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Abstract: Programmed cell death, accidental cell degra-
dation and active extrusion constantly lead to the release
of DNA fragments into human body fluids from virtually
all cell and tissue types. It iswidely accepted that these cell-
free DNA (cfDNA) molecules retain the cell-type specific
genetic and epigenetic features. Particularly, cfDNA
in plasma or serum has been utilized for molecular
diagnostics. The current clinically implemented liquid
biopsy approaches are mostly based on detecting genetic
differences in cfDNA molecules from healthy and diseased
cells. Their diagnostic potential is limited to pathologies
involving genetic alterations, by the low proportion of
cfDNA molecules carrying the mutation(s) relative to the
total cfDNA pool, and by the detection limit of employed
techniques. Recently, research efforts turned to epigenetic
features of cfDNA molecules and found that the tissue-of-
origin of individual cfDNA molecules can be inferred from
epigenetic characteristics. Analysis of, e.g., methylation
patterns, nucleosome or transcription factor binding site
occupancies, fragment size distribution or fragment end
motifs, and histone modifications determined the cell or
tissue-of-origin of individual cfDNA molecules. With this
tissue-of origin-analysis, it is possible to estimate the
contributions of different tissues to the total cfDNA pool in
body fluids and find tissues with increased cell death
(pathologic condition), expanding the portfolio of liquid
biopsies beyond genetics and towards a wide range of
pathologies, such as autoimmune disorders, cardiovascu-
lar diseases, and inflammation, amongmany others. In this
review,we give an overviewon the status of tissue-of-origin
approaches and focus on what is needed to exploit the full

potential of liquid biopsies towards minimally invasive
screening methods with broad clinical applications.

Keywords: cell-free DNA; circulating tumor DNA; epige-
netics; fragmentomics; liquid biopsy; tissue-of-origin.

Introduction

DNA fragments from different origins are constantly
released into various human body fluids, e.g., serum,
plasma, urine, and cerebrospinal fluid [1–3]. Not only host
DNA (genomic andmitochondrial DNA) can be found in the
different body fluids, but exogenous DNA (e.g., bacterial or
viral DNA) is also present [4–8]. The so-called cell-free DNA
(cfDNA) in plasma is very short-lived, its half-time ranges
between 15min and 2.5 h [9, 10], andhas been the subject of
intense research efforts in order to develop minimally
invasive methods for obtaining diagnostic information for
e.g., early diagnosis, therapy monitoring, or detection of
minimal residual disease in cancer. Specifically, non-
invasive prenatal testing (NIPT) [11], detection of circu-
lating tumor DNA (ctDNA) in the plasma of cancer patients
for early diagnosis [12], and detection of donor-derived
DNA in the plasma of transplantation recipients [13] have
been clinically implemented so far. These analyses have
in common that they are based on genetic differences
(fetal and maternal DNA; donor and recipient DNA in graft
patients) or mutations (cancer) that are only present in the
minority of cfDNA molecules, limiting especially the sensi-
tivity of those approaches by the technical limit of detection
and to diseases involving genetic alterations. Early diag-
nosis of cancer is especially hampered by this limitation.

More recently, research groups focused on epigenetic
characteristics of cfDNA molecules – that is the majority
of cfDNA molecules – to develop complementary assays
to detect diverse pathologies in the human body and
expanding the detection to pathologies without genetic
aberrations. It has, for example, been shown that methyl-
ation or fragmentation patterns of cfDNA molecules are
cell-type and tissue-specific [14–17], as genes are differ-
entially regulated in distinct cell types and different release
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pathways are employed by distinct cell types. Deciphering
these patterns and attributing them to the corresponding
cell or tissue-of-origin opens up novel ways for noninva-
sive early diagnosis (Figure 1).

In plasma, cfDNA predominantly prevails as short
double-stranded DNA fragments in the size ranging between
100 and 200 base pairs (bp). However, considerably longer
fragments up to 30 kbp have been detected [18]. DNA is
released into the circulation by different cellular pathways
including different sorts of cell death, regular cellular turn-
over and active secretion upon pathologies [8, 19–21]. In
diseased tissues, more cell death has been observed, and
consequently,more cfDNAmolecules from that particular cell
type(s) are released into the blood compared to a healthy
individual.

Lengths and fragment end motifs of cfDNA molecules
are nonrandom and depend on the cellular release
pathway and regulatory state of the releasing tissue

[20, 22–24]. Investigating cfDNA fragmentomics is another
way to pinpoint the origin of a cfDNA molecule. Different
read-depth coverage patterns hint at transcription factor
binding sites or expression status of a specific gene and aid
in determining the tissue-of-origin.

Chromatin immunoprecipitation (ChIP) of specific
histone modifications and subsequent sequencing of
nucleosome-bound cfDNA yields genomic parts associated
with transcriptionally active regions that inform on
dynamic changes in transcriptional programs in the cells of
origin that are pathology-related.

Numerous methods evolved during the last years to
assign cfDNA molecules to their cell/tissue-of-origin based
on epigenetic features such as DNA methylation patterns,
nucleosome footprinting, transcription factor binding sites,
fragmentation patterns, and histone modifications among
others [14, 15, 17, 25–27]. The focus on the haystack (features
found in the majority of cfDNA molecules) instead of the

Figure 1: Determining the tissue-of-origin of cell-free DNA.
(A) Cell-free DNA (cfDNA) can be released into blood plasma from various cell types and different organs. (B) This results in a clinical
biospecimen with a highly heterogeneous mixture of cfDNA molecules, often complicating the analytical differentiation between different
cfDNA subtypes. (C) However, there are many tissue-specific physico-chemical and epigenetic features of cfDNA that can be characterized,
including unique methylation patterns, fragmentation profiles and fragment end-points, transcription-factor binding sites, nucleosome
positioning and occupancy, as well as post-translational histone modifications. (D) Comprehensive characterization of these tissue-specific
markers may enable the determination of the tissue-of-origin of different cfDNA molecules. This may in turn, for example, facilitate the
minimally-invasive localization of tumors or identification of tissue damage in specific regions such as the heart.
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needle (fewmutated sites inonly a handful of tumor-derived
DNAmolecules) holdspromise todevelopmultiple powerful
diagnostic tools in the future. In this review, we will discuss
the currently available toolbox for liquid biopsies and the
early detection of diseases based on the tissue-of-origin.

Mutation patterns

Genetic alterations (e.g., single nucleotide polymorphisms
and copy number variations) are often involved in the onset
of cancer [28]. These genetic differences can be detected by
analyzing/sequencing the DNA from tumor tissue (solid
biopsy), circulating tumor cells (CTCs) or ctDNA in plasma
released into the circulation by tumor tissue. The first liquid
biopsy approaches were based on genetic differences be-
tween healthy and cancerous tissue and therefore mostly
detected a specific cancer type. Several mutation-based
liquid biopsy assays have been approved by the FDA so far
(e.g., EGFR mutations in non-small cell lung cancer and
PIK3CA mutations in breast cancer) [29, 30]. These ap-
proaches are particularly powerful for selection and strati-
fication of targeted therapies. However, mutation-based
liquid biopsies are limited to pathologies involving genetic
aberrations. For a long time, many clinically utilized organ-
specific biomarkers havebeen employed for the diagnosis of
various diseases, including elevated protein levels in
different organs (e.g., troponin levels in the heart, trans-
aminases in the liver, prostate-specific antigen in the pros-
tate). Similarly, tumor markers have been applied for
detection andmonitoring of cancer disease. However, these
biomarkers are not deployable for early diagnosis or detec-
tion of minimal residual disease.

A multi-analyte blood test (CancerSEEK) – combining
mutational analysis in ctDNA with measuring protein levels
in plasma – aimed at the earlier detection with higher
sensitivity and specificity of pancreatic ductal adenocarci-
noma [31]. This approach might be expanded for the
screening of many cancer types (reviewed in [32]). To
expand liquid biopsies additionally towards pathologies
lacking genetic aberrations, the focus turned to epigenetic
features of cfDNAmolecules. Analysis of epigenetic features
carried by themajority of cfDNAmolecules and inferring the
tissue-of-origin might enhance the performance of liquid
biopsy tools in the future.

Methylation patterns

DNA methylation is an epigenetic mechanism where a
methyl group is transferred onto the C5 position of the

cytosine to form 5-methylcytosine (5mC). 5mC methyl-
ation occurs almost exclusively on cytosines with a
neighboring guanosine – so-called CpG sites. This
modification of the DNA in promoter regions regulates
gene expression by inhibiting the binding of transcrip-
tion factor(s) to DNA or by inhibiting the recruitment of
proteins involved in gene repression. Consequently,
methylated promoter regions usually correlate nega-
tively with gene expression. Gene expression programs
are tightly regulated by cell-specific DNA methylation
patterns and these methylation marks correlate with the
gene-expression profile of the respective cell type.
Methylation patterns are unique to each cell type, are
conserved among cells of the same cell type within
an individual and among different individuals, and are
highly stable under physiologic or pathologic condi-
tions. Methylation patterns are changed in tumor cells,
commonly leading to hypermethylation (i.e., silencing)
of tumor suppressor genes and hypomethylation (i.e.,
activation of transcription) of cancer driver genes. The
differentially methylated regions can be employed to
detect prostate cancer, for example [33]. The methylation
pattern can further be utilized to trace the cell or tissue-
of-origin of a single cfDNA molecule, even of different
cell types within a particular tissue [34].

With the advent of next-generation sequencing (NGS)
technology in combination with bisulfite conversion, it
became possible to determine themethylation state of each
CpG in the entire human genome and compile high-
resolution methylation maps of multiple tissue types
[35–38]. This resulted in several projects that generated
high resolution methylation or epigenetic maps, many of
which are available as open access datasets, such as
the Roadmap Epigenomics Project (35), the ENCODE
Project [39, 40], the International Human Epigenome
Consortium (IHEC) [41], and the Cancer Genome Atlas
(TCGA; https://www.cancer.gov/tcga). The development
of qualified algorithms for deconvolution of sequencing
data with referencemethylation profiles of different tissues
enabled the determination of the cell or tissue-of-origin of
cfDNA molecules and the estimation of major tissue con-
tributors to the cfDNA pool. Analysis of tumor-associated
hypomethylation in plasma cfDNA in combination with
tumor-associated copy number aberrations (CNAs) using
whole-genome bisulfite sequencing (WGBS) enabled the
detection of several nonmetastatic cancer types with a
sensitivity and specificity of 87 and 88%, respectively [42].
Sun et al. inferred relative contributions of four different
tissues using deconvolution of cfDNA methylation pro-
files from WGBS [15]. This approach for mapping the tis-
sue origins of plasma cfDNA using deep sequencing
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demonstrated the tissue origins of cfDNA in conditions in
which source tissue differs genetically from host tissue
(i.e., pregnancy, transplantation, cancer). Additionally,
it has been demonstrated that deconvolution of cfDNA
methylation patterns revealed the tissue-of-origin in
urinary cfDNA as well [43].

Superior sensitivity and reduced background in detect-
ing tissue-specific signatures in cfDNA was gained by
extending the analysis window from a single CpG site to a
number of adjacent CpG haplotypes based on sparse genome
coverage ofmethylation arrays [16]. These authors developed
a method of detecting tissue-specific cell death in humans
basedon tissue-specificmethylomedatabases to identify cell-
type specific DNA methylation patterns. This approach was
able to show origins of cfDNA in pathologies such as β-cell
death in diabetes, brain cell death in multiple sclerosis and
head trauma without genetically distinguishable tissue [16].
Single-cell reduced representation bisulfite sequencing
(RRBS) was employed to identify regions of highly coordi-
nated methylation (methylation haplotype blocks) that can
be utilized in quantitative estimation of tumor load and
tissue-of-origin mapping of cfDNA in patients with lung or
colorectal cancer [44]. Identification of genomic loci that are
unmethylated specifically in cardiomyocytes or hepatocytes,
respectively, might serve as biomarkers for the detection of
cardiac disease or liver damage [45, 46].

Immunoprecipitation of methylated cfDNA combined
with high-throughput bisulfite-free sequencing (cfMeDIP-
seq) enabled methylome analysis of small quantities of
cfDNA and facilitated sensitive tumor detection and clas-
sification [47]. The enrichment of methylated cfDNA mol-
ecules marked an important step in methylation pattern
analysis because it circumvents DNA degradation-prone
bisulfite conversion.

Several probabilistic models such as CancerLocator or
CancerDetector infer proportions and tissue-of-origin of
tumor-derived cfDNA using genome-wide DNA methyl-
ation data or joint methylation states of multiple adjacent
CpG sites to detect cancer with high sensitivity and speci-
ficity [48, 49]. With real plasma cfDNA samples, Cancer-
Locator and CancerDetector reached a sensitivity of 74.4
and 94.8%, respectively, when specificity was 100%. The
Pearson’s correlation coefficient for both models were
0.975 and 0.9974, respectively.

To improve tissue-of-origin analysis, it is crucial to
establish reference methylomes of key cell types and not
only tissues that mostly represent mixtures of cell types.
For this purpose, Moss et al. generated a reference atlas of
25 human tissues and cell types covering major organs and
cells involved in common diseases and demonstrated that
plasma methylation patterns can be used to accurately

identify cell type-specific cfDNA in healthy and patholog-
ical conditions [50].

As an alternative approach, Tse et al. achieved the
accurate detection of 5mC using single-molecule real-time
sequencing (SMRT-seq) using the long-read sequencing
technology PacBio [51]. Thismethod takes advantage of the
sequence context and pulse signals associated with DNA
polymerase kinetics analyzed by a convolutional neural
network to accurately detect 5mC modifications and might
serve as an alternative technique for methylation pattern
analysis. Most recently, a human methylome atlas based
on deepWGBS and 39 cell types sorted from healthy tissue
samples was completed [52].

Loci uniquely unmethylated in a specific cell type are
often located at transcriptional enhancers and contain
DNA binding sites for tissue-specific transcriptional reg-
ulators, whereas uniquely hyper-methylated loci are rare
and enriched for CpG islands, polycomb targets and CTCF
binding sites [52]. The authors developed a computa-
tional machine learning suite to represent, compress,
visualize and analyze WGBS data (available at: https://
github.com/nloyfer/wgbs_tools) [52]. One clinical vali-
dation study based on targeted methylation analysis of
cfDNA [53, 54] reported an overall sensitivity of 51.5%
and an overall specificity of 99.5% for cancer type pre-
diction [55].

Besides the widely studied 5mC modification,
5-hydroxymethylcytosine (5hmC) affects a wide range of
biological processes from development to pathogenesis
[56, 57]. 5hmC is converted from 5mC by the ten-eleven
translocation (TET) family dioxygenases and is generally
thought to reflect gene activation on permissive chromatin
[58]. This intermediate DNA modification is enriched in
enhancers, gene bodies and promoters and changes in
5hmC correlate with changes in gene expression levels
[59, 60]. 5hmC additionally displays a tissue-specific mass
distribution [61, 62] and decreased levels of 5hmC are often
observed inmany solid tumors compared to corresponding
healthy tissues [63]. Several studies have utilized 5hmC
signatures in cfDNA to detect cancer type and stage
[64–66]. One study demonstrated that PDAC tissue-derived
hyper-hydroxymethylated genes can separate non-cancer
cfDNA from PDAC cfDNA samples [64]; making hydrox-
ymethylation patterns another promising approach for
tissue-of-origin analysis.

Overall, WGBS-based methods and deconvolution
algorithms paved the way for methylation pattern analysis
to determine the tissue-of-origin of cfDNA. On the one
hand, those approaches were utilized to put together
high-resolution methylation profiles of different reference
tissues or cell types and on the other hand were already
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able to sensitively detect some cancer types and several
other pathologies. With the development of bisulfite-free
techniques such as cfMeDIP or the investigation of the
hydroxymethylome, the potential of epigenetic-based
liquid biopsies might be exploited further.

Nucleosome footprinting

In addition to DNA methylation, gene expression is also
regulated by the spacing of nucleosomes that are respon-
sible for condensing DNA into chromatin. The basic unit of
DNA compaction is the nucleosome, which is composed of
a histone protein octamer with ∼147 bp of DNA wrapped
around it. The fifth histone H1 is located outside the
nucleosome core and binds ∼20 bp of linker DNA. Nucle-
osomes are repeated throughout the entire genome, each
separated by unwrapped linker DNA of varying lengths.
Nucleosomes govern the accessibility of DNA by occluding
proteins involved in gene regulation and transcription
from binding. On the other hand, chromatin opening and
movement of nucleosome from specific genome regions is
essential for binding of transcription factors. The gene
expression of distinct cell types differs significantly and
consequently, nucleosome positions vary considerably
between distinct cell types [14].

During the release of cfDNA into a body fluid, the
nuclear DNA is cleaved by different enzymes depending
on the release mechanism. Nucleosome-bound DNA is bet-
ter protected against cleavage than linker DNA or open
chromatin regions lacking nucleosomes. Consequently,
nucleosome-bound regions are expected to generate more
reads when sequencing the plasma DNA pool, whereas
nucleosome-depleted regions will be underrepresented in
sequencing reads.As a result, uncoveredDNAsites represent
transcription-prone regions, whereas higher coverage in-
dicates lower expression levels of this genomic region. Thus
sequence read-density across the genome reflects nucleo-
some positioning, which is in turn informative about gene
expression and is highly related to cell identity [67] and can
beemployed to trace the tissue-of-originof cfDNAmolecules.

Micrococcal nuclease (MNase) is an endo-exonuclease
that preferentially digests unprotected DNA (i.e., accessible
linker DNA between nucleosomes) and mostly leaves
nucleosome-protected DNA intact. MNase was utilized to
identify nucleosome occupied regions of DNA [68]. Most
nucleosome mapping experiments and established nucleo-
some position maps until now are based on MNase assays.
MNase treatment followed by sequencing showed that pro-
moters of highly expressed genes contain pronounced

nucleosome-depleted regions (NDRs) directly upstream of
the transcriptional start site (TSS) [69–71]. Additionally,
transcription termination sites (TTSs) were found to be
nucleosome depleted as well [70]. In contrast, promoters of
less expressed or silent genes are mostly occupied by nu-
cleosomes and pronounced NDRs are not detected at sites
with low or no transcription.

Deep sequencing of total cfDNA extended the available
information on NDRs and yielded a genome-wide map of
in vivo nucleosome occupancy [14]. The authors observed
that short cfDNA fragments directly footprinted transcrip-
tion factor occupancy and found that the nucleosome
spacing pattern could be used to infer the tissue origin of
cfDNA. In healthy individuals, these epigenetic footprints
match hematopoietic lineage, whereas additional contri-
butions are detected in cancer patients, often aligning with
the cancer type [14]. Ulz et al. reported that plasma DNA
coverage in the promoters could be used to predict the
expression of genes [72]. WGS of plasma and nucleosome
promoter analysis using machine learning for gene clas-
sification identified two discrete regions at TSSs where
nucleosome occupancy results in different read depth
coverage patterns for expressed and silent genes [72]. This
allowed the authors to classify expressed cancer driver
genes in regions with somatic copy number gains in
patients with metastatic cancer [72].

A systematic nucleosomics database (NucPosDB) is
now available that curates published nucleosome posi-
tioning datasets in vivo [73]. It also includes datasets of
sequenced cfDNA that reflect nucleosome positioning in
situ in the cells of origins [73]. Additionally, NucPosDB lists
computational tools for the analysis of nucleosome posi-
tioning or cfDNA experiments and contains theoretical
algorithms for the prediction of nucleosome positioning
preferences from DNA sequence.

However, studies that investigated the origin of plasma
cfDNA in a genome-wide and tissue-wide manner came to
varying results [14, 15, 74–76]. They all found that white
blood cells contributed most to the plasma cfDNA pool but
with varying percentages. Further, the contributions of
other organs (e.g., liver, heart, lung tissue) are still poorly
understood. Overall, cfDNA sequence read coverage holds
abundant information about nucleosome positioning and
a sensitive tissue-of-origin analysis might be performed
using this approach for multiple pathologies.

Transcription factor binding sites

Transcription factors (TFs) play a pivotal role in the regu-
lation of gene expression. They fine-tune the expression of
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their target genes and are key players in development and
differentiation [77]. Deregulated TFs are involved in the
emergence of cancer by not suppressing the expression of
cancer driver genes correctly or by mistakenly silencing
tumor suppressor genes. Distinct TFs govern gene expres-
sion in different cell types. Identifying occupied tran-
scription factor binding sites (TFBS) within the plasma
DNA will open up an additional perspective for a more
dynamic analysis of gene expression and tissue-of-origin.

So far, two studies dealt with inferring TFBSs from
cfDNA fragmentation patterns. Snyder et al. observed that
short cfDNA fragments (35–80 bp) directly footprint the in
vivo occupancy of TFBSs by CTCF and seven other TFs [14].
Specifically, they used single-stranded libraries that
included significantly more short cfDNA molecules than
double-stranded libraries and determined whether a TFBS
was occupied or not by calculating the windowed protec-
tion score (WPS) at a given genomic coordinate. TheWPS is
the number of DNA fragments completely spanning a 16 bp
window centered at a given genomic coordinate minus the
number of fragments with an endpoint within that same
window [14]. With this approach, they were able to infer
additional contributing tissues in non-healthy states.

In contrast, another study included hundreds of TFs
with 1,000 TFBSs per TF from publicly available
ATAC-seq data and from plasma cfDNA WGS data to
infer accessibility of TFBSs from cfDNA fragmentation
patterns. For this purpose, they developed an accessi-
bility score that measures the strength of nucleosome
phasing at the TFBS, reflecting the strength of the TF
binding [27]. Briefly, the raw coverage signal was split by
Savitzky-Golay filtering into a high and low frequency
signal. The rank differences (i.e., overall z-scores) in this
high frequency signal between tumor and healthy sam-
ples with defined thresholds for TFBS accessibility dif-
ferences was used as the accessibility score. With this
approach, the authors were able to profile numerous
individual TFs and objectively compare TF binding
events in plasma samples. Thereby, a dynamic view on
TF activity was possible which allowed subclassification
of tumor entities and TFBS plasticity during disease
progression [27].

Taken together, cfDNA fragmentation patterns do not
only give information about nucleosome occupancy, but
also offer molecular insights on TFBS occupancy, allowing
analysis of gene expression and determination of the
tissue-of-origin of different cfDNA molecules. This
minimally-invasive method might substantially add to a
more dynamic picture on recent transcriptional events
during disease progression and therapy monitoring.

Fragmentomics

It has become increasingly clear that cfDNA size distribu-
tion is nonrandom and dictated by the cell origin, the
release pathway, and nucleases present in the blood
[78, 79]. The generation of plasma DNA is related to cell
death (e.g., apoptosis and necrosis among others) and
most probably involves enzymatic degradation processes
[8]. Differences in tissue expression of involved nuclease
enzymesmight influence the endmotif profiles of resultant
cfDNA released by the corresponding tissue and offer
insights on the tissue-of-origin. Protein-bound DNA frag-
ments, typically associated with histones or TFs, prefer-
entially survive digestion and are released into the blood,
while nakedDNA is digested and is not detectable in cfDNA
analysis.

Commonly, the majority of cfDNA molecule sizes peak
at the DNA length wrapped around one nucleosome
(i.e., 167 bp) [14, 17, 25]. A series of additional peaks with
∼10 bp periodicity starting from ∼143 bp downward puta-
tively correspond to the helical pitch and binding sites of
DNA to the nucleosome core [14]. It has also been shown
that fragment size of cfDNA is influenced by pathologies,
e.g., cfDNA from cancer patients tends to be a bit shorter
than cfDNA from healthy individuals (147 vs. 167 bp)
[17, 25]. Generally, the lengths of cancer-derived cfDNA
fragments tend to be more variable than non-cancer DNA
and mutant ctDNA is more fragmented than nonmutant
cfDNA [17]. Cancer, pathologies or injuries all have in
common that they induce increased cell death in the
affected tissue, leading to elevated levels of cfDNA mole-
cules to the plasma DNA pool from the corresponding tis-
sue. Tissue-of-origin analysis based on fragmentation
patterns might reveal elevated contributions to the plasma
DNA pool and enable sensitive detection of pathologies
lacking genetic differences, such as myocardial infarction,
stroke and autoimmune disorders.

Ivanov et al. investigated cfDNA fragmentation pat-
terns for the first time and demonstrated that cfDNA carries
a nonrandom fragmentation pattern and retains charac-
teristics previously found in genome-wide analysis of
chromatin structure and are concordant with correspond-
ing cell-line derived patterns [80], demonstrating the
potential of fragmentation pattern analysis of cfDNA as
novel diagnostic biomarkers. An early study investigated
cfDNA end characteristics in addition to cancer-associated
somatic mutations [24]. The authors demonstrated the
existence of tumor-associated cfDNA preferred end-
coordinates; specifically, they found distinct preferred
end coordinates of cfDNA derived from transplanted liver,
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hepatocellular carcinoma, or the placenta. Quantitative
assessment of cfDNA molecules bearing respective groups
of end signatures correlated with the amounts of tumor- or
liver-derived cfDNA in plasma [24].

The establishment of a pan-cancer catalog of ctDNA
fragmentation features identified characteristic differences
in the size distribution of tumor-derived and noncancer
DNA fragments [17], wheremutant ctDNA is generallymore
fragmented than nonmutant cfDNA. These observations
guided the way for designing a machine-learning-based
method of tumor DNA detection with greater sensitivity
that is based on in vitro selection of short cfDNA fragments
(90–150 bp), shallow whole-genome sequencing (sWGS),
and a machine-learning algorithm that is able to detect
multiple cancer types in plasma [17]. Fragmentation
pattern analysis has also been applied to cfDNA from
cerebrospinal fluid (CFS) from glioma patients, demon-
strating that the fragmentation pattern of cfDNA in CFS is
different from that in plasma [81].

Sun et al. developed an orientation-aware plasmaDNA
fragmentation analysis that included – in addition to
fragmentation pattern analysis measured by sequence
coverage imbalance – the orientation of cfDNA fragments
(i.e., upstream or downstream fragment end profile) [82].
This enabled the authors to determinenot only nucleosome
positions, but also identify short linker DNA and tissue-
specific open chromatin regions. This, in turn, allowed
the measurement of the relative contribution of various
tissues toward the plasma DNA pool for tissue-of-origin
analysis.

A different approach named DNA evaluation of
fragments for early interception (DELFI) considered large-
scale cfDNA fragmentation patterns at megabase level in
patients with cancer and observed altered fragmentation
patterns in cancer samples [25]. A machine learning model
that incorporated genome-wide fragmentation features
was able to identify the tissue-of-origin of distinct cancers
to a limited number of sites in 75%of cases. Combining this
approach with mutation-based cfDNA analyses detected
91% of patients with cancer [25].

Recently, a genome-wide catalogue of cfDNA fragment
end sequence patterns of a large cohort of cancer patients
was published [83]. Specifically, the work focused on
the diversity of bases at the end of cfDNA fragments
(cfDNA termini) and converted the fragment end sequences
into a quantitative metric – the Fragment End Integrated
Analysis (FrEIA) score. The authors showed that fragment-
end sequence and diversity were altered in 18 different
cancer types using low-coverage whole genome sequencing
and were able to classify cancer samples from controls at
low tumor content.

Overall, several different approaches have been
developed during the last years that inferred cell or tissue-
of-origin from cfDNA fragment size distribution, fragment
preferred end coordinates, and fragment end sequence
patterns (also reviewed in Ref. [84]). All of these techniques
rely on whole-genome sequencing and sophisticated ma-
chine learning models and were validated in proof-of-
concept studies with a limited number of samples, yet with
promising results regarding early detection of cancer and
several other pathologies.

Histone modifications

Histone modifications alter the interaction between DNA
and nuclear proteins and thereby regulate chromatin
accessibility and gene transcription. Histone proteins
can be post-translationally modified in multiple ways,
including methylation, acetylation, and ubiquitination
[85]. For example, the histone modifications H4K16ac,
H3K4me1/2/3, and H3K36me1/2/3 represent activating
marks and are considered hallmarks of open chromatin
where active transcription takes places, whereas the his-
tone modifications H3K9me3 and H3K27me3 have a
repressive effect on transcription and mark regions of
closed chromatin [85].

Histone modification patterns reflect recent events
related to chromatin regulation and activity of RNA poly-
merase. Different combinations of such histone modifica-
tions mark accessible/active promoters, enhancers and
gene bodies of actively transcribed genes [86–91]. There-
fore, histone modifications can give insights on changes in
transcriptional programs in cells upon pathologies, as
transcription is often altered at the onset of disease.
Recently, chromatin immunoprecipitation and sequencing
of cell-free nucleosomes from human plasma (cfChIP-seq)
demonstrated that plasma nucleosomes retain the epige-
netic information of their cells of origin and that cfChIP-seq
recapitulates the original genomic distribution of modifi-
cations associated with active transcription [26].

Briefly, chromatin immunoprecipitation was per-
formed with ChIP antibodies (specific for different histone
modifications) immobilized on paramagnetic beads
directly in plasma, followed by on-bead adaptor ligation
before DNA isolation. The authors employed four anti-
bodies specifically marking accessible/active promoters
(H3K4me3 or H3K4me2), enhancers (H3K4me2) and gene
bodies of actively transcribed genes (H3K36me3).
CfChIP-seq allowed genome-wide unbiased analysis and
was capable of determining the tissue-of-origin and
detecting differences in patient- and disease-specific
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transcriptional programs (including cancer-specific sig-
natures) by generating biologically relevant reduced rep-
resentation of the genome.

Another study demonstrated that H3K36me3 cfChIP
followed by droplet digital PCR can be used to identify
tumor-specific transcriptional activity of the mutated
EGFR-L858R allele in non-small cell lung cancer [92].
Specifically, blood plasma cfChIP results revealed active
transcription of EGFR-L858R in NSCLC tumors. This focus
on tumor-specific transcriptional activity of genes
harboring somatic mutations will help to gain more in-
sights on the revelance of mutations in, e.g., therapy
resistance mechanisms.

In contrast to stable genomic alterations or DNA
methylation, cfChIP-seq offers insights into transient
changes in gene expression altered upon various pathol-
ogies and during disease progression. However, its clinical
utility remains to be demonstrated.

Summary and outlook

Tissue-of-origin analyses developed during the last couple
of years by numerous groups expanded cfDNA research
from focusing on stable genetic aberrations exhibited by a
very limited number of cfDNA molecules towards epige-
netic characteristics observed on a higher number of mol-
ecules in the plasma cfDNA pool. Many proof-of-concept
studies were published recently, demonstrating the
potential of these novel approaches. Most methods are
based on targeted approaches or enrichment of targets
through antibody- or chemical affinity-based techniques,
leading to lower sequencing costs by reduced sequencing
depth, higher sensitivity, and lower background.

The continuous development of methods, for example
the entirely enzymatic conversion for mapping 5mC and
5hmC methylation [93, 94] instead of bisulfite conversion,
may pave the way for detecting methylation patterns more
sensitively. Measuring two distinct epigenetic cfDNA fea-
tures in a single assay might enhance the value of liquid
biopsies further. Recently, Erger and colleagues presented
an approach for measuring cytosine methylation and
nucleosomeoccupancy simultaneously [95, 96]. Thismight
be of special interest, asmost pathologies are not causedby
a single risk factor, but by multiple distinct risk factors.

Lastly, combination of different liquid biopsy
approaches significantly increased sensitivity and speci-
ficity; for instance, analyzing mutations in cfDNA and
levels of circulating proteins in plasma in the same sample
[97]. Fragmentation profile-based tissue-of-origin analysis
combined with mutational cfDNA analysis, for example,

elevated the sensitivity of the combined approach in
patients with cancer from 75% (fragmentation profile
analysis only) to 91% [25]. This clearly emphasizes the
potential of liquid biopsy diagnostics by combining
different approaches, but simultaneously demonstrates
the need for further development.

However, several limitations still need to be overcome.
First, despite the availability of many proof-of-principle
studies, validation of the methods in larger multicenter
studies is still lacking. Second, the significant influence of
the biology of DNA release from different cells and pre-
analytics oncfDNAyield aswell as sizedistributiondeserves
further attention and streamlining to assure high quality of
analyses [98]. The community needs to define guidelines for
handling cfDNA samples from blood draw until analysis.
Lastly, the presence of high quantities of non-tumor cfDNA
in cancer patients necessitates an extensive bioinformatic
expertise. There is a great need for well-documented and
well-maintained open-source bioinformatic packages for
the analysis of cfDNA epigenetic features. Streamlining
bioinformatics pipelines will achieve comparability be-
tween different studies that is not given so far. Different
machine-learning models need to be tested on independent
datasets to be better evaluated. Further, it will be important
to integrate multiple cfDNA features from one dataset.
Finally, open access to raw cfDNA NGS data is urgently
needed. First efforts in solving these issues were started
recently by publication of e.g. cfDNApipe, which is a
comprehensive quality control and analysis pipeline for
high-throughput cfDNA sequencing data [99], Finale DB
[100] – a browser and database of cfDNA fragmentation
patterns, or CFEA database [101], a comprehensive public
database with cfDNA-based epigenome profiles for 27
humandiseases. A reproducible bioinformatics pipeline has
uniformly processed these data [101].

The substantial advancements in cfDNA analysis
during the last decade extended the focus from genetic
alterations to epigenetic cfDNA characteristics. With this
shift towards more general marks on a higher number of
cfDNA molecules, it was possible to determine the cell or
tissue-of-origin of individual cfDNA molecules and esti-
mate contributions of different tissues to the plasma DNA.
This greatly expanded potential clinical applications of
liquid biopsies in early detection of cancer and other
pathologies, as well as therapy and minimal residual dis-
ease monitoring. Mutation-based liquid biopsy is already
clinically implemented as companion diagnostics for
numerous cancer types, aiding selection of targeted ther-
apy and detection of therapy resistance; and epigenetic-
based liquid biopsies might enable earlier detection of
pathologies and minimal residual disease monitoring.
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Importantly, this opens the door to more comprehen-
sive tissue diagnostics beyond genetics, making it possible
to detect all kinds of different organ pathologies as well as
systematic inflammation processes. Combining tissue-of-
origin analysis with mutational analysis might further
boost its performance and expand its application to yet
uncovered aspects of pathology. Given the many distinct
approaches developed so far, it will be interesting to see
which method or combined approach will make its way
into broad application after further development and
validation in larger studies.

In the future, it will be of great interest to investigate
the interaction of cfDNA with circulating cells (e.g., neu-
trophils, platelets) and gain basic insights on cfDNA
biology and function. Taken together, tissue-of-origin an-
alyses in plasma samples based on epigenetic features
hold great promise to add to a versatile diagnostic toolbox.
Thereby, the needle in the haystack is as relevant as the
haystack itself.
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