
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Deriving Machine Code Generators from
LLVM-IR

Tobias Kamm

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Deriving Machine Code Generators from
LLVM-IR

Herleitung von Maschinencodegeneratoren
aus der LLVM-IR

Author: Tobias Kamm
Supervisor: Prof. Dr. Thomas Neumann
Advisor: Dr. Alexis Engelke
Submission Date: 23.08.2024

Acknowledgments

First, I’d like to thank my advisor, Dr. Alexis Engelke, for his continued support and guidance
throughout this thesis and my studies. Furthermore, I’d especially like to thank Tobias Schwarz
for providing advice and support concerning this thesis and TPDE, even while he was on his
exchange semester. You have effectively been a second advisor to me.

This thesis benefited greatly from the picky proofreading of Andreas Dachsberger, Leonard
Endriß, and Konrad Gößmann.

Apart from that, my studies were greatly influenced by people I met along the way, which
is why I would like to mention them here as well: Thank you to Jerg Kappeler for being the
best teammate in (Advanced) Binary Exploitation I could have asked for, and being a good
bouldering partner1. Philipp Erhardt deserves a special mention for his continued support of
my favourite programming project, MemeAssembly.

Moreover, a big thank you to everyone else that I got to share my time at TUM with until
now, which includes, but is not limited to: Christian Zimmerer, Philipp Erhardt, Jerg Kappeler,
Jim Teichgräber, Konrad Gößmann, Janez Rotman, Alexandra Graß, Viktor Boskovski, Benjamin
Rickels, Dominic Prinz, Daniel Mayer, and Miriam Fehn.

Thank you to my family for supporting me throughout my studies.
Finally, thanks to ChatGPT for entertaining me all throughout the development process with

hilariously wrong answers regarding LLVM2.
Here’s also a shout-out to Pau, my roommate. But as he actually does not deserve it, here it is in a tiny font size. You’re welcome, now you’re famous. Better post about that on LinkedIn :P

1"Einfach aufstehen."
2https://chat.openai.com/share/5437ecf9-8017-4b39-b989-0342d992b12d

https://chat.openai.com/share/5437ecf9-8017-4b39-b989-0342d992b12d

Abstract

While LLVM has been an impactful compiler framework in the domain of AOT compilation,
its JIT compilation support is currently lacking due to a slow O0-backend. TPDE, a novel code
generation backend taking LLVM-IR as input, was created to make using LLVM-IR more suitable
for JIT compilation environments, such as database systems.

However, TPDE’s development process is aggravated through its use of hand-written machine
code generators, which exist for each possible LLVM-IR instruction. Aside from being difficult to
create and verify, such generator functions have to be rewritten for every new target architecture,
increasing the development and maintenance effort when supporting AArch64 or RISC-V.

To address this issue, we present tpde-asmgen, a tool that runs during the build process of
TPDE and automatically generates register-agnostic machine code generators. The behavioural
specifications are expressed in LLVM-IR or a higher-level language that lowers to it. tpde-asmgen
then uses the standard LLVM backend but stops before register allocation. From this Machine IR
state, tpde-asmgen extracts the target instructions and parameter information to derive machine
code generators emitted as C++ code.

Limited integration of tpde-asmgen’s machine code generators into TPDE affected the compile
and run time of the intspeed SPEC benchmarks. An average code generation time improvement
of 0.6% and an average runtime performance increase of 0.18% was measured. The run results
of the utilised SPEC benchmarks were verified to confirm the correctness of tpde-asmgen’s
output.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1

2 Background 3
2.1 Static Single Assignment (SSA) . 3
2.2 LLVM . 4

2.2.1 LLVM-IR . 5
2.2.2 LLVM’s Backend . 5
2.2.3 Machine IR . 6

2.3 TPDE . 8
2.3.1 TPDE’s Register Allocator . 9
2.3.2 Machine Code Generator Example . 9

3 Machine Code Generator Derivation from MIR 11
3.1 Input Preparation . 13
3.2 Initial Analysis . 13

3.2.1 Detecting Fixed Registers . 13
3.2.2 Deriving the Function Signature . 14

3.3 Reserving Registers . 15
3.4 Encoding Regular Instructions . 15

3.4.1 Definitions . 15
3.4.2 Encoding all Operand Combinations . 16
3.4.3 Final Checks . 18

3.5 Handling Special Instructions . 18
3.5.1 COPY . 18
3.5.2 EXTRACT_SUBREG . 19
3.5.3 INSERT_SUBREG . 19
3.5.4 SUBREG_TO_REG . 19
3.5.5 RET . 20
3.5.6 Other Pseudo Instructions . 20

3.6 Mapping LLVM Instructions to Fadec Functions . 20
3.6.1 The Fadec Encoder . 20
3.6.2 Challenges . 21
3.6.3 Storing Fadec-Specific Information . 21
3.6.4 Automatically Deriving all Instruction Information 22

3.7 Limitations . 24
3.7.1 Control Flow . 24
3.7.2 Stack Allocation . 24
3.7.3 Constant Pool . 25

vii

Contents

3.7.4 Register Spilling . 25
3.7.5 Instruction Support . 25
3.7.6 Instruction Variant Support . 26

3.8 Extensibility . 28
3.8.1 Areas of Concern . 28
3.8.2 Supporting AArch64 . 28

4 Evaluation 31
4.1 Setup . 31
4.2 Correctness . 31
4.3 Code Generation Time . 32
4.4 Binary Size . 33
4.5 Runtime Performance . 34

5 Related Work 37

6 Conclusion and Future Work 39
6.1 Conclusion . 39
6.2 Future work . 39

6.2.1 Verification of the Automatic Fadec Mapping 40
6.2.2 Compiler plugin . 40

Abbreviations 41

List of Figures 43

Listings 45

Bibliography 47

viii

1 Introduction

In environments where the source code remains unknown until its execution, such as when
running database queries, the usage of just-in time (JIT) compilation can lead to substantial
performance improvements over interpretation [1]. A JIT compiler executes the compiled source
code directly after it was compiled. Hence, compile-time is a crucial area of improvement, as it
is part of the program’s overall runtime.

A widely used framework for ahead-of-time (AOT) compilation is LLVM, which not only
features code generation backends for a wide range of platforms but also provides many
optimization passes and a code generation back-end that is able to produce high-quality code.
While it supports JIT compilation [2], low compile times have not been the development focus,
leading to relatively slow compile times even for unoptimised (O01) code generation [3].

TPDE [4] attempts to balance the aforementioned up- and downsides of using LLVM for
JIT compilation. Fundamentally, it implements its own code generation backend while taking
LLVM-IR as input, making it possible to utilise LLVM’s data structures while still providing
a considerable compile-time improvement. As of March 2024, it achieves a performance im-
provement by a factor of 10–20x over LLVM’s O0 backend, with the generated code having a
comparable runtime performance.

However, building a code generation backend from scratch is not trivial. For code generation,
every possible operation needs to be mapped to a series of calls to the encoder, generating the
required machine code instructions, and register allocator. These machine code generators also
include smaller optimisations to speed up the execution time in trivial cases, such as performing
a shift instead of dividing or multiplying by a power of two. However, this approach currently
has some problems:

1. Writing such machine code generators by hand is time-consuming.

2. Finding mistakes, may it be during code review or debugging, is complex.

3. These machine code generators are not portable. When supporting a new architecture, such
as ARM or RISC-V, all code generators must be rewritten, exacerbating the aforementioned
problems.

In this thesis, we present tpde-asmgen: a tool written in C++ that generates register-agnostic
machine code generators to be used in TPDE. As input, tpde-asmgen receives code in a higher-
level language compiled to LLVM-IR, describing the behaviour the resulting machine code
generator should encode. For instance, if the resulting machine code generator should encode
an integer addition, the input function to tpde-asmgen is a function that takes two integers as
parameters and returns the sum of them, as seen later in Listing 2.5. tpde-asmgen then uses
LLVM’s code generation backend to select appropriate machine instructions but avoids register
allocation.

By traversing the selected machine instructions, tpde-asmgen generates C++ code that inte-
grates with TPDE to encode the instructions and allocate the required registers when the machine

1pronounced as “o zero”

1

2 Background

This chapter will cover the basics required to understand our chosen approach. This includes an
introduction to LLVM and its Machine IR.

2.1 Static Single Assignment (SSA)

Static Single Assignment (SSA) is a property often used in compiler-internal intermediate repre-
sentations, requiring all variables to be assigned only once [5].

int y = x + 1;
x = x + 1;
int z = x + 1;

Listing 2.1: A simple C-code snippet with implicit
dataflow.

const int y = x + 1;
const int x1 = x + 1;
const int z = x1 + 1;

Listing 2.2: The code of Listing 2.1 in SSA form.

From a compiler’s perspective, consider the code snippet in Listing 2.1. A typical code
transformation involves merging redundant computations, known as Common Subexpression
Elimination [6]. While this is not the case here, as x holds a different value in both computations
due to a modification, it still requires some context to conclude this, as y and z are both computed
using the same expression, being x + 1.

This example shows a typical problem with traditional source code representations: data flow
(meaning information about which values are used where) is implicit. To mitigate this, the code
of Listing 2.1 is transformed so that all variables are only assigned once. Consequently, modifica-
tions of variables must be assigned to a new variable with a different name. While compilers
typically perform this transformation in a compiler-internal Intermediate Representation (IR),
we resort to modifying the source code for now. This modification can be seen in Listing 2.2.
Following this modification, it is evident that Common Subexpression Elimination cannot be
applied here since y and z are now computed using different expressions.

Listing 2.2 is now in Static Single Assignment (SSA) form. This property allows one to establish
a chain from a variable’s definition to its uses, forming a directed acyclic graph, known as the
Data Flow Graph [7]. This sets the basis for a myriad of transformations1 [5, 7].

However, in its current form, SSA’s support for control flow structures is limited. This is
because the value of a variable might depend on the origin, for instance, when it is updated in
one branch while not in another. This is especially true for loops, which almost always require
at least one variable to be assigned more than once, often being a loop counter. To highlight this
problem, we take a for-loop as an example, as seen in Listing 2.3, this time using pseudocode.

1Compiler developers tend to use the term transformations instead of optimisations since one cannot know for sure
that they actually improve the code in the specific case [6].

3

2 Background

entry:
i = 0
goto header

header:
if i < 10:

goto loop
else:

goto end
endif

loop:
//...
i = i + 1
goto header

end:
[...]

Listing 2.3: A simple for-loop in pseudocode.

entry:
goto header

header:
i = ϕ(entry: 0; loop: new_i)
if i < 10:

goto loop
else:

goto end
endif

loop:
//...
new_i = i + 1
goto header

end:
[...]

Listing 2.4: The code of Listing 2.3 with a ϕ-node.

One can see that such a loop is currently not easily transferrable into SSA. This is because the
loop counter i is assigned twice. First, it is zero-initialised, after which it is updated with an
increased value.

One approach to solve this problem involves using so-called ϕ-nodes (PHI-nodes), which set
the value of a variable depending on the branch origin. All ϕ-nodes are executed concurrently
while entering a code block. In the case of Listing 2.3, i would be zero if we entered the loop for
the first time (meaning that we entered header from entry), and the incremented i if we came
from the loop body. Listing 2.4 shows said modifications. As we assign i only once, this Listing
is now in SSA form.

As it forms the foundation for numerous analyses and transformations, SSA is a vital part
of compilers and thus is used in many. Examples include Clang, which uses LLVM-IR [8], and
GCC [9].

2.2 LLVM

The LLVM project, one of the most widely known compiler frameworks, describes itself as a
“collection of modular and reusable compiler and toolchain technologies” [10]. Among others,
the project includes:

• The LLVM Core libraries – providing a language- and target-independent optimiser and
code generators for many CPUs

• Clang – a compiler for C, C++ and Objective-C that uses LLVM as its backend

• LLDB – a debugger

• libc++ – LLVM’s own implementation of the C++ Standard Library

However, only the LLVM Core libraries are of interest in the scope of this thesis. Thus, the
term LLVM will refer to the LLVM Core libraries throughout this thesis. All details regarding
LLVM in this thesis refer to the state at version 18.1.6, specifically, commit 1118c2e2.

2https://github.com/llvm/llvm-project/commit/1118c2e05e67a36ed8ca250524525cdb66a55256

4

https://github.com/llvm/llvm-project/commit/1118c2e05e67a36ed8ca250524525cdb66a55256

2.2 LLVM

Due to its language-independent nature, LLVM is not only used by Clang. Since designing
an IR is a non-trivial task, and LLVM already features a mature code generation backend with
lots of transformations and code generation targets implemented, some compiler developers
prefer to lower the source code to LLVM-IR and use the LLVM compiler framework instead of
their own. Programming languages using LLVM include Julia [11], Rust [12], Haskell [13], and
Swift [14]. Third-party compiler implementations using LLVM also exist for languages such as
Python [15] and Go [16].

To explain LLVM’s backend further, we will use the C-function in Listing 2.5 as an example:
the function add takes two integers, adds them together, and returns the result.

int add(int a, int b) {
return a + b;

}

Listing 2.5: A simple C function that adds two
integers.

define i32 @add(i32 %0, i32 %1) {
%3 = add i32 %1, %0
ret i32 %3

}

Listing 2.6: Listing 2.5 in LLVM-IR, attributes were
omitted.

2.2.1 LLVM-IR

When running LLVM’s C-compiler (Clang) on the code in Listing 2.5, the input function is
lowered to a language-independent IR. This representation is known as LLVM-IR, LLVM’s
implementation of an SSA-based IR. It captures ideas from higher-level languages, as well as
key Instruction Set Architecture (ISA) operations: Apart from basic instructions (such as add
or div), LLVM-IR also supports, among others: vectors, structs, a C-like switch statement and
advanced pointer arithmetic using its getelementptr-Instruction [17].

In LLVM-IR, as in most intermediate representations, a function is divided into multiple
basic blocks being straight-line code sequences without branches that must end with a Termi-
nator Instruction. Terminator Instructions include a jump to another basic block and a return
statement [17].

Listing 2.6 shows the code of Listing 2.5 lowered to LLVM-IR. Note that it only has one basic
block (the entry block) since we do not have any control flow. In LLVM-IR, local identifier names
always start with a percent-symbol and may be followed by a number (unnamed value) or name
(named value) [17].

2.2.2 LLVM’s Backend

In the context of compiler design, a backend is responsible for target-specific code generation.
While a compiler backend typically consists of three steps (instruction selection, instruction
scheduling, and register allocation) [18], LLVM’s backend cannot be separated into these three
phases. Instead, the backend consists of multiple passes, which are routines that take an IR as
input and return a modified version that will be used in the next pass. The number and order of
run passes depend on the optimisation level and target architecture. Notable examples of passes
include the following:

• x86-isel – performs initial instruction selection.

• dead-mi-elimination – removes IR instructions that are unused.

• livevars – analyses the variable usage and annotates the IR values accordingly.

5

2 Background

• phi-node-elimination – destroys ϕ-nodes, resulting in an IR that is no longer in SSA
form.

• twoaddressinstruction – operations in the form of A = B op C are rewritten to A = B;
A op= C, to make use of target instructions overwriting their source operand.

• greedy – performs initial register allocation.

• AsmPrinter – converts the finalised IR to textual assembly or machine code.

This architecture allows for improved modularity, as different pipelines only need to specify
which passes are run. This also makes it possible to stop the backend before or after a certain
pass to extract the IR at that point.

2.2.3 Machine IR

While having a target-independent IR for general code transformations is beneficial, the code
generation backend of a compiler is very architecture-specific, requiring the annotation of specific
hardware instructions and registers. For this, LLVM’s Machine IR (MIR) was created. Listing 2.7
shows the code from Listing 2.5 in Machine IR after some instruction selection passes but before
register allocation. Specifically, we stopped before the elimination of ϕ-nodes.

Machine code for function add: IsSSA, TracksLiveness
Function Live Ins: $edi in %0, $esi in %1

bb.0 (%ir-block.2):
liveins: $edi, $esi
%1:gr32 = COPY killed $esi
%0:gr32 = COPY killed $edi
%2:gr32 = ADD32rr killed %1:gr32(tied-def 0), killed %0:gr32, implicit-def dead $eflags
$eax = COPY killed %2:gr32
RET 0, killed $eax

Listing 2.7: The generated Machine IR of our add-function, obtained by running LLVM with
--stop-before=phi-node-elimination, some attributes were omitted.

To gain a better understanding of LLVM’s Machine IR, we will discuss Listing 2.7 in more
detail by only focusing on a limited number of lines at once:

Machine code for function add: IsSSA, TracksLiveness

This lists all properties of the following MIR function. IsSSA means that the IR still (partly)
operates on SSA. As we will see later, the last use of variables (meaning when they are not live
anymore) is currently tracked, hence the TracksLiveness property.

bb.0 (%ir-block.2):
liveins: $edi, $esi

Here, we define our only basic block of this function. liveins are values that are already defined
when entering this basic block and have future uses. In this case, the machine registers edi and
esi are considered live, as they contain our two parameters [19]. Consequently, values still live
when leaving our basic block are known as liveouts.

6

2.2 LLVM

%1:gr32 = COPY killed $esi
%0:gr32 = COPY killed $edi

As our IR still operates on SSA, the values that live in hardware Registers are first copied into
SSA-values. This is done using the COPY-instruction. In Machine IR, IR-values are treated as
virtual registers. After the variable name, the register class is specified, here being gr32: a
general-purpose register with a size of 32 bits. killed refers to this being the last use of the
variable within this control flow branch. Variables used as parameters to instructions are referred
to as operands.

Generally speaking, all possible machine instructions in MIR are in one of three categories:

• meta-instructions – These instructions are not related to any hardware instruction but exist
to provide additional context and metadata. An example would be DBG_VALUE, representing
debug information. In the context of tpde-asmgen, they can be ignored.

• pseudo-instructions – These instructions might be translated to actual hardware instruc-
tions later but do not directly represent one. Examples would be COPY, also used in this
function, and PHI, representing a ϕ-node.

• All other instructions directly map to a hardware instruction of the selected target architec-
ture.

%2:gr32 = nsw ADD32rr killed %1:gr32(tied-def 0), killed %0:gr32, implicit-def dead
$eflags

Here, we have an example of a machine instruction that directly maps to an x86-64 instruction:
ADD32rr, which is an add-Instruction that adds two 32-bit registers, hence the 32rr-suffix.

In general, the operands of machine instructions can be categorised into four types [20]:

• explicit-def – These operands are defined by this instruction, which is done explicitly.
They are always left of the equals sign. In this case, the IR-value %2 is defined by the
MachineInstruction and holds the result of the addition.

• implicit-def – This instruction also defines these operands. However, they are not explicitly
stated in the machine code and cannot be changed. In this example, our addition results in
modified flags, such as the Overflow-Flag [21]. Thus, eflags (the flags-register) is marked
as implicit-def.

• explicit – These operands are inputs to our MachineInstruction, which are not fixed
and must be provided. As ADD32rr takes two arbitrary registers, they must be provided
as parameters, which makes %0 and %1 explicit. Explicit operands can be recognised by
having no implicit/explicit-related attribute.

• implicit – Unlike explicit parameters, the instruction defines these as fixed parameters that
cannot be changed. This is often due to ISA-constraints. An example would be x86-64’s
variable shift instruction, which uses the cl-register to determine the number of shifts
needed [21]. Consequently, such a MachineInstr has cl as an implicit parameter.

This instruction includes a few more attributes, which are discussed below [20]:

• killed – This attribute signals that this is the last use of this operand.

7

2 Background

• dead – Signals that this operand is defined but never used.

• tied-def – ADD32rr is a so-called instruction with destructive source. x86-64’s add-instruction
takes two registers yet overwrites the first register with the result of the addition [21]. The
tied-def (tied definition) attribute exists to reflect this relationship and signals that this
instruction will overwrite this operand. The number following the attribute, being 0 in this
case, refers to the operand index that is the related register. In this example, it is the first
one, which is %2.

$eax = COPY killed %2:gr32
RET 0, killed $eax

After performing the addition, the result needs to be returned. Following the System V Calling
Convention [19], that value is returned in the register eax. Hence, the value is first copied into
that register. After that, the basic block is terminated by a RET-instruction, which returns eax.

It is important to note that we will not operate on the string representation of LLVM’s Machine
IR, but on its data structure, llvm::MachineFunction. Its design and functions will not be
discussed further as they are irrelevant to our approach. For more details, refer to LLVM’s
documentation [22]. More information regarding Machine IR can be found in the respective
reference manual [20].

If we let the code generation backend perform the register allocation, our Machine IR is no
longer in SSA form and uses hardware registers throughout the IR. This can be seen in Listing
2.8. The aforementioned Listing also highlights the fact that there are multiple passes concerning
instruction selection, as this machine function now uses lea instead of add.

Machine code for function add: NoPHIs, TracksLiveness, NoVRegs, TiedOpsRewritten
Function Live Ins: $edi, $esi

bb.0 (%ir-block.2):
liveins: $edi, $esi
renamable $esi = KILL $esi, implicit-def $rsi
renamable $edi = KILL $edi, implicit-def $rdi
renamable $eax = LEA64_32r killed renamable $rdi, 1, killed renamable $rsi, 0, $noreg
RET64 $eax

Listing 2.8: Machine IR of our add-function after register allocation, obtained by running LLVM with
--stop-after=unpack-mi-bundles.

As register allocation is irrelevant to our approach, the term “Machine IR” will refer to Machine
IR after instruction selection and before register allocation, as seen in Listing 2.7, except where
otherwise noted.

2.3 TPDE

TPDE [4] is a compiler backend generating machine code from LLVM-IR. As of March 2024, it
achieves a performance improvement by a factor of 10–20x over LLVM’s O0 backend, with the
generated code having a comparable runtime performance.

As this thesis focuses on our chosen approach and not the implementation details, code details
will be kept to a minimum. However, as tpde-asmgen’s resulting code will often interact with
TPDE’s register allocator, we will briefly overview it.

8

2.3 TPDE

2.3.1 TPDE’s Register Allocator

TPDE is a single pass backend, implying that register allocation is done while the instructions
are emitted with no changes done at a later point. TPDE’s register allocator features two types
of registers:

• Reg – a wrapper for an LLVM-IR value, meaning it can only be used for computation
results. It is either a constant value, stored in a register, or stored in memory. It employs
reference counting to track at which point a value is dead and how often it is currently
used. If, at any point, one party wants to modify the value while the reference count is not
1, it must use another register. If required, registers held by a Reg can be spilled to the stack
to temporarily free up a register.

• ScratchRegister – a wrapper for a temporary register, meaning that it will only be used
until the end of a computation. It is important to note that, in contrast to Reg, registers held
by a ScratchRegister cannot be spilled to the stack. This makes them useful for blocking
a register from being used in the future by allocating the specific register. However, it
implies that allocating too many ScratchRegisters might block all registers, leading to an
error.

2.3.2 Machine Code Generator Example

In Listing 2.9, we provide an example of a machine code generator that calculates the absolute
value of an integer. As input, it receives the LLVM-IR instruction (inst) that it has to encode.
It then gets the register currently holding the input value, creates a destination register, and
encodes the necessary instructions.

//Get the Reg that holds the input parameter
Reg reg = argumentReg(valIdx(inst->getOperand(0)), 0);
//Allocate result register
Reg result = resultRegEager(valIdx(inst), 0);
Asm::Reg resReg = result.getMachineReg();

ScratchRegister scratch(*this);
//Force the input parameter to be in a register.
//If it is stored in memory, it will be loaded into a register
Asm::Reg valReg = getAsRegister(reg, scratch);

//Encode the instructions. Syntax is ASMx(instName, parameters...)
ASM2(mov, resReg, valReg);
ASM1(neg, resReg);
ASM2(cmovs, resReg, valReg);

//Move the result value into the register where the result should be stored
setValue(result, resReg);

Listing 2.9: A machine code generator for the abs intrinsic function. Comments were added for explanation, assertions
were removed for brevity, auto-types were expaned for clarity.

Listing 2.10 shows our machine code generator after integrating tpde-asmgen. While we still
query the current Reg holding the input parameter, instruction encoding and register handling
are now done by tpde-asmgen, making the code easier to read and verify.

9

2 Background

Reg reg = argumentReg(valIdx(inst->getOperand(0)), 0);
//Create a Reg for the result, but don’t set a register yet (*lazy*)
Reg result = resultRegLazy(valIdx(inst), 0);
ScratchRegister scratch(*this);

//Encode using tpde-asmgen, scratch now holds the register containing the result
encode_abs(this, AsmOperand(std::move(reg)), scratch);

//Set the result register
setValue(result, std::move(scratch));

Listing 2.10: The abs machine code generator after using tpde-asmgen for encoding the instructions and allocating
the registers.

10

3 Machine Code Generator Derivation from
MIR

This chapter describes the code generation approach we chose in tpde-asmgen to support the
x86-64 architecture. This chapter will explain the approach based on an example specification,
which can be seen in Listing 3.1. The corresponding Machine IR that will be used by tpde-asmgen
to derive the machine code generator is shown in Listing 3.2.

unsigned rem(unsigned a, unsigned b) {
return a % b;

}

Listing 3.1: A simple C-function performing a remainder operation.

bb.0.entry:
liveins: $edi, $esi
%1:gr32 = COPY killed $esi
%0:gr32 = COPY killed $edi
$eax = COPY killed %0:gr32
$edx = MOV32r0 implicit-def dead $eflags
DIV32r killed %1:gr32, implicit-def dead $eax, implicit-def $edx, implicit-def dead

$eflags, implicit killed $eax, implicit killed $edx
%3:gr32 = COPY killed $edx
$eax = COPY killed %3:gr32
RET 0, killed $eax

Listing 3.2: remainder-function in Machine IR.

We chose to use this function as an example, as it highlights many cases that we cover in this
chapter. It features interactions with specific physical registers, employs pseudo-instructions
such as COPY or MOV32r0, and features an instruction for which we change the encoding based
on the input type.

An overview of our approach is shown in Figure 3.1. The resulting code is for demonstration
purposes only, as many types were simplified, and some implementation details of the encoder
and register allocator were omitted. Nonetheless, it gives an overview of what we generate
using our approach: A function encoding the necessary instructions to perform the requested
calculation using provided input values.

11

3 Machine Code Generator Derivation from MIR

define dso_local i32 @rem(i32 %a, i32 %b) {
entry:
%rem = urem i32 %a, %b
ret i32 %rem

}

bb.0.entry:
liveins: $edi, $esi
%1:gr32 = COPY killed $esi
%0:gr32 = COPY killed $edi
$eax = COPY killed %0:gr32
$edx = MOV32r0 implicit-def dead $eflags
DIV32r killed %1:gr32, implicit-def dead $eax, implicit

-def $edx, implicit-def dead $eflags, implicit
killed $eax, implicit killed $edx

%3:gr32 = COPY killed $edx
$eax = COPY killed %3:gr32
RET 0, killed $eax

1. Convert to register-agnostic MIR (Section 3.1)

2. Derive function
signature
(Section 3.2.2)

3. Reserve fixed
registers
(Section 3.3)

4. Encode
instructions
(Section 3.4)

5. Release fixed
registers (Section 3.5.5)

template <IRAdaptor Adaptor, tpde::Assembler Asm, typename Derived>
void encode_rem(FuncCompilerX64* funcCompiler, AsmOperand param0, AsmOperand param1,

ScratchRegister& ret0) {
//Reserving some registers due to ISA constraints
ScratchRegister reservedDX(*funcCompiler);
if(registerFile.isUsed(RegisterFile::DX)) {

//Register is already used somewhere else, is a parameter using it?
if(!param0.wasUsingRegister(RegisterFile::DX) &&

!param1.wasUsingRegister(RegisterFile::DX)) {
reservedDX.allocateFromBank(/*GP-Reg*/ 0, /*size*/8);
fe64_MOV64rr(FE_GP(reservedDX), FE_GP(RegisterFile::DX));

}
} else {

reservedDX.allocateSpecific(RegisterFile::DX, 8);
}
[...]
// %1:gr32 = COPY killed $ecx
//Register %1:gr32 mapped to param1, killed $ecx removed from variable map

[...]
// $eax = COPY killed %0:gr32
fe64_MOV32rr(FE_GP(RegisterFile::AX), FE_GP(param0));

// $edx = MOV32r0 implicit-def dead $eflags
//After pseudo-instruction expansion:
// $edx = XOR32rr undef $edx(tied-def 0), undef $edx, implicit-def dead $eflags
fe64_XOR32rr(FE_GP(RegisterFile::DX), FE_GP(RegisterFile::DX));

[...]
// DIV32r killed %1:gr32, implicit-def dead $eax, implicit-def $edx,
// implicit-def dead $eflags, implicit killed $eax, implicit killed $edx
if(param1.isInMemory()) {

instLen = fe64_DIV32m(param1.getMemoryOperand());
} else {

instLen = fe64_DIV32r(FE_GP(param1));
}
param1.reset(); //param1 is marked as killed
[...]
// RET 0, killed $rax
//Restoring values of fixed registers if we couldn’t reserve them
if(reservedDX/*[...]*/ != RegisterFile::DX) {

fe64_MOV64rr(FE_GP(RegisterFile::DX), FE_GP(reservedDX));
}
[...]
return;

}

Figure 3.1: An overview of tpde-asmgen’s process. The resulting code is significantly shortened and simplified

12

3.1 Input Preparation

3.1 Input Preparation

Before running tpde-asmgen, the behavioural specifications are externally compiled to LLVM-
IR, which can be done using Clang. As input, tpde-asmgen then takes an LLVM-IR module
encoded as a file, referred to as a bitcode file. As the first step, LLVM is configured using the
--stop-before flag to stop the code generation pipeline before phi node elimination. We chose
this stage in the code generation pipeline for two reasons: Firstly, it is after the liveness analysis
of variables (livevars), which makes it easier to spot whether values are no longer used or
not used at all. Secondly, our approach currently does not support ϕ-nodes. Hence, we can
easily detect if the input function is supported by searching for PHI instructions and aborting if
one is found. The exact reasons why ϕ-nodes are unsupported and how ϕ-handling could be
implemented will be discussed in more detail in Section 3.7.1. Furthermore, destroying ϕ-nodes
implies that the resulting Machine IR is no longer in SSA form.

As a next step, the specific code generation target has to be defined for LLVM. We define
the target architecture as x86-64 and set the optimisation level to 1. The reason why we do
not choose a higher level (2 or 3) is to avoid optimising transformations for divisions that add
ϕ-nodes, introduced by the codegenprepare pass. All other configuration values (such as the
code model) are configured to their defaults.

After creating and running a backend pipeline, the MIR functions can be queried individually.
For each MachineFunction, we employ the approach described in the following sections.

3.2 Initial Analysis

In this Section, we collect all required information to derive the function signature and check if
we need to reserve any registers. Listing 3.6 highlights all MIR components considered in this
Section.

bb.0.entry:
liveins: $edi, $esi
%1:gr32 = COPY killed $esi
%0:gr32 = COPY killed $edi
$eax = COPY killed %0:gr32
$edx = MOV32r0 implicit-def dead $eflags
DIV32r killed %1:gr32, implicit-def dead $eax, implicit-def $edx, implicit-def dead

$eflags, implicit killed $eax, implicit killed $edx
%3:gr32 = COPY killed $edx
$eax = COPY killed %3:gr32
RET 0, killed $eax

Listing 3.6: An overview of the relevant instructions for the initial analysis.

3.2.1 Detecting Fixed Registers

Fixed registers are registers that are required for instructions. This might include input registers
(such as the variable shift using cl) and output registers (such as x86-64’s div instruction, which
saves the result in rdx and rax [21]).

To find all fixed registers, we iterate over all machine instructions. Specifically, we consider
the implicit definitions and uses of each instruction. Some registers need to be ignored, which

13

3 Machine Code Generator Derivation from MIR

include eflags (the flags register) and mxcsr (the floating point configuration register). If a
register is found that is not on a blacklist, then it is added to a list of fixed registers, which will
be used later.

3.2.2 Deriving the Function Signature

To derive the function signature, we extract the function name, the number of input registers,
and the number of output registers.

Function Name

The function name is a modification of the name used by the input function. To avoid target-
specific function naming schemes, the function name is taken from the LLVM-IR function [23].
The function name is prefixed with encode_. For example, add becomes encode_add.

Input Registers

The number of input registers is the number of live registers when entering the function’s entry
block. As we want tpde-asmgen’s resulting code to allow for multiple operand types, we created
a class that wraps multiple operand types, named AsmOperand. The class supports the following
types:

• Register – a register which can always be read but may not be writable.

• Memory Operand – a value stored at a specific address. This means that using the value
would result in a load operation.

• Address – references the address where something is stored, not the stored value itself. In
contrast to memory operands, materialising the value would result in the actual address
being computed.

• Immediate – a constant integer value.

That way, one function can handle all operand combinations by querying the contained type at
runtime instead of creating multiple functions that take different parameter types. This class also
provides helper functions to query information about the contained variable type and change it.

Output Registers

We determine the number of output registers by finding the RET instruction and counting the
number of used operands. The parameter type of the output registers is a ScratchRegister
passed as a reference, meaning that modifying the reference will also change the referenced
value in the caller’s scope. This means that the return type of the encoder function is void, and
the scratch registers are filled when the function returns. Using a return value is not an option,
as multiple registers might be returned, for example, when performing 128 bit computations or
returning structs.

void encode_rem(FuncCompilerX64* funcCompiler, AsmOperand param0, AsmOperand param1,
ScratchRegister& ret0)

Listing 3.7: The derived function signature for the rem-function, types were simplified for readability.

14

3.3 Reserving Registers

3.3 Reserving Registers

In the previous Section, we described how we obtain a list of all fixed registers. We want
to ensure we do not destroy the current value of a fixed register when using it within our
machine code generator. Hence, we will reserve the register at the start of our generated function,
preventing it from being used by another value. We do this by allocating a ScratchRegister to
that register.

If the register is already used, we attempt to permanently relocate its value to a different
register or, if that is not possible, temporarily back up the register’s value to restore it at the end
of our function.

3.4 Encoding Regular Instructions

bb.0.entry:
liveins: $edi, $esi
%1:gr32 = COPY killed $esi
%0:gr32 = COPY killed $edi
$eax = COPY killed %0:gr32
$edx = MOV32r0 implicit-def dead $eflags
DIV32r killed %1:gr32, implicit-def dead $eax, implicit-def $edx, implicit-def dead

$eflags, implicit killed $eax, implicit killed $edx
%3:gr32 = COPY killed $edx
$eax = COPY killed %3:gr32
RET 0, killed $eax

Listing 3.8: An overview of the instructions that support our encoding approach described in the following paragraphs

This Section explains how we encode regular instructions, meaning instructions that directly
map to hardware instructions. Listing 3.8 highlights the instruction we will handle with the
approach below.

3.4.1 Definitions

Many instructions explicitly define new values. However, not every definition in MIR results in
a new register in our machine code generator. This can be due to an instruction overwriting an
input operand instead of using a separate register as its destination.

How we handle a definition depends on whether it is marked as tied-def. If it is not, then
this is a new register, which we must allocate first.

If the definition is tied to an input operand, we must check whether the tied input register
is marked as killed. This is necessary, as tied-def input operands are not assumed to be
overwritten in MIR; a second assignment to a value would break SSA. An example of this can
be seen in Listing 3.9, where %0 is used in two instructions with a tied-def definition but only
marked as killed in the second usage. Consequently, we can only reuse the tied input register if
it is marked as killed. If the value is still used afterwards, we must move the input value to a
newly allocated register to avoid clobbering the original value.

If we can reuse the source register according to LLVM, we emit a runtime check to see if the
register can be overwritten. If the register has a reference count greater than one, we must not

15

3 Machine Code Generator Derivation from MIR

destroy the value and need to copy the value to a newly allocated ScratchRegister, which will
be used for the calculation.

bb.0.entry:
liveins: $edi
%0:gr32 = COPY killed $edi
%1:gr32 = IMUL32rr %0:gr32(tied-def 0), %0:gr32, implicit-def dead $eflags
%2:gr32 = IMUL32rr killed %1:gr32(tied-def 0), killed %0:gr32, implicit-def dead

$eflags
$eax = COPY killed %2:gr32
RET 0, killed $eax

Listing 3.9: Machine IR for a function that takes one integer and multiplies it with itself twice, showing that tied-def
operands can exist without a killed-attribute.

Another attribute that should be considered is early clobber, signalling that an operand is
written to before all input operands are read. This differs from tied-def in that tied-def output
operands will be overwritten after all inputs are read. It is necessary to label this explicitly, as it
will lead to unexpected behaviour when said output operand is also used as an input operand.
In that case, writing to the output operand would also modify the input operand.
early clobber is currently unsupported, mainly used when compiling inline Assembly. While

it is used in AArch64 instructions, x86-64 only uses early clobber in some AVX512 instructions.
These instructions are currently unsupported.

3.4.2 Encoding all Operand Combinations

To improve the code quality of tpde-asmgen’s machine code generators, we also account for
variants of instructions that use immediate values or a value stored in memory, instead of
register operands. To support this, we need to be able to derive the variant information, which is
architecture-specific. Section 3.6 explains this for the x86-64 architecture. An example of what
we will generate can be seen in Listing 3.10. As IDIV, a signed division, can also take a memory
operand as input, we explicitly check at runtime whether the provided parameter is stored in
memory and change the encoding based on that.

if(param1.isInMemory()) {
//Encode IDIV32m

} else {
//If immediate value, load value of param1 into register
//Encode IDIV32r

}

Listing 3.10: Pseudo-code that checks for all possible encodings of IDIV based on the input type.

When emitting the calls to the encoder for an instruction, the different Machine IR operand
types of an instruction are handled as follows:

Virtual Register

Our instruction variant info is considered when encountering a virtual register operand in MIR.
We first check the type we received as input (a register, a memory operand, or an immediate).
We can use the value as-is if a variant uses the provided type. If not, we emit code that loads the
value into a register.

16

3.4 Encoding Regular Instructions

Immediate

If the MIR operand is an immediate value (for example, when adding a constant to a register),
then we encode the operand as-is.

Physical register

While it is possible to encode variants here, it would require significantly more effort to do so.
Details on why this is the case and how this could be implemented are shared in Section 3.7.6.
For now, the register is encoded as-is, without any variants.

Memory Operand

In MIR, a memory operand is represented as multiple operands. While the exact structure of a
memory operand depends on the target architecture, it usually consists of the following types:

• Base register – takes the value from a register as the address’ base.

• Index register – this allows to split the address into two registers. The value of this register
can sometimes be further manipulated using multiplications or shifts, allowing it to be
used for index-based addressing of arrays.

• Displacement – a constant value added to the address.

If we encounter a memory operand as a parameter, we first extract the values for the individual
components. However, the actual type used as the base or index register might not be a register,
which requires us to perform some transformations and allows for optimisations.

void store64(int64_t* addr, int64_t val) { *addr = val; }

Listing 3.11: A simple C function that stores a 64 bit value at an address.

Take the specification function in Listing 3.11 as an example. The resulting MIR function
will use a target-specific store operation using a memory operand with a base register, unused
index register, and unused displacement. LLVM assumes that the base register is a register,
which might not be true. As addr is a parameter to our specification function, it will become an
input parameter of type AsmOperand to our machine code generator. Thus, it might also be an
immediate, an address (with its own base/index/displacement) or a value stored in memory.

This means we must adapt our memory operand at the machine code generator’s runtime.
The following transformations hold for both the base and index registers:

• Register – no transformation is required; use the register as-is.

• Immediate – attempt to merge the constant value with the displacement.

• Value stored in memory – load the value into a register.

• Address – compute the address and load it into a register. If the other register of LLVM’s
memory operand is unused, we attempt to replace the entire memory operand with this
address. For example, suppose the variable used as the base register is an address, and the
index register is unused. In that case, we use the variable’s base register as the base register
and the variable’s index register as the index register, merging the variable’s displacement
with the memory operand’s displacement.

17

3 Machine Code Generator Derivation from MIR

In the context of x86-64, a memory operand in Machine IR consists of the following values:

• Base register – a register containing an address. Common examples are rbp for frame
pointer relative addressing and rip for position-independent code.

• Index register – a register containing a value that will be added to the base register’s value.

• Scale – a value multiplied by the index register’s value. Must be one of {1, 2, 4, 8}.

• Displacement – a constant value added to the result.

• Segment register – This is only used for accesses into thread-local storage and is currently
not supported.

This means we can employ the strategy explained before, with one limitation: displacements
in x86-64 have a maximum size of 32 bits. Thus, we can only merge displacements if the resulting
value fits into 32 bits.

3.4.3 Final Checks

After an instruction is successfully encoded with all possible variants, we check if any input
operands are marked as killed. For all killed variables, we destroy the variable that holds its
value. For example, if the value was stored in a ScratchRegister, then the register is no longer
used and can be acquired by others.

If we supported control flow, destroying registers marked as killed would not be valid, as
killed would then only refer to the current branch.

3.5 Handling Special Instructions

As pseudo instructions do not directly map to hardware instructions, they require special
handling. Listing 3.12 gives an overview of some instructions we will cover in this Section.

bb.0.entry:
liveins: $edi, $esi
%1:gr32 = COPY killed $esi
%0:gr32 = COPY killed $edi
$eax = COPY killed %0:gr32
$edx = MOV32r0 implicit-def dead $eflags
DIV32r killed %1:gr32, implicit-def dead $eax, implicit-def $edx, implicit-def dead

$eflags, implicit killed $eax, implicit killed $edx
%3:gr32 = COPY killed $edx
$eax = COPY killed %3:gr32
RET 0, killed $eax

Listing 3.12: An overview of the instructions that will be handled in this section.

3.5.1 COPY

COPY instructions copy values between virtual or physical registers. Depending on whether the
source and destination register are physical (for example: rax) or virtual (for example: %5), we
must change our strategy:

18

3.5 Handling Special Instructions

Virtual to Virtual COPY

If the source is marked as killed, make the destination register use the source variable’s
destination. If the source is live, copy the current value to a newly allocated ScratchRegister.

Virtual to Physical COPY

This might occur for two reasons: Firstly, there might be a COPY into a return value. In this
case, we do not copy the value into the specified physical register (for example: eax) but into the
return variable provided to us.

The second option is performing a COPY into a reserved register, for example, into cl for a
variable shift instruction. In that case, we emit a mov-instruction into the specified register.

Physical to Virtual COPY

This kind of COPY might be emitted when moving parameters into virtual registers at the
beginning of our function. Here, we set the destination register to reference the physical register.

Physical to Physical COPY

While physical-to-physical COPY instructions are not assumed to be present in MIR at that point,
they can still be emitted through a chain of copies. An example of this can be seen in Listing
3.13. The first COPY is a physical-to-virtual COPY, resulting in %5 referencing edx. The next COPY
becomes a physical-to-physical COPY, as the source variable references a physical register. Here,
we generate a mov-instruction between the two physical registers.

%5:gr32 = COPY killed $edx
$ecx = COPY killed %5:gr32

Listing 3.13: An example MIR snippet that would result in a physical-to-physical COPY.

3.5.2 EXTRACT_SUBREG

As the name implies, EXTRACT_SUBREG extracts a specific subregister from a source register and
stores it in the destination register. We treat it as a Virtual-to-virtual COPY: If the source register
is killed, make the destination reference the source variable’s destination. If not, copy the
subregister value into a newly allocated ScratchRegister.

3.5.3 INSERT_SUBREG

This instruction inserts a subregister into another register. In most cases, the destination register
is defined by an IMPLICIT_DEF instruction, being an instruction that indicates an unused register.
In that case, this is a zero extension on the current register.

If a different instruction defines the destination register, we insert the subregister into the
destination register using a fitting mov-instruction.

3.5.4 SUBREG_TO_REG

This instruction just hints that the register size changed but does not affect the register itself.
Apart from making the destination register use the same variable as the source register, no
actions are performed.

19

3 Machine Code Generator Derivation from MIR

3.5.5 RET

When a return instruction is found, it is important to note that no ret-instruction should be
generated. RET signals to us that this is the end of our machine code generator. As we moved all
values to the corresponding return variables beforehand, this step can be omitted here.

What still needs to be taken care of is releasing fixed registers. As a reminder, if we required an
in-use register to be free and the value could not be relocated to a different one, we temporarily
saved its value in a different register.

In case the fixed register was unused or we were able to relocate the current value, no further
action is required. When leaving our function, the ScratchRegister’s destructor automatically
releases the register. If not, we must restore the original value to the register before leaving our
encoder function.

3.5.6 Other Pseudo Instructions

As explained before, pseudo instructions might result in hardware instructions being emitted
but do not directly represent one. In our rem-example (Listing 3.12), an example of such an
instruction is, apart from COPY or RET, MOV32r0. It is an instruction that sets a specified register
to zero.

We currently cannot handle this instruction, as it does not directly map to a hardware
instruction we can encode. For this, we attempt to turn the pseudo instruction into a regular
instruction using expandPostRAPseudo, a function found in llvm::TargetInstrInfo [24]. The
result of this expansion in our current example is found in Listing 3.14. If the expansion is
successful, we can continue with the standard approach described in Section 3.4.

$edx = XOR32rr undef $edx(tied-def 0), undef $edx, implicit-def dead $eflags

Listing 3.14: The resulting machine instruction after expanding MOV32r0

However, this approach only works for some pseudo instructions. Pseudo instructions that
expandPostRAPseudo does not handle are currently not supported.

3.6 Mapping LLVM Instructions to Fadec Functions

This Section addresses the issue of deriving the necessary information from a machine instruction
required to encode an instruction and its variants using Fadec. First, we introduce Fadec, the
encoder that we use. Next, we examine the reasons why this task presents a challenge.

3.6.1 The Fadec Encoder

Fadec [25] is a library featuring a decoder for x86-64 and x86-32, as well as an encoder for
x86-64. As tpde-asmgen only uses Fadec’s encoder, we will disregard the decoder and refer to
the encoder as Fadec, though its official name is “fadec-enc”.

Instructions are encoded in Fadec using function calls. Every x86-64-instruction has its own
function, with the operands to that instruction being passed as function arguments. Listing 3.15
shows an example of encoding an addition between rax and rdx.

unsigned instrLen = fe64_ADD64rr(buf, 0, FE_AX, FE_DX);

Listing 3.15: A function call to Fadec that encodes “add rax, rdx”. buf is a pointer to which the resulting bytes
will be written.

20

3.6 Mapping LLVM Instructions to Fadec Functions

Another option could have been to use the encoder built into LLVM instead of an external
library. We decided against this and to use Fadec simply because Fadec’s encoder was developed
with performance in mind. This matters greatly, as the encoding must be done at compile time.

However, choosing an encoder different from the one LLVM offers led to some challenges,
which we will discuss next.

3.6.2 Challenges

There are multiple challenges while performing this derivation:

1. LLVM and Fadec employ different instruction naming schemes.
While some instructions are named exactly the same (for example, ADD32rr), this is sadly
not true for all instructions. While Fadec mostly follows a coherent naming scheme,
this is not true for LLVM. For example, MOVSDto64rr, being a move of 64 bits from an
xmm-register into a general purpose register, is named in Fadec as SSE_MOVQ_X2XGr. The
x86-64 instruction to which this will be mapped is a movq-instruction, meaning that LLVM’s
naming does not always correlate with the instruction’s mnemonic.

2. Neither LLVM nor Fadec provides explicit information about instruction variants.
Each variant is a separate instruction/function, though with similar naming. However, a
similar name does not guarantee that a function is a variant.

3. Performing a manual map between LLVM and Fadec is not feasible.
At the time of writing, LLVM has 19627 different machine instructions. While most of
them can be ignored, for instance, because they are meta instructions or would never be
generated by LLVM (such as VMX instructions), manually performing the mapping would
be an error-prone and time-consuming task. However, this is exactly the kind of task we
wanted to eradicate from TPDE using tpde-asmgen.

In the rest of this Section, we give an overview on how we achieved an automatic mapping
between LLVM’s instructions and Fadec’s functions, supporting a large subset of LLVM’s
instructions. Limitations to this approach will be analysed later in Section 3.7.5.

3.6.3 Storing Fadec-Specific Information

To map machine instructions to Fadec function calls, we first need to store Fadec-specific
information in tpde-asmgen. We chose to store the following information, which was generated
using a script written in Python.

Simplified Fadec Names

To simplify instruction name matching, Fadec’s function names are modified. An example
includes removing unused instruction prefixes.

Listing Possible Instruction Variants

Thanks to Fadec’s consistent instruction naming scheme, it is easy to find possible variants of an
instruction from a function name. A visualisation of this approach using ADD32rr can be found
in Figure 3.2.

21

3 Machine Code Generator Derivation from MIR

1. We iterate through the string until a lowercase character is found. They are used to denote
the parameter types of this instruction.

2. If the parameter is a register, meaning that the character is an r, attempt to replace it with
i and m and check if that function exists.
The same cannot be done for immediate (i) and memory (m) parameters, as we cannot
easily morph other parameter types into those types without altering the behaviour of the
resulting code.

3. If the variant exists, add the newly found function to a list and start a recursive call that
searches for variants with the replaced parameter character.

4. After all function invocations have finished, the list will contain all possible variants of that
instruction.

Figure 3.2: A visualisation of how the possible instruction variants are found for ADD32rr

However, it is important to note that the derived instruction names are not guaranteed valid
variants, so we referred to them as possible instruction variants. Out of the possible variants seen
in Figure 3.2, only ADD32rr, ADD32ri, and ADD32rm are valid variants.

Listing all Parameter Types

For each function that Fadec has, we also save the parameter types it expects. For example, for
ADD32rr, we store the information that it takes two parameters, which are both general-purpose
registers.

3.6.4 Automatically Deriving all Instruction Information

We now describe how we derive all necessary instruction information for encoding instructions
using Fadec, including all variants on an instruction.

Finding the Correct Function

First, we check if the instruction name matches our list of Fadec’s function names (with some
of them being simplified as described before). This is sufficient for simple cases like ADD32rr.
If there is not function matching the instruction name, we manually build the Fadec name
ourselves, considering Fadec’s instruction naming scheme. This requires us to collect the
following information about the instruction:

22

3.6 Mapping LLVM Instructions to Fadec Functions

1. Prefix – If the instruction has the LOCK_ or MMX_ prefix, then we retain this prefix, as Fadec
also uses it.

2. Mnemonic – This is done since Fadec almost always uses the instruction mnemonic,
the instruction name used when writing Assembly. We derive it from LLVM using the
llvm::MCInstPrinter [26] class.

3. Suffix – If the instruction requires a suffix for further clarification, we add that suffix. The
only suffix we require right now is for movd and movq instructions, which both require
clarification on whether it is from general-purpose to xmm-register (_G2X) or vice-versa
(_X2G). Unsupported suffixes include EVEX suffixes, such as _sae.

4. Definition size – If the instruction defines a result register, then we query the size of that
register.

5. Parameter characters – For this, we iterate through the operands and, depending on the
parameter type, either add r (register), m (memory operand), or i (immediate). We derive
a version with and without implicit operands.

Not all of this information is always required, as it is only used by Fadec if there would otherwise
be ambiguous naming. We now attempt to derive the name used by Fadec, taking its instruction
naming scheme into account. This is done by creating possible names utilising the information
collected about the instruction and comparing it against the list of existing instructions. If we
cannot find a match, the provided instruction is unsupported.

Deriving a Parameter Mapping

Once the correct Fadec function is selected, the operands provided by LLVM’s instruction must
be mapped to Fadec’s function parameters. This is done on a “first come, first serve” basis while
iterating through the operands of the instruction in question. For register operands, we first
consider the regular operands, then the implicit definition, and lastly, the implicit uses. Some
implicit registers are always ignored, which includes the flags register (eflags) or the floating
point control register (mxcsr).

If not all explicit parameters can be mapped, we assume the mapping is incorrect and abort.
A warning is generated for unmapped implicit operands.

Deriving the Function Variants

Until now, we have successfully mapped an LLVM instruction to its Fadec equivalent. In the
next step, we attempt to find all instruction variants we can use. For this, we use the list of
variants that was generated before.

The following steps are performed for each possible variant: First, we iterate through the
variant’s parameters. If all parameters adhere to the rules listed below, we add the variant:

1. If a changed parameter type is a fixed register in LLVM, skip this variant, as we currently
do not support this (see also Section 3.7.6).

2. If the operand connected to a changed parameter type is marked as tied-def or if it is
a definition, it may only be a register. This is obvious for immediate values; we must
promote them into registers if they are to be overwritten. Regarding memory operands,
we want to promote them into registers as early as possible to avoid repeating load and
store operations when the value is used multiple times.

23

3 Machine Code Generator Derivation from MIR

3.7 Limitations

While we believe that tpde-asmgen considerably impacts TPDE’s development, the employed
approach is by no means complete. We want to highlight a few of its limitations. While they are
partly irrelevant in the context of TPDE, they might become relevant in the future.

3.7.1 Control Flow

As of now, ϕ-nodes are unsupported. This is because ϕ-node destruction is not a trivial task.
Without delving into too much detail, if done incorrectly, problems such as the lost-copy problem
can occur [27]. Consider reading the cited paper for more details.

For most types of ϕ-nodes, we believe that they are out of scope for tpde-asmgen. ϕ-nodes
are mostly used for more complex control flow structures such as loops. However, there is one
simple case that we would like to highlight. Consider the C-code in Listing 3.16.

long div(long a, long b) { return a / b; }

Listing 3.16: A C-function that divides two signed 64 bit integers.

When compiling with Clang with -O2, the following transformation is performed: If both input
numbers fit into 32 bits, a 32 bit division is performed, as it has a significantly lower latency [28].
Specifically, the bits of both input registers are combined using the OR operation and shifted
by 32 bits to the right. This means that if the resulting register is zero, the values of both input
registers fit into 32 bits.

A ϕ-node is thus generated in the final basic block, as the control flow is split and merged later.
In this case, one can avoid ϕ-nodes by not merging the two branches and simply duplicating
the final basic block for both possible branches. This technique is known as Tail Duplication
and can be done by LLVM using the llvm::TailDuplicator [29] class. While this technique has
the advantage of supporting ϕ-nodes in simple cases with little effort, it is important to note
that this results in a larger code size than necessary due to duplicate code. This might not be
problematic for simple cases, but applying this technique to functions with multiple branches
after each other results in an exponential code size growth.

Alternatively, we could let LLVM destroy the ϕ-nodes for us and operate on an MIR later in
the pipeline. We chose not to move forward with this approach because TPDE, a compiler from
an SSA-based IR, already features ϕ-handling. Thus, it would make more sense to integrate with
that instead of relying on LLVM. Moreover, our MIR functions would no longer be in SSA form.

Furthermore, supporting control flow constructs would also involve emitting jump instructions.
However, we do not know the jump offset at runtime of the machine code generator due to our
variant checks emitting instructions of different sizes. This means that we would need to patch
the jump instructions to their correct offsets once all offsets in our generated machine code are
known.

3.7.2 Stack Allocation

Currently, values created during our machine code generators may only reside in registers;
storing values on the stack is unsupported. This also means that any MIR function that creates a
stack frame is unsupported.

We do not consider this a significant problem as of now, as we do not assume it is relevant
for tpde-asmgen’s usage in TPDE. If it does become relevant, it would be rather simple to
implement: MIR functions store explicit information about the size of the created stack frame

24

3.7 Limitations

and which values are stored at which offsets. This information could be passed to TPDE’s
register allocator, which already provides functionality for creating and destroying stack frames.

To support specification functions that use structs, functions having more than six parameters,
or functions requiring more than two registers for returning values, we recommend using
the regcall calling convention. This custom calling convention of Clang assumes that as many
parameters reside in registers as possible. This can be used by prefixing the function declaration
with __regcall.

3.7.3 Constant Pool

When a Machine IR function uses instructions that cannot be encoded into an instruction, it
resorts to the constant pool. In this read-only memory region, constant values are stored. This is
relevant for TPDE, as some machine code generators regarding floating point operations must
use it, for example, when testing if a floating point value is ±In f .

This could be implemented in two ways:

1. At the start of the machine code generator, write the constant values into the instruction
buffer following a jump instruction that jumps over the constants. The constants can then
be accessed using rip-relative addressing. This is relatively simple to implement since the
offset to the constants is known without any further effort. However, it results in read-only
data being stored in the .text-section. Furthermore, this would emit the constants every
time the machine code generator is called, potentially leading to an unnecessarily large
binary size increase.

2. Make use of TPDE’s data symbol support, which involves registering a symbol with the
data that should be stored and then requesting TPDE to patch instructions using this data
to use the correct addressing. This would avoid data in the .text-section, but is more
complex to implement. To avoid generating a new symbol every time our machine code
generator is called, we could either add a function into TPDE that checks if a symbol was
already added or move the creation of all necessary symbols from their respective machine
code generators into one function that TPDE then calls at the start of compilation.

3.7.4 Register Spilling

As we heavily rely on scratch registers for temporary values, our approach is limited to smaller
functions without many temporary values being live simultaneously since scratch registers
cannot be spilled to the Stack. While we do not assume this to be a problem in the context of
TPDE, it is important to note that large functions with many live values will likely lead to the
register allocator running out of registers and aborting.

3.7.5 Instruction Support

Using the option --dump-instInfos, tpde-asmgen iterates through all of LLVM’s machine
instructions and prints information about the instruction, as well as the Fadec mapping that was
derived. If the derivation fails, it also prints further information to determine why that is the
case. Currently, 10150 instructions are unsupported. They belong to one of the following ten
categories:

• Most AVX-512 and some AVX instructions, especially instructions using an AVX-512 mask
register, instructions accessing memory using an xmm-register, and instructions where

25

3 Machine Code Generator Derivation from MIR

Fadec uses suffixes that were not implemented yet. Excluding these instructions alone
results in the number of unsupported instructions to drop to 930.
Examples: VBROADCASTF32X2Z256rr, VSHUFPSZ256rmbikz, VUNPCKHPDZ256rrkz

• x86-32 instructions that are unsupported in x86-64.
Examples: AAA, LDS32rm

• Operations on other registers that are unimportant in this context.
Examples: MOV16sr (segment register), INCSSPD (SSP)

• Instructions from irrelevant extensions.
Examples: all X87 FPU, SGX, VMX, AES, and MMX instructions

• APX instructions, which are not implemented by hardware yet.
Examples: ADD32rr_ND, SHR32mCL_NF

• Instructions where we could not derive the definition size because the defined operand is
in memory.
Example: LOCK_BTC64m

• Instructions with incorrectly labelled operand types.
Examples: LEA64r has the operand type UNKNOWN instead of Memory operand.

• Pseudo instructions that are not labelled as such.
Example: ROR64r1

• Instructions where Fadec and LLVM use different operand ordering. This only affects XCHG
instructions with memory.
Example: XCHG32rm

• Control Flow instructions.
Examples: JCC_1, LOOP

While many instructions are still unsupported, it is important to note that most will likely
never be used in the context of TPDE. Hence, no further effort was made to support more
instructions. While basic AVX instructions are supported, implementing more complex machine
code generators using AVX will require modifications to our current approach. To support new
instructions, one can either update the automatic mapping or define the mapping manually.

3.7.6 Instruction Variant Support

While we support instruction variants, there are some cases that we would like to highlight
where our variant support is suboptimal.

Commutable Operands

In this case, the instruction’s operands can be swapped without changing the result. For instance,
all integer additions are commutable. We can exploit this property to support more types of
input operands. For example, if we were to pass an immediate as the first and a register as the
second argument to a machine code generator that encodes an addition, it would result in the
immediate value being loaded into a newly allocated register before it is added to the second
operand. The first operand is also the destination, so it must reside in a register.

26

3.7 Limitations

Alternatively, we could swap the operands and use the register as the first operand. This
would allow us to encode an addition with a constant and avoid allocating another register. This
is not implemented.

Variants of Physical Registers

Instructions that use fixed registers sometimes have variants with different operand types. An
example is the variable shift instruction, which supports shifting by a constant value apart from
shifting by cl. However, suppose we pass an immediate value to a machine code generator
encoding a variable shift. In that case, the immediate value is loaded into cl and a variable shift
is encoded instead of a shift by a constant value.

This is because we currently only consider instructions one after another without any context.
Once we reach our variable shift instruction in MIR, the immediate value was already moved
into cl by a COPY instruction. This could be avoided by delaying copies into physical registers
until they are used and determining if they are required.

Constant Folding

If all input values to a machine code generator are known at compile time, meaning they are
all constants, we could perform the calculation at compile time and store the result in the
result register. This is known as Constant Folding [6], a well-known transformation that is
not implemented by tpde-asmgen. This would involve needing much more information about
LLVM’s instructions, specifically, what calculations they encode.

Size variants

We assume the input register uses the size reported by the MIR function. For instance, an MIR
function performing a 64 bit addition will result in a machine code generator operating on
64 bit registers. This is not a problem in this case, as we can still provide smaller registers
without leading to incorrect results beyond erroneous flags. However, this is not true for all
instructions: instructions such as bitwise rotates would result in incorrect results if an incorrect
rotate instruction is used.

Size variants are unsupported. While the used size can be queried from Reg classes, scratch
registers do not provide such functionality. If we want to change the encoding based on the
register size, we must call a different machine code generator in TPDE based on the input
register size.

Incorrect variants

We are aware of two cases where the current variant derivation produces incomplete or incorrect
results:

• IMULrri is a variant of IMULrr if one uses the first register twice. This is not found in our
current approach; our class does not support such a variable mapping.

• BTmr is not a variant of BTrr, as their behavior differs [21]. This has been fixed by manually
mapping these two instructions to Fadec.

27

3 Machine Code Generator Derivation from MIR

3.8 Extensibility

As the primary goal of tpde-asmgen also was to simplify the development process for new
architectures, we need to analyse if and how easily support for new architectures can be added
into tpde-asmgen.

3.8.1 Areas of Concern

Most functionality is split into multiple functions. We identified the following areas that are not
fully architecture-agnostic:

• Pseudo-instructions that may emit target-specific mov instructions. The pseudo-instruction
this does not apply to is SUBREG_TO_REG; all others call a separate function that emits the
fitting encoder call into the output file. Once this function supports the new architecture,
all pseudo-instructions are supported.

• While detecting fixed registers is architecture-agnostic, reserving a register may result in a
mov-instruction being emitted using the same function mentioned before.

• Supporting a new architecture would result in choosing a different encoder (as Fadec
only supports x86-64), and thus, a different mapping strategy from LLVM instructions to
encoder calls is required, as the current approach will likely not work.

• Instruction generation is non-portable; the subroutine that emits the encoder calls for an
instruction, including all variants, must also be rewritten, as it assumes the operand types
of x86-64.

• The AsmOperand class, our input variable type, might not wrap all input types of other
architectures. Furthermore, some helper functions may also emit x86-64 instructions; they
would have to be rewritten as well.

• Smaller helper functions, such as determining whether a register is a general-purpose
register, would have to be rewritten due to register classes being architecture-specific.

3.8.2 Supporting AArch64

bb.0 (%ir-block.2):
liveins: $w0, $w1
%1:gpr32 = COPY killed $w1
%0:gpr32 = COPY killed $w0
%2:gpr32 = UDIVWr %0:gpr32, %1:gpr32
%4:gpr32 = MSUBWrrr killed %2:gpr32, killed %1:gpr32, killed %0:gpr32
%6:gpr64all = SUBREG_TO_REG 0, killed %4:gpr32, %subreg.sub_32
$x0 = COPY killed %6:gpr64all
RET_ReallyLR implicit killed $x0

Listing 3.17: MIR of our commonly used rem-example, for the AArch64 architecture.

We will detail tpde-asmgen’s compatibility with AArch64, also known as ARM64, as it will be
the next architecture supported by TPDE. Listing 3.17 shows our commonly used rem-example
in AArch64 MIR. It shows that basic concepts, such as killed annotations or COPY instructions,
can be kept without much modification.

28

3.8 Extensibility

In the following paragraphs, we will cover some key aspects of implementing support for
AArch64 into tpde-asmgen. Firstly, the following operand types are new in AArch64:

• Shifted register operand – registers can be shifted or rotated by a constant amount before
being passed as operand to an operation. An example is ADD R0, R1, R2, LSL #3, which
calculates R0 = R1 + (R2 << 3).

• Extended register operand – A register value can be extended (zero or sign-extended)
from a smaller width (like 8, 16, or 32 bits) to the full 64-bit width before being used in an
instruction.

LLVM does not treat them as separate operand types to a different instruction. For example, the
aforementioned example of a shifted register operand is represented in MIR using the ADDXrs
instruction; an extended register operand would use the ADDXrx instruction. While this does
introduce new parameter types into tpde-asmgen, we do not believe that much work is required
to support this.

Secondly, AArch64, a load-store architecture, does not allow memory operands in their
instructions except for explicit load and store instructions. This differs from x86-64, which allows
using memory operands as source or destination in many instructions.

LDR R0, [R1, #16] ; Load from address (R1 + 16) into R0
LDR R0, [R1, R2] ; Load from address (R1 + R2) into R0
LDR R0, [R1, #16]! ; Load from address (R1 + 16) into R0, then update R1 to (R1 + 16)
LDR R0, [R1], #16 ; Load from address R1 into R0, then update R1 to (R1 + 16)
LDR R0, [R1, R2, LSL #3] ; Load from address (R1 + (R2 << 3)). Similar to x86-64’s scale

Listing 3.18: Some example AArch64 instructions that demonstrate how memory operands work on this architecture

Furthermore, memory operands are handled differently than on x86-64. Listing 3.18 gives an
overview of how memory operands are used. In summary, while x86-64 does not support updat-
ing the base register with the displacement, x86-64 can encode more complex addresses using
its combination of base register, index register, scale, and displacement. Such memory access on
AArch64 would result in multiple instructions to calculate the address. LLVM implements these
load operations using multiple instructions, such as LDRAAindexed or LDRABwriteback.

This design choice affects our current approach in three ways:

1. Instruction variants are more straightforward, as memory operands can only occur in load
and store operations. If a memory operand is found, a load instruction can be generated
before using the register as an operand.

2. The Address class currently wrapped in AsmOperand is insufficient for AArch64’s memory
operands, as it does not encode all possibilities. For instance, writebacks are unsupported.

3. Handling addresses passed as input to machine code generators that perform load or store
operations is more complex, as it must often be split into multiple instructions, especially
when different writebacks are used.

29

4 Evaluation

4.1 Setup

For evaluating tpde-asmgen, we utilised the SPEC CPU 2017 [30] Benchmark Suite. It features
43 Benchmarks across 4 suites that simulate real-world applications. Examples include data
compression, public transport route planning and weather forecasting.

To use TPDE with SPEC, we modified the source code of Clang 18.1.21 to use the TPDE
back-end when instructed.

Clang was then built using GCC 14.2.1, linked statically against LLVM 18.1.2, and linked
dynamically against glibc 2.39-17 and libstdc++ 14.2.1-1. tpde-asmgen, as well as TPDE, was
linked dynamically against LLVM 18.1.6 and built using the same compiler.

All tests were run on a system using an AMD Ryzen 7 5800X3D processor with CPU frequency
scaling and frequency boost disabled and all cores set to 3.4 GHz. The system had 16GiB of
main memory at 2133 MT/s and 10 GiB of swap space. The system ran Fedora 40, 64 bit, with
Linux kernel 6.9.12-200.fc40.x86_64.

4.2 Correctness

We chose to use the SPEC benchmarks to ensure that tpde-asmgen’s machine code generators
produce correct code since they also verify the runtime results. This implies that if SPEC’s
benchmarks compile and run without errors, we can assume that the used machine code
generators generate correct code.

The following operations were updated in TPDE to use the machine code generators created
by tpde-asmgen:

• All binary integer operations (addition, subtraction, multiplication, and, xor, ...).

• 64 bit and 128 bit wide stores into memory.

• isNaN and isNormal, functions that are both used in the compilation of LLVM’s isfpclass
intrinsic function.

While this does not cover all of TPDE’s machine code generators, we can use these to verify the
following aspects of our generated code:

• Correct variant matching and encoding for a subset of all possible instructions.

• Correct handling of addresses.

• Correct handling of floating point operations in combination with general-purpose regis-
ters.

All benchmarks from the intspeed suite were successfully run without any issues. This excludes
the 648.exchange2_s benchmark as it is written in Fortran, which Clang does not support.

This test does not cover all instructions supporting the automatic Fadec mapping.
1https://github.com/llvm/llvm-project/tree/llvmorg-18.1.2

31

https://github.com/llvm/llvm-project/tree/llvmorg-18.1.2

4 Evaluation

600
perl

602
gcc

605
mcf

620
omnetpp

623
xalanc

625
x264

631
deepsjeng

641
leela

657
xz

average
0

0.2

0.4

0.6

0.8

1

Figure 4.1: Code generation times of TPDE with tpde-asmgen partly integrated, relative to TPDE’s regular compile
times.

4.3 Code Generation Time

We begin by analysing changes in the code generation time of TPDE. Taking accurate mea-
surements for this required some changes, as measuring the code generation time in SPEC’s
benchmark build setup is suboptimal. This is because SPEC’s benchmarks consist of numerous
source files, all compiled separately. This means that TPDE is called multiple times during com-
pilation, with most code generation times within TPDE being in the range of 10−4 seconds. Even
after adding all separate times together, such short execution times result in a high inaccuracy,
even when using multiple runs. To mitigate this, we used the options -emit-llvm -c to compile
all benchmark files to LLVM-IR bitcode instead of object files. After this, we manually linked
them to a single module using llvm-link. The result was one bitcode file per benchmark, which
we then used as input to TPDE. The exception is the 625.x264 benchmark, which consists of
three targets. We compiled them separately and summed up their code generation times. The
measurements were taken from the latest TPDE and TPDE with some machine code generators
implemented, as described in Section 4.2. We modified both TPDE versions to measure just the
code generation using std::chrono::steady_clock. This ensured that LLVM bitcode parsing
and output file generation were not measured. If the code generation was too fast, code gen-
eration was repeated in a loop to ensure each measurement was at least over one second. We
repeated the measurements at least five times until the average of all measurements did not
change up to its third significant digit.

Results As shown in Figure 4.1, code generation times have improved on average by 0.6%.
We believe this is because we encode fewer size variants than before. The old machine code
generators use Umbra’s x86-64 encoder for encoding instructions instead of Fadec, which exposes
only one function for each mnemonic and then queries the register sizes to choose the best-fitting
encoding. On the other hand, we only use all size variants when necessary to avoid further
operations. For example, when encoding a 64 bit right shift when the register in question is
smaller than 64 bits, we must ensure that the upper bits are all set to zero. Otherwise, we would
be shifting garbage bits into our result. In that case, the bit width is explicitly checked to avoid

32

4.4 Binary Size

generating a zero extension for smaller registers. For all instructions where this does not affect
the computation result, we only encode the 32 and 64 bit versions.

To verify whether adding more size variants noticeably affected the code generation times,
we introduced checks for 8 and 16 bit register sizes wherever possible. All tests were then
re-run using the methodology described before. The results show that encoding all size variants
resulted in an average code generation time similar to using TPDE without tpde-asmgen, being
0.17% worse than regular TPDE on average.

However, the results in Figure 4.1 also show some benchmarks where the code generation time
has increased. For example, the code generation time of 631.deepsjeng has increased by 3.1%.
Furthermore, as mentioned already, we have shown that after encoding all size variants, our code
generation times are worse than regular TPDE. We attribute this in part to two consequences of
our approach. Firstly, since our input parameter of type AsmOperand can hold different types,
we often query said type to change our encoding. Furthermore, some helper functions behave
differently based on the wrapped type, such as when checking whether we may overwrite a
register. This introduces more branches into our machine code generators than before.

Secondly, our current use of tpde-asmgen’s machine code generators results in unnecessary
conversions between ScratchRegister and Reg when calling our machine code generators using
Reg parameters. Suppose a Reg parameter used as input also holds the computation result at the
end. In that case, it is then converted to a ScratchRegister by destroying the Reg and allocating
a ScratchRegister to the register holding the value. After we left our machine code generator,
we set the result variable, being of the type Reg, to the ScratchRegister’s currently allocated
register using setValue, which does the same conversion the other way around. As smaller,
temporary computations might also use tpde-asmgen’s machine code generators, it makes sense
to preserve the option to use a ScratchRegister as the return value. This could be solved by
implementing a custom return type similar to AsmOperand, which can both be a reference to Reg
or ScratchRegister. This would result in fewer type conversions in the aforementioned case
and still allow tpde-asmgen’s machine code generators to be used in temporary computations.

4.4 Binary Size

In this section, we compare the sizes of binaries compiled by TPDE before and after tpde-asmgen
was integrated. As tpde-asmgen does not always encode the exact instructions as before,
observing changes in binary size is interesting, though it is not a primary concern for us. We
compared the compiled binary size of all benchmarks before and after our partial integration of
tpde-asmgen’s code.

Results As shown in Figure 4.2, binary size grew by 1.8% on average after introducing
tpde-asmgen. All binaries increased in size, except for the binary of the 605.mcf benchmark,
whose size did not change.

We attribute this to some omitted register variant encodings. In the case of binary shifts,
we cannot generate 8 bit and 16 bit variants, as LLVM’s instruction selection resorts to 32 bit
shifts in that case, assuming that the integer is zero-extended. In case of a right shift on 8 or 16
bit registers, we not only encode a larger shift size than necessary but also need to generate a
zero-extension to at least 32 bits.

Other operations whose encoding grew as well are all constant shifts and rotates. As mentioned
in Section 3.7.6, we currently do not encode constants into shifts, but first move them into the cl
register, resulting in two instructions instead of one.

33

4 Evaluation

600
perl

602
gcc

605
mcf

620
omnetpp

623
xalanc

625
x264

631
deepsjeng

641
leela

657
xz

average
0

0.2

0.4

0.6

0.8

1

Figure 4.2: Binary size comparison of SPEC benchmarks generated by TPDE with tpde-asmgen partly integrated,
relative to binary sizes generated by regular TPDE.

4.5 Runtime Performance

Finally, we want to ensure that the integration of tpde-asmgen did not significantly worsen
runtime performance. To test this, we ran all benchmarks of SPEC’s intspeed suite, again
excluding 648.exchange2_s. This was done with at least three iterations per benchmark, ensuring
that the relative standard deviation was always below 1%.

600
perl

602
gcc

605
mcf

620
omnetpp

623
xalanc

625
x264

631
deepsjeng

641
leela

657
xz

average
0

0.2

0.4

0.6

0.8

1

Figure 4.3: Benchmark runtimes compiled by TPDE with tpde-asmgen partly integrated, relative to when using
TPDE without modifications.

Results As seen in Figure 4.3, the runtime performance of TPDE’s generated code is largely
unaffected by the integration of tpde-asmgen. On average, runtimes increased by 0.18%. Out
of all benchmarks, only the performance differences of 625.x264, 631.deepsjeng, 641.leela, and

34

4.5 Runtime Performance

657.xz are beyond the margin of error. We attribute this slight runtime increase to our generation
of inefficient instruction sequences, which were already covered in Section 4.4.

When only encoding 64 bit size variants where it does not affect the computation result, our
average runtimes increase noticeably, being 2.1% worse than regular TPDE. This is because using
a superregister after an operation was performed on a subregister results in a delay of a few
clock cycles. This is known as a partial register stall [31]. Implementing 8 bit size variants in
addition to 32 and 64 bit ones, however, only resulted in a runtime decrease within the margin
of error. While there might be test cases that have a runtime impact due to our omission of 8
and 16 bit variants in the aforementioned cases, we want to point out that this would be just a
temporary issue. This is because we currently employ both old machine code generators and
newer ones using tpde-asmgen. This issue will be resolved once all machine code generators
use tpde-asmgen and thus do not encode smaller register size variants than necessary.

35

5 Related Work

Deriving code generation patterns from higher-level languages is not a new approach. In
this chapter, we will discuss previous approaches and compare their goals and strategy with
tpde-asmgen.

QEMU dyngen In the original version of QEMU, a dynamic binary and system translator, a
tool named dyngen [32] was utilised to translate operations to the target’s ISA. It generates a
code generator from so-called micro operations, functions written in C and compiled to an object
file. At compile-time of QEMU, these object files are parsed to extract the encoded instructions
as bytes. When a constant parameter is required, it is declared in the C source code as an extern
variable, resulting in the compiler emitting a relocation, signalling that a variable is missing. A
simple example where this is required is an addition with a constant. The relocation is detected
by dyngen, resulting in the code generator generated by dyngen replacing the relocated variables
with a provided constant at runtime of QEMU.

Similar to tpde-asmgen, dyngen is only run during compile-time of the compiler/translator,
with the resulting code generators used at runtime. An upside of dyngen is that it is mostly
architecture-agnostic, as it does not have to know which instructions were generated by the
compiler. The exception to this is architecture-specific handling of relocations. However,
dyngen’s technique could not be employed in TPDE. This is because dyngen takes the generated
instructions as-is, including the registers used in the instructions. This is not a problem in
the context of QEMU, as it uses virtual registers stored in memory for correct translation.
Nevertheless, TPDE operates on physical registers. This would require patching all instructions
to use other registers than anticipated. Furthermore, the same operation using a different register
or operand type has to be encoded in dyngen using a different micro operation. tpde-asmgen
does not require this, as it can take multiple types as input and change the encoding accordingly.

Copy-and-patch The copy-and-patch [33] code generation technique proposed by Xu et al.
employs so-called stencils, being binary implementations of, for example, bytecode instructions
or node types from an abstract syntax tree. At runtime, a copy-and-patch code generator
concatenates the required stencils and patches missing information, such as constants or stack
offsets. The stencil collection is automatically generated using their MetaVar compiler, which
is run at compile-time of the copy-and-patch code generator and uses stencil generators. A
stencil generator is a templated C++ function that heavily relies on macros and MetaVar-specific
function parameters to represent specific behaviour, such as an integer addition. During template
instantiation, the stencils are compiled to object code using Clang and information is extracted
from the generated object code using LLVM. As in dyngen, relocations are used to mark
placeholder values.

Similar to dyngen, MetaVar’s generated stencils only support specific parameter types. Thus,
different instruction variants must be encoded as multiple stencils. Xu et al. implemented a
high-level language compiler backend whose stencil library employed 98831 stencils using 17.5
MB of memory. Furthermore, tpde-asmgen’s machine code generators are easier to configure, as
the specification functions can be written in any language that can be lowered to LLVM-IR and

37

5 Related Work

do not require in-depth knowledge of how tpde-asmgen works. In contrast, MetaVar’s stencil
generators require significantly more implementation effort.

Drescher et al. [34] improved upon the copy-and-patch technique by allowing the stencils,
here named templates, to be compiled from LLVM MLIR specification functions. Similar to
tpde-asmgen, these MLIR functions demonstrate the behaviour of the resulting code. They are
lowered to LLVM-IR functions that use variables from memory, whose location is referred to
as the value storage. Next, similar to the original copy-and-patch approach, they are compiled
to binary objects to extract the generated machine code. The extracted templates are then used
during compilation to generate code. To avoid excessively loading from and storing into the value
storage, so-called cache registers temporarily hold values used in subsequent computations.

While this alleviated many disadvantages of Xu et al.’s approach, both approaches differ from
tpde-asmgen in that they are independent code generation backends. In contrast, tpde-asmgen
generates code for an existing backend infrastructure, which includes a register allocator.

BURS BURS [35] is a technique for instruction selection by performing bottom-up pattern
matching on a program’s abstract syntax tree. The patterns are defined in a table. Each pattern
includes a set of rewriting rules, a cost estimation, and an action that is performed. Using
dynamic programming, the least-cost instruction sequence is selected for each subtree. The
difficulty of creating such tables is that all possible trees have to be anticipated. Proebsting [36]
improved on this technique by proposing a tool for automatically generating BURS tables at
compile-time of the compiler. As input, Proebsting’s tool receives a list of the available operators
and a list of grammar rules.

Apart from tpde-asmgen using Proebsting’s idea of generating aspects of a compiler auto-
matically at compile-time, the approach and goal differ. BURS is only used for instruction
selection, while tpde-asmgen derives a strategy for instruction selection and register allocation.
Furthermore, Proebsting does not employ external compiler frameworks for the derivation and
instead relies on the target specification received as input.

BURS has not seen significant adoption in practice. Since then, more advanced techniques
have been developed, such as performing instruction selection on the data flow graph [37].

38

6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we outlined problems with the current use of hand-written machine code generators
by TPDE, including non-portability and complexity. To alleviate these issues, we implemented
tpde-asmgen, a C++ tool for automatically generating register-agnostic machine code generators
from branch-free MIR. It is run during the build process of TPDE, taking behavioural specifica-
tions compiled to LLVM-IR as input. It supports a large subset of LLVM’s MIR instructions for
x86-64, including instructions requiring specific registers to function and pseudo-instructions. By
introducing the AsmOperand class, tpde-asmgen can emit machine code generators supporting
as many input types as possible without creating multiple generators for each input type variant.
Special care was taken to make the generated code easily reviewable.

We evaluated tpde-asmgen’s machine code generations through a limited integration into
TPDE both in terms of code generation time and runtime performance of the SPEC benchmark
suite. Compared to TPDE without tpde-asmgen, we measured an average code generation time
decrease of 0.6% and an average runtime increase of 0.18%.

In conclusion, we see tpde-asmgen and the approach it employs as an impactful change to
TPDE’s development process. It makes the current code easier to read and verify and simplifies
future support for new architectures, as many components of TPDE can now be architecture-
agnostic. However, this comes at the cost of being dependent on LLVM’s instruction selector to
generate desirable code. We have shown that this is not the case regarding operations on partial
registers, where LLVM’s backend often resorts to integer promotion instead of operating on the
desired subregisters.

Regarding the development process, while we consider the automatic mapping from LLVM’s
instructions to Fadec functions a success, we would like to point out that deriving this strategy
took several weeks. In hindsight, manually mapping the required instructions could have been a
better choice. This would have left us more time to focus on a more extensive implementation of
tpde-asmgen into TPDE and adding support for the constant pool.

6.2 Future work

In Section 3.7, we already outlined some of tpde-asmgen’s limitations. We will now discuss more
ways in which tpde-asmgen and its approach could be improved and repeat some previously
mentioned limitations that we consider of higher priority.

The next step is implementing support for MIR’s constant pool. Strategies on how to imple-
ment this were given in Section 3.7.3. This would allow support for all isfpclass functions,
drastically reducing the number of hand-written lines within TPDE.

Next, all machine code generators in TPDE should be updated to use tpde-asmgen. This
will exclude smaller snippets that specification functions cannot generate, such as subtracting a
specified value from the stack pointer or performing a lea operation.

39

6 Conclusion and Future Work

After tpde-asmgen has been fully implemented into TPDE, we can work on implementing
support for AArch64.

6.2.1 Verification of the Automatic Fadec Mapping

As the mapping between LLVM’s machine instructions and the emitted encoder calls to Fadec is
done automatically, an essential aspect of correctness is to verify that this mapping is correct.
Currently, this verification has only been done for the instructions used within TPDE, as the
correctness of the generated code has been verified in these cases.

Manual verification is not feasible due to the number of instructions that must be checked. A
possible automated approach to verify the correctness of this mapping is to let LLVM encode
each machine instruction and check if the resulting bytes are the same as the ones emitted by
Fadec.

However, it is important to note that instruction encoding in x86-64 is ambiguous. One
reason is that instruction prefixes can be encoded in different orders [21]. Thus, a byte-by-byte
comparison might lead to many false negatives, especially if LLVM and Fadec handle prefix
encoding differently.

6.2.2 Compiler plugin

Initially, tpde-asmgen was planned to be a compiler plugin for Clang. The advantage of this is
that one would not need to externally compile specification functions to LLVM-IR and use them
as input to an external tool. Instead, they could be supplied as lambda expressions. An example
from a prototype is shown in Listing 6.1. During the compilation of TPDE, the compiler plugin
would then generate functions from the provided lambda expression.

CodeGenerator cg;
Reg resultReg = cg.subst<+[](int x, int y) -> int {

return x + y;
}>({arg1, arg2});

Listing 6.1: A concept of what the usage of tpde-asmgen as a compiler plugin could look like

However, this approach comes with some disadvantages. Firstly, it would force TPDE to
always be built with Clang. Secondly, our current approach of extracting the MIR functions
would not work in this context since the --stop-after command line option would apply to
the entire compilation and not just the lambda functions. Thirdly, and most notably, we cannot
emit C++ code at this stage but must emit our machine code generators as LLVM-IR functions,
adding another layer of complexity.

While this concept offers some benefits over our chosen approach, we believe that tpde-asmgen
in its current form already brings many advantages and that implementing it as a compiler plugin
would not be worth the extra effort, especially considering the aforementioned disadvantages.

40

Abbreviations

SSA Static Single Assignment

IR Intermediate Representation

JIT just-in time

AOT ahead-of-time

MIR Machine IR

ISA Instruction Set Architecture

41

List of Figures

3.1 An overview of tpde-asmgen’s process. The resulting code is significantly short-
ened and simplified . 12

3.2 A visualisation of how the possible instruction variants are found for ADD32rr . . 22

4.1 Code generation times of TPDE with tpde-asmgen partly integrated, relative to
TPDE’s regular compile times. 32

4.2 Binary size comparison of SPEC benchmarks generated by TPDE with tpde-asmgen
partly integrated, relative to binary sizes generated by regular TPDE. 34

4.3 Benchmark runtimes compiled by TPDE with tpde-asmgen partly integrated,
relative to when using TPDE without modifications. 34

43

Listings

2.1 A simple C-code snippet with implicit dataflow. 3
2.2 The code of Listing 2.1 in SSA form. 3
2.3 A simple for-loop in pseudocode. 4
2.4 The code of Listing 2.3 with a ϕ-node. 4
2.5 A simple C function that adds two integers. 5
2.6 Listing 2.5 in LLVM-IR, attributes were omitted. 5
2.7 The generated Machine IR of our add-function, obtained by running LLVM with

--stop-before=phi-node-elimination, some attributes were omitted. 6
2.8 Machine IR of our add-function after register allocation, obtained by running

LLVM with --stop-after=unpack-mi-bundles. 8
2.9 A machine code generator for the abs intrinsic function. Comments were added

for explanation, assertions were removed for brevity, auto-types were expaned for
clarity. 9

2.10 The abs machine code generator after using tpde-asmgen for encoding the in-
structions and allocating the registers. 10

3.1 A simple C-function performing a remainder operation. 11
3.2 remainder-function in Machine IR. 11
3.3 Example input to tpde-asmgen. 12
3.4 The example input after LLVM’s passes in Machine IR. 12
3.5 The resulting C++-code which is significantly shortened and simplified. 12
3.6 An overview of the relevant instructions for the initial analysis. 13
3.7 The derived function signature for the rem-function, types were simplified for

readability. 14
3.8 An overview of the instructions that support our encoding approach described in

the following paragraphs . 15
3.9 Machine IR for a function that takes one integer and multiplies it with itself twice,

showing that tied-def operands can exist without a killed-attribute. 16
3.10 Pseudo-code that checks for all possible encodings of IDIV based on the input type. 16
3.11 A simple C function that stores a 64 bit value at an address. 17
3.12 An overview of the instructions that will be handled in this section. 18
3.13 An example MIR snippet that would result in a physical-to-physical COPY. 19
3.14 The resulting machine instruction after expanding MOV32r0 20
3.15 A function call to Fadec that encodes “add rax, rdx”. buf is a pointer to which

the resulting bytes will be written. 20
3.16 A C-function that divides two signed 64 bit integers. 24
3.17 MIR of our commonly used rem-example, for the AArch64 architecture. 28
3.18 Some example AArch64 instructions that demonstrate how memory operands

work on this architecture . 29

6.1 A concept of what the usage of tpde-asmgen as a compiler plugin could look like 40

45

Bibliography

[1] T. Neumann. “Efficiently compiling efficient query plans for modern hardware.” In: Proc.
VLDB Endow. 4.9 (June 2011). doi: 10.14778/2002938.2002940.

[2] 1. Building a JIT: Starting out with KaleidoscopeJIT – LLVM 20.0.0git documentation. url:
https://llvm.org/docs/tutorial/BuildingAJIT1.html (visited on 07/27/2024).

[3] A. Engelke and T. Schwarz. “Compile-Time Analysis of Compiler Frameworks for Query
Compilation.” In: 2024 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). 2024, pp. 233–244. doi: 10.1109/CGO57630.2024.10444856.

[4] A. Engelke and T. Schwarz. “Building a fast Back-end for LLVM.” In: Eighth LLVM
Performance Workshop at CGO. Mar. 2, 2024.

[5] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Global value numbers and redundant
computations.” In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’88. 1988. doi: 10.1145/73560.73562.

[6] F. E. Allen and J. Cocke. A Catalogue of Optimizing Transformations. International Business
Machines Corporation (IBM), 1971.

[7] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A. Zwinkau. “Simple and
Efficient Construction of Static Single Assignment Form.” In: Compiler Construction. 2013.
doi: 10.1007/978-3-642-37051-9_6.

[8] C. Lattner and V. Adve. “LLVM: a compilation framework for lifelong program analysis
& transformation.” In: International Symposium on Code Generation and Optimization, 2004.
CGO 2004. 2004. doi: 10.1109/CGO.2004.1281665.

[9] GIMPLE - GCC Wiki. url: https://gcc.gnu.org/wiki/GIMPLE (visited on 05/01/2024).

[10] The LLVM Compiler Infrastructure. url: https://llvm.org/ (visited on 05/01/2024).

[11] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. “Julia: A Fast Dynamic Language for
Technical Computing.” In: ArXiv abs/1209.5145 (2012). doi: 10.48550/arXiv.1209.5145.

[12] Overview of the compiler - Rust Compiler Development Guide. url: https://rustc-dev-guide.
rust-lang.org/overview.html#overview-of-the-compiler (visited on 05/01/2024).

[13] D. A. Terei and M. M. Chakravarty. “An LLVM Backend for GHC.” In: Proceedings of the
Third ACM Haskell Symposium on Haskell. Haskell ’10. Baltimore, Maryland, USA, 2010. doi:
10.1145/1863523.1863538.

[14] Swift – Apple Developer. url: https://developer.apple.com/swift/ (visited on 05/02/2024).

[15] S. K. Lam, A. Pitrou, and S. Seibert. “Numba: a LLVM-based Python JIT compiler.” In:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. LLVM ’15.
Austin, Texas, 2015. doi: 10.1145/2833157.2833162.

[16] llgo - A Go compiler based on LLVM. url: https://github.com/goplus/llgo (visited on
07/27/2024).

[17] LLVM Language Reference Manual. url: https://llvm.org/docs/LangRef.html (visited
on 05/02/2024).

47

https://doi.org/10.14778/2002938.2002940
https://llvm.org/docs/tutorial/BuildingAJIT1.html
https://doi.org/10.1109/CGO57630.2024.10444856
https://doi.org/10.1145/73560.73562
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1109/CGO.2004.1281665
https://gcc.gnu.org/wiki/GIMPLE
https://llvm.org/
https://doi.org/10.48550/arXiv.1209.5145
https://rustc-dev-guide.rust-lang.org/overview.html#overview-of-the-compiler
https://rustc-dev-guide.rust-lang.org/overview.html#overview-of-the-compiler
https://doi.org/10.1145/1863523.1863538
https://developer.apple.com/swift/
https://doi.org/10.1145/2833157.2833162
https://github.com/goplus/llgo
https://llvm.org/docs/LangRef.html

Bibliography

[18] G. Blindell. Instruction selection: Principles, methods, and applications. Jan. 2016. doi: 10.1007/
978-3-319-34019-7.

[19] System V application binary interface. AMD64 architecture processor supplement. url: https:
//gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/6235340483/artifacts/file/x86-64-
ABI/abi.pdf (visited on 05/20/2024).

[20] Machine IR (MIR) Format Reference Manual. url: https://llvm.org/docs/MIRLangRef.
html (visited on 05/02/2024).

[21] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. https:
/ / www . intel . com / content / www / us / en / developer / articles / technical / intel -
sdm.html. Intel Corporation. Apr. 2016.

[22] llvm::MachineFunction Class Reference. url: https://llvm.org/doxygen/classllvm_1_
1MachineFunction.html (visited on 05/20/2024).

[23] llvm::Function Class Reference. url: https://llvm.org/doxygen/classllvm_1_1Function.
html (visited on 08/09/2024).

[24] llvm::TargetInstrInfo Class Reference. url: https://llvm.org/doxygen/classllvm_1_
1TargetInstrInfo.html (visited on 07/27/2024).

[25] Fadec — Fast Decoder for x86-32 and x86-64 and Encoder for x86-64. url: https://github.
com/aengelke/fadec/ (visited on 08/05/2024).

[26] llvm::MCInstPrinter Class Reference. url: https://llvm.org/doxygen/classllvm_1_
1MCInstPrinter.html (visited on 07/28/2024).

[27] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. “Practical improvements to the
construction and destruction of static single assignment form.” In: Softw. Pract. Exper. 28.8
(1998). doi: 10.1002/(sici)1097-024x(19980710)28:8<859::aid-spe188>3.0.co;2-8.

[28] A. Abel and J. Reineke. “uops.info: Characterizing Latency, Throughput, and Port Usage
of Instructions on Intel Microarchitectures.” In: ASPLOS. ASPLOS ’19. ACM, 2019. doi:
10.1145/3297858.3304062.

[29] llvm::TailDuplicator Class Reference. url: https://llvm.org/doxygen/classllvm_1_
1TailDuplicator.html (visited on 08/05/2024).

[30] Standard Performance Evaluation Corporation. SPEC CPU® 2017. url: https://www.spec.
org/cpu2017/ (visited on 08/08/2024).

[31] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual Volume 1.
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html. Intel Corporation. Apr. 2024.

[32] F. Bellard. “QEMU, a fast and portable dynamic translator.” In: Proceedings of the Annual
Conference on USENIX Annual Technical Conference. ATEC ’05. Anaheim, CA: USENIX
Association, 2005.

[33] H. Xu and F. Kjolstad. “Copy-and-patch compilation: a fast compilation algorithm for high-
level languages and bytecode.” In: Proc. ACM Program. Lang. (2021). doi: 10.1145/3485513.

[34] F. Drescher and A. Engelke. “Fast Template-Based Code Generation for MLIR.” In: Proceed-
ings of the 33rd ACM SIGPLAN International Conference on Compiler Construction. 2024. doi:
10.1145/3640537.3641567.

[35] E. Pelegrí-Llopart and S. L. Graham. “Optimal code generation for expression trees: an
application of BURS theory.” In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’88. 1988. doi: 10.1145/73560.73586.

48

https://doi.org/10.1007/978-3-319-34019-7
https://doi.org/10.1007/978-3-319-34019-7
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/6235340483/artifacts/file/x86-64-ABI/abi.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/6235340483/artifacts/file/x86-64-ABI/abi.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/6235340483/artifacts/file/x86-64-ABI/abi.pdf
https://llvm.org/docs/MIRLangRef.html
https://llvm.org/docs/MIRLangRef.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://llvm.org/doxygen/classllvm_1_1MachineFunction.html
https://llvm.org/doxygen/classllvm_1_1MachineFunction.html
https://llvm.org/doxygen/classllvm_1_1Function.html
https://llvm.org/doxygen/classllvm_1_1Function.html
https://llvm.org/doxygen/classllvm_1_1TargetInstrInfo.html
https://llvm.org/doxygen/classllvm_1_1TargetInstrInfo.html
https://github.com/aengelke/fadec/
https://github.com/aengelke/fadec/
https://llvm.org/doxygen/classllvm_1_1MCInstPrinter.html
https://llvm.org/doxygen/classllvm_1_1MCInstPrinter.html
https://doi.org/10.1002/(sici)1097-024x(19980710)28:8<859::aid-spe188>3.0.co;2-8
https://doi.org/10.1145/3297858.3304062
https://llvm.org/doxygen/classllvm_1_1TailDuplicator.html
https://llvm.org/doxygen/classllvm_1_1TailDuplicator.html
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3640537.3641567
https://doi.org/10.1145/73560.73586

Bibliography

[36] T. A. Proebsting. “BURS automata generation.” In: ACM Trans. Program. Lang. Syst. (1995).
doi: 10.1145/203095.203098.

[37] D. R. Koes and S. C. Goldstein. “Near-Optimal Instruction Selection on DAGs.” In: Proceed-
ings of the 6th Annual IEEE/ACM International Symposium on Code Generation and Optimization.
CGO ’08. 2008. doi: 10.1145/1356058.1356065.

49

https://doi.org/10.1145/203095.203098
https://doi.org/10.1145/1356058.1356065

	Acknowledgments
	Abstract
	Contents
	Introduction
	Key Contributions
	Outline

	Background
	Static Single Assignment (SSA)
	LLVM
	LLVM-IR
	LLVM's Backend
	Machine IR

	TPDE
	TPDE's Register Allocator
	Machine Code Generator Example

	Machine Code Generator Derivation from MIR
	Input Preparation
	Initial Analysis
	Detecting Fixed Registers
	Deriving the Function Signature

	Reserving Registers
	Encoding Regular Instructions
	Definitions
	Encoding all Operand Combinations
	Final Checks

	Handling Special Instructions
	COPY
	EXTRACT_SUBREG
	INSERT_SUBREG
	SUBREG_TO_REG
	RET
	Other Pseudo Instructions

	Mapping LLVM Instructions to Fadec Functions
	The Fadec Encoder
	Challenges
	Storing Fadec-Specific Information
	Automatically Deriving all Instruction Information

	Limitations
	Control Flow
	Stack Allocation
	Constant Pool
	Register Spilling
	Instruction Support
	Instruction Variant Support

	Extensibility
	Areas of Concern
	Supporting AArch64

	Evaluation
	Setup
	Correctness
	Code Generation Time
	Binary Size
	Runtime Performance

	Related Work
	Conclusion and Future Work
	Conclusion
	Future work
	Verification of the Automatic Fadec Mapping
	Compiler plugin

	Abbreviations
	List of Figures
	Listings
	Bibliography

