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Abstract: Laparoscopic cholecystectomy (LCHE) is a widely 
employed model for surgical instrument and phase recognition 
in the field of machine learning (ML), with the latter being 
assigned to identify critical events and to avoid complications. 
Although ML algorithms have been proven to be effective for 
this instance and in selected patients, it is questionable whether 
patients receiving LCHE in daily clinical routine would 
actually benefit from adverse event prediction by ML 
applications. We believe, that the statistical problem of low 
prevalence (PREV) of potential adverse events in an 
unselected population and consequential low diagnostic yield 
was not considered adequately in recent research. Therefore, 
we performed a query to the G-DRG (German Diagnosis 
Related Groups) database of the German Federal Statistical 
Office with the aim to calculate prevalence of surgical and 
postoperative adverse events coming along with LCHE. The 
results enable an estimation of positive (PPV) and negative 
(NPV) predictive values hypothetically achievable by ML 
applications aiming to predict an adverse surgical course. 
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1 Introduction 
Laparoscopic cholecystectomy (LCHE) is a procedure with a 
high degree of standardization and has replaced the open 
approach for most indications. In terms of machine learning 
(ML), it serves as a model for numerous scientific issues. 
LCHE is performed hundreds of thousand times per year all 
over industrial countries and is easy accessible for video 
recording in daily clinical routine. Main applications of ML-
based solutions are detection of laparoscopic surgical 

instruments [1], anatomical structures [2], and even the 
prediction of surgical course [3,4]. Furthermore, LCHE serves 
as an established model for improvement of robotic and 
computer-assisted surgery. [5] Video, sensor, and clinical data 
represent possible input for ML applications, mostly realized 
in form of Convolutional Neural Networks (CNN). [6] 
Datasets with readily annotated video records and clinical 
parameters like Cholec80 or CholecSeg8k are freely available 
for research. [7] Although substantial advance has been 
achieved in the field of phase and adverse event recognition 
[8-10], it is unclear whether LCHE actually is a proper model 
surgery for postoperative outcome prediction in a real world 
unselected population. Numerous recent works report 
impressive sensitivity (SENS) and specificity (SPEC) rates 
exceeding the 80% mark. Taken the reported low incidence of 
complications, it is rather questionable, how useful those 
applications would come in clinical routine. SENS and SPEC 
do not depend on the test collective’s characteristics, but are 
properties of the test itself. Contrarily, parameters that 
correlate with the prevalence of adverse events, are positive 
(PPV) and negative (NPV) predictive values. [11] These 
values stand for the probability that a prediction of an adverse 
event (PPV) or its denial (NPV) by a particular test is correct. 
In this article we deliver prevalences for a set of relevant 
adverse events based on the German reimbursement statistics, 
comprising all 1.8 million LCHE performed in Germany from 
2008 to 2018. Thus, PPV and NPV achievable by hypothetical 
ML applications trained on these adverse events become 
estimatable. Figure 1 illustrates the calculation of fundamental 
parameters as SENS, SPEC, PPV, NPV, and PREV. The table 
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Figure 1: Contingency table of fundamental test parameters: 
sensitivity (SENS), specificity (SPEC), positive predictive value 
(PPV), negative predictive value (NPV), prevalence (PREV), 
and size of the whole population (n) 
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fields (A-D) therefore have to be filled with the absolute case 
numbers in the particular groups.  

2 Material and Methods 
We performed a query to the G-DRG database of the German 
Federal Statistical Office (DESTATIS) [12]. The query code 
was written in SAS language version 9.3. All cases of LCHE 
and converted LCHE (OPS 5-511.1, 5-511.2) between 2008 
and 2018 in Germany were included. Prevalences of relevant 
adverse events comprising in-house mortality, need for 
surgical revision, postoperative bleeding (ICD-10 T81.0), 
accidental violation of anatomic structures (T81.2), surgical 
site infection (T81.4), and anesthesiological complications 
(T88.2-T88.6) were calculated on this basis. Then, we 
estimated PPV and NPV presuming a stepwise run through the 
range of SENS and SPEC between 50% and 99%. The script 
for calculation was written in the statistical language R version 
3.6. [13] Results are presented for the unselected collective of 
all LCHE, and additionally for the preselected group of cases 
with conversion to open surgery. Finally, we propose the draft 
of a representative test collective for ML applications and 
responsible sample sizes based on the characteristics of all 
LCHE performed during the period of observation. Rates are 
given in mean percentage ± standard deviation. 

3 Results 
The query to the G-DRG database revealed a yearly number 
of 164,238 ± 4,233 laparoscopic cholecystectomies. The 
conversion rate was at 4.65 ± 0.71%. The overall in-house 
mortality following LCHE and during the same hospital stay 
was at 0.54 ± 0.6% while the mortality rate was much higher 
in case of converted surgery (3.31 ± 0.66%). Of note, the 
mortality rate increased significantly during the period of 
observation. (Figure 2B) Nearly all adverse events were more 
likely to emerge in case of a conversion from laparoscopic to 
open surgery. Due to the data structure, it is unfortunately not 
possible to determine whether a complication caused the 
conversion or the other way around. The overall rate of 
revision during the same hospital stay was at 1.35 ± 0.04% and 
at 9.49 ± 1.6% in converted surgeries. The most common 
complication was a postoperative bleeding with an overall rate 
of 1.41 ± 0.1% and 4.05 ± 0.6% in case of conversion. 
Likewise, the bleeding rate increased as well during the 
observation time while the postoperative infection rate 
decreased in both, overall (0.63 ± 0.09%) and conversion 
group (3.61 ± 0.25%). Anesthesiological complications are 
rare in both collectives with 0.41 ± 0.07% for the entire cohort 
and 0.48 ± 0.14% for the conversion group. Accidental 
violation of anatomic structures occurred in 0.41 ± 0.06% 
overall and in 2.91 ± 0.42% in case of conversion. Based on 
these rates, we estimated positive and negative predictive 
values for hypothetical ML applications predicting these 

particular adverse events. Figure 3 illustrates the calculation 
based on the rates of 2018 (Panel A-C and F-M) and 2017 
(Panel D and E). As expected, the maximum achievable PPV 
presuming all combinations of SENS and SPEC depends on 
the prevalence of the specific complication. 
As can be seen in these illustrations, a hypothetical ML 
application, predicting the death of a patient during the 
hospital stay after LCHE with a presumed SENS of 1.0 and a 
SPEC of 0.99 would still just reach a maximum PPV of less 
than 0.4. (Figure 3B) This illustrates, that if the ML 
applications predicts the patient’s death, the probability that 
this event will really occur will not exceed 40%. The same 
theoretical ML approach applied to the collective of converted 
LCHE presuming same SENS and SPEC would contrarily 
reach a PPV of about 0.8 implying that a prediction of death 
would actually indicate in-hospital mortality in 80% of cases. 
(Figure 3C) This fact emphasizes the necessity of a prior 
assessment of the pre-test probability of specific adverse 
events. In case of low prevalence, even a very sensitive and 

Figure 2: Adverse event rates of laparoscopic cholecystectomy in 
Germany between 2008 and 2018, gaps in the plots represent a 
lack of data for the particular year. A y-axis: absolute case numbers 
B-G y-axis: percentage 
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specific test applied to an unselected population of LCHE 
patients appears to be rather useless. On the other hand, the 
data obtained from our query can be the basis to estimate 
sample size and characteristics of a representative collective 
used for inference of a hypothetical ML application. Table 1 
depicts the composition of an unselected test collective with 
different sample sizes, regarding the queried complications 
and their probabilities. Based on the complication rates of the 
year 2018, 122 or more samples would be necessary to include 
at least one case of each adverse event. Due to the low 
prevalence of most complications, relatively high sample size 
numbers are necessary to achieve a distribution equal to that 
of the real population. Obviously, lower sample sizes would 
be necessary, when focusing only on converted cases, as 
adverse events show a higher prevalence in this group. 

Table 1: Composition of representative inference groups for 
hypothetical ML applications, predicting complicated course of 
laparoscopic cholecystectomy based on the G-DRG data of 2018  

n Mort. 
(0.54%) 

Conv. 
(4.65%) 

Rev. 
(1.35%) 

Bleed. 
(1.41%) 

Infect. 
(0.63%) 

Anesth. compl. 
(0.41%) 

Accid. violation  
(0.41%) 

122 1 6 2 2 1 1 1 

366 2 17 5 5 2 2 2 

610 3 28 8 9 4 3 3 

1098 6 51 15 15 7 5 5 

1342 7 62 18 19 8 6 6 

4 Discussion 
With the data obtained from our query, we were able to 
calculate the prevalence of conversion to open surgery during 
LCHE, the rate of revision surgery during the same hospital 
stay, and the rate of four adverse event types, as defined in the 
G-ICD10 system. Data samples used for training and inference 
seem often rather small, as there exists no generally accepted 
minimal sample size in the evaluation process of ML 
applications. Our findings reveal, that the highly standardized 
LCHE which is not only one of the most frequently performed 
surgeries in Germany, but also the most preferred model for 
the training and establishing of ML based algorithms, comes 
along with a low general average rate of complications. This 
raises the problem, that ML applications even with high SENS 
and SPEC applied to a test collective without previous filtering 
and densification, will achieve low PPV simply due to a low 
probability of actual adverse event occurrence. In our study, 
solely the conversion from laparoscopic to open surgery 
reaches responsible PPV of up to 0.8 in an unselected 
collective presuming the characteristics of the German 
population. Thus, the key to deal with low rates of adverse 
events may be a stepwise approach that first predicts the 
probability of conversion and then estimates the probability of 
an additive adverse event. Another strategy would be to create 
a representative test collective with the same characteristics as 

Figure 3: Simulated positive predictive values (PPV) and negative 
predictive values (NPV) for possible AI applications predicting the 
particular complications presuming each, sensitivity (SENS) and 
specificity (SPEC) between 0.5 and 0.99. Left panels: overall 
collective, Right panels: collective with necessity of conversion to 
open surgery, simulations except D and E are based on the data of 
2018 Panels D and E base on 2017. 
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for instance the German population. As depicted in Table 1, 
such a sample would need to be by far larger than any dataset 
currently available for the training of ML-based applications. 
The effort of possible solutions to the problem of low 
prevalences inevitably leads to the crucial question of this 
article: Is LCHE really an appropriate model surgery when ML 
scientists intent to predict critical events? All in all, LCHE 
seems to represent some kind of worthwhile warm-up 
exercise, virtually to help ML applications to find their feet. 
Current challenges of ML research are still to achieve a 
reliable instrument and phase detection. At this stage, LCHE 
appears practical as a rather limited selection of instruments is 
needed and intraoperative steps are easy to define. [14] In 
addition, in surgical robotics and OR management research, 
LCHE undoubtedly serves as a powerful model. Nonetheless, 
our data reveal, that a hypothetical ML application predicting 
adverse events after LCHE will not impact the daily clinical 
routine significantly. Therefore, it is mandatory to rethink the 
future focus of ML research in terms of surgery. Applications 
achieving high detection rates under controlled circumstances 
inside a laboratory without clinical relevance seem rather 
useless.  A possible approach to solve this problem could be to 
sweep to alternative model surgeries, which are performed in 
high numbers too and offer a certain degree of standardization, 
but are related to higher rates of adverse events. For example, 
laparoscopic sigmoid, pancreas or oesophageal resection could 
become promising models as they show significantly higher 
complication rates and different complication profiles. [15-17] 
Lessons learned from LCHE regarding phase and instrument 
recognition could easily be transferred to such surgeries and 
thus be the basis for an adverse event recognition where it is 
actually needed. Nevertheless, our results clearly show the 
necessity to create larger and more representative databases 
with comprehensive labelling and additive medical 
information to foster ML research in surgery. This can be 
achieved only by the creation of multicenter datasets to meet 
characteristics similar to that of the German overall collective 
for instance.  Realistic clinical questions demand sample sizes 
of far more than 100 data sets. Moreover, a responsible 
synthesis of new data technology in terms of ML and 
fundamental principles of classical statistics is essential. Pure 
declaration of SENS and SPEC as exclusive quality criteria 
seems irresponsible as well as expected occurrence rates of 
adverse events within the final test collective must be 
considered early during study design. [18] Following this 
strategy, a deceptive impression of the actual usability of 
adverse event prediction tools becomes possible. As ML 
applications currently are a hot topic triggering some kind of 
gold rush mood, it is mandatory even to address their real 
clinical applicability and meaningfulness as soon as possible. 
[19] Hence, as a first step, the advantages and disadvantages 
as well as the frontiers of particular model surgeries need to be 
analyzed thoroughly. 

5 Conclusion 
LCHE finds broad use as a model for training and testing of 
machine learning applications. As this kind of surgery is a 
proper choice for basic instrument and phase recognition, we 
do not see its strength if it comes to the actual daily clinical 
use in terms of outcome and adverse event prediction. 
Therefore, new model surgeries with higher intrinsic 
complication rates must be opened up. Furthermore, the 
creation of comprehensive multicenter datasets are mandatory 
to ensure reliable and representative ML research in surgery. 
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