity-inducing prior in order to identify regions in the problem 
domain where the parametric closure is insufficient and where stochastic corrections to the 
Reynolds stress tensor are needed. Training is performed using sparse, indirect data, such as mean 
velocities and pressures, in contrast to the majority of alternatives that require direct Reynolds 
stress data. For inference and learning, a Stochastic Variational Inference scheme is employed, 
which is based on Monte Carlo estimates of the pertinent objective in conjunction with the 
reparametrization trick. This necessitates derivatives of the output of the RANS solver, for which 
we developed an adjoint-based formulation. In this manner, the parametric sensitivities from 
the differentiable solver can be combined with the built-in, automatic differentiation capability 
of the neural network library in order to enable an end-to-end differentiable framework. We 
demonstrate the capability of the proposed model to produce accurate, probabilistic, predictive 
estimates for all flow quantities, even in regions where model errors are present, on a separated 
flow in the backward-facing step benchmark problem.

1. Introduction

Turbulence is ubiquitous in fluid flows and of importance to a vast range of applications such as aircraft design, climate and 
ocean modeling. It has challenged and intrigued scientists and artists for centuries [1]. In the context of the Navier-Stokes equations, 
the most accurate numerical solution strategy for turbulent flows is offered by Direct Numerical Simulation (DNS), which aims at 
fully resolving all scales of motion. While this simulation method yields impeccable results, it is prohibitively expensive in terms 
of computational cost due to the very fine discretizations needed which scale as (Re11∕4) [2]. Reynolds-averaged Navier-Stokes 
(RANS) models offer a much more efficient alternative for predicting mean flow quantities. They represent the industry standard 
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which is expected to remain the case in the coming decades [3]. Their predictive accuracy however hinges upon the closure model 
adopted.

The greater availability of computational resources and the development of scalable learning frameworks in the field of machine 
learning have had a significant impact in computational fluid mechanics as well [4–6]. Data-driven closures for RANS have revitalized 
turbulence modeling [7], and a comprehensive reviews can be found in [8,4]. The construction of such closure models consists of 
two steps: (i) postulating a model form ansatz; and (ii) fitting/learning/inferring model parameters on the basis of the available data. 
Pertinent approaches have focused on learning model coefficients of a given turbulence model [9] (often with statistical inference), 
on modeling of correction or source terms for an existing turbulence model [10–14] and on directly modeling the Reynolds stress (RS) 
tensor [15–18] with symbolic regression [19] or neural networks [15,17,20] or Gaussian Processes [14] or Random Forests [16,18]. 
Of particular relevance to the present study is the work of [15] wherein they use the non-linear eddy viscosity model (NLEVM) [21]

to capture the anisotropic part of the RS tensor using an integrity tensor basis and a deep neural network employing local, invariant 
flow features. This model owing to its guaranteed Galilean invariance found a wider utilization [17,22,20].

In most of the methods discussed above, data-based training is performed in a non-intrusive manner, i.e., without involving the 
RANS solver in the training process. The major shortcomings of such a strategy (which we attempt to address in the present paper) 
are two-fold. Firstly inconsistency issues, which can arise between the data-driven model and the baseline turbulence model (e.g., 
𝑘 − 𝜖) [23,7]. [24] showed that even substituting RS fields from reputable DNS databases may not lead to satisfactory prediction of 
the velocity field, and [25] investigated the ill-conditioning that arises in the RANS equations, when employing data-driven models 
that treat the Reynolds stress as an explicit source term. This ill-conditioning can be amplified within each iteration, thus potentially 
leading to divergence during the solution procedure. Secondly, such models rely on full-field Reynolds stress training data, which are 
only available when high-fidelity simulations such as DNS/Large-Eddy Simulations (LES) are used. Unfortunately, such high-fidelity 
simulations due to their expense are limited to simple geometries and low Reynolds numbers.

In order to address these limitations, we advocate incorporating the RANS model in the training process. This enables one to 
use indirect data (e.g., mean velocities and pressure) obtained from higher-fidelity simulations or experiments as well as direct data 
(i.e. RS tensor observables) if this is available. In the subsequent discussions, we will refer to such a training strategy as “model-

consistent learning” [7]. It necessitates the solution of a high-dimensional inverse problem that minimizes a discrepancy measure 
between the RANS solver’s output (mean velocities and pressure) and the observables (e.g. mean fields from LES/DNS). As pointed 
out in [7], model-consistent training or simulation-based Inference [26] benefits from the differentiability of the solver, as it provides 
derivatives of the outputs with respect to the tunable parameters that can significantly expedite the learning/inference process.

In recent years there has been a concerted effort towards developing differentiable CFD solvers [27–30] in Auto-Differentiation 
(AD) enabled modules like PyTorch, Tensorflow, JAX, Julia. To the best of the authors’ knowledge, this has not been accomplished yet 
for RANS solvers. One way to enable the computation of parametric sensitivities is by developing adjoint solvers [31,32], which are 
commonly used in the context of aerodynamic shape optimization [33]. Such adjoint-based modules have also been employed to infer 
a spatial, corrective field for transport equations [34,10,11] and Reynolds stresses [13]. Recently, [35,36] tried to learn a corrective, 
multiplicative field in the production term of the Spalart–Allmaras transport model. This is based on an alternative approach outlined 
in [10], in which empirical correction terms for the turbulence transport equations are learned while retaining a traditional linear 
eddy viscosity model (LEVM) for the closure. [37] used adjoints to recover a spatially varying eddy viscosity correction factor 
from sparsely distributed training data, but they also retained the LEVM assumption. More recently, researchers performed model-

consistent or CFD-driven training by involving the solver in the training process. [38,39] used gradient-free algorithms to perform 
symbolic identification of the explicit algebraic Reynolds stress models (ARSM), [40] (with adjoint methods) and [20] (with ensemble 
methods) combined the RANS solver and a NLEVM-based neural network proposed by [15] in order to learn the model closure. 
However, they did not account for potential model errors in the closure equation which may arise due to the reasons discussed in 
the next paragraph.

We argue that even in model-consistent training, a discrepancy in the learnt RS closure model can arise due to the fact that a) the 
parametric, functional form employed may be insufficient to represent the underlying model,1 and b) the flow features which are 
used as input in the closure relation and which are generally restricted to each point in the problem domain (locality/Markovianity 
assumption [41]), might not contain enough information to predict the optimal RS tensor leading to irrecoverable loss of information. 
Hence irrespective of the type and amount of training data available, there could be aleatoric uncertainty in the closure model that 
needs to be quantified and propagated in the predictive estimates. We note that much fewer efforts have been directed towards 
quantifying uncertainties in RANS turbulence models. Earlier, parametric approaches broadly explored the uncertainties in the 
model choices [9] (i.e., uncertainty involved in choosing the best model among a class of competing models, e.g., 𝑘 −𝜔, 𝑘 − 𝜖) and 
their respective model coefficients [42]. Recently the shortcomings of the parametric closure models have been recognized by the 
turbulence modeling community [43,44]. In light of this, various non-parametric approaches have targeted model-form uncertainty 
whereby uncertainties are directly introduced into the turbulent transport equations or the modeled terms such as the Reynolds stress 
[22] or eddy viscosity. Such formulations allow for more general estimates of the model inadequacy than the parametric approaches. 
Researchers have also tried perturbing the eigenvalues [45–47], transport eigenvectors [48] or the tensor invariants. [49] used kernel 
density estimates to predict the confidence of data-driven models, but it is limited to the prediction of the anisotropic stress and fails 
to provide any probabilistic bounds. [22] tries to address this issue by incorporating a Bayesian formulation in order to quantify 

1 For example the models based on the Boussinesq hypothesis will fail to capture the flow features driven by the anisotropy of the Reynolds stresses and this 
intrinsic deficiency cannot be remedied by the calibration of the model coefficients with data.



Journal of Computational Physics 508 (2024) 112982

3

A. Agrawal and P.-S. Koutsourelakis

epistemic uncertainty and then propagating it to quantities of interest like pressure and velocity. For a comprehensive review of 
modeling uncertainties in the RANS models the reader is directed to [43].

In order to address the aforementioned limitations, we propose a novel probabilistic, model-consistent, data-driven differential 
framework. The framework enables learning of a NLEVM-based, RS model in a model-consistent way using a differentiable RANS 
solver, with mean field observables (velocities and/or pressure). To the authors’ knowledge, uncertainty quantification has not been 
addressed for data-driven turbulence model training with indirect observations. We propose to augment the parametric closure 
model of the RS tensor by a stochastic discrepancy tensor to quantify model errors at different parts of the problem domain. With 
the introduction of the stochastic discrepancy tensor, we advocate a probabilistic formulation for the associated inverse problem, 
which provides a superior setting as it is capable of quantifying predictive uncertainties which are unavoidable when any sort of 
model/dimensionality reduction is pursued and when the model (or its closure) is learned from finite data [50]. To achieve the 
desired goals, the proposed framework employs the following major elements:

• A discrete, adjoint-based differentiable RANS solver to enable model-consistent, gradient-based learning (Section 2.2, Sec-

tion 2.2.4).

• The RS closure model consists of a parametric part that is expressed with an invariant neural network as proposed in [15]

(Section 2.2.1), to which a stochastic discrepancy tensor field is added in order to account for the insufficiency of the parametric 
part (Section 2.2.2).

• A fully Bayesian formulation that enables the quantification of epistemic uncertainties and their propagation to the predictive 
estimates (Section 2.2.4, Section 2.2.5)

• This is combined with a sparsity-inducing prior model that activates the discrepancy term only in regions of the problem domain 
where the parametric model is insufficient (Section 2.2.2).

The structure of the rest of the paper is as follows. Section 2 presents the governing equations and their discretization, the closure 
model proposed consisting of the parametric part and the stochastic corrections provided by latent variables introduced. We also 
present associated prior and posterior densities, a stochastic Variational Inference scheme that was employed for identifying model 
parameters and variables as well as the computation of predictive estimates with the trained model. Finally, Section 3 discusses the 
implementation aspects and demonstrates the accuracy and efficacy of the proposed framework in the backward-facing step test case 
[51], where the linear eddy viscosity models are known to fail. We compare our results with LES reference values and the 𝑘 − 𝜖
model, which is arguably the most commonly used RANS model. In Section 4, we summarize our findings and discuss limitations 
and potential enhancements.

2. Methodology

2.1. Problem statement

2.1.1. Reynolds-Averaged Navier-Stokes (RANS) equations

The Navier-Stokes equations for incompressible flows of Newtonian fluids are given by (in indicial notation):

𝜕𝑈𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥𝑗
(𝑈𝑖𝑈𝑗 ) = 𝜈

𝜕2𝑈𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

− 1
𝜌

𝜕𝑃

𝜕𝑥𝑖
, (1)

𝜕𝑈𝑗

𝜕𝑥𝑗
= 0, (2)

where 𝑖, 𝑗 are free and dummy indices respectively taking values 1, 2, 3 and 𝑈𝑖, 𝑃 , 𝑡, 𝑥𝑗 , 𝜈 and 𝜌 represent the flow velocity, pressure, 
time, spatial coordinates, the dynamic viscosity and the density of the fluid respectively. The non-linearity of the convective term 
𝜕

𝜕𝑥𝑗
(𝑈𝑖𝑈𝑗 ) gives rise to chaotic solutions beyond a critical value of the Reynolds number 𝑅𝑒. This necessitates very fine spatio-

temporal discretizations in order to capture the salient scales. Such brute-force, fully-resolved simulations, commonly referred to as 
Direct Numerical Simulations (DNS), can become prohibitively expensive, particularly as 𝑅𝑒 increases.

The velocity field can be decomposed into its time-averaged (or mean) part 𝑢 and the part corresponding, to generally fast, 
fluctuations 𝑢̃ as:

𝑈𝑖(𝒙, 𝑡) = 𝑢𝑖(𝒙) + 𝑢̃𝑖(𝒙, 𝑡), (3)

where, 𝑢𝑖(𝒙) = ⟨𝑈𝑖(𝒙, 𝑡)⟩ = lim
𝑇→∞

1
𝑇

𝑇

∫
0

𝑈𝑖(𝒙, 𝑡) 𝑑𝑡. (4)

Similarly the pressure field is also decomposed as

𝑃 (𝒙, 𝑡) = 𝑝(𝒙) + 𝑝̃(𝒙, 𝑡), (5)
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where 𝑝(𝒙) = ⟨𝑃 (𝒙, 𝑡)⟩ = lim
𝑇→∞

1
𝑇

𝑇

∫
0

𝑃 (𝒙, 𝑡)𝑑𝑡. (6)

Substituting these decompositions into the Navier-Stokes equations (Equation (1)) and applying time-averaging results in the 
Reynolds-averaged Navier-Stokes (RANS) equations [2,52], i.e.:

𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝜈

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

+ 1
𝜌

𝜕𝑝

𝜕𝑥𝑖
= −

𝜕
⟨
𝑢̃𝑖𝑢̃𝑗

⟩
𝜕𝑥𝑗

, (7)

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (8)

where ⟨⋅⟩ denotes the time average of the arguments as in Equation (4) or Equation (6). In several engineering applications involving 
turbulent flows, the quantities of interest depend upon the time-averaged quantities. These can be obtained by solving the RANS 
equations which in general implies a much lower computational cost than DNS.

2.1.2. The closure problem

The RANS equations are unfortunately unclosed as they depend on the cross-correlation of the fluctuating velocity components, 
commonly referred to as the Reynolds-Stress (RS) tensor 𝝉𝑅𝑆 :

𝝉𝑅𝑆 = −
⟨
𝑢̃𝑖𝑢̃𝑗

⟩
. (9)

The goal of pertinent efforts is therefore to devise appropriate closure models where the RS tensor 𝝉𝑅𝑆 is expressed as a function 
as the primary state variables in the RANS equations i.e. the time-averaged flow quantities. Closure models are of three types: (i) 
Functional, which use physical insight to construct the closure; (ii) Structural, which use mathematical tools; and (iii) Data-driven, 
which employ experimental/simulation data [53]. For a comprehensive review, the reader is directed to [54,53,55]. Classically, 
turbulence models are devised to represent higher-order moments of the velocity fluctuations in terms of lower-order moments. This 
can be done directly, as in the case of the eddy-viscosity models, or indirectly, as in the case of models based on the solution of 
additional partial differential equations [2].

The most commonly employed strategy is based on the linear-eddy-viscosity-model (LEVM), which uses the Boussinesq approxi-

mation according to which 𝝉𝑅𝑆 is expressed as:

𝝉𝐿𝐸𝑉𝑀 = 2
3
𝑘𝑰 − 2𝜈𝑡𝑺̄, (10)

where 𝜈𝑡 is the eddy viscosity, 𝑺̄ = 1
2

(
𝛁𝒖+𝛁𝒖𝑇

)
is the mean strain-rate tensor, 𝑰 is the second order identity tensor, and 𝑘 =

−1
2 tr(𝝉𝑅𝑆 ) is the turbulent kinetic energy. The eddy viscosity is computed after solving the equation(s) for the turbulent flow 

quantities such as the turbulent kinetic energy 𝑘 and the turbulent energy dissipation 𝜖 (e.g., the 𝑘 − 𝜖 model [56]), or the specific 
dissipation 𝜔 (e.g., the 𝑘 − 𝜔 [57]). Although the Boussinesq approximation provides accurate results for a range of flows, it can 
give rise to predictive inaccuracies which are particularly prominent when trying to capture flows with significant curvatures, 
recirculation zones, separation, reattachment, anisotropy, etc [2,58]. Attempts to overcome this weakness have been made in the 
form of nonlinear eddy viscosity models (e.g., [59,21,60]), Reynolds-stress transport models (e.g., [61]) and ARSM (e.g., [62,63]). 
These models have not received widespread attention because they lack the robustness of LEVM and involve more parameters that 
need to be calibrated.

2.2. Probabilistic, model-consistent data-driven differential framework

Upon discretization using e.g., a finite element scheme (Appendix A), one can express the RANS equations (Equation (7)) in 
residual form as:

(𝒛) =𝑩𝝉 (11)

or, (𝒛;𝝉) ∶= (𝒛) −𝑩𝝉 = 0, (12)

where 𝒛 = [𝒖, 𝑝]𝑇 summarily denotes the discretized velocity 𝒖 and pressure 𝑝 fields and 𝝉 the discretized RS field. E.g. for a two-

dimensional flow domain 𝒛 ∈ ℝ𝑁×3, 𝝉 ∈ ℝ𝑁×3 where 𝑁 is the number of grid points. The discretization scheme employed and 
other implementation details are discussed in Appendix A. We denote with  the discretized, non-linear operator accounting for the 
advective and diffusive terms on the left-hand side of Equation (7) as well as the conservation of mass in Equation (8), and with 𝑩
the matrix (i.e. linear operator) arising from the divergence term on the right-hand side of Equation (7).

Traditional, data-driven strategies postulate a closure e.g. 𝝉𝜽(𝒛) (or most often 𝝉𝜽(𝒖)) dependent on some tunable parameters 𝜽, 
which they determine either by assuming that reference Reynolds-stress data is available from DNS simulations (or in general, from 
higher-fidelity models such as LES) or by employing experimental or simulation-based data of the mean velocities/pressures i.e. of 
𝒛. The former scenario which is referred to as model regression [64] has received significant attention in the past (e.q. [22,15,65,17]). 
Apart from the heavier data requirements, it does not guarantee that the trained model would yield accurate predictions of 𝒛 [24]

as even small errors in 𝝉 might get amplified when solving Equation (12). The second setting, referred to as trajectory regression in 
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[64], might be able to make use of indirect and noisy observations but is much more cumbersome as repeated model evaluations and 
parametric sensitivities, i.e. a differentiable solver, are needed for training.

Critical to any data-driven model is its ability to generalize i.e. to produce accurate predictions under different flow scenarios. 
On one hand this depends on the training data available but on the other, on incorporating a priori available domain knowledge. 
The latter can attain various forms and certainly includes known invariances or equivariances that characterize the associated maps. 
Apart from this and the particulars of the parameterized model form, a critical aspect pertains to uncertainty quantification. We 
distinguish between parametric and model uncertainty. The former is of epistemic origin and has been extensively studied (e.g., 
[9,42,43]). Bayesian formulations offer a rigorous manner for quantifying it and ultimately propagating it in the predictive estimates 
in the form of the predictive posterior. We note however that in the limit of infinite data, the posterior of the model parameters 𝜽
(no matter what these are or represent) would collapse to a Dirac-delta i.e. point-estimates for 𝜽 would be obtained. This false lack 
of uncertainty does not imply that the model employed is perfect as the true (unknown) closure might attain a form not contained in 
the parametric family used or in the features of 𝒛 that appear in the input (e.g. even though all models proposed employ a locality 
assumption in the closure equations, non-local features of 𝒖 might be needed).

The issue of model uncertainty in the closure equations which is of an aleatoric nature, has been much less studied and represents 
the main contribution of this work. In particular, we augment the parametric closure model 𝝉𝜽(𝒖) with a set of latent (i.e. unobserved) 
random variables 𝝐𝜏 which are embedded in the model equations and which quantify model discrepancies at each grid point. In 
reference to the discretized RS vector 𝝉 in Equation (12), we propose:

𝝉 = 𝝉𝜽(𝒖) + 𝝐𝜏 . (13)

We emphasize the difference between model parameters 𝜽 and the random variables 𝝐𝜏 . While both are informed by the data, the 
latter remain random even in the limit of infinite data. As we explain in the sequel, we advocate a fully Bayesian formulation that 
employs indirect observations of the velocities/pressures. These are combined with appropriate sparsity-inducing priors which can 
turn-off model discrepancy terms when the parametric model is deemed to provide an adequate fit. In this manner, the regions of the 
problem domain where the closure is most problematic are identified while probabilistic, predictive estimates are always obtained. 
In particular, in Section 2.2.1 the parametric part of the closure model is discussed. In Section 2.2.2 the proposed, stochastic, 
discrepancy tensor is presented. In Section 2.2.3 prior and posterior densities are discussed and in Section 2.2.4 the corresponding 
inference and learning algorithms are introduced. Finally in Section 2.2.5, the computation of predictive estimates using the trained 
model is discussed.

2.2.1. Parametric RS model

In this section we discuss the parametric part, i.e. 𝝉𝜽(𝒖) in the closure model of Equation (13). As this represents a vector 
containing its values at various grid points over the problem domain, the ensuing discussion and equations should be interpreted 
as per grid point. We note that the most popular LEVM model (Equation (10)) assumes that the anisotropic part of the 𝝉𝐿𝐸𝑉𝑀 , is 
linearly related to the mean strain rate tensor 𝑺̄ . This linear relation assumption restricts the model to attain a small subset of all the 
possible states of turbulence. This subset is referred to as the plane strain line [66]. Experimental and DNS data show that turbulent 
flows explore large regions of the domain of realizable turbulence states.

In the present work, we make use of the invariant neural network architecture proposed by [15] which relates the anisotropic part 
of the RS tensor with the symmetric and antisymmetric components of the velocity gradient tensor. By using tensor invariants, the 
neural network is able to achieve both Galilean invariance as well as rotational invariance. The Navier-Stokes equations are Galilean-

invariant, i.e. they remain unchanged for all inertial frames of reference. The theoretical foundation of this neural network lies 
in the Non-Linear Eddy Viscosity Model (NLEVM) proposed by [21] and has been used in several studies [22,13,17]. By employing 
barycentric realizability maps [46,45,67,66,48], it was shown in [17] that this architecture overcomes the plane strain line restriction 
and can explore other realizable states.

In the model proposed by [21], the normalized anisotropic tensor of the R-S was given by 𝒃 ∶= 𝒃(𝑺, 𝛀), which was a function of 
the normalized mean rate of strain tensor 𝑺 and the rotation tensor 𝛀, i.e.:

𝝉 = 2𝑘𝒃+ 2𝑘
3
𝑰 ; 𝑺 = 1

2
𝑘

𝜖

(
𝛁𝒖+𝛁𝒖𝑇

)
𝛀 = 1

2
𝑘

𝜖

(
𝛁𝒖−𝛁𝒖𝑇

)
. (14)

Through the application of Cayley-Hamilton theorem [21], the following general expression for the anisotropy tensor 𝒃 was adopted:

𝒃 =
10∑
𝑘=1
𝐺(𝑘)( 1...5

⏟⏟⏟
𝑆𝑐𝑎𝑙𝑎𝑟
𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠

) (𝑘)
, (15)

where:

1 = tr(𝑺2), 2 = tr(𝛀2), 3 = tr(𝑺3), 4 = tr(𝛀2𝑺), 5 = tr(𝛀2𝑺2), (16)

and  (𝑘)
are the symmetric tensor basis functions (the complete set is listed in Table 1). The coefficients 𝐺(𝑖) are scalar, non-linear 

functions which depend on the five invariants 1...5 and must be determined. If 𝐺(1) = −0.09, 𝐺(𝑛) = 0, the NLEVM degenerates to 
the classical 𝑘 − 𝜖 model. When the NLEVM was proposed, it was impossible to find good approximations for these functions and as 
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Table 1

Complete set of basis tensors  (𝑛)
, that can be formed form 𝑺 and 𝛀. Matrix notation is 

used for clarity. The trace of a tensor is denoted by tr(𝑺) = 𝑆𝑖𝑖 .


(1)

= 𝑺, 
(6)

= 𝛀2𝑺 +𝑺𝛀2 − 2
3
tr(𝑺𝛀2)𝑰 ,


(2)

= 𝑺𝛀 −𝛀𝑺, 
(7)

= 𝛀𝑺𝛀2 +𝛀2𝑺𝛀,


(3)

= 𝑺2 − 1
3
tr(𝑺2)𝑰 , 

(8)
= 𝑺𝛀𝑺2 −𝑺2𝛀𝑺,


(4)

= 𝛀2 − 1
3
tr(𝛀2)𝑰 , 

(9)
= 𝛀2𝑺2 +𝑺2𝛀2 − 2

3
tr(𝑺2𝛀2)𝑰 ,


(5)

= 𝛀𝑺2 −𝑺2𝛀, 
(10)

= 𝛀𝑺2𝛀2 −𝛀2𝑺2𝛀.

a result, it did not receive adequate attention. This hurdle however was overcome with the help of machine learning [15] where 𝐺(𝑖)

were learned from high-fidelity simulation data. Neural networks with parameters 𝜽 were employed for the coefficients i.e. 𝐺(𝑖)
𝜽

and:

𝒃𝜽 =
10∑
𝑖=1
𝐺

(𝑖)
𝜽
( 1...5
⏟⏟⏟
𝑆𝑐𝑎𝑙𝑎𝑟
𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠

) (𝑖); 𝝉𝜽 = 2𝑘𝒃𝜽 +
2𝑘
3
𝑰 . (17)

We use 𝝉𝜽 to denote the neural-network-based, discretized RS tensor terms in the subsequent discussions.

As in [22], we employ the following prior for the NN parameters 𝜽:

𝑝(𝜽 ∣ 𝜈) = (𝜽|0, 𝜈−1𝑰𝑑𝜃 ), 𝑝(𝜈) =𝐺𝑎𝑚𝑚𝑎(𝜈|𝑎0, 𝑏0), (18)

where 𝑑𝜃 = 𝑑𝑖𝑚(𝜽) and a Gamma hyperprior was used for the common precision hyperparameter 𝜈 with (𝑎0, 𝑏0) = (1.0, 0.02). The 
resulting prior has the density of a Student’s  -distribution centered at zero, which is obtained by analytically marginalizing over 
the hyperparameter 𝜈 [68].

Similarly however to the most widely used RANS closure models, such as the Launder-Sharma 𝑘 − 𝜖 [56] or Wilcox’s 𝑘 −𝜔 [57], 
which are based on the Boussinesq turbulent-viscosity hypothesis, the present model of 𝝉𝜽 postulates that the RS tensor at each point 
in the problem domain depends on the flow features at the same point (locality assumption). This is a very strong assumption for 
flows that exhibit strong inhomogeneity [2].

2.2.2. Stochastic discrepancy term to RS

We argue that despite the careful selection of input features of the mean velocity field and the flexibility in the resulting map 
afforded by the NN architecture, the final form might not be able to accurately capture the true RS or at least not at every grid point 
in the problem domain. This would be the case, if e.g. non-local terms, which are unaccounted in the aforementioned formulation, 
played a significant role. As mentioned earlier, this gives rise to model uncertainty of an aleatoric nature which is of a different 
type than the epistemic uncertainty in the parameters 𝜽 of the closure model presented in the previous section. It is this model 
uncertainty that we propose to capture with the latent, random vector 𝝐𝜏 in Equation (13). As for 𝝉𝜽 in the previous section, 𝝐𝜏 is a 
vector containing the contribution from all grid points in the problem domain. Hence, in the two-dimensional setting and given the 
symmetry of the RS tensor, 𝝐𝜏 would be of dimension 𝑑𝜖 = 3𝑁 where 𝑁 is the total number of grid points.

Before discussing the prior specification for 𝝐𝜏 and associated inference procedures, we propose a dimension-reduced represen-

tation that would facilitate subsequent tasks given the high values that 𝑁 takes in most simulations. In particular, we represent 𝝐𝜏
as:

𝝐𝜏 =𝑾𝑬𝝉 . (19)

It is based on considering 𝑁𝑑 subdomains of the problem domain and assuming that for all grid points in a certain subdomain, 
the corresponding RS discrepancy terms are identical. This can be expressed as in Equation (19) above where the entries of 𝑾
are 1 if a corresponding grid point (row of 𝑾 ) belongs in a certain subdomain (column of 𝑾 ) and 0 otherwise. A non-binary 
𝑾 would also be possible, although in this case its physical interpretation in terms of subdomains would be occluded. The vector 
𝑬𝜏 = {𝑬𝜏,𝐽 }

𝑁𝑑
𝐽=1 contains therefore the RS discrepancy terms for each subdomain, e.g. 𝑑𝑖𝑚(𝑬𝜏,𝐽 ) = 3 for a two-dimensional flow. 

The dimensionality reduction scheme resembles Principal Component Analysis (PCA) [69]. In contrast to the latter however, we 
never have data/observations of the vectors to be reduced, i.e. 𝝐𝝉 in our case. These are inferred implicitly from the LES data and 
simultaneously with 𝑾 . In the ensuing numerical illustrations, the division into subdomains is done in a regular manner and 𝑾 is 
prescribed a priori. One could nevertheless readily envision a learnable 𝑾 or even an adaptive refinement into subdomains.

The incorporation of the model discrepancy variables 𝝐𝜏 or 𝑬𝜏 at each grid-point or subdomain introduces redundancies i.e. there 
would be an infinity of combinations of 𝜽 and 𝝐𝜏/𝑬𝜏 that could fit the data equally well. In order to address this issue, we invoke 
the concept of sparsity which has been employed in similar situations in the context of physical modeling [70,71]. To this end, we 
make use of a sparsity-enforcing Bayesian prior based on the Automatic Relevance Determination (ARD) [72,73]. In particular:

𝑝(𝑬𝜏 |𝚲) = 𝑁𝑑∏
𝐽=1
𝑝(𝑬𝜏,𝐽 |𝚲(𝐽 )) =

𝑁𝑑∏
𝐽=1

 (
𝑬𝜏,𝐽 |𝟎, 𝑑𝑖𝑎𝑔(𝚲𝐽 )−1)) , (20)
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where 𝑬𝜏,𝐽 denotes the stochastic RS discrepancy term at subdomain 𝐽 and the vector of hyperparameters 𝚲𝐽 contains the corre-

sponding precisions (e.g. for two-dimensional flows, 𝑑𝑖𝑚(𝚲𝐽 ) = 3). A-priori therefore we assume that the RS discrepancies are zero 
on average with an unknown variance/precision that will be learned from the data as it will be discussed in the sequel. This is 
combined with the following hyperprior (omitting the hyperparameters 𝛼0, 𝛽0):

𝑝(𝚲) =
𝑁𝑑∏
𝐽=1

𝐿∏
𝓁=1
𝐺𝑎𝑚𝑚𝑎(Λ𝐽 ,𝓁 |𝛼0, 𝛽0), (21)

where Λ𝐽 ,𝓁 denotes the 𝓁𝑡ℎ entry (e.g. 𝐿 = 3 for two-dimensional flows) of the vector of precision hyperparameters in subdomain 
𝐽 . We note that when Λ𝐽 ,𝓁 →∞, then the corresponding model discrepancy term 𝐸𝜏,𝐽 ,𝓁 → 0. The resulting prior for 𝑬𝜏 arising by 
marginalizing the hyperparameters 𝚲 is a light-tailed, Student’s t-distribution [74] that promotes solutions in the vicinity of 0 unless 
strong evidence in the data suggests otherwise. The hyperparameters 𝛼0, 𝛽0 are effectively the only ones that need to be provided 
by the analyst. We advocate very small values (𝛼0 = 𝛽0 = 10−3 was used in the ensuing numerical illustrations) which correspond to 
an uninformative prior [75]. This is consistent with the values adopted in the original paper where the ARD prior was employed in 
conjunction with variational inference i.e. in [75].

The dimension of the 𝝐𝜏 is high i.e. 3𝑁 in 2D (and 6𝑁 in 3D) where 𝑁 is the total number of grid points. In contrast, the 
dimension of 𝜽 is independent of the grid as the parametric part of the closure model is the same at all grid points. Depending on 
the amount of data, one can envision cases where multiple combinations of 𝝐𝜏 and 𝜽 could fit the data equally well. Non-zero values 
of 𝝐𝜏 would imply model errors at the corresponding grid points. Ceteris paribus, we would prefer the combination with the least 
number of model errors or equivalently the one for which our parametric model can capture for most of the domain the closure 
accurately. It is indeed these types of solutions/combinations that the ARD prior promotes.

2.2.3. Data, likelihood and posterior

The probabilistic model proposed is trained with indirect observational data that pertain to time-averaged velocities and pressures 
at various points in the problem domain. This is in contrast to the majority of efforts in data-driven RANS closure modeling [22,15,

65,17], which employ direct RS data. In the ensuing numerical illustrations, the data is obtained from higher-fidelity computational 
simulations, but one could readily make use of actual, experimental observations.

In particular, we consider 𝑀 ≥ 1 flow settings and denote the observations collected as  = {𝒛̂(𝑚)}𝑀
𝑚=1. These consist of time-

averaged velocity/pressure values where 𝑑𝑖𝑚(𝒛̂(𝑚)) =𝑁𝑜𝑏𝑠. The locations of these measurements do not necessarily coincide with the 
mesh used to solve the RANS model in Equation (7) nor is it necessary that the same number of observations is available for each of 
the 𝑀 flow settings. The data is ingested with the help of a Gaussian likelihood:

𝑝( ∣ 𝜽,𝝐(1∶𝑀)
𝜏 ) =

∏𝑀
𝑚=1 𝑝(𝒛̂

(𝑚) ∣ 𝜽,𝝐(𝑚)𝜏 )
=
∏𝑀
𝑚=1 (𝒛̂(𝑚) ∣ 𝒛(𝜽,𝝐(𝑚)𝜏 ),𝚺),

(22)

where 𝒛(𝜽, 𝝐(𝑚)𝜏 ) denotes the solution vector of the discretized RANS equations (see Equation (7)) with the closure model suggested by 
Equation (13) i.e. 𝝉 = 𝝉𝜽(𝒖) +𝝐

(𝑚)
𝜏 . We note that a different set of latent variables 𝝐(𝑚)𝜏 is needed for each flow scenario as, by its nature, 

model discrepancy will in general assume different values under different flow conditions. We also note that the 𝝐𝜏 is grid-dependent

or problem geometry-dependent, which restricts it from making predictions for a completely different flow geometry. One could, with 
appropriate modeling enhancements, learn the dependence of 𝝐𝜏 on flow parameters (e.g. boundary/initial conditions, geometry, 𝑅𝑒
number) which would make it usable in other flow geometries. Alternatively, it could be trained under different flow settings (e.g. 
different 𝑅𝑒 numbers as we do) and learn, on aggregate, the model error which in turn could be used to make predictions under 
different flow settings (as in our case for different 𝑅𝑒 number).

We denote with 𝚺 the covariance matrix of the Gaussian likelihood which, given the absence of actual observation noise, plays 
the role of a tolerance parameter determining the tightness of the fit. The covariance was expressed as 𝚺 = 𝑑𝑖𝑎𝑔(𝜎21 , ⋯ , 𝜎23𝑁𝑜𝑏𝑠 ), 
where the values in the diagonal vector are set to 1% of the mean of the squares of each observable across the 𝑀 flow settings i.e. 

𝜎2
𝑖
= 0.01 1

𝑀

∑𝑀
𝑚=1

(
𝑧̂
(𝑚)
𝑖

)2
.

By combining the likelihood above with the priors discussed in the previous sections as well as by employing the dimensionality 
reduction scheme of Equation (19) according to which 𝝐(𝑚)𝜏 can be expressed as 𝝐(𝑚)𝜏 =𝑾𝑬(𝑚)

𝜏 , we obtain a posterior on:

• the parameters 𝜽 of the parametric closure model,

• the latent variables 𝑬(1∶𝑀)
𝜏 expressing the stochastic model discrepancy in each of the 𝑀 training conditions,

• the hyperparameters 𝚲 in the hyperprior of 𝑬(1∶𝑀)
𝜏 ,

which would be of the form (omitting given hyperparameters):

𝑝(𝜽,𝑬(1∶𝑀)
𝜏 ,𝚲| ) ∝ 𝑝( | 𝜽,𝑬(1∶𝑀)

𝜏 ) 𝑝(𝑬(1∶𝑀)
𝜏 |𝚲) 𝑝(𝜽) 𝑝(𝚲)

=
(∏𝑀

𝑚=1 𝑝(𝒛̂
(𝑚) ∣ 𝜽,𝑬(𝑚)

𝜏 ) 𝑝(𝑬(𝑚)
𝜏 |𝚲)) 𝑝(𝜽) 𝑝(𝚲). (23)

An illustration of the corresponding graphical model is contained in Fig. 1.
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Fig. 1. Probabilistic graphical model of the proposed model including model parameters (𝜽, 𝚲), latent variables (𝑬𝜏 ) and observables 𝒛̂ from 𝑀 flow scenarios. 
Deterministic nodes are indicated with circles with dashed line, stochastic with circles with solid line and known/observed are shaded.

2.2.4. Inference and learning

On the basis of the probabilistic model proposed and the posterior formulated in the previous section, we discuss numerical 
inference strategies for identifying the unknown parameters and latent variables. The intractability of the posterior stems from the 
likelihood which entails the solution of the discretized RANS equations. We advocate the use of Stochastic Variational Inference 
(SVI) [76] which results in a closed-form approximation of the posterior 𝑝(𝜽, 𝑬(1∶𝑀)

𝜏 , 𝚲|). In contrast to the popular, sampling-

based strategies (MCMC, SMC etc.), SVI yields biased estimates at the benefit of computational efficiency. Readers interested in 
comparative studies/discussions on SVI and MCMC in terms of accuracy and computational efficiency are directed to [77]. Given 
a family of probability densities 𝑞𝝃

(
𝜽,𝚲,𝑬(1∶𝑀)

𝜏

)
parametrized by 𝝃, we find the optimal, i.e. the one that is closest to the exact 

posterior in terms of their Kullback-Leibler divergence, by maximizing the Evidence Lower Bound (ELBO)  (𝝃) [68]:

 (𝝃) = 𝔼
𝑞𝜉

(
𝜽,𝚲,𝑬(1∶𝑀)

𝜏

)
[
log

(
𝑝
(,𝜽,𝚲,𝑬(1∶𝑀)

𝜏

)
𝑞𝜉

(
𝜽,𝚲,𝑬(1∶𝑀)

𝜏

) )]

= 𝔼
𝑞𝜉

(
𝜽,𝚲,𝑬(1∶𝑀)

𝜏

)
[
log

(
𝑝( | 𝜽,𝑬(1∶𝑀)

𝜏 ) 𝑝(𝑬(1∶𝑀)
𝜏 |𝚲) 𝑝(𝜽) 𝑝(𝚲)

𝑞𝜉
(
𝜽,𝚲,𝑬(1∶𝑀)

𝜏

) )]
. (24)

As its name suggests, it can be readily shown and that ELBO lower-bounds the model log-evidence and their difference is given by 
the aforementioned KL-divergence i.e.:

log𝑝() =  (𝝃) +𝐾𝐿
(
𝑞𝜉(𝜽,𝚲,𝑬(1∶𝑀)

𝜏 ) |||||| 𝑝(𝜽,𝚲,𝑬(1∶𝑀)
𝜏 |)

)
. (25)

In order to expedite computations we employ a mean-field assumption [77] according to which the approximate posterior is factor-

ized as:

𝑞𝝃
(
𝜽,𝚲,𝑬(1∶𝑀)

𝜏

)
= 𝑞𝝃(𝜽)𝑞𝝃(𝚲)

𝑀∏
𝑚=1
𝑞𝝃

(
𝑬(𝑚)
𝜏

)
. (26)

We employ Dirac-deltas for the first two densities i.e.:

𝑞𝝃(𝜽) = 𝛿(𝜽− 𝜽𝑀𝐴𝑃 ), (27)

𝑞𝝃(𝚲) = 𝛿(𝚲−𝚲𝑀𝐴𝑃 ). (28)

In essence, we obtain point estimates for 𝜽, 𝚲 which coincide with the Maximum-A-Posteriori (MAP) estimates. The specific choice 
of Dirac-deltas was motivated by computational cost reasons in the inference and prediction steps. Furthermore, given that the 
dimension of 𝜽 is generally (much) smaller than the number of observations (see section 3), we anticipate that its posterior would 
not deviate much from a Dirac-delta. The final reason for which posterior uncertainty (albeit small) on 𝜽 was not included, was to 
emphasize the significance and impact of the stochastic, model correction term that we propose.

For the model discrepancy variables 𝑬(𝑚)
𝜏 , we employ uncorrelated Gaussians given by:

𝑞𝝃(𝑬(𝑚)
𝜏 ) = (𝑬(𝑚)

𝜏 ∣ 𝝁(𝑚)
𝐸
,diag(𝝈2,(𝑚)

𝐸
)), ∀𝑖 ∈ {1,… ,𝑀}. (29)

In summary, the vector 𝝃 of the parameters in the variational approximation consists of:

𝝃 = {𝜽𝑀𝐴𝑃 ,𝚲𝑀𝐴𝑃 ,{𝝁
(𝑚)
𝐸
,𝝈

2,(𝑚)
𝐸

}𝑀
𝑚=1}. (30)

The updates of the parameters 𝝃 are carried out using derivatives of the ELBO. These entail expectations with respect to 𝑞𝝃 which 
are estimated (with noise) by Monte Carlo in conjunction with the ADAM stochastic optimization scheme [78]. In order to reduce 
the Monte-Carlo noise in the estimates, we employ the reparametrization trick [79]. This is made possible here due to the form of 
the approximate posterior 𝑞𝝃 . In particular, if we summarily denote with 𝜼 = {𝜽, 𝚲, 𝑬(1∶𝑀)

𝜏 } and given that the approximate posterior 
𝑞𝝃(𝜼) can be represented by deterministic transform 𝜼 = 𝑔𝜉(𝝓), where 𝝓 follows a known density 𝑞(𝝓),2 the expectations involved in 
the ELBO and, more importantly, in its gradient can be rewritten as:

∇𝝃 (𝝃) = 𝔼𝑞(𝝓)
[
∇𝝃𝑔𝜉(𝝓)∇𝜼

(
log𝑝(,𝜼) − log 𝑞𝜉(𝜼)

)]
. (31)

2 Based on the form of 𝑞𝝃 in Equations (26), (27), (28), (29), the transform employed can be written as 𝜽= 𝜽𝑀𝐴𝑃 , 𝚲 =𝚲𝑀𝐴𝑃 and 𝑬(𝑚)
𝜏

= 𝝁
(𝑚)
𝐸

+diag(𝝈2,(𝑚)
𝐸

) 𝝓 where 
𝑞(𝝓) = (𝝓| 𝟎, 𝑰).
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Algorithm 1: Inference and learning using SVI.

Input :  = {𝒛̂(𝑖)}𝑀
𝑚=1 , 𝑾

Output : 𝝃 = {𝜽𝑀𝐴𝑃 , 𝚲𝑀𝐴𝑃 , {𝝁(𝑚)
𝐸
, 𝝈2,(𝑚)
𝐸

}𝑀
𝑚=1}

1 while ELBO ̂ not converged do

2 𝜽← 𝜽𝑀𝐴𝑃 , 𝚲 ←𝚲𝑀𝐴𝑃 ;

3 for 𝑚 ∈ {1 ∶𝑀} do

4 for 𝑘 ∈ {1 ∶𝐾} do

// Reparametrization trick
5 Sample 𝝓(𝑚,𝑘) ∼ ( 𝟎, 𝑰) for 𝑘 = 1, ⋯ , 𝐾 ;

// Compute stochastic discrepancy terms
6 𝑬(𝑚,𝑘)

𝜏
= 𝑔𝝃 (𝝓(𝑚,𝑘)) = 𝝁

(𝑚)
𝐸

+ 𝝈
(𝑚)
𝐸
⊙𝝓(𝑚,𝑘) ;

// Solve discretized RANS equations
7 Solve (𝒛; 𝝉𝜽(𝒖) +𝑾𝑬(𝑚,𝑘)

𝜏
) = 0 to obtain the solution vector 𝒛(𝑚,𝑘) ; // Equation (12)

// Compute log-likelihoods and their gradients
8 𝓁(𝑚,𝑘)(𝜽, 𝑬(𝑚,𝑘)

𝜏
), 𝜕𝓁(𝑚,𝑘)∕𝜕𝜽, 𝜕𝓁(𝑚,𝑘)∕𝜕𝑬(𝑚,𝑘)

𝜏
; // Equations (B.3), (B.8), (B.9)

9 end

10 end

// Monte Carlo estimate of ELBO
11 Estimate ELBO  using Equation (B.10) ;

// Monte Carlo estimate of the gradient of the ELBO
12 Estimate gradient of ELBO ∇𝝃 using Equation (B.12) ;

// Stochastic Gradient Ascent
13 𝝃(𝑛+1) ← 𝝃(𝑛) + 𝝆(𝑛) ⊙∇𝝃 ;

14 𝑛 ← 𝑛 + 1 ;

15 end

16 return 𝝃

One observes that derivatives of the log-likelihood with respect to 𝜼 are needed. This in turn would imply derivatives of the RANS-

model outputs with respect to {𝜽, 𝚲, 𝑬(1∶𝑀)
𝜏 } which appear indirectly through 𝝉 . Such derivatives are rendered possible by using an 

adjoint formulation of the discretized RANS model that yields in effect a differentiable solver.

Further details about the derivatives of the ELBO and the use of RANS-model sensitivities obtained by an adjoint formulation can 
be found in Appendix B. An algorithmic summary of the steps entailed is contained in Algorithm 1. We note finally that the ELBO 
(which serves as a lower bound to the model evidence) and can be used to compare (in a Bayesian sense) alternative models. Such 
model variations could arise by changing e.g. 𝑾 i.e. the partition into subdomains which enables the dimensionality reduction of 
the stochastic model discrepancy vector. One could even employ an adaptive division into subdomains guided by  so as the data 
can dictate which regions require more/less refinement.

2.2.5. Predictions

In this section, we describe how probabilistic, predictive estimates of any quantity of interest related to the RANS-simulated flow 
can be produced using the trained model. In particular, one can obtain a predictive, posterior density 𝑝(𝒛|) on the whole solution 
vector 𝒛 of the RANS equations as follows:

𝑝(𝒛|) = ∫ 𝑝(𝒛,𝑬𝜏 ,𝜽,𝚲|) 𝑑𝑬𝜏 𝑑𝜽 𝑑𝚲
= ∫ 𝑝(𝒛|𝑬𝜏 ,𝜽) 𝑝(𝑬𝜏 ,𝜽,𝚲|) 𝑑𝑬𝜏 𝑑𝜽 𝑑𝚲
= ∫ 𝑝(𝒛|𝑬𝜏 ,𝜽) 𝑝(𝑬𝜏 |𝚲)𝑝(𝜽,𝚲|) 𝑑𝑬𝜏 𝑑𝜽 𝑑𝚲.

(32)

The third of the densities in the integrand is the posterior which is substituted by its variational approximation i.e. 𝑞𝝃 in Equation 
(26) and for the optimal parameter values 𝝃 identified as described in the previous section. The second of the densities represents the 
prior model prescribed in Equation (20). Finally, the first of the densities is simply a Dirac-delta which corresponds to the solution of 
the RANS equations obtained when using the proposed closure model for given 𝑬𝜏 , 𝜽. Since the RANS solver is a black-box, it would 
not be possible to propagate the uncertainty in 𝑬𝜏 (and potentially 𝜽) otherwise. In practical terms and given the intractability of 
this integral, the equation above suggests a Monte Carlo scheme for obtaining samples from 𝑝(𝒛|𝑫) which involves the following 
steps. For each sample:

• Set 𝜽 = 𝜽𝑀𝐴𝑃 , 𝚲 =𝚲𝑀𝐴𝑃 . (If a different variational approximation to the posterior 𝑞𝝃 than the one in Equations (27), (28) were 
used, then 𝜽, 𝚲 would need to be sampled from it).

• Sample 𝑬𝜏 from 𝑝(𝑬𝜏 |𝚲𝑀𝐴𝑃 ) in Equation (20) and compute model discrepancy vector 𝝐𝜏 =𝑾𝑬𝜏 .

• Solve the discretized RANS model in Equation (12) for 𝝉 = 𝝉𝜽(𝒖) + 𝝐𝜏 .

Other numerical integration techniques (e.g. Quasi Monte Carlo or Importance Sampling) could be used in order to obtain estimates 
of the integral with fewer RANS solves. The aforementioned steps would need to be repeated for as many samples as desired. 
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Fig. 2. Schematic illustration of the training/inference (left block) and probabilistic prediction (right block) framework proposed.

Subsequently, the samples can be used to compute statistics of the predictive estimate (e.g. predictive mean, variance, credible 
intervals, etc) not only of 𝒛 (i.e. velocities/pressures) but of any quantity of interest such as the lift, drag, skin friction, etc.

We note however that stochastic RS discrepancy terms 𝝐𝜏 or 𝑬𝜏 and the associated probabilistic model, are limited to the 
flow geometry used for the training. While it can be used for unseen flow scenarios (e.g. different 𝑅𝑒 number, inlet conditions, 
boundary conditions), it cannot be employed for a different flow geometry. In theory, the parametrization of the 𝝐𝜏 can be updated 
to accommodate different geometries, but we leave it for future investigations. Finally, we would like to highlight the fact that 
baseline RANS data is not needed as an input to the neural networks for prediction in the proposed scheme, as opposed to other 
frameworks that have been employed in the past (e.g. [22,15,17,65]).

In terms of computational aspects, the stochastic nature of the (reduced) discrepancy tensor 𝑬𝜏 can potentially introduce non-

smoothness in the RS vector 𝝉 used for solving the RANS equations. In the present work, we have used diagonal covariance for the 
hyper-prior of 𝑬𝜏 given by 𝚲 = 𝑑𝑖𝑎𝑔(𝚲(𝐽 )), 𝐽 = 1, … , 𝑁𝑑 , thus assuming there is no correlation among the nearby nodes/region. 
As an avenue for future work, a banded covariance matrix can be employed to capture such spatial correlations. Sparsity-inducing 
priors that account for spatial correlations have been proposed in [80,73]. A schematic overview of the methodological framework 
discussed in Section 2.2.4 and Section 2.2.5 is presented in Fig. 2. Numerical results, training data and the corresponding source code 
will be made available at https://github.com/pkmtum/D3C-UQ/ upon publication.

3. Numerical illustrations

3.1. Test case: Backward facing step

We select the backward facing step configuration in order to assess the proposed modeling framework. This is a classic benchmark 
problem that has been widely used for studying the performance of turbulence models as it poses significant challenges due to the 
complex flow features such as flow separation, reattachment and recirculation [81,82]. In this setup, as illustrated in Fig. 3 a two-

dimensional channel flow is abruptly expanded into a rectangular cavity with a step change in height. The flow separates at the step 
and forms two recirculation zones downstream, one directly after the step and the other on the upper channel wall downstream. 
These two recirculation zones affect the reattachment length. The flow features can be seen in more detail as depicted in the LES 
simulations in Fig. 6. In this setting, the Reynolds number is defined as:

𝑅𝑒 = 𝑢ℎ
𝜈
, (33)

where ℎ and 𝜈 are the characteristic length (also the step height) and kinematic viscosity, respectively and 𝑢 denotes the average 
velocity of the inlet flow. In the present study, the expansion ratio 𝐻∕ℎ is 2 and the boundary conditions are shown in Fig. 3. 
They consist of constant inlet bulk velocity 𝑢𝑏 = 1 in the 𝑥-direction (𝑢𝑏 = 𝑢) on the left boundary, no-slip condition on Γ𝐷 (i.e.,

top/bottom boundary) and zero tractions along Γ𝑁 (i.e., at the outflow boundary) i.e. 
(
−𝑝𝑰 + 𝜈

2 (∇𝒖+∇𝒖𝑇 )
)
⋅ 𝑛̂ = 0 where 𝑛̂ is the 

outward normal of the outflow. On the 𝑥 − 𝑦 plane, we place the origin at the corner of the step.
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Fig. 3. Backward facing step flow configuration with step height ℎ and the total channel height 𝐻 . The origin of the 𝑥 − 𝑦 plane is placed at the corner of the step. 
The axes are depicted at the bottom left to avoid clutter.

Table 2

Parameters used for performing the CFD simulations for the generation of the training and test data 
[51].

Domain size 27ℎ × 2ℎ × ℎ
DoF LES 1428920

DoF 𝑘− 𝜖 35709

Step height (ℎ) 1

Total channel height (𝐻) 2

Kinematic viscosity 𝜈 values for training data generation (×10−3) 3.33, 2.00, 1.42, 1.11, 0.909
𝑅𝑒 values for training data generation 300,700,900,1100
𝑅𝑒 value for prediction 500
Characteristic length step height ℎ

3.2. Generation of training data

In order to generate the training data, we performed Large Eddy Simulations (LES) for various Reynolds numbers i.e. by varying 
the kinematic viscosity 𝜈. A three-dimensional configuration is adopted wherein the 𝑧-direction (i.e., the in-plane direction) is 
periodic and the mean fields averaged over the 𝑧-direction are used for training. We also performed RANS simulations using the 𝑘 − 𝜖
model for the same set of 𝑅𝑒 numbers to provide a comparison as it is the most widely used RANS model in industrial applications. 
In the subsequent discussions, we will refer to the 𝑘 − 𝜖 model as the baseline RANS model.

We used the open-source CFD platform OpenFOAM [83] for the LES and baseline RANS simulations. We utilized the steady-

state, incompressible solver simpleFoam for the baseline RANS simulations. This solver uses the Semi-Implicit Method for Pressure 
Linked Equations (SIMPLE) in order to solve both the momentum and pressure equations. For the LES simulations, we employed the 
pimpleFoam transient solver, which combines both the PISO (Pressure Implicit with Split Operator) and SIMPLE algorithms to solve 
the pressure and momentum equations. In particular, we use the WALE (Wall-Adapting Local Eddy-Viscosity) model [84]. This model 
is well-suited for capturing turbulent structures near solid walls and is known for its accurate predictions of wall-bounded turbulent 
flows. In order to overcome the computational demands of LES, a domain decomposition approach was employed. In particular, 
we split the domain into 16 subdomains and leverage the CPU cores in parallel.3 We discretized both the baseline RANS and LES 
domains using second-order methods and all the meshes were non-uniform with mesh density increasing in the domains of interest. 
To ensure numerical accuracy, we ran all simulations with a CFL number below 0.3. Other pertinent details of the LES and baseline 
simulations are provided in Table 2. We note that the purpose of the LES model in the present work is to serve as the reference solver 
that the trained RANS model would try to approximate or match. The framework proposed does not make use of the particulars of 
the LES solver and one could readily use actual or DNS data (or combinations thereof) for training. The LES data might deviate from 
physical reality or the results obtained by DNS. Readers interested in the relative accuracy of LES simulations are directed to [85,86].

The mean field reference data from LES is interpolated to the same mesh used for the Finite Element (FE)-based calibrated RANS 
model (model implementation details discussed in the sequel). However, not all the observations in the grid were used for training. 
At each RANS grid point, an independent, random coin was flipped with probability 10% of picking the grid point. This resulted in
mean velocity/pressure observations at approximately 8% of the grid points to be used as training data, i.e. a rather sparse 
dataset (the selected observation points are depicted in Fig. 4). Naturally, the density of RANS grid was higher near the step, so the 
density of observations was higher in the regions of steeper velocity gradients (in the reattachment and recirculation regions) and 
lower in other regions. Hence, the training dataset  = {𝒛̂(𝑖)}𝑀

𝑚=1 consists of the velocities/pressure at those grid points obtained 
from the 𝑀 = 4 LES simulations carried out with for the corresponding 𝑅𝑒 numbers (in Table 2). The influence of the number 
of observation points on the learning and predictive results is an interesting research direction, which we will address in future 
investigations. A few snapshots of the instantaneous velocity magnitude for 𝑅𝑒 = 1100 from the LES simulation are depicted in Fig. 5

where one can observe how the flow features of interest evolve over time. Only the time-averaged velocities/pressures were used for 
training which are shown in Fig. 6.

3 Computations were carried out in a Intel Core i9-12900K CPU.
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Fig. 4. (Random) grid points where LES velocities/pressure were used for training data. We note that the total number of LES grid points is (105) whereas LES 
simulation data at approximately 1000 grid points were employed.

Fig. 5. Instantaneous velocity magnitude ||𝑼 || at different time-instants 𝑡 = {30, 70, 100} obtained from the LES simulation performed at 𝑅𝑒 = 1100. We note that the 
flow eventually reaches a stationary state.

Fig. 6. Time-averaged velocity magnitude ||𝒖|| obtained from LES simulation performed at 𝑅𝑒 = 1100. The velocity vector plot highlights the flow separation, 
recirculation zones and the flow reattachment.

3.3. Differentiable forward RANS solver and probabilistic learning implementation

For the discretization of the RANS equations (Equation (12)) the Finite Element (FE) method was employed and the implemen-

tation was carried out in the open source package FEniCS [87] due to its innate adjoint solver [88]. The basic quantities and their 
dimensions are listed in Table 3. Further details about the differentiable solver can be found in Appendix A.

Probabilistic inference and learning tasks were performed using the probabilistic programming package Pyro [89] which is 
built on top of the popular machine learning library PyTorch [90]. The ELBO maximization was performed using the ADAM 
scheme [78]. The number of Monte Carlo samples used at each iteration for the estimation of the ELBO and its gradient was 𝐾 = 5
(Algorithm 1). The gradient computation of the ELBO (Equation (31)) was enabled by overloading the autograd functionality of 
PyTorch to facilitate interaction between the solver’s adjoint formulation and the auto-differentiation-based neural network gradient. 
A relatively small learning rate of 10−6 was employed due to the Monte Carlo noise in the ELBO gradients. The neural network 
architecture employed for the parametric RS model was identical to the one suggested by [15] where the optimal number of hidden 
layers and nodes per layer was determined to be 8 and 30 respectively. The Leaky ReLU was chosen as the activation function for all 
layers. We noted however that the usual practice of random weight initialization was unsuitable as it led to divergence of the solution 



Journal of Computational Physics 508 (2024) 112982

13

A. Agrawal and P.-S. Koutsourelakis

Table 3

Basic quantities and dimensions.

Quantity dimensions

Domain size 27ℎ × 2ℎ
number of nodes in FE simulation (𝑁) 12180

dim(𝒛) 12180 × 3

dim(𝝉) 12180 × 3

Boolean Matrix dim(𝑾 ) 12180 × 52

dim(𝑬) 52 × 3

dim(𝚲) 52 × 3

dim(𝜽) 6970

even after applying the stabilization schemes. For this reason, we used baseline RANS closure data with added noise to pre-train the 
neural network in order to provide a suitable initialization.

3.4. Results and discussion

We assessed the trained model for the test-case with 𝑅𝑒 = 500 which was not contained in the training data. In the sequel, various 
aspects of the probabilistic predictions obtained as described in Section 2.2.5 are compared with the reference LES and the baseline 
RANS predictions. Even though the same parametrized RS closure term was used in [15] (and other subsequent works branching from 
this), their results are not directly comparable due to the use of blending functions [17,22], which combine baseline RS values near 
the walls with the constant, predicted RS in the bulk and with the amount of blending being case-dependent.

The performance of the proposed method in predicting the components of the RS tensor is shown in Fig. 7, from which the 
following conclusions can be drawn:

• Even though no RS observations were provided during the training, the parametric 𝝉𝜽 (i.e. neural-network based) part of the 
RS closure is able to capture the basic features of the reference (i.e. LES) RS field. In contrast, the baseline 𝑘 − 𝜖 model severely 
under/over-estimates its magnitude and misrepresents its spatial variability. We observe that some regions have relatively higher 
errors (for e.g., around 5 < 𝑥∕ℎ < 10 in Fig. 7(c)), which is attributed to the parametric model’s inability to provide adequate 
closure. This model error is exactly what we attempt to capture with our proposed stochastic discrepancy term.

• The bottom row of all the three subfigures in Fig. 7 depicts the inferred precision 𝚲 of the (reduced) discrepancy tensor 𝑬𝜏 . 
As this is inversely proportional to the predictive uncertainty we note that it attains smaller values in the regions where the 
parametric model 𝝉𝜽 deviates the most from the LES values (e.g. for 5 < 𝑥∕ℎ < 10). Conversely, it attains very large values 
(which correspond to practically zero model discrepancies) in areas where the parametric closure model is able to correctly 
account for the underlying phenomena (e.g. far downstream and for all three RS components). This is expected as the flow 
attains an almost parabolic profile in this region, which in turn translates to reduced fluctuations in the RS tensor, making it 
easier for the neural network to learn.

The Monte-Carlo-based scheme (detailed in Section 2.2.5) was employed to propagate the model form uncertainty forward in 
order to obtain probabilistic predictive estimates for the quantities of interest i.e. mean stream-wise velocity 𝑢, wall-normal velocity 
𝑣 (Fig. 8, Fig. 9) and mean pressure 𝑝 (Fig. 10). Cross-sections of the aforementioned quantities are depicted in Fig. 11. The following 
conclusions can be drawn from the Figures:

• Even though the RS field is captured with some discrepancies, the predicted mean fields agree well with the reference LES data 
(Figs. 8, 9 and 10, discussed in the sequel). This points to the non-uniqueness of this inverse problem solution, also reported by 
other works [7,37].

• There exist two recirculation zones in the backward-facing step flow setup. The primary one forms just after the step and the 
secondary appears above it for Reynolds numbers close to 400 and above, for the given expansion ratio [91]. As it can be seen 
in Fig. 8, the proposed model is able to predict the appearance of the two recirculation zones in close agreement with the LES, 
whereas the baseline RANS model underestimates the size of the first recirculation zone and almost completely misses the second 
one.

• The last row of Fig. 8 depicts the predictive posterior standard deviation of the aforementioned quantities. As expected, around 
the shear layers (the top of the first recirculation zone and the bottom of the second recirculation zone), the uncertainty is 
the highest. This is even more clearly observed in the cross-sections of Fig. 11 which illustrate the predictive, posterior mean 
plus/minus two posterior standard deviations. More importantly perhaps, one observes that the predictions envelop the reference 
LES values in most areas. The model is extremely confident close to the inlet, as manifested by the very tight credible interval. 
As one moves further downstream and close to the first recirculation zone, the parametric closure suffers, hence the uncertainty 
bounds are wider to account for it. The ability to quantify aleatoric, predictive uncertainty4 is one of the main advantages of the 

4 As mentioned earlier, MAP point-estimates for the model parameters 𝜽 were used.
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Fig. 7. Comparison of the predicted components of the RS tensor 𝝉𝜽 with the LES reference values and the baseline RANS (𝑘 − 𝜖) for the test case with 𝑅𝑒 = 500. The 
three components 𝝉11 , 𝝉12 and 𝝉22 are separately compared in subfigures (a), (b), and (c) respectively (subfigure (c) in the next page). In each block, top - the LES RS 
tensor component contour, second - the 𝑘 − 𝜖 RS tensor component contour, third - the predicted, parametric RS tensor 𝝉𝜽 for 𝜽 = 𝜽𝑀𝐴𝑃 , fourth - the contour plot 
of the absolute error between the LES RS tensor and the 𝝉𝜽 tensor component, bottom - the inferred hyper-parameter 𝚲 of the (reduced) discrepancy tensor 𝑬𝝉 .

probabilistic model proposed in contrast to the more commonly used deterministic counterparts as well as alternatives that can 
only capture epistemic uncertainty.

• Similarly to the stream-wise velocity, predictions for the wall-normal velocity (Fig. 9) and the pressure (Fig. 10) are in good 
agreement with the reference LES values, as opposed to the baseline RANS. In the first recirculation zone, the baseline 𝑘 − 𝜖
is completely off, while the predicted values with the credible interval cover the reference LES. Also, the pressure predictions 
(Fig. 10) identify the crucial zone where the flow reattaches to the wall (around 𝑥∕ℎ ≈ 10), which is very difficult to predict in 
general. At the reattachment point, there is a transition from low-pressure in the recirculation zone to higher pressure along the 
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Fig. 7. (continued)

Fig. 8. Velocity contours in x-direction (𝒖) for the test case with Re = 500. top - ground truth (LES), second - baseline 𝑘 − 𝜖, third - the posterior predictive mean 
(⟨𝒖⟩), fourth - the contour plot of the absolute error between the LES (𝒖𝐿𝐸𝑆 ) and the posterior predictive mean (⟨𝒖⟩), bottom - the standard deviation of the posterior 
predictive (𝜎(𝒖)).
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Fig. 9. Velocity contours in y-direction (𝒗) for the test case with Re = 500. top - ground truth (LES), second - baseline 𝑘 − 𝜖, third - the posterior predictive mean 
(⟨𝒗⟩), fourth - the contour plot of the absolute error between the LES (𝒗𝐿𝐸𝑆 ) and the posterior predictive mean (⟨𝒗⟩), bottom - the standard deviation of the posterior 
predictive (𝜎(𝒗)).

Table 4

Relative computational cost in terms of computa-

tional time (on an Intel Core i9-12900K CPU) of a 
single model run for LES and of the proposed, differ-

entiable RANS solver. These are compared with the 
cost of the baseline RANS model for Reynolds num-

ber 500.

LES proposed RANS solver

Relative cost 7679 1.3

wall. The posterior standard deviation at this point is also higher than in the other regions, ensuring that the reference solution 
is enveloped.

As previously mentioned, observations of mean velocities/pressures at approximately 8% of the total number of grid points in the 
FE mesh were used for training. Fig. 12 highlights this by comparing the stream-wise velocity at three different sections 𝑥∕ℎ. The left 
subfigure depicts the section in the first re-circulation zone. It can be seen that despite having very few observation points near the 
wall, the 𝑢 predictions are able to capture the backward flow in the re-circulation regions. In contrast, the baseline 𝑘 − 𝜖 completely 
fails to capture it. This can be attributed to the earlier reattachment of the flow in the baseline 𝑘 − 𝜖 case (flow reattachment 
discussed in the sequel). The middle and the right subfigures depict sections further downstream, with the middle being in the 
second re-circulation zone and the right in the flow recovery zone. It is observed that with a relatively small number of observation 
points, the trained model’s prediction is in agreement with the LES. Furthermore, the latter is enveloped by the credible interval 
constructed by considering ±3× (the posterior standard deviation). This credible interval is much tighter as compared to the one in 
the left subfigure.

The primary motivation behind RANS models and of this work is to reduce the computational cost of flow simulations, especially 
in cases where LES or DNS are prohibitively expensive. In Table 4 we report the computational time of a single, model run as com-

pared to the baseline RANS model (for 𝑅𝑒 = 500). We observe that even though the proposed differentiable solver is of comparable 
cost to the baseline RANS, it can provide far more accurate, probabilistic predictions of the LES model’s outputs which is roughly 
6000 times more computationally demanding.



Journal of Computational Physics 508 (2024) 112982

17

A. Agrawal and P.-S. Koutsourelakis

Fig. 10. Pressure contours (𝒑) for the test case with Re = 500. top - ground truth (LES), second - baseline 𝑘 − 𝜖, third - the posterior predictive mean (⟨𝒖⟩), fourth

- the contour plot of the absolute error between the LES (𝒑𝐿𝐸𝑆 ) and the posterior predictive mean (⟨𝒑⟩), bottom - the standard deviation of the posterior predictive 
(𝜎(𝒖)).

Fig. 11. Section plots at different locations 𝑥∕ℎ comparing the LES and Baseline RANS mean fields with the posterior predictive mean (solid black line) and ±2×
standard deviation (shaded area) for the test case with 𝑅𝑒 = 500. top - velocity in x-direction (𝒖), middle - velocity in the y-direction (𝒗), bottom - pressure (𝒑). 𝔼[𝑧]
and 𝜎(𝑧) depict the predictive posterior mean and standard deviation respectively.

Accurately capturing the recirculation zones is crucial to getting a reliable estimate of the reattachment length, which is a key 
parameter in the study of separated flows, such as the case here. The reattachment length is defined as the distance from the step 
where the flow separates to the point at which it reattaches to the surface downstream of the step. Reattachment occurs where 
the velocity gradient off the wall is zero, or in other words, where the wall shear stress is zero. The predicted reattachment length 
(𝑥𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ) by the proposed method is compared with a) the LES data (Section 3.2) b) the baseline RANS (Section 3.2) c) the two-

dimensional, LES simulation performed by [92] for the expansion ratio of 1.9423, and d) the results in [22], who used the same 
Tensor Basis Neural Networks (TBNN) [15] employed in the parametric closure term in our work as well. The results are summarized 
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Fig. 12. Section plots of the stream-wise velocity 𝑢 at three different 𝑥∕ℎ locations for the test case with 𝑅𝑒 = 500. In addition, the points where training observations 
were available are depicted with red crosses. 𝔼[𝑢] and 𝜎(𝑢) depict the predictive posterior mean and standard deviation respectively.

Table 5

Predictions of reattachment length (𝑥∕ℎ) of the pri-

mary recirculation region behind the backward-facing 
step (expansion ratio 𝐻∕ℎ = 2) for the test case with 
𝑅𝑒 = 500. The ± corresponds to 3× the posterior stan-

dard deviation.

Model 𝑥𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ [x/h]

LES (reference) 9.10

Biswas et al. [92] (𝐻∕ℎ = 1.9423) 8.9

Baseline RANS (𝑘− 𝜖 model) 5.61

Geneva et al. [22] 5.52

proposed model 10.06 ± 1.21

in Table 5 where it is evident that while previous works deviated significantly from the reference LES value, our probabilistic 
prediction is able to envelop it. The reattachment length is heavily dependent on correctly identifying the two recirculation zones 
and the baseline RANS model fails to predict the secondary recirculation zone (Fig. 8). This might have resulted in such a low 
reattachment length. The estimate of the reattachment length is also low in [22], which could be attributed to the lack of the 
stochastic, model correction term.

4. Conclusions

We have presented a data-driven model for RANS simulations that quantifies and propagates in its predictions an often neglected 
source of uncertainty, namely the aleatoric, model uncertainty in the closure equations. We have combined this with a parametric 
closure model which employs a set of tensor basis functions that depend on the invariants of the rate of strain and rotation tensors. 
A fully Bayesian formulation is advocated which makes use of a sparsity-inducing prior in order to identify the regions in the problem 
domain where the parametric closure is insufficient and in order to quantify the stochastic correction to the Reynolds stress tensor. 
We have demonstrated how the model can be trained using sparse, indirect data, namely mean velocities/pressures in contrast to 
the majority of pertinent efforts that require direct, RS data. While the training data in our illustrations arose from a higher-fidelity 
model, one can readily envision using experimental observations as well.

In order to enable inference and learning tasks, we developed a differentiable RANS solver capable of providing parametric 
sensitivities. Such a differentiable solver was non-trivial owing to the complexity of the physical simulator and its stability issues. 
The lack of such numerical tools has proven to be a significant barrier for intrusive, physics-based, data-driven models in turbulence 
[26]. This differentiable solver was utilized in the context of a Stochastic Variational Inference (SVI) scheme that employs Monte Carlo 
estimates of the ELBO derivatives in conjunction with the reparametrization trick and stochastic gradient ascent. We demonstrated 
how probabilistic predictive estimates can be computed for all output quantities of the trained RANS model and illustrated their 
accuracy on a separated flow in the backward facing step benchmark problem. In most cases, very good agreement with the reference 
values was achieved and in all cases these were enveloped by the credible intervals computed.

The proposed modeling framework offers several possibilities for extensions, some of which we discuss below:

• The indirect data i.e. velocities/pressures as in Equation (22), could be complemented with direct, RS data at certain locations 
of the problem domain. This could be beneficial in improving the model’s predictive accuracy and generalization capabilities.

• The parametric closure model could benefit from non-local dependencies which could be enabled by convolutional or vector-

cloud neural networks (VCNN) [93] with appropriate embedding of invariance properties.
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• The dimensionality reduction of the stochastic discrepancy terms (Equation (19)) was based on a pre-selected and uniform divi-

sion of the problem domain into subdomains. The accuracy of the model would certainly benefit from a learnable and adaptive 
scheme that would be able to focus on the areas where model deficiencies are most pronounced and stochastic corrections are 
most needed.
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Appendix A. Differentiable RANS solver

In the present study, the RANS equations (Equation (7)) are numerically solved using the finite element discretization, imple-

mented in the open source package FEniCS [87]. The discrete equations are obtained by representing the solution and test functions 
in appropriate finite dimensional function spaces. In particular, we employed the standard Taylor-Hood pair of basis functions with 
polynomial degree one for the pressure interpolants and two for the velocities. This choice is made to avoid stability issues potentially 
arising from the interaction between the momentum and continuity equations.

The turbulence scaling terms, 𝑘 and 𝜖 in Equation (17), are obtained by solving the respective standard transport equations 
[2,52]. Symmetry is enforced in the RS tensor, i.e. 𝜏𝑥𝑦 and 𝜏𝑦𝑥 are identical without any redundancy in the representation. The 
discretized system is solved with damped Newton’s method. For robustness and global convergence, pseudo-time stepping is used 
with the backward Euler discretization [94]. As the Reynolds number is increased, the convection term dominates, leading to stability 
[95]. This elicits a need to add stabilization terms to the weak form, such as the least-square stabilization, according to which the 
weighted square of the strong form is added to the weak form residual. However, these extra terms have to be chosen carefully in 
order not to compromise the correctness of the approximate solution. Classically, researchers added artificial diffusion terms or a 
numerical diffusion by using upwind scheme for the convection term instead of central diffusion. The extra infused term corrupted 
the solution quality. To avoid this, in practice, it is common to use schemes like Streamline-Upwind Petrov-Galerkin method (SUPG) 
and Galerkin Least Squares (GLS). In the present study, we have utilized a self-adjoint numerical stabilization scheme which is an 
extension of Galerkin Least Squares (GLS) Stabilization called Galerkin gradient least square method [96]. This amounts to adding a 
stabilization term to the residual weak form. For additional details, interested readers are referred to [96,95].

Appendix B. Adjoint formulation and estimation of the gradient of the ELBO

As discussed in Section 2.2.4, the SVI framework advocated, in combination with the reparametrization trick, requires derivatives 
of the ELBO with respect to the variables which we summarily denoted by 𝜼 = {𝜽, 𝚲, 𝑬(1∶𝑀)

𝜏 }, i.e. (as in Equation (31)):

∇𝝃 (𝝃) = 𝔼𝑞(𝝓)
[
∇𝝃𝑔𝜉(𝝓)∇𝜼

(
log𝑝(,𝜼) − log 𝑞𝜉(𝜼)

)]
, (B.1)

where from Equation (23):

log𝑝(,𝜼) = log
(
𝑝( | 𝜽,𝑬(1∶𝑀)

𝜏 ) 𝑝(𝑬(1∶𝑀)
𝜏 |𝚲) 𝑝(𝜽) 𝑝(𝚲))

=
(∑𝑀

𝑚=1 log𝑝(𝒛̂
(𝑚) ∣ 𝜽,𝑬(𝑚)

𝜏 ) + log𝑝(𝑬(𝑚)
𝜏 |𝚲))+ log𝑝(𝜽) + log 𝑝(𝚲).

(B.2)

The form of the (log-)priors 𝑝(𝑬(𝑚)
𝜏 |𝚲) (Equation (20)), 𝑝(𝜽) (Equation (18)), 𝑝(𝚲) (Equation (21)) as well as of the approximate 

posterior 𝑞𝜉(𝜼) (Equations (26) and (27), (28), (29)) suggest that most of these derivatives can be analytically computed with the 
exception of the ones involving the log-likelihoods, i.e.:
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𝓁(𝑚)(𝜽,𝑬(𝑚)
𝜏 ) = log𝑝(𝒛̂(𝑚) ∣ 𝜽,𝑬(𝑚)

𝜏 ). (B.3)

This is because each of these terms depends implicitly on 𝜽, 𝑬(𝑚)
𝜏 through the output of the RANS solver 𝒛(𝜽, 𝝐(𝑚)𝜏 =𝑾𝑬(𝑚)

𝜏 ) with 
the closure model for the discretized RS tensor field suggested by Equation (13) i.e. 𝝉 = 𝝉𝜽(𝒖) +𝑾𝑬(𝑚)

𝜏 . In view of the governing 
equations (Equation (12)), we explain below how adjoint equations can be formulated that enable efficient computation of the 
aforementioned derivatives of the log-likelihoods.

In particular, and if we drop the superscript 𝑚 for each term in the log-likelihood in order to simplify the notation, we formulate 
a Lagrangian with the help of a vector 𝝀 of Lagrangian multipliers, i.e.:

 = 𝓁 + 𝝀𝑇 ((𝒛) −𝑩𝝉), (B.4)

where , 𝑩, 𝝉 and 𝒛 are as defined in Section 2.2. Differentiating with respect to 𝝉 yields:

𝑑
𝑑𝝉

= 𝜕𝓁
𝜕𝒛

𝑑𝒛

𝑑𝝉
+ 𝑑𝝀

𝑇

𝑑𝝉
((𝒛) −𝑩𝝉) + 𝝀𝑇

(
𝜕
𝜕𝒛

𝑑𝒛

𝑑𝝉
−𝑩

)
=
(
𝜕𝓁
𝜕𝒛

+ 𝝀𝑇
𝜕
𝜕𝒛

)
𝑑𝒛

𝑑𝝉
− 𝝀𝑇𝑩. (B.5)

We select 𝝀𝑇 so that the first term in parentheses vanishes, i.e.:

𝜕𝓁
𝜕𝒛

+ 𝝀𝑇
𝜕
𝜕𝒛

= 0 or,

(
𝜕
𝜕𝒛

)𝑇
𝝀 = −

(
𝜕𝓁
𝜕𝒛

)𝑇
. (B.6)

The linear system of equations was solved using a direct LU solver. The vector 𝝀 found was substituted in Equation (B.5) in order to 
obtain the desired gradient which is given by:

𝑑
𝑑𝝉

= 𝑑𝓁
𝑑𝝉

= −𝝀𝑇𝑩. (B.7)

Subsequently, and by application of the chain rule we can obtain derivatives with respect to 𝜽 as:

𝑑𝓁
𝑑𝜽

= 𝜕𝓁
𝜕𝝉

⏟⏟⏟
Adjoint
model

𝜕𝝉

𝜕𝜽
⏟⏟⏟

NN
auto-diff

, (B.8)

where 𝜕𝝉∕𝜕𝜽 was efficiently computed by back-propagation, which is a reverse accumulation automatic differentiation algorithm 
for deep neural networks that applies the chain rule on a per-layer basis. We note that since the parameters 𝜽 are common for each 
likelihood 𝓁(𝑚) the aforementioned terms would need to be added as per Equation (B.2).

Similarly by chain rule, the gradient with respect to the vector 𝑬𝜏 is given by:

𝑑𝓁
𝑑𝑬𝜏

=𝑾 𝑇 𝑑𝓁
𝑑𝝉
. (B.9)

We note finally that the expectations involved in the ELBO and its gradient (Equation (31)) are approximated by Monte Carlo i.e.:

 (𝝃) ≈ 1
𝐾

(
𝐾∑
𝑘=1

(
𝑀∑
𝑚=1

𝓁(𝑚)(𝜽,𝑬(𝑚,𝑘)
𝜏 ) + log𝑝(𝑬(𝑚,𝑘)

𝜏 |𝚲))
+ log𝑝(𝜽) + log𝑝(𝚲) − log 𝑞𝝃(𝜽,𝚲,𝑬(𝑚,𝑘)

𝜏 )
)
, (B.10)

where:

𝝓(𝑚,𝑘) ∼ (𝟎,𝑰), 𝑬(𝑚,𝑘)
𝜏 = 𝑔𝝃(𝝓(𝑚,𝑘)), (B.11)

and:

∇𝝃 (𝝃) ≈ 1
𝐾

𝐾∑
𝑘=1

∇𝝃𝑔𝜉(𝝓(𝑘))∇𝜼

(
log𝑝(,𝜼(𝑘)) − log 𝑞𝜉(𝜼(𝑘))

)
, (B.12)

where 𝜼(𝑘) = 𝑔𝜉(𝝓(𝑘)).
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Abstract

Despite the increasing availability of high-performance computational resources,
Reynolds-Averaged Navier-Stokes (RANS) simulations remain the workhorse for
the analysis of turbulent flows in real-world applications. Linear eddy viscosity
models (LEVM), the most commonly employed model type, cannot accurately
predict complex states of turbulence. This work combines a deep-neural-network-
based, nonlinear eddy viscosity model with turbulence realizability constraints as an
inductive bias in order to yield improved predictions of the anisotropy tensor. Using
visualizations based on the barycentric map, we show that the proposed machine
learning method’s anisotropy tensor predictions offer a significant improvement
over all LEVMs in traditionally challenging cases with surface curvature and flow
separation. However, this improved anisotropy tensor does not, in general, yield
improved mean-velocity and pressure field predictions in comparison with the
best-performing LEVM.

1 Introduction

The incompressible Navier-Stokes equations are vital for describing fluid motion at low Reynolds
numbers, impacting fields like aircraft design and ocean current modeling. Turbulent flows are
prohibitively expensive to resolve fully, and engineers often resort to reduced models such as RANS
for efficiency. These models employ closures such as the Launder-Sharma k− ϵ [1] or Wilcox’s k−ω
[2], which rely on linear assumptions, limiting their accuracy in complex flow scenarios. Nonlinear
models have been explored but face challenges. This contribution builds upon the resurgence of
turbulence modeling research, instigated by data-driven approaches [3], in response to the stagnation
seen in the 2000s after earlier advancements.

This work combines additional flow features derived by Wang and colleagues [4, 5] with the neural
network architecture proposed by Ling et al. [6] to give point-based estimates of the anisotropy tensor
appearing in the RANS closure. The training objectives are supplemented by a loss term penalizing
predictions that violate the physical realizability constraints of turbulent states. The trained network
proposed was tested on unseen flow scenarios and used as a source term in the RANS equations to
produce estimates of the mean-flow quantities.

Machine Learning and the Physical Sciences Workshop, NeurIPS 2023.
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Figure 1: Barycentric map representing nature of turbulence of RANS k − ω (a) and DNS (b)

2 Physics-Informed Tensor Basis Neural Network

2.1 Reynolds stresses and realizability constraints

The Reynolds stress tensor τij = ⟨uiuj⟩, where ui = Ui − ⟨Ui⟩ arises by time-averaging (mean
indicated by ⟨·⟩) of the Navier-Stokes equations and depends on the fluctuations ui of the velocity
field Ui. It can be decomposed into an isotropic δij and anisotropic aij part which is given by
aij = τij − 2/3kδij .The turbulent kinetic energy k is the trace of the Reynolds stresses.

The anisotropic aij has zero trace, and its normalized version bij is referred to as anisotropy tensor,
i.e.:

bij =
aij
2k

=
τij

⟨ukuk⟩
− 1

3
δij , (1)

The Reynolds stress tensor is a symmetric, positive semi-definite second-order tensor with a non-
negative determinant and trace. Following [7], the physical constraints, known also as realizability
constraints, on the anisotropy tensor are:

−1

3
≤ bαα ≤ 2

3
∀α ∈ {1, 2, 3}, −1

2
≤ bαβ ≤ 1

2
∀α ̸= β. (2)

The barycentric map introduced in [8] uses an eigenvalue decomposition of b to define three funda-
mental states of turbulence. All other states of turbulence can be expressed as a linear combination of
these three limiting states. The limiting states form a triangle of all admissible states; its vertices are
defined by the realizability constraints (2). As demonstrated in Figure 1, each point in the barycentric
triangle corresponds to a unique color. The mapping is given in the supplementary material 6.1.

2.2 Closure Model

While LEVMs assume b to be a linear function of the mean velocity gradient, a more general class of
turbulence models can be formulated when dropping this assumption. The class of algebraic stress
models is formed by nonlinear eddy viscosity models (NLEVM), which determine the Reynolds
stresses from the local turbulent kinetic energy k, the eddy viscosity ϵ, and the mean velocity gradient.
Pope [9] has shown that every second-order tensor that can be formed from the normalized mean rate
of strain Ŝ = ϵ/2k(∇⟨U⟩+∇⟨U⟩T ) and the normalized rate of rotation Ω̂ = ϵ/2k(∇⟨U⟩−∇ ⟨U⟩T )
and fulfills these requirements is a linear combination of ten basis tensors T (n)

ij . The most general
form of a NLEVM is given by

bij =
10∑

n=1

G(n)(λ1, ..., λ5) T (n)
ij (Ŝij , Ω̂ij), (3)

where G(n) are the coefficients of the basis tensors and λk are the tensor invariants dependent on Ŝ

and Ω̂. Ling et al. [6] introduced the Tensor Basis Neural Network (TBNN), which makes use of
modern machine learning methods to learn these functions G(n) from high-fidelity fluid simulation
data. Even though improved results compared to the k − ϵ model were reported, extracting enough
information from these five invariants has proven difficult. This is especially true for flow cases with
at least one direction of homogeneity, where invariants λ3 and λ4 vanish for the entire flow domain.
Proof of this statement is given in the supplementary material 6.2. It is, however, possible to include
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more features from local flow quantities and derive more invariants while still employing the integrity
basis formed by T (n). This work, in part, follows the research of Wang et al. [10], who derived an
extended feature set also considering the gradients of the turbulent kinetic energy and the pressure.
The model was implemented in PyTorch [11] and can be accessed via github.com/pkmtum/PI_TBNN.

2.2.1 Enforcing Realizability Constraints in Training

Ling et al. [6] enforced the realizability constraints in post-processing by simply projecting the points
onto the closest boundary of the barycentric triangle. We propose incorporating these constraints
in the TBNN’s training, which we then colloquially refer to as the Physics-Informed Tensor Basis
Neural Network (PI-TBNN). The inequalities given in Eq. (2) can be transformed into contributions
to the loss function via the penalty method. The additional term reflects inductive bias about the
problem structure and essentially acts as a regularizer. In plain words, if training samples are outside
the domain of realizable turbulence states, the penalty term will force them back in. The constraints
are

c1(b) = min
α

(bαα)− 1/3 < 0 ∀α ∈ {1, 2, 3},

c2(b) = (3|ϕ2| − ϕ2)/2− ϕ1 < 0,

c3(b) = 1/3 − ϕ2 < 0,

c4(b) = 2|b12| − (b11 + b22 + 2/3) < 0,

c5(b) = 2|b13| − (b11 + b33 + 2/3) < 0,

c6(b) = 2|b23| − (b22 + b33 + 2/3) < 0,

(4)

where ϕi denotes the eigenvalues of b in order to distinguish them from the invariants. ϕ1 and ϕ2 are
the largest and second-largest eigenvalues. The penalty term is then given by

L(b̂(λ,θ)) = β

6∑
k=1

max(0, ck(b̂(λ,θ))), (5)

where λ is the collection of invariants, θ are the NN parameters, and b̂(λ,θ) is the predicted
anisotropy tensor. The penalty coefficient β determines its impact on the loss function. The complete
loss function, considering the MSE loss, the regularization, and penalty terms, is given by

E(λi,θ) =
1

D

D∑
i=1

∥b̂(λi,θ)− bi∥+
α

2
∥θ∥22 +

β

D

D∑
i=1

6∑
k=1

max(0, ck(b̂(λi,θ))), (6)

where bi are the high-fidelity responses. The number of data points is denoted D. The coefficient α
controls the degree of L2 regularization.

3 Numerical Results

A total of four flow geometries were used as benchmarks in this work. The flow over periodic
hills (PH) [12], the converging-diverging channel flow (CDC) [13], and the curved backward-facing
step (CBFS) [14]. These exhibit adverse pressure gradients over curved surfaces, leading to flow
separation and subsequent reattachment. The data set was also extended to include the square duct
(SD) flow case [15]. This scenario clearly illustrates the limitations of LEVMs and is well-suited
for investigating the forward propagation of the predicted anisotropy tensor. All flow cases were
replicated in OpenFOAM [16] to obtain the baseline RANS data. The flow case setup is analogous to
[17]. A detailed description of the data sets is given in the supplementary material 6.3.

3.1 Anisotropy Tensor Prediction

The PI-TBNN was tested on flow cases it had not seen during training. They differ either in geometry
or Reynolds number from the training data. Figure 2 compares the anisotropy tensors for square duct
(SD) using the barycentric colormap. Only the TBNN with the extended feature set can accurately
reproduce the state of turbulence for this flow case. A similar picture arises on the PH geometry
in Figure 3, where the k − ω model cannot capture 1C turbulence and axisymmetric expansion at
the top and the bulk of the flow domain, respectively. The PI-TBNN, however, does exhibit such
characteristics. For all test cases considered, the PI-TBNN achieves about 70% reduction of the
RMSE compared to the baseline k − ω model and 50% reduction of the RMSE compared to [6] (see
Table 1).

3



0.2

0.4

0.6

0.8

z/
H

0.2 0.4 0.6 0.8
y/H

(a) LEVM k−ω

0.2 0.4 0.6 0.8
y/H

(b) PI-TBNN1

0.2 0.4 0.6 0.8
y/H

(c) PI-TBNN2

0.2 0.4 0.6 0.8
y/H

(d) DNS
Figure 2: Stress types of k − ω (a), PI-TBNN with FS1 (b), FS[1-3] (c), and DNS (d) for SD.

Table 1: RMSE of b from RANS, PI-TBNN, and TBNN predictions for the three test cases.
Flow case LEVM k − ω PI-TBNN, FS1 PI-TBNN, FS[1-3] TBNN Ling [6]

Square duct 0.2175 0.0992 0.0663 0.14
Periodic hills 0.1016 0.0628 0.0419
Curved backward-facing step 0.1173 0.0619 0.0414

3.2 Anisotropy Tensor Propagation

While some applications involving wall shear stress computations may directly benefit from an
improved prediction of b, the quantities of interest are usually the mean velocity and pressure fields.
Hence, with the PI-TBNN model, the Reynolds equations were solved for the mean velocity and
pressure fields. Table 2 shows that the PI-TBNN outperforms the k − ϵ model for the PH and CBFS
geometries by a small margin and yields better in-plane prediction for the square duct flow case. The
most accurate model, however, remains the k−ω model for all three test geometries. Surprisingly, on
the CBFS geometry, the PI-TBNN shows the largest discrepancies in the region of the flow separation,
as can be seen in Figure 4. The k − ω model even beats the mean field resulting from using the
anisotropy tensor from the DNS on the periodic hills test case, indicating that an improved anisotropy
tensor does not necessarily lead to improved mean velocity and pressure fields (behavior also reported
in [18, 19]). Both [6] and [20] reported improvements in the mean-field prediction over a LEVM but
used the k − ϵ as the baseline LEVM, which shows a larger discrepancy from the ground truth than
the k − ω model, i.e. the best performing model of its class.

4 Conclusion

We introduced the PI-TBNN, which extended the TBNN framework with an extensive feature set and
an inductive bias in the form of a physics-informed addition to the loss function. The addition of
features was motivated both analytically—showing that the number of distinct invariants for 2D flow
scenarios is three, not five—and empirically through improved predictions. It has been shown that
the new approach yields more accurate predictions of the anisotropy tensor than the original TBNN
of Ling et al. [6]. The improvements were illustrated with the barycentric colormap and quantified
by comparing RMSEs. It is, however, limited in its predictive capabilities of the mean velocity and
pressure fields. While it still outperformed the widely popular k − ϵ model on geometries with flow
separation, it consistently fails to compete with the k − ω model. The rather large discrepancy of the
RANS using the DNS anisotropy tensor indicates that it is more beneficial to train models that not
only aim at improving predictions of the Reynolds stresses but instead target the mean field quantities
directly, e.g., as in [21, 22, 23].
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Figure 3: Visualization of stress types of LEVM k − ω (a), PI-TBNN (b), and DNS (c)
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Table 2: RMSE of U for RANS with anisotropy tensor from k − ω, k − ϵ, PI-TBNN, and DNS.
Reference velocity fields come from DNS.

Flow case k − ω k − ϵ bPI−TBNN bDNS

Square duct RMSE(U) 0.0496 0.0667 0.0716 0.0322
Square duct RMSE([U2, U3]) 0.0066 0.0066 0.0045 0.0025
Periodic hills RMSE(U) 0.0375 0.0545 0.0541 0.0465
Curved backward-facing step RMSE(U) 0.0609 0.0883 0.0868
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Figure 4: Streamwise mean velocity profiles at specific x-locations of PH (a), and CBFS (b).

5 Broader Impact

Turbulence is a key physical characteristic of a broad range of fluid flows. Understanding this
phenomenon is crucial for complex designs, environmental modeling, and many more engineering
applications. Computational power has increased massively in the past decades, enabling scale-
resolving simulations like direct numerical simulations of a number of canonical turbulent flows.
However, fast approximations like the RANS continue to remain essential for industrial applications,
whose accuracy hinges heavily on turbulence closure models.

The presented research serves as an extension to the state-of-the-art data-driven turbulence closure
model proposed by [6]. By combining a deep neural network with an inductive bias informed by
turbulence realizability constraints, plus an extensive feature set, the PI-TBNN showed considerable
improvements. These improvements showcased through barycentric colormap visualizations and
quantified reductions in RMSE signify a step forward in our ability to capture complex turbulence
states, particularly in scenarios involving surface curvature and flow separation.

However, the study also sheds light on the nuanced relationship between improved anisotropy tensor
predictions and the ultimate goal of predicting mean velocity and pressure fields. While the PI-TBNN
excels in enhancing anisotropy tensor predictions, it does not consistently outperform the established
k − ω model in mean-field predictions, underscoring the need for further exploration in this area.

We do not see any direct ethical concerns associated with this research. The impact on society is
primarily through the over-arching context of research using machine learning to improve our general
understanding of turbulence in fluids.
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6 Supplementary Material

6.1 RGB colormap

As demonstrated in Figure 1, each point in the barycentric triangle corresponds to a unique color. The
mapping from the barycentric coordinates to the RGB values follows[

R
G
B

]
=

1

maxCic

(
C1c

[
1
0
0

]
+ C2c

[
0
1
0

]
+ C3c

[
0
0
1

])
for i ∈ {1, 2, 3}. (7)

6.2 Scalar invariants

Two of the five scalar invariants (λ3, λ4) are zero for flows with one direction of homogeneity. The
two invariants read

λ3 = tr(Ŝ
3
), λ4 = tr(Ω̂

2
Ŝ). (8)

Assuming the flow is homogeneous in z-direction, the partial derivatives of the mean velocity with
respect to z vanish, and the mean rate of strain and rotation read

Ŝij =
1

2

k

ϵ

[
2∂⟨Ux⟩

∂x
∂⟨Ux⟩
∂y +

∂⟨Uy⟩
∂x

∂⟨Uy⟩
∂x + ∂⟨Ux⟩

∂y 2
∂⟨Uy⟩
∂y

]
, Ω̂ij =

1

2

k

ϵ

[
0 ∂⟨Ux⟩

∂y − ∂⟨Uy⟩
∂x

∂⟨Uy⟩
∂x − ∂⟨Ux⟩

∂y 0

]
.

(9)

The incompressibility constraint of the Reynolds equations reduces to

∂ ⟨Ui⟩
∂xi

= tr

(
∂ ⟨Ui⟩
∂xj

)
=

∂ ⟨Ux⟩
∂x

+
∂ ⟨Uy⟩
∂y

= 0. (10)
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When using the simplified expressions of Ŝ and Ω̂ in combination with the incompressibility
constraint, invariant λ3 is given by

tr(Ŝ3
ij) = (11)

k3

8ϵ3
tr

([
Ŝ11(Ŝ

2
11 + Ŝ2

12) + Ŝ12(Ŝ11Ŝ12 + Ŝ12Ŝ22) Ŝ12(Ŝ
2
11 + Ŝ2

12) + Ŝ22(Ŝ11Ŝ12 + Ŝ12Ŝ22)

Ŝ11(Ŝ11Ŝ12 + Ŝ12Ŝ22) + Ŝ12(Ŝ
2
12 + Ŝ2

22) Ŝ22(Ŝ
2
12 + Ŝ2

22) + Ŝ12(Ŝ11Ŝ12 + Ŝ12Ŝ22)

])

=
k3

8ϵ3

Ŝ11(Ŝ
2
11 + Ŝ2

12) + 2Ŝ2
12 (Ŝ11 + Ŝ22)︸ ︷︷ ︸

=0

+Ŝ22(Ŝ
2
22 + Ŝ2

12)

 , (12)

=
k3

8ϵ3

(
Ŝ11(Ŝ

2
11 + Ŝ2

12) + Ŝ22(Ŝ
2
11 + Ŝ2

12)
)
, (13)

=
k3

8ϵ3

(Ŝ11 + Ŝ22)︸ ︷︷ ︸
=0

(Ŝ2
11 + Ŝ2

12)

 = 0. (14)

The derivation of invariant λ4 is more straightforward and thus written in terms of the mean velocity
gradient. It is given by

tr(Ω̂2
ijŜjk) = tr

 k3

8ϵ3

(
∂ ⟨Ux⟩
∂y

− ∂ ⟨Uy⟩
∂x

)2

 2∂⟨Ux⟩
∂x

∂⟨Ux⟩
∂y +

∂⟨Uy⟩
∂x 0

∂⟨Uy⟩
∂x + ∂⟨Ux⟩

∂y 2
∂⟨Uy⟩
∂y 0

0 0 0


 (15)

=
k3

4ϵ3

(
∂ ⟨Ux⟩
∂y

− ∂ ⟨Uy⟩
∂x

)(
∂ ⟨Ux⟩
∂x

+
∂ ⟨Uy⟩
∂y

)
︸ ︷︷ ︸

=0

= 0. (16)

6.3 Data set

The high-fidelity direct numerical simulation (DNS)/large eddy simulation (LES) data are used for the
training. Out of the two available DNS for the CDC, the one at Re = 7900 was used for estimating
the regularization parameters. The higher Reynolds number simulation at Re = 12600 was used for
training and validation, along with the DNS at Re = 2800 and LES at Re = 10595 for PH and the
DNS for SD at Re = {2000, 2400, 2900, 3200}. The data set was split into training and validation
sets at a ratio of 70/30. Therefore, the total number of data points available for training was 26600.

The testing set consists of three flow geometries (SD, PH, and CBFS). Two of these geometries,
SD and PH, are also part of the training and validation set, however, at different Reynolds numbers.
The periodic hills case at Re = 5600 was selected to investigate the interpolation properties — the
ML model has previously seen this flow geometry and is expected to yield good predictions. The
square duct is a canonical flow case that clearly illustrates the deficiencies of the LEVMs and is
suitable to present difficulties of propagating the Reynolds stresses to the flow field. Finally, the
curved backward-facing step tests the ML model’s extrapolation capabilities.
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Abstract

We propose a systematic design approach for the precast concrete industry to promote sustainable construction
practices. By employing a holistic optimization procedure, we combine the concrete mixture design and structural
simulations in a joint, forward workflow that we ultimately seek to invert. In this manner, new mixtures beyond
standard ranges can be considered. Any design effort should account for the presence of uncertainties which can be
aleatoric or epistemic aswhen data are used to calibrate physicalmodels or identifymodels that fill missing links in the
workflow. Inverting the causal relations established poses several challenges especially when these involve physics-
based models which more often than not, do not provide derivatives/sensitivities or when design constraints are
present. To this end, we advocate Variational Optimization, with proposed extensions and appropriately chosen
heuristics to overcome the aforementioned challenges. The proposed approach to treat the design process as a
workflow, learn the missing links from data/models, and finally perform global optimization using the workflow is
transferable to several other materials, structural, and mechanical problems. In the present work, the efficacy of the
method is exemplarily illustrated using the design of a precast concrete beamwith the objective tominimize the global
warming potential while satisfying a number of constraints associated with its load-bearing capacity after 28 days
according to the Eurocode, the demolding time as computed by a complex nonlinear finite element model, and the
maximum temperature during the hydration.

Impact Statement

This article provides a framework to reduce the global warming potential of civil structures such as bridges,
dams, or buildingswhile satisfying constraints relating to structural efficiency. The framework combinesmixture
design and structural simulation in a joint workflow to enable optimization. Advanced optimization algorithm
with appropriate extensions and heuristics are employed to account for stochasticity of workflow, nonlinear
constraints, and lack of derivatives of the workflow. Some relations in the workflow are not known a priori in the
literature. These are learned by employing advanced probabilistic machine learning algorithms trained using the
fusion of noisy data and physical models. Various forms of uncertainty arising due to noise in the data or

©TheAuthor(s), 2024. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
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original article is properly cited.
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incompleteness of data are systematically incorporated into the framework. The big idea here is to create
structures with a smaller environmental footprint without compromising their strength while being cost-efficient
for the manufacturer. The proposed holistic approach is demonstrated on a specific design problem, but should
serve as a template that can be readily adapted to other design problems.

1. Introduction

Precast concrete elements play a critical role in achieving efficient, low-cost, and sustainable structures.
The controlled manufacturing environment allows for higher quality products and enables the mass
production of such elements. In the standard design approach, engineers or architects select the geometry
of a structure, estimate the loads, choosemechanical properties, and design the element accordingly. If the
results are unsatisfactory, the required mechanical properties are iteratively adjusted, aiming to improve
the design. This approach is adequate when the choice of mixtures is limited, and the expected concrete
properties are well known. There are various publishedmethods to automate this process and optimize the
beam design at this level. Computer-aided beam design optimization dates back at least 50 years (e.g.,
Haung and Kirmser, 1967).

Generally, the objective is to reduce costs, with the design variables being the beam geometry, the
amount and location of the reinforcement, and the compressive strength of the concrete (Chakrabarty,
1992; Coello et al., 1997; Pierott et al., 2021; Shobeiri et al., 2023). Most publications focus on analytical
functions based on well-known, empirical rules of thumb. In recent years, the use of alternative binders in
the concrete mix design has increased, mainly to reduce the environmental impact and cost of concrete but
also to improve and modify specific properties. This is a challenge as the concrete mix is no longer a
constant and is itself subject to an optimization. Known heuristics might no longer apply to the new
materials, and old design approachesmight fail to produce optimal results. In addition, it is not desirable to
choose from a predetermined set of possible mixes, as this would lead to either an overwhelming number
of required experiments or a limiting subset of the possible design space.

In the existing literature on the optimization of the concrete mix design (Lisienkova et al., 2021;
Kondapally et al., 2022; Forsdyke et al., 2023), the objective is either to improve mechanical properties
like durability within constraints or to minimize, for example, the amount of concrete while keeping other
properties above a threshold. A first step to address these limitations is incorporating the compressive
strength during optimization in the beam design phase. Higher compressive strength usually correlates
with a larger amount of cement and, therefore, higher cost as well as a higher global warming potential
(GWP). This approach has shown promising results in achieving improved structural efficiency while
considering environmental impact (dos Santos et al., 2023). To be able to find a part specific optimum,
individual data of the manufacturer and specific mix options must be integrated. Therefore, there is still a
need for a comprehensive optimization procedure that can seamlessly integrate concrete mix design and
structural simulations, ensuring structurally sound and buildable elements with minimized environmental
impact for part specific data.

When designing elements subjected to various requirements, both on thematerial and structural levels,
including workability of the fresh concrete, durability of the structure, maximum acceptable temperature,
minimal cost, and GWP, the optimal solution is not apparent and will change depending on each
individual project. In this article, we present a holistic optimization procedure that combines physics-
based models and experimental data in order to enable the optimization of the concrete mix design in the
presence of uncertainty, with an objective to minimize the GWP. In particular, we employ structural
simulations as constraints to ensure structural integrity, limit the maximum temperature, and ensure an
adequate time of demolding.

By integrating the concrete mixture optimization and structural design processes, engineers can tailor
the concrete properties tomeet the specific requirements of the customer andmanufacturer. This approach
opens up possibilities for performance prediction and optimization for new mixtures that fall outside the
standard range of existing ones. To the best of our knowledge, there are no published works that combine
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thematerial and structural levels in one flexible optimization framework. In addition to changing the order
of the design steps, the proposed framework allows to directly integrate experimental data and propagate
the identified uncertainties. This allows a straightforward integration of new data and quantification of
uncertainties regarding the predictions. The proposed framework consists of three main parts. The first
part introduces an automated and reproducible probabilistic machine learning-based parameter identifi-
cation method to calibrate the models by using experimental data. The second part focuses on a black-box
optimization method for non-differentiable functions, including constraints. The third part presents a
flexible workflow combining the models and functions required for the respective problem.

To carry out black-box optimization, we advocate the use of Variational Optimization (Staines and
Barber, 2013; Bird et al., 2018), which uses stochastic gradient estimators for black-box functions. We
utilize this with appropriate enhancements in order to account for the stochastic, nonlinear constraints.
Our choice ismotivated by three challenges present in theworkflow describing the physical process. First,
we are limited by the availability of only black-box evaluations of the physical workflow. In many real-
world cases involving physics-based solvers/simulators in the optimization process, one resorts to
gradient-free optimization (Moré and Wild, 2009; Snoek et al., 2012). However, the gradient-free
methods perform poorly on high-dimensional parametric spaces (Moré andWild, 2009). Also, it requires
more functional evaluations to reach the optimum as compared to gradient-based methods. Recently,
stochastic gradient estimators (Mohamed et al., 2020) have been used to estimate gradients of black-box
functions and, hence, perform gradient-based optimization (Ruiz et al., 2018; Louppe et al., 2019;
Shirobokov et al., 2020). However, they do not account for the constraints. Second, the presence of
nonlinear constraints makes the optimization challenging. Popular gradient-free methods like constrained
Bayesian optimization (cBO) (Gardner et al., 2014) and COBYLA (Powell, 1994) pose significant
challenges when (non)linear constraints are involved (Audet andKokkolaras, 2016;Menhorn et al., 2017;
Agrawal et al., 2023). The third challenge is the stochasticity of the workflow, discussed in the following
paragraph.

The physical workflow comprising physics-based models to link design variables with the objective
and constraints poses an information flow-related challenge. Some links leading to the objective/
constraints are not known a priori in the literature, thus hindering the optimization process. We propose
a method to learn these missing links, parameterized by an appropriate neural network, with the help of
(noisy) experimental data and physical models. The unavoidable noise in the data introduces aleatoric
uncertainty, or its incompleteness introduces epistemic uncertainty. To account for the presence of these
uncertainties, we advocate the links to be probabilistic. The learned probabilistic links tackle the
information bottleneck; however, it introduces random parameters in the physical workflow, thus
necessitating optimization under uncertainty (OUU) (Acar et al., 2021; Martins and Ning, 2021; Qiu
et al., 2021). Deterministic inputs can lead to a poor-performing design, which OUU tries to tackle by
producing a robust and reliable design that is less sensitive to inherent variability. This paradigm of fusing
data and physical models to train machine-learning models has been extensively used across engineering
and physics in recent years (Koutsourelakis et al., 2016; Fleming, 2018; Baker et al., 2019; Karniadakis
et al., 2021; Karpatne et al., 2022; Lucor et al., 2022; Agrawal and Koutsourelakis, 2023; Forsdyke et al.,
2023), colloquially referred to as scientific machine learning (SciML). In contrast to traditional machine
learning areas where big data are generally available, engineering and physical applications generally
suffer from a lack of data, further complicated by experimental noise. SciML has shown promise in
addressing this lack of data. We summarize our key contributions below:

• We present an inverse design approach for the precast concrete industry to promote sustainable
construction practices.

• To achieve the desired goals, we propose an algorithmic framework with two main components.
(a) an optimization algorithm that accounts for the presence of various uncertainties, nonlinear
constraints, and lack of derivatives and (b) a probabilistic machine learning algorithm that learns the
missing relations to enable the optimization, by combining noisy, experimental data with physical
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models. The algorithmic framework is transferable to several other material, structural, and
mechanical design problems.

• To assist the optimization procedure, we propose an automated workflow that combines concrete
mixture design and structural simulation.

• We demonstrate the effectiveness of the algorithmic framework and the workflow, on a precast
concrete beam element.We learn themissing probabilistic link between themixture design variables
and finite element (FE) model parameters describing the concrete hydration and homogenization
procedure. Subsequently, we optimize mixture design and beam geometry in the presence of
uncertainties, with the goal of reducing the GWP while employing structural simulations as
constraints to ensure safe and reliable design.

The structure of the rest of this article is as follows. Section 2.1 describes the proposed design
approach, and Section 2.2 describes the physicalmaterialmodels and the applied assumptions. Section 2.3
presents the details of the experimental data. Section 2.4 provides an overview of the aforementioned
probabilistic links and the optimization procedure. Section 2.5 talks about the methodology employed to
learn the probabilistic links based on the experimental data and the physical models. Then Section 2.6
describe the details of the proposed black-box optimization algorithm. In Section 3, we showcase and
discuss the results of the numerical experiments combining all the parts, the experimental data, the
physical models, the identification of the probabilistic links, and the optimization framework. Finally, in
Section 4, we summarize our findings and discuss possible extensions.

1.1. Demonstration problem

In this work, a well-known example of a simply supported, reinforced, rectangular beam has been
chosen. The design problem was originally published in Everard and Tanner (1966) and illustrated in
Figure 1.

It has been used to showcase different optimization schemes (e.g., Chakrabarty, 1992; Coello et al.,
1997; Pierott et al., 2021). As opposed to the literature where the optimization is often related to costs, we
aim to reduce the overall GWP of the part. This objective is particularly meaningful as the cement industry
accounts for approximately 8% of the total anthropogenic GWP (Miller et al., 2016). Reducing the
environmental impact of concrete production becomes crucial in the pursuit of sustainable construction
practices. In addition, the reduction of the amount of cement in concrete is also correlated to the reduction
of cost, as cement is generally the most expensive component of the concrete mix (Paya-Zaforteza et al.,
2009). There are three direct ways to reduce the GWP of a given concrete part. First, replace the cement
with a substitute with a lower carbon footprint. This usually changes mechanical properties and, in
particular, their temporal evolution. Second, increase the amount of aggregates, therefore reducing the
cement per volume. This also changes effective properties and needs to be balanced with the workability
and the limits due to the applications. Third, decrease the overall volume of concrete by improving the

Figure 1.Geometry of the design problem of a bending beam with a constant distributed load (dead load
and live load with safety factors of 1.35 and 1.5) and a rectangular cross section. The design variable,

beam height is denoted by h.
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topology of the part. In addition, when analyzing the whole life cycle of a structure, both cost and GWP
can be reduced by increasing the durability and, therefore, extending its lifetime. To showcase the
proposedmethod’s capability, two design variables have been chosen; the height of the beam and the ratio
of ordinary Portland cement (OPC) to its replacement binder ground granulated blast furnace slag (BFS), a
by-product of the iron industry. In addition to the static design according to the standard, the problem is
extended to include a key performance indicator (KPI) related to the production process in a prefabrication
factory that defines the time after which the removal of the formwork can be performed. To approximate
this, the point in time when the beam can bear its own weight has been chosen a criterion. Reducing this
time equates to being able to produce more parts with the same formwork.

2. Methods

2.1. Design approaches

The conventional method of designing reinforced concrete structures is depicted in Figure 2. The
structural engineer starts by choosing a suitable material (e.g., strength class C40/50) and designs the
structure, including the geometry (e.g., the height of a beam) and the reinforcement. In the second step,
this design is handed over to the material engineer with the constraint that the material properties assumed
by the structural engineer have to be met. This lack of coordination strongly restricts the set of potential
solutions since structural design and concrete mix design are strongly coupled; for example, a lower
strength can be compensated with a larger beam height.

An alternative design workflow is illustrated in Figure 3, which entails inverting the classical
design pipeline. The material composition is the input to the material engineer who predicts the
corresponding mechanical properties of the material. This includes KPIs related to the material, for
example, viscosity/slump test, or simply the water/cement ratio. In a second step, a structural analysis
is performed with the material properties as input. This step outputs the structural KPIs such as the
load-bearing capacity, the expected lifetime (for a structure susceptible to fatigue), or the GWP of the
complete structure. These two (coupled) modules are used within an optimization procedure to
estimate the optimal set of input parameters (both on the material level and on the structural level).
One of the KPIs is chosen as the objective function (e.g., GWP) and others as constraints (e.g., load-
bearing capacity larger than the load, cement content larger than a threshold, viscosity according to the
slump test within a certain interval). Note that in order to use such an inverse-design procedure, the
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material
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Figure 2.Classical design approach, where the required minimummaterial properties are defined by the
structural engineer which is then passed to the material engineer.
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forward modeling workflow needs to be automated and subsequently the information needs to be
efficiently back-propagated.

This article aims to present the proposedmethodological framework as well as illustrate its capabilities
in the design of a precast concrete element with the objective of reducing the GWP. The constraints
employed are related to the structural performance after 28 days as well as the maximum time of
demolding after 10 hours. The design/optimization variables are, on the structural level, the height of
the beam, and on the material level, the composition of the binder as a mixture of Portland cement and
slag. The complete workflow is illustrated in Figure 4.

2.2. Workflow for predicting key performance indicators

The workflow consists of four major steps. In the first step, the cement composition (blended cement and
slag) defined in the mix composition is used to predict the mechanical properties of the cement paste. This
is done using a data-driven approach as discussed in Section 2.4. In the second step, homogenization is
used in order to compute the effective, concrete properties based on cement paste and aggregate data. An
analytical function is applied for the homogenization based on the Mori–Tanaka scheme (Mori and
Tanaka, 1973). The third step involves a multi-physics, FE model with two complex constitutive models
—a hydration model, which computes the evolution of the degree of hydration (DOH), considering the
local temperature and the heat released during the reaction, and a mechanical model, which simulates the
temporal evolution of the mechanical properties assuming that those depend on the DOH. The fourth and
last model is based on a design code to estimate the amount of reinforcement and predict the load-bearing
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Figure 3. Proposed design approach to cast material and structural design into a forward model that is
then integrated into a holistic optimization approach.
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capacity after 28 days. Subsequent sections will provide insights into how these models function within
the optimization framework.

2.2.1. Homogenized concrete parameters
Experimental data for estimating the compressive strength are obtained from concrete specimens
measuring the homogenized response of cement paste and aggregates. The mechanical properties of
aggregates are known, whereas the cement paste properties have to be inversely estimated. The
calorimetry is directly performed for cement paste.

In order to relate macroscopic mechanical properties to the individual constituents (cement paste and
aggregates), an analytical homogenization procedure is used. The homogenized effective concrete
properties are the Young modulus E, the Poisson ratio ν, the compressive strength fc, the density ρ, the
thermal conductivity χ, the heat capacity C, and the total heat release Q∞. Depending on the physical
meaning, these properties need slightly different methods to estimate the effective concrete properties.
The elastic, isotropic properties E and ν of the concrete are approximated using the Mori–Tanaka
homogenization scheme (Mori and Tanaka, 1973). Themethod assumes spherical inclusions in an infinite
matrix and considers the interactions of multiple inclusions. Details are given in Appendix A.1.

The estimation of the concrete compressive strength fc,eff follows the ideas of Nežerka et al. (2018).
The premise is that a failure in the cement paste will cause the concrete to crack. The approach is based on
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Figure 4. Workflow to compute key performance indicators from input parameters.
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two main assumptions. First, the Mori–Tanaka method is used to estimate the average stress within the
matrixmaterial σ mð Þ. Second, the vonMises failure criterion of the averagematrix stress is used to estimate
the uniaxial compressive strength (see Appendix A.1.1).

Table 1 gives an overview of the material properties of the constituents used in the subsequent
sensitivity studies. The effective properties as a function of the aggregate content are plotted in
Figure 5. Note that both extremes (0 [pure cement] and 1 [only aggregates]) are purely theoretical.

For the considered example, the relations are close to linear. This can change when the difference
between the matrix and the inclusion properties is more pronounced or more complex micromechanical
mechanisms are incorporated, such as air pores or the interfacial transition zone. Though not done in this
article, these could be considered within the chosen homogenization scheme by adding additional phases
(cf. Nežerka and Zeman, 2012). Homogenization of the thermal conductivity is also based on the Mori–
Tanaka method, following the ideas of Stránský et al. (2011) with details given in Appendix A.1.2.
The density ρ, the heat capacity C, and the total heat release Q∞ can be directly computed based on their
volume average. As an example for the volume-averaged quantities, the heat release is shown in Figure 5
as it exemplifies the expected linear relation of the volume average as well as the zero heat output of a
theoretical pure aggregate.

2.2.2. Hydration and evolution of mechanical properties
Due to a chemical reaction (hydration) of the binder with water, calcium-silicate hydrates form that lead to
a temporal evolution of concrete strength and stiffness. The reaction is exothermal and the kinetics are
sensitive to the temperature. The primary model simulates the hydration process and computes the
temperature field T and the DOH α (see Eqs. (B1) and (B2) in Appendix B). The latter characterizes the
DOH that condenses the complex chemical reactions into a single scalar variable. The thermal model
depends on threematerial properties: the effective thermal conductivity λ, the specific heat capacityC, and
the heat release ∂Q

∂t . The latter is governed by the hydration model, characterized by six parameters:
B1,B2,η,T ref ,Ea, and αmax. The first three B1,B2, and η are parameters characterizing the shape of the
evolution of the heat release. T ref is the reference temperature for which the first three parameters are
calibrated. (Based on the difference between the actual and the reference temperature, the heat released is
scaled.) The sensitivity to the temperature is characterized by the activation energy Ea. αmax is the
maximum DOH that can be reached. Following Mills (1966), the maximum DOH is estimated based on
the water to binder ratio rwc, as αmax¼ 1:031rwc

0:194+ rwc
.

By assuming the DOH to be the fraction of the currently released heat with respect to its theoretical

potentialQ∞, the current DOH is estimated as α tð Þ¼ Q tð Þ
Q∞

. As the potential heat release is also difficult to

Table 1. Properties of the cement paste and aggregates used in subsequent sensitivity studies

Phase E Pa½ � ν �½ � fc Pa½ � ρ kg=m3½ � χ J=kgK½ � C W=mK½ � Q∞ J=kg½ �
Paste 30e9 0.2 30e6 2,400 870 1.8 250,000
Aggr. 25e9 0.3 — 2,600 840 0.8 0

Figure 5. Influence of aggregate ratio on effective concrete properties.
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measure as it takes a long time to fully hydrate and will only do so under perfect conditions, we identify
it as an additional parameter in the model parameter estimation. For a detailed model description, see
Appendix B. In addition to influencing the reaction speed, the computed temperature is used to verify
that the maximum temperature during hydration does not exceed a limit of T limit¼ 60 ° C. Above a
certain temperature, the hydration reaction changes (e.g., secondary ettringite formation) and, add-
itionally, volumetric changes in the cooling phase correlate with cracking and reduced mechanical
properties. The maximum temperature is implemented as a constraint for the optimization problem (see
Eq. (B19)).

The evolution of the Young modulus E of a linear-elastic material model is modeled as a function of
the DOH (details in Eq. (B17)). In a similar way, the compressive strength evolution is computed (see
Eq. (B15)), which is utilized to determine a failure criterion based on the computed local stresses
(Eq. (B20)) related to the time when the formwork can be removed. For a detailed description of the
parameter evolution as a function of the DOH, see Appendix B.2. Figure 6 shows the influence of the
different parameters. In addition to the formulations given in Carette and Staquet (2016) which depend
on a theoretical value of parameters for fully hydrated concrete at α¼ 1, this work reformulates the
equations, to depend on the 28 day values E28 and fc28 as well as the corresponding α28 which is
obtained via a simulation. This allows us to directly use the experimental values as input. In Figure 6,
α28 is set to 0:8.

2.2.3. Beam design according to EC2
The design of the reinforcement and the computation of the load-bearing capacity is performed based on
DIN EN 1992-1-1 (2011) according to Eq. (C7) with a detailed explanation in the Appendix C. To ensure
that the design is realistic, the continuous cross section is transformed into a discrete number of bars with a
diameter chosen from a list. This is visible in Figure 7 by the stepwise increase in cross sections. The
admissible results are restricted by two constraints. One is coming from a minimal required compressive
strength (Eq. (C8)), visualized as a dashed line. The other, based on the available space to place bars with
admissible spacing (Eq. (C13)), visualized as the dotted line. Further details on the computation are given
in Appendix C. A sensitivity study for the mutual interaction and the constraints is visualized in Figure 7.
The parameters for the sensitivity study are given in Table D1 in Appendix D.

2.2.4. Computation of GWP
The computation of theGWP is performed bymultiplying the volume content of each individualmaterial by
its specific GWP. The values used in this study are extracted from Braga et al. (2017) and listed in Table 2.

We note that the question of what exactly to include in the GWP computation is largely open. For
example, the transport of materials, while non-negligible, is difficult in general to include. Furthermore,
there are always local conditions (e.g., the GWP of the energy sources used in the cement production

Figure 6. Influence of parameters αt,aE, and a fc on the evolution the Young modulus and the compressive
strength with respect to the degree of hydration α. Parameters: E28¼ 50GPa, aE ¼ 0:5, αt ¼ 0:2,

a fc ¼ 0:5, fc28¼ 30N=mm2, α28¼ 0:8.
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depends on the amount of green energy in that country). In addition, the time span (complete life cycle
analysis vs. production) is a point of debate and finally the usage of by-products (slag is currently a
by-product of steel manufacturing and thus its GWP is considered to be small). There are currently efforts,
both at the national and international levels, to standardize the computation of the GWP or similar
quantities. Once these are available, they can be readily integrated into the proposed approach. Such a
standardized computation of the GWP can lead either to taxing GWP or to introducing a sustainability
limit state, though this is an ongoing discussion in standardization committees.

2.3. Experimental data

This section describes the data used for learning the missing (probabilistic) links (detailed in Section 2.5)
between the slag–binder mass ratio rsb and physical model parameters. The slag–binder mass ratio rsb is
the mass ratio between the amount of BFS and the binder (sum of BFS and OPC). The data are sourced
from Gruyaert (2011). In particular, we are concerned about the parameter estimation for the concrete
homogenization discussed in Section 2.2.1 and the hydration model in Section 2.2.2.

For concrete homogenization, six different tests for varying ratios rsb¼ 0:0,0:15,0:3,0:5,0:7,0:85f g are
available for the concrete compressive strength fc after 28 days. For the concrete hydration, we utilize
isothermal calorimetry data at 20 ° C.We have temporal evolution data of cumulative heat of hydration Q̂ for
four different values of rsb¼ 0:0,0:30,0:50,0:85f g. For details on other material parameters and phenom-
enological values used to obtain the data, the reader is directed to Gruyaert (2011).

2.3.1. Young’s modulus E based on fc
The dataset does not encompass information about the Young modulus. Given its significance for the
FEM simulation, we resort to a phenomenological approximation derived from ACI Committee

Table 2. Specific global warming potential of the raw materials used in the design

Material GWP
kgCO2eq
m3

h i
Portland cement 0.95
Slag 0.18
Aggregates 0.025
Water 0.000133
Steel 1.42

Figure 7. Influence of beam height, concrete compressive strength, and load in the center of the beam on
the required steel. The dashed lines represent the minimum compressive strength constraint (Eq. (C8)),
and the dotted lines represent the geometrical constraint from the spacing of the bars (Eq. (C13)).
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363 (2010). This approximation relies on the compressive strength fc and the density ρ to estimate the
Young modulus

E¼ 3,320
ffiffiffiffi
fc

p
+ 6,895

ρ
2,320

� �1:5

, (1)

with ρ in kilogram per cubic meter and fc and E in megapascals.

2.4. Model learning and optimization

Theworkflow illustrated in Figure 4, which builds the link between the parameters relevant to the concrete
mix design and the KPIs involving the environmental impact and the structural performance, can be
represented in terms of the probabilistic graph (Koller and Friedman, 2009) shown in Figure 8. As
discussed in the Introduction (Section 1), the goal of the present study is to find the value of the design
variables x (concrete mix design and beam geometry) which minimizes the objective O (environmental
impact), while satisfying a given set of constraints Ci (beam design criterion, structural performance, etc.).
This necessitates forward and backward information flow in the presented graph. The forward informa-
tion flow is necessary to compute the KPIs for given values of the design variables and the backward
information is essentially the sensitivities of the objective and the constraints with respect to the design
variables that enable gradient-based optimization. Establishing the information flow poses challenges,
which we attempt to tackle with the methods proposed as follows:

• Data-based model learning: The physics-based models discussed in Sections 2.2.1 and 2.2.2 are
used to compute various KPIs (discussed in Figure 8). These depend on some model parameters
denoted by b which are unobserved (latent) in the experiments performed. The model parameters
need not only be inferred on the basis of experimental data but also their dependence on the design
variables x is required in order to be integrated into the optimization framework. In addition, the
noise in the data (aleatoric) or the incompleteness of data (epistemic) introduces uncertainty. To this
end, we propose learning probabilistic links by employing experimental data as discussed in detail in
Section 2.5.

Figure 8. Stochastic computational graph for the constrained optimization problem for performance-
based concrete design: The circles represent stochastic nodes and rectangles deterministic nodes. The
design variables are denoted by x¼ x1,x2ð Þ. The vector b represents the unobserved model parameters

which are needed in order to link the key performance indicators (KPIs) y¼ yo, yci
� �I

i¼1
� �

with the

design variables x. Here, yo represents the model output appearing in the optimization objective and yci
represents the model output appearing in the ith constraint. The objective function is given byO and the
ith constraint by Ci. They are not differentiable with respect to x1,x2. (Hence, x1 and x2 are dotted.) The

variables θ are auxiliary and are used in the context of Variational Optimization discussed in
Section 2.6.2. Several other deterministic nodes are present between the random variables b and the KPIs
y, but they are omitted for brevity. The physical meaning of the variables used is detailed in Table 3.
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• Optimization under uncertainty:The aforementioned uncertainties aswell as additional randomness that
might be present in the associated links necessitate reformulating the optimization problem
(i.e., objectives/constraints) as one of OUU. In turn, this gives rise to new challenges in order to compute
the needed derivatives of theKPIswith respect to the design variableswhich are discussed in Section 2.6.

2.5. Probabilistic links based on data and physical models

This section deals with learning a (probabilistic) model linking the design variables x and the input parameters
of the physics-based models, that is, concrete hydration and concrete homogenization. A graphical represen-

tation is contained in Figure 9. Therein, x̂ ið Þ, ẑ ið Þ
n oN

i¼1
denote the observed data pairs and b denotes a vector of

unknownandunobserved parameters of the physics-basedmodels and z bð Þ themodel outputs. The latter relate

to an experimental observation ẑ ið Þ as ẑ ið Þ ¼ z b ið Þ	 

+ noise, which gives rise to a likelihood p ẑ ið Þjz b ið Þ	 
� �

.

We further postulate a probabilistic relation between x̂ and b that is expressed by the conditional p bjx;φð Þ,
which depends on unknown parameters φ. The physical meaning of the aforementioned variables and model
links, aswell as of the relevant data, is presented in Table 4. The elements introduced above suggest aBayesian
formulation that can quantify inferential uncertainties in the unknownparameters and propagate it in themodel
predictions (Koutsourelakis et al., 2016), as detailed in the next section.

2.5.1. Expectation–maximization

GivenN data pairsDN ¼ x̂ ið Þ, ẑ ið Þ
n oN

i¼1
consisting of different concrete mixes and corresponding outputs,

we would like to infer the corresponding b ið Þ, but more importantly the relation between x and b which
would be of relevance for downstream, optimization tasks discussed in Section 2.6.

Figure 9. Probabilistic graph for the data and physical model-based model learning. The shaded nodes
are the observed and unshaded are the unobserved (latent) nodes.

Table 3. Physical meaning of the variables used in Figure 8

Variables Physical meaning

x1 Mass ratio of blast furnace slag and ordinary Portland cement rsb
x2 Beam height h
b Vector of the input, model parameters to the homogenization and hydration model (Sections

2.2.1 and 2.2.2, respectively)
yc1 Required steel reinforcement area (Eq. (C7))
C1 yc1 �ð Þ
	 


Beam design constraint (Eq. (C14))
yc2 Max. temperature reached (Appendix B.3)
C2 yc2 �ð Þ
	 


Temperature constraint (Eq. (B19))
yc3 Time of demolding (Appendix B.3)
C3 yc3 �ð Þ
	 


Time constraint based on yield strength (Eq. (B20))
yo The GWP of the beam (Section 2.2.4)
Oo yo �ð Þð Þ Objective corresponding to the beam GWP
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We postulate a probabilistic relation between x and b in the form of a conditional density p bjx;φð Þ
parametrized by φ. For example,

p bjx;φð Þ¼N bj fφ xð Þ, Sφ xð Þ
� �

, (2)

where fφ xð Þ represents a fully connected, feed-forward neural network parametrized by w (further details

discussed in Section 3) and Sφ xð Þ¼LLT denotes the covariance matrix where L is lower-triangular.

Hence, the parameters φ to be learned correspond to φ¼ w,Lf g. We assume that the observations ẑ ið Þ are
contaminated with Gaussian noise, which gives rise to the likelihood:

p ẑ ið Þjz b ið Þ
� �� �

¼N ẑ ið Þjz b ið Þ
� �

, Σℓ

� �
: (3)

The covariance Σℓ depends on the data used and is discussed in Section 3.
Given Eqs. (2) and (3), one can observe that b ið Þ (i.e., the unobserved model inputs for each concrete

mix i) and φwould need to be inferred simultaneously. In the following, we obtain point estimates φ∗ for
φ, by maximizing the marginal log-likelihood p DN jφð Þ (also known as log-evidence), that is, the
probability that the observed data arose from the model postulated. Hence, we get

φ∗¼ argmax
φ

log p DN jφð Þ: (4)

As this is analytically intractable, we propose employing variational Bayesian expectation–maximization
(VB-EM) (Beal and Ghahramani, 2003) according to which a lower boundℱ to the log-evidence (called
evidence lower bound [ELBO]) is constructed with the help of auxiliary densities hi b ið Þ	 


on the
unobserved variables b ið Þ:

log p DN jφð Þ≥
XN
i¼1

Ehi b ið Þð Þ log
p ẑ ið Þjz b ið Þ	 
� �

p b ið Þjx ið Þ;φ
	 


hi b ið Þ	 

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ℱ h1:N ,φð Þ

, (5)

where Ehi b ið Þð Þ �½ � denote the expectation with respect to the auxiliary densities hi b ið Þ	 

on the unobserved

variables b ið Þ. Eq. (5) suggests the following iterative scheme where one alternates between the steps:

• E-step: Fix φ and maximize ℱ with respect to hi b ið Þ	 

. It can be readily shown (Bishop and

Nasrabadi, 2006) that optimality is achieved by the conditional posterior, that is,

hopti b ið Þ
� �

¼ p b ið ÞjDN ,φ
� �

∝ p ẑ ið Þjb ið Þ
� �

p b ið Þjx ið Þ,φ
� �

, (6)

which makes the inequality in Eq. (5) tight. Since the likelihood is not tractable as it involves a physics-
based solver, we have usedMarkov chainMonte Carlo (MCMC) to sample from the conditional posterior
(see Section 3).

Table 4. Physical meaning of the variables/links used in Figure 9

b (model input) ẑ (observed data) z bð Þ (physics-based model)

Hydration model input parameters

(Section 2.2.2) b¼ B1,B2,η,Qpot

h i Heat of hydration Q Concrete hydration model

Cement paste compressive strength
( fc,paste), cement paste Young’s
Modulus (Epaste) (Section 2.2.1)

Concrete compressive
strength ( fc), concrete
Young’s Modulus (Ec)

Concrete homogenization model

Note. x̂ is the slag–binder mass ratio rsb for the all the cases presented above.
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• M-step: Given hi b ið Þ	 
� �N
i¼1, maximize ℱ with respect to φ.

φn+ 1¼ argmax
φ

ℱ h1:N ,φnð Þ: (7)

This requires derivatives of ℱ, that is,

∂ℱ
∂φ
¼
XN
i¼1

Ehi

∂ logp b ið Þjx ið Þ;φ
	 

∂φ

" #
: (8)

Given the MCMC samples b ið Þ
m

� �M
m¼1 from the E-step, these can be approximated as

∂ℱ
∂φ

≈
XN
i¼1

1
M

XM
m¼1

∂ log p b ið Þ
m jx ið Þ;φ

	 

∂φ

: (9)

Due to the Monte Carlo noise in these estimates, a stochastic gradient ascent algorithm is utilized. In
particular, the ADAM optimizer (Kingma and Ba, 2014) was used from the PyTorch (Paszke et al.,
2019) library to capitalize on its auto-differentiation capabilities.

The major elements of the method are summarized in Algorithm 1. We note here that training
complexity grows linearly with the number of training samples N due to the densities hi associated with
each data point (for-loop of Algorithm 1), but this can be embarrassingly parallelizable.1

Algorithm 1 Data-based model learning.

1: Input: Data DN ¼ x̂ ið Þ, ẑ ið Þ
n oN

i¼1
, model form p bjx;φð Þ, likelihood noise Σl, n¼ 0

2: Output: Learned parameter φ∗

3: Initialize the parameters φ
4: while ELBO not converged do

Expectation Step (E-step):
5: for i¼ 1 to N do
6: MCMC to get the posterior probability p b ið ÞjDN ,φn

	 

using current φn ⊳ Eq. (6)

7: end for
Maximization Step (M-step):

8: Monte Carlo gradient estimate ⊳ Eq. (9)
9: φn+ 1¼ argmaxφℱ h1:N ,φnð Þ
10: n n+ 1
11: end while

Model Predictions: The VB-EM based model learning scheme discussed above can be carried out in
an offline phase. Once the model is learned, we are interested in the proposed model’s ability to produce
probabilistic predictions (online stage) that reflect the various sources of uncertainty discussed previ-
ously. For learnt parameters φ∗, the predictive posterior density ppred zjD,φ∗ð Þ on the solution vector z of a
physical model is as follows:

ppred zjD,φ∗ð Þ¼
Z

p z,bjD,φ∗ð Þdb

¼
Z

p zjbð Þp bjD,φ∗ð Þdb
(10)

1 Embarrassingly parallelizable problems are problems that can be separated into parallel tasks without the need of any interaction
between the simulations performed at different processing units (Herlihy et al., 2020).
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≈
1
K

XK
k¼1

z b kð Þ
� �

: (11)

The second of the densities is the conditional (Eq. (2)) substituted with the learned φ∗ and the first of
the densities is simply a Dirac-delta that corresponds to the solution of the physical model, that is,
z bð Þ. The intractable integral can be approximated by Monte Carlo using K samples of b drawn from
p bjD,φ∗ð Þ.

2.6. Optimization under uncertainty

With the relevantmissing links identified as detailed in the previous section, the optimization can be performed
on the basis of Figure 8. We seek to optimize the objective functionO subject to constraints C¼ C1,…,CIð Þ
that are dependent on uncertain parameters b, which in turn are dependent on the design variables x. In this
setting, the general parameter-dependent nonlinear constrained optimization problem can be stated as

min
x

O yo x,bð Þð Þ,
s:t: Ci yci x,bð Þ	 


≤ 0, ∀i∈ 1,…, If g,
(12)

where x is a d-dimensional vector of design variables and b are the model parameter discussed in the
previous section. It can be observed that the optimization problem is nontrivial because of three main
reasons: (a) the presence of the constraints (Section 2.6.1), (b) the presence of random variables b in the
objective and the constraint(s) (Section 2.6.1), and (c) non-differentiability of yo,yci and therefore of O
and Ci.

2.6.1. Handling stochasticity and constraints
Since the solution of Eq. (12) depends on the random variables b, the objective and constraints are random
variables as well and we have to take their random variability into account. We do this by reverting to a
robust optimization problem (Ben-Tal and Nemirovski, 1999; Bertsimas et al., 2011), with expected
values denoted by E �½ � being the robustness measure to integrate out the uncertainties. In this manner, the
optimization problem in Eq. (12) is reformulated as

min
x

Eb O yo x,bð Þð Þ½ �,
s:t: Eb Ci yci x,bð Þ	 
� 


≤ 0, ∀i∈ 1,…, If g:
(13)

The expected objective value will yield a design that performs best on average, while the reformulated
constraints imply feasibility on average.

One can cast this constrained problem to an unconstrained one using penalty-based methods (Nocedal
andWright, 1999; Wang and Spall, 2003). In particular, we define an augmented objective functionL as
follows:

L x,b,λð Þ¼O yo x,bð Þð Þ+
X
i

λimax Ci yci x,bð Þ	 

,0

	 

, (14)

where λi > 0 is the penalty parameter for the ith constraint. The larger the λi’s are, the more strictly the
constraints are enforced. Incorporating the augmented objective (Eq. (14)) in the reformulated optimiza-
tion problem (Eq. (13)), one can arrive at the following penalized objective:

Eb L x,b,λð Þ½ � ¼
Z

L x,b,λð Þp bjx,φð Þdb, (15)

leading to the following equivalent, unconstrained optimization problem:

min
x

Eb L x,b,λð Þ½ �: (16)
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The expectation above is approximated by Monte Carlo which induces noise and necessitates the use of
stochastic optimization methods (discussed in detail in the sequel). Furthermore, we propose to alleviate
the dependence on the penalty parameters λ by using the sequential unconstrainedminimization technique
algorithm (Fiacco and McCormick, 1990), which has been shown to work with nonlinear constraints
(Liuzzi et al., 2010). The algorithm considers a strictly increasing sequence λnf gwith λn!∞. Fiacco and
McCormick (1990) proved that when λn!∞, then the sequence of corresponding minima, say x∗n

� �
,

converges to a global minimizer x∗ of the original constrained problem. This adaptation of the penalty
parameters helps to balance the need to satisfy the constraints with the need to make progress toward the
optimal solution.

2.6.2. Non-differentiable objective and constraints
We note that the approximation of the objective in Eq. (16) with Monte Carlo requires multiple runs of
the expensive, forward, physics-based models involved, at each iteration of the optimization algorithm.
In order to reduce the number of iterations required, especially when the dimension of the design space
is higher, derivatives of the objective would be needed. In cases where the dimension of the design
vector x is high, gradient-based methods are necessary. In turn, the computation of derivatives of L
would necessitate derivatives of the outputs of the forward models with respect to the optimization
variables x. The latter are, however, unavailable due to the non-differentiability of the forward models.
This is a common, restrictive feature of several physics-based simulators which in most cases of
engineering practice are implemented in legacy codes that are run as black boxes. This lack of
differentiability has been recognized as a significant roadblock by several researchers in recent years
(Beaumont et al., 2002; Marjoram et al., 2003; Louppe et al., 2019; Cranmer et al., 2020; Shirobokov
et al., 2020; Lucor et al., 2022; Oliveira et al., 2022; Agrawal and Koutsourelakis, 2023). In this work,
we advocate Variational Optimization (Staines and Barber, 2013; Bird et al., 2018), which employs a
differentiable bound on the non-differentiable objective. In the context of the current problem, we can
write

min
x

Z
L x,b,λð Þð Þ p bjx,φð Þdb≤

Z
L x,b,λð Þð Þp bjx,φð Þq xjθð Þ db dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U θð Þ

, (17)

where q xjθð Þ is a density over the design variables x with parameters θ. If x∗ yields the minimum of the
objective Eb L½ �, then this can be achieved with a degenerate q that collapses to a Dirac-delta, that is, if
q xjθð Þ¼ δ x�x∗ð Þ. For all other densities q or parameters θ, the inequality above would in general be
strict. Hence, instead of minimizing Eb L½ � with respect to x, we can minimize the upper bound U with
respect to θ. Under mild restrictions outlined by Staines and Barber (2012), the boundU θð Þ is differential
with respect to θ, and using the log-likelihood trick, its gradient can be rewritten as (Williams, 1992)

∇θU θð Þ¼Ex,b ∇θ logq xjθð ÞL xð ,b,λÞ½ �

≈
1
S

XS
i¼1

L xi,bi,λð Þ ∂
∂θ

logq xijθð Þ: (18)

Both terms in the integrand can be readily evaluated which opens the door for a Monte Carlo approxi-
mation of the aforementioned expression by drawing samples xi from q xjθð Þ and subsequently bi from
p bjxi,φ∗ð Þ.

2.6.3. Implementation considerations and challenges
While the Monte Carlo estimation of the gradient of the new objective U θð Þ also requires running the
expensive, forward models multiple times, it can be embarrassingly parallelized.
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Obviously, convergence is impeded by the unavoidable Monte Carlo errors in the aforementioned
estimates. In order to reduce them, we advocate the use of the baseline estimator proposed in Kool et al.
(2019), which is based on the following expression:

∂U
∂θ

≈
1

S�1

XS
i¼1

∂

∂θ
logq xijθð Þ L xi,bi,λð Þ�1

S

XS
j¼1

L xj
	

,bj,λÞ
 !

: (19)

The estimator above is also unbiased as the one in Eq. (18); it does not imply any additional cost beyond
the S samples and in addition exhibits lower variance as shown in Kool et al. (2019).

To efficiently compute the gradient estimators, wemake use of the auto-differentiation capabilities
of modern machine learning libraries. In the present study, PyTorch (Paszke et al., 2019) was
utilized. For the stochastic gradient descent, the ADAM optimizer was used (Kingma and Ba, 2014).
In the present study, q xjθð Þwas a Gaussian distribution with parameters θ¼ μ,Σf g representing mean
and diagonal covariance, respectively. We say we have arrived at an optimal x∗ when the q almost
degenerates to a Dirac-delta, or colloquially, when the variance of q has converged and is consid-
erably small. For completeness, the algorithm for the proposed optimization scheme is given in
Algorithm 2. A schematic overview of the methods discussed in Sections 2.5 and 2.6 is presented in
Figure 10.

Possible alternatives to the presented optimization scheme could be the popular gradient-free
methods (Audet and Kokkolaras, 2016) like cBO and the extensions (Gardner et al., 2014) with
appropriate adjustments to handle stochasticity, genetic algorithms (Banzhaf et al., 1998), COBYLA
(Powell, 1994), and evolution strategies (Wierstra et al., 2014), to name a few. The gradient-free
methods are known to perform poorly in high-dimensions (Moré and Wild, 2009). Since we use the
approximate gradient information to move in the parametric space in the presented method, higher-
dimensional optimization is feasible, as reported in Staines and Barber (2012) and Bird et al. (2018).
The computational cost naturally scales exponentially with the number of design variables d, as the
number of samples S per iteration is usually of the orderO dð Þ (Salimans et al., 2017). Additionally, if

Figure 10. A schematic of the probabilistic model learning (left block) and the optimization under
uncertainty (OUU; right block). The left block illustrates how the information from experimental data and
physical models are fused together to learn the missing probabilistic link. This learned probabilistic link
subsequently becomes a linchpin in predictive scenarios, particularly in downstream optimization tasks.
The right block illustrates querying the learned probabilistic model to complete the missing link and

interfacing the workflow describing the design variables, the physical models, and the key performance
indicators. Subsequently, this integrated approach facilitates the execution of OUU as per the proposed

methodology.
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a very expensive simulator is involved in the workflow, the core hours needed would naturally
increase as generating each sample would become expensive. Fortunately, as the optimization
scheme is embarrassingly parallelizable, physical time would be approximately equal to the time
needed for one run of simulator times the number of optimization steps.

The presented optimization scheme has the following limitations, which we will attempt to
address in the future. (1) Even after applying the baseline trick, one might observe some oscillations
in θ space near the optima. As suggested in Wierstra et al. (2014), these can potentially be eased
by using natural gradients. (2) The proposed method can get trapped in local optima in highly
multimodal surfaces. Casting the objective as U θð Þ can be seen as a Gaussian blurred version of the
original objective, the degree of smoothing being contingent upon the choice of initial . This
smoothening essentially helps escape the local optima (also one of the strengths of the method).
Still, for a highly multimodal surface (e.g., Ackley function), the smoothening might not be enough,
leading to an early convergence to local optima. A safe bet would be to choose “large enough” , but
this, in turn, might add to the computational cost (Wolpert and Macready, 1997). (3) The method
might struggle for an objective surface with valleys (e.g., Rosenbrock function). If the dimension is
not very high, a full matrix instead of the diagonal might help. (4) The applicability of the proposed
workflow for multi-objective optimization is not explored in the present work, but since evolutionary
strategies are a class of Variational Optimization and evolutionary strategies are known to work with
multi-objective optimization problems (e.g., Deb et al., 2002), this might be an interesting research
direction.

Algorithm 2 Black-box stochastic constrained optimization.

1: Input: distribution q xjθð Þ for the design variable x, n¼ 0, learning rate η
2: θ00,λ1 choose starting point
3: for k¼ 1,2,… do
4: while θk not converged do
5: Sample design variables and model parameters xi� q xjθnk

	 

, bi� p bjxi,φð Þ

6: Farm the workflow with physics-based solvers for the samples in different machines and
compute updated objectiveL xi,bi,λkð Þ for each of them ⊳Eq. (14)
7: Compute baseline
8: Monte-Carlo gradient estimate∇θU ⊳ Eq. (19)
9: θn+ 1k  θnk + η∇θU ⊳ Stochastic Gradient Descent
10: n n + 1
11: end while
12: if ∥θnk�θnk�1∥≤ ε then ⊳ Convergence condition
13: break
14: end if
15: λk + 1 λk ⊳Update penalty parameter
16: θ0k + 1 θnk ⊳Update parameters of distribution q
17: end for
18: return θnk

3. Numerical experiments

This section presents the results of the data-based model learning (Section 3.1) and optimization
(Section 3.2) methodological frameworks for the coupled workflow describing the concrete mix-design
and structural performance as discussed in Figure 4.
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3.1. Model-learning results

We report on the results obtained upon application of themethod presented in Section 2.5 on the hydration
and homogenization models (Table 4) along with the experimental data (Section 2.3).

Implementation details: We note that for the likelihood model (Eq. (3)) corresponding to the

hydration model, the observed output ẑ in the observed data D¼ x̂ ið Þ, ẑ ið Þ
n oN

i¼1
is the cumulative heat

Q̂ and the covariance matrix Σℓ¼ 32Idim Q̂ð Þ × dim Q̂ð Þ. The particular choice was made to account for the

cumulative heat sensor noise of ± 4:5J=g as reported in Gruyaert (2011). For the homogenization model,

the ẑ¼ Ec, fc½ �T where Ec is the Young Modulus and fc is the compressive strength of the concrete. The
covariance matrix Σℓ¼ diag 4× 1018,2× 1012

	 

Pa2. For both of the above, x̂ in the observed dataD is the

slag–binder mass ratio rsb.
For both cases, a fully connected neural network is used to parameterize the mean of the conditional of

model parameters b (Eq. (2)). The optimum number of hidden layers and nodes per layer was determined
to be 1 and 30, respectively. The Tanh was chosen as the activation function for all layers. The L2 weight
regularization was employed to prevent over-fitting. We employed a learning rate of 10�2 for all the
results reported here.

Owing to the intractability of the conditional posterior given in Eq. (6), we approximate it withMCMC,
in particular we used the delayed rejection adaptive metropolis (DRAM) (Haario et al., 2006; Shahmoradi
andBagheri, 2020). The specific selectionwasmotivated by two primary considerations. First, a gradient-
free sampling strategy is imperative due to the absence of gradients in the physics-basedmodels employed
in this context. Second, we aim to introduce automation to the tuning of free parameters in the MCMC
methods, ensuring a streamlined and efficient convergence process. In the DRAM sampler, we bound the
target acceptance rate to be between 0.1 and 0.3.

Results: Figure 11 shows the learned probabilistic relation between the latent model parameters of the
homogenization model and the slag–binder mass ratio rsb. Out of the six available noisy datasets
(Section 2.3), five were used for training and the dataset corresponding to rsb¼ 0:5 was used for testing.
We access the predictive capabilities of the learnedmodel by propagating the uncertainties forward via the
homogenization model and analyzing the predictive density ppred (Figure 10) as illustrated in Figure 12.
We observe that the mechanical properties of concrete obtained by the homogenization model with
learned probabilistic model predictions as the input envelops the ground truth.

Similarly, for the hydration model, Figure 13 shows the learned probabilistic relation between the
latent model parameters B1,B2,η,Qpot

	 

and the ratio rsb. Out of the four available noisy datasets

(Section 2.3) for T ¼ 20 ° C, three were used for training and the dataset corresponding to rsb¼ 0:5
was used for testing. The value of Ea was taken from Gruyaert (2011). Figure 15 compares the
experimental heat of hydration for different rsb with the probabilistic predictions made using the learned

Figure 11. Learned probabilistic relation between the homogenization model parameters and the slag–
binder ratio rsb. The solid line denotes the mean, and the shaded area denotes ± 2 times standard

deviation.
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Figure 12. Predictive performance of the learned model corresponding to the homogenization process.
The solid line is the predictive mean, and the shaded area is ± 2 times standard deviation. The crosses

correspond to the noisy observed data.

Figure 13. Learned probabilistic relation between the hydration model parameters and the slag–binder
mass ratio rsb. The solid line denotes the mean, and the shaded area denotes ± 2 times standard deviation.

Figure 14. (a) Evolution of the entries ϕij of the lower-triangular matrix L of the covariance matrix
(Eq. (2)) with respect to EM iterations. (b) Heat map of the converged value of the covariance matrix LLT

of the probabilistic model corresponding to concrete hydration.
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probabilistic model as an input to the hydration model. We observe that the predictions entirely envelop
the ground truth data while accounting for the aleatoric noise present in the experimental data. Figure 14a
shows the evolution of the entries of the covariancematrix of the conditional on the hydrationmodel latent
parameters p bjx;φð Þ. It serves as an indicator for the convergence of the VB-EM algorithm. The
converged value of the covariance matrix is given by Figure 14b. It confirms the intricate correlation
among the hydration model parameters, also reported in Figure B1. This is a general challenge with most
physical models that are often overparameterized (at least for a given dataset) leading to multiple
configurations of parameters with similar likelihood (see Figure 6).

At this point, it is crucial to (re)state that the training is performed using indirect, noisy data. It is
encouraging to note that the learned models are able to account for the aleatoric uncertainty arising from
the noise in the observed data and the epistemic uncertainty due to the finite amount of training data. The
probabilistic model is able to learn relationships which were otherwise unavailable in literature, with the
aid of physical models and (noisy) data. In this study, the training and validation of the model were
somewhat constrained by the limited availability of data, a common challenge in engineering and physics
applications. However, this limitation does not detract from the demonstration of our algorithmic
framework. In future iterations of this work, an extensive set of experiments can be performed for a
larger dataset.

3.2. Optimization results

With the learned probabilistic links as discussed in the previous section, we overcame the issue of forward
and backward information flow bottleneck in the workflow connecting the design variables and KPIs
relevant for constraints/objective (as discussed in Section 2.4). In this section, we report on the results
obtained by performing OUU as discussed in Section 2.6 for the performance-based concrete design
workflow. The design variables, objectives, and the constraints are detailed in Table 3. For the temperature
constraint, we choose T limit¼ 60 ° C and for the demolding time constraint, we choose 10 hours. To
improve the numerical stability, we scale the variables, constraints, and objectives to make them of the
order 1. To demonstrate the optimization scheme proposed, a simply supported beam is used as discussed
in Section 1.1, with parameters given in Table D1. Colloquially, we aim to find the value(s) of slag–binder
mass ratio rsb and beam height h that minimize the objective, on average, while satisfying, on average, the
aforementioned constraints.

Figure 15. Predictive performance of the learned model corresponding to the hydration process. The
solid line is the predictive mean, and the shaded area is ± 2 times standard deviation. The crosses

correspond to the noisy observed data.
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As discussed, the workflow for estimating the gradient is embarrassingly parallelizable. Hence, for
each value considered in the design space, we call the ensemble of the workflows in parallel machines and
collect the results. For the subsequent illustrations, a step size of 0:05 is utilized in the ADAM optimizer
and S¼ 100was the number of samples for gradient estimation.We set λi¼ 1∀i∈ 1,…, If g as the starting
value. Figure 16 shows the optimization results. In the design space, we start from values of design
variables that violate the beam design constraints C1 as evident from Figure 16b. This activates the
corresponding penalty term in the augmented objective (Eq. (14)), thus driving the design variables to
satisfy the constraint (around iteration 40). Physically, this implies that the beam is not able to withstand
the applied load for the given slag–binder ratio, beam height, and other material parameters (which are
kept constant in the optimization procedure). As a result, the optimizer suggests to increase the beam
height h in order to satisfy the constraint while also simultaneously increasing the slag–binder mass ratio
rsb, owing to the influence of the GWP objective (see Figure 16c). As it can be seen in Figure 16a, this
leads to a reduction of the GWP because with the increase of the slag ratio, the Portland cement content,
which is mainly responsible for the CO2 emission, is ultimately reduced. In theory, the optimum value of
the slag–binder mass ratio rsb approaches one (meaning only slag in the mix) if only the GWP objective
with no constraints were to be used in the optimization. But the demolding time constraint C3 penalizes the
objective to limit the slag–binder rsb ratio to be around 0:8 (see Figure 16c), since the evolution of
mechanical properties is both much faster for Portland cement than for slag and at the same time the
absolute values for strength and Young’s modulus are higher. This s also evident in Figure 16b, when
around iteration 80, the constraint violation line is crossed thus activating the penalty from C3. This also
stops the nearly linear descent of the GWP objective. In the present illustrations, a value of 10 hours is
chosen as the demolding time to demonstrate the procedure. In real-world settings, a manufacturer would
be inclined to remove the formwork earlier so that it can be reused. But the lower the requirement of the
demolding time, the higher the ratio of cement content required in the mix, leading to an increased
hydration heat which in effect accelerates the reaction.

The oscillations in the objective and the constraints as seen in Figure 16a,b are due to the Monte Carlo
noise in the gradient estimation. As per Eq. (17), the design variables are treated as random variables
following a normal distribution. As discussed in Algorithm 2, the optimization procedure is assumed to
converge when the standard deviations σ of the normal distribution attain small values (Figure 17), that is,
when the normal degenerates to a Dirac-delta. The σ values stabilizing to relatively small values points
toward the convergence of the algorithm.

The performance increase (in terms of GWP) is difficult to evaluate in the current setting. This is due to
the fact that the constraint C1 is not fulfilled for the initial value of the design variables chosen for the
optimization. It is to be highlighted that this is actually an advantage of themethod—the user can start with

Figure 16. (a) Evolution of the expected objective Eb O½ � versus the number of iterations. The objective is
the GWP of the beam. (b) Evolution of the expected constraints Eb Ci½ � (which should all be negative)
versus the number of iterations. C1 represents the beam design constraint, C2 represents the temperature
constraint, and C3 gives the demolding time constraint. (c) Trajectory of the design variables (slag–binder

mass ratio rsb and the beam height h). The red cross represents the optimal value identified upon
convergence.
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a reasonable design that still violates the constraints. In order to make a reasonable comparison, a design
using only Portland cement (i.e., rsb¼ 0) with only the load-bearing capacity as a constraint (beam design
constraint C1) and the free parameter being the height of the beam was computed. This minimum height
was found to be 77.5 cmwith a corresponding GWP of the beam of 1,455 kgCO2eq. Note that this design
does not fulfill the temperature constraint C2 with a maximum temperature of 81°C. Another option for
comparison is the first iteration number in the optimization procedure that fulfills all the constraints in
expectation, which is the iteration number 30with a GWP of 1,050 kgCO2eq. In the subsequent iteration
steps, this is further reduced to 900 kgCO2eq for the optimum value of the design variables obtained in the
present study. This reduction in GWP is achieved by increasing the height of the beam to 100 cm while
replacing Portland cement with BFS so that themass fraction of slag–binder rsb is 0.8. The addition of slag
to the mixture decreases the strength of the material as illustrated in Figure 12, while at the same time, this
decrease is compensated by an increased height. It is also informative to study the evolution of the
(expected) constraints shown in Figure 16b. One observes that C3 (green line) associated with the
demolding time is the most critical. Thus, in the current example, the GWP could be decreased even
further when the time of demolding is extended (depending on the production process of removing the
formwork).

4. Conclusion and outlook

We introduced a systematic design approach for the precast concrete industry in the pursuit of sustainable
construction practices. It makes use of a holistic optimization framework which combines concrete
mixture design with the structural simulation of the precast concrete element within an automated
workflow. In this manner, various objectives and constraints, such as the environmental impact of the
concrete element or its structural efficiency, can be considered.

The proposed holistic approach is demonstrated on a specific design problem, but should serve as a
template that can be readily adapted to other design problems. The advocated black-box stochastic
optimization procedure is able to deal with the challenges presented by general workflows, such as the
presence of black-box models without derivatives, the effect of uncertainties, and nonlinear constraints.
Furthermore, to complete the forward and backward information flow that is essential in the optimization
procedure, a method to learn missing (probabilistic) links between the concrete mix design variables and
model parameters from experimental data is presented. We note that, to the best of our knowledge, such a
link is not available in the literature.

We demonstrated on the precast concrete element the integration of material and structural design in a
joint workflow and showcased that this has the potential to decrease the objective, that is, theGWP. For the

Figure 17. Evolution of the standard deviations σ of the design variables to highlight the convergence of
the optimization process. We note that the design variables are transformed and scaled in the optimization

procedure.
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structural design, semi-analytical models based on the Eurocode are used, whereas the manufacturing
process is simulated using a complex FE model. This illustrates the ability of the proposed procedure to
combine multiple simulation tools of varying complexity, accounting for different parts of the life cycle.
Hence, extending this in order to include, for example, additional load configurations, materials, or life
cycle models, is straightforward. The present approach to treat the design process as a workflow, learning
the missing links from data/models, and finally using this workflow in a global optimization is
transferable to several other material, structural, and mechanical problems. Such extensions could readily
includemore complex design processes with an increased number of parameters and constraints (the latter
due tomultiple load configurations or limit states in a real structure). Furthermore, this procedure could be
applied to problems involving a complete structure (e.g., bridge and building) instead of a single-element
and potentially entailing advanced modeling features that include multiscale models to link material
composition to material properties or improve the computation of the GWP using a complete life cycle
analysis.

Data availability statement. The code and the data of this study are openly available at the project repository: https://github.com/
BAMresearch/LebeDigital.
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A. Homogenization

A.1. Approximation of elastic properties
The chosen method to homogenize the elastic, isotropic properties E and ν is the Mori–Tanaka homogenization scheme (Mori and
Tanaka, 1973). It is a well-established, analytical homogenization method. The formulation uses bulk and shear moduli K and G.
They are related to E and ν as K¼ E

3 1�2νð Þ andG¼ E
2 1 + νð Þ. The used Mori–Tanaka method assumes spherical inclusions in an infinite

matrix and considers the interactions of multiple inclusions. The applied formulations follow the notation published in Nežerka and
Zeman (2012) where this method is applied to successfully model the effective concrete stiffness for multiple types of inclusions.
The general idea of this analytical homogenization procedure is to describe the overall stiffness of a bodyΩ, based on the properties
of the individual phases, that is, thematrix and the inclusions. Each of the n phases is denoted by the index r, where r¼ 0 is defined as
the matrix phase. The volume fraction of each phase is defined as
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c rð Þ ¼ Ω rð Þ�� ��
Ωk k for r¼ 0,…,n: (A1)

The inclusions are assumed to be spheres, defined by their radius R rð Þ. The elastic properties of each homogeneous and isotropic
phase is given by the material stiffness matrix L rð Þ, here written in terms of the bulk and shear moduli K and G,

L rð Þ ¼ 3K rð ÞIV + 2G rð ÞID for r¼ 0,…,n, (A2)

where IV and ID are the orthogonal projections of the volumetric and deviatoric components.

The method assumes that the micro-heterogeneous body Ω is subjected to a macroscale strain ε. It is considered that for each
phase a concentration factor A rð Þ can be defined such that

ε rð Þ ¼A rð Þε for r¼ 0,…,n, (A3)

which computes the average strain ε rð Þ within a phase, based on the overall strains. This can then be used to compute the effective
stiffness matrix Leff as a volumetric sum over the constituents weighted by the corresponding concentration factor

Leff ¼
Xn
r¼0

c rð ÞL rð ÞA rð Þ for r¼ 0,…,n: (A4)

The concentration factors A rð Þ,

A 0ð Þ ¼ c 0ð ÞI +
Xn
r¼1

c rð ÞA rð Þ
dil

 !�1
, (A5)

A rð Þ ¼A rð Þ
dilA

0ð Þ for r¼ 1,…,n, (A6)

are based on the dilute concentration factors A rð Þ
dil , which need to be obtained first. The dilute concentration factors are based on the

assumption that each inclusion is subjected to the average strain in the matrix ε 0ð Þ; therefore,

ε rð Þ ¼A rð Þ
dil ε

0ð Þ for r¼ 1,…,n: (A7)

The dilute concentration factors neglect the interaction among phases and are only defined for the inclusion phases r¼ 1,…,n. The
applied formulation uses an additive volumetric–deviatoric split, where

A rð Þ
dil ¼A rð Þ

dil,VIV +A rð Þ
dil,DID for r¼ 1,…,n, with A8)

A rð Þ
dil,V¼

K 0ð Þ

K 0ð Þ + α 0ð Þ K rð Þ �K 0ð Þ	 
 , (A9)

A rð Þ
dil,D¼

G 0ð Þ

G 0ð Þ + β 0ð Þ G rð Þ �G 0ð Þ	 
 : (A10)

The auxiliary factors follow from the Eshelby solution as

α 0ð Þ ¼ 1+ ν 0ð Þ

3 1 + ν 0ð Þð Þ and β 0ð Þ ¼ 2 4�5ν 0ð Þ	 

15 1� ν 0ð Þð Þ , (A11)

where ν 0ð Þ refers to the Poission ratio of the matrix phase. The effective bulk and shear moduli can be computed based on a sum over
the phases

Keff ¼
c 0ð ÞK 0ð Þ +

Pn
r¼1c

rð ÞK rð ÞA rð Þ
dil,V

c 0ð Þ +
Pn

r¼1c rð ÞA rð Þ
dil,V

, (A12)

Geff ¼
c 0ð ÞG 0ð Þ +

Pn
r¼1c

rð ÞG rð ÞA rð Þ
dil,D

c 0ð Þ +
Pn

r¼1c rð ÞA rð Þ
dil,D

: (A13)

Based on the concept of Eq. (A3), with the formulations (Eqs. (A2), (A4), and (A5)), the average matrix stress is defined as

σ 0ð Þ ¼L 0ð ÞA 0ð ÞLeff
�1σ: (A14)

A.1.1. Approximation of compressive strength
The estimation of the concrete compressive strength fc follows the ideas of Nežerka et al. (2018). The procedure here is taken from
the code provided in the link in Nežerka and Zeman (2012). The assumption is that a failure in the cement paste will cause the
concrete to crack. The approach is based on two main assumptions. First, the Mori–Tanaka method is used to estimate the average

Data-Centric Engineering 27



stress within the matrix material σ mð Þ. The formulation is given in Eq. (A14). Second, the von Mises failure criterion of the average
matrix stress is used to estimate the uniaxial compressive strength

fc ¼
ffiffiffiffiffiffiffi
3J2

p
, (A15)

with J2 σð Þ¼ 1
2σD : σD and σD¼ σ� 1

3 trace σð ÞI . It is achieved by finding a uniaxial macroscopic stress σ¼ � fc,eff 0 0 0 0 0
� 
T

,

which exactly fulfills the von Mises failure criterion (Eq. (A15)) for the average stress within the matrix σ mð Þ. The procedure here is
taken from the code provided in the link in Nežerka and Zeman (2012). First, a J test2 is computed for a uniaxial test stress

σtest ¼ ftest 0 0 0 0 0
� 
T

. Then the matrix stress σ mð Þ is computed based on the test stress following Eq. (A14). This is used to

compute the second deviatoric stress invariant J mð Þ
2 for the average matrix stress. Finally, the effective compressive strength is

estimated as

fc,eff ¼
J test2

J mð Þ
2

ftest: (A16)

A.1.2. Approximation of thermal conductivity
Homogenization of the thermal conductivity is based on the Mori–Tanaka method as well. The formulation is similar to Eqs. (A12)
and (A13). The expressions are taken from Stránský et al. (2011). The thermal conductivity χeff is computed as

χeff ¼
c mð Þχ mð Þ + c ið Þχ ið ÞA ið Þ

χ

c mð Þ + c ið ÞA ið Þ
χ

and (A17)

A ið Þ
χ ¼

3χ mð Þ

2χ mð Þ + χ ið Þ : (A18)

B. FE concrete model

B.1. Modeling of the temperature field
The temperature distribution is generally described by the heat equation as

ρC
∂T
∂t
¼∇ � λ∇Tð Þ + ∂Q

∂t
(B1)

with λ the effective thermal conductivity, C the specific heat capacity, ρ the density, and ρC the volumetric heat capacity. The
volumetric heatQ due to hydration is also called the latent heat of hydration, or the heat source. In this article, the density, the thermal
conductivity, and the volumetric heat capacity to be constants are assumed to be sufficiently accurate for our purpose, even though
there are more elaborate models taking into account the effects of temperature, moisture, and/or the hydration.

B.1.1. Degree of hydration α
The DOH α is defined as the ratio between the cumulative heat Q at time t and the total theoretical volumetric heat by complete
hydration Q∞:

α tð Þ¼Q tð Þ
Q∞

, (B2)

assuming a linear relation between the DOH and the heat development. Therefore, the time derivative of the heat source _Q can be
rewritten in terms of α,

∂Q
∂t
¼ ∂α

∂t
Q∞: (B3)

Approximated values for the total potential heat range between 300 and 600 J/g for binders of different cement types, for example,
OPC Q∞¼ 375 – 525J=g or Pozzolanic cement Q∞¼ 315 – 420 J/g.

B.1.2. Affinity
The heat release can be modeled based on the chemical affinity A of the binder. The hydration kinetics are defined as a function of
affinity at a reference temperature ~A and a temperature dependent scale factor a

_α¼ ~A αð Þa Tð Þ: (B4)
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The reference affinity, based on the DOH, is approximated by

~A αð Þ¼B1
B2

αmax
+ α

� �
αmax�αð Þexp �η α

αmax

� �
, (B5)

where B1 and B2 are coefficients depending on the binder. The scale function is given as

a¼ exp �Ea

R
1
T
� 1
T ref

� �� �
: (B6)

An example function to approximate the maximum DOH based on the water to cement mass ratio rwc, by Mills (1966), is the
following:

αmax ¼ 1:031rwc
0:194+ rwc

: (B7)

This refers to Portland cement. Figure B1 shows the influence of the three numerical parameters B1, B2, η and the potential heat
release Q∞ on the heat release rate as well as on the cumulative heat release.

B.1.3. Discretization and solution
Using Eq. (B3) in Eq. (B1), the heat equation is given as

ρC
∂T
∂t
¼∇ � λ∇Tð Þ +Q∞

∂α

∂t
: (B8)

Now we apply a backward Euler scheme

_T ¼Tn+ 1�Tn

Δt
and (B9)

_α¼Δα
Δt

with Δα¼ αn + 1�αn (B10)

and drop the index n+ 1 for readability to obtain

ρCT �Δt∇ � λ∇Tð Þ�Q∞Δα¼ ρCTn: (B11)

Using Eqs. (B10) and (B4), a formulation for Δα is obtained:

Δα¼Δt~A αð Þa Tð Þ: (B12)

We define the affinity in terms of αn and Δα to solve for Δα on the quadrature point level

~A¼B1 exp �ηΔα+ α
n

αmax

� �
B2

αmax
+Δα + αn

� �
� αmax�Δα�αnð Þ: (B13)

Now we can solve the nonlinear function

f Δαð Þ¼Δα�Δt~A Δαð Þa Tð Þ¼ 0 (B14)

using an iterative Newton–Raphson solver.

Figure B1. Influence of the hydration parameters on the heat release rate and the cumulative heat
release.
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B.2. Coupling material properties to degree of hydration

B.2.1. Compressive strength
The compressive strength in terms of the DOH can be approximated using an exponential function (cf. Carette and Staquet, 2016):

fc αð Þ¼ α tð Þa fc fc∞: (B15)

Thismodel has two parameters, fc∞, the compressive strength of the parameter at full hydration, α¼ 1, and a fc the exponent, which is
a material parameter that characterizes the temporal evolution.

The first parameter could theoretically be obtained through experiments. However, the total hydration can take years. Therefore,
we can compute it using the 28 days values of the compressive strength and the corresponding DOH:

fc∞¼
fc28
α28a fc

: (B16)

B.2.2. Young’s modulus
The publication (Carette and Staquet, 2016) proposes a model for the evolution of the Young modulus assuming an initial linear
increase of the Young modulus up to a DOH αt :

E αð Þ¼ E∞
α tð Þ
αt

αt
aE for α< αt

E∞α tð ÞaE for α≥ αt :

8<
: (B17)

Contrary to other publications, no dormant period is assumed. Similarly to the strength standardized testing of the Youngmodulus is
done after 28 days, E28. To effectively use these experimental values, E∞ is approximated as

E∞¼ E28

α28aE
, (B18)

using the approximated DOH.

B.3. Constraints

The FEM simulation is used to compute two practical constraints relevant to the precast concrete industry. At each time step, the
worst point is chosen to represent the part, therefore ensuring that the criterion is fulfilled in the whole domain. The first constraint
limits the maximum allowed temperature. The constraint is computed as the normalized difference between the maximum
temperature reached Tmax and the temperature limit T limit

CT ¼ Tmax�T limit

T limit
, (B19)

where CT > 0 is not admissible, as the temperature limit 60°C has been exceeded.

The second constraint is the estimated time of demolding. This is critical, as themanufacturer has a limited number of forms. The
faster the part can be demolded, the faster it can be reused, increasing the output capacity. On the other hand, the part must not be
demolded too early, as it might get damaged while being moved. To approximate the minimal time of demolding, a constraint is
formulated based on the local stresses Cσ . It evaluates the Rankine criterion for the principal tensile stresses, using the yield strength
of steel fyk and a simplified Drucker–Prager criterion, based on the evolving compressive strength of the concrete fc,

Cσ ¼ max

CRK ¼
∥σ0t∥� fyk

fyk

CDP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
I21� I2

r
� f3cffiffiffi

3
p

fc

8>>>>><
>>>>>:

, (B20)

where Cσ > 0 is not admissible. In contrast to standard yield surfaces, the value is normalized, to be unit less. This constraint aims to
approximate the compressive failure often simulated with plasticity and the tensile effect of reinforcement steel. As boundary
conditions, a simply supported beamunder its ownweight has been chosen to approximate possible loading conditionswhile the part
is moved. This constraint is evaluated for each time step in the simulation. The critical point in time is approximated where
Cσ tcritð Þ¼ 0. This is normalized with the prescribed time of demolding to obtain a dimensionless constraint.

C. Beam design
We follow the design code (DIN EN 1992-1-1, 2011) for a singly reinforced beam, which is a reinforced concrete beam with
reinforcement only at the bottom. The assumed cross-section is rectangular.
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C.1. Maximum bending moment

Assuming a simply supported beam with a given length l in millimeters, a distributed load q in Newton per millimeters and a point
load F in Newton per millimeters, the maximum bending moment Mmax in Newton per square millimeter is computed as

Mmax¼ q
l2

8
+F

l
4
: (C1)

The applied loads already incorporate any required safety factors.

C.2. Computing the minimal required steel reinforcement

Given a beamwith the height h in millimeters, a concrete cover of c in millimeters, a steel reinforcement diameter of d in millimeters
for the longitudinal bars, and a bar diameter of d in millimeters for the transversal reinforcement also called stirrups,

heff ¼ h� c�dst�1
2
d: (C2)

According to the German norm standard safety factors are applied, αcc¼ 0:85, γc¼ 1:5, and γs¼ 1:15, leading to the design
compressive strength for concrete fcd and the design tensile yield strength fywd for steel

fcd ¼ αcc
fc
γc
, (C3)

fywd ¼
fyk
γs

, (C4)

where fc denotes the concrete compressive strength and fyk the steel’s tensile yield strength.

To compute the force applied in the compression zone, the lever arm of the applied moment z is given by

z¼ heff 0:5+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25�0:5μ

p� �
, with (C5)

μ¼ Mmax

bh2eff fcd
: (C6)

The minimum required steel As,req is then computed based on the lever arm, the design yield strength of steel and the maximum
bending moment, as

As,req ¼Mmax

fywdz
: (C7)

C.3. Optimization constraints

C.3.1. Compressive strength constraint
Based on Eq. (C6), we define the compressive strength constraint as

Cfc¼ μ�0:5, (C8)

where Cfc > 0 is not admissible, as there is no solution for Eq. (C6).

C.3.2. Geometrical constraint
The geometrical constraint checks that the required steel area As,req does not exceed themaximum steel area As,max that fits inside the
design space. For our example, we assume the steel reinforcement is only arranged in a single layer. This limits the available space
for rebars in twoways, by the requiredminimal spacing smin between the bars, to allow concrete to pass, and by the required space on
the outside, the concrete cover c, and stirrups diameter dst. To compute As,max , the maximum number for steel bars ns,max and the
maximum diameter dmax from a given list of admissible diameters are determined that fulfill

s≥ smin, with (C9)

s¼ b�2c�2dst�ns,maxdmax

ns,max �1
and (C10)

ns,max ≥ 2: (C11)

According to DIN1992-1-1 (2011), the minimum spacing between two bars smin is given by the minimum of the concrete cover
(2.5 cm) and the rebar diameter. The maximum possible reinforcement is given by
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As,max ¼ nsπ
d
2

� �2

: (C12)

The geometry constraint is computed as

Cg¼As,req�As,max

As,max
, (C13)

where Cg > 0 is not admissible, as the required steel area exceeds the available space.

C.3.3. Combined beam constraint
To simplify the optimization procedure, the two constraints are combined into a single one by using the maximum value:

Cbeam ¼ max Cg,Cfc
	 


: (C14)

Evidently, this constraint is also defined as: Cbeam > 0 is not admissible.

D. Parameter tables
This is the collection of the used parameters for the various example calculations.

Cite this article: Agrawal A, Tamsen E, Unger JF and Koutsourelakis P.-S (2024). From concrete mixture to structural design—a
holistic optimization procedure in the presence of uncertainties. Data-Centric Engineering, doi:10.1017/dce.2024.18

Table D1. Parameters of the simply supported beam for the computation of the steel reinforcement

Name Value Unit

Length 1,000 cm
Width 350 mm
Height 450 mm
Steel yield strength 300 N=mm2

Diameter stirrups 10 mm
Minimal concrete cover 2.5 cm
Load 50 kN
Concrete compressive strength 40 N=mm2
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Abstract

Constrained optimization of the parameters of a simulator plays a crucial role
in a design process. These problems become challenging when the simulator is
stochastic, computationally expensive, and the parameter space is high-dimensional.
One can efficiently perform optimization only by utilizing the gradient with respect
to the parameters, but these gradients are unavailable in many legacy, black-box
codes. We introduce the algorithm Scout-Nd (Stochastic Constrained Optimization
for N dimensions) to tackle the issues mentioned earlier by efficiently estimating
the gradient, reducing the noise of the gradient estimator, and applying multi-
fidelity schemes to further reduce computational effort. We validate our approach
on standard benchmarks, demonstrating its effectiveness in optimizing parameters
highlighting better performance compared to existing methods.

1 Introduction

Physics-based simulators are used across fields of engineering and science to drive research [1],
and more recently used to generate synthetic training data for machine learning related tasks [2]. A
common challenge is finding optimum parameters given some objective subject to some constraints.
High-dimensional parameter space and stochastic objective function make the optimization non-
trivial.

Gradient-based methods have been shown to work well when the derivative is available [3, 4, 5,
6]. However, for optimization/inference tasks involving physics-based simulators, only black-box
evaluations of the objective are often possible(e.g., legacy solvers). It is commonly called simulation
based inference(SBI)/optimization [1, 7]. In such cases, one resort to gradient-free optimization [8],
for example, genetic algorithms [9] or Bayesian Optimization and their extensions [10, 11]. The
gradient-free methods perform poorly on high-dimensional parametric spaces [8]. More recently,
stochastic gradient estimators [12] have been used to estimate gradients of black-box functions and,
hence, perform gradient-based optimization [13, 14, 15, 16]. However, they do not account for the
constraints.

This work introduces a novel approach for constrained stochastic optimization involving stochastic
black-box simulators with high-dimensional parametric dependency. We draw inspiration from [17,

∗equal contribution
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18] to estimate the gradients, extended it to include constraints and employed multi-fidelity strategies
to limit the number of function calls, as the cost of running the simulator can be high. We choose
popular gradient-free constrained optimization methods like Constrained Bayesian Optimization
(cBO)[19] and COBYLA [20] to compare our method on standard benchmark problems.

2 Methodology

Problem statement We are given a scalar valued function f(x, b) and a set of constraints C(x, b) =
{C1(x, b), . . . , CI(x, b)}, where x ∈ Rd are the deterministic parameters and b represents a random
vector [13]. The uncertainty may be caused by a lack of knowledge about the parameters or the
inherent noise in the system. The objective f or the constraints C depend implicitly on the output
of the black-box simulator. Our task is to minimize the function f(x, b) with respect to x subject
to the constraints C(x, b). Because of the stochastic nature of the problem, we will optimize the
objective function with respect to a robustness measure [21, 22]. In this work, we will only consider
the expectation as a robustness measure, in which case, the problem can be stated as follows:

min
x

Eb[f(x, b)], s.t Eb[Ci(x, b)] ≤ 0, ∀i ∈ {1, . . . , I} (1)

In addition to that, the gradient of the objective function and the constraint is unavailable. Hence, one
cannot directly apply gradient-based optimization methods.

2.1 Constraint augmentation

We cast the constrained optimization problem (Eq. (1)) to an unconstrained one using penalty-based
methods [23, 24]. We define an augmented objective function L as follows:

L(x, b,λ) = f(x, b) +
I∑

i=i

λi max (Ci(x, b), 0) (2)

where λi > 0 is the penalty parameter for the ith constraint and the max (·, ·) controls the magnitude
of penalty applied. Incorporating the augmented objective (Eq. (2)) in the Eq. (1), one can arrive at
the following optimization problem:

min
x

Eb[L(x, b,λ)] (3)

The expectation is approximated by Monte Carlo which induces noise and necessitates stochastic
optimization methods. We alleviate the dependence on the penalty parameter λ by using the sequential
unconstrained minimization technique (SUMT) algorithm [25] where one starts with a small penalty
term and gradually increases its value.

2.2 Estimation of derivative

The direct computation of derivatives of L with respect to the optimization variables x is not feasible
because of the unavailability of the gradients of the objective function and the constraints. One notes
many active research threads across disciplines which are trying to tackle this bottleneck [1, 14, 26,
27, 4, 15, 15]. We draw inspiration from the Variational Optimization [17, 28, 16], which constructs
an upper bound of the objective function as shown below:

min

∫
L(x, b,λ)p(b)db ≤

∫
L(x, b,λ)p(b)q(x | θ)dbdx = U(θ) (4)

where q(x | θ) is a density over the design variables x with parameters θ. If x∗ yields the minimum
of the objective Eb[L], then this can be achieved with a degenerate q that collapses to a Dirac-delta,
i.e. if q(x | θ) = δ(x− x∗). The inequality above would generally be strict for all other densities q
or parameters θ. Hence, instead of minimizing Eb[L] with respect to x, we can minimize the upper
bound U(θ) with respect to the distribution parameters θ. Under mild restrictions outlined by [18],
the bound U(θ) is differential w.r.t θ. One can evaluate the gradient of U(θ) as shown below:

∇θU(θ) = Ex,b [∇θ log q(x | θ)L(x, b,λ)] (5)
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The Monte Carlo estimation of the expectation shown in Eq. (5) is as follows:

∂U

∂θ
≈ 1

S

S∑
i=1

L(xi, bi,λ)
∂

∂θ
log q (xi | θ) (6)

The Eq. (6) is known as the score function estimator [29], which also appears in the context of
reinforcement learning [30]. The gradient estimation can be computationally expensive as each step
will involve calling the simulator S number of times. This step is can be easily parallelized.

2.3 Variance reduction

To reduce the mean square error of the estimator in Eq. (6), we propose the use of baseline discussed
in [31] as shown below:

∂U

∂θ
≈ 1

S

S∑
i=1

∂

∂θ
log q (xi | θ)

L(xi, bi,λ)−
1

S − 1

S∑
j=1,j ̸=i

L(xj , bj ,λ)

 (7)

The above is an unbiased estimator and implies no additional cost beyond the S samples.We also
propose to use Quasi-Monte Carlo (QMC) sampling [32] for variance reduction. QMC replaces S
randomly drawn samples by a pseudo-random sequence of samples of length S with low discrepancy.
This sequence covers the underlying design space more evenly than the random samples, thereby
reducing the variance of the gradient estimator. Fig. (1) numerically shows the advantage of using
variance reduction technique. We observe that the variance of the gradient is decreased using the
variance reduction methods, specifically in high dimensions where we observe ∼ 10× benefit.

2.4 Multi-fidelity

The main computational bottleneck of the gradient estimation using Eq. (6) is the multiple evaluation
of the objective function. This becomes a significant concern for computationally expensive simula-
tors. We propose to solve this problem using the multi-fidelity (MF) method [33]. Suppose we are
given a set of L functions modeling the same quantity and arranged in ascending order of accuracy
and computational cost {f1, f2, . . . , fL}. We want to optimize the design parameter with respect to
the highest-fidelity model (fL). We can estimate the gradient of the corresponding upper bound using
the method suggested in [34] as shown below:

∂UL

∂θ
≈

L∑
ℓ=1

1

Sℓ

Sℓ∑
i=1

(Lℓ(xi, bi,λ)− Lℓ−1(xi, bi,λ))
∂

∂θ
log q (xi | θ) (8)

where Sℓ is the number of samples used in the estimator at level ℓ and L0(·) = 0. We want to use
more samples from the low-fidelity model and lesser samples as we increase the fidelity. The method
to calculate the number of samples is discussed in [34].

2.5 Implementation details

In the present study, we use PyTorch [35] to efficiently compute the gradient. After the gradient
estimation, we use the ADAM optimizer [36] as the stochastic gradient descent method. In this work,
q(x | θ) takes the form of a Gaussian distribution with parameters θ = {µ, σ} representing mean
and variance. Our proposed algorithms is summarized in Algorithm 1. The source code will be made
available upon publication.

3 Numerical Illustrations
We discuss the numerical results of the proposed (MF)Scout-Nd algorithm on sphere-problem of
varying dimensions (d = {2, 4, 8, 16, 32}). We use the data profiles proposed in [8] to compare
(MF)Scout-Nd with cBO [19] and COBYLA [20], which are standard derivative-free optimization
methods that can handle constraints. We consider the following optimization problem with noisy
objective:

min
x

Eb

[
d∑

i=1

x2
i + b

]
; s.t. C(x) ≤ 0 (9)
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Algorithm 1 Stochastic constrained optimization for non-differentiable objective (Scout-Nd)

1: Input: Objective function(s), constraint(s), distribution q(x | θ), stochastic gradient descent
optimizer G and its hyper-parameters η, list of penalty terms {λ1,λ2, . . . ,λK}, λK →∞

2: θ0
0 ← choose starting point, k ← 1

3: do
4: n← 0
5: do
6: xi ∼ q(x | θn

k ), bi ∼ p(b) ▷ Sampling step
7: Evaluate augmented objectives L(xi, bi,λk) ▷ Eq. (2)
8: Monte-Carlo gradient estimate∇θU ▷ Eq. (7), 8
9: θn+1

k ← G(θn
k , η,∇θU) and n← n+ 1 ▷ Stochastic Gradient Descent

10: while ∥θn
k − θn−1

k ∥> εθ
11: θ0

k+1 ← θn
k ; {µ, σ} ← θn

k and k ← k + 1
12: while ∥σ∥> εσ ▷ Collapse to Dirac-delta
13: return {µ, σ}
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Figure 1: Box plot of the vari-
ance of the gradient estimator
w.r.t the dimensions with 10 re-
peated runs for Eq. (9). Gradient
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ance reduction, red : variance
reduction
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with b ∼ N (0, 0.1). We consider two different constraint cases. The first case is C(x) = 1−(x1+x2)
where the optimum lies on the constraint i.e. x∗ = {0.5, 0.5} ∪ {0}d−2. In the second case, the
constraint surface is defined as C(x) = ∑d

i=1 xi − 1 leading to the optimum at x∗ = {0}d. Let S be
the set of optimizers s and P be a set of benchmark problems p. Then the data profile ds(α) [8] of a
optimizer s ∈ S is given by

ds(α) =
1

|P|

∣∣∣∣{p ∈ P :
tp,s

dp + 1
≤ α

}∣∣∣∣ (10)

where dp in the number of design variables in p, α is the allowed number of functional evaluations
scaled by the number of design variables and tp,s is the minimum number of function calls a solver s
requires to reach the optimum of a problem p within accuracy level ϵf . We run each benchmark 5
times leading to |P|= 5(|d|)× 5(number of runs)× 2(number of cases) = 50. For (MF)Scount-Nd,
we consider two levels of multi-fidelity. The high-fidelity (HF) is given by the Eq. (9) and the
low-fidelity (LF) is defined by down-scaling the xi in Eq. (9) to have xi = xi/1.05.

We can observe from Fig. (2) that Scout-Nd performs better than cBO and COBYLA because it
solved most of the benchmark problems p ∈ P for a given α. Our proposed algorithm outperforms
the other two derivative-free methods because we use derivative approximation to move toward the
optimum. This not only helped us to converge faster but also tackled high-dimensionality. MF-Scout-
Nd performed better as it converged faster towards the optimum than Scout-Nd because it needs fewer
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costly function evaluations. We can also observe from Fig. (3) that Scout-Nd and MF-Scout-Nd
come closer to the actual optimal objective for a given computational budget.

4 Conclusions
We extended the method proposed by [18, 17] to account for constraints. We further employed
a multi-fidelity strategy and gradient variance reduction schemes to reduce the number of costly
simulator calls. We demonstrated on a classical benchmark problem that our method performs better
than the chosen baselines in terms of quality of optimum and number of functional calls. As future
work, we will test our method on real-world problems (for example: [15, 14]).

5 Broader Impact Statement

Many real-world systems in engineering and physics are modeled by complex simulators that might
be parameterized by a high-dimensional random variable. Some notable examples include particle
physics, fluid mechanics, molecular dynamics, protein folding, cosmology, material sciences, etc.
Frequently, the simulators are black-box, making the task of optimization/inference challenging,
specifically in high dimensions. The task can be further complicated with the inclusion of constraints.
In the present work, we introduced an algorithm to approximate the gradients for an optimization/in-
ference task involving these simulators. We demonstrated that the proposed method performs better
than the state-of-the-art on a standard benchmark problem.

We do not see any direct ethical concerns associated with this research. The impact on society is
primarily through the over-arching context of providing novel methods to approach optimization/in-
ference involving complex simulators.
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Abstract
Optimizing parameters of physics-based simulators is crucial in the design process of engineering
and scientific systems. This becomes particularly challenging when the simulator is stochastic,
computationally expensive, black-box and when a high-dimensional vector of parameters needs to
be optimized, as e.g. is the case in complex climate models that involve numerous interdependent
variables and uncertain parameters. Many traditional optimization methods rely on gradient
information, which is frequently unavailable in legacy black-box codes. To address these challenges,
we present SCOUT-Nd (Stochastic Constrained Optimization for N dimensions), a gradient-based
algorithm that can be used on non-differentiable objectives. It can be combined with natural
gradients in order to further enhance convergence properties. and it also incorporates
multi-fidelity schemes and an adaptive selection of samples in order to minimize computational
effort. We validate our approach using standard, benchmark problems, demonstrating its superior
performance in parameter optimization compared to existing methods. Additionally, we showcase
the algorithm’s efficacy in a complex real-world application, i.e. the optimization of a wind farm
layout.

1. Introduction

Several real-world continuous optimization problems are too difficult to solve due to the involvement of
complex physics-based simulators in the objective or the constraints. These physics-based simulators are
used across fields of engineering and science to drive research [1]. There are many problems that fit into this
category, spanning a wide array of fields such as aeronautic design [2, 3], applications in healthcare and
science [4, 5], material design [6, 7], optimizing particle-physics instruments [8, 9], optimizing wind-farm
layouts [10], accelerator physics [11], reinforcement learning (RL) [12] and generating synthetic training
data for machine learning related tasks [13, 14].

We consider a high-dimensional and expensive to a query function f : Rd→ R. The high-dimensional
parameter space, multiple local optima, the lack of gradients, and stochasticity in the objective function
evaluation make the optimization non-trivial. This setting is prevalent in science and engineering domains
[15]. Optimization is primarily facilitated through gradient-based or gradient-free (‘black-box’) methods
[16]. Gradient-based methods are effective when derivatives are readily available [5, 17–19]. Over the past
decade, the surge in interest in machine learning (ML) has significantly propelled the field of differentiable
programming [16]. However, in most real-world optimization scenarios involving physics-based simulators,
gradients are not available inherently [20]. As an example, consider the case of the optimization of a wind
farm’s layout with respect to the total power output. Numerical simulations based on well-established,
computational fluid dynamics models that account for turbine interactions and wake effects, can provide
accurate predictions but as is the case for most legacy codes, they do not provide gradients. More

© 2025 The Author(s). Published by IOP Publishing Ltd
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importantly, they are very computationally demanding and the cost of their repeated solution during any
search procedure can be gigantic. The gradients are typically obtained through one of several strategies: (a)
employing the adjoint method [5, 21, 22], (b) rewriting the simulator in a differentiable programming
language such as JAX, PyTorch, Julia, etc [23, 24], or (c) developing a differentiable surrogate, e.g. based on
neural networks, to approximate the objective function (e.g. [9]). The first two options pose significant
implementation challenges, often involving extensive modifications to legacy codes, thus impeding applying
ML to scientific computing [25]. Furthermore, training a differentiable surrogate can be prohibitively
expensive due to the initial cost of data generation. Also, the effectiveness of the optimization is contingent
upon the quality of the surrogate model developed. Recently, automatic differentiable (AD) compiler
methods [26] have emerged, providing gradients of legacy codes written in C, C++, Fortran, etc. These
methods facilitate integration with existing ML infrastructure and support gradient-based optimization.
However, these approaches are not directly comparable to the methods proposed in the current study, as
compiler-based methods assume legacy codes are compiled on low level virtual machine-based compilers,
which may not always be satisfied.

The gradient-free methods [27–29] are used for optimization when only black-box evaluations are
possible. It is also commonly called simulation-based inference/optimization [1, 30]. Some widely used
methods include genetic algorithms [31], Bayesian Optimization and their extensions [32, 33], and
Evolution strategy (ES) methods [34–36], to name a few. The gradient-free methods perform poorly on
high-dimensional parametric spaces [29]. To remedy this, stochastic gradient estimators [37] have been
recently used to estimate gradients of black-box functions, by employing a differentiable surrogate (e.g. in
the form of deep neural network) and, hence, perform gradient-based optimization [8, 13, 38–42]. However,
they do not account for the constraints. Also, these strategies are continent of the quality of the surrogate
model learned. The quality of the surrogate model is dependent on the architecture of the ML model and
availability of the training data (which can be a bottleneck in high-dimensional cases, as data requirements
grow linearly with parametric dimensions e.g. [8]). Furthermore, since the methods rely on Monte Carlo
techniques, the computational cost can be very high due to many expensive simulator calls, and the gradients
can be very noisy.

This work introduces a novel approach SCOUT-Nd (Stochastic Constrained Optimization for N
Dimensions) and MF-SCOUT-Nd (Multi-Fidelility Stochastic Constrained Optimization for N Dimensions)
for constrained, stochastic optimization involving black-box simulators with high-dimensional, parametric
dependency. As per the notion of oracles [16, 43], the proposed algorithm uses a stochastic, zeroth-order
oracle [44]. We draw inspiration from Variational Optimization [45, 46] to estimate the gradients, provide
extensions that account for constraints, and employ multi-fidelity (MF) strategies to improve efficiency by
incorporating lower-fidelity and less expensive simulator(s). The proposed algorithm consists of the
following major elements: (a) A non-intrusive method to estimate gradients of black-box physical simulators
(section 2.2), with an ability to account for stochasticity in the objective (section 2) and handle constraints
using penalty methods (section 2.1). (b) Strategies to reduce the variance of the gradient estimator
(section 2.3). (c) Ability to handle non-convexity (section 2.6). (d) More efficient and robust convergence
properties using natural gradients (section 2.4). (e) Multi-fidelity strategies (section 2.7) and adaptive
selection of the number of samples for gradient estimation (section 2.6.4 and section 2.7.1) in order to
reduce computational cost while retaining predictive accuracy. The structure of the rest of the paper is as
follows. Section 2 defines the problem we address in the present work and the proposed algorithm with
relevant details and analysis. In section 3, we present the state-of-the-art performance of
SCOUT-Nd/MF-SCOUT-Nd on standard benchmark analytical problems and compare the results with
popular (constrained) optimization methods like constrained Bayesian optimization (cBO)[47], COBYLA
[48], DYCORS [49] and SLSQP [50]. Secondly, we test our algorithms on a real-world, expensive,
physics-based simulator. We choose the windfarm layout optimization case [15], which, owing to the absence
of derivatives, presence of constraints, multi-model surface, and stochasticity, provides a challenging test case
for black-box optimization routines [51]. We compare our results with SLSQP. In section 4, we summarize
our findings and discuss limitations and potential enhancements.

2. Methodology

Problem statement.We are concerned with optimizing a scalar-valued function f(x,b) subject to constraints
C(x) = {C1(x), . . . ,CI(x)}, where x ∈ Rd denote the potentially high-dimensional deterministic parameters
and b∼ p(b) represents uncertain parameters [38], which act as stochastic inputs to the function f. A lack of
knowledge about the parameters or the inherent noise in the system may cause uncertainty. The objective f
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or the constraints C depend implicitly on the output of the black-box simulator, thus we only have access to a
zero-order oracle. Since the solution of the optimization problem to obtain the optimal design x involves the
random vector b, its variability needs to be involved in the optimization process to limit its negative effect on
the optimal design. This is classically done using a robustness measure [52, 53] given byR. The general
parameter-dependent nonlinear constrained optimization problem can be stated as

min
x
R [ f(x,b)] , s.t Ci (x)⩽ 0, ∀i ∈ {1, . . . , I} . (1)

In this work, we will only consider the expectation as a robustness measure, in which case, the problem can
be stated as follows:

min
x

Eb [ f(x,b)] , s.t Ci (x)⩽ 0, ∀i ∈ {1, . . . , I} . (2)

In addition to that, the gradient of the objective function and the constraint is unavailable. Hence, one
cannot directly apply gradient-based optimization methods.

2.1. Penalizing the constraints
To tackle the constrained optimization problem (equation (2)), we convert it to an unconstrained one using
penalty-based methods [54, 55]. We define an augmented objective function L as follows:

L(x,b,λ) = f(x,b)+
I∑

i=1

λi max(Ci (x) ,0) , (3)

where λi > 0 is the penalty parameter for the ith constraint and the max(·, ·) controls the magnitude of the
penalty applied. One can make the enforcement of a particular constraint stricter by increasing the value of
the corresponding penalty parameter. Incorporating the augmented objective (equation (3)) in equation (2),
one can arrive at the following optimization problem:

min
x

Eb [L(x,b,λ)] . (4)

Optimization. The Monte Carlo method approximates the expectation, which induces noise. We alleviate
the dependence on the penalty parameter λ by using the sequential unconstrained minimization technique
(SUMT) algorithm [56]. The algorithm considers a strictly increasing sequence {λn} with λn→∞. [56]
show that when λn→∞, then the sequence of corresponding minima, say {x∗n}, converges to a global
minimizer x∗ of the original constrained problem. The SUMT technique has also been shown to work with
non-linear constraints [57]. This adaptation of the penalty parameters helps to balance the need to satisfy the
constraints with the need to make progress towards the optimal solution. Augmented Lagrangian [58]
represents an alternative approach that could be considered for application in this context, though it has not
been explored in the current study.

2.2. Gradient estimation
Since the design variable x can be high-dimensional, gradient-free methods such as genetic programming,
Bayesian Optimization, etc may not be as efficient as gradient-based, and the latter should be used whenever
available [28]. Unfortunately, the direct computation of derivatives of L with respect to the optimization
variables x is not feasible because of the unavailability of the gradients of the objective function and the
constraints. One notes many active research threads across disciplines are trying to tackle this bottleneck of
unavailability of gradients in physical simulators [1, 5, 8, 39, 59, 60]. We draw inspiration from the
Variational Optimization [13, 45, 61], which constructs an upper bound of the objective function as shown
below:

min
x

ˆ
L(x,b,λ)p(b) db⩽

ˆ
L(x,b,λ)p(b)q(x | θ) dbdx= U(θ), (5)

where q(x | θ) is a probability density over the design variables x with parameters θ. If x∗ yields the minimum
of the objective Eb[L], then this can be achieved with a degenerate q that collapses to a Dirac-delta, i.e. if
q(x | θ)≈ δ(x− x∗). The inequality above would generally be strict for all other densities q or parameters θ.
Hence, instead of minimizing Eb[L] with respect to x, we can minimize the upper bound U(θ) with respect
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to the distribution parameters θ. Under mild restrictions outlined by [46], the bound U(θ) is differentiable
w.r.t θ. One can evaluate the gradient of U(θ) using the ‘log-derivative trick’ [37] as shown below:

∇θU(θ) =∇θEx,b [L(x,b,λ)]

=∇θ

ˆ
q(x | θ)p(b)L(x,b,λ) dxdb

=

ˆ
∇θq(x | θ)p(b)L(x,b,λ) dxdb

=

ˆ
q(x | θ)∇θ logq(x | θ)p(b)L(x,b,λ) dxdb

= Ex,b [∇θ logq(x | θ)L(x,b,λ)] . (6)

The Monte Carlo estimation of the expectation shown in equation (6) is as follows:

∂U

∂θ
≈ 1

S

S∑
i=1

L(xi,bi,λ)
∂

∂θ
logq(xi | θ) . (7)

Equation (6) is known as the score function estimator [62]. In a manner similar to the REINFORCE [12], we
take gradient steps on θ. The score function estimator also appears in the context of RL[63]. In the present
work, we work with functions with continuous domains, so we use Gaussian for q(·). For the special case
where q(x | θ) is factored Gaussian, the resulting gradient estimator is also known as parameter-exploring
policy gradients [64], or zero-order gradient estimation [65]. The number of samples S per iteration is usually
of the orderO(d) [35, 63] (also demonstrated in section 2.6.4). This can be problematic for
high-dimensional problems. Fortunately, the gradient estimation can be embarrassingly parallelized. One
needs to synchronize random seeds between machines before optimization, i.e. each machine knows what
perturbations the other machine used, so each machine only needs to communicate a single scalar to and
from the other machine to agree on a parameter update. This approach also ensures that gradient estimation
is non-intrusive, meaning that the physics-based simulator does not need modification to accommodate the
optimization routine. Consequently, legacy simulators can be used without any adjustments.

2.3. Variance reduction
Monte Carlo gradient estimation suffers from high variance. Extensive work has been done to address the
issue of high variance in the past decades [37]. In the present work, we propose using the baseline method
discussed in [66] to reduce the mean square error (MSE) of the estimator in equation (7). This is given by:

∂U

∂θ
≈ 1

S

S∑
i=1

∂

∂θ
logq(xi | θ)

L(xi,bi,λ)− 1

S− 1

S∑
j=1,j ̸=i

L
(
xj,bj,λ

) . (8)

The above is an unbiased estimator with no additional cost beyond the S samples.
We also propose to use Quasi-Monte Carlo (QMC) sampling [67] for variance reduction, thus promising

a more accurate gradient estimate [68]. In our previous work [42], we showed numerically the advantage of
using the combination of QMC and the baseline strategy. QMC replaces S randomly drawn samples with a
pseudo-random sequence of samples of length S with low discrepancy. This sequence covers the underlying
design space more evenly than the random samples, thereby reducing the variance of the gradient estimator.
Also, it has been shown that under certain conditions, QMC (O(S−1)) reaches a faster rate of convergence as
compared to random sampling (O(S−1/2)). From a theoretical point of view, the benefit of QMC vanishes in
very high dimensions. However, [69] showed that the gains are observed up to dimension 150 in practice. In
this work, we present the results using Sobol points [70] and sample points with randomized QMC to ensure
unbiaseness.

2.4. Natural gradients
With the estimated gradient∇θU(θ), using any gradient descent scheme, one can update the parameters θ
of the distribution q(x|θ)

θ← θ− ηstep∇θU(θ) , (9)

where ηstep is a learning rate parameter. However, [34] reported that this update is not scale-invarient as the
gradient controls both the position and variance of a distribution over the same search space dimension and
reported unstable parametric updates. When we numerically investigate this using the ADAM optimizer and
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Figure 1. Illustrations highlighting the effect of natural gradients on the 2D Ackley function optimization near the optima.

equation (8), we also observe parametric oscillations in the optimization of the 2D Ackley function around
the optima, as can be seen in figures 1(a) and (b). The Ackley function is widely used to study optimization
algorithms due to its complex, multi-modal landscape. These oscillations occur due to moving in the
parametric space θ using the gradient descent with Euclidean distance as the distance measure. To alleviate
this instability, [71, 72] reported that step size reduction with increasing iterations is crucial for stability. To
make the parametric updates invariant w.r.t. the particular parametrization used and adaptively select step
size, [34] suggests employing natural gradients. Natural gradients [71] have been shown numerous
advantages over plain gradients, e.g. natural gradients showcase better convergence behavior in optimization
landscapes with ridges and plateaus. So, in this work, we utilize natural gradients, which relies on a more
‘natural’ measure of distance DKL(θ

′∥θ) between the distributions q(x|θ) and q(x|θ ′), with DKL(θ
′∥θ)

denoting the Kullback-Leibler divergence [73]. The natural gradient is then the solution to a constrained
optimization problem which involves (for details, please see [34])

F=

ˆ
q(x | θ)∇θ logq(x | θ)∇θ logq(x | θ)⊤ dx (10)

= Ex

[
∇θ logq(x | θ)∇θ logq(x | θ)⊤

]
, (11)

where F is the Fisher Information Matrix (FIM) of the given parametric family of search distributions. As
mentioned earlier, in SCOUT-Nd/MF-SCOUT-Nd, the distribution q takes the form of a multivariate
normal (MVN) with θ := (µ,Σ) whereΣ := diag(σ2

1 , . . . ,σ
2
d). Using the analytical derivative of the MVN,

we obtain the following expression for the FIM:

F(µ,Σ) = diag

(
1

σ2
1

, · · · , 1

σ2
d

,
2

σ2
1

, · · · , 2

σ2
d

)
. (12)

We use σ2
i = e2βi , reparametrized FIM is given by:

F(µ,β) = diag
(
e−2β1 , · · · ,e−2βd ,2Id

)
. (13)
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Figure 2. Evolution of Ackley function value with d= 64 to highlight the influence of natural gradients. Theoretical f(x∗) = 0,
learning rate= 0.1, number of samples= 64.

The analytical derivation of the above expression is provided in appendix A. If the F matrix is invertible, the
Monte Carlo gradient estimate is updated to

∇̃θU= F−1∇θU(θ) . (14)

The gradient in the equation above is called the natural gradient [71, 74]. As can be seen in the equation
above, the F matrix scales the gradients. Therefore, it can also be seen as a step-size adaptation.

The tendency of the natural gradient is to reduce the value of the gradient if the variance is smaller than
one. This slows down the convergence speed in the beginning, even after dampening. One needs natural
gradients only near the optimum. So, we apply the natural gradients only when the optimizer is near the
optimum. We can identify if the optimizer is in the proximity of the optimum when the value of the variance
has decreased to a small value (i.e. ∥Σ∥⩽ σnat-grad). Another way suggested by [72] is to apply a dampening
constant to the Fisher information matrix, given by

F̃= F+ ηI. (15)

The isotropic damping η can be set constant or using an exponential decay approach by

η =

{
η̃ if iteration k< Ncut-off,

max
(
η̃ · exp

(
− k−Ncut-off

Ncut-off

)
,ηlower bound

)
else.

(16)

In subsequent numerical experiments, the parametric values choose are η̃ = 10−1,ηlower bound = 10−6 and
Ncut-off = 100.

Using the Ackley function, we study the benefits of adding natural gradients to the proposed algorithm.
As can be seen in figures 1(c) and (d), the evolution of the parameters θ around the optimum are without
oscillations, as opposed to the case when natural gradients are not used (figures 1(a) and (b)). This
well-behaved parametric evolution also translates to a better optimum, even in high dimensional cases, as
seen in figure 2.

2.5. Termination criterion
Our proposed algorithms use gradient descent methods to optimize the objective. Gradient-based
optimization methods converge to a local optimum. Subsequent optimization steps yield only marginal
improvements. In such scenarios, continuing the optimization process may be inefficient. It can be beneficial
to terminate the algorithm to conserve computational resources. This section explores several criteria for
terminating the algorithm, addressing both constrained and unconstrained cases separately.

In unconstrained optimization, no penalty term is involved, simplifying the optimization algorithm to a
single loop that repeatedly estimates gradients and takes gradient descent steps. We terminate when the
computational budget exceeds a predefined limit or the distribution q collapses to a Dirac-delta. For a
Gaussian distribution, this occurs when the norm of the covariance falls below a specified cut-off value
σcut-off. The method proposed for unconstrained optimization problems is summarized in the Algorithm 1.

There are two loops in the algorithm for constrained optimization. The outer loop increases the value of
the penalty constant (λ). The inner loop performs the gradient descent step for a fixed penalty constant. We
terminate the outer loop under the same conditions as the unconstrained optimization i.e. when the
computational budget runs out or the distribution q collapses to a Dirac-delta. For the inner loop,
termination occurs when the computational budget exceeds the predefined limit for a penalty constant or the

6



Mach. Learn.: Sci. Technol. 6 (2025) 015024 A Agrawal et al

Algorithm 1. SCOUT-Nd algorithm for unconstrained optimization.

input: Objective function f(x,b) , distribution q(x | θ), gradient descent optimizer G, gradient descent step size ηstep,
Natural gradient starting variance σnat-grad, Maximum budget Nmax, variance cut-off value σcut-off

1 Set initial point θ0 := {µ0,Σ0}
2 Initialize k← 0
3 do
4 xi ∼ q(x | θk), bi ∼ p(b) // Sampling step
5 Evaluate objective function f(xi,bi)
6 Monte Carlo gradient estimate∇θU // equations (8) and (7)
7 if ∥Σk∥< σnat-grad then
8 Compute the natural gradients ∇̃θU // equation (14)
9 ∇θU← ∇̃θU
10 end
11 θk+1←G(θk,∇θU,ηstep) // Gradient Descent
12 k← k+ 1
13 while k< Nmax and∥Σk∥> σcut−off

output µk,Σk

Algorithm 2. SCOUT-Nd algorithm for constrained optimization.

input: Objective function f(x,b) , constraints C(x), distribution q(x | θ), gradient descent optimizer G, gradient
descent step size ηstep, list of penalty terms {λm}Mm=1, λM→∞, Natural gradient starting variance σnat-grad,

Maximum budget for inner and outer loop Ninner
max , N

outer
max , variance cut-off value σcut-off

1 Set initial point θ0 := {µ0,Σ0}
2 Initialize k← 0,m← 1
3 do
4 n← 0
5 do
6 xi ∼ q(x | θk), bi ∼ p(b) // Sampling step
7 Evaluate augmented objectives L(xi,bi,λm) // equation (3)
8 Monte Carlo gradient estimate∇θU // equations (8) and (7)
9 if ∥Σk∥< σnat-grad then
10 Compute the natural gradients ∇̃θU // equation (14)
11 ∇θU← ∇̃θU
12 end
13 θk+1←G(θk,∇θU,ηstep) // Gradient Descent
14 n← n+ 1, k← k+ 1
15 while k< Nouter

max and ∥Σk∥> σcut-off

16 if ∃i : Ci(µk)> 0 and ∥Σk∥> σcut-off then
17 Σk←Σ0

18 end
19 m←m+ 1
20 while n< Ninner

max and ∥Σk∥> σcut-off

output µk,Σk

distribution q collapses to a Dirac-delta. Additionally, we might encounter cases where, for a fixed value of λ,
the optimizer gets stuck at a local optimum in a region where the constraint is not satisfied because the
penalty constant is insufficient. This situation can be detected if the norm of the variance falls below a
specified cut-off value (σcut-off) and the constraint is not satisfied. In such cases, we reset the value of the
covariance term (Σk) to its initial value. The method proposed for constrained optimization problems is
summarized in the algorithm 2.

2.6. Method analysis
2.6.1. Covergence studies
Our proposed algorithm optimizes U(θ) instead of f(x). Let us convert the distribution to standard normal
distribution as follows:

U(θ) = E [ f(µ+σ · z)]z∼N (0,I) , (17)

where σ is the vector containing the diagonal entries of Σ. We are ignoring the stochastic term b from the
analysis because we assume that the noise term gets marginalized in equation (17). Using the Taylor
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expansion and the simplifications detailed in the appendix C, we get

U(θ) = f(µ)+
1

2

d∑
i=1

σi
2 ∂2f

∂xi2
(µ)+O

(
∥σ∥4

)
. (18)

Taking the derivative of equation (18) with respect to µ:

∂U

∂µ
=

∂f

∂µ
(µ)+

1

2

d∑
i=1

σi
2 ∂3f

∂xi2∂µ
(µ)+O

(
∥σ∥4

)
. (19)

The mean µ corresponds to the location x in the parameter space. We can ignore the higher order
variance term in equation (19) for ∥σ∥< 1. So, the difference between ∂U/∂µ and ∂f/∂x has a term
involving the variance and the third derivative of the function. Let us call that term as drift term. In an ideal
case scenario, the derivative of the objective function with respect to the parameter ∂f/∂x should be equal to
the derivative of the convoluted objective function with respect to the mean of the distribution ∂U/∂µ. Let
the optimum parameter obtained using the gradient descent algorithm performed on U be θ∗ = {µ∗,σ∗}
and on f be x∗. If we ensure that ∂f/∂x= ∂U/∂µ, the µ∗ and x∗ should converge to the same value. This is
achievable when either ∥σ∥→ 0 or the third derivative term tends to zero.

Now, taking the derivative of equation (18) with respect to σ and ignoring the higher order terms of σ,
we get

∂U

∂σi
= σi

∂2f

∂x2i
. (20)

The second derivative of a function is positive at a local minimum. If the function f does not have a high rate
of change of curvature, then the derivative of U with respect to σi is greater than zero (∂U/∂σi > 0) in the
proximity of the local minimum, Therefore, the gradient descent method reduces the value of ∥σ∥ as it
approaches the local minimum. From equation (18), we can observe that the value of the drift term becomes
smaller as ∥σ∥→ 0, leading to U(µ,σ)→ f(x). Under this condition, µ∗→ x∗ and σ∗→ 0, implying that
the optimum of the convoluted function U approaches the local optimum of the original objective function
f. Additionally, we can utilize ∥σ∥→ 0 as a convergence criterion for the method.

2.6.2. Gradient correction for constraints
Let us consider an optimization problem:

min
x

x2, s.t 1− x⩽ 0. (21)

The optimum for the optimization problem in equation (21) lies at 1.0, which coincides with the boundary
of the feasible domain. The figure 3 shows the plot corresponding to the constraint element of the
augmented function L(x), as well as the constraint segment within the upper bound U(µ,σ) over a range of
variance values for the distribution. Ideally, the constraint term should not exert any influence within the
feasible region. The figure 3 reveals that the constraint term’s influence on U(µ,σ) remains nonzero within
the feasible zone. This influence progressively diminishes with the reduction in the σ value. Notably, this
influence tends to deter the optimizer from maintaining proximity to the constraint boundary, even when
the optimum resides along this boundary. When we run our suggested algorithm to solve the problem in
equation (21), the algorithm will reach the area inside the feasible domain and get pushed away from the
boundary because of the constraints. Eventually, the value of σ decreases, and the effect of the constraint
around the boundary diminishes, moving towards convergence at the boundary. This approach is
suboptimal, mainly when dealing with computationally demanding objective functions, as it decelerates the
convergence rate. We propose a strategy aimed at mitigating this effect by enforcing the value of the gradient
of the constraint’s contribution to the upper bound (U) with respect to the position parameter (µ) to

assume a zero value if that constraint is satisfied
(
i.e.,

∂UCj

∂µ = 0, if Cj(µ)⩽ 0,where UCj = Ex,b[Cj(x,b)]
)
.

The derivative of the augmented function is the sum of the derivatives of the objective function and the
penalty term. The penalty term has zero gradient in the feasible region. However, the score function estimator
can estimate a non-zero gradient in the vicinity of the feasible region. By using this heuristic, we assist our
optimizer by providing known information. It helps the optimizer reach the optimum more efficiently. This
heuristic is applied only when the optimizer is in the vicinity of the boundary of the feasible region.
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Figure 3. Contribution of the constraint term for the problem given in equation (21). The blue curve shows the constraint
term in the augmented function L(x). The orange, green, and red curves show the constraint term in the upper bound
U(µ,σ) for σ2 = e−1, σ2 = e−2 and σ2 = e−3 respectively. We observe that the tendency of the constraint to move the
optimum away from the boundary is higher for a bigger value of σ. This misguides the optimizer, especially when the
optimum lies on the boundary of the feasible region.

Figure 4. Comparing the effect of Gaussian convolution on the 2D Ackley function.

Figure 5. Effect of starting the optimization with a very small variance. The starting value of variance is given asΣ= diag(σ2
1 ,σ

2
2)

with σ1
1 = σ2

2 = e−10.

2.6.3. Overcoming multiple local optima
Casting the objective f(x) as U(θ) has the additional advantage of escaping local optima by smoothing the
objective function. It can be viewed as a Gaussian-blurred version of the original objective f(·), free of
non-smoothness. The degree of this smoothing is contingent upon the choice of Σ. Examplalarily, we
demonstrate this smoothening effect using the Ackley function, which has a highly non-convex surface, as
illustrated in figure 4. The figure hints towards the significant effect the initial value of the design variable
variance can have on the quality of the optimum. We optimized the 2D Ackley function using our proposed
algorithm under two distinct initial variance scenarios to study the effect of initial design variable variance.
This is illustrated in figures 5 and 6 for small and high variance, respectively. The optimizer is trapped in a
local minimum when the initial variance is small (reference figure 5) and dodges several local optima to
converge at the global optima (reference figure 6) when the initial variance is high. This property is also
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Figure 6. Effect of starting the optimization with a high variance. The starting value of variance is given asΣ= diag(σ2
1 ,σ

2
2) with

σ1
1 = σ2

2 = e0.

confirmed upon testing using the Rastringen function (reference figure 23). The variance parameter controls
the degree of smoothness of the convoluted loss manifold. Without knowing the level of non-convexity
apriori in the loss landscape, it is difficult to comment on the initial value of variance required. A robust
choice would be starting with a relatively high value of the variance, though this might lead to higher total
computational cost.

2.6.4. Sample size
Let us assume that after kth step of optimization, we are in a state θk := (µk,Σk), where
µk := {µ1,k, . . . ,µd,k} andΣk := diag(σ2

1,k, . . . ,σ
2
d,k). Let us represent the exact and the Monte Carlo

approximation of the gradient in equation (7) by∇θkU and ∇̂θkU respectively. Let us represent the variance
of the samples used to approximate the gradient in equation (7) at the kth optimization step by
Vk := {V1,k, . . . ,Vd,k, . . . ,V2d,k} with

Vi,k = V
[
L(x,b,λ) ∂

∂θi
logq(x | θk)

]
. (22)

One can write the MSE of the gradient approximation as

E
[(
∇̂θkU−∇θkU

)2]
=

Vk

S
. (23)

Upon using the vanilla stochastic gradient descent method with learning rate α, the next exact state (θk+1),
and the approximate state (θ̂k+1) can be obtained as

θk+1 = θk +α∇θkU,

θ̂k+1 = θk +α∇̂θkU.
(24)

Note that this analysis can be extended to other variations of the gradient descent methods by changing the
formula in equation (24). We can write the MSE of the state as

E
[(

θ̂k+1−θk+1

)2]
= α2Vk

S
. (25)

The Monte Carlo estimator in equation (7) is unbiased i.e. E[∇̂θkU] =∇θkU. This transfers the unbiasedness
to the states, which leads to

E
[
θ̂k+1

]
= θk+1. (26)

Now, we want to choose the number of samples such that distance between the Gaussian distribution
obtained by exact gradient value (q(θk+1)) and the Gaussian distribution obtained by the approximate
gradient (q(θ̂k+1)) in probability space is less than a desired value given by εKL. This distance measure is

10



Mach. Learn.: Sci. Technol. 6 (2025) 015024 A Agrawal et al

given by the Kullback–Leibler divergence [75], written as

DKL

(
q
(
θ̂k+1

)
|| q(θk+1)

)
=

1

2

(
log
|Σ |
| Σ̂ |

+ tr
(
Σ−1Σ̂

)
+(µ̂−µ)

T
Σ−1 (µ̂−µ)− d

)
,

=
1

2

d∑
i=1

(
logσ2

i,k+1− log σ̂2
i,k+1 +

σ̂2
i,k+1

σ2
i,k+1

+
(µ̂i,k+1−µi,k+1)

2

σ2
i,k+1

)
− d

2
,

(27)

where (̂·) represent the states obtained using approximate gradients. Taking expectation on both sides of
equation (27), then simplifying the expression using equations (25), and (26), we obtain

E
[
DKL

(
q
(
θ̂k+1

)
|| q(θk+1)

)]
=

1

2

d∑
i=1

logσ2
i,k+1−E

[
log σ̂2

i,k+1

]
+

E
[
σ̂2
i,k+1

]
σ2
i,k+1

+
E
[
(µ̂i,k+1−µi,k+1)

2
]

σ2
i,k+1

− d

2
,

=
1

2

d∑
i=1

(
logσ2

i,k+1−E
[
log σ̂2

i,k+1

]
+

α2Vi,k

Sσ2
i,k+1

)
,

<
1

2

d∑
i=1

logσ2
i,k+1− logE

[
σ̂2
i,k+1

]︸ ︷︷ ︸
Jensen’s ineqality

+
α2Vi,k

Sσ2
i,k+1

=
d∑

i=1

α2Vi,k

2Sσ2
i,k+1

(using equation (26)),

=⇒ E
[
DKL

(
q
(
θ̂k+1

)
|| q(θk+1)

)]
<

d∑
i=1

α2Vi,k

2Sσ2
i,k+1

(28)

We obtained the upper bound of the KL divergence between the approximate and exact distribution. We
enforce a bound on the KL divergence by bounding the upper bound by a parameter εKL, providing an
expression for the sample size

E
[
DKL

(
q
(
θ̂k+1

)
|| q(θk+1)

)]
< εKL,

=⇒
d∑

i=1

α2Vi,k

2Sσ2
i,k+1

< εKL,

=⇒ S>
d∑

i=1

α2Vi,k

2εKLσ2
i,k+1

.

(29)

When one uses natural gradients then the expression becomes

S>
d∑

i=1

α2Vi,kσ
4
i,k

2εKLσ2
i,k+1

. (30)

From the above, we observe:

• For higher dimensional problems, more samples are required.
• Variance reduction techniques help in decreasing sample size requirement by reducing the variance of the
gradient Vk.
• The number of samples is proportional to the step size. Smaller step sizes require fewer samples because of
small changes in the parameter values in the gradient descent step.
• When employing natural gradients, the number of samples required is relatively smaller when closer to the
optimum (i.e. σ4

i,k→ 0).

By using equation (29) or equation (30), we can dynamically determine the number of samples required at
each optimization step. We initially sample a predefined number of points and then verify if the conditions
are met. If they are unsatisfied, we sample additional points to fulfill the requirements. We iteratively add the
newly sampled points, continuing this process until the conditions in equations (29) and (30) are satisfied.
To conserve computational resources, we utilize both new and existing points instead of resampling all
points. However, this approach precludes using QMC due to the non-nested behavior of Sobol points.
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Figure 7. Numerical study to compare the performance SCOUT-Nd with adaptive sample size and fixed sample sizes on
32-dimensional Ackley function. We switch off the natural gradients and QMC for all the cases to ensure a similar condition for
all the test cases.

At the start of the kth optimization phase, the exact value ofΣk+1 is unknown. We tackle this issue using
an iterative process. We start the estimation of the number of samples using σ2

i,k instead of σ
2
i,k+1 in equation

(29). Subsequently, we determineΣk+1 via a gradient descent technique and check if the criteria in equation
(29) is satisfied. If not, we modify the sample size and recalibrateΣk+1 by re-executing the gradient descent
step. We repeat this process until the condition in equation (29) is satisfied.

We numerically evaluate the performance of adaptive sample size against various fixed sample size cases
in optimizing the 32-dimensional Ackley function. Figure 7 illustrates the evolution of the objective function
against the number of optimization steps and function evaluations. As discussed in algorithms 2 and 1,
natural gradients are employed when the variance falls below a specified threshold (σnat-grad). Since natural
gradients start at different steps for different test cases, they are excluded from this numerical test to ensure
fair comparison. Additionally, we do not use QMC methods for fixed sample size cases, as QMC is
incompatible with the adaptive sample size method.

From figure 7(a), we observe that the convergence rate improves as the number of samples increases.
Additionally, the optimum quality is better with a larger sample size. This is attributed to the smaller MSE in
gradient estimation associated with larger sample sizes, leading to faster convergence and improved
optimum results. Notably, optimization with adaptive sample sizes falls in between, achieving an optimum
quality comparable to that of optimization with 128 samples.

We observe from figure 7(b) that as the number of samples increases, the convergence slows down. While
maintaining a low mean squared error (MSE) in each iteration brings advantages, it also leads to more
function evaluations. Optimization using a small sample size converges faster in terms of function
evaluations. However, the optimum quality is compromised due to the high noise in gradient estimation,
resulting in oscillations around the optimum. In contrast, optimization with adaptive sample size selects an
appropriate number of samples based on the estimator’s variance.

Based on these observations, we can conclude that a higher sample size is suitable when function
evaluation is inexpensive or we have sufficient computational resources to parallelize the gradient estimation
step. However, in cases where function evaluation is expensive, using an adaptive sample size is more
practical.

2.7. Multi-fidelity
The main computational bottleneck of the gradient estimation using equation (7) is the multiple evaluation
of the objective function. This becomes a significant concern for computationally expensive simulators. We
propose to solve this problem using the MF method [76] in the Scout algorithm, termed as MF-SCOUT-Nd.
Suppose we are given a set of L functions modeling the same quantity and arranged in ascending order of
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Table 1. Hyperparameters involved in SCOUT-Nd and MF-SCOUT-Nd.

Hyperparameter Description

σnat-grad ∥Σ∥ cut-off value beyond which natural gradients are applied
S Number of samples for gradient estimation
ηstep Step size for the gradient descent optimizer
Nmax Maximum number of steps in unconstrained optimization
σcut-off ∥Σ∥ cut-off value for optimization loop termination
Ninner

max Maximum number of steps for inner loop (constrained optimization)
Nouter

max Maximum number of steps in total (constrained optimization)
{λm}Mm=1 List of penalty terms (constrained optimization)
{Sℓ}Lℓ=1 List of number of samples for gradient estimation (MF-SCOUT-Nd)

accuracy and computational cost { f(1), f(2), . . . , f(L)} and the corresponding augmented functions as
{L(1),L(2), . . . ,L(L)}. To evaluate the gradients, we are calculating the expectation. Following the methods
mentioned in [77], we can write the highest fidelity augmented function as a telescopic sum of the other
fidelities:

L(L) (x,b,λ) = L(1) (x,b,λ)+
(
L(2) (x,b,λ)−L(1) (x,b,λ)

)
+

. . .+
(
L(L) (x,b,λ)−L(L−1) (x,b,λ)

)
= L(1) (x,b,λ)+

L∑
ℓ=2

(
L(ℓ) (x,b,λ)−L(ℓ−1) (x,b,λ)

)
. (31)

Multiplying with∇θ logq(x|θ) and taking expection on both the sides:

Ex,b

[
L(L)∇θ logq(x|θ)

]
= Ex,b

[
L(1)∇θ logq(x|θ)

]
+

L∑
ℓ=2

Ex,b

[(
L(ℓ)−L(ℓ−1)

)
∇θ logq(x|θ)

]
.

As per the equation (6), the left-hand side of the equation is the gradient of the highest fidelity function with
respect to the distribution parameter

(
∇θU(L)(θ)

)
. All the expectations on the right-hand side of the

equation can be estimated using an unbiased Monte Carlo estimator. Now, the equation above is
simplified as

∇θU
(L) (θ)≈ 1

S1

S1∑
i=1

L(1) (xi,bi,λ)
∂

∂θ
logq(xi | θ)

+
L∑

ℓ=2

1

Sℓ

Sℓ∑
i=1

(
L(ℓ) (xi,bi,λ)−L(ℓ−1) (xi,bi,λ)

) ∂

∂θ
logq(xi | θ) , (33)

where Sℓ is the number of samples used in the estimator at the fidelity level ℓ. We assume that the
approximation quality between each fidelity improves as we increase the fidelity. So, the number of samples
required to approximate the expectation decreases as the fidelity increases (i.e. S1 > S2 > .. . > SL). We
replace equation (3) and equation (7) with equations (31) and (33) respectively in the Algorithm 1 and 2,
with the rest of the steps remaining the same to handle MF. A list of hyperparameters involved in SCOUT-Nd
and MF-SCOUT-Nd is provided in table 1.

2.7.1. Sample size for MF derivative estimator
In this section, we will discuss the number of samples allocated to each fidelity level for the estimation of the

derivative. We follow the approach and notations used in section 2.6.4. Let us define the variable V(ℓ)
k as

V(ℓ)
k =


∑d

i=1

V[L(1)(x,b,λ)∇θi
logq(x|θk)]

2σ2
i,k+1

, if ℓ= 1,∑d
i=1

V[(L(ℓ)(x,b,λ)−L(ℓ−1)(x,b,λ))∇θi
logq(x|θk)]

2σ2
i,k+1

, otherwise.
(34)

Following the steps in section 2.6.4, we can derive the following for the multi-fidelity case

E
[
DKL

(
q
(
θ̂k+1

)
|| q(θk+1)

)]
<

L∑
ℓ=1

α2V(ℓ)
k

Sℓ
. (35)

13



Mach. Learn.: Sci. Technol. 6 (2025) 015024 A Agrawal et al

Figure 8. Numerical study to compare the performance MF-SCOUT-Nd with adaptive sample size and fixed sample sizes on
32-dimensional Ackley function (the function defined in appendix D). We switch off the natural gradients for all the cases to
ensure a similar condition for all the test cases. We assume the high-fidelity model is four times more expensive than the
low-fidelity model. We use the high-fidelity function for the single fidelity optimization..

Let Cℓ be the cost of evaluating f(ℓ). We obtain the number of samples for each level by minimizing the total
cost such that the upper bound of the KL divergence in equation (35) is equal to εKL. This approach is
extensively used in multilevel Monte Carlo literature [77–79]. The optimization problem is stated as

S∗ℓ,k =argminSℓ

L∑
ℓ=1

CℓSℓ,

s.t.
L∑

ℓ=1

α2V(ℓ)
k

Sℓ
= εKL,

(36)

where S∗ℓ,k represents the optimum number of samples for the ℓth fidelity and kth step. One can analytically
solve this problem using a Lagrange multiplier. The optimum number of samples is

S∗ℓ,k =

∑L
ℓ=1

√
V(ℓ)
k Cℓ

εKL

α2

√
V(ℓ)
k

Cℓ
. (37)

The value ofΣk+1 is not known when we want to calculate the number of samples. To overcome this
problem, we use the same procedure as described in section 2.6.4.

We conducted a numerical evaluation to compare the performance of multi-fidelity gradient estimation
using fixed and adaptive sample sizes against single-fidelity fixed sample size cases with 256 high-fidelity
(HF) samples to optimize the 32-dimensional Ackley function. Figure 8 illustrates the evolution of the
objective function against the number of optimization steps and function evaluations. We did not employ
natural gradient and QMC methods for the same reasons discussed in section 2.6.4. We assume the HF
model is four times more expensive than the low-fidelity (LF) model.

From figure 8(a), we observe that the convergence rate with respect to the optimization step for the
multi-fidelity method with fixed sample size is almost the same as the single-fidelity methods with 256
samples even when multi-fidelity method uses less computational resources demonstrating the advantage of
using the multi-fidelity method. Additionally, the multi-fidelity adaptive sample size approach with a smaller
upper bound (εKL = 10−3) reaches a better the optimum as compared to the bigger upper bound
(εKL = 10−2) due to a more accurate approximation of the gradients.

We observe from figure 8(b) that multi-fidelity methods converge faster with respect to the
computational cost than the single-fidelity method. The multi-fidelity adaptive sample method also
outperforms the multi-fidelity fixed sample size method by selecting the optimal number of points based on
the estimator’s variance while minimizing the computational cost. The case with a larger εKL exhibits a faster

14



Mach. Learn.: Sci. Technol. 6 (2025) 015024 A Agrawal et al

initial convergence rate but results in a lower quality optimum. Therefore, it is advisable to begin with a
larger value of εKL for faster initial convergence and decrease it as you approach the optimum.

Based on these observations, we conclude that the multi-fidelity methods help reduce computational
resources compared to the single-fidelity method, and the adaptive formulation further decreases the
computational load. Additionally, one can enhance the optimum quality by adjusting the value of εKL.

3. Numerical illustrations

This section compares the proposed algorithm with the state-of-the-art algorithms using standard
benchmark analytical problems. Additionally, we highlight the algorithm’s efficacy in a complex real-world
application: optimizing wind farm layout. In the following, we use PyTorch [80] to efficiently compute the
gradient of the densities. After the gradient estimation, we use the ADAM optimizer [81] as the stochastic
gradient descent method. In this work, q(x | θ) takes the form of a Gaussian distribution unless otherwise
stated with parameters θ = {µ,Σ} representing mean and diagonal covariance4, respectively. The code for
the algorithm and the numerical experiments can be found in https://github.com/KislayaRavi/scout-Nd.

3.1. Benchmark Studies
Before applying our algorithm to a real-world problem, we test it on standard optimization benchmarks. We
select thirty benchmarks to test the algorithm’s ability to handle different types of optimization challenges
like multi-modality, constraints, behavior in valleys, dimension scalability, etc. The list of benchmarks is
given in the appendix D. We slightly modify the function to make the corresponding LF function for
MF-SCOUT-Nd. For each problem, Gaussian noise with a standard deviation of 0.0001 was added to turn
the problem stochastic.

We compare our proposed algorithm with state-of-the-art (constrained)optimization algorithms like
constrained optimization by linear approximation (COBYLA) [48], sequential least squares programming
(SLSQP) [50], and cBO [47]. We use the implementation of COBYLA and SLSQP from the Scipy library [82]
and the implementation of cBO from the BayesianOptimization library [83]. In the subsequent experiments,
the SLSQP algorithm employed finite difference-based gradient estimation, specifically relying on forward
differences to approximate the gradients. Additionally, we also compare our method with DYnamic
COordinate search using Response Surface models (DYCORS) [49]. Since DYCORS only supports
unconstrained optimization, we compare it by selecting only the unconstrained problem. We use the
pySOT [84] implementation of DYCORS. We provide the detailed hyperparameter list of all the optimization
methods in appendix E.

We use the data profile curve [29] to compare the overall performance of the algorithms for the whole set
of benchmarks. Let S represent the set of optimizers and P be a set of benchmark problems. The data profile
ds(α) [29] of an optimizer s ∈ S is given by

ds (α) =
1

|P|

∣∣∣∣{p ∈ P :
tp,s

dp + 1
⩽ α

}∣∣∣∣ , (38)

where p ∈ P represents a benchmark problem, dp is the dimension of benchmark and tp,s is the minimum
number of optimization steps a solver s requires to reach the optimum of a problem p within accuracy level
ϵf . We ran each benchmark five times, each with different seeds. So, the total number of benchmarks is
|P|= 30(number of unique benchmarks)× 5(number of random seeds)= 150. In the benchmark studies,
we use a fixed sample size for expectation evaluation for all the optimization methods to ensure an unbiased
comparison. The number of LF samples (SLF) and HF samples (SHF) to calculate the expectation at each step
of optimization depends upon the dimension of the benchmark problem as shown in table 2.

We can observe from figure 9 that SCOUT-Nd and MF-SCOUT-Nd solved more benchmark problems
with a given level of accuracy(ϵf ). Our proposed algorithms outperform other optimization methods in
comparison because we use efficient gradient approximation to move toward the optimum. This not only
helped us to converge faster but also tackled high-dimensionality. MF-SCOUT-Nd had a similar
performance level as SCOUT-Nd, but it uses less HF function evaluations to reach the same level of accuracy,
thereby saving computational resources.

We can observe from figure 10 that all optimizers could reach optima with accuracy level ϵf = 0.1. Our
constrained optimization problem is convex. So, none of the methods get stuck to the local optima. However,
cBO struggles when the accuracy level is ϵf = 0.01 because of the high-dimensional constrained problems.
Similar to the figure 9, we observe from figure 11 that SCOUT-Nd and MF-SCOUT-Nd outperformed other
method by solving most of the unconstrained optimization problems.

4 In the subsequent investigationΣ= diag(σ2
1 , . . . ,σ

2
d) with σ2

i = e2βi unless otherwise stated.
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Table 2. The table showing the number of low and high-fidelity function evaluations (SLF and SHF) for different benchmark problem (p)
as a function of the dimension (dp).

dp ⩽ 2 2< dp ⩽ 4 4< dp ⩽ 8 dp > 8

SLF SHF SLF SHF SLF SHF SLF SHF

Single-fidelity case − 32 − 64 − 128 − 256
Multi-fidelity case 32 8 64 16 128 32 256 64

Figure 9. Data Profile plots to show the aggregate performance of the different optimization problems on the given set of
benchmark problems. We observe that SCOUT-Nd and MF-SCOUT-Nd were able to solve most of the benchmark problems with
both accuracy levels ϵf = 0.1, and ϵf = 0.01.

Figure 10. Data Profile plots to show the aggregate performance of the constrained optimization problems. We observe all the
methods where able to solve all the problems in accuracy level ϵf = 0.1. But, CBO struggles to solve the problems in accuracy level
ϵf = 0.01.

Our experiments show that COBYLA and SLSQP struggle to handle multimodal models. In some
benchmark cases, these two methods converge early to local optima. For instance, we observe this behavior
for the 3-dimensional Hartmann function, which has 4 local minima. COBYLA and SLSQP get stuck in one
of the local minima as observed in figure 12(a).

Bayesian optimization methods and DYCORS are known to struggle in high-dimensional space [85].
Moreover, they also struggle in the Rosenbrock function, where it finds the valley but takes a long time to
converge to the minimum [49, 85]. We plot the evolution of the optimum for the 16-dimensional Rosenbrock
function in figure 12(b) and observe that cBO struggles to handle high-dimensionality and valleys.

This section assumes the presence of additive noise as a precondition for ensuring the unbiased
estimation of gradients using equation (7). Nonetheless, it is pertinent to acknowledge that applications in
real-world scenarios may encounter a variety of noise sources, such as multiplicative noise and parametric
noise, among others. We leave the study of different kinds of noise, and its effect on future works.
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Figure 11. Data Profile plots to show the aggregate performance of the unconstrained optimization problems. We observe that
SCOUT-Nd and MF-SCOUT-Nd were able to solve most of the benchmark problems with both accuracy levels ϵf = 0.1, and
ϵf = 0.01.

Figure 12. Evolution of optimum for 3-dimensional Hartmann function and 16-dimensional Rosenbrock function. The
3-dimensional Hartmann function has 4 local minima. We observe from figure 12(a) that COBYLA and SLSQP got stuck in a
local minimum, whereas other methods that can handle multi-modal problems reached a global minimum. cBO struggles in
high-dimensional problems such as 16-dimensional Rosenbrock functions as depicted in figure 12(b).

3.2. Windfarm layout optimization
We apply SCOUT-Nd and MF-SCOUT-Nd to windfarm layout optimization problem [15]. The primary goal
of wind farm layout optimization is to position the wind turbines to reduce interference and thus maximize
power production. This is a challenging and complex problem due to the variable nature of the wind and the
complex interactions between turbines through their wakes. The challenges are listed as follows:

• Uncertainty due to the wind. Generally, the wind speed and wind direction are treated as random variables.
• Availability of only black box evaluations of the numerical simulators [10, 51]. This would make gradient-
based methods rely on finite differences, which would significantly increase derivative computational cost
and derivatives may also have significant errors [86]. If gradient-free methods are employed, they may
struggle when the problem is high dimensional as they do not usually scale well to problems with more
than 30 design variables [87].
• A highly multimodal design space, making the problem highly non-convex [88]. This multimodality makes
it difficult for classical gradient-based methods, as they require the objective function to be smooth enough
[15], or else they might get stuck in local optimum. Gradient-free methods can handle multimodality bet-
ter, however, they suffer from the curse of dimensionality as discussed above. Thus, there exists no best
algorithm, the choice of which is situation and problem-dependent [10, 51].

Owing to the challenges discussed, and their significant overlap with the strengths of the proposed algorithm,
the problem serves as an ideal testing ground for SCOUT-Nd/MF-SCOUT-Nd.
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Problem definition: The objective of the wind farm layout optimization is to maximize the AEP 5 by
changing the position of the wind turbines. The turbines are constrained to stay within a given area and with
a minimum separation between them. This objective and the constraints result in a problem of nonlinear
optimization under uncertainty with deterministic constraints:

argmin
x

Eb [−AEP(x,b)] s.t C (x)⩽ 0, (39)

where b= {b1,b2, . . . ,bn} represents a vector of the random variable for the wind data with p(b) being the
joint probability density function of the uncertain variables. Common uncertain variables are the wind
direction and the freestream wind speed [15]. x denotes a sequence of pairs of coordinates for each wind
turbine, which can take on continuous values in a bounded domain. The expected AEP is computed by
marginalizing the uncertain parameters. To marginalize, some commonly used methods are Monte Carlo,
Polynomial Chaos, rectangular quadrature, etc to name a few [89]. In this work, we used a weighted average,
which amounts to the rectangular integration rule. C(x) = {C1(x),C2(x)} denotes the constraints this
problem has with C1(x) denoting the separation between the two turbines constraint and C2(x) denoting the
area constraint. In particular, they are defined as

C1 (x) =K
(
2D−Qi,j

)
i, j = 1 . . .nturbines; i ̸= j (40)

C2 (x) =M(Ni,m) i = 1 . . .nturbines; m= 1 . . .nboundaries, (41)

where Qi,j is the distance between each pair of turbines i and j , and D is the turbine diameter. The normal
distance, Ni,m, from each turbine i to each boundarym is defined as negative when a turbine is inside the
boundary and positive when it is outside the boundary. We aggregate the distance between two turbine
constraints using the Kreisselmeier–Steinhauser functional K(·) [90], which reduces the number of
constraints to 1. Also, we define a functionM(·), which aggregates the normal distance constraints by taking
the mean of the positive values of Ni,m.M(·) is calculated as

M(·) = 1

|N+|
∑

ηi∈N+

ηi; with, N+ = {ηi ∈ N|ηi > 0} (42)

where |N+| is the cardinality of the setN+. These aggregations produce a less complex optimization problem.

Implementation details/test cases. In the experiments performed, we used the NREL 5MW reference
turbine [91]. For wake models, we have used their implementation in FLOw Redirection and Induction in
Steady State (FLORIS) [92]. We use Jensen [93]6 as the LF wake model and Gauss–Curl Hybrid (GCH) [94]7

as the HF model as suggested in [95]. The low- and HF models for this problem use different wind roses8 bin
resolutions, leading to accuracy and computational differences caused by both fidelity and resolution. Each
bin adds an identical set of function calls and operations to the summing process, so the cost scales linearly.
In the subsequent experiments, the wind speed is constant at 8 m s−1 for simplicity.

We investigate two cases with different numbers of wind turbines, as shown in table 3. The particular
choice is made to study the influence of dimensions of the design variable. We use six wind direction bins for
the LF and 18 wind direction bins for the HF (reference figure 13). In terms of computational costs, a single
LF model evaluation, denoted as cLF, incurs approximately 33% (or one-third) of the cost associated with a
single evaluation of the HF model, represented as cHF. For example, in the scenario involving 24 turbines, the
Jensen model (the LF model) requires approximately 0.015 s per execution. In contrast, the GCH model(HF
model) demands about 0.044 s per execution when run on a single processor core. Consequently, the overall
computational expense of determining the annual energy production (AEP) using the HF model is about
nine times higher than that required for the LF model.

For both cases, we perform a comparative study between SCOUT-Nd with the HF model,
MF-SCOUT-Nd employing both the LF and the HF model, and the SLSQP [50] with the HF model. Within
the domain of wind farm layout optimization, variants of sequential quadratic programming (SQP)-based
algorithms are predominantly employed [10, 89, 95] due to their gradient-based nature (gradients computed

5 The Annual energy production (AEP) is given by expected power multiplied by the number of hours in a year.
6 The Jensen wake model uses a simplistic velocity deficit to represent the wake, and this deficit is summed when wakes interact using the
sum-of-squares method.
7 The solver simplifies the Reynolds-averaged Navier–Stokes equations to obtain a parabolic equation for the wake deficit. The equation
is solved in a three-dimensional domain to obtain the wake velocity in a wind plant.
8 Wind rose is a graphical tool used in the context of wind farms to represent the distribution of wind speed and direction at a particular
location.
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Table 3. Optimization problem cases: design variables, objective, and constraints.

Cases objective design variables dimension Constraints

8 turbine farm AEP x,y locations 16 Turbine spacing [252 m,∞),
bound constraint
(x ∈ [0,2666 m],y ∈ [0,2666 m])

24 turbine farm AEP x,y locations 48 Turbine spacing [252 m,∞),
bound constraint
(x ∈ [0,8000 m],y ∈ [0,8000 m])

Figure 13.Wind Rose for 18 wind direction bins and a constant wind speed of 8 m s−1.

via finite differences) and their capability to manage constraints effectively. An extensive comparison with
different optimization methods is beyond the scope of the present investigation. Interested readers can find
details in [10].

Results. This section presents the results obtained upon running the optimization methods for the two cases
presented in table 3. The hyper-parameter setting for the optimization methods is given in appendix F,
particularly in tables 6 and 7 for the 8 turbines and 24 turbine cases, respectively. Here, we use a fixed sample
size for expectation evaluation for all the optimization methods to ensure a fair comparison. For both cases, a
grid layout is chosen as the initial layout for all three optimization methods. Naturally, the optimizer is
expected to push the turbines towards the boundaries to minimize wake interactions, leading to increased
AEP. The results for the two cases with the optimization methods are quantitatively compared in table 4 and
table 5, and qualitatively compared in figures 14, 18, 15 and 20. The evolution of the augmented objective,
objective and constraints for the optimization with SCOUT-Nd and MF-SCOUT-Nd for 8 turbine case are
illustrated in figures 16 and 17 respectively. Similarly, figures 21 and 22 illustrate the evolutions for the 24
turbine case.
We draw the following conclusions from the tables and figures:

• For the 8 turbine case, from figure 14 we observe that all three optimization methods push the turbine
towards the boundaries while maintaining the distance between them as per the constraints. This signific-
antly reduces the wake interactions as observed in figure 15. This translates to an increase in AEP as reported
in table 4. In this case, SLSQP reports the highest AEP percentage gain (8.73%) from the initial grid lay-
out, followed by SCOUT-Nd (8.26%) and MF-SCOUT-Nd (8.02%). However, the MF-SCOUT-Nd is the
cheapest with around 67% computational cost of the SLSQP. This was expected as the SLSQP is a gradient-
basedmethod, and dim= 16 poses a fairly smooth objective surface, outperformingmethod like ours.With
an optimized value of hyperparameters, SCOUT-Nd/MF-SCOUT-Nd might come closer (or even cross) to
the SLSQP in terms of AEP improvement, but this is not the goal of the present investigation.
• For the 24 turbine case, from figure 18 we observe that both SCOUT-Nd and MF-SCOUT-Nd push the
turbine towards the boundaries from the initial grid layout, which is expected from global optima. This can
also be understood from the power vs. wind direction plot in figure 19. Additionally, figure 20 illustrates the
wake interactions along the most prominent wind direction, i.e. from the north side. However, as seen in
the figure 18, the SLSQP failed to push the turbine towards the boundaries as it got trapped in local optima.
We also confirm this behavior by running the SLSQP optimizer using different initial layouts drawn from
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Table 4. Optimization results comparison for 8 turbine case.

Algo. LF calls HF calls Computational cost (in cHF)
b AEP (in MWh)a % AEP gaina

SCOUT-Nd − 600 · 32 · 18c 345,600cHF (1.83x) 116,472.50 8.26%
MF-SCOUT-Nd 615 · 32 · 6c 615 · 8 · 18c 127,526.4cHF (0.67x) 116,214.37 8.02%
SLSQP — 10,484 · 18 188,712cHF (1x) 116,978.31 8.73%
a The initial gird layout AEP= 107,581.42 MWh.
b cHF is the cost of a HF run for a single pair of wind direction and wind speed. cLF≈0.33cHF.
c Total no. of steps× no. of samples/step× no. of solver call/AEP evaluation.

Figure 14.Windfarm layout with 8 turbines comparing the layout used to initialize (in blue) the optimization routine and the
optimized layout (in red) found using SLSQP (a), SCOUT-Nd (b) and MF-SCOUT-Nd (c). The SLSQP and SCOUT-Nd use the
GCH model [94], while the MF-SCOUT-Nd uses a combination of the less accurately resolved Jensen wake model [93] and the
GCHmodel. Each dot represents a wind turbine. The blue line represents the boundary of the wind farm. Quantitative Results are
given in table 4 and the hyperparameters used to perform the optimization are detailed in table 6.

Figure 15. Velocity deficit contour plots along the primary wind direction for the initial layout (a), optimized layout with
SCOUT-Nd (b), and optimized layout with MF-SCOUT-Nd (c). The corresponding AEPs are given in table 4.

the Latin hypercube as presented in figure 24. With the increase in dimensions, owing to the multimodel
nature of the problem, the usual gradient-based optimizers can face this issue, also reported in [10, 15, 88].
This is also reflected in the AEP values reported in the table 5. The SCOUT-Nd reports the highest AEP
percentage gain from the initial grid layout, followed byMF-SCOUT-Nd and then the SLSQP. Although the
MF-SCOUT-Nd resulted in slightly lower AEP gain as compared to the SCOUT-Nd, interestingly, it took
around 1/3 of the cost of SCOUT-NdoptimizationwithHF. This underscores the capability of ourmethod to
be robust and to handle non-convexity in high dimensions (as asserted in section 2.6) in real-world physical
applications. By introducing Multi-fidelity, our method allows the analyst to balance the trade-off between
the computational cost and the optimum quality.
• The figures 16, 17, 21 and 22 point towards the convergence of SCOUT-Nd andMF-SCOUT-Nd for both the
cases by illustrating the evolution of the augmented objective, objective and constraints. As can be seen from
the figures, initially the constraints on average are violated. As the optimization progresses, the penalty is also
more strongly enforced, thus satisfying the constraints eventually. Further diagnostics of the optimization,
like the evolution of the design variables and penalty parameters, are given in appendix F. In all the cases
presented, the optimization is terminated by the ϵσ convergence criterion for the outer loop. The optimum
quality can be further increased by reducing its value, although with an increased computational cost. The
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Figure 16. Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH model [94], for the 8 turbine
wind farm case. From left to right, the expected value of augmented objective (a), objective (b), and constraints (c). The objective,
constraints, and design variables are normalized. The physical meanings are given in table 3.

Figure 17. Diagnostics of the optimization run with MF-SCOUT-Nd involving the low-fidelity Jensen wake model [93] and the
high-fidelity GCHmodel [94], for the 8 turbine wind farm case. From left to right, the expected value of augmented objective (a),
objective (b), and constraints (c). The objective, constraints, and design variables are normalized. The physical meanings are
given in table 3.

Figure 18.Windfarm layout with 24 turbines comparing the layout used to initialize (in blue) the optimization routine and the
optimized layout (in red) found using SLSQP (a), SCOUT-Nd (b) and MF-SCOUT-Nd (c). The SLSQP and SCOUT-Nd use the
GCH model [94], while the MF-SCOUT-Nd uses a combination of the less accurately resolved Jensen wake model [93] and the
GCHmodel. Each dot represents a wind turbine. The blue line represents the boundary of the wind farm. Quantitative Results are
given in table 5 and the hyperparameters used to perform the optimization are detailed in table 7.

convergence criterion, number of samples, and step size are entwined together in a complicated fashion,
influencing the convergence rate and the optimum quality as discussed in sections 2.6.4 and 2.7.1. As with
any optimization algorithm [34], we rely on carefully selected heuristics to balance the tradeoff between
computational cost and solution accuracy.

4. Conclusions

We presented SCOUT-Nd, a novel approach for (constrained) optimization problems involving expensive,
stochastic black-box simulators with high-dimensional parametric dependency. We included strategies and
carefully chosen heuristics to handle non-convexity, reduce gradient estimator variance, and improve
convergence properties and robustness. We also extended the proposed approach to include MF strategies
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Table 5. Optimization results comparison for 24 turbine case.

Algo. LF calls HF calls Computational cost (in cHF
c) AEP (in MWh) b % AEP gain b

SCOUT-Nd − 2,648 · 128 · 18d 6,100,992cHF (3.13x) 347,112.88 3.98%
MF-SCOUT-Nd 2,350 · 128 · 6d 2,350 · 32 · 18d 1,949,184cHF (1x) 343,662.69 2.98%
SLSQP − 7,200 · 18 129,600cHF

a 336,221.53 0.71%
a The optimization run gets trapped in local minima around iteration 120, hence the low AEP and computational cost.
b The initial gird layout AEP= 333,834.84 MWh.
c cHF is the cost of a HF run for a single pair of wind direction and wind speed. cLF ≈ 0.33cHF.
d Total no. of steps× no. of samples/step× no. of solver call/AEP evaluation.

Figure 19.Wind farm power as a function of wind direction for the initial grid layout, SCOUT-Nd optimized layout, and the
MF-SCOUT-Nd optimized layout for the 24 turbine case.

Figure 20. Velocity deficit contour plots along the primary wind direction (from the North side) for the initial layout (a),
optimized layout with SCOUT-Nd (b), and optimized layout with MF-SCOUT-Nd (c). The corresponding AEPs are given in
table 5.

and adaptive sample size for gradient estimation to limit the number of expensive to evaluate simulator calls.
Our method is embarrassingly parallelizable and non-intrusive, thus very attractive to various engineering
and physics optimization problems.

We performed experiments on various academic toy problems with common optimization challenges
like multi-modality, constraints, behavior in valleys, dimension scalability, etc and compared our algorithm
against several baselines. For a given level of accuracy and computational budget, our method solves most of
the problems from the toy problem pool. We also demonstrated that it could handle multi-modalities and
high-dimensionality better than the baselines. Additionally, we demonstrated the improved quality of the
optimum and better convergence rate when including natural gradients. We also tested our algorithm on a
complex real-world case of optimizing wind farm layout and compared it against a baseline. We observed
that our method improved upon the baseline optimization results, thus showing the successful optimization
of a complex stochastic system with a user-defined objective function. Also, the MF-SCOUT-Nd produced
comparable accuracy at a one-third cost.
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Figure 21. Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH model [94], for the 24 turbine
wind farm case. From left to right, the expected value of augmented objective (a), objective (b), and constraints (c). The objective,
constraints, and design variables are normalized. The physical meanings are given in table 3.

Figure 22. Diagnostics of the optimization run with MF-SCOUT-Nd involving the low-fidelity Jensen wake model [93] and the
high-fidelity GCH model [94], for the 24 turbine wind farm case. From left to right, the expected value of augmented objective
(a), objective (b), and constraints (c). The objective, constraints, and design variables are normalized. The physical meanings are
given in table 3.

The work presented serves as a fertile ground for several extensions and applications. In future research,
we intend to adapt and apply the proposed method to optimize hyperparameters in neural networks. Since
the algorithm addresses the differentiability issue in problems involving physics-based simulators,
integrating into several Scientific Machine Learning paradigms is also possible [25, 96]. This includes hybrid
approaches that combine ‘known physics’ (physics-based simulators) and ‘learned physics’ (neural network,
for example), thus relying on efficient gradient flow. As suggested in [34], we plan to incorporate a full
covariance matrix into the design variable density to enhance performance. Furthermore, integrating
Importance sampling step into gradient estimation could yield improvements, particularly in scenarios
where the objective function landscape contains valleys.
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Appendix A. Analytical expression for the fisher informationmatrix

Consider the multivariate normal distribution with diagonal covariance, where each variance is
parameterized as σ2

i = e2βi .
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The log-likelihood function for the multivariate normal distribution is:

logp(x | µ,Σ) =−d

2
log(2π)− 1

2
log |Σ| − 1

2
(x−µ)

T
Σ−1 (x−µ) (43)

Here, the covariance matrixΣ is diagonal:

Σ= diag
(
e2β1 ,e2β2 , . . . ,e2βd

)
(44)

Thus, we have:

Σ−1 = diag
(
e−2β1 ,e−2β2 , . . . ,e−2βd

)
(45)

Substituting the expressions forΣ andΣ−1 in equation (43):

logp(x | µ,β) =−d

2
log(2π)−

d∑
i=1

βi −
1

2

d∑
i=1

(xi −µi)
2

e2βi
(46)

The Fisher Information for µ comes from the derivative of the log-likelihood with respect to µi. Taking
the derivative:

∂ logp(x | µ,Σ)

∂µi
=

xi −µi

e2βi
(47)

Since E[(xi −µi)
2] = e2βi , the Fisher Information for µi is then:

F(µi) = E

[(
xi −µi

e2βi

)2
]
=

1

e2βi
(48)

Thus, the FIM for µ is diagonal:

F(µ) = diag

(
1

e2β1
,

1

e2β2
, . . . ,

1

e2βd

)
(49)

Now, we calculate the Fisher Information for βi, given that σ2
i = e2βi . The derivative of the log-likelihood

with respect to βi is:

∂ logp(x | µ,β)
∂βi

=−1+ (xi −µi)
2

e2βi
(50)

The Fisher Information is given by the expected value of the square of the derivative:

F(βi) = E

(−1+ (xi −µi)
2

e2βi

)2
 (51)

= 1− 2E

[
(xi−µi)

2

e2βi

]
+E

[
(xi−µi)

4

e4βi

]
(52)

Since E[(xi −µi)
2] = e2βi and E[(xi −µi)

4] = 3e4βi (fourth central moment), the expression simplifies to:

F(βi) = 1− 2
e2βi

e2βi
+ 3

3e4βi

e4βi
(53)

= 1− 2+ 3= 2 (54)

Thus the FIM for β is:

F(β) = 2Id (55)

The FIM for both µ and β is block-diagonal. Combining the results, we get:

F(µ,β) = diag
(
e−2β1 , . . . ,e−2βd ,2Id

)
(56)
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Appendix B. Influence of initial value of design variable variance

Figure 23. Using 2d Rastringin function to highlight the influence of the initial value of design variance on escaping local optima.
White contour lines represent the initial q(θ) and red contour lines represent the final design variable distribution q(θ∗).

Appendix C. Taylor expansion simplification

Our proposed algorithm relies on optimizing U(θ) instead of f(x). Let us convert the distribution to
standard normal distribution as follows:

U(θ) = E [ f(µ+σ · z)]z∼N (0,I) . (57)

Writing down the Taylor expansion of f(µ+σ · z) till the third derivative:

f(µ+σ · z) = f(µ)+
d∑

i=1

σi zi
∂f

∂xi
(µ)+

1

2!

d∑
i,j=1

σiσjzi zj
∂2f

∂xi ∂xj
(µ) . . .

+
1

3!

d∑
i,j,k=1

σiσjσkzi zjzk
∂3f

∂xi ∂xj∂xk
(µ)+O

(
∥σ∥4

)
,

where zi, σi and xi are the ith component of z, σ and x respectively. We take expectation on both sides to get
U(θ).

U(θ) = E [ f(µ+σ · z)]z∼N (0,I)

= f(µ)+
d∑

i=1

σiE [zi]
∂f

∂xi
(µ)+

1

2!

d∑
i,j=1

σiσjE
[
zi zj
] ∂2f

∂xi ∂xj
(µ) . . .

+
1

3!

d∑
i,j,k=1

σiσjσkE
[
zi zjzk

] ∂3f

∂xi ∂xj∂xk
(µ)+O

(
∥σ∥4

)
.

(58)

We simplify the above expression using the following observations:

E [zi] = 0 because of 0 mean

E
[
zi zj
]
=

{
1 if i = j because standard deviation of the distribution is 1

0 otherwise because the variables are independent and have zero mean

E
[
zi zjzk

]
= 0 because skewness of normal distribution is zero

The simplified expression is:

U(θ) = f(µ)+
1

2

d∑
i=1

σi
2 ∂2f

∂xi2
(µ)+O

(
∥σ∥4

)
(59)
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Appendix D. List of benchmarks

We represent the dimension of the search space by dp. The list of benchmarks is as follows:

D.1. Sphere problem
We run this problem for dimensions dp = {2,4,8,16,32}. The HF and the LF function are given by:

fhigh (x) =
d∑

i=1

x2i ,

flow (x) =
d∑

i=1

1.1x2i .

(60)

It is a simple problem with a single global minimum at the (0, . . .dp times).

D.2. Constrained sphere problem
We run this problem for dimensions dp = {2,4,8,16,32}. The objection function is same as equation (60)
but with a constraint 1− x1− x2 ⩽ 0. The optimum lies on the constraint boundary at
(0.5,0.5,0, . . .dp− 2times). The problem checks the ability of the algorithm to handle constraints.

D.3. Ackley function
We run this problem for dimensions dp = {2,4,8,16,32}. The HF and the LF function are given by:

fhigh (x) =−20exp

−0.2
√√√√ 1

dp

dp∑
i=1

x2i

− exp

 1

dp

dp∑
i=1

cos(2π xi)

+ 20+ exp(1) ,

flow (x) =−22exp

−0.2
√√√√ 1

dp

dp∑
i=1

1.1x2i

− 0.9exp

 1

dp

dp∑
i=1

cos(2π xi)

+ 20+ exp(1) .

(61)

It is a multimodal problem with a global minimum at (0, . . .dtimes).

D.4. Rosenbrock function
We run this problem for dimensions dp = {2,4,8,16}. The HF and the LF function are given by:

fhigh (x) =

dp−1∑
i=1

100
(
xi+1− x2i

)2
+(1− xi)

2
,

flow (x) =

dp−1∑
i=1

101
(
xi+1− x2i

)2
+ 1.01(1− xi)

2
+ 0.2.

(62)

The function is unimodal, but the minimum lies in a narrow valley is at (1,1, . . .dptimes). The optimizers
find the valley of the problem but take a long time to converge to the minimum [85].

D.5. Zakharov function
We run this problem for dimensions dp = {2,4,8,16}. The HF and the LF function are given by:

fhigh (x) =

dp∑
i=1

x2i +

(
d∑

i=1

0.5ixi

)2

+

 dp∑
i=1

0.5ixi

4

,

flow (x) =

dp∑
i=1

x2i +

(
d∑

i=1

0.55ixi

)2

+

 dp∑
i=1

0.5ixi

4

.

(63)

It has one minimum at (0, . . .dptimes). It is a plate-shaped function. Optimizers tend to get stuck in the flat
regions of the function.
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D.6. Bohachevsky function: 1
This is a 2-dimensional bowl-shaped problem. The HF and the LF function are given by:

fhigh (x) = x21 + 2x22− 0.3cos(3π x1)− 0.4cos(4π x2)+ 0.7,

flow (x) = x21 + 2.1x22− 0.32cos(3π x1)− 0.41cos(4π x2)+ 0.7.
(64)

The minimum lies at (0, 0).

D.7. Bohachevsky function: 2
This is a 2-dimensional bowl-shaped problem. The HF and the LF function are given by:

fhigh (x) = x21 + 2x22− 0.3cos(3π x1)cos(4π x2)+ 0.3,

flow (x) = x21 + 2.1x22− 0.31cos(3π x1)cos(4π x2)+ 0.3.
(65)

The minima lies at (0, 0).

D.8. Six-hump camel function
This is a 2-dimensional function with six local minima. The HF and the LF function are given by:

fhigh (x) = 4x21− 2.1x41 +
x61
3
+ x1x2− 4x22 + 4x42,

flow (x) = 4x21− 2.2x41 +
x61
3.2

+ 1.1x1x2− 4.1x22 + 4x42.

(66)

There are two global minima at (0.0898,−0.7126) and (0.0898, 0.7126).

D.9. Three-hump camel function
This is a 2-dimensional function with three local minima. The HF and the LF function are given by:

fhigh (x) = 2x21− 1.05x41 +
x61
6
+ x1x2 + x22,

flow (x) = 2.1x21− 1.06x41 +
x61
6
+ 1.1x1x2 + x22.

(67)

D.10. Beale function
This is a 2-dimensional multimodal problem. The HF and the LF function are given by:

fhigh (x) = (1.5− x1 + x1x2)
2
+
(
2.25− x1 + x1x

2
2

)2
+
(
2.625− x1 + x1x

3
2

)2
,

flow (x) = (1.54− x1 + x1x2)
2
+
(
2.29− x1 + x1x

2
2

)2
+
(
2.675− x1 + x1x

3
2

)2
.

(68)

The minima lies at (3, 0.5).

D.11. Hartmann 3d function
This is a 3-dimensional problem with four local minima. The HF and the LF function are given by:

fhigh (x) =−
4∑

i=1

αi exp

− 3∑
j=1

Aij

(
xj− Pij

)2 ,

flow (x) =−1.1
4∑

i=1

αi exp

− 3∑
j=1

Aij

(
xj− Pij

)2+ 0.1,

(69)

where α, A and P are defined as:

α= (1,1.2,3,3.2)T

A=


3 10 30
0.1 10 35
3 10 30
0.1 10 35


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P=


0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828


The global minima lies at (0.114614,0.555649,0.852547).

D.12. Hartmann 4d function
This is a multimodal 4-dimensional problem. The HF and the LF function are given by:

fhigh (x) =−
4∑

i=1

αi exp

− 4∑
j=1

Aij

(
xj− Pij

)2 ,

flow (x) =−1.1
4∑

i=1

αi exp

− 4∑
j=1

Aij

(
xj− Pij

)2+ 0.1,

(70)

where α, A and P are defined as:

α= (1,1.2,3,3.2)T

A=


10 3 17 3.5
0.05 10 17 0.1
3 3.5 1.7 10
17 8 0.05 10



P=


0.1312 0.1696 0.5569 0.0124
0.2329 0.4135 0.8307 0.3736
0.2348 0.1451 0.3522 0.2883
0.4047 0.8828 0.8732 0.5743


The global minima lies at (0.1873,0.1906,0.5566,0.2647).

Appendix E. Hyperparameters for benchmark studies

Hyper-parameters of SCOUT-Nd and MF-SCOUT-nd are

1. ηstep = 0.1, σcut-off = 0.0005
2. Number of samples is in table 2
3. We run the optimizer for 2000 steps.
4. For constrained problems: We use five penalty constants ({e−1,e0,e1,e2,e3}). We run the optimizer on

each penalty term for maximum of 400 steps.

Hyper-parameters of SLSQP:

1. Function value tolerance(ftol) is 10−12.
2. Maximum number of iterations is 2000.
3. Step size used for numerical approximation of the Jacobian(eps) is 0.001.

Hyper-parameters of COBYLA

1. Function value tolerance(tol) is 10−10.
2. Maximum number of iterations is 2000.

Hyper-parameters of cBO

1. Acquisition function: Expected Improvement.
2. We use Materm Kernel with ν = 4/5.
3. The hyper-parameters of the kernel is optimized by ARD, with 6 re-starts.
4. Maximum number of iterations is 2000.
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Hyper-parameters of DYCOR

1. Symmetric Latin hypercube experimental design.
2. Radial basic function.
3. Cubic kernel function and Linear tail.
4. Maximum number of optimization steps is 2000.
5. Cut-off standard deviation is 0.0001.

Appendix F. Further details of the windfarm layout optimization

Figure 24.Windfarm layout optimization with SLSQP for 24 turbine case with 6 different initial layouts sampled with latin
hypercube. In the six runs, the final layout never reaches the boundaries (as expected for an optimal layout) and the optimizer
gets trapped in the local optima.

In the windfarm layout optimization case, we observed that for high dimensional optimization, the
SLSQP was trapped in local optima when optimization was started from a grid layout. To confirm this
behavior, we ran the SLSQP optimizer using different initial layouts drawn from the latin hypercube as
presented in figure 24.

Tables 6 and 7 show the hyperparameters of the algorithms used for the windfarm layout optimization
case for 8 turbine and 24 turbine cases, respectively.

The figures 25–28 provides optimization diagnostics of SCOUT-Nd and MF-SCOUT-Nd for both the
cases. In all four figures, it is interesting to observe the normalized design variable mean fluctuation near the
wind farm boundary around the initial iterations and the corresponding constraint violation. Gradually as
the penalty is more strongly enforced (by increasing the penalty parameter λ) the constraints are satisfied on
average, accompanied by stabilization of the design variable mean.

Table 6.Hyper-parameters of algorithms used to carry out experiments for 8 turbine windfarm case.

SCOUT-Nd MF-SCOUT-Nd SLSQP a

parameter value parameter value parameter value

ηstep 5e− 02 ηstep 5e− 02 ftol 1e− 10
SHF 32 (SLF,SHF) (32,8) maxiter 1200
Ninner

max 300 Ninner
max 300 eps 0.01

Nouter
max 1200 Nouter

max 1200 — —
σcut-off 1e− 04 σcut-off 1e− 04 — —
{λm} e−1,e0 {λm} e−1,e0,e1 — —
a The parameters of SLSQP correspond to the parameters in its Scipy implementation. More details can be found

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html here and [50].
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Table 7.Hyper-parameters of algorithms used to carry out experiments for 24 turbine windfarm case.

SCOUT-Nd MF-SCOUT-Nd SLSQP

parameter value parameter value parameter value

ηstep 1e− 02 ηstep 1e− 02 ftol 1e− 12
S 128 (SLF,SHF) (12 832) maxiter 3000
Ninner

max 300 Ninner
max 300 eps 0.01

Nouter
max 3000 Nouter

max 3000 — —
σcut-off 5e− 04 σcut-off 5e− 04 — —
{λm} {e−1,e0, . . . ,e8} {λm} {e−1,e0, . . . ,e7} — —

Figure 25. Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH model [94], for the 8 turbine
wind farm case. From left to right, the mean of the design variables (a), the variance of the design variables (b), and the penalty
term λ (c).

Figure 26. Diagnostics of the optimization run with MF-SCOUT-Nd involving the high-fidelity GCH model [94], for the 8
turbine wind farm case. From left to right, the mean of the design variables (a), the variance of the design variables (b), and the
penalty term λ (c).

Figure 27. Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH model [94], for the 24 turbine
wind farm case. From left to right, the mean of the design variables (a), the variance of the design variables (b), and the penalty
term λ (c).

30



Mach. Learn.: Sci. Technol. 6 (2025) 015024 A Agrawal et al

Figure 28. Diagnostics of the optimization run with MF-SCOUT-Nd involving the high-fidelity GCH model [94], for the 24
turbine wind farm case. From left to right, the mean of the design variables (a), the variance of the design variables (b), and the
penalty term λ (c).
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