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Abstract

This dissertation addresses the challenge of achieving long-term localization and mapping
in changing environments using Light Detection and Ranging (LiDAR), Inertial Measure-
ment Unit (IMU), and camera sensors integrated with reference 3D building information
models (BIM models) or point clouds. The central research question investigates how
these reference maps can be used to align and correct sensor data, thereby enhancing
accuracy and robustness in mapping.

The developed methodology introduces novel frameworks, such as OGM2PGBM,
SLAM2REF, and BIMCaP, that address key challenges in sensor pose refinement and
map alignment. OGM2PGBM converts Occupancy Grid Maps (OGMs) into Pose Graph-
based Maps (PGBMs), facilitating the transition from Particle Filter (PF) to Graph-based
Localization (GBL) algorithms and enhancing pose tracking accuracy, which is crucial for
autonomous mobile robots operating in dynamic environments. SLAM2REF integrates
new place recognition descriptors and registration algorithms to align drifted session data
acquired with Simultaneous Localization and Mapping (SLAM) systems with reference
maps, enabling reliable ground truth pose calculations. BIMCaP refines sensor poses by
combining semantic landmarks with depth completion methods to integrate LiDAR with
camera measurements, effectively registering point clouds, even in cluttered environments,
and ensuring accurate alignment with reference maps.

Extensive evaluations with open-access datasets demonstrate significant improvements
in SLAM map accuracy, advancing sensor pose precision and semantic landmark extraction
for long-term navigation and management.

This research offers practical benefits across various fields. It enables reliable ground
truth pose estimation for evaluating SLAM and localization algorithms, minimizing the
need for costly sensors. Developers of autonomous vehicles benefit from robust real-time
pose-tracking algorithms that enhance localization in changing environments. In Aug-
mented Reality (AR), the methods ensure precise alignment of real-world and virtual
data, enhancing applications in architecture and construction. BIMCaP can also assist
mobile robotics in retail by aligning data with permanent reference map elements, improv-
ing map accuracy and change detection for better inventory management. Additionally,
this research advances semantic segmentation for construction sites, contributing to safer
and more efficient construction practices through improved digital mapping.

The open-source datasets and algorithms provided promote reproducibility and bench-
marking, accelerating the development of more effective and resilient methodologies. The
results inspire further research into long-term collaborative robot mapping and robust pose
tracking in changing environments.



Zusammenfassung

Diese Dissertation befasst sich mit der Herausforderung, langfristige Lokalisierung und
Kartierung in sich verändernden Umgebungen zu erreichen, indem LiDAR, IMU und Kam-
erasensoren mit Referenz-3D-BIM-Modellen oder Punktwolken integriert werden. Die zen-
trale Forschungsfrage untersucht, wie diese Referenzkarten verwendet werden können, um
Sensordaten auszurichten und zu korrigieren, wodurch die Genauigkeit und Robustheit
der Kartierung verbessert wird.

Die entwickelte Methodik führt neuartige Rahmenwerke wie OGM2PGBM, SLAM2REF
und BIMCaP ein, die die wichtigsten Herausforderungen bei der Verfeinerung der Sensor-
position und der Kartenausrichtung angehen. OGM2PGBM wandelt OGMs in PGBMs
um, was den Übergang von PF- zu GBL-Algorithmen erleichtert und die Genauigkeit
der Posenverfolgung verbessert, was für autonome mobile Roboter in dynamischen Umge-
bungen entscheidend ist. SLAM2REF integriert neue Ortserkennungsdeskriptoren und
Registrierungsalgorithmen, um mit SLAM-Systemen erfasste Daten von drifted sessions
mit Referenzkarten abzugleichen und so zuverlässige Posenberechnungen zu ermöglichen.
BIMCaP verfeinert Sensorposen durch die Kombination von semantischen Landmarken
mit Tiefenkomplettierungsmethoden, um LiDAR mit Kameramessungen zu integrieren,
Punktwolken selbst in unübersichtlichen Umgebungen effektiv zu registrieren und eine
genaue Ausrichtung mit Referenzkarten zu gewährleisten.

Umfassende Evaluierungen mit frei zugänglichen Datensätzen zeigen signifikante
Verbesserungen in der SLAM-Kartengenauigkeit, die die Präzision der Sensorposition und
die semantische Landmarkenextraktion für die langfristige Navigation und Verwaltung
verbessern.

Diese Forschung bietet praktische Vorteile in verschiedenen Bereichen. Sie er-
möglicht zuverlässige Ground-Truth-Pose-Schätzungen zur Bewertung von SLAM und
Lokalisierungsalgorithmen und minimiert den Bedarf an teuren Sensoren. Entwickler au-
tonomer Fahrzeuge profitieren von robusten Echtzeit-Pose-Tracking-Algorithmen, die die
Lokalisierung in sich verändernden Umgebungen verbessern. In der AR gewährleisten die
Methoden eine präzise Ausrichtung von realen und virtuellen Daten und verbessern Anwen-
dungen in Architektur und Bauwesen. BIMCaP kann auch mobilen Robotern im Einzel-
handel helfen, indem es Daten mit permanenten Referenzkarten-Elementen ausrichtet,
die Karten-Genauigkeit und Änderungsdetektion für ein besseres Bestandsmanagement
verbessert. Darüber hinaus fördert diese Forschung die semantische Segmentierung von
Baustellen und trägt zu sichereren und effizienteren Baupraktiken durch verbesserte digi-
tale Modellierung bei.

Die bereitgestellten Open-Source-Datensätze und -Algorithmen fördern die Reproduzier-
barkeit und Benchmarking und beschleunigen die Entwicklung effektiverer und wider-
standsfähigerer Methoden. Die Ergebnisse inspirieren weitere Forschungen zur langfristi-
gen kollaborativen Roboterkartierung und robusten Pose-Verfolgung in sich verändernden
Umgebungen.



Contents

Abbreviations VII

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Concrete Areas of Application . . . . . . . . . . . . . . . . . . . . . 3
1.4 State of Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 State-of-the-Art and Research Gap . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Research Objectives and Questions . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Contributions and Implications . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.10 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.11 Additional Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . 16
1.12 Open Source Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.12.1 OGM2PGBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.12.2 SLAM2REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.12.3 BIMCaP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.13 Open Access Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.13.1 OGM2PGBM Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.13.2 ConSLAM BIM and GT Poses Dataset . . . . . . . . . . . . . . . . 19
1.13.3 CMS Sensor Mounting System . . . . . . . . . . . . . . . . . . . . . 19
1.13.4 Layout Prediction Dataset . . . . . . . . . . . . . . . . . . . . . . . . 20

1.14 Summary of Open Contributions . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Fundamentals 21
2.1 Foundational Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 SLAM and Multi-Session Anchoring . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Factor Graph Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Encounters or Loop Closures . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Anchor Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Related Work 28
3.1 Visual Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Visual-only Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Visual-Inertial Approaches . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 Other Advancements in Visual Pose Estimation . . . . . . . . . . . . 30

3.2 LiDAR-Based Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 LiDAR-only Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 32

IV



3.2.2 LiDAR-Inertial Approaches . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Other Advancements in LiDAR-based Pose Estimation . . . . . . . . 34

3.3 Map-based Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Visual Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 2D LiDAR-based Approaches . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 3D LiDAR-based Approaches . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Real-time LiDAR and Image Localization 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Real-time 2D LiDAR Localization . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Step 1: OGM Generation from a BIM Model . . . . . . . . . . . . . 44
4.3.2 Step 2: OGM to Pose Graph-based map Conversion (OGM2PGBM) 46
4.3.3 Step 3: Robust Localization . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Real-time Image Localization . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Step 1: Point Cloud Acquisition and First BIM Alignment . . . . . . 57
4.4.2 Step 2: Perspective Detection . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Step 3: Camera Pose Improvement . . . . . . . . . . . . . . . . . . . 59
4.4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Contributions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Aligning Integrated Mobile 3D LiDAR-inertial Session Data with a Ref-
erence Map 67
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 SLAM2REF and Change Detection Methodology . . . . . . . . . . . . . . . 71

5.3.1 Step 1: Map-based Session Data Generation (Map to Session Data) 72
5.3.2 Step 2: Reference Map-based Multi-Session Anchoring . . . . . . . . 79
5.3.3 Step 3: Change Detection and Map Update . . . . . . . . . . . . . . 91

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.1 ConSLAM Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.8 Contributions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



6 AI-supported Integration of LiDAR and Camera Data with BIM Models
and Reference Maps 111
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Global Registration of Cross-Source Data . . . . . . . . . . . . . . . . . . . 114

6.3.1 Step 1: Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Step 2: Initial Angle Alignment . . . . . . . . . . . . . . . . . . . . . 118
6.3.3 Step 3: Transformation Estimate . . . . . . . . . . . . . . . . . . . . 119
6.3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 BIMCaP: BIM-based AI-supported LiDAR-Camera Pose Refinement . . . . 137
6.4.1 Step 1: LiDAR and Camera Fusion . . . . . . . . . . . . . . . . . . . 138
6.4.2 Step 2: Semantically Enriched Maps . . . . . . . . . . . . . . . . . . 140
6.4.3 Step 3: Sensor Pose Calculation and Refinement . . . . . . . . . . . 142
6.4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Contributions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 Conclusions and Further Development 153
7.1 Conclusions on the Map-based Long-term Localization and Mapping Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Contributions to the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.3 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.4 Limitations and Recommendations on Future Directions . . . . . . . . . . . 160

Literaturverzeichnis 163

A List of Mathematical Variables 187

B Investigating Robot Dogs for Construction Monitoring 190
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.3 Quadruped robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.3.1 Available quadruped robots . . . . . . . . . . . . . . . . . . . . . . . 192
B.3.2 Suitability analysis for construction site monitoring . . . . . . . . . . 193

B.4 Data acquisition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.4.1 Mapping system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.4.2 Mounting System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.4.3 Acquisition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
B.4.4 Analysis of acquired data . . . . . . . . . . . . . . . . . . . . . . . . 198

B.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
B.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



Abbreviations
AI Artificial Intelligence
AMCL Adaptive Monte Carlo Localization
APE Absolute Pose Error
API Application Programming Interface
AR Augmented Reality
ATE Absolute Trajectory Error

BA Bundle Adjustment
BIM Building Information Modeling
BIM model building information model
BIRS Building Information Robotic System
BlenSor Blender Sensor Simulation Toolbox
BRIEF Binary Robust Independent Elementary Features

CAD Computer-aided Design
CC CloudCompare
COCO Common Objects in Context dataset
CVAT Computer Vision Annotation Tool

DBSCAN Density-Based Spatial Clustering of Applications with
Noise

DL Deep Learning
DLIO Direct LiDAR Inertial Odometry
DoF Degrees of Freedom
DT Digital Twin

EKF Extended Kalman Filter

FACaP Floorplan-Aware Camera Poses Refinement
FAST Features from Accelerated Segment Test
FoV Field of View
FPFH Fast Point Feature Histograms

GBL Graph-based Localization
GICP Generalized ICP
GMCL General Monte Carlo Localization
GNSS Global Navigation Satellite System
GPS Global Positioning System
GT Ground Truth

ICP Iterative Closest Point
IFC Industry Foundation Classes
IMU Inertial Measurement Unit
IP Ingress Protection
IPS Indoor Positioning System
ISC Indoor Scan Context
ISCD Indoor Scan Context Descriptor

VII



KITTI Karlsruhe Institute of Technology and Toyota Techno-
logical Institute

KLD Kullback-Leibler distance
KNN K-nearest neighbors

LiDAR Light Detection and Ranging
LIO LiDAR-Inertial Odometry
LIVO LiDAR-Inertial-Visual Odometry
LOAM LiDAR Odometry and Mapping

MAP Maximum A Posteriori
MAV Micro Aerial Vehicle
MCL Monte Carlo Localization
MDC Motion Distortion Correction
MEP Mechanical, Electrical, and Plumbing
MLE Maximum Likelihood Estimation
MME Map Mean Entropy
MPV Mean Plane Variance

ND Negative Difference
NeRF-VO Neural Radiance Fields for Visual Odometry
NIR Near-infrared
NND Nearest Neighbor Distance
NWC Normalized Work Capacity

OBJ Wavefront .obj file
OGM Occupancy Grid Map
ORB Oriented FAST and Rotated BRIEF

P2P Point-to-Point
PC Personal Computer
PD Positive Difference
PF Particle Filter
PGBM Pose Graph-based Map
PGM Portable Gray Map
PNG Portable Network Graphics
PP Path Planner

RANSAC Random Sample Consensus
RE Rotational Error
RGB red, green, and blue
RGB-D Red-Green-Blue-Depth
RMSE Root Mean Square Error
ROS Robot Operating System
RTK Real-time Kinematic
RViz ROS visualization

SC Scan Context
Scan-Map deviations discrepancies between the reference map and the cur-

rent state of the real-world



SCD Scan Context Descriptor
SD Session Data
SDF Simulation Definition Format
SDK Software Development Kit
SER Similar Energy Region
SLAM Simultaneous Localization and Mapping
SOTA State-of-the-art
SR Success Rate
STL stereolithography
SVG Scalable Vector Graphics

TE Translational Error
TEASER Truncated Least Squares Estimation And SEmidefi-

nite Relaxation
TLS Terrestrial Laser Scanner
TRIM Translational and Rotational Invariant Measurement
TUM Technical University of Munich

UAV Unmanned Aerial Vehicle
UE Unaltered Element
UGV Unmanned Ground Vehicle
URDF Universal Robot Description Format
UV Unmanned Vehicle

V-SLAM Visual-SLAM
VAE Variational Auto-Encoder
VG Voxel Grid
VIO Visual-Inertial Odometry
VL Vanishing Line
VO Visual Odometry
VP Vanishing Point

YAML YAML Ain’t Markup Language



Chapter 1

Introduction

1.1 Background

Currently, mobile mapping systems integrated into robots or handheld devices equipped

with advanced sensors facilitate the rapid creation of updated 3D maps. These systems uti-

lize State-of-the-art (SOTA) SLAM algorithms to ensure efficiency. However, these maps

are in their local coordinate systems and, therefore, separated from any prior information.

Additionally, they might contain potential drift issues, rendering them unsuitable for cre-

ating accurate updated map representations, comparative analysis, or change detection.

Moreover, several real-world applications require the capacity to align, compare, and man-

age 3D data received at various intervals that may be separated by lengthy intervals of

time. This process is referred to as long-term map management.

The field of autonomous navigation has experienced significant advancements driven by

the need for precise and reliable localization and mapping in dynamic environments. Com-

bining multiple sensor modalities, such as LiDAR, IMUs, and cameras, has proven to be

a promising approach for enhancing the robustness and accuracy of mapping systems.

Despite these advancements, challenges remain in achieving long-term localization and

mapping, particularly in environments with significant changes and complex structures.

1.2 Problem

The primary challenge addressed in this dissertation is the development of comprehen-

sive methods for long-term localization and mapping that leverage the complementary

strengths of LiDAR, IMU, and camera sensors and that utilize reference 3D BIM models

or point clouds for alignment and correction of the sensor poses. Current approaches often

struggle with the limitations of individual sensors, particularly in changing and cluttered
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environments. This thesis aims to overcome these challenges by studying and integrating

different sensor technologies and advanced SOTA algorithms to provide robust solutions

for long-term localization and mapping with reference maps. In robotics, many systems

necessitate real-time performance to adapt to the rapidly changing real-world environ-

ment. Therefore, in this dissertation, real-time systems for alignment and localization

were explored. However, due to the inherent accuracy limitations of real-time methods,

this research will transition from exclusively relying on these methods to emphasizing the

acquisition of high-precision maps. This shift is expected to enhance the effectiveness and

reliability of map management over extended periods. In essence, the focus will move from

immediate but less accurate solutions to more precise and sustainable approaches, thereby

improving long-term outcomes.

1.3 Motivation

Long-term map management is crucial since the real world constantly evolves and changes.

This applies to both humans who want to utilize the map to comprehend the current

situation and its evolution and to autonomous robots for effective and fast navigation.

Moreover, achieving accurate alignment and effective management of extensive datasets

represent significant challenges in enabling the creation of Digital Twins (DTs) for cities

and buildings (Borrmann et al., 2024; Mylonas et al., 2021). While the definition of a DT

is still not standardized in the built environment, in this dissertation, a DT is a dynamic

virtual representation of a physical object or system across its life cycle, distinguishing

itself from other digital models due to its connection (i.e. real-world data transmission)

to the physical object to enable understanding, learning, and reasoning (Feng et al., 2021;

Mylonas et al., 2021). As explained by (Botín-Sanabria et al., 2022), in complex imple-

mentations, automatic alignment of 3D data becomes imperative to achieve DTs with

maturity levels of 3 or higher. Such levels necessitate the augmentation of models with a

continuous flow of real-world information.
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1.3.1 Concrete Areas of Application

The alignment of sensor measurements with reference maps is a critical technology across

various fields, enabling systems to accurately navigate and understand their environment.

This section systematically explores the application areas, boundary conditions, and chal-

lenges associated with this technology, setting the stage for discussing state-of-the-art

techniques and identifying research gaps.

Requiring Real-time Processing

In applications requiring real-time processing, such as emergency situations, augmented

reality, and autonomous robot localization and navigation, challenges are particularly pro-

nounced. In emergency scenarios, the fast movement of the scanning sensor, the presence

of debris, and significant changes in the environment may result in low correspondences

with reference maps, complicating correct alignment. Robust AR applications must deal

with different types of clutter, for example, in a residential or office building, furniture

that is not present in the reference map or construction sites, materials, and varying lev-

els of geometric correlation with the reference map depending on the construction phase.

Autonomous robots face similar issues, where changes in the environment, such as reposi-

tioning furniture, disrupt the alignment process.

These dynamic and cluttered environments demand robust, adaptive solutions to ensure

accurate real-time alignment of sensor measurements with reference maps. For instance,

fast-updated 3D digital maps can help first responders improve situational awareness and

make effective, safe decisions to save lives during emergencies before putting themselves in

highly risky situations (Alliez et al., 2020; He et al., 2021). Similarly, real-time alignment

enables autonomous robots to localize themselves within a reference map (such as a BIM

model), facilitating various autonomous robotic activities such as path planning (Dugstad

et al., 2022), object inspection, (K. Kim & Peavy, 2022), and maintenance and repair

operations (S. Kim et al., 2021; X. Xu et al., 2021). In recent years, significant research

has focused on practical applications and methodologies for integrating robotic systems

in construction, highlighting the urgency for future development in this field Gopee et al.

(2023), B. R. K. Mantha et al. (2020, 2020), Prieto, Giakoumidis, and García de Soto
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(2024), Prieto, Xu, and García de Soto (2024), Soto and Skibniewski (2020), X. Xu and

Garcia de Soto (2020, 2023), and X. Xu and García de Soto (2022).

Applications requiring rapid processing demand that data resulting from the alignment

is immediately usable. However, if the alignment is incorrect or the system fails, the

resulting 3D map or calculated pose becomes unusable. Consequently, allowing additional

time for refining the acquired map can often be advantageous, ensuring higher accuracy

and reliability.

When Offline Processing is Acceptable

Nonetheless, in environments where offline processing is acceptable, such as construction

sites, the retail industry, and surveying with prior maps, several challenges also arise.

Construction sites are often cluttered with materials and tools, which can occlude sen-

sor measurements and introduce noise (such as reflections). In the retail industry, the

dynamic nature of product placement and shelf arrangements often leads to discrepan-

cies between the reference map and the current state of the environment. As a result,

only permanent structural elements, such as columns and walls, can be reliably used for

alignment. Similarly, for surveying with prior maps, initial maps may differ due to new

elements introduced after the map was created.

These factors collectively lead to potential inaccuracies in aligning sensor data with refer-

ence maps, complicating the task of maintaining accurate and up-to-date environmental

representations. Therefore, an automatic map alignment and change detection framework

can significantly enhance the integration of mapping devices into existing industry work-

flows, addressing one of the main barriers to their widespread adoption1 (NavVis et al.,

2022).

For example, an up-to-date 3D digital map can help construction site managers promptly

distinguish as-planned and as-built differences, thus reducing the probability of long-

schedule delays and high-cost overruns (Braun & Borrmann, 2019; Braun et al., 2020).

Another example is the crack detection task (on buildings or bridges), where it is crucial
1Compatibility of mapping devices with existing tools is, after the budget, the second most crucial

barrier surrounding the usage of mobile mapping devices (NavVis et al., 2022).
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not only to identify cracks in an image but also to document their locations relative to a

reference model to ensure the information is usable Ko et al. (2021).

Figure 1.1, illustrates several potential applications of the methods proposed in this dis-

sertation.

Mixed or
Augmented

Reality

Emergency 
Response

Autonomous
Robot Navigation

Construction 
Site Monitoring

Retail Industry 

Mapping With a 
Prior Map

Real-time Requirement Offline Process Acceptable

Figure 1.1: Applications of the research conducted in this dissertation: On the left, ap-
plications requiring real-time processing to meet end-user expectations. On the right,
applications where offline processing is acceptable.

Besides being useful for autonomous construction site monitoring, an offline accurate align-

ment of sensor data with a relatively accurate reference map (at least in terms of its per-

manent structures such as walls and columns) allows the retrieval of the sensor’s precise

6-Degrees of Freedom (DoF) Ground Truth (GT) poses in the entire trajectory. 6-DoF

refers to the sensor’s ability to move freely in three-dimensional space, encompassing three

translational movements (forward/backward, up/down, left/right) and three rotational

movements (pitch, yaw, roll).

These GT poses serve multiple functions. They enable precise identification of the capture

locations of point clouds and images necessary for generating an accurate, updated 3D

map. Additionally, they facilitate the assessment of the accuracy of SLAM, odometry,

and localization algorithms. This capability is particularly crucial for advancing research

and development in this field.

Historically, obtaining GT poses has necessitated costly equipment like Real-time Kine-

matic (RTK)-corrected Global Navigation Satellite System (GNSS) for outdoor environ-

ments or laser trackers and motion capture systems for indoor settings (Y. Liu et al., 2021).

However, the expensive costs associated with these methods pose a substantial barrier for
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individual researchers. Additionally, acquiring dense GT poses for extended trajectories,

especially in indoor scenarios, has been found to be very challenging (L. Zhang et al.,

2023).

Recent studies, such as by the authors of ConSLAM (Trzeciak et al., 2023a, 2023b) and

Newer College (Ramezani et al., 2020; L. Zhang et al., 2022) datasets, have leveraged Ter-

restrial Laser Scanner (TLS) point clouds—providing millimeter-precise 3D scans of the

environment—to be used as reference GT map and overcome these limitations. Through

semi-automatic techniques, researchers have effectively aligned mobile LiDAR measure-

ments with TLS point clouds. This advancement, as well as the methods presented in this

dissertation, represent a significant step forward in SLAM research towards automatic, ac-

curate GT pose acquisition methods suitable for both large indoor and outdoor scenarios.

Enabling researchers to evaluate SLAM, odometry, and localization frameworks on their

own collected sequences.

1.4 State of Practice

For outdoor localization and alignment, Global Positioning System (GPS) is often a viable

option due to its widespread availability and effectiveness. However, GPS is impractical

for indoor environments because it requires a direct line of sight to at least four satellites—

three for determining the 3D position and one for time correction.

To address the limitations of GPS indoors, various Indoor Positioning System (IPS) alter-

natives use radio signals, such as Wi-Fi or Bluetooth, as well as AprilTags or laser trackers

and motion capture systems to achieve accurate pose calculation in indoor settings (Kay-

hani et al., 2022, 2023; Koide et al., 2022; Lopez-de-Teruel et al., 2017; B. Mantha &

Garcia de Soto, 2019; B. R. K. Mantha & Garcia de Soto, 2022). The downside of these

systems is that they require additional strategically placed sensors or landmarks, which

can increase the cost and effort of implementing such a positioning system. Neverthe-

less, although not always accessible, 3D prior maps of buildings are increasingly becoming

standard in modern construction. These maps, often in the form of BIM models or point

clouds, document the state of the building during and after construction or in the design

phases.
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1.5 State-of-the-Art and Research Gap

Current techniques for aligning sensor measurements with reference maps have achieved

significant progress in handling static environments. For example, employing camera sen-

sors (Acharya et al., 2019, 2022; Asadi et al., 2019; Boniardi, Valada, et al., 2019; Haque et

al., 2020; Kropp et al., 2018; Sokolova et al., 2022), 2D LiDAR sensors (Boniardi, Caselitz,

et al., 2019; Boniardi et al., 2017; Follini et al., 2020; Hendrikx et al., 2021, 2022; Karimi

et al., 2020, 2021; K. Kim & Peavy, 2022; S. Kim et al., 2021; Prieto et al., 2020) or 3D

LiDAR sensors (Blum et al., 2020; Caballero & Merino, 2021; Ercan et al., 2020; Oelsch

et al., 2021, 2022; Shaheer et al., 2022, 2023; Yin et al., 2023).

However, dynamic, changing, and cluttered environments continue to present substantial

challenges. The integration of advanced alignment algorithms for accurate map generation

and update, improvements in indoor re-localization capabilities, and enhanced system re-

silience to environmental changes are critical areas for ongoing research. Addressing these

research gaps is essential for advancing technology and effectively handling the complex

demands of real-world applications.

Concrete use cases demonstrate the value of accurate and up-to-date 3D maps. For in-

stance, construction site managers can use these maps to monitor progress and deviations

from plans (which nowadays are almost always present in the form of 4D BIM models),

while first responders can leverage them for enhanced situational awareness during emer-

gencies. Mobile robots need to localize themselves within a reference map to benefit from

enriched BIM models with up-to-date information, aiding in path planning, object inspec-

tion, and maintenance operations.

In conclusion, the diverse applications of sensor alignment with reference maps necessitate

specialized approaches to address their specific boundary conditions and challenges. By

analyzing these factors and contributing with novel alignment methods, this dissertation

aims to contribute to the advancement of localization and mapping technology, particularly

in changing and cluttered environments, thereby bridging the existing research gaps.
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1.6 Research Objectives and Questions

The main three research questions addressed in this dissertation are:

RQ 1 How can 3D BIM models be leveraged for real-time 2D LiDAR and image localization

systems?

- Rationale: BIM models contains rich 3D spatial and semantic information

about built environments, which can significantly enhance localization sys-

tems. Current 2D LiDAR and image-based localization systems often face

challenges in dynamic and cluttered environments, leading to inaccuracies

and failures in real-time applications. By leveraging 3D BIM models, these

systems can benefit from pre-existing, detailed environmental data, providing

a reference for more precise and robust localization. This research question

aims to explore the integration of 3D BIM models with real-time 2D LiDAR or

camera data to improve the overall performance and reliability of localization

systems in complex environments.

RQ 2 How can reference 3D BIM models or point clouds be utilized for alignment and

correction of session data from 3D LiDAR and IMU measurements?

- Rationale: Accurate alignment and correction of session data are critical for

long-term localization and mapping, particularly in environments subject to

changes over time. Reference 3D BIM models and point clouds provide a

stable and detailed representation of the environment, which can be used as a

baseline for aligning and correcting new session data captured by 3D LiDAR

and IMU sensors. This research question focuses on developing methods to

utilize these reference models to ensure high precision and consistency in the

collected data, thereby enhancing the accuracy of the long-term localization

and mapping processes.

RQ 3 How can semantics and LiDAR-camera fusion be utilized to create a robust align-

ment and correction method of SLAM-acquired real-world 3D data with a BIM

model or a semantic 3D map?
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- Rationale: Simultaneous Localization and Mapping (SLAM) systems are

widely used for real-time mapping and navigation but often suffer from drift

and errors, especially in complex environments. Incorporating semantics into

the SLAM-acquired data can provide meaningful context while fusing LiDAR

and camera data can enhance the robustness of the measurements by leverag-

ing the complementary strengths of these sensors. By aligning and correcting

SLAM-acquired 3D data with BIM models or semantic 3D maps, this re-

search aims to develop a more reliable and accurate method for real-world

applications. This question seeks to explore advanced techniques that com-

bine semantic understanding and multi-sensor fusion to improve the quality

and reliability of SLAM-generated maps, aligning them with a reference 3D

map.

In addition to these questions, there are three sub-research questions for each of the

presented research questions, which will be elaborated on in the respective chapters.

1.7 Contributions and Implications

This thesis contributes to the field of map-based long-term localization and mapping by

addressing key challenges such as deviations between the reference map and the most re-

cently acquired data (Scan-Map deviations) and the limitations of single sensor modalities.

The findings have the potential to significantly enhance the robustness and accuracy of

mapping and localization systems in changing and dynamic environments.

By integrating LiDAR, IMU, and camera sensors in different ways, this study provides com-

prehensive approaches that leverage the strengths of each modality, leading to improved

performance in real-world applications. This dissertation advances robot localization, nav-

igation, multi-session anchoring, and cross-source point cloud registration by integrating

3D BIM models and point clouds with LiDAR, IMU, and camera measurements. The de-

veloped methodologies address long-term localization and mapping challenges in dynamic

environments by combining sensor modalities and leveraging 3D reference maps for map

alignment and pose correction. These contributions enhance the robustness and accuracy
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of mapping systems, facilitating applications in construction site management, emergency

response, and autonomous navigation.

Key contributions include a novel open-source method for transforming 2D OGMs into

PGBMs and a comprehensive evaluation of SOTA 2D LiDAR localization algorithms. Ad-

ditionally, a novel open-source approach, called SLAM2REF, was developed for correcting

sensor poses using 3D BIM models. The approach includes methods for generating accu-

rate OGMs and 3D session data from BIM models and point clouds. Techniques such

as Indoor Scan Context (ISC) and YawICP were introduced for fast place recognition

and point cloud registration, which are combined within SLAM2REF in a holistic multi-

session anchoring system for aligning and correcting drifted sessions. Moreover, methods

were proposed for analyzing and detecting changes in the aligned 3D data.

A method was also proposed that uses the principal normal direction count and feature

matching for cross-source global point cloud registration using semantic landmarks. The

open-source BIMCaP framework for aligning and correcting sensor measurements with

BIM models was introduced, demonstrating improvements over existing methods. These

advancements support automated map management and improve compatibility with in-

dustry workflows, facilitating the creation and maintenance of DTs for buildings and cities.

Overall, this work significantly enhances the capabilities of autonomous robotic systems

and supports various practical applications, providing robust solutions for long-term local-

ization, mapping, and DT creation.

A detailed list of open-source contributions can be found in Sections 1.12 and 1.13

1.8 Scope and Limitations

This research explores the use of LiDAR, IMU, and camera sensors for long-term localiza-

tion and mapping in dynamic environments. While some proposed methodologies integrate

these sensors in pairs, a single comprehensive method combining all three for sensor pose

refinement was not developed.

The primary focus of this study is the precise alignment of sequential sensor data with a

reference map. Nonetheless, this research also provides valuable insights into related areas

such as real-time localization (see Section 4.3), map updates, positive and negative change
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detection (see Section 5.3.3), depth completion (see Section 6.4), and image semantic

segmentation(see Section 6.4), these topics are secondary to the core contributions of this

work. For example, in Section 4.3, various methods to enhance real-time localization

are introduced and analyzed. However, the main objective remains the creation of an

accurate, well-registered, updated map aligned with a reference map, even if this process

occurs offline and not in real-time.

Central to this study are indoor structured environments where BIM models or point

clouds are available; if none of these reference maps exist, the core of the proposed methods

can not be leveraged.

A significant challenge addressed in this study is the alignment or registration of sequential

measurements in environments with discrepancies between the reference map and the

current state of the real-world (Scan-Map deviations), which are categorized into three

types:

1. Deviations caused by clutter or furniture not present in the reference map;

2. Deviations from dynamic, moving elements in the environment during scanning and

3. Alterations to permanent structures like walls and columns.

This research focuses primarily on the first two types of deviations. However, minor

discrepancies in permanent features, such as small holes or slight shifts (in the range

of ±3 cm) in individual columns or walls, are not expected to impede the successful

application of the framework. It is generally assumed that while Scan-Map deviations are

present, the reference map remains a reliable source for localization, with the BIM model

or the point cloud maintaining enough geometric precision to reflect the current state

of the environment. Permanent elements, including walls, columns, floors, and ceilings,

are expected to be accurate within ±3 centimeters to be considered in the registration

process. Considering the range precision of most current LiDAR sensors (which is ±3

centimeters), even if the map is more accurate than that, a more precise localization is

not possible. On the other hand, isolated elements that deviate significantly from their

expected positions (e.g., by 1 meter) will not contribute to the alignment process and will

most likely be disregarded, assuming that the remaining elements guide the alignment
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toward the correct pose. However, if all reference map elements are incorrectly positioned

or fail to correspond to real-world measurements, alignment becomes impossible.

Although the proposed methods have potential applications in assisting first responders

during emergencies by creating updated and aligned 3D maps, it is crucial to recognize

their limitations. For example, in situations like fires where dense smoke fills the interior of

buildings, the sensors used in this study may be ineffective in penetrating smoke-filled areas.

In such critical scenarios, alternative sensors and techniques, such as thermal cameras, may

be more appropriate.

1.9 Structure of the Dissertation

This dissertation is structured as follows:

- Chapter 1: Introduction - Provides the background, problem statement, motiva-

tion, research objectives, scope, and structure of the dissertation.

- Chapter 2: Fundamentals - This chapter presents a concise overview of the

foundational techniques that form the basis of the core methods introduced in this

dissertation, with particular focus on SLAM and the multi-session anchoring method

presented in Chapter 5.

- Chapter 3: Related Work - Reviews existing research on visual and LiDAR-based

pose estimation as well as on localization and mapping, and the alignment of LiDAR,

IMU, and camera sensors with reference maps.

- Chapter 4: Real-time LiDAR and Image Localization - This chapter intro-

duces two innovative methodologies designed to enhance real-time localization using

BIM models or reference 3D/2D maps. The first method involves a comparative

analysis of existing 2D LiDAR real-time localization algorithms and presents the

OGM2PGBM framework for transitioning from OGMs to PGBMs. This transition

facilitates the use of PFs for rapid global localization, followed by algorithms for

continuous pose tracking. The second method focuses on refining camera poses by

extracting Vanishing Points (VPs) and Vanishing Lines (VLs) from both camera

images and synthetically generated images from a BIM model, thus improving the
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accuracy of fast image localization and pose refinement. However, real-time algo-

rithms are intrinsically limited by the computational resources available within the

stringent time constraints, leading to inherent trade-offs that often restrict their

achievable accuracy. These limitations are addressed in the following two chapters,

with a particular emphasis on accurate, non-real-time approaches.

- Chapter 5: Aligning Integrated Mobile 3D LiDAR-inertial Session Data

with a Reference Map - Building on the OGM2PGBM technique proposed in the

previous chapter, this chapter presents the SLAM2REF framework, which addresses

key limitations of the methods presented in the previous chapter (Chapter 4) by

focusing on post-processing alignment rather than real-time alignment. This frame-

work leverages innovative feature descriptors based on the Scan Context Descriptor

(SCD) for place recognition and introduces the novel YawGICP registration algo-

rithm. It incorporates IMU sensor measurements for Motion Distortion Correction

(MDC) and integrates these components into a multi-session anchoring framework

to align and correct drifted SLAM session data with a reference 3D BIM model or

point cloud. This comprehensive approach enhances the accuracy and reliability

of localization and mapping, especially in dynamic and challenging environments.

Moreover, positive and negative change detection methods in the aligned data are

also introduced. However, SLAM2REF still has some limitations, such as a small tol-

erance for Scan-Map deviations during initial alignment and the requirement for 3D

LiDAR measurements with a horizontal Field of View (FoV) of 360 degrees. In the

subsequent chapter, these limitations are addressed by incorporating camera data,

extracting real-world semantics, and using a Bundle Adjustment (BA) algorithm to

enhance sensor poses from restricted FoV measurements.

- Chapter 6: Artificial Intelligence (AI)-supported Integration of LiDAR

and Camera Data with BIM Models and Reference Maps - This chapter

explores AI-driven approaches to improve the alignment of LiDAR data fused with

camera data using BIM models or semantic reference maps, with the aim of tackling

the main limitations of the SLAM2REF method discussed in the previous chapter

(Chapter 5). The first approach addresses the global registration of a SLAM-based

reconstructed point cloud with a BIM model, assuming semantically enriched data

with minimal drift. The second approach, called BIMCaP, refines sensor poses by
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integrating LiDAR and camera data, aligning real-world measurements of structural

elements with their corresponding components in a 3D BIM model. Employing only

reduced FoV measurements, advanced neural depth completion, and image seman-

tic segmentation algorithms, this chapter aims to achieve precise offline alignment,

enhancing the integration of multi-sensor data with BIM models for accurate and

reliable mapping.

- Chapter 7: Conclusion and Further Development - This chapter concludes

the dissertation, summarizing the contributions of each chapter to both the research

community and industry. It situates this dissertation within the broader context of

the future of map-based long-term localization and mapping and highlights areas,

both related and tangential, that deserve further exploration of approaches similar

to those proposed.

Figure 1.2 provides a graphical summary of the dissertation’s content and illustrates the

interrelationships between the proposed methods.
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Figure 1.2: Visual overview of the thesis content and structure.

The table below (Table 1.1 provides a summary of the objectives and contributions dis-

cussed in this dissertation, along with their corresponding chapters and the sensors utilized

for each approach.
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Table 1.1: Summary of all contributions and their relation with the objectives, research
questions, sensor modalities, and chapters of this dissertation.

Objective & RQ Sensors Chapter Contributions

1. Real-time localization and
alignment with a reference map.
RQ 1.

2D LiDAR and
Camera.

4 OGM2PGBM &
Image Localization.

2. Highly accurate alignment and
correction of SLAM-drifted maps
with a reference map. RQ 2.

3D LiDAR and
IMU.

5 Map to Session Data,
SLAM2REF &
Map Update.

3. Align low-drift point clouds and
refine the sensor poses with a
reference map leveraging semantics.
RQ 3.

3D LiDAR and
Camera.

6 Cross-source Global
Registration &
BIMCaP.

1.10 Publications

Parts of this dissertation have been published in the following peer-reviewed journals and
conference papers.

- Vega-Torres, M. A., Braun, A., & Borrmann, A. (2022, September). Occupancy
Grid Map to Pose Graph-based Map: Robust BIM-based 2D- LiDAR Localization
for Lifelong Indoor Navigation in Changing and Dynamic Environments. In Proc.
of European Conference on Product and Process Modeling 2022.
DOI: https://doi.org/10.1201/9781003354222-72
Discussed in Chapter 4.

- Dantas, R., Peter, S., Wang, X., Vega-Torres, M. A., & Dugstad, A. (2022). To-
wards Real-time Image Localization with BIM Models. In Proceedings of 33. Forum
Bauinformatik.
Discussed in Chapter 4.

- Vega-Torres, M. A., Braun, A., & Borrmann, A. (2023, July). BIM-SLAM: Inte-
grating BIM Models in Multi-session SLAM for Lifelong Mapping using 3D LiDAR.
In Proc. of the 40th International Symposium on Automation and Robotics in Con-
struction (ISARC 2023).
DOI: https://doi.org/10.22260/ISARC2023/0070
Discussed in the extended version (SLAM2REF) in Chapter 5.

- Vega-Torres, M. A., Braun, A., & Borrmann, A. (2024, July). SLAM2REF: Advanc-
ing long-term mapping with 3D LiDAR and reference map integration for precise
6-DoF trajectory estimation and map extension. Construction Robotics, 8(2), 13.
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DOI: https://doi.org/10.1007/s41693-024-00126-w
Discussed in Chapter 5.

- Vega-Torres, M. A., Braun, A., & Borrmann, A. (2024, July). BIMCaP: BIM-based
AI-supported LiDAR-Camera Pose Refinement. In Proc. of the 31th Int. Conference
on Intelligent Computing in Engineering (EG-ICE).
URL: https://github.com/MigVega/BIMCaP
Discussed in Chapter 6.

- Vega-Torres, M. A., & Pfitzner, F. (2023, September). Investigating Robot Dogs
for Construction Monitoring: A Comparative Analysis of Specifications and On-site
Requirements. In Proceedings of the 34th Forum Bauinformatik 2023.
DOI: https://doi.org/10.13154/294-10094
Discussed in Appendix B.

1.11 Additional Scientific Contributions

During my doctorate, I participated as a collaborator in the following peer-reviewed journal
and conference publications that are not covered in this dissertation.

- Vega-Torres, M. A., Braun, A., Bauer, H., Noichl, F., & Borrmann, A. (2021). Effi-
cient vertical object detection in large-high-quality point clouds of construction sites.
In Proc. of the 2021 European Conference on Computing in Construction.
DOI: https://doi.org/10.35490/EC3.2021.156

- Vega-Torres, M. A., Braun, A., Noichl, F., Borrmann, A., Bauer, H., & Wohlfeld, D.
(2022). Recognition of temporary vertical objects in large point clouds of construc-
tion sites. Proceedings of the Institution of Civil Engineers - Smart Infrastructure
and Construction, 174(4), 134-149.
DOI: https://doi.org/10.1680/jsmic.21.00033

- Collins, F., Mafipour, M. S., Noichl, F., Pan, Y., & Vega-Torres, M. A. (2021).
Towards applicable scan-to-BIM and scan-to-floorplan: An end-to-end experiment.
In Proc. of the 32nd Forum Bauinformatik.
DOI: https://doi.org/10.26083/tuprints-00019496

- Du, C., Vega-Torres, M. A., Pan, Y., & Borrmann, A. (2022, September). MV-
KPConv: Multi-view KPConv for enhanced 3D point cloud semantic segmentation
using multi-modal fusion with 2D image. In European Conference on Product and
Process Modeling 2022.
DOI: https://doi.org/10.1201/9781003354222-67

- Hassaan, M., Ott, P. A., Dugstad, A.-K., Vega-Torres, M. A., & Borrmann, A.
(2023). Emergency floor plan digitization using machine learning. Sensors, 23(19).
DOI: https://doi.org/10.3390/s23198344

16

https://doi.org/10.1007/s41693-024-00126-w
https://github.com/MigVega/BIMCaP
https://doi.org/10.13154/294-10094
https://doi.org/10.35490/EC3.2021.156
https://doi.org/10.1680/jsmic.21.00033
https://doi.org/10.26083/tuprints-00019496
https://doi.org/10.1201/9781003354222-67
https://doi.org/10.3390/s23198344


- Mehranfar, M., Vega-Torres, M. A., Braun, A., & Borrmann, A. (2024). Automated
data-driven method for creating digital building models from dense point clouds
and images through semantic segmentation and parametric model fitting. Advanced
Engineering Informatics, 62 (Part A), 10264.
DOI: https://doi.org/10.1016/j.aei.2024.102643

1.12 Open Source Packages

This dissertation includes several open-source repositories that were developed as part of

the research process. These repositories are publicly available on GitHub and contribute

to the reproducibility and further development of the work presented. Here are some

notable contributions:

1.12.1 OGM2PGBM

OGM2PGBM is a Robot Operating System (ROS) 1/2 package developed to perform

transformation from 2D OGMs to PGBMs. It enables the usage of GBL algorithms for pose

tracking using a reference map (e.g., with only permanent elements of the environment)

for long-term accurate pose-tracking and is a key component in the research presented in

Chapter 4, Section 4.3.

Repository Link: https://github.com/MigVega/OGM2PGBM

DOI: https://doi.org/10.5281/zenodo.7330270

1.12.2 SLAM2REF

SLAM2REF is the extended version of BIM-SLAM and is a holistic system that was

developed to achieve automatic alignment and correction of LiDAR-based session data

with a reference map, which can be either a point cloud or a BIM model. This tool is

crucial to calculate precise 6-DoF poses and achieve coherent map extension and is detailed

in Chapter 5.

Repository Link 1: https://github.com/MigVega/SLAM2REF
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In addition to this contribution, two key packages have been developed. The first enables

the generation of session data from a reference 3D point cloud or BIM model; in this

repository is also the code that creates accurate 2D OGMs from any of these reference

maps (see Section 5.3.1 for further details). The second package facilitates the saving of

key information from any LiDAR-based SLAM or odometry system (refer to Section 5.3.2

for more information). The respective repositories are provided below.

Repository Link 2: https://github.com/MigVega/Key-Info-Saver-SLAM

Repository Link 3: https://github.com/MigVega/Map2SessionData

1.12.3 BIMCaP

BIMCaP provides the code to achieve LiDAR-Camera depth completion and pose refine-

ment, filtering only reliable semantic landmarks (such as walls and columns) from the

source and target maps, aiding in the tasks described in Chapter 6, Section 6.4.

Repository Link 1: https://github.com/MigVega/BIMCaP

Alongside this contribution, two other essential packages have been released. BIM2SemanticPC

contains the code to convert BIM models into semantically enriched point clouds with de-

sired density (used in Sections 6.3 and 6.4). PC2VectorizedFloorPlan comprehends the al-

gorithms needed to convert a semantically enriched point cloud into a vectorized-semantic

floor plan (used in Section 6.4).

Repository Link 2: https://github.com/MigVega/BIM2SemanticPC

Repository Link 3: https://github.com/MigVega/PC2VectorizedFloorPlan
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1.13 Open Access Datasets

Certain datasets and developments from this dissertation have been disseminated through

the following publications:

1.13.1 OGM2PGBM Dataset

The OGM2PGBM dataset contains the sequencers of simulated 3D LiDAR scans along

with their corresponding 3D and 2D reference maps used for the real-time localization

experiments in Chapter 4, Section 4.3.

Repository Link: https://mediatum.ub.tum.de/1749236

DOI: https://doi.org/10.14459/2024mp1749236

1.13.2 ConSLAM BIM and GT Poses Dataset

This dataset contains the ConSLAM 2 BIM model and GT 6-DoF poses used for the

alignment and correction experiments in Chapter 5.

Repository Link: https://mediatum.ub.tum.de/1743877

DOI: https://doi.org/10.14459/2024MP1743877

1.13.3 CMS Sensor Mounting System

This repository includes 3D-digital-modeled parts designed for mounting a LiDAR-Camera

mapping system onto a robot. The modular components, many of which are 3D-printable,

allow for the integration of multiple sensors. While specifically developed for the Go1-

legged robot, the system is adaptable for use on any robot with a flat surface or as a

handheld device by detaching the sensors from the components that house the Personal

Computer (PC) and batteries. Further details about the system can be found in Appendix

B.

Repository Link: https://mediatum.ub.tum.de/1750434

DOI: https://doi.org/10.14459/2024mp1750434
2ConSLAM is also an open-access dataset accessible here: https://github.com/mac137/ConSLAM
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1.13.4 Layout Prediction Dataset

The Layout Prediction dataset contains labels for over 200 images of real-world construc-

tion sites, which are part of Sequence 2 of the ConSLAM dataset. This dataset adheres

to the conventions defined in SRW-Net. The dataset includes the original images accom-

panied by layout annotations. These annotations consist of lines representing various

architectural elements, such as walls, ceilings, and doors, with each line specified by coor-

dinates and categorized in a dictionary according to its type.

Repository Link: https://mediatum.ub.tum.de/1751462

DOI:https://doi.org/10.14459/2024mp1751462

1.14 Summary of Open Contributions

Table 1.2 summarizes and provides hyperlinks to all open contributions and relates them

to the corresponding parts of this dissertation.

Table 1.2: Hyperlinks to the open-access data and open-source code created in the frame
of this dissertation.

Part Code - GitHub Links Data - Hyperlinks

Sec. 4.3 OGM2PGBM OGM2PGBM Dataset

Layout Prediction Dataset

Ch. 5 SLAM2REF ConSLAM BIM

Key-Info-Saver and GT Poses

Map2SessionData

Sec. 6.4 BIMCaP Pre-trained RTMDet model

BIM2SemanticPC 254 labeled images

PC2VectorizedFloorPlan All pseudo-labels of ConSLAM Seq. 2

88 labels 19 classes

Apdx. B Mapping System CMS Sensor Mounting System
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Chapter 2

Fundamentals

Before presenting the current SOTA methodologies, an introduction to the theoretical con-

cepts behind localization and mapping algorithms, as well as the multi-session anchoring

process employed in Chapter 5, is presented. For better understanding, a table with all

mathematical variables and the corresponding description can be found in the appendix

A.

2.1 Foundational Concepts

Prior to explaining the basics of multi-session anchoring and factor graph, it is important

to differentiate between four important concepts: Odometry, Localization, SLAM and BA.

- Odometry refers to the process of estimating an agent’s change in position and orien-

tation over time by integrating sequential data from motion sensors, such as wheel

encoders, IMUs, cameras, or LiDAR sensors. This process is usually performed by

extracting ego-motion parameters from correspondences between sequential frames.

While it provides continuous updates on the agent’s movement, odometry is prone

to accumulating errors over time, leading to drift (Agostinho et al., 2022).

- Localization involves determining an agent’s precise position and orientation within a

known environment. Unlike odometry, which tracks relative movement, localization

aims to pinpoint the agent’s location on a pre-existing map, correcting any errors

from odometry by referencing fixed landmarks or features in the environment (Kumar

& Muhammad, 2023).

- SLAM is a more complex process that combines the tasks of self-localization and

mapping. In SLAM, a robot simultaneously builds a map of an unknown environ-

ment and determines its location within that map. (Gutmann & Schlegel, 1996).

SLAM extends the capabilities of traditional odometry-based systems by enabling

21



long-term data associations, commonly referred to as loop closures when the agent

revisits previously explored locations (G. Kim et al., 2022). These additional data

associations facilitate the optimization of the entire map through pose-graph op-

timization techniques (Dellaert, Kaess, et al., 2017). Unlike localization systems,

which rely on a pre-existing map for pose estimation, SLAM concurrently constructs

a map in a local coordinate system that is independent of prior information. As a

result, SLAM can still be susceptible to drift and may require significant storage ca-

pacity, substantial computational resources, and rapid data transmission capabilities

(Kumar & Muhammad, 2023).

- Bundle Adjustment is an optimization technique for refining the 3D structure of

a scene and the camera poses that captured it. It involves jointly optimizing the

positions and orientations of the cameras (or robot poses) and the 3D coordinates

of observed landmarks to minimize the overall reprojection error across all images or

observations. Unlike SLAM, which processes data sequentially as it becomes avail-

able and considers the order of the measurements to maintain temporal consistency,

BA treats all observations as a whole without necessarily considering the sequence in

which the measurements were captured. This allows for a more global optimization;

however, it is typically used as a post-processing step rather than in real-time. The

key difference is that while SLAM focuses on real-time operations, relying on sequen-

tial measurements and the fusion of multiple sensor inputs, BA does not assume a

sequential structure. Instead, it is a global optimization technique used to refine the

accuracy of the map and sensor poses after an initial estimation.

2.2 SLAM and Multi-Session Anchoring

In multi-session anchoring, similar to SLAM or a tracking scenario, the objective is to

optimize the posterior probability of the poses in a trajectory based on collected measure-

ments. In other words, the goal is to find the poses for which the provided measurements

have the highest probability.

However, in multi-session anchoring, the goal is also to find the best alignment between

sessions. Each session consists of successive sensor data collected from a specific location

at varying time intervals.
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2.2.1 Factor Graph Problem

These types of problems can be formulated as a Maximum A Posteriori (MAP) estimate

that maximizes the posterior density p(X|z) of the states X given the measurements Z.

Instead of using Bayes Net, the problem can be considered as a factor graph factorization

in which each factor is proportional to a conditional probability density.

While Bayesian nets provide a practical modeling framework, factor graphs facilitate rapid

inference. Like Bayesian networks, factor graphs enable the representation of a joint

density as a product of factors (Dellaert, Kaess, et al., 2017).

In robotics, various challenges, including pose estimation, planning, and optimal control,

often involve solving optimization problems. These problems typically center around max-

imizing or minimizing objectives composed of numerous local factors or terms specific to

small subsets of variables. Factor graphs allow the encapsulation of this local structure,

with factors representing functions related to subsets of variables (Dellaert, 2021).

A factor graph F = (U ,V, E) comprises nodes connected by edges eij ∈ E . The nodes can

be of two types: factors ϕi ∈ U and variables xi ∈ V . The factor graph represents the

factorization of a global function, where each factor is a function of the variables in its

adjacency set. Given that Xi is the group of variables xi connected to a factor ϕi, a factor

graph specifies the factorization of a global function ϕ(X) as

ϕ(X) =
∏
i

ϕi(Xi).

Stated differently, each factor ϕi relies solely on the adjacent variables Xi and is connected

to other factors via the edges eij .

An elegant representation of a SLAM problem is called pose SLAM, which eliminates the

need to directly include landmarks in the optimization process. The focus of pose SLAM

is to predict the robot’s trajectory based on constraints from odometry and loop closures

between the different poses in a trajectory (Jurić et al., 2021). These odometry constraints,

describing the relative poses, can be derived from various sources (e.g., camera or wheel

encoders).
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In general, MAP inference inference is a fundamental probabilistic estimation technique

that seeks to find the most likely configuration of a set of variables given observed data.

This estimation is based on Bayes’ theorem, which expresses how prior knowledge about

the variables can be updated with new measurements:

p(X|Z) ∝ p(Z|X)p(X)

Here, p(Z|X) represents the likelihood of the observations given the state, and p(X) is the

prior distribution, which encodes any prior knowledge about X. MAP estimation then

seeks to maximize this posterior distribution to obtain the most probable state estimate.

In the context of factor graphs, MAP inference corresponds to maximizing the product of

all factor potentials (Dellaert, Kaess, et al., 2017):

XMAP = argmax
x

∏
i

ϕi(Xi) (2.1)

Assuming that all factors can be modeled by a measurement function hi, with normally

distributed priors and factors from measurements zi with zero-mean Gaussian noise models

Σi, the conditional density p(zi|xi, li) on the measurement zi is given by:

p(zi|xi, li) = N (zi;hi(xi, li),Σi) =
1√

|2πΣi|
exp

{
−1

2
∥hi(xi, li)− zi∥2Σi

}

Thus, we face factors that are proportional to:

ϕi(Xi) ∝ exp
{
−1

2
∥hi(Xi)− zi∥2Σi

}
(2.2)

Now, considering the prior distribution on X, we assume a Gaussian prior with mean µX

and covariance Λ:

p(X) = N (X;µX ,Λ) ∝ exp
(
−1

2
∥X − µX∥2Λ

)

Taking the negative log of Eq. (2.1) and incorporating the prior term, we obtain the

following minimization problem:
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XMAP = argmin
x

− log
∏
i

ϕi(Xi)p(X)

= argmin
x

∑
i

∥hi(Xi)− zi∥2Σi
+ ∥X − µX∥2Λ

(2.3)

This contrasts with Maximum Likelihood Estimation (MLE), which does not include the

prior term and instead only maximizes the likelihood p(Z|X), leading to:

XMLE = argmin
x

∑
i

∥hi(Xi)− zi∥2Σi

Thus, while MAP incorporates prior knowledge into the estimation process, MLE relies

solely on the observed data.

2.2.2 Encounters or Loop Closures

In the context of multi-session anchoring, inter-session, or between sessions, loop closure

detections, also called encounters c (which are also poses in the special Euclidean group

SE(3)), can be added to the non-linear least squares formulation in Eq. (2.3) with the

following Gaussian measurement equation:

c = h (xR, xQ) + η,

where h
(
.
)

is a relative measurement prediction function, and η is a normally distributed

zero-mean measurement noise with covariance Σc. Furthermore, xR and xQ are the sensor

poses in the two sessions SR and SQ, respectively. This yields the following conditional

density p(c|xR, xQ) on the measurement c

p(c|xR, xQ) =
1√

|2πΣc|
exp

{
−1

2
||h(xR, xQ)− c||2Σc

}
.

Similarly, an odometry model f
(
.
)
, which usually incorporates a scan-matching process,

among other techniques, produces constraints us
i between consecutive poses: xi and xi+1.

Unifying the encounter measurement model h
(
.
)

together with the odometry model f
(
.
)

in Eq. (2.3), we obtain the following equation (omitting intra-session loop closures for

simplicity).
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XMAP = argmin
x

{∑
S

(
∥ps − xs,0∥2ΣP

+
∑
i∈Ms

∥fi (xs,i, us,i)− xs,i+1∥2ΣO

)

+
∑
j∈Ne

∥hj (xR,j , xQ,j)− cj∥2Σc


(2.4)

Where S ∈ {SQ,SR}, Ms is the number of poses in the session S, and Ne is the number

of encounters between sessions.

Here, the initial pose of each session is directly incorporated as a prior factor ps. This fixes

the initial pose to the origin, effectively eliminating that gauge of freedom, i.e., assigning

a local reference coordinate system to each session.

2.2.3 Anchor Nodes

As in a multi-robot mapping problem, having two sessions or more requires a strategy

to handle the fact that the sessions can have different initial poses and, therefore, other

initialization prior (Lajoie & Beltrame, 2024).

Anchor nodes are employed to address this problem and facilitate the integration of inter-

session constraints.

The anchor ∆Q is a SE(3) pose for the session SQ that determines how the entire trajectory

is positioned concerning a global coordinate frame.

Essentially, the individual pose graphs of each session are maintained in their respective

local frames and are bound with anchor factors to the global frame. For each session, an

anchor node is added to the pose graph problem as the first pose of the session; this pose

can be selected arbitrarily (usually set to the origin).

During the initial encounter, no modifications are made to the pose graphs of the respec-

tive sessions; only the anchor nodes change, bringing both graphs to a global coordinate

system where they can be compared. In subsequent encounters, information can propagate

between the two pose graphs, similar to the scenario of loop closures in a single session.

The incorporation of anchor nodes makes efficient updates and quick optimization feasible.

As described by B. Kim et al. (2010), the anchor nodes allow us to estimate the offset

between sessions. Moreover, they provide faster convergence to least-squares solvers and

26



allow each session to optimize their poses before considering global constraints, such as

from inter-session loop closures (Ozog et al., 2016).

This feature is advantageous for long-term mapping since it enables the production of

the first consistent map of the environment when the data is gathered. Whenever a map

containing a new session is constructed in a posterior period, and at least one encounter

is detected, the anchor nodes allow the computation of the transformation that aligns this

recent session with the previously acquired session. Subsequent inter-session loop closure

detections will allow correction and improvement of both sessions.

After concluding the theoretical introduction to the method for aligning multiple sessions

that will be presented in Chapter 5, the subsequent section will delve into the latest

State-of-the-art (SOTA) techniques for achieving alignment with a reference map, with a

particular focus on BIM models. Prior to this, the section will provide a concise literature

review of visual and LiDAR-based odometry and SLAM systems.
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Chapter 3

Related Work

In this chapter, the SOTA in Visual-SLAM (V-SLAM) and LiDAR-based localization and

SLAM are discussed. Subsequently, methods that use maps as a reference to enhance

localization and mapping systems are examined.

3.1 Visual Pose Estimation

V-SLAM is a critical component in robotics and computer vision, enabling systems to

simultaneously localize themselves and map their surroundings primarily using camera

measurements. In this section, these systems are broadly categorized into three main

groups. The first group consists of camera-only V-SLAM or Visual Odometry (VO) sys-

tems, which rely solely on measurements from monocular, stereo, Red-Green-Blue-Depth

(RGB-D), or event cameras. The second group includes Visual-Inertial Odometry (VIO)

systems, which integrate additional IMU measurements with camera data. This integra-

tion has demonstrated significant potential in various application scenarios, enhancing the

robustness and accuracy of V-SLAM systems. The third group encompasses alternative

approaches, such as those integrating GPS measurements for enhanced localization and

others focusing on 3D semantic understanding.

3.1.1 Visual-only Approaches

Perhaps the first way of pose estimation with camera sensors was with monocular cam-

eras. In this regard, Zienkiewicz et al. (2016) presented a method for real-time surface

reconstruction using monocular cameras, which adapts to varying levels of detail by dy-

namically tessellating a triangular mesh. Platinsky et al. (2017) examined the performance

differences between sparse joint optimization and dense alternation in monocular VO. They

proposed a method for comparing the accuracy of SLAM frontends, demonstrating relative

parity between the approaches under current computational capabilities. More recently,
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Lukierski et al. (2022) explored the use of monocular multi-directional cameras to estimate

the dimensions of enclosed spaces, enhancing the capability to quickly and accurately map

indoor environments.

The V-SLAM can also be classified as feature-based or direct SLAM depending on how the

measurements are used. The feature-based SLAM repeatedly detects features in images

and utilizes descriptive features for tracking and depth estimation (Azzam et al., 2020).

Some fundamental frameworks for this feature-based system include MonoSLAM (Davison

et al., 2007), ORB-SLAM versions one, two and three (Campos et al., 2021; Mur-Artal et

al., 2015; Mur-Artal & Tardós, 2017), and SOFT2 (Cvišić et al., 2022). Instead of using

any feature detectors and descriptors, the direct SLAM method uses the whole image.

Examples of direct SLAM include LSD-SLAM (D. Caruso et al., 2015; Engel et al., 2014),

and SVO (Forster et al., 2017).

In the realm of dynamic environments, B. Xu et al. (2019) proposed MID-Fusion, an

octree-based object-level multi-instance dynamic RGB-D SLAM system. This system

provides robust camera tracking and continuously estimates geometric, semantic, and mo-

tion properties for objects in the scene. In parallel, Vespa et al. (2019) introduced an

adaptive-resolution octree-based volumetric SLAM pipeline that dynamically selects the

appropriate integration scale based on sensor resolution and distance. Their approach

improves reconstruction quality and efficiency. Henning et al. (2022) introduced BodyS-

LAM, a monocular SLAM system that jointly estimates human body parameters and

camera poses. Their novel human motion model improves the accuracy of both human

body and camera pose estimates.

3.1.2 Visual-Inertial Approaches

Combining visual and inertial measurements has become popular in mobile robotics since

the two sensing modalities offer complementary characteristics that make them the ideal

choice for accurate VIO or visual-inertial SLAM.

VIO research has developed this into two primary methodologies: tightly coupled and

loosely coupled systems. Loosely coupled VIO systems handle visual and IMU data sepa-

rately before selectively fusing or optimizing the results, such as in the works by Konolige

et al. (2011) and Tardif et al. (2010). The loosely coupled approach reduces computa-
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tional complexity and enhances system flexibility, though with potential compromises in

accuracy. In contrast, tightly coupled VIO systems, exemplified by the MSCKF method

proposed by Mourikis and Roumeliotis (2007), integrate camera image data and IMU mea-

surements within a unified optimization framework, ensuring high accuracy and robustness

at the expense of increased computational complexity. Notable examples of similar meth-

ods include OKVIS (Leutenegger, 2020), OKVIS2 (Leutenegger, 2022), VINS-MONO (Qin

et al., 2018), and ICE-BA (H. Liu et al., 2018).

DM-VIO (von Stumberg & Cremers, 2022) is a monocular VIO system that introduces

delayed marginalization and poses graph BA to improve accuracy. Delayed marginalization

allows for updated linearization points and better integration of IMU data, enhancing

photometric uncertainty capture and scale estimation. DM-VIO outperformed even stereo-

inertial systems, using just a single camera and an IMU.

More recently, Laina et al. (2024) focus on scalable autonomous drone flight in forest

environments using visual-inertial sensors. Their system leverages visual-inertial SLAM

for accurate state estimation and introduces a sub-mapping framework to manage drift

and corrections. This approach ensures safe and efficient navigation in dense, unstructured

environments without relying on LiDAR.

Other approaches have focused on visual-inertial dense reconstruction; for example, Laid-

low et al. (2017) proposed a RGB-D-inertial SLAM system that jointly optimizes camera

pose, velocity, IMU biases, and gravity direction while maintaining a globally consistent,

fully dense surfel-based 3D reconstruction. In the same direction, Xin et al. (2023) pro-

posed SimpleMapping, a method that uses sparse depth from VIO and a multi-view stereo

neural network to achieve high-quality 3D reconstruction.

3.1.3 Other Advancements in Visual Pose Estimation

To mitigate long-term drift and ensure scale observability, integrating VIO systems with

GNSS measurements has been investigated, as GNSS provides absolute measurements in

the global frame (Cioffi & Scaramuzza, 2020). Early research involved aligning local VIO

estimations to a global coordinate system by loosely coupling GNSS observations within

optimization frameworks or using an Extended Kalman Filter (EKF) framework (Leuteneg-

ger, Lynen, et al., 2014; Leutenegger, Melzer, et al., 2014; Leutenegger & Siegwart, 2012;
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Yu et al., 2019). More recent approaches tightly fuse visual and inertial measurements

with raw GNSS data, such as Doppler shifts and pseudo ranges (J. Liu et al., 2020). For

example, Cao et al. (2021) propose a non-linear optimization-based GNSS-Visual-Inertial-

Odometry system for real-time, drift-free state estimation. Another method, proposed by

Boche et al. (2022), addresses the issues related to global reference frame initialization

and compensates for GPS signal outages, enhancing trajectory accuracy and robustness.

Expanding on semantic understanding, Landgraf et al. (2021) developed SIMstack, which

leverages a depth-conditioned Variational Auto-Encoder (VAE) to predict 3D shapes and

instance segmentation from single depth views, proving useful for applications like precise

object grasping in robotics. In object pose estimation, Merrill et al. (2022) presented

a keypoint-based object-level SLAM framework that provides globally consistent 6-DoF

pose estimates. Their system uses camera pose information from SLAM to track key

points on symmetric objects and predict Gaussian covariance for key points. In another

work, Papatheodorou et al. (2023) introduced a framework for object-centric exploration

using Micro Aerial Vehicle (MAV). This approach not only maps the environment but

also identifies and reconstructs specific objects with high detail, thereby enabling more

context-aware exploration.

DirectTracker (Gladkova et al., 2022) combines direct image alignment for short-term

tracking with sliding-window photometric bundle adjustment for 3D object detection. It

refines object proposals using an optimization-based cost function that integrates 3D

and 2D cues, and evaluates performance using the higher-order tracking accuracy met-

ric. (Muhle et al., 2023) propose a method that introduces a differentiable nonlinear

least squares framework to address uncertainty in relative pose estimation from feature

correspondences. It features a symmetric probabilistic normal epipolar constraint and a

technique for estimating feature position covariance.

Event cameras, as discussed by Gallego et al. (2022), offer high temporal resolution, dy-

namic range, and low power consumption. Their review highlights the potential of event-

based vision in SLAM applications, particularly in challenging fast-movement scenarios

for traditional cameras.

Further enhancing VO, Naumann et al. (2024) introduced Neural Radiance Fields for

Visual Odometry (NeRF-VO), a system that integrates learning-based sparse VO with
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neural radiance fields to achieve superior performance in camera tracking and dense re-

construction, outperforming SOTA methods across various datasets.

Abaspur Kazerouni et al. (2022), D. Cai et al. (2024), Jia et al. (2022), Lai (2022), and

Macario Barros et al. (2022) provide a comprehensive review of V-SLAM systems.

These advancements illustrate the continuous evolution of visual SLAM technologies, ad-

dressing various challenges and enhancing their accuracy, robustness, and efficiency.

3.2 LiDAR-Based Pose Estimation

Recent advancements in hardware have enabled SLAM and pose estimation research to

achieve more accurate 3D representations of the environment. In comparison with cameras,

LiDAR sensors offer more precise distance measurements to objects within the FoV of

the sensor, significantly enhancing the accuracy of localization and mapping systems. In

the following subsections, the SOTA in LiDAR-based odometry and SLAM systems are

discussed.

3.2.1 LiDAR-only Approaches

Some of the earliest LiDAR-based SLAM approaches were founded on PF algorithms,

such as FastSLAM (Montemerlo, 2003) and Gmapping (Grisetti et al., 2007), the latter

of which remains widely used today.

Subsequently, the algorithms evolved to utilize pose-graph and optimization back-ends

(Grisetti et al., 2010; Kaess et al., 2008, 2012; Kümmerle et al., 2011), ensuring better

coherence of acquired measurements and reducing long-term drift. For example, Cartog-

rapher (Hess et al., 2016) introduced real-time loop closure detection in SLAM, using a

front-end with a Ceres-based scan-matcher for building trajectories and a back-end with

Sparse Pose Adjustment to reduce errors upon revisiting locations. SLAM Toolbox (Ma-

censki & Jambrecic, 2021), based on Karto SLAM (Konolige et al., 2010), similarly employs

local and global optimization, offering various mapping modes and better handling of envi-

ronmental changes. It filters out incorrect constraints strictly, whereas Cartographer uses

the Huber loss function for loop closure, which, as will be discussed in Section 4.3, can

affect localization in changing environments.
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The previously mentioned algorithms were developed to work mainly with 2D LiDAR

sensors; the development of 3D LiDARs has allowed us to acquire more information from

the space in the surroundings, and new methods have also emerged.

(J. Zhang & Singh, 2014) introduced LiDAR Odometry and Mapping (LOAM), perhaps

one of the most influential 3D LiDAR pose estimation algorithms. LOAM estimates

the robot’s odometry by registering sequential scans using Iterative Closest Point (ICP),

leveraging planar and edge features to construct a sparse feature map. This approach has

inspired several subsequent methods, such as LeGO-LOAM (Shan & Englot, 2018) and

F-LOAM (H. Wang et al., 2021). However, these methods demand parameter tuning for

feature extraction, which is heavily influenced by the sensor’s resolution and the structure

of the environment.

Behley and Stachniss (2018) proposed the surfel-based SuMa for LiDAR odometry and

mapping, later extended to include semantics (X. Chen et al., 2019) and handle dynamic

objects (X. Chen et al., 2021). Y. Wang et al. (2021) propose an efficient 3D LiDAR

reconstruction framework designed for large-scale exploration tasks. Their system inte-

grates long-range LiDAR scans at high frequency and supports dynamic correction of 3D

reconstructions.

Some approaches address the odometry estimation, focusing on real-time performance and

accuracy. For example, Pan et al. (2021) introduced a multi-metric approach (MULLS)

with robust results across various scenarios but requiring extensive parameter tuning. Del-

lenbach et al. (2022) proposed CT-ICP, incorporating IMU-free motion distortion correc-

tion into registration, yielding excellent results but with added complexity and the need

for prior knowledge of the robot’s motion profile. Vizzo et al. (2023a) advocating for a

constant velocity model, propose KISS-ICP a LiDAR-only odometry method that relies

on few parameters and does not require prior motion profile knowledge. By minimiz-

ing a simpler point-to-point metric, KISS-ICP achieves comparable or superior odometry

performance, with a voxelized, downsampled point cloud map representation simplifying

implementation.

However, while the constant velocity assumption may be valid for data collected using

LiDAR mounted on autonomous vehicles with straightforward motion patterns, such as

in the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) raw
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dataset (Geiger et al., 2013), it fails to capture subtle movements and is generally ineffec-

tive for data gathered with handheld devices or Unmanned Vehicles (UVs) in both indoor

and outdoor environments. Therefore, aiming to address challenging aggressive movement

situations, X. Zheng and Zhu (2023) propose Traj-LO. This method demonstrates that

by employing a continuous-time perspective and parameterizing LiDAR movement with

a continuous trajectory, LiDAR alone can achieve robust and effective performance, even

outperforming methods that rely on additional inertial sensors.

3.2.2 LiDAR-Inertial Approaches

Similar as discussed previously in V-SLAM (Subsection 3.1.2), a trend in LiDAR odometry

is integrating IMU data (Bai et al., 2022b; K. Chen et al., 2023a, 2023b; Shan et al., 2020b;

Z. Wang et al., 2023; Wu et al., 2023; W. Xu & Zhang, 2021; W. Xu et al., 2022). This

integration is named LiDAR-Inertial Odometry (LIO). For example, LIO-SAM (Shan et

al., 2020b) advanced the field with a tightly coupled, factor-graph optimized framework,

enhancing odometry accuracy in dynamic environments.

One of the main advantages of incorporating IMU measurements is the possibility of

undistorted single LiDAR scans, which were captured during fast motion. For example,

Direct LiDAR Inertial Odometry (DLIO) (K. Chen et al., 2023a, 2023b) draws inspiration

from Forster et al., 2016 to allow for parallel point-wise motion correction incorporating a

motion model with constant jerk and angular acceleration, leveraging IMU measurements.

3.2.3 Other Advancements in LiDAR-based Pose Estimation

Some researchers have also integrated camera measurements, leading to approaches known

as LiDAR-Inertial-Visual Odometry (LIVO) (Lin & Zhang, 2022; Lin et al., 2021; C.

Zheng et al., 2022). For example, Boche et al. (2024) presents a tightly-coupled LiDAR-

Visual-Inertial SLAM system and 3D mapping framework. Their approach introduces a

novel probabilistic formulation of LiDAR residuals for scalable large-scale environments,

achieving SOTA pose accuracy and producing globally consistent volumetric occupancy

submaps. While integrating multiple sensor modalities into a single system has proven

robust in scenarios where single sensor modalities fail, this tight integration significantly
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increases system complexity and computational demands, necessitating also calibrated,

time-synchronized data from the different sensors.

For further details on the development of LiDAR-based SLAM, refer to the literature

reviews by Huang (2021), Nam and Gon-Woo (2021), Tee and Han (2021), and Y. Zhang

et al. (2024).

These advancements highlight the growing sophistication of SLAM and mapping tech-

nologies, pushing the boundaries of autonomous navigation and large-scale mapping with

innovative solutions in both LiDAR and visual-inertial domains.

3.3 Map-based Pose Estimation

This section will provide an overview of the SOTA approaches that intend to align sensor

measurements, such as those acquired with LiDAR or camera sensors, to prior building

information, such as BIM models, floor plans, or point clouds.

3.3.1 Visual Approaches

Several studies have approached the alignment of measurements from camera (depth or

monocular) sensors with BIM models or reference maps in two main ways: (1) as a global

localization problem and (2) as a pose-tracking problem.

In the global localization problem, Acharya et al. (2022) introduced BIM-PoseNet, utilizing

synthetic images from a 3D indoor model to achieve a 2-meter accurate camera pose

without an initial position. Haque et al. (2020) localized an Unmanned Aerial Vehicle

(UAV) in the coordinate system of a BIM models by detecting doors and windows in red,

green, and blue (RGB) images, using You Only Look Once (YOLO) for object detection

and ORB-SLAM2 (Mur-Artal et al., 2015) for 3D mapping.

In the pose-tracking approach, Kropp et al. (2018) focused on image-to-4D BIM model

registration using line segments as features, with manual intervention for initial registra-

tion. Asadi et al. (2019) proposed an augmented monocular SLAM algorithm for real-time

localization; however, it is limited to constant velocity acquisition. Boniardi, Valada, et

al. (2019) proposed a clutter-handling method using a convolutional neural network for
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layout prediction and a particle filter algorithm for pose tracking using a floor plan as a

reference map. Acharya et al. (2019) introduced BIM-Tracker, achieving real-time camera

pose tracking with an accuracy of over 10 cm in dynamic environments.

Other methods addressed the challenge of creating a coherent 3D map of the environment

aligned with a given reference map. Sokolova et al. (2022) presented the Floorplan-Aware

Camera Poses Refinement (FACaP) method, aligning Visual-SLAM maps with floor plans

using semantic segmentation and an optimization model considering geometric, floor-to-

plane and wall-to-floorplan terms for map correction.

3.3.2 2D LiDAR-based Approaches

Follini et al.2020 show how the standard Adaptive Monte Carlo Localization (AMCL)

technique may be utilized to obtain the transformation matrix between the robot reference

system and an extracted 2D map from the BIM model. They also state that the AMCL

algorithm could overcome small objects that are not present in the BIM model due to the

probability distribution of its beam model.

AMCL (Pfaff et al., 2006) is the current de facto standard localization algorithm for

estimating the pose of mobile robots within known 2D environments. It is implemented

in the navigation stack of ROS and is widely used for robot localization in 2D OGMs.

AMCL leverages Kullback-Leibler distance (KLD)-sampling PF to sample the particles

adaptively; in this manner, the error of the pose-estimated distribution stays within an

acceptable range, and the method remains computationally efficient (Fox et al., 1999).

The same technique was applied by Prieto et al. (2020), S. Kim et al. (2021), Karimi et al.

(2021), and K. Kim and Peavy (2022) to localize a wheeled robot in a 2D OGM produced

from a BIM model. The primary distinction between these strategies is how they extract

the OGM from the BIM model.

An OGM discretizes the environment into 2D square cells with a predetermined resolution;

the value in each cell reflects the likelihood that an obstacle occupies the cell. Thus, an

OGM allows distinguishing whether a space is free, occupied, or undiscovered.

Prieto et al. (2020) make use of the geometry of the spaces in the Industry Foundation

Classes (IFC) file as well as the location and size of each opening, in contrast to Follini
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et al. (2020), who use the vertices of elements that intersected a horizontal plane and the

Open CASCADE viewer to create an OGM in pgm format.

Karimi et al. (2020) created Building Information Robotic System (BIRS), an ontology

that allows the generation and transfer of topological, semantic, and metric maps from a

BIM model to ROS. An optimal path planner was included in the tool in (Karimi et al.,

2021), incorporating crucial elements for the evaluation of the construction. However, this

method still does not incorporate Mechanical, Electrical, and Plumbing (MEP) equipment.

A technique to transform an IFC file into a ROS-compliant Simulation Definition Format

(SDF) world file appropriate for robot job planning was implemented by S. Kim et al.

(2021). They evaluated their strategy for an automatic painting of interior walls. The

prototype includes a converter that generates a ROS-compliant world file from IFC file

and subprocesses that perform localization, navigation, and motion planning.

Later, a method to turn an IFC model into an Universal Robot Description Format

(URDF) building environment was proposed by K. Kim and Peavy (2022) in order to

add dynamic objects and for the purpose of door inspection. From this point, a robot may

directly access lifecycle information from the BIM model for job planning and execution.

Once they have the URDF model, they use PgmMap (H. Yang, 2018) to extract an OGM

from it.

For 2D-LiDAR localization, Hendrikx et al. (2021) propose a method that uses a robot-

specific world model representation taken directly from an IFC file rather than from an

OGM. In their factor graph-based localization strategy, the system receives information

about the lines, corners, and circles in the immediate environment of the robot and builds

data linkages between those items and the laser readings. They updated and assessed their

approach for global localization in (Hendrikx et al., 2022), producing superior results when

compared to AMCL.

Boniardi et al. (2017) uses an architectural floor plan based on Computer-aided Design

(CAD) rather than a BIM model. They use a Generalized ICP (GICP) implementation for

scan matching together with a pose graph SLAM system in their localization and mapping

system. They transform a CAD floor plan into a 2D binary image and use it for robot

localization in a wearhouse-like scenario. Later, they suggested an improved pipeline that
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outperformed Monte Carlo Localization (MCL) in the pose tracking problem for long-term

localization and mapping in dynamic situations Boniardi, Caselitz, et al. (2019).

General Monte Carlo Localization (GMCL) demonstrated better performance than AMCL

(Alshikh Khalil & Hatem, 2021). It implements three additional particle filters: Optimal,

Intelligent, and Self-Adaptive. The Optimal PF reduces the computational complexity

of the rejection sampling method by adding auxiliary particles, while the Intelligent PF

recalculates the weights of a third of the particles with small weights to better estimate

the pose and orientation of the robot. The Self-Adaptive PF computes a Similar Energy

Region (SER), which represents a set of energy cells whose energy is similar to the sensor

reading’s energy, spreading particles over the map. GMCL achieves a 13% improvement

in pose tracking and a 74% success rate in global localization, compared to AMCL’s 28%.

3.3.3 3D LiDAR-based Approaches

Other approaches investigated 3D LiDAR localization using 3D reference maps.

Gawel et al. (2019) presented a very accurate robotic building construction system. They

use ray tracking with three laser distance sensors, a 3D CAD model, and a robust state

estimator that merges IMU, 3D LiDAR, and wheel encoders to locate the end-effector with

subcentimeter precision. They did this by taking several orthogonal range measurements

while the robot was static.

In the technique proposed by Ercan et al. (2020) and Blum et al. (2020), the 3D LiDAR

scan is aligned with the BIM model using the ICP algorithm.

While Ercan et al. (2020) limits the alignment to a few carefully chosen reference-mesh

faces to overcome ambivalence, Blum et al. (2020) uses picture information to separate the

foreground and background in the point cloud and uses only the latter for registration. The

pipeline was then extended to provide a self-improvement semantic perception technique

that can better handle environmental clutter and increase accuracy (Blum et al., 2021).

To take advantage of the high performance of Google Cartographer (Hess et al., 2016) for

localization, Moura et al. (2021) suggest a method to create .pbstream maps from BIM

models. Although this approach is quite practical, since they only employ Cartographer in

localization mode, their method does not create a map of the environment if the robot is
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not localized and inside the boundaries of the reference map. This means that the robot’s

initial position must be inside the boundaries of the prior reference map (i.e., the BIM

model) in order for it to be localized and a new map to be created.

Oelsch et al. (2021) propose Reference-LOAM (R-LOAM), a technique that uses a com-

bined optimization that includes point and mesh characteristics for 6-DoF UAV local-

ization. Later, in (Oelsch et al., 2022), they improved their approach using pose-graph

optimization to decrease drift even when the reference object is not visible.

A semantic ICP approach was presented by Yin et al. (2023). This method uses the 3D

geometry and semantic data of a BIM model to achieve a reliable 3D LiDAR localization

method. Their system suggests a BIM model-to-Map conversion, turning the 3D model

into a point cloud that is semantically enhanced. Their research demonstrates that a

3D LiDAR-only localization can be accomplished using an BIM model in uncluttered

environments.

Another exciting strategy, suggested by Shaheer et al. (2022), relies on geometric and

topological information in the form of walls and rooms rather than object semantics for

localization. They build Situational Graphs (S-Graphs) using these data, which are subse-

quently used for precise pose tracking. Later, they improved their technique by allowing

the acquisition of a map before localization, as well as the posterior matching and merging

with an A-graph (extracted from BIM models). The combined map’s ultimate designation

was an informed Situational Graph (iS-Graph) (Shaheer et al., 2023).

Direct LiDAR localization (DLL) is a fast localization method introduced by Caballero

and Merino (2021). They use a registration method based on non-linear optimization

of the distance between the points and a reference point cloud. Their method does not

require feature extraction to achieve an accurate and fast registration. By correcting

the anticipated pose using odometry, the technique can follow the robot’s pose with sub-

decimeter precision in real-time. Their technique performed better compared to AMCL

3D (Perez-Grau et al., 2017).
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3.4 Research gap

Numerous methods have been developed that use reference 2D and 3D maps for LiDAR lo-

calization and mapping. Most of them have concentrated on real-time localization without

enabling pose-graph-based optimization approaches to provide a more accurate estimation

of the calculated poses.

Additionally, practically every method requires the scanning to begin in a known initial

pose that must be inside the boundaries of the reference map.

This requirement means that for several methods, there is no chance of localization or

the generation of an aligned map if the sensor starts from a location where the reference

map is not visible or from where there are large Scan-Map deviations, like in a cluttered

environment.

Furthermore, rather than retrieving a posterior accurate, updated, and extended map of

the environment and detecting environmental changes, most researchers focused only on

improving the accuracy of the pose-tracking process.

In this dissertation, particularly in Chapter 4, some contributions are made to improving

pose-tracking performance in changing environments. However, the additional contribu-

tions (Chapters 5 and 6) go beyond the real-time constraints and provide strategies that

demonstrate the feasibility of creating an aligned, optimized map and calculating accurate

6-DoF poses that closely approximate the ground truth poses. In summary, in this disser-

tation, the emphasis shifts from faster, less accurate methods to approaches that prioritize

precision and correctness in the registration process rather than speed.
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Chapter 4

Real-time LiDAR and Image Localization

This chapter presents two novel methodologies aimed at contributing to real-time local-

ization using BIM models or reference 3D/2D maps. The first method delves into a com-

parative analysis of existing 2D LiDAR real-time localization algorithms. Furthermore,

it proposes a framework for transitioning from Occupancy Grid Maps (OGMs) to Pose

Graph-based Maps (PGBMs). This framework facilitates the utilization of PFs for rapid

global localization, followed by Graph-based Localization (GBL) algorithms for subsequent

pose tracking. Here, ”global localization” refers to the initial process of determining the

robot’s position within the entire map. At the same time, ”pose tracking” signifies the

continuous refinement of the robot’s position and orientation as it moves. The second pro-

posed method to advance real-time localization systems focuses on refining camera poses

using a 3D BIM model. The solution involves the extraction of Vanishing Points (VPs)

and Vanishing Lines (VLs) from camera images and synthetically generated images from

a BIM model.

4.1 Motivation

Real-time localization is a fundamental capability for robots operating in dynamic environ-

ments. It allows robots to maintain an accurate understanding of their position relative

to the surrounding world on a given prior map.

For effective autonomous robot navigation within a mapped environment, fast and accu-

rate localization is of prime importance. Only with a clear understanding of its current

location can a robot efficiently compute a path and autonomously navigate toward its

objective while avoiding obstacles.

Sensor selection plays a critical role in achieving real-time localization with cost-

effectiveness in mind. Cameras and 2D LiDAR (laser scanners) are often preferred due

to their affordability and widespread availability on robots. 2D LiDAR sensors with laser
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beams effectively measure distances to surrounding obstacles, offering valuable data for

navigation. Meanwhile, camera sensors provide rich visual information, including texture

and color details, along with a vertical FoV, which can further enhance both localization

and navigation capabilities.

Real-time localization with 2D LiDAR plays a crucial role in enabling robots to navigate

efficiently.

Despite the widespread adoption of the Adaptive Monte Carlo Localization (AMCL) al-

gorithm (a PF method) for real-time 2D LiDAR localization (often due to its inclusion

in the Robot Operating System (ROS) navigation stack), there is a scarcity of research

dedicated to advancing the robustness of such algorithms. This includes improvements in

both localization accuracy and the ability to handle discrepancies between sensor scans

and the reference map (here referred to as Scan-Map deviations). In contrast, Simultane-

ous Localization and Mapping (SLAM) systems have witnessed significant advancements.

A crucial development was the transition from particle filter approaches to pose-graph

optimization with pose-graph maps. This shift enabled SLAM systems to achieve higher

precision and robustness, particularly when correcting for substantial drifts that can occur

after the scanning of large areas. This research proposes a novel method that facilitates

the transition of real-time 2D LiDAR localization from particle filter-based approaches

to pose-graph optimization. It is also demonstrated that this transition has the poten-

tial to enhance the robustness and accuracy of real-time localization, leading to improved

navigation performance for robots.

Cameras offer rich visual information for robot navigation, making them a valuable tool

for localization. The second area of research in this chapter explores the refinement of

camera poses using a 3D BIM model. While the proposed method does not yet achieve

real-time performance, it represents a significant step towards that goal by leveraging the

rich information available in 3D BIM models. This advancement paves the way for the

future development of fully real-time image-based localization solutions.

42



4.2 Research Questions

This chapter aims to contribute to the field of robot localization and navigation by pro-

viding an answer to the following main research question:

RQ 1. How can 3D BIM models be leveraged for real-time 2D LiDAR and image local-

ization systems?

The following are the specific three sub-research questions addressed in this chapter:

RQ 1.1 Transformation of 2D OGMs to PGBMs:

- How can a 2D Occupancy Grid Map (OGM) be transformed into a Pose

Graph-based Map (PGBM) to facilitate the transition of localization algo-

rithms into the optimization paradigm?

· Rationale: While generating an OGM from a given map can be straight-

forward (depending on the reference map), creating an accurate Pose

Graph-based Map (PGBM) requires specific expertise. This transforma-

tion is crucial for allowing the easy transition of localization algorithms

and leveraging their highest performance for specific localization tasks.

RQ 1.2 Performance Evaluation of State-of-the-art (SOTA) 2D LiDAR local-

ization Algorithms:

- How do various SOTA algorithms perform in different environments, char-

acterized by varying levels of clutter (Scan-Map deviations) and dynamic

conditions, in the context of pose tracking and global localization tasks?

· Rationale: Assessing the performance of multiple Particle Filters (PFs)

and Graph-based Localization (GBL) algorithms under different envi-

ronmental conditions will provide insights into their robustness and

applicability for real-time localization.

RQ 1.3 Correction of Camera Poses Using 3D Models:

- How can poses obtained from a Visual-SLAM system be corrected with the

assistance of a 3D model?
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· Rationale: Integrating 3D BIM models to correct camera poses can

enhance the accuracy of the localization of low-cost sensors, thereby

improving the overall map precision.

By addressing these questions, this research aims to equip robotic systems with more

reliable and accurate real-time localization capabilities, ultimately leading to improved

autonomous navigation performance in diverse environments. In the following two sections,

a method to enhance 2D-LiDAR real-time localization and another aiming for near real-

time camera image localization with 3D models will be presented.

4.3 Real-time 2D LiDAR Localization1

Our method to explore and enhance real-time 2D LiDAR localization can be divided into

three main steps: Step 1: Creation of an OGM from an Industry Foundation Classes

(IFC) file (3D BIM model) employing IfcConvert and OpenCV. Step 2: Automatic gener-

ation of a PGBM out of an OGM with a combination of image processing, coverage path

planner, and ray casting. Step 3: Robust localization using particle filter algorithm and

graph-based localization system.

4.3.1 Step 1: OGM Generation from a BIM Model

For the creation of suitable 2D OGM for robot localization and navigation from complex

multi-story IFC models, the IfcConvert tool of IfcOpenSchell (Krijnen, 2015) and image

processing techniques are used.

IfcConvert allows the creation of a 2D map in Scalable Vector Graphics (SVG) format

with the desired elements in the IFC model that cross a plane at the desired height.

In this case, non-permanent entities such as spaces, windows, and doors are excluded from

the resulting 2D OGM by ignoring the corresponding entity names. This exclusion is essen-

tial to filter only structural information about the building, enabling further autonomous

navigation between the rooms that want to be explored. Besides having the permanent

structures in the OGM, and with the aim of global localization and posterior correct pose
1Portions of this section were previously published in (M. A. Vega-Torres, Braun, & Borrmann, 2022)
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Figure 4.1: Proposed IFC to PGBM for robust 2D-LiDAR localization. In the first step, an
OGM is created from multi-story non-convex BIM models, which can have slanted floors;
this map is suitable for path planning and autonomous robot navigation. In the second
step, a PGBM is generated from the OGM. Finally, in the third step, these maps allow
fast global localization and robust pose tracking in changing and dynamic environments.

graph map generation, it is crucial to differentiate between outdoor (unknown) and indoor

(navigable) spaces in the OGM. This distinction can be automated by creating a second

OGM with all the entities in the IFC file (i.e., with doors, windows, and spaces).

The final separation of outdoor (gray color), indoor (white), and obstacle (black) is done

based on the contours in the SVG image. OpenCV allows the processing of the contours

depending on their hierarchy, i.e., depending on whether they are inside (child contours)

or outside another contour (parent contours).

The resulting file is finally converted to .pgm, which, together with its properties (the

resolution and origin) in a .yaml file can then be loaded into the robotic system as prior

environment information, allowing robot localization, path planning, and autonomous

navigation.

A similar procedure can be followed for multi-story level buildings. In the particular case

of non-overlapping stories, the different OGMs can be merged into a single one if the

relative position between them is known. To maintain this spacial relationship, while

obtaining the OGMs, reference auxiliary elements with a height equal to the maximum

building’s height can be included in its surroundings (four of these elements are visible in
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the surroundings of the building in the left upper part of Fig. 4.1). With these additional

elements, all the OGMs will have the same dimensions, allowing its merging.

Creating 2D OGMs with IfcConvert is relatively straightforward when the desired section

is horizontal (parallel with the XY plane). However, if the model has a ramp or a slightly

slanted floor, the model must be rotated before the occupancy map is generated.

Favorably, IfcConvert also allows the model to rotate at the desired angle, given a quater-

nion calculated from the vector of rotation.

4.3.2 Step 2: OGM to Pose Graph-based map Conversion (OGM2PGBM)

The automatic generation of data suitable for GBL methods from BIM models implies

the simulation of sequential laser data in the entire navigable space in the model with the

corresponding odometry data.

For this aim, the previously generated 2D OGM is used. Applying the skeleton method

proposed in (Lee et al., 1994) enables the interconnection of all the rooms in a smooth

trajectory.

Subsequently, a Wavefront Coverage Path Planner (Zelinsky et al., 1993) is applied over

the navigable area inside a dilated version of the skeleton, allowing finding the waypoints

over which the laser will be simulated.

Then, using a ray casting algorithm and without a real-time simulation engine (such as

Gazebo), laser sensor data and odometry are simulated following the waypoints found

in the previous step. Finally, a trajectory builder merges these sensor data, creating an

accurate pose graph-based map, serialized as a .pbstream file for Cartographer (Hess et al.,

2016) or as a .posegraph file for SLAM Toolbox (Macenski & Jambrecic, 2021). For a brief

explanation of the basics of Cartographer and SLAM Toolbox systems, refer to Section

3.2.

This pipeline allows the automatic efficient generation of pose graph-based maps (with

submaps, nodes, and constraints) from a 2D OGM. As the OGM2PGBM workflow does

not require a Gazebo for data simulation, it is faster and more portable than a Gazebo-

based pipeline, allowing its execution in an isolated manner. Moreover, since the technique

does not consider the complete 3D model but only a 2D OGM, it is very efficient. In
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addition, it can be used from any given OGM, which, besides being generated from a BIM

model (with the method presented in the previous section), can be generated out of a floor

plan or a previously scanned map.

4.3.3 Step 3: Robust Localization

Once the different needed map representations (OGM and pose graph-based maps) are

generated from a BIM model, they can be used for robust localization in changing envi-

ronments. In this contribution it is proposed to take advantage of the Self-Adaptive PF

of GMCL to spread particles only in the SER regions and solve the global localization

problem efficiently 2. As it is shown later (in Subsection 4.3.5), PF algorithms being able

to represent non-Gaussian distributions can solve the global localization faster than graph-

based algorithms. Once an estimated pose is found with a covariance smaller than 0.05,

the nodes of GMCL are stopped, and a GBL algorithm can be started. For example, to

track the pose of the robot accurately, Cartographer can be activated with the start_traj

service at the time when GMCL converges and using the .pbstream map generated with

the method proposed in Subsection 4.3.2. Similarly, SLAM Toolbox can be started with

an initial pose; however, with a prior .posegraph map.3.

4.3.4 Experiments

This section presents the evaluation scenarios designed to evaluate the various techniques

and details of the implementation and evaluation.

Evaluation Scenarios

As illustrated in Figure 4.2, three different scenarios were conceived to evaluate the dif-

ferent methods. Each scenario increases the level of clutter present in the environment

and, therefore, decreases the level of overlap that a perception sensor would have with

permanent building objects (such as walls, columns, floors, and ceilings). The latter are

the elements that are usually present in a BIM model.
2For a more detailed explanation of the fundamentals of AMCL and GMCL systems, please refer to

Subsection 3.3.2.
3For a more detailed explanation of the fundamentals of Cartographer and SLAM toolbox systems,

please refer to Subsection 3.2.1.
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(a) (b) (c)

Figure 4.2: Evaluation Scenarios. (a) Empty Room: represents a typical BIM model,
without furniture; (b) Reality: represents a standard office environment and is based on
real-world TLS data; (c) Disaster: is an environment after a simulated disaster with large
Scan-Map deviations.

Additionally, to increase the simulation’s realism level, animated walking human models

(also called dynamic agents) moving in the environment were added. In scenarios 1 and

2, five humans walk from each room to the closest exit of that room. In the scenario

Nr. 3 (“Disaster”), a total of six people move faster, trying to escape through the main

door. Once the agents reach their goal, they start again, moving from their initial planned

position in an infinite loop.

Gazebo Simulation

To simulate the experimental data Gazebo was used. Once the IFC model is converted to

Collada format using IfcConvert, it can be imported into Gazebo. Importing complex IFC

models in Gazebo is essential to ensure that every element has its geometric representation.

One way to avoid instantiating multiple objects from the same data is using the export

capabilities of Blender.

For trustworthy data simulation the collision and visual models were separated. Since

LiDAR sensors cannot perceive glass materials, windows and glass doors were removed in

the collision models.
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(a) 1-1 (b) 1-2 (c) 2-1

(d) 2-2 (e) 3-1 (f) 3-2

Figure 4.3: Sequences of data with the respective OGMs. (a) and (b) correspond to an
empty environment (i.e., without furniture) with and without dynamic agents resp.; (c)
and (d) similar to the pair (a) and (b) but in a scenario with the furniture as it is in a
real-world office; (e) and (f) in a simulated disaster environment. To better visualize the
different levels of Scan-Map deviations, the OGM of the empty environment is presented
over the other OGMs in blue color. The change in color of the trajectory represents the
initial and end position of the robot, with dark blue being the start and red the endpoint.

Robot Simulation

The robot used for the simulated experiments was the holonomic Robotnik SUMMIT XL

equipped with a 2D LiDAR Hokuyo UST-10LX. It was commanded with stable linear and

angular velocity of at approximately 1 m/s and 1 deg/s, respectively.

Using the URDF model of this robot, it is possible to leverage the different packages of the

ROS Navigation Stack for ROS visualization (RViz). One of these packages is NAVFN,

which assumes a circular robot and allows it to plan a path from a start point to an

endpoint in a grid based on a cost map.
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A cost map is an inflated version of the given 2D OGM with a specified amplification

radius created to avoid the robot colliding with obstacles while navigating through the

environment.

To speed up the usage of the OGM for robot simulation, the Gazebo Plug-in PgmMap

creator (H. Yang, 2018), was also implemented, allowing the creation of maps with known

origin position. In practice, this step is not required since the alignment between the real

world and the map can be retrieved as a localization system result.

It is worth mentioning that using navigational goals instead of single movement commands

is very convenient for data simulation since it significantly reduces the probability of

collisions, which can make the entire sequence useless.

Following this approach, 2D LiDAR, IMU, Wheel odometry, and ground truth odometry

were simulated in the six scenarios (three models with and without dynamic agents). The

resulting trajectories of the simulation are presented in Figure 4.3.

Implementation details

Due to the stochastic nature of PF algorithms (AMCL and GMCL) and similarly as

done by (Alshikh Khalil & Hatem, 2021), these methods were executed 30 times in each

sequence, and the average values were calculated.

Similarly as (Zimmerman et al., 2022), it is considered that a method converges when its

pose estimate is within a distance of 0.5m from the ground truth pose. If after the first

95% of the sequence, convergence does not happen, then it is considered a failure.

Unfortunately, SLAM Toolbox could not be evaluated for global localization since it does

not provide this service. The lifelong mapping mode of SLAM Toolbox was also tested for

the matter of completeness; however, it yields unwanted results with poor performance.

4.3.5 Results and Analysis

The libraries provided by (Grupp, 2017a) and (Z. Zhang & Scaramuzza, 2018) were used

to calculate the error metrics of the various methods on the different sequences.
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Table 4.1: Summary of the quantitative evaluation results for sequences 1-1, 1-2, 2-1, and
2-2. Translational Root Mean Square Error (RMSE) in centimeters and angular RMSE
in degrees, respectively.

Method 1-1 1-2 2-1 2-2
AMCL 8.49 0.44 8.47 0.50 33.68 2.71 37.44 3.26
GMCL 8.27 0.24 7.86 0.24 24.27 2.57 52.38 4.37

SLAM Toolbox 3.69 0.17 3.95 0.17 28.69 1.50 23.57 1.50
Cartographer 4.01 0.24 3.96 0.25 7.19 0.15 4.11 0.21

Table 4.2: Summary of the quantitative evaluation results for sequences 3-1 and 3-2. Trans-
lational RMSE in centimeters and angular RMSE in degrees, respectively.

Method 3-1 3-2
AMCL 63.04 3.29 65.12 3.37
GMCL 66.60 3.70 126.91 4.46

SLAM Toolbox 37.84 1.34 37.96 1.70
Cartographer - - - -

Pose tracking

Tables 4.1 and 4.2 present the translational and rotational RMSE for each sequence for

each method evaluated on the pose tracking problem with the ground truth from the

simulation. Figure 4.4 shows the resulted trajectories by the different methods in the

multiple scenarios. Figure 4.5 presents a summary of the statistics of the translational

errors for all the methods in all sequences.

Overall, it can be seen that GBL methods always perform better than PF algorithms in

the pose tracking problem.

Among the tested PF algorithms, GMCL performs most of the time better than AMCL.

Only in the scenarios 2-2, 3-1, and 3-2, AMCL achieves lower RMSE. In scenarios 2-2 and

3-2 GMCL has a very high translational RMSE.

This shows that the additional filters of GMCL cause the method to be more sensitive to

dynamic environments in changing environments.

Regarding the GBL algorithms, SLAM Toolbox achieves the best performance in scenarios

1 and 3. As expected, scenario 3 (with the most significant Scan-Map deviations) was the

most challenging scenario for all the methods. On top of that, in this scenario, the pure

localization mode of Cartographer always found wrong data associations, resulting in
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wrong relative constraints that cause localization failure. Therefore Cartographer could

not be quantitatively evaluated in this environment, even when an initial approximated

pose was provided. Nonetheless, Cartographer achieved an impressive performance in

scenario 2 (real-world scenario), accomplishing a translational RMSE four times lower

than SLAM Toolbox in the environment without dynamic agents (7.19 cm and 28.69 cm

respectively) and almost six times lower in the scenario with dynamic agents (4.11 cm and

23.57 cm respectively).
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Figure 4.4: Trajectories estimated by the different methods in each sequence together with
the respective ground truth trajectories. All methods perform relatively well in scenario 1
(sub-figures (a) and (b)). In scenario 2 (sub-figures (c) and (d)) Cartographer manifests
a clear superiority. However, the same method is not able to track the robot’s pose in
scenario 3 (sub-figures (e) and (f)). In this scenario, SLAM Toolbox performs the best.
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Figure 4.5: Statistics of the pose error estimates in (a) translation and (b) orientation for
each method on the six evaluation scenarios.
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Global localization

1-1 1-2 2-1 2-2
AMCL 57 42 80
GMCL 11 21 19 13
Cartographer 12 15 113 31
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Figure 4.6: Convergence time in seconds for the various methods in the different scenarios.

The performance of the different methods regarding convergence time is presented in

Figure 4.6.

GMCL, thanks to its Self-Adaptive PF, performs the best in the global localization prob-

lem. Only in scenario 1-2 Cartographer shows a slight superiority. Meanwhile, AMCL

always takes at least twice as long compared to the other methods to converge to a good

pose. In addition, it does not converge in scenario 2-1.

Due to the high level of Scan-Map deviations, none of the implemented methods converge

while trying to solve the global localization problem in scenario 3.

In general, Graph-based Localization (GBL) methods (such as SLAM Toolbox or Cartog-

rapher) perform best for pose tracking and Particle Filter (PF) methods (in particular

GMCL) for global localization. This distinction arises because PF algorithms, which rely

solely on the most recent observation to update the belief of the current pose, exhibit ro-

bustness in highly ambiguous scenarios; for example, in scenario 3, the PF methods do not

fail such as Cartographer. However, this same reliance can lead to significant inaccuracies

when facing medium levels of Scan-Map deviations (e.g., scenario 2). Conversely, GBL

algorithms leverage a recent history of observations, enabling them to better navigate real-
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world scenarios and maintain more accurate pose tracking. Therefore, it is recommended

to use a GBL algorithm for accurate Building Information Modeling (BIM)-based (or floor

plan-based) 2D LiDAR pose tracking in real-world environments and GMCL for global

localization.

The previously presented technique, results, and analysis showed how it is possible to

improve 2D-LiDAR real-time localization in changing environments. Rather than relying

on map construction with an SLAM algorithm, it is possible to use a reliable map with only

permanent elements of the environment (such as a BIM model), allowing for precise pose-

tracking and fast global localization even when temporal elements change their position

over time.

While 2D-LiDAR systems are commonly integrated into various robotic platforms, cam-

eras offer a more cost-effective alternative with the added advantage of capturing richer

information, including texture and vertical geometries within the vertical FoV that 2D-

LiDAR cannot measure. Consequently, the following section will delve into a methodology

for iteratively refining camera poses using a 3D model as a reference.
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4.4 Real-time Image Localization4

The proposed methodology to achieve image localization with a 3D model can be divided

into three main steps: Step 1. Point cloud acquisition with SLAM; Step 2. Perspective

detection in the BIM view and keyframes, and Step 3. Localization improvement to find

the fine camera poses. An overview of the workflow can be seen in Figure 4.7.

Chair of Computational Modeling and Simulation
Department of Civil, Geo and Environmental Engineering
Technical University of Munich

13Rafaella Dantas, Simone Peter, Xingzhou Wang | Real-time Scan-vs-BIM #6

Overview

Xingzhou Wang

SLAM

Keyframes Point Cloud Camera poses

Point cloud vs. BIMBIM

Transformation Matrix

Camera Trajectory in BIM

+

VP & VL in BIM

VP & VL in frames

Iterative process

Fine camera pose

Figure 4.7: Proposed workflow for fine camera pose correction with a BIM model.

4.4.1 Step 1: Point Cloud Acquisition and First BIM Alignment

In order to obtain the rough camera poses, a point cloud acquisition was performed using

a RealSense D435i camera with the RTAB-MAP SLAM framework (Labbé & Michaud,

2019). Once a bag file is recorded, a database is created with the help of the “2019-UGRP-

DPoom” project (Shinkansan, 2021).

The point cloud database is then opened in RTAB-MAP where the poses in the trajectory

are optimized, and from where the final rough camera poses and frames can be exported.

Besides that, creating a point cloud database is important since it will later be used as

one part of the input data in CloudCompare (CC) for the alignment between the point

cloud and the BIM model.
4The method described in this section was developed in collaboration with Rafaella Dantas, Simone

Peter, and Xingzhou Wang, as part of a seminar project (called Software Lab), supervised by the author
of this dissertation. Portions of this section were previously published in (Dantas et al., 2022).
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In order to find the camera poses in the BIM coordinate system, the resulting point cloud

has to be aligned with the model. This first alignment is done in a semi-automatic manner

using CC.

The BIM model, originally in IFC format, needs to be exported as a triangulated mesh

(in stereolithography (STL) format), which can be conducted using Revit. Afterward, the

BIM model can be imported into CC. Additionally, to render the BIM keyframes, the

model is imported into Blender, where the camera object and scripting tools are primarily

used. The keyframes are frames extracted every second from the video stream.

The transformation matrix that aligns the point cloud with the BIM ensures that the

initial BIM keyframe of the executed trajectory is in the scope of the one from SLAM.

The alignment in CC is conducted after manually selecting three reference points in the

point cloud and their correspondences in the BIM model. Finally, a transformation matrix

from point cloud to BIM is obtained.

Once the correct transformation matrix and scale of the point cloud are found with CC,

the coordinates of the rough camera trajectory obtained previously with RTAB-MAP are

transformed into the BIM coordinate system.

4.4.2 Step 2: Perspective Detection

One significant task in the computer vision community is to extract 3D information from

2D images (Asadi et al., 2019). The estimation of VPs is important for performing the

localization improvement step. In this contribution, the algorithm proposed in (Hedau

et al., 2010)was applied in order to conduct this step. The vanishing points are points on

the image plane, where 2D perspective projections of mutually parallel lines in 3D space

intersect. Hedau et al. (2010) propose to compute the parallel lines by the edge detection

approach. Afterward, the triplet of orthogonal vanishing points and two vanishing lines

are calculated.

In order to obtain the VPs and VLs in the BIM view, a virtual camera is simulated in

Blender at the rough camera poses. The parameters of the camera object are set according

to the intrinsic parameters of the D435i real-depth camera. An adaptor was written to
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generate frames in the BIM view directly in Python and avoid a manual step in Blender.

Blender is called in the background using the command line rendering.

The script extracts the location, rotation, and frame destination from the passed command

and renders the respective keyframe in Blender. Then, the module “Data Access” is used

to obtain Blender’s internal data and set the new camera information.

4.4.3 Step 3: Camera Pose Improvement

The localization improvement is based on the distance error and the angular error (see

∆d and ∆θ respectively in eq. 4.2 and eq. 4.1) between the VPs and VLs of the keyframe

and BIM, which are depicted in Figure 4.8.

Figure 4.8: Distance error ∆d and angular error ∆θ between the VPs and VLs of the
current key frame and the corresponding BIM frame. The BIM frame has to be corrected
until it matches the current real-world frame; in this way, the real camera pose is found
in the BIM coordinate system (own illustration based on (Asadi et al., 2019)).

∆d =
√
(XBIM −Xkeyframe)2 + (YBIM − Ykeyframe)2 (4.1)

∆θ = tan−1

(
V LBIM − V Lkeyframe

1 + V LBIM ∗ V Lkeyframe

)
(4.2)

At first, the location values of the camera poses are corrected. The two corresponding

VPs located in the image frame are backward projected from 2D pixel (u, v) to 3D camera

coordinates (XC , YC , ZC) using the intrinsic parameters of the camera.

A correction based on the obtained difference is applied. However, it turns out that the

influence on the VPs is relatively small compared to the influence of the VLs. The second

part is the improvement of the rotation angles, based on Euler’s definition.
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An iterative, stepwise correction process conducts this step until a defined threshold is

reached. The Euler rotation around the y-axis, also referred to as pitch, is directly related

to the in-plane computed angle ∆θ, so that it can be directly applied as a correction for

this value.

The yaw rotation around the z-axis mainly influences the x-coordinate of the VP.

This coordinate is changed stepwise until a threshold of 3% for the difference between the

x-coordinates of both VPs is reached.

After each correction step, a new BIM frame is generated with Blender. The VPs and,

thereby, the updated distance and angular error are computed. A similar approach is used

for the y-coordinate and the roll rotation around the x-axis.

4.4.4 Experiments and Results

A section of an uncluttered corridor was selected to test the image localization system.

The resulting point cloud and the corresponding BIM model are illustrated in Figures

4.9a and 4.9b, respectively.

(a) (b)

Figure 4.9: Evaluation Scenario: (a) Sparse point cloud reconstructed with RTAB-MAP
for a corner with the real-world camera frames used to evaluate the proposed image local-
ization system. (b) Corresponding BIM model of the whole corridor.

Figures 4.10a and 4.10b show the angular and translational errors of the initial rough

camera poses (estimated with RTABMAP) and the improved errors after the proposed

image localization pipeline is executed. Figure 4.11 presents the average computational

time of each step of the pipeline.
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(a) (b)

Figure 4.10: Visualization of the results: (a) Performance of the image localization system
angular errors in degrees. (b) Corresponding distance errors in pixels.

Figure 4.11: Average computational time performance of the image localization system. In
red is the time for estimating the rough camera pose with SLAM, in blue for perspective
detection (computation of VPs and VLs), and in yellow is the time to recover the fine
camera pose through localization improvement.

The proposed image localization algorithm achieved a reduction of the average distance

error between the VPs of the video and BIM of 93% and of the average angular error of

92%, with an average processing duration of 134 s per frame.
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4.5 Contributions and Limitations

4.5.1 Contributions

This chapter presented significant contributions to the field of robot localization and navi-

gation, specifically focusing on the integration of 3D BIM models with real-time 2D LiDAR

and image localization systems. The key contributions are as follows:

C 1.1 Transformation of 2D Occupancy Grid Maps (OGMs) to Pose Graph-

based Maps (PGBMs) (RQ 1.1):

- A novel open-source code was developed for transforming 2D OGMs into

PGBMs, which facilitates the transition of localization algorithms into the

optimization paradigm (M. Vega-Torres, 2022). Link to the repository.

- The method involves skeletonization of the OGM, coverage path planning, and

ray casting. Up to this stage, the method operates very fast and independently

of ROS or Gazebo for LiDAR simulation.

- The approach provides an automatic and systematic framework for generat-

ing PGBMs, which is of great advantage for specific pose-tracking tasks, es-

pecially in complex, cluttered, changing, and dynamic environments. SOTA

SLAM techniques have switched from using particle filters to graph-based

optimization approaches; based on the conducted experiments, it is possible

to conclude that it will be analogously advantageous for most localization

systems.

C 1.2 Performance Evaluation of State-of-the-art (SOTA) 2D LiDAR Local-

ization Algorithms (RQ 1.2):

- A comprehensive evaluation was conducted of four SOTA 2D LiDAR localiza-

tion algorithms, including two particle filters (AMCL and GMCL) and two

pose-graph-based methods (Cartographer and SLAM Toolbox).

- The evaluation was performed in six different environments characterized by

varying levels of Scan-Map deviations (i.e., clutter and dynamic conditions),

providing valuable insights into the robustness and applicability of these al-

gorithms for real-time localization.
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- The results offer a detailed understanding of the performance trade-offs and

the conditions under which each algorithm excels, guiding the selection of

appropriate localization methods for different scenarios. For example, Graph-

based Localization (GBL) methods (such as SLAM Toolbox or Cartographer)

perform best for pose tracking and Particle Filter (PF) methods (in particular

GMCL) for global localization. In particular, it is advisable to employ a GBL

algorithm for precise BIM-based (or floor plan-based) 2D LiDAR pose tracking

in real-world settings and utilizing GMCL for global localization.

- In the open-sourced repository (M. Vega-Torres, 2022), a straightforward and

effective approach was presented to combine the strengths of a PF algorithm

for global localization with a GBL method for pose tracking. This is achieved

by initializing the GBL method once the PF algorithm has converged.

- The simulated data used for the experiments and evaluation of the different

methods, as well as the reference maps, was made open-access to enable easy

benchmarking of new localization or pose estimation methods. The data can

be found here (M. A. Vega-Torres, Braun, & Borrmann, 2024a)5.

C 1.3 Correction of Camera Poses Using 3D Models (RQ 1.3):

- An innovative approach was introduced for correcting poses obtained from

SLAM systems using cameras by integrating 3D BIM models.

- The proposed method intends to minimize the distance between VPs and VLs

extracted from real-world RGB images and synthetically generated images

from a BIM model.

- The method demonstrates the potential of leveraging 3D models to augment

the localization capabilities of camera-based SLAM systems, contributing to

more accurate and reliable navigation.

5For a comprehensive list of all open contributions, refer to Section 1.14.
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4.5.2 Limitations

This chapter has demonstrated significant progress and notable contributions; however, it

is also important to recognize the limitations of the two proposed methodologies:

L 1.1 Complexity of PGBM Generation:

- The process of transforming 2D OGMs to PGBMs requires significant compu-

tational resources and expertise. The methodology, while effective, does not

work in real-time, and the complexity is very high; therefore, it is not directly

suitable for large-scale maps.

- The transformation process is sensitive to the quality and resolution of the

initial 2D OGM, potentially affecting the accuracy of the resulting PGBM.

- The final step, which entails the use of the trajectory builder, necessitates

the deployment of Cartographer or SLAM Toolbox, both of which are based

on a ROS system and can require high computational resources and certain

expertise for their correct implementation. Nonetheless, a Docker was pro-

vided for easy deployment on any machine, which now also supports ROS2

(M. Vega-Torres, 2022).

L 1.2 Disregarding mapping accuracy:

- While real-time sensor localization offers the benefit of facilitating the creation

of an aligned environmental map, there are inherent trade-offs between speed

and accuracy. Real-time algorithms often fail to converge on the most precise

robot poses due to time and computational constraints. Higher accuracy can

be achieved by allocating more processing time for pose calculation, allowing

for a more optimal registration of sensor measurements with the existing map.

- Global localization algorithms, while effective in addressing the initial align-

ment problem, can suffer from excessively long convergence times in large-

scale environments. Additionally, these algorithms require the sensor to be

positioned within the pre-existing map for successful convergence. This limi-

tation hinders their ability to extend the existing map or initiate scanning in

entirely unmapped areas. Consequently, real-time localization algorithms are

not well-suited for these scenarios.
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- Although many real-time 2D LiDAR localization algorithms demonstrate ro-

bustness to Scan-Map deviations, significant mismatches between the prior

map and actual observations in small regions can cause the calculated poses

to diverge drastically or even to a system failure. Consequently, the recon-

structed map from these poses becomes unusable.

L 1.3 Image Localization Performance:

- The developed image localization pipeline does not work in real-time due to

inefficiencies in its implementation, mainly in the optimization algorithm to

retrieve the corrected poses. By definition, if the speed of processing each

keyframe is higher than the speed of the frame sampling, the process can

be considered real-time. The proposed method requires, on average, 134 s to

process one keyframe. As it can be seen in Figure 4.11, it does not work in

real-time (considering each keyframe is extracted every 1 s). Nonetheless, it is

essential to consider that the required time per frame varies depending on the

quality of the initial pose estimation. Alternative methods like ORB-SLAM3

(Campos et al., 2021) or OKVIS2 (Leutenegger, 2020; Leutenegger, 2022) may

be more advantageous than using RTAB-MAP.

- The method is also highly dependent on the environmental conditions; it re-

quires an environment with a low level of Scan-Map deviations, such as clutter

and the presence of dynamic elements; otherwise, the method will not be able

to extract correctly the VPs and VLs for the alignment. To address this issue,

one approach may consider room layout prediction methods (such as proposed

by Lukierski et al. (2017) or by Boniardi, Valada, et al. (2019)); however, with

the limitation of working only on Manhattan World environments. To con-

tribute to the solution of this problem, a dataset with over 200 labeled images

of the ConSLAM dataset with the corresponding layout was provided. Here

is the link to the dataset.

This chapter introduced novel methodologies that contribute to the field of real-time lo-

calization and navigation for robots utilizing BIM models or 3D maps. While limitations,

particularly the speed-accuracy trade-off inherent to real-time algorithms, restrict their

ability to achieve optimal pose estimation, the presented methods offer significant ad-
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vancements in addressing the core challenge of sensor-map alignment and provide valuable

insights for further development.

However, considering the motivations outlined in Section 1.3, achieving a high-fidelity

updated aligned 3D map may ultimately be more crucial and in alignment with the primary

objectives (such as supporting decision-making and progress monitoring) than achieving

real-time performance in localization or alignment. This understanding informs the focus

of subsequent chapters, which will prioritize advancements in accurate map generation

and alignment over real-time localization performance.
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Chapter 5

Aligning Integrated Mobile 3D

LiDAR-inertial Session Data with a

Reference Map1

This chapter describes a novel method to address some of the most critical limitations of

real-time localization algorithms presented in the previous chapter. This enhancement is

achieved by focusing on the creation of an updated alignment map rather than emphasizing

real-time alignment.

The proposed framework, called SLAM2REF, incorporates innovative feature descriptors

based on the widely used SCD for place recognition and introduces a novel YawGICP

registration algorithm. Additionally, motion distortion correction for individual scans

is integrated by incorporating IMU measurements to create continuous-time trajectories.

These components are holistically integrated into a multi-session anchoring framework

that enables the registration of drifted SLAM session data with a reference map. The

primary objective is to align and correct a given distorted map with a reference 3D BIM

model or point cloud, even in the presence of Scan-Map deviations, as typically encoun-

tered in construction sites or buildings during emergency scenarios (e.g., post-disaster).

Furthermore, a module to analyze environmental changes following the alignment process

is presented. This comprehensive approach aims to enhance the accuracy and reliability

of localization and mapping in dynamic and challenging environments.
1Significant parts of this chapter have been previously published in the Journal of Construction

Robotics (M. A. Vega-Torres, Braun, & Borrmann, 2024c), which is an extension of a conference
paper (M. A. Vega-Torres et al., 2023). The paper can be accessed at: https://doi.org/10.1007/
s41693-024-00126-w
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5.1 Motivation

Creating a high-fidelity, updated, and aligned 3D map is essential for the primary ob-

jectives of this dissertation, which include increasing situational awareness and support-

ing construction site progress monitoring. This priority surpasses the need for absolute

real-time performance in localization or alignment, as discussed in the previous chapter

(Chapter 4).

To address some of the critical limitations of real-time localization systems, this chapter

introduces a new methodology. Unlike localization algorithms, SLAM algorithms have

been the focus of intense research over the past decades, leading to rapid development.

However, even the best algorithms are susceptible to drift, particularly in long trajectories

within dynamic or cluttered environments or under the presence of fast sensor motion (L.

Zhang et al., 2023).

While the goal is not to develop a new SLAM algorithm, the aim is to utilize the output

of any LiDAR-based SLAM or odometry system as an initialization step to approximate

sensor poses in a local coordinate system. The proposed framework will then handle

automatic alignment and drift correction with the reference map.

Given these requirements, the proposed framework is built on top of Lt-SLAM. This SOTA

open-source module enables the alignment of multiple sessions created from specific SLAM

systems enhanced with a key-information-saver (G. Kim & Kim, 2022).

Session Data (SD), as will be described more formally later, is a sequence of sensor data

acquired from a particular place during a specific period of time. In this case, it can be

simplified as a set of sequential timestamped LiDAR scans with known positions. The

key-information-saver is the module that allows this data to be retrieved.

While several improvements in the pipeline were introduced, one of the most critical

changes is the focus on aligning session data with a reference map of an indoor building

rather than another session. This reference map can contain various levels of Scan-Map

deviations and might not be the same size as the acquired session.

The proposed method begins by creating a map of the environment using a SOTA Li-

DAR-Inertial-Odometry or SLAM algorithm, which is then aligned and corrected with
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a reference map. Both maps can have small levels of overlap, and the initial scanning

position should not need to be within the reference map.

The less drift the initial poses have, the better the resulting alignment and correction

will be. However, a major advantage of the proposed approach is its ability to handle

trajectories with significant drift and still correct them using the reference map.

Moreover, unlike the methods discussed and introduced in the previous chapter, the ap-

proach presented here has been tested on real-world (not simulated), open-access data of

large-scale maps. Additionally, instead of using 2D LiDAR measurements, it leverages

3D LiDAR scans undistorted with fused IMU measurements. Another very important

requirement of the presented method is to be able to retrieve very accurate poses (close

to the ground truth poses), given an accurate reference map.

5.2 Research Questions

In line with the motivation and requirements stated above, this chapter aims to answer

the following main research question.

RQ 2. How can reference 3D BIM models or point clouds be utilized for alignment and

correction of session data from 3D LiDAR and IMU measurements?

RQ 2.1 Automatic Generation of Accurate Occupancy Grid Maps and 3D Ses-

sion Data from a Reference Map:

- How can an automatic method be developed to create accurate OGMs and

3D session data from large-scale BIM models or point clouds?

· Rationale: This question addresses the need for a robust and automated

process to convert building data into usable formats for localization and

alignment, ensuring high accuracy and reliability.

RQ 2.2 Alignment and Correction of Drifted Sessions with a Reference Map:

- How can fast place recognition and multi-session anchoring be leveraged to

align and correct drifted sessions acquired with SLAM or LiDAR-inertial

odometry systems in indoor environments?
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· Rationale: Investigating this question aims to enhance the accuracy and

stability of 6-DoF pose retrieval and map extension, surpassing current

SOTA methods by minimizing drift and improving alignment with the

reference map.

RQ 2.3 Analysis and Change Detection in Aligned Data:

- How can a module be developed to analyze acquired aligned data, provid-

ing both positive and negative difference detection for updated 3D map

visualization?

· Rationale: This question focuses on creating tools for detailed analysis

of aligned data, enabling the detection of changes and updates in the

environment to maintain an accurate and up-to-date 3D map.

To address the previously described research questions, SLAM2REF is introduced, a novel

framework that integrates 3D LiDAR data and IMU measurements with a reference map

to achieve precise pose estimation, enabling also map extension and long-term map man-

agement.

The effectiveness of SLAM2REF will be demonstrated through extensive experiments

in various large-scale indoor GPS-denied real-world scenarios, showcasing its ability to

achieve centimeter-level accuracy in trajectory estimation and robust map alignment over

extended periods. Additionally, it will be demonstrated that the method enables the ro-

bust automatic alignment of the data with a reference BIM model, which does not contain

clutter, furniture, or dynamic elements as the real-world data.

This is achieved through innovative feature descriptors based on the widely used Scan

Context descriptor (G. Kim et al., 2021) and a novel YawGICP registration algorithm

built based on the Open3D GICP method. Additionally, motion distortion correction of

individual scans is incorporated by integrating IMU measurements to create continuous-

time trajectories inspired by the Direct LiDAR Inertial Odometry system (K. Chen et al.,

2023b). These elements are holistically integrated into a multi-session anchoring frame-

work that enables the registration of drifted SLAM session data with a reference map.

Our framework, while drawing significant inspiration from LT-SLAM G. Kim and Kim,

2022, advances beyond existing methods by retrieving ground truth poses when an accu-
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rate reference map is available. Additionally, the proposed approach incorporates motion

distortion correction and is particularly effective for indoor scenarios. It is versatile in its

ability to utilize various types of 3D maps, such as point clouds or BIM models, as refer-

ences. This flexibility ensures that the proposed method is not confined to the registration

of session data pairs alone.

5.3 SLAM2REF and Change Detection Methodology

Our approach can be broken down into three key components, as shown in Figure 5.1. In

Step 1, synthetic reference SD is generated automatically from large-scale 3D reference

BIM models or point clouds.

Then, in Step 2, a real-world undistorted LiDAR SD acquired using a SOTA LIO algo-

rithm is aligned and corrected using the reference 3D map.

Finally, in Step 3, the aligned map is further automatically analyzed, allowing the creation

of an updated 3D map, which considers the detection of positive and negative environ-

mental changes.

Reference Map
(BIM/PC)

Simulated scans and
descriptors

Map-based session data generation
1

Reference map-based
multi-session anchoring

Pose-graph optimization

Undistorted query session
generation

Inter-session loop detection

2

Positive & Negative
difference detection

Change detection and map update

3

Clustering &
Surface reconstruction

Figure 5.1: Overview of SLAM2REF. The pipeline consists of three steps: map-based
session data generation, Reference map-based multi-session anchoring, and Change detec-
tion and map update.
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5.3.1 Step 1: Map-based Session Data Generation (Map to Session

Data)2

In this step, the objective is to encapsulate the geometry of the reference 3D map—whether

it is a BIM model or a point cloud—into individual LiDAR scans with their corresponding

feature descriptors. These descriptors serve to encode the visible geometry from the origin

of the scan within the reference map, enabling us to rapidly find the correct alignment of

real-world session data with a reference map.

In real-world data acquisition, Session Data (SD) refers to consecutive sensor data acquired

from a particular place at different periods (Cramariuc et al., 2022). Nonetheless, since

the goal is to convert a reference map to synthetic SD, these data can be considered

a set of LiDAR scans (with known carefully selected positions) and their corresponding

descriptors.

Formally3, a session S is defined as follows:

S :=
(
G, {(Pi, di)}i=1,...,n

)
(5.1)

Here, G is a pose-graph map that contains the coordinates of the pose nodes, odometry

edges, and optionally recognized intra-session loop edges with uncertainty matrices. These

matrices represent how certain the positions of these edges are. This map can be saved in

a text file, usually in .g2o format.

The (Pi, di) are the pairs of 3D LiDAR scans with their corresponding global descriptors

of the ith keyframe and n is the total number of equidistantly sampled keyframes.

Generating synthetic SD (simulated scans and descriptors) from a reference map can be

subdivided into three substeps. First, an OGM is extracted from the reference map. This

extraction is achieved in an automated manner, taking as input only the IFC model or the

reference point cloud and the floor level (z coordinate value) from where the OGM should

be generated. In a second substep, the OGM is used to find the poses in which the LiDAR

scans will be simulated. In a third and final substep, LiDAR scans are rapidly simulated
2The open source code for this step can be found here: https://github.com/MigVega/Map2SessionData
3For a comprehensive list of all mathematical variables used, please refer to Appendix A.
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in the positions calculated in the previous step, and the corresponding descriptors are

calculated.

These substeps have been optimized so that it is possible to efficiently simulate data from

large-scale 3D BIM models and point clouds. The following subsections provide a more

detailed explanation of each substep.

OGM from Reference Map

Initially, and for convenience, the 3D geometry of the reference map is reduced into a

2D OGM. This dimensional reduction has been demonstrated to be very computationally

efficient, allowing the implementation of the pipeline in complex, large-scale models.

Moreover, a 2D OGM (with known scale and origin) allows the direct usage of the map

with the ROS navigation stack for autonomous navigation (Macenski, Moore, et al., 2023).

Besides path planning, cost maps, and navigational algorithms, the ROS navigation stack

includes several SOTA features, such as the regulated pure pursuit algorithm to adjust

the robot’s speed depending on the path with a particular focus on safety in constrained

and partially observable spaces (Macenski, Singh, et al., 2023).

The approach for generating an OGM depends on the type of input data. The following

sections detail the procedures for creating OGMs from BIM models and point clouds.

OGM from IFC model (BIM2OGM). The proposed automated generation of OGMs

from BIM models builds upon prior work described in (M. A. Vega-Torres, Braun, &

Borrmann, 2022). However, the key distinction lies in the enhanced automation of the

pipeline.

For this purpose, the IfcConvert (IfcOpenShell Contributors, 2023b) tool is leveraged, and

image-processing techniques are employed akin to previous related works. IfcConvert, a

command-line interface application within the open source IfcOpenShell project (Krijnen,

2015), facilitates the versatile conversion of a 3D BIM model from the .ifc file format to

various other formats such as 3D meshes (.obj, .dae) or 2D layers (.svg). Detailed docu-

mentation for the IfcConvert functionality is available (Gopee et al., 2022; IfcOpenShell

Contributors, 2023a).

73



The input 3D IFC model is first converted to SVG format and then processed with the

OpenCV library to output different layers as Portable Network Graphics (PNG) files.

These layers will then be merged to produce the final Portable Gray Map (PGM).

To ensure compatibility with the ROS navigation stack and facilitate accurate scan simu-

lations, the 2D PGM map must adhere to specific guidelines. It should represent unknown

(external) regions in gray, navigable space (floor) in white, and potential collision-causing

objects (e.g., walls and columns) in black.

IfcConvert is used to convert the 3D IFC model into 2D SVG files with the desired elements

intersecting a plane at the chosen height. Furthermore, the resolution and size of the

output SVG image are modified to only include the elements of interest.

To generate the OGM, the semantics of the BIM model are leveraged, focusing on extract-

ing permanent elements like walls, ceilings, columns, and floors. This process excludes

non-permanent features and objects invisible to LiDAR sensors, such as spaces, doors,

windows, and curtain walls.

Filtering just permanent structural information about the building enables finding reliable

correspondences between the geometry from the BIM model and real-world 3D LiDAR

data. In this letter, it is assumed that the permanent structures in the BIM model are

reliable features for localization and scan-matching. In the presence of open doors and

windows, their exact placement in the space is unknown (open, closed, or semi-open) and

is not provided in the BIM model; therefore, those elements should not be considered while

creating the 2D OGM or any source of information used for alignment or localization.

A critical consideration in the conversion of SVG files to PNG format is the choice of units

utilized within the original SVG file. By default, IfcConvert assigns millimeters as the unit

of measurement for the SVG files. However, these millimeters do not undergo a direct one-

to-one transformation to pixels during the conversion to PNG. Consequently, it becomes

imperative to eliminate explicit unit specifications within the SVG file to ensure consistent

scaling and preservation of the established coordinate origin during the conversion to PNG.

Additionally, it is critical to consider the effect of displacement while creating sections at

different heights. While the scale will be maintained, the values of the coordinates of the

geometry (saved in paths) in the SVG file will be adjusted according to the elements that
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intersect that specific height. To counteract this effect and have all the PNG images in

the same coordinate system, the images are shifted according to the x and y values saved

in the data matrix of the SVG generated with IfcConvert.

Automating the creation of the OGM involves producing the following two sections:

1. In the indoor layer, the floor area is designated as white. This section is generated

at the z-coordinate corresponding to the upper surface of the slab of interest, i.e.,

at the floor level where the alignment should happen. Subsequently, the resultant

gray-scale PNG image from this SVG is converted to binary. Then, its inverted

version represents the indoor layer, in which the floor is represented as white pixels

and the rest as black.

2. In the collision layer, permanent elements like walls and columns are extracted while

excluding non-permanent structures such as doors and windows. The creation of this

layer occurs slightly above (1 m) the z-coordinate of the previous layers. It is crucial

to note that the coordinate system of this image deviates from the preceding layer

due to its creation at a different height. Therefore, it is imperative to compensate

for this offset, as previously explained, before converting it into PNG format.

Subsequently, the indoor layer is placed over a gray image of the same size, allowing to

distinguish outdoor (unknown) and indoor areas.

Finally, the pixels in the black color of the collision layer are transferred to the indoor

layer. Given this, the final OGM is created and saved in the rasterized ROS standard

PGM format. Figure 5.2 illustrates the layers and the final 2D map.

Additionally, a corresponding YAML Ain’t Markup Language (YAML) configuration file

is generated, containing crucial details such as the origin and resolution of the 2D map,

extracted from the data-matrix of the initial SVG file.

Besides being an essential step in the proposed pipeline, accurately creating a 2D OGM

holds significant potential for SOTA localization algorithms, facilitating rapid and collision-

free autonomous navigation. This has been exemplified by M. A. Vega-Torres, Braun, and

Borrmann, 2022 (see section 4.3) and corroborated by numerous other studies (refer to

chapter 3).
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2D OGM from BIM

Figure 5.2: Generated OGM from the BIM model. On the left, the different layers, and
on the right, the merged final OGM.

OGM from a Point Cloud The steps involved in creating a OGM from a point cloud

are as follows: First, a 2D grid is created to the length and width of the point cloud and

scaled given a grid resolution. Each cell within this grid is initially assigned a gray color.

Then, and as discussed in (M. A. Vega-Torres, Braun, Noichl, et al., 2022), the points

are projected onto the XY plane, considering the resolution of the grid and its origin (the

minimum XY coordinate of the point cloud). If points within a cell are found to be near

the floor level (within a range of ±0.5 m), the cell is colored white, signifying navigable

space.

On the other hand, cells are colored black if points are detected at a height 1 m above the

floor level, assuming that this region predominantly consists of walls, columns, and other

permanent elements.

Locations for Data Simulation

Once a correct OGM is generated from the reference map, this is utilized to find proper lo-

cations where LiDAR scans will be simulated. These locations should be equally separated

coordinates ordered by proximity, aiming to closely replicate real-world data acquisition

with full coverage of the map. To this aim, first, the skeleton of the image is extracted,

which gives a smooth path similar to the one a person would follow during acquisition with

a mobile LiDAR or scanning device. Then, points are sampled over this path uniformly.
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Similarly, as proposed in (M. A. Vega-Torres, Braun, & Borrmann, 2022), the process

extracts a skeleton from the OGM. This skeleton is derived using the approach outlined

by Lee et al., 1994, producing a smooth trajectory over the free space that interconnects

all rooms and open areas within the OGM.

In a previous version of the pipeline (M. A. Vega-Torres et al., 2023), a Wavefront Cov-

erage Path Planner (PP) (Zelinsky et al., 1993) was used over this skeleton to find the

waypoints in which the 3D LiDAR will be simulated. However, the Wavefront Coverage

PP approach is inherently intricate, making it unfeasible to be applied over large OGMs

without consuming large amounts of computational resources.

Therefore, to handle large-scale reference maps, the following method is proposed instead,

which tries to sample uniformly key points over the path created with the skeleton ap-

proach:

1. The scan locations are initially extracted using image processing techniques. This

involves generating masks with equally spaced vertical and horizontal lines, isolating

only the white pixels intersecting these masks and the previously generated skeleton.

The idea behind this is that only isolated pixels will remain rather than elongated

lines present in the skeleton.

2. Subsequently, the corresponding center points of the remaining pixels are extracted

using a contour detection algorithm. To ensure a minimum distance between points,

the spatial distribution of these coordinates is downsampled.

3. Finally, the coordinates are sequentially ordered using the nearest neighbor algo-

rithm.

Figure 5.3 shows the calculated scan locations for an OGM of a large building.

LiDAR data Simulation

In previous work (M. A. Vega-Torres et al., 2023), the identified waypoints were utilized

to set navigational goals for a robot operating autonomously within the ROS navigation

stack, simulated in the Gazebo physics engine (Koenig & Howard, 2004). Then, a sequence

of simulated 3D LiDAR scans was produced with Gazebo and saved in rosbag files. Here,
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Figure 5.3: Calculated locations for scan simulation. On the left are the main steps, and
on the right are all the calculated positions in the entire OGM.

an enhanced approach eliminates the need for ROS or Gazebo is presented; by such means,

the creation of large rosbag files containing redundant information is avoided.

Instead, it is proposed to leverage Blender Sensor Simulation Toolbox (BlenSor), a versatile

software designed for simulating various range scanners (Gschwandtner, 2013; Gschwandt-

ner et al., 2011). With the BlenSor Application Programming Interface (API), it is possi-

ble to automatically load the coordinates for simulating LiDAR scans (calculated in the

previous step), streamlining the simulation process.

The process of simulating LiDAR data can be subdivided into three main steps:

1. The reference map is converted to an STL mesh. In the case of a BIM model, this

involves conversion to Wavefront .obj file (OBJ) format after filtering only permanent

structures using IfcConvert, similar to the process employed in creating the 2D OGM.

However, instead of generating an SVG file, the proposed method creates an OBJ file

containing the 3D geometry of the model described explicitly. To ensure precise 3D

conversion, the proposed approach selectively includes required permanent elements

(e.g., walls, columns, floors, and slabs) rather than excluding entities. The conducted

experiments revealed that the exclusion command does not consistently produce

satisfactory results for this 3D conversion. Subsequently, the generated OBJ file is

converted to STL format for seamless integration of the geometry into BlenSor.
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When dealing with a point cloud as the reference map, the ball pivoting method has

consistently demonstrated reliability in reconstructing mesh surfaces from 3D point

clouds. Before applying this method, the process involves estimating the normals

of the point cloud and calculating an optimal radius based on the average nearest

neighbor distance, facilitating accurate and efficient surface reconstruction.

2. Later, the coordinates determined in the preceding steps, where the data will be

simulated, are transformed from pixels (in 2D) to meters (in 3D). This conversion

utilizes the scale and origin information specified in the YAML file of the correspond-

ing OGM.

3. Subsequently, the simulated LiDAR properties are adjusted to align with those em-

ployed in real-world scanning. Then, a sub-process initiates the parallel simulation

of 360◦ LiDAR scans at these coordinates using BlenSor.

Finally, and after the simulation, Scan Context (SC) descriptors are created for each

simulated scan. More information about these descriptors will be provided in the following

section 5.3.2 (Step 2.1).

Following the steps above, the geometry of the reference map or the permanent objects in

the BIM model is now established as a reference session, denoted as SR, and is illustrated

in Figure 5.4.

In the subsequent step, this synthetic Session Data, encompassing descriptors and sim-

ulated scans, will be leveraged for fast place recognition and data alignment. However,

before this process, it is necessary to generate session data from real-world datasets.

5.3.2 Step 2: Reference Map-based Multi-Session Anchoring4

To derive a globally consistent map aligned with the reference map from real-world sequen-

tial LiDAR data, the following three substeps are executed: (1) Creation of the real-world

motion-undistorted query session SQ, which is similar to the synthetic reference session

SR (created as explained in the previous section); however, from real-world data. (2)

Place recognition for inter-session loop detection between SQ and SR. (3) Pose graph

optimization with multi-session anchoring and pose refinement with K-nearest neighbors
4The open source code for this step can be found here: https://github.com/MigVega/SLAM2REF
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LiDAR Scan (Top View)

Polar SC descriptor

SC descriptorsMatrix form of SC Simulated Scans

Figure 5.4: Synthetic session data from the reference map. On the left, from top to bottom:
Top view of one LiDAR scan, its corresponding polar SC descriptor, and the descriptor in
the matrix form. In the middle, a set of simulated scans and the STL mesh from the BIM
model are used. Right, corresponding SC descriptors for the simulated scans.

(KNN) loops and a final ICP registration. These substeps are described in detail in the

following subsections.

Figure 5.5 illustrates a flowchart outlining the complex multi-session anchoring process in

the SLAM2REF framework.

Following the generation of SD from the reference map SR (Step 1 presented in Section

5.3.1) and the construction of the real-world query session SQ (Section 5.3.2), the alignment

procedure can be initiated. This involves an inter-session loop detection phase employing

ISC and YawGICP (Section 5.3.2), which identifies encounters c denoting correspondences

between the sessions. These encounters, along with initial odometry constraints, are inte-

grated into a factor graph problem. Subsequent to optimization, pose refinement is carried

out using KNN loops (Section 5.3.2) and a final ICP process. The resulting information

comprehends the following elements attributed to the query session: the anchor node ∆∗
Q,

which facilitates the global alignment to the reference map, the optimized 6-DoF poses

of each scan x∗
Q, and a confidence level list νQ providing the reliability of each pose after

scan registration.
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Figure 5.5: Comprehensive flowchart illustrating the multi-session anchoring process
within SLAM2REF. This process includes the generation of session data from the ref-
erence map SR, creation of the real-world query session SQ, inter-session loop detection
using Indoor Scan Context and YawGICP, and pose refinement with KNN loops and final
ICP. The outcome includes the anchor node ∆∗

Q, optimized 6-DoF poses x∗
Q, and a confi-

dence level list νQ for each pose in the query session.

Real-world Query Session Generation

The correct generation of a query session SQ from real-world data involves three primary

substeps, elaborated upon as follows.

Motion Distortion Correction. Point clouds acquired from mobile spinning LiDAR

sensors often experience motion distortion because the rotating laser array collects points

in various instances during a sweep, leading to inaccuracies. Therefore, one of the main

issues using LiDAR-only algorithms is the difficulty in correcting motion-distorted LiDAR

scans in the presence of fast motion.

In some SOTA LiDAR-only SLAM algorithms, the authors have assumed constant velocity

models to overcome this issue, as done in KISS-ICP (Vizzo et al., 2023b). Although

this assumption can hold for data acquired with LiDAR placed over autonomous cars

and simplistic motion patterns, as in the KITTI raw dataset (Geiger et al., 2013), the

constant-velocity model cannot capture subtle movements and generally does not hold for

data acquired with handheld devices or UVs in indoor or outdoor scenarios (X. Zheng &

Zhu, 2023).
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Therefore, the MDC of one SOTA LIO system is used to generate undistorted scans before

alignment with the reference map.

In particular, the MDC implementation in DLIO (K. Chen et al., 2023b) is leveraged,

which, inspired by Forster et al., 2016, generates continuous-time trajectories. Their ap-

proach considers a motion model characterized by constant jerk and angular acceleration

compensated with IMU measurements. This enables fast and parallelizable point-wise

motion correction.

Once the scans are deskewed with the information from the IMU, keyframe scans can be

extracted with timestamps and odometry calculated poses. This process is explained in

the subsequent section.

Key Information Saver. The goal here is to save equally spaced undistorted scans

(i.e., after a specific variation of time, translation, or rotation) with respective odometry

estimated poses from a sequence of data that was previously recorded in a ROS bagfile

during acquisition with a mobile mapping system device.

To extract keyframes and construct the real-world query session SQ, the methodology

proposed by G. Kim et al., 2022 presents a viable approach. The authors implemented

loop closure mechanisms and keyframe information-saving capabilities as an extension in

several SOTA algorithms.

In general, the approach can vary depending on the available data. When dealing with

LiDAR-only data, SC-A-LOAM (G. Kim et al., 2022), an enhanced version of A-LOAM

(J. Zhang & Singh, 2014) is a valid technique; however, it assumes constant velocity for

MDC. For an additional calibrated 9-axis IMU, the corresponding enhanced version of

LIO-SAM (Shan et al., 2020a) can be used.

If the data contains 9-axis or only 6-axis IMU measurements, which are typical for the

internal IMUs of LiDAR and camera sensors, the proposed open source keyframe informa-

tion saver5 together with almost any LIO pipeline can be used (e.g., FAST-LIO2 (W. Xu et

al., 2022), FASTER-LIO (Bai et al., 2022a) or iG-LIO (Z. Chen et al., 2024)). Something

essential to consider is that the LIO pipeline should publish (i.e., make available) the ROS
5https://github.com/MigVega/Key-Info-Saver-SLAM
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topic with the undistorted scan in the local coordinate system. This last characteristic is

not standard and depends on the used MDC strategy.

Given that DLIO demonstrated the best MDC results in the conducted experiments, the

corresponding enhanced version, which transforms the deskewed scan to the correct local

pose after undistortion, was implemented and made open-source.5

After saving the keyframe scans along with odometry information (i.e., time-stamped

approximate 6-DoF poses), the final step to generate the query session involves feature

descriptor extraction to encode the geometric information of the scans. This process will

facilitate efficient comparison with reference session descriptors later.

Indoor Scan Context Descriptor. For place recognition, the new Indoor Scan Con-

text Descriptor (ISCD) is introduced. This variant diverges from the original Scan Context

descriptor by focusing exclusively on indoor scans, as opposed to outdoor scans typically

encountered in autonomous car environments, for which SC was originally conceived. With

ISCD, the objective expands beyond merely eliminating ceiling points, which are notably

common in indoor scans, especially in acquisitions with significant variations in pitch

and roll angles, as usually encountered in handheld systems. Moreover, the objective is

to selectively filter permanent vertical building elements perpendicular to the XY-plane,

characterized by visible vertical surfaces of considerable length.

Inspired by G. Kim and Kim, 2018; G. Kim et al., 2021, and by the formal definitions in

(L. Li et al., 2021; H. Wang et al., 2020), the creation of ISCD is as follows: Azimuthal and

radial bins split the 3D scan from the top view following an equally spaced arrangement

(for reference, see an example on the left side of Figure 5.4).

In the Cartesian coordinate system, a LiDAR scan is defined with n points as P =

{p1, p2, · · · , pn} with each point pk = [xk, yk, zk]. Each point pk can be converted into a

polar coordinate system, as follows:

pk = [rk, θk, zk] ,

rk =
√

x2k + y2k,

θk = arctan yk
xk

.
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The point cloud is then segmented into Ns sectors and Nr rings by equally diving polar

coordinates in azimuthal and radial directions. Each block is represented by:

Bij =

{
pk ∈ P | (i− 1) ·Rmax

Nr
≤ rk <

i ·Rmax
Nr

,

(j − 1) · 2π
Ns

− π ≤ θk <
j · 2π
Ns

− π

}
,

where i ∈ [1, Ns] , j ∈ [1, Nr], and Rmax is the maximum radius considered to create the

descriptor. In contrast with the original SCD, instead of taking only the z value of the

highest point in the bin bij , in ISCD, if there are a minimum of ISCmin points in the bin,

a value equal to 1 is assigned to that bin, and 0 otherwise. Formally:

bij =


1 if count(pk ∈ Bij) ≥ ISCmin

0 otherwise

The final ISCD Ω ∈ RNr×Ns , can be generated by:

Ω(i, j) = bij .

The global signature Ω is a 2D matrix that efficiently encodes the geometry of mainly

permanent elements (e.g., walls and columns) visible from the position of the sensor.

Note that if Bij ∈ ∅, Ω(i, j) = bij = 0, i.e., if in the bin there are no scan data because

the bin is free or occluded, the bin will have a value of zero and will be visible as a blue

color in the image representation of the descriptor (as shown in 5.4 and 5.6).

In the following section, these descriptors are exploited to rapidly determine the rough

alignment between the query and reference sessions.

Place Recognition for Inter-session Loop Detection 6

Having SQ (real-world query session) and SR (session from the reference map), the goal

is to align these two sessions.

To achieve this, correspondences are sought by comparing the previously generated ISCDs

between sessions to identify inter-session loop closures. This task is also known as place
6The open source code for this step can be found here: https://github.com/MigVega/SLAM2REF
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Figure 5.6: Indoor Scan Context loop detection: The query session’s scan is converted into
1D rotational invariant descriptors. These descriptors are quickly compared with those
from the reference session to select the top Nc candidates (see number 1). In the second
phase, the 2D descriptors of these candidates are compared using cosine similarity while
systematically varying the column position to identify the best match and optimal yaw
angle alignment.

recognition, in which one aims to identify or determine the specific location or place of

sensor measurements (in this case, single LiDAR scans) within a given map.

In order to facilitate quick comparison, the 2D descriptor is condensed into a one-

dimensional vector. This vector is generated by calculating the average of the rows in

the 2D descriptor. This average ensures rotation invariance, meaning that if a scan is in a

location that is approximately the same but with a different yaw angle, the resulting 1D

descriptor will remain unchanged.

The comparison between the query scan (from SQ) and the scans from the SR is facilitated

by employing a KNN search in a KD-Tree and using the L2-norm metric.

Subsequently, the corresponding 2D descriptors of the Nc closest 1D descriptors are com-

pared using the column-wise cosine distance.

This column-wise cosine distance is calculated to identify the similarity between two ISCDs

Ωq and Ωr. Let vq
i and vr

i be the ith column of Ωq and Ωr; the score can be found by:

φi (Ω
q,Ωr) =

1

Ns

Ns−1∑
i=0

(
vq
i · vr

i

∥vq
i ∥ · ∥vr

i ∥

)
.

A comparison conducted column by column is beneficial for handling dynamic entities or

slight differences between the reference map and the query session (e.g., new furniture

or clutter) since although some columns of the 2D descriptor may show variations, the

remaining columns will exhibit similarities. However, relying solely on this comparison
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overlooks the possibility of revisiting the exact location from a different perspective. To

tackle this limitation and ensure rotational invariance in the matching process, the method

computes distances using a range of column-shifted scan contexts. Then, it identifies the

shift that yields the minimum distance. This procedure resembles the coarse alignment

of two sets of points, focusing mainly on aligning the yaw angle. By implementing this

approach, the optimal number of column shifts (i.e., optimal yaw angle) for alignment and

the corresponding minimum distance can be determined.

Formally, if Ωq
k and Ωr are compared where Ωq

k is Ωq shifted by kth column. The final

score is calculated as follows:

Φi (Ω
q,Ωr) = argmin

k
φi

(
Ωq
k,Ω

r
)
.

The matched pairs are subsequently refined through a filtering process employing an em-

pirical threshold, denoted as ϵ, applied to the calculated minimum distance metric, Φi.

After detection of ISC loop closures, a 6D relative constraint is established between two

keyframes if there is a successful alignment between a sub-map from the reference session,

denoted as PR,i (which comprises the three closest scans to the one that matched the scan

in the query session), and the single undistorted scan from the query session, denoted as

PQ,j .

The correctness of the alignment between these two keyframes is essential for the subse-

quent steps in the pipeline, as it dictates the effectiveness of the initial global registration

between sessions.

To achieve this alignment robustly, YawGICP is introduced, an improved variant of the

GICP algorithm. YawGICP primarily focuses on translational changes and yaw angle

adjustments, thereby mitigating significant pitch or roll rotations commonly induced by

conventional GICP alignment procedures. This precaution prevents instances where stan-

dard GICP may accidentally rotate the source point cloud by 90 degrees (in pitch or roll),

leading to erroneous associations between wall, ceiling, or floor points.

The YawGICP is initialized with the yaw angle calculated in the previous step.

Consistent with prior work (G. Kim & Kim, 2022; M. A. Vega-Torres et al., 2023), only

ISC loops exhibiting a satisfactory fitness score, indicating a high percentage of inliers are
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considered. These loops are then incorporated into the factor graph problem with low

covariance Σc, serving as factors between sessions with anchoring. Further elaboration

on the factor graph problem will be provided in the subsequent section (5.3.2). Figure

5.7 illustrates the detected ISC loop closures, which are then classified into correct and

incorrect using YawGICP.

Poses of the query session

Poses of the reference session

in green encounters

Figure 5.7: Detection of Indoor Scan Context loop closure between sessions. On the top
are the poses from the query session, and on the bottom are the poses from the reference
session, in this case, created from a BIM model. Correct correspondences are represented
by green lines, while erroneous ones as red. After the YawGICP step, the erroneous
correspondences are effectively discarded.

Pose Graph Optimization and Data Alignment 7

In this substep, the initial odometry constraints derived from the preserved session data

(referenced in substep 5.3.2) and previously identified inter-session ISC loop closures (in-

troduced in substep 5.3.2) are leveraged to achieve the data alignment.

The objective is to first roughly align the entire query session with the reference session

from the reference map. Consequently, even if some scans within the query session’s

keyframes do not have any correspondence with the reference session, they are still aligned

to the most cohesive pose based on the identified correspondences (SC loops) with adjacent

scans and the provided odometry constraints.

Formally, in this contribution, the alignment between the sessions is done using multi-

session anchoring. This method was originally introduced by B. Kim et al., 2010 and was

further developed by McDonald et al., 2013, Ozog et al., 2016, G. Kim and Kim, 2022.

One of the main motivations behind these projects is to solve the so-called multi-robot
7The open source code for this step can be found here: https://github.com/MigVega/SLAM2REF
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mapping problem. In this context, and as explained in Section 2, maps generated by

different robots commonly have distinct reference coordinate systems, which require the

merging of these maps to form a globally consistent map with a unified global coordinate

system.

Formally the problem can be defined as follows: Given two sessions, SQ and SR, each

provided with odometry constraints, and in the case of SQ, potentially equipped with intra-

session loop closure constraints identified by a SLAM algorithm with a key information

saver (as explained in Section 5.3.2), the objective is to determine the optimal poses for

the nodes in SQ. These poses should effectively align the measurements within SQ with

those of SR, considering the existence of inter-session loop closure constraints between the

two sessions.

As explained in 2, multi-session anchoring can be formulated as a factor graph MAP

optimization problem.

To properly consider the encounter measurements (c) in the MAP formulation in Eq. (2.4),

it is needed to redefine the relative measurement model h
(
.
)

in the global frame with the

help of the anchor nodes.

This adjustment is needed, considering that the encounter is a global assessment between

two trajectories. However, the pose variables for each trajectory are defined in the session’s

local coordinate frame. With the anchor nodes, the poses of the respective sessions are

transformed into a global frame, where a comparison with the measurement becomes

possible.

The measurement model h
(
.
)

is modified to h′
(
.
)
, to incorporate the anchor nodes, and

therefore, the respective term in Eq. (2.4) is changed to:

∑
j∈Ne

∥∥h′j (xR,j , xQ,j ,∆Q,∆R)− cj
∥∥2
Σc

The difference c in the global frame between a pose xR and a pose xQ is estimated by

c = (∆R ⊕ xR) ⊖ (∆Q ⊕ xQ), where ⊕ and ⊖ are the SE(3) pose composition operators

(Blanco-Claraco, 2021; Smith et al., 1990).
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The operation ∆Q ⊕ xQ represents concatenating the transformation of xQ (the second

pose) to the reference system already transformed by the anchor node ∆Q. In SE(3), the

operator ⊕ is equivalent to matrix multiplication (Blanco-Claraco, 2021).

Hence, the subsequent factor between sessions with anchoring will properly integrate the

encounters in the pose graph optimization. It achieves this by initially transforming the

poses of each session into the global frame using the anchor nodes.

ϕ (xR,i, xQ,j ,∆R,∆Q)

∝ exp
(
−1

2
∥((∆R ⊕ xR,i)⊖ (∆Q ⊕ xQ,j))− c∥2Σc

) (5.2)

While initializing the factor graph, the odometry constraints from both sessions and the

constraints after ISC loop detection are added to the optimization problem, the first as

between factors and the latter as factors between sessions with anchoring.

Considering that in this scenario, the objective is to use the coordinate system of SR as

the global system for alignment, the anchor node ∆R of the reference session should be

assigned an insignificantly small covariance (ΣP ). Conversely, for the anchor node ∆Q of

the query session, a significant covariance is assigned (ΣL).

Moreover, the odometry poses are also added to the factor graph. However, since SR

comes from the reference map, its poses xR are treated as fixed and should not be altered

by the optimization. To avoid changes to these poses, they are added to the factor graph

optimization problem as prior factors with very low covariance (ΣP ) in its noise model.

Following batch optimization, the intermediate optimized values of the anchor node ∆∗
Q

and the poses x∗
Q are obtained. However, these poses are expressed in the local coordinate

system of SQ. To convert them from this local coordinate system (denoted as QG∗
Q) to

the global coordinate system WG∗
Q of the reference map, the following transformation is

applied to each pose x in the graph:

Wx∗
Q = ∆∗

Q ⊕ Qx∗
Q,

where W is the global coordinate system, or in this case, the coordinate system of the

reference session.
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After the previous step, the query session roughly aligns with the reference session. To

further refine the poses of the query session, a rapid KNN loop detection method with

adaptive covariance is introduced. Initially, submaps are generated by selecting KNN scans

from the scan to be aligned within the query session, along with the k-nearest scans from

the reference session. Subsequently, the YawGICP algorithm (see 5.3.2) is employed to

register these two submaps, and the quality of registration is assessed based on a predefined

fitness threshold, classifying the alignment as either good, acceptable, or unacceptable.

Upon acceptance of the alignment, the constraints are added to the optimization problem

as factors between sessions with anchoring with adaptive covariance. This adaptive covari-

ance strategy assigns a very low covariance in the noise model to constraints originating

from well-registered keyframe submaps, while constraints from just acceptable registra-

tions receive a higher covariance. This approach allows the pose graph optimization to

appropriately weigh the influence of these constraints in calculating optimized poses.

After conducting batch optimization one more time with incorporated odometry, ISC, and

KNN constraints in the factor graph problem, the resulting poses undergo further refine-

ment through a final ICP registration. Unlike previous steps that relied on registration

with simulated scans from the reference map, this stage utilizes a one-centimeter-dense

point cloud obtained from the reference map as the registration target. In case the refer-

ence map is a BIM model, this point cloud is created by sampling uniformly points over

a mesh of permanent elements in the building (i.e. without doors and windows similarly

as done in Step 1, section 5.3.1)

Due to the high density of the target point cloud, GICP fails to offer any significant

advantage over Point-to-Point (P2P)-ICP (Besl & McKay, 1992). In fact, in specific

scenarios, GICP yields inferior results. Therefore, P2P-ICP is preferred, which not only

produces competitive results but also operates considerably faster.

To speed up computations and avoid the time-intensive KNN search associated with regis-

trations involving a large target point cloud, scans within the query session are allocated

into proximity-based groups. Subsequently, for each group, a target point cloud is created,

dynamically cropping the reference map into spheres. The individual source scans within

each group are then registered concurrently, leveraging parallel computing techniques.
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The registration results are evaluated using three metrics. One metric is the RMSE,

and the other two correspond to fitness scores calculated at two distinct maximum P2P

distances: F1 and F2. The fitness score is the percentage of source inliers, considering a

maximum P2P distance threshold to classify points as inliers after registration.

These metrics are computed explicitly for points located within 30 cm from the target point

cloud after registration. This approach ensures the exclusion of points outside the reference

map or those influenced by significant environmental changes, such as the addition of new

walls or large pieces of furniture.

Depending on the metric values, the resulting aligned scans are categorized into four

classes: Perfect, Good, Bad, and Outside the Map. The result is saved on a list, denoted

as νQ.

The resulting poses will be used in the subsequent step to create the final aligned map

and compare it accordingly with the reference map.

5.3.3 Step 3: Change Detection and Map Update

Following the completion of the prior steps, the two sessions have been precisely aligned,

and they now share a unified coordinate system. Subsequently, a comprehensive 3D map

of the most up-to-date environmental state can be generated by placing the keyframes

PQ,i from the query session SQ in the estimated poses Wx∗
Q,i, which are now in the global

coordinate system.

If desired and to ensure the integrity and fidelity of the final map representation, it is

recommended to exclusively incorporate scans classified as ”perfectly” or ”good” aligned

within νQ during the map construction process.

However, it is essential to note that although the remaining poses may not meet the

strict alignment criteria with the reference map, they have already undergone significant

optimization through odometry and loop closure constraints. Consequently, they can be

utilized to generate the final map and even extend the reference map if the scan extends

beyond its boundaries.

Since both maps are now aligned, a comparison of the two 3D maps becomes feasible.

The comparison process involves categorizing the elements in the map into three distinct
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types: Positive Differences (PDs) denote instances where new objects have been intro-

duced compared to the reference map; Negative Differences (NDs) signify the removal

of objects previously documented in the reference map; and Unaltered Elements (UEs)

denote features that remain constant across both maps.

This categorization is facilitated with the OctoMap library (Hornung et al., 2013). Oc-

toMap, a widely-used library in robotics and 3D mapping, operates by dynamically updat-

ing voxel occupancy status within its octree structure as new point clouds are integrated.

The analysis of measurement densities in OctoMap enables us to distinguish between oc-

cupied and free space, facilitating reliable 3D mapping.

Additionally, also the probabilistic capabilities of OctoMap during measurement accumu-

lation is leveraged to facilitate the automatic removal of dynamic elements from the final

point cloud. This removal is done based on occupancy patterns across multiple scans. The

resulting map is the one used to detect PDs) and UEs in the preceding step. Moreover, Oc-

toMap calculates free space by identifying regions where the sensor fails to detect objects;

this free space will be leveraged for NDs detection later.

To detect PDs and UEs, a P2P distance threshold is used between a point cloud from

the reference map (also used in the previous final ICP step) and the newly created map

with OctoMap, similar to what was presented in (M. A. Vega-Torres et al., 2023). A

signed distance computation allows the distinction of points that are near and far from

the reference map. Near points allow for the confirmation of UEs, whereas distant points

are regarded as PDs.

The point cloud of identified PDs is passed through an outlier removal process. Subse-

quently, the point cloud undergoes a segmentation process through Density-Based Spa-

tial Clustering of Applications with Noise (DBSCAN). This step is based on a neighbor-

distance threshold and a minimum number of points per cluster.

Lastly, for each PD cluster, a mesh is created using cubes from a Voxel Grid (VG) of the

point cloud.

Voxels, in contrast to other surface reconstruction approaches, capture the actual geometry

of objects present in the scene. This leads to improved visualization of the new elements

in conjunction with the reference map, providing a better understanding of the scene.
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The process of detecting NDs involves conducting a visibility analysis using individual

scans from the query session (PQ,i). As mentioned before, the OctoMap library facilitates

this analysis by calculating the free space, i.e., areas where the LiDAR did not detect any

objects from its origin point. Similarly, as with the PDs, this free space is used together

with a P2P distance threshold against a point cloud sampled from the reference map to

identify the NDs.

The regions at the intersection between the reference map and the free space are the

NDs. These are then passed through the outlier removal and clustering process, removing

isolated points and small clusters.

The final voxels are transformed into meshes and are colored blue for PDs and red for

NDs. An exemplary result is depicted in 5.8.

(a) (b)

Figure 5.8: Positive and negative differences between the point cloud and the reference
BIM model are illustrated as follows: (a) A picture of the real-world scene. (b) Visual-
ization of the detected changes in the form of voxelized clustered meshes with positive
differences depicted in blue and negative differences in red. Particularly, it is visible that
the windows in the model are smaller compared to the real-world windows.

5.4 Experiments

This section presents the data used to evaluate the efficacy of the proposed strategies.

Comprehensive implementation details, such as the values of the essential parameters, are

meticulously outlined to ensure a thorough understanding of the proposed approach.

5.4.1 ConSLAM Dataset

To ensure reproducibility and benchmarking, the approach was evaluated by applying it

to the recently released open-access ConSLAM dataset (Trzeciak et al., 2023a, 2023b).
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The ConSLAM dataset consists of four sequences of a construction site captured with a

handheld system. It incorporates synchronized timestamped LiDAR scans, 9-axis IMU

measurements, and RGB and Near-infrared (NIR) camera images.

Given the TLS point cloud of sequence number two, a half-centimeter-accurate BIM model

was elaborated.

Moreover the OA-LICalib library (Lv et al., 2020, 2022) was used to retrieve the extrin-

sic calibration parameters (rotation and translation) between the LiDAR and the IMU

sensors.

5.4.2 Implementation Details

While Step 1 and 3 were implemented in Python, Step 2 was written in C++.

Step 1: Reference Session Generation8

In Step 1, to generate the reference session data (SR), the vertical FoV of the simulated

LiDAR scans can be customized according to preferences. To achieve alignment with a

TLS point cloud as a reference map, the simulated LiDAR scans encompass a range from

-45 degrees to 45 degrees in the vertical FoV. However, in the conducted experiments, while

aligning the data with a BIM model, it can be observed an improved ISC loop detection

when no ceiling points were present in the simulated scans. Consequently, the scans are

adjusted to cover only from 0 to -25 degrees in the vertical direction. In Blensor, during the

LiDAR simulation process, the noise was set to a mean of zero with a standard deviation

of 0.03 m, an angular resolution of 0.1728 degrees, and a maximum distance of 15 m.

Step 2: Query Session Generation, Alignment, and Correction9

Step 2.1: Query Session Creation. In Step 2, to generate the query session from

the real-word data (SQ), for the MDC step, it was opted for using DLIO, because, in

contrast to FAST-LIO2 W. Xu et al. (2022), it does not require heavy downsampling of

the point cloud for deskewing and registration. Hence, clean, undistorted scans with DLIO
8The open source code for this step can be found here: https://github.com/MigVega/Map2SessionData
9The open source code for this step can be found here: https://github.com/MigVega/SLAM2REF and

here: https://github.com/MigVega/Key-Info-Saver-SLAM
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allow dense map reconstruction. As suggested by L. Zhang et al. (2022), the data in the

bagfiles was reproduced at a low rate (half of the original speed) to avoid errors during the

distortion process.

Regarding the key information saver, while it is possible to wait for a minimum variation

in translation or rotation between consecutive scans, instead, the scans were saved either

according to a list of timestamps or after a specific interval had passed. This approach

is advantageous, as it allows for comparison with existing ConSLAM GT poses, where

specific frames with known timestamps are of primary interest. For the creation of the

ISCD, the parameters Ns = 60, Nr = 20 (as recommended by G. Kim et al. (2021)),

ISCmin = 40, and a maximum radius of 10m were selected. This means that the 10m

will be divided into 20 radial sections (since Nr = 20) each of 0.5m.

Step 2.2: Inter-session Loop Detection with ISC. Nanoflann (Blanco & Rai, 2014)

is used to create a KD-tree of 1D rotational invariant descriptors. A total of 100 (Nc) top

candidates were chosen to evaluate in 2D after the 1D descriptor comparison; it is worth

mentioning that the retrieval of correct correspondences is very sensitive to this value. A

cosine similarity threshold ϵ = 0.3 is used to filter out pairs of 2D descriptors that passed

with the minimum distance among the possible column shifts k. Only column shifts of

10% of the total number of columns (i.e., 36 deg) are considered for the alignment. All

YawGICP registrations in the ISC and KNN loops are done using parallel computations

with OpenMP. Unlike conventional ICP implementations, when employing YawGICP, it

is imperative to express the target point cloud (i.e., from the reference map) in the local

coordinate system of the source scan (i.e., the point cloud to be aligned). Otherwise, the

process will yield undesirable results. This shift is critical because the resulting transfor-

mation matrix is relative to the origin of the source scan, with the aim of rotating the

point cloud from its local origin rather than the origin of the global coordinate system.

Step 2.2: KNN loops, Pose-graph Optimization, and Final ICP. The K-nearest

neighbors used to create the submaps for KNN loop detection in the second step of opti-

mization is 5. To ensure correct alignment with the BIM model as the reference map, the

KNN loop detection process was omitted. This decision was made because this process

tends to induce erroneous correspondences. Meanwhile, in Step 2.3.2 (Section 5.3.2), the

95



pose-graph optimization is done with GTSAM using iSAM2; the following are the values of

the variances of the different noise models: ΣL = π2 (significant noise for query session’s

anchor node); ΣP = 1 × 10−102 (prior noise for reference map poses and initial poses);

ΣO = 1×10−4 (for odometry constraints); Σc = 0.5 (robust noise for encounters, i.e., loop

closure constraints). The parallel creation of spheres for target point cloud registration

and the P2P ICP of the single source scans is done using OpenMP in C++. Here, the

following two maximum distances to calculate the fitness scores were used: F1 = 1 cm and

F2 = 3 cm. This means that points that are farther apart than 3 cm will be considered

outliers. Therefore, if the reference map, for example, the BIM model has Scan-Map devi-

ations larger than 3 cm on large permanent structures (such walls), the method will most

likely not be able to find correct correspondences. Only if the majority of the elements

are within this range is a good registration possible.

Step 3: Change Detection and Map Update

In Step 3, the process is performed with Trimesh, OctoMap, and Open3D.

A P2P distance threshold of 0.3 m was used to calculate the positive and negative differ-

ences.

OGM2PGBM (M. A. Vega-Torres, Braun, & Borrmann, 2022), Scan Context (G. Kim

& Kim, 2018), and LT-SLAM (G. Kim & Kim, 2022) are projects that were used as a

reference and that are freely available online.

For the evaluation of the results, presented in the following section, the trajectories were

compared against the ground truth using the EVO library (Grupp, 2017b) in Technical

University of Munich (TUM) format (Sturm et al., 2012) and using the Umeyama align-

ment (Umeyama, 1991).

5.5 Results and Analysis

This section provides the results of the proposed framework with respect to the alignment

with an accurate TLS point cloud and with a BIM model as a reference map.
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Table 5.1 shows the Absolute Pose Error (APE) summary of the different methods in

each sequence of the ConSLAM dataset after alignment with the corresponding TLS point

clouds. In the table, the performance of DLIO (with Umeyama alignment) is compared

against the results of the porposed framework after improving the DLIO trajectory with

ISC loop detection and after KNN loop detection and optimization. The results after the

final ICP step correspond to the current ground truth (used to evaluate the methods);

therefore, they are not numerical values for this step. Moreover, the results are compared

against the original ConSLAM ground truth poses provided by the authors together with

the dataset.

Furthermore, figures 5.9, 5.10, 5.11 illustrate the distribution of errors (translational and

rotational) for each method in the various sequences. Figure 5.13 provides a visual repre-

sentation of the resulted trajectories and 3D maps.

Method S2 (225 m) S3 (340 m) S4 (275 m) S5 (320 m) Average
DLIO 20.2 2.2 21.4 2.6 359.0 6.4 17.4 2.3 104.5 3.4
ISC 20.1 2.2 24.3 2.6 358.6 6.4 18.7 2.3 105.4 3.4
KNN 9.0 1.4 34.6 4.3 53.4 3.5 11.2 2.5 27.1 2.9
ConSLAM 5.2 0.7 4.2 0.7 9.3 0.9 12.1 1.1 7.7 0.8

Table 5.1: Quantitative comparative results for each ConSLAM sequence (S2, S3, S4
and S5). Translational and angular APE RMSE in centimeters and degrees, respectively.
Additionally, the length of each sequence is given in meters. ISC refers to the results of
DLIO after Indoor Scan Context loop detection and optimization, similarly KNN refers to
the results after KNN loops. ConSLAM refers to the ground truth poses provided together
with the dataset.
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Figure 5.9: Translational (a) and rotational (b) errors for sequence 4 after alignment with
the respective TLS point cloud.
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Figure 5.10: Translational errors for sequences 2, 3, and 5 after alignment with the respec-
tive TLS point clouds.

Notably, the errors exhibit an evident reduction across almost all sequences while the

pipeline evolves.

The ISC loops primarily allow the critical first rough alignment between the query and

reference sessions. Since only a few ISC loops are retained due to rigorous threshold

criteria, the outcomes after ISC loop detection and optimization exhibit minimal alteration

in trajectory accuracy when compared to the initial results derived from DLIO.

On the other hand, the subsequent KNN loops exhibit a more pronounced impact on the

results after ISC loops.

While the average rotational error, as depicted in Figure 5.11, experiences a significant

decrease in sequences 2 and 4, it exhibits apparent stability or even an increase in sequences

3 and 5.

Regarding the GT poses provided with the ConSLAM dataset, although the RMSE for

APE remains below 8 cm and 1 degree for translation and angular errors, respectively (as

shown in the last column of Table 5.1), the maximum errors escalate to 20 cm or even

60 cm in sequences 2 and 5 (see Figure 5.10). While these significant discrepancies are
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Figure 5.11: Rotational errors for sequences 2, 3, and 5 after alignment with the respective
TLS point clouds.

in relatively small sections of the trajectories, it is also essential to recognize that for a

LiDAR-based SLAM dataset, ground truth poses should ideally exhibit accuracy levels of

at least one centimeter across the entire trajectory. This level of accuracy is now achievable

in a highly automated manner with the proposed SLAM2REF framework.

Additionally, it was demonstrated that it is possible to align and correct a 3D map using

a BIM model as a reference map, despite significant deviations between the current map

and the reference BIM model (Scan-Map deviations of the types 1 and 2 as stated in the

introduction, see Section 1). This significant level of deviation is particularly evident in

the context of the ConSLAM construction site. Figure 5.12 and 5.13 depicts the results

after alignment with the BIM model. Here, the error values after the final ICP step are

visible since they do not coincide with the ground truth poses anymore.

Similar to the alignment process with the TLS point cloud presented previously, the error

does not decrease after ISC loops; however, it notably reduces after the final ICP step.

The translational RMSE of the APE decreases to 14.8 cm, while the rotational RMSE is

0.56 degrees.
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Figure 5.12: Translational (a) and rotational (b) errors for the sequence 2 after alignment
with the BIM model.
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Figure 5.13: Trajectories and maps for sequences 2, 3, 4, and 5 after alignment with the
respective TLS point clouds, and for sequence 2 after alignment with the BIM model.
The trajectories of the first three columns correspond to the results of the different meth-
ods/steps, which have the same label colors as in Fig. 5.10. Additionally, the ground
truth trajectory is shown in black. The trajectory in the fourth column displays points in
different colors to indicate registration results: perfect (green), good (blue), bad (red), or
outside of the map (black). In the fourth and fifth columns, the resulting map is shown in
yellow, and the reference target map is shown in blue. In the last column, the differences
(new elements in the resulting map) are depicted in red.
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Regarding the results of Step 3, the identified positive changes are highlighted in red within

the final column of Figure 5.13. Furthermore, Figures 5.14a and 5.14b provide detailed

visualizations of the discrepancies observed in sequence 2 following alignment with both

the TLS point cloud and the BIM model, respectively. While the disparities with the TLS

point cloud are relatively minor, involving slight shifts in the positions of certain fences and

construction resources, the distinctions when compared to the BIM model (Figure 5.14b)

are notably substantial. This serves to exhibit the robustness of the proposed alignment

methodology in effectively accommodating considerable levels of Scan-Map deviations.

(a) (b)

Figure 5.14: Change detection after map alignment. Both images correspond to the results
of sequence 2: in (a), the sequence was compared against the respective TLS point cloud,
and in (b) against the BIM model. The positive differences, i.e., new elements in the
resulting map, are depicted in red.

5.6 Discussion

This section contains a more detailed interpretation of the results reported previously.

Furthermore, it looks into the motivation for the methodology and how it contributes to

progress in this field of research, explaining the enhancements of the approach compared

to prior works and outlining directions for future studies.

The apparently contradictory pattern of the rotational errors in sequences 2 and 5 can

be attributed to the Umeyama alignment process (Umeyama, 1991). In certain regions,

the actual trajectory after ISC loop detection (without Umeyama alignment) deviates

approximately 1.5 meters from the ground truth in the Z and X directions, leading to

erroneous identification of KNN loops. Nonetheless, these erroneous loops are effectively

identified and filtered out during the final ICP step.
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One potential source of error for the ConSLAM GT poses lies in the MDC step. Contrary

to common practice, the authors extracted the scans directly from the recorded bagfiles,

omitting the deskewing process Trzeciak et al. (2023a). Avoiding the undistortion process

can mislead any registration method, particularly affecting the accuracy of the calculated

poses in sections where the trajectory was recorded under rapid motion.

The reason why KNN loops tend to yield incorrect correspondences during alignment with

the SD from a BIM model can be attributed to Scan-Map deviations, as well as the ab-

sence of ceiling points in simulated scans from the BIM model. These facts complicate the

registration of small sub-maps from the real world with sub-maps from a BIM model, par-

ticularly given that elements on the construction site have corners and features sometimes

misinterpreted by the YawGICP registration process as permanent elements. Nonetheless,

the final ICP method overcomes this challenge by utilizing a dense point cloud from the

BIM model and relying solely on P2P correspondences, thus avoiding estimating tangent

planes for the alignment.

An alternative to simulating LiDAR scans (as done in section 5.3.1) could involve cropping

a point cloud from the reference map within spheres as performed for the final ICP step

(section 5.3.2). However, simulating scans offers a critical advantage: it enables the incor-

poration of only the geometry of elements visible from the scan’s origin. This visibility

filter is crucial for ensuring the robustness of descriptor-based alignment in the ISC loop

detection step, as only the information of single scans is compared here. Furthermore,

when registering real-world scans with simulated ones, the process not only demonstrates

quickness but also mitigates potential interference from double surfaces, such as from walls,

as only the visible surfaces from the sensor origin are considered.

In comparison to prior research (M. A. Vega-Torres, Braun, & Borrmann, 2022) and

other localization algorithms, SLAM2REF presents notable advantages. Since it enables

the creation of a map and subsequent alignment with a reference map, unlike typical

localization methods, the framework does not require the sensor to initiate mapping from

within the map itself. Instead, it allows the sensor to start from any location, ensuring that

the resulting map aligns with some overlapped regions of the reference map. Therefore,

SLAM2REF also supports the extension of the reference map. This means that even if
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sensor measurements expand beyond the map boundaries, they are still aligned with the

existing map in the most coherent manner.

Additionally, the proposed pipeline does not necessitate any manual intervention to align

the first keyframe, a process typically required by methods utilized to generate the ground

truth poses in some of the latest datasets, such as in (Ramezani et al., 2020; Trzeciak

et al., 2023a, 2023b; L. Zhang et al., 2022). Moreover, due to the initialization of the

proposed pipeline with SLAM or odometry-calculated poses and the optimized parallel

registrations, the proposed pipeline also enables the rapid retrieval of GT poses utilizing

dense, accurate reference maps.

When contrasting with BIM-SLAM (M. A. Vega-Torres et al., 2023), SLAM2REF show-

cases several distinct advantages: Firstly, it is compatible with large-scale reference maps,

encompassing not only large BIM models but also dense high-quality point clouds. Sec-

ondly, it effectively considers motion distortion in LiDAR data and mitigates it by lever-

aging IMU measurements. Thirdly, it achieves significantly improved accuracy in 6-DoF

pose retrieval through the final ICP step and a TLS point cloud as a reference map. Lastly,

the proposed pipeline enables the alignment in the presence of Scan-Map deviation, such

as with a BIM model, leveraging the proposed enhanced version of the Scan Context

descriptor tailored for indoor environments.

Additionally, the proposed pipeline operates independently of ROS or Gazebo (used pre-

viously for scan simulation). Another remarkable characteristic of the proposed method

is its adaptability, as it is not restricted to Manhattan-world environments with enclosed

rooms, as the method proposed by Shaheer et al. (2023).

5.7 Conclusions

This contribution presents SLAM2REF, a modular framework to allow automatic 3D

LiDAR data alignment and change detection with a reference map, which can be a BIM

model or a point cloud.

The framework operates independently of the sensor’s initial position, eliminating the

necessity for the scanning process to start within the provided map boundaries. Conse-
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quently, the proposed framework enables map alignment and extension even when the

reference map is outside the sensor’s FoV or only a portion of the map has been scanned.

Moreover, if an accurate TLS point cloud is available, it can serve as a reference map to

correct the poses of a query session and even retrieve centimeter-accurate ground truth

poses.

In conclusion, SLAM2REF offers a novel solution to the challenges of lifelong mapping

by integrating 3D LiDAR data and IMU measurements with a reference map, enabling

automatic alignment, precise 6-DoF trajectory estimation, map extension, and change

detection.

By allowing Scan-Map deviations, SLAM2REF offers a robust solution for automated

3D data alignment, even with as-designed BIM models that typically have significant

deviations from as-built environments.

Our approach provides indirect support for the development of Digital Twin for buildings,

allowing the automatic alignment of newly acquired data with digital models. These

models require continuous data integration to maintain its accuracy and relevance.

Practical applications are found in areas such as construction site monitoring, emergency

response, disaster management, and others, where fast-updated digital 3D maps contribute

to better decision-making and productivity.

Furthermore, since the proposed method is capable of exploiting BIM models that are

semantically enhanced or point clouds as reference maps for localization, it can be used

to support the development of autonomous robotic activities.

Another advantage of SLAM2REF is that it advances SLAM research by enabling the

automatic retrieval of centimeter-level accurate 6-DoF GT poses for large-scale indoor

and outdoor trajectories.
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5.8 Contributions and Limitations

5.8.1 Contributions

This chapter presents significant contributions to the field of multi-session anchoring,

specifically focusing on the integration of 3D BIM models and point clouds with 3D Li-

DAR-based SLAM systems. The key contributions are the following:

C 2.1 Automatic Generation of Accurate Occupancy Grid Maps and 3D Ses-

sion Data from a Reference Map (RQ 2.1):

- A module was developed to create fully automated, reliable, and accurate

OGMs from BIM models and 3D point clouds, enabling direct usage for

localization and autonomous navigation tasks using the ROS navigation stack.

- A method was devised to generate 3D session data from large-scale BIM

models or point clouds, allowing rapid place recognition and localization

within a reference map.

- The Map2SessionData code to facilitate reproducibility and enable further

development by the research community was made open-source. Link to the

repository.

C 2.2 Alignment and Correction of Drifted Sessions with a Reference Map

(RQ 2.2):

- Indoor Scan Context (ISC) was introduced, a new LiDAR scan descriptor

built on the widely-used Scan Context (SC) family of descriptors, specialized

for place recognition in indoor environments rather than the original SC de-

scriptor’s focus on outdoor autonomous car localization.

- Additionally, YawICP was introduced, a simple yet powerful and efficient

algorithm for point cloud registration, primarily addressing variations in yaw

angles (Z-axis angles). This type of registration is crucial for finding the best

transformation to align scans from 360-degree LiDAR measurements.

- The final step in the alignment method includes a refined P2P ICP proce-

dure to achieve 3 cm accurate and reliable 6-DoF pose retrieval.
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- All these and some additional components were integrated into SLAM2REF,

an open-source holistic multi-session anchoring system that enables the

alignment and correction of drifted sessions acquired with SLAM or LiDAR-

inertial odometry systems in indoor or outdoor environments. Link to the

repository.

- The code needed to create SD from any LiDAR-based SLAM or odometry

framework were made open-source.

Link to the repository.10

- The BIM model created for the experiments along with the computed GT

poses, has been made openly accessible at: (M. A. Vega-Torres, Braun, &

Borrmann, 2024b).

C 2.3 Analysis and Change Detection in Aligned Data (RQ 2.3):

- A module was developed to analyze the acquired aligned data. Using visibility

analysis with the OctoMap library and point-to-point distance measurements,

the module can detect both positive (new elements in the scene from the real-

world’s most up-to-date data) and negative differences (elements removed

from the scene).

- A method to visualize the updated 3D map in the form of color-coded voxels

was proposed.

10For a comprehensive list of all open contributions, refer to Section 1.14.
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5.8.2 Limitations

Although this chapter highlights significant advancements and contributions, it is impor-

tant to recognize also the limitations of the proposed methodology:

L 2.1 Lack of Reliable Landmark Extraction for Registrations:

- A significant challenge for any registration algorithm is the identification of ac-

curate correspondences. In this scenario, the presence of Scan-Map deviations

intensifies this challenge. The method’s success with the current BIM model

(in the conducted experiment) does not necessarily indicate it will perform well

in environments with higher levels of clutter. Although the semantics of the

BIM model are leveraged to generate session data, the method does not seman-

tically enrich the collected real-world data. Consequently, the method relies

heavily on scans from locations with minimal Scan-Map deviations, as only in

such locations will the extracted features from the BIM model align with those

of the LiDAR scan. One possible solution to this issue is the application of

point cloud semantic segmentation algorithms to individual 3D LiDAR scans.

However, since most existing methods are designed for outdoor environments,

adapting these algorithms for indoor construction settings would require la-

beled datasets specifically tailored to indoor construction environments.

L 2.2 Complexity and Scalability Issues in SLAM2REF Method:

- Due to sensor noise, potential inaccuracies in the undistortion process with

IMU measurements, and Scan-Map deviations, achieving a 1 cm precision

6-DoF pose for all keyframe scans remains challenging. For applications re-

quiring this level of precision in every single timestamped scan, laser trackers

and motion capture systems are used. However, considering that some SLAM

researchers even consider it acceptable to use the end-to-end translational er-

ror measurement, the proposed method provides a sufficient number of 1 cm

precision 6-DoF poses to study SLAM algorithms along complex trajectories.

- Additionally, the complexity of the alignment method escalates with the in-

crease in the number of keyframes, particularly from the query session. This

is because the final ICP registration must be conducted for each individual
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scan of the query session using a dense segment of the point cloud from the

reference map.

- The method operates offline (not in real-time) and necessitates fine-tuning

of specific parameters, particularly when using a BIM model as a reference

map instead of a point cloud. Enhancing the efficiency and robustness of

the SLAM2REF method to support a real-time framework offers promising

potential for various applications, such as collaborative robot mapping and

localization (Cramariuc et al., 2022; Lajoie & Beltrame, 2024). This advance-

ment could effectively address challenges like the kidnapping robot problem

in indoor environments using the proposed ISCD. Furthermore, a critical as-

pect of achieving more robust alignment involves utilizing deep-learning-based

place recognition algorithms, which are expected to become increasingly reli-

able for indoor scenarios with adequate training data in the future.

L 2.3 Special Challenging Cases:

- Height Retrieval in Narrow Corridors: The developed alignment method

struggles to accurately retrieve the height (Z-coordinate) of scans located in

narrow corridors that lack points on the ceiling or the floor, as depicted in

Figure 5.15. While the correct X and Y coordinates can likely be obtained,

the Z coordinate may be erroneous, particularly when the SLAM or LiDAR-

Odometry algorithm fails to provide an accurate initial height estimate, often

due to rapid motion. In particular, when encountering a Z-drift within a nar-

row corridor, the limited information provided by individual scans regarding

horizontal elements (such as floors or ceilings) can sometimes make automatic

height retrieval very challenging. One possible approach to mitigate this is-

sue involves the utilization of the free space, which can be calculated using

OctoMap (as outlined in Section 5.3.3). Assuming most transition elements,

such as doors and windows, are open during scanning, they could serve as

reference elements for height retrieval by utilizing their frames as a feature for

registration.

- Reflections from Window Elements: Since the method does not account

for semantics in real-world measurements, there is a potential for the creation

of reflections from window elements in the final map. Figures 5.16a and 5.16b
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(a) (b) (c)

Figure 5.15: Limitation regarding the inaccuracy of initial poses: If the initially calculated
poses drift in the Z direction, as depicted in (a), the final scan might not be automatically
registered in the correct poses if they are located in narrow corridors. This occurs because
specific scans, like the yellow one in (b) and (c), lack the ceiling or floor points necessary to
determine the correct sensor height. (b) and (c) are the side and perspective views of the
same scene. The green scan represents the manually correctly registered scan, while the
blue depicts the reference map, in this case, a point cloud sampled from the BIM model.

illustrate how windows cause reflections in LiDAR measurements, resulting in

fictitious reflected elements within detected changes. Notably, reflected walls

are visible in sequences 3, 4, and 5 (refer to the last column of Figure 5.13),

whereas sequence 2 is unaffected due to the absence of windows and the scan

trajectory being confined within walls without windows. To mitigate this issue,

one approach is to use camera measurements to selectively filter out LiDAR

data collected near windows. Alternatively, a more manual and labor-intensive

method involves physically occluding windows prior to scanning.

LiDAR sensor

Window

Wall reflection

Wall

(a) (b)

Figure 5.16: Limitation regarding wrongly detected changes following map alignment. In
(a), the presence of reflective surfaces, such as windows, can lead to the generation of
fictitious walls due to LiDAR’s inability to filter out reflected measurements. This is
illustrated in the top left, where an image of the actual window causing reflections is
depicted, while at the bottom, the LiDAR measurement captures the wall, window, and
the reflected fictitious wall. In (b), these reflections result in inaccurately detected changes
in sequences 3, 4, and 5.
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- Constraints in ISCD and Loop Detection: The proposed ISCD and

the associated loop detection step are constrained by their design, which tar-

gets LiDAR scans from sensors with a 360-degree horizontal FoV. This design

choice aims to facilitate the creation of rotationally invariant 1D descriptors.

Consequently, the pipeline is not directly compatible with data from sensors

with a reduced FoV, such as solid-state LiDARs and depth cameras.

This chapter introduced significant contributions to creating aligned, updated 3D maps of

the environment from even heavily drifted session data. Utilizing novel place recognition

descriptors and registration algorithms, this comprehensive method also detects positive

and negative changes in the environment. However, the proposed method has several

limitations, such as the dependency on a low level of Scan-Map deviations to find correct

correspondences, the reflections caused by windows in the scanned environment, and the

constraints with respect to the FoV of the sensor measurements.

In the upcoming chapter, some of these limitations will be addressed through the integra-

tion of camera information, semantic extraction from real-world data, and the application

of a bundle adjustment algorithm to refine sensor poses derived from reduced FoV measure-

ments. This approach is designed to significantly improve the accuracy and robustness

of the updated 3D maps, aligning it with a reference map. Specifically, it prioritizes

working with reduced FoV data and ensures better-filtered landmarks, thereby enhancing

map alignment accuracy, rather than relying on non-semantically enriched, undistorted

360-degree LiDAR scans.
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Chapter 6

AI-supported Integration of LiDAR and

Camera Data with BIM Models and

Reference Maps

This chapter introduces two innovative approaches designed to enhance the alignment of

LiDAR data when fused with camera data, utilizing BIM models or semantic reference

maps.

The first method addresses the challenge of globally registering a SLAM-based recon-

structed point cloud with a BIM model. This approach assumes that the real-world data

was acquired with a low level of drift and has been semantically enriched.

The second proposed method refines sensor poses by integrating LiDAR and camera data,

enhanced with semantic information. This method aligns elements such as walls, columns,

floors, and ceilings from real-world measurements with their corresponding components in

a 3D BIM model. The solution employs novel neural depth completion and image semantic

segmentation algorithms to achieve accurate alignment.

6.1 Motivation

In the method proposed in the previous Chapter 5, a comprehensive approach was pre-

sented to align SLAM-based session data with a reference map, even in cases of significant

drift, such as in sequence 4 of the ConSLAM dataset (Trzeciak et al., 2023a, 2023b) (see

Fig. 5.13).

However, in many scenarios, it is reasonable to assume that only a minimal percentage of

drift will be present in the acquired map. This assumption is based on the expectation

that future SLAM algorithms will become more robust, sensor noise will be reduced, and
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techniques for mitigating distortion due to motion will improve. Additionally, if the data

is acquired carefully with slow-speed motion, the drift is expected to be low as well.

Moreover, given the fast advancements in AI, it is reasonable to aim for methods that

exploit acquired data not only with low drift but also with enhanced semantic information.

Considering the previously mentioned aspects, it is reasonable to conceive a method that

allows offline global registration of point clouds with low drift and a reference semantic

map, such as a BIM model. Such a method would allow the first alignment with less

computational demand in comparison with the SLAM2REF method introduced in the

previous chapter (Chapter 5) mainly because it will avoid the comparison of every single

scan from the query to the central session, which in a global registration problem would

be reduced to the comparison of extracted features from the source to the target point

cloud.

Once the initial alignment is complete, the sensor poses should ideally be further refined

to eliminate any remaining drift in the map. To address this challenge, the BIMCaP

framework is proposed. This framework integrates mobile reduced FoV sparse LiDAR

data with camera measurements to filter semantic landmarks and refine sensor pose using

BA and pre-existing BIM models or semantic 3D maps. Filtering semantic landmarks, such

as walls and columns, is essential to manage the issue of Scan-Map deviations. This step

ensures that only permanent elements from the real world are matched with those in the

reference map, thereby avoiding false registrations caused by clutter or temporary objects.

Through this approach, BIMCaP aims to overcome some of the limitations inherent in the

SLAM2REF method.

6.2 Research Questions

In line with the motivation and requirements stated above, this chapter aims to answer

the following main research question.

RQ 3. How can semantics and LiDAR-camera fusion be utilized to create a robust align-

ment and correction method of SLAM-acquired real-world 3D data with a BIM model or

a semantic 3D map?
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The following are the specific three sub-research questions addressed in this chapter:

RQ 3.1 Cross-source global registration for aligning SLAM-reconstructed

point clouds with BIM models:

- Given a low percentage of drift and a semantically enriched SLAM-

reconstructed point cloud from the real, cluttered world, how is it possible

to find the transformation matrix that roughly aligns that point cloud with

the corresponding BIM model?

· Rationale: Assuming low drift and semantic enrichment is reasonable

in many practical scenarios. A robust global registration algorithm

can significantly reduce computational costs by efficiently aligning the

entire map instead of individual, separated scans. However, this cross-

source registration process is challenging due to anomalies in scans,

incomplete real-world data, and different levels of Scan-Map deviations,

necessitating advanced techniques to manage these complexities.

RQ 3.2 Semantic enrichment of 3D maps in real-world construction sites with

LiDAR-camera fusion:

- How can camera and LiDAR data be effectively fused to create semantically

enriched 3D point clouds of indoor construction site environments?

· Rationale: Semantic segmentation techniques have advanced rapidly;

however, their application in indoor construction site environments re-

mains under-explored. Similarly, the integration of sparse LiDAR and

camera data poses significant challenges to creating accurate, dense

maps of indoor construction site environments.

RQ 3.3 Refinement of drifted data with a reference BIM model:

- How is it possible to improve pose refinement accuracy by integrating se-

mantic, textural, and geometrical features from camera images and LiDAR

scans, using a BIM model as a reference?

· Rationale: This investigation builds upon the challenges identified in L

2.1. It aims to enhance the precision and reliability of 6-DoF pose re-

trieval by leveraging semantic information from both the reference BIM
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model and real-world data. By minimizing drift and enhancing align-

ment, the goal is to improve the quality of the updated 3D map, even

under large levels of Scan-Map deviations. Ultimately, this contributes

to advancing SOTA methods in indoor construction site mapping and

monitoring

To address the aforementioned research questions, a cross-source global registration

methodology for approximate alignment of real-world point clouds with BIM models is

proposed. Additionally, BIMCaP is introduced, a novel framework that integrates 3D

LiDAR data and RGB camera measurements with a reference map. This framework aims

to further refine single sensor poses and enhance the accuracy of updated aligned maps.

6.3 Global Registration of Cross-Source Data1

This section introduces the cross-source global registration methodology for approximate

alignment of real-world low-drift SLAM-created point clouds with BIM models.

Besides the low percentage of drift in the SLAM point cloud, the proposed global regis-

tration pipeline is based on the following assumptions:

- It is assumed that there are sufficient orthogonal walls in most buildings, allowing

for the use of methods based on right-angled intersections and corners.

- Both maps (i.e., the SLAM-acquired point cloud with low drift and the reference

semantic map, such as a BIM model) include semantic information. This means that

the data captured by the scanners are not only geometric but also inherit semantic

information either by automatic or manual segmentation by using the respective

BIM model to obtain these.

- The gravity direction is pointing upwards and set as the Z-axis, which can be either

obtained by a modern laser scanner or set manually. This definition is essential for

consistency across different datasets and dataset sources.
1The methods described in this section were developed in collaboration with Armin Kamberi as part

of his master’s thesis, supervised by the author of this dissertation.
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For easier understanding, the following terminology is established: The SLAM recon-

structed point cloud is the source point cloud. The BIM reconstructed point cloud is

referred to as the target point cloud, i.e., the reference map to which the alignment is

required.

Fig. 6.1 presents the raw maps that the proposed methodology seeks to align. The real-

world SLAM point cloud includes extra elements (such as clutter and materials) that

must be filtered out to successfully align the map with the reference BIM model which

only contains the permanent elements of the building (such as walls and columns).

(a) Real-world raw SLAM point cloud with low
drift.

(b) Raw point cloud generated from a BIM model.

(c) SLAM & BIM maps aligned and overlapped. (d) Top down view of SLAM & BIM maps.

Figure 6.1: Point cloud dataset overview

The methodology is divided into three main steps as follows: Step 1. The BIM model is

sampled to a point cloud representation, transforming semantic labels to distinct colored

points, and the SLAM reconstructed point cloud is enriched with semantic labels through

a manual alignment of the BIM and SLAM point cloud.

Step 2. The initial angle alignment step uses orthogonal walls to align source and target

point clouds, aiming to find the correct rotational angle for the alignment. It creates

a histogram of normal angles, using wall and column points, and identifies main wall

orientations. After this first rotational alignment, there are only four possible directions in

which both point clouds align correctly. The four directions refer to the cardinal directions

(0◦, 90◦, 180◦, and 270◦).
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Then, in Step 3., two methods are implemented to find the final best transformation for

global registration; these methods are described as follows:

Method 1 constructs an Occupancy Grid Map (OGM) by projecting each point from the

point cloud onto the XY-plane, resulting in a 2D OGM. Subsequently, 2D features are

extracted using the Features from Accelerated Segment Test (FAST) algorithm, as imple-

mented within the Oriented FAST and Rotated BRIEF (ORB) framework. The Binary

Robust Independent Elementary Features (BRIEF) descriptors are then generated based

on these extracted features. For matching, the Hamming distance metric2 is employed

to assess the similarity between descriptors from the source and target datasets. Based

on the identified correspondences, the median length of the matches is computed, which

serves as the basis for estimating the translation. To ensure robustness, the registration

process is evaluated across the four cardinal directions within the 2D space. The final

transformation is selected based on the registration with the highest Fitness Score (which

will be explained in 6.3.4), ensuring the best alignment.

Method 2 differs from Method 1 as it builds correspondences based on the median length

of the center points of the extracted columns. In this approach, the points representing

columns are extracted using the semantic labels, which are then projected into 2D. The

final transformation is estimated following the same principles as in Method 1.

Initially, the number of correspondences within specific length ranges of the histograms

(derived from all built correspondences) is counted. Subsequently, the median length

of all distances is utilized to estimate the translation. Finally, a final transformation is

determined after iterating through all four possible rotation directions. Figure 6.2 presents

an overview of the presented framework.

6.3.1 Step 1: Preprocessing

To create a 3D semantic point cloud from a BIM model, first, it is converted from IFC

format into a triangulated mesh representation in OBJ format using ifcConvert (IfcOpen-

Shell Contributors, 2023b). Following this, distinct OBJ files are generated for each entity

within the model (e.g., walls, columns, floor, ceiling, windows, and doors). Then, uniform
2The Hamming distance is a measurement of the (dis)similarity between two strings or vectors of equal

length, and provides the number of positions at which the corresponding symbols are different.
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Figure 6.2: Pipeline overview.

point cloud sampling is applied to each OBJ file, and the resulting semantically enriched

synthetic point clouds are merged into a single one.3

To semantically enrich the source point cloud, it is manually aligned with the target BIM

point cloud using CloudCompare (CC). Then, a labeling algorithm is used to determine

points in close proximity between the source and the target. The target semantic labels,

stored in the point cloud as color or scalar field information, are then assigned to the

source point cloud.

This process also helps to remove occlusions and noise in the source point cloud by only

keeping source points that are in close proximity to a target point in the BIM point cloud.

Figure 6.3 shows an example of an initial low-drifted SLAM point cloud and the result

after semantic enrichment and cleaning.

Both point clouds are downsampled using a voxel-based method to reduce the number of

points and decrease computational costs. This approach averages the coordinates of points

within each voxel, producing a uniformly sparse dataset that retains the key features and

shapes of the original data. However, careful selection of the voxel size is crucial to balance

data reduction with the preservation of geometric details.
3The code to convert BIM models into semantically enriched point clouds can be found here: Link.
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(a) Raw low-drifted SLAM reconstructed point
cloud before cleanup and labelling.

(b) Cleaned and semantically labeled SLAM
point cloud.

Figure 6.3: Semantic enrichment of SLAM point cloud with low drift (part of Step 1, see
Section 6.3.1).

Standardizing the density between the source and target point clouds facilitates accurate

comparison and alignment while significantly lowering the computational load of subse-

quent registration steps. A uniform point cloud density enhances the reliability of feature

extraction and normal estimation, ensuring that the overall density of both point clouds

is approximately equal, even though inherently sparse regions remain sparse.

Additionally, normals for the source point cloud are estimated using the nearest neigh-

bor algorithm, which is essential for further processing. Consistent normal orientation is

particularly important for surface reconstruction and point cloud alignment algorithms.

6.3.2 Step 2: Initial Angle Alignment

As stated previously, it is assumed that a sufficient amount of orthogonal walls are present

in most buildings. Therefore, it is possible to use this consideration to align the point

clouds to each other or the principal axis. By aligning the principal axis of the source and

target point clouds, the solution space of the transformation for alignment is significantly

reduced, which improves the performance of subsequent registration steps. The method

for retrieving the primary alignment angle is similar to approaches previously proposed

in the literature, such as those by M. A. Vega-Torres, Braun, Noichl, et al. (2022) and

M. A. Vega-Torres et al. (2021) or by Sokolova et al. (2022).

To find the principal axis for each point in the point cloud, the angle of its normal vector,

which is perpendicular to the surface at that point, is calculated in relation to the X and

Y directions. These angles are analyzed within a range of 0° to 180°, treating angles 180°
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apart as equivalent. This approach is taken because normal vectors pointing in opposite

directions (e.g., 0° and 180°) are considered identical in this context.

All point normals that point up or down above 30° are considered floor or ceiling points.

As the proposed pipeline relies on walls and columns, the floor and ceiling are not of

interest and are filtered out.

Given that, it follows that in a planar wall, the wall normals mainly point in one of the

two orthogonal main directions. These orthogonal directions are determined by analyzing

the histogram peaks of the normal vectors calculated for each point in the point cloud.

The main direction of the point cloud walls is derived from these peaks, which represent

the primary orientations of the building structure.

This step is performed for both source and target point clouds to obtain their respective

orthogonal orientations and is illustrated in Fig. 6.4. Figures 6.4a and 6.4b show a 3D

visualization of the calculated normals for the source point cloud. Figures 6.4c and 6.4d

present histograms of the normal angles of the source and target point clouds, respectively.

With the help of the determined angles, the source point cloud is rotated to align with the

target point cloud so that they are either orthogonal or parallel to each other, depending

on the initial rotation of the point clouds.

6.3.3 Step 3: Transformation Estimate

After preprocessing the data and finding the initial angle for alignment, two methods

were developed to find the correct rotation and translation for the alignment. The first

approach uses a 2D projection of the top-down view of the point cloud to build features of

corners, points, or squares. The second approach builds correspondences directly through

the center points of columns.

In both methods, the algorithm operates by assuming there are only four distinct possible

solutions for the rotational angle (after Step 2, see previous Section 6.3.2). Among these

four possible rotations, there is exactly one scenario where the lengths of the connections

between recognized features are equal. This outcome follows from the property of trans-

lation, where correct correspondences are linearly dependent when the correct rotational

solution is identified.
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(a) Normal Estimation of SLAM point cloud. (b) Close up view of wall normals in subfigure (c).

(c) SLAM Point cloud histogram wall normal an-
gels. From this histogram it is possible to deter-
mine that the SLAM Point cloud has to be rotated
around 73 deg.

(d) BIM Point cloud histogram wall normal angels.
From this histogram, it is possible to determine
that the BIM Point cloud does not need to be
rotated.

Figure 6.4: Detailed overview of the axis alignment Process (Step 2, see Section 6.3.2).

Similarly, in both methods the algorithm iteratively finds the best solution through a

process of rotation, translation, and evaluation. For each rotation candidate, the corre-

sponding transformation is assessed, and the one with the highest fitness score is selected

as the optimal solution. Fig. 6.2 illustrates this iterative process.

Method 1. ORB Feature-based Correspondence Building

First, the two-point clouds are discretized into a common 2D OGM with a predefined grid

resolution. The accuracy of the conversion process depends on the size and density of the

point cloud, and different grid resolutions may result in varying levels of accuracy. Section

6.3.4 discusses the optimal grid resolution. First, FAST features are generated based on

the 2D image projection. Then, the BRIEF descriptors using the FAST features in both

maps are determined. Using the Hamming norm, descriptors with low Hamming distances

are matched, indicating high similarity between features. This approach ensures that
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only corresponding features, present in both maps and representing the same underlying

characteristic, are utilized for establishing mutual correspondence.

A histogram of all correspondence lengths matched using BRIEF is created to estimate

the translation. Assuming the point cloud is correctly oriented, the maximum number of

distances with the same length range equals the maximum inlier set. The translation is

estimated and evaluated using the median of the histogram bin with the most correspon-

dences.

The optimal rotation candidate is selected based on several criteria, including fitness,

inlier RMSE, Translational Error (TE), and Rotational Error (RE). These metrics are

detailed in subsection 6.3.4. Figure 6.5 provides an overview of Method 1 and illustrates

a representative registration result.

Method 2. Semantic Column Correspondence Building

The second technique estimates correspondences from only the columns of the point clouds,

similarly as done by Qiao et al. (2023). The process begins with applying DBSCAN to

cluster column points within the semantically labeled point cloud data. A bounding box is

then generated to enclose the column’s width, accommodating variations in point density

and addressing potential gaps in the source point cloud.

Subsequently, the center of the bounding box for each partial column is calculated and used

to establish all-to-all correspondences with the columns in the target point cloud (derived

from the BIM model). The term ”partial” refers to the SLAM-reconstructed point cloud

potentially lacking complete column data due to limited scanning perspectives and angles.

Additionally, faster scans result in lower point density, and column edges may be sparsely

captured if only briefly recorded while navigating through a room

A histogram of all correspondences is constructed, following a process similar to Method

1, and the median of the bin with the most frequent distances is selected. The assumption

is that if the rotation candidate is accurate, the bin with the highest frequency will corre-

spond to the maximum clique, as discussed in Section 6.3.3. This procedure is repeated

for each rotation candidate.
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(a) left 2D occupancy grid map created form source point cloud; right the
same OGM from the target point cloud; in the middle lines representing the
correspondences which will be used to calculate the translation

(b) Both 2D OGMs overlapped
after transformation

(c) Source (yellow), target
(blue) after successful registra-
tion displayed as point clouds

Figure 6.5: Overview of Method 1

Figure 6.6 provides an overview of the Method 2 workflow, along with an example regis-

tration result.

In both Method 1 and 2, the process iterates through all four possible rotation candidates.

Each rotation candidate is evaluated, and the transformation estimates are compared.

The best rotation is selected based on the fitness score, and the point clouds are registered

accordingly.
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(a) All-to-all correspondences. (b) Correspondence building based on col-
umn center.

(c) Histogram of all correspondence lengths with
peak highlighted.

(d) Transformation esti-
mate.

Figure 6.6: Method 2 overview showcasing the building of all-to-all correspondences on the
top left. Selection of the correct inliers by median distance on the top right. Registration
result on the bottom right.

6.3.4 Experiments and Results

This section presents the validation and testing of the proposed global registration al-

gorithm across various dataset variations. Through three experiments, the algorithm’s

performance was assessed using standard metrics such as translational and rotational er-

rors, fitness score, and inlier RMSE. Each test is designed to evaluate various aspects and

scenarios of real-world applications, including same-size maps with small and large point

clouds (Experiments 1 and 2) and registration involving maps with varying size, where the
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entire BIM model is utilized as target (as in Experiment 3). Multiple tests were performed

with random initial misalignments to assess robustness. This subsection concludes with a

comprehensive analysis of the method’s strengths and limitations.

Dataset

The ConSLAM dataset was obtained from the works of Trzeciak et al. (2023a, 2023b).

The data was collected using a LiDAR scanner (Velodyne VLP-16), and a map (of the

Sequence Nr. 2) was created using the HDL-graph SLAM algorithm (Koide et al., 2019).

As illustrated in Fig. 6.1, this point cloud exhibits a high level of noise and significant

areas of interference due to the placement of material and construction site tools. In some

cases, walls were only scanned from one side, as sometimes the room behind them was not

entered. Additionally, some of the columns have only been scanned on one side. It is also

important to note that some points are outside the building. Most importantly, and as

explained in Step 1 (see Subsection 6.3.1), the SLAM scans were cleaned from noise and

clutter by manually aligning them and using the BIM model together with the nearest

neighbor algorithm to label points that are in the vicinity of the BIM point cloud and

labeled accordingly. This way, only the walls and columns were preserved and labeled.

The dataset is cropped to specific sizes to test various SLAM and BIM configurations. An

overview of the dataset sizes is presented in Table 6.1.

Table 6.1: Datasets used to evaluate the methods proposed in this research.
No. Name Nr. Of Points L x W x H [m³]
1 Cropped SLAM 185.807 41 x 23 x 2.2
2 SLAM 545.051 80 x 35 x 2.7
3 Cropped BIM 135.068 41 x 23 x 3.9
4 BIM 283.386 80 x 34 x 3.9
5 Full Model BIM 910.588 166 x 86 x 3.9

Metrics for Validation Results

This section discusses the metrics and presents the results of the experiments conducted

to evaluate the performance of the proposed methodology. The following metrics were

used to quantify the accuracy and precision as well as evaluate the performance of the

algorithms.
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The Translational Error (TE) measures the difference in meters between the actual and

estimated positions in the xy-plane. It is computed as the Euclidean distance between the

actual translation (xa, ya) and the estimated translation (xe, ye), formally:

TE =
√

(xa − xe)2 + (ya − ye)2.

The Rotational Error (RE) assesses the difference in degrees between the actual and es-

timated rotations around the z-axis. It is calculated as the absolute value of the difference

between the estimated rotation θe and the actual rotation θa, formally:

RE = |θa − θe|.

The Inlier Root Mean Square Error (RMSE) evaluates the average squared difference

between the actual and estimated point clouds. It is defined as

Inlier RMSE =

√√√√ 1

N

N∑
i=1

(di)2,

where N represents the total number of point correspondences and di is the Euclidean

distance between corresponding points i. The advantage of RMSE is that it shows how

far apart actual and estimated data points are. Squaring the differences makes it sensitive

to large errors, which is useful when larger errors need to be weighted more. It is easy to

compute and understand, so it is often used to measure the accuracy of estimation models.

The Fitness Score considers the number of corresponding points between the two clouds

within a certain distance threshold, thereby measuring the degree of alignment. Given by

fitness = n

N
,

where n is the number of points within the specified threshold and N is the total amount

of points in the source point cloud.

The Success Rate (SR) was defined in accordance with Qiao et al. (2023), where regis-

tration is considered successful if the resulting TE is within 1 m and the RE is within 3

degrees.
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For each experiment, 100 registration tests were performed, and the SR was calculated by

assessing the number of successful registrations according to the established criteria. The

values for the other metrics were derived from tests that met the criteria and achieved

the highest fitness scores. If a method did not have any successful registration, only the

metrics of the test with the highest fitness scores were used.

The registration accuracy in each experiment was assessed under two scenarios: Case 1

involves using the same SLAM point cloud as both the source and target (as a classical

point cloud registration problem), while Case 2 involves using the SLAM point cloud as

the source and the corresponding BIM point cloud as the target.

The proposed methods were evaluated against SOTA algorithms, such as Truncated Least

Squares Estimation And SEmidefinite Relaxation (TEASER)++ with Fast Point Feature

Histograms (FPFH) features and TEASER++, after semantic column center extraction,

which will be abbreviated as TEASER (Sem) in the rest of this section. Moreover, the

results of the Random Sample Consensus (RANSAC) algorithm (after 100k iterations) are

also provided.

Experiment 1: Small Subsection

Exp. 1 was performed on a selected subset of the entire available SLAM point cloud.

Fig. 6.7 illustrates the point clouds source and target to be registered, as well as both

evaluation cases, i.e., when the point clouds are the same in target and source (same-

source), and when the SLAM point cloud is registered with the BIM point cloud (cross-

source).

In all presented experimental result tables of this section, the data is marked in bold for

the best result according to its category and underlined for the second-best result.

Table 6.2 illustrates that in Case 1 (same-source case), the TEASER++ method with

FPFH features and the TEASER++ method using only semantic column centers both

achieved exceptional accuracy. Both methods produced highly precise registrations, evi-

denced by fitness scores of 1 and minimal translational and rotational errors. Both of the

proposed methods (Method 1 & 2) delivered the next-best performance among all algo-

126



(a) Preprocessed semantically enriched
SLAM point cloud (source).

(b) semantically enriched BIM point
cloud (target).

(c) Exemplary Initial Situation Case
1 (same-source): rotation of -125° and
translation in x = 40 and y = 5 applied
to source.

(d) Exemplary Initial Situation Case 2
(cross-source): same angles as in Case
1.

Figure 6.7: Setup for Exp. 1.

rithms, also achieving a fitness score of 1, though with slightly higher translational and

rotational errors.

The TEASER++ algorithm (with all points and with only semantic columns) performs

exceptionally well due to its decoupled solving mechanism. The algorithm generates so-

called Translational and Rotational Invariant Measurements (TRIMs), estimating corre-

spondence that stays the same length when rotated and translated. These measurements

are selected and compared to ensure a correspondence set with the maximum number

of inliers, which enables successful registration. As the source and target are identical,

the algorithm accurately identifies the same features with FPFH and a high number of
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Table 6.2: Results of Exp. 1.

Case Method TE [m]↓ RE [° ]↓ Fitness↑ RMSE↓ SR [%]↑
RANSAC (FPFH) 8.55 35.95 0.14 0.19 3

No. 1 TEASER (FPFH) 0.01 0.03 1.00 0.08 100
Same- TEASER (Sem) 0.01 0.03 1.00 0.01 100
Source Ours (Method 1) 0.05 0.24 1.00 0.04 100

Ours (Method 2) 0.01 0.24 1.00 0.04 100
RANSAC (FPFH) 6.85 36.11 0.17 0.18 5

No. 2 TEASER (FPFH) 11.71 32.97 0.23 0.18 8
Cross- TEASER (Sem) 16.34 45.76 0.10 0.16 0
Source Ours (Method 1) 1.09 23.64 0.94 0.10 87

Ours (Method 2) 11.74 88.44 0.22 0.16 1

Translational and Rotational Invariant Measurements (TRIMs), thus matching the same

descriptors to yield the correct solution.

A comparable outcome can be observed in the case of Method 1. As the ORB algorithm

can identify the identical FAST features in both the source and target, it can classify them

using the same descriptors using BRIEF. The calculated Hamming norm is identical for

all the detected features, resulting in an accurate correspondence matching.

The results of the RANSAC algorithm, when applied in conjunction with FPFH features,

exhibit random performance as anticipated. Due to the iteration limit of 100,000, the

algorithm was unable to identify the correct correspondences and estimate an accurate

transformation.

As for Case 2 (cross-source), where the target is now the corresponding BIM recreated

point cloud, Method 1 and Method 2 demonstrate a clear advantage. The ORB algorithm

in Method 1 can identify sufficient features with a low enough Hamming distance to match

them correctly. Method 2 was able to estimate the correct rotation and translation by

comparing the correspondence angles and distances between column centers.

TEASER++ with semantic column center correspondences was unable to achieve correct

registration in this case. It is hypothesized that the substantial differences in distance

between the source and target point clouds hindered the algorithm’s ability to establish

consistent measurements. Previous attempts to fine-tune the algorithm’s parameters did

not result in successful optimization. Additionally, the non-uniform density of columns,

with greater density on one side, caused a shift in the column center. This shift affected

the correspondence distance between source and target columns.
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Regarding TEASER++ with FPFH features, it is assumed that the discrepancies observed

in feature descriptors are similar to those seen with the semantic method. Given that the

SLAM point cloud inherits drift from the reconstruction algorithm, it is hypothesized

that these discrepancies lead to significant variations in correspondence distances between

extracted features. This, in turn, complicates the process of building TRIM.

Experiment 2: Full SLAM point cloud

Exp. 2 was conducted using the entire available SLAM point cloud, first analyzing the

same-source case followed by the cross-source scan. The results were systematically ana-

lyzed and classified. It is noteworthy that the point cloud’s size increased substantially,

leading to a significant rise in computational time. This increase also resulted in the de-

tection of a considerably larger number of features in the same-source scenario. Similarly,

as for Exp. 1, Fig. 6.8 illustrates both point clouds to be registered (source and target),

as well as both evaluation cases, i.e., same-source and cross-source.

FPFH generated 1000 - 30000 putative correspondences depending on the number of points

present. For this reason, the data was downsampled for the TEASER++ algorithm. The

number of semantic column center points only increased by less than double the amount

of Exp. 1, as these depend on the number of columns present. The steep increase in

computational time aligns with the work by B. Yang et al. (2016), which stated their

algorithm does not scale well with an increased number of correspondences.

In Exp. 2, Case 1, as presented in Table 6.3, semantic TEASER++ achieves the lowest

error rate (TE, RE and RMSE) of all the algorithms tested. Additionally, a fitness value

of 1.0 was achieved, indicating that each source point is within the selected threshold

distance from a corresponding target point.

TEASER++ with FPFH features is in second place for Exp. 2 for the same-source case.

Here, too, the translation error and rotation error are close to zero.

In this experiment (and contrary to Exp. 1), semantic correspondences outperformed

FPFH features. This improvement is likely due to fewer correspondences, which facili-

tated faster convergence to the correct solution. TEASER++ terminates after a specified
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(a) Preprocessed semantically enriched
SLAM point cloud (source).

(b) semantically enriched BIM point
cloud (target).

(c) Exemplary Initial Situation Case 1
(same-source).

(d) Exemplary Initial Situation Case 2
(cross-source).

Figure 6.8: Setup for Exp. 2.

number of iterations or when predefined error bounds are met, contributing to this en-

hanced performance.

As for Case 2, Method 1 shows steady performance for the same-source and cross-source

cases, allowing for a subsequent ICP algorithm to further enhance the registration in the

cross-source case.
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Table 6.3: Results of Exp. 2.
Case Method TE [m]↓ RE [° ]↓ Fitness↑ RMSE↓ SR [%]↑

RANSAC (FPFH) 9.10 54.11 0.77 1.48 3
No. 1 TEASER (FPFH) 0.01 0.01 1.00 0.11 100
Same- TEASER (Sem) 0.01 0.00 1.00 0.01 100
Source Ours (Method 1) 0.29 6.76 0.97 0.42 73

Ours (Method 2) 10.46 45.46 0.83 0.92 30
RANSAC (FPFH) 14.25 53.00 0.64 1.52 0

No. 2 TEASER (FPFH) 16.79 28.11 0.48 1.53 9
Cross- TEASER (Sem) 25.66 47.97 0.48 1.53 0
Source Ours (Method 1) 0.89 13.06 0.97 0.52 72

Ours (Method 2) 14.17 173.26 0.82 1.29 0

Considering the SR, TEASER with FPFH features stays in second place. This low SR

result is attributed to the varying distances between semantic landmarks, as the column

center is influenced by the scan density at each column. In some cases, one face of the

column has high resolution, while the opposite face is sparsely scanned. This discrepancy

causes a significant shift in the column’s center, resulting in inconsistent measurement

distances across correspondences. Consequently, the registration process is impaired, and

the TEASER++ algorithm struggles to resolve a solution for rotation and translation.

Within its iteration threshold, RANSAC could not produce a sufficient registration within

the ICP range. As the point cloud gets more extensive, obtaining a good solution takes

significantly more iterations as it is a random-based method.

Our Method 2 failed to correctly register the point clouds due to several factors. First, the

parameters require precise fine-tuning. The angle threshold for distances, as illustrated

in 6.6b, is crucial, particularly as the point cloud becomes larger, given its sensitivity.

Similarly, accurate binning of the histogram is essential. As more columns are included,

the number of all-to-all correspondences increases significantly, necessitating a more precise

binning threshold. Notably, the TE approximates 180°, suggesting that the registration

was misoriented by 180°. This issue likely arises from the limited number of distinct

columns and the symmetry within the portion of the building represented in the point

cloud.

The initial angle alignment calculation is also very computationally intensive, as it in-

creases linearly with the number of point normals and the histogram bins for the angle.
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As the point cloud normals are calculated and counted within the histogram, a smaller

bin width results in a very sharp subdivision and, thus, a more accurate initial alignment.

The discrepancy in rotational errors between Methods 1 and 2 is significant despite both

methods using the same algorithm for rotation determination. This difference can be

attributed to the fact that a high fitness value was achieved for one of the rotation candi-

dates during the translation determination process. Although the rotation angle itself was

incorrect (usually by ± 180°), the high fitness value led to this rotation candidate being

erroneously selected as the optimal solution.

Experiment 3: Room to entire BIM model

Regarding Exp. 3, the SLAM scan covered approximately three rooms, including hallways

and a larger room. This data was then aligned with the BIM model of the entire floor,

encompassing a space approximately three times the size of the SLAM point cloud. The

experiment aimed to simulate a scenario where only a portion of the construction site is

scanned rather than the entire site.

In contrast to Exp. 1 and 2, in Exp. 3, the Case 1 utilizes the BIM point cloud rather

than the SLAM point cloud to evaluate the algorithms within the same source case. For

this purpose, the BIM point cloud was cropped to a smaller section, matching the size of

the SLAM point cloud used in Exp. 2. This small section is used as the source and the

entire BIM point cloud as the target. Fig. 6.9 illustrates the point clouds used for this

experiment.

As shown in Table 6.4, TEASER++, in combination with FPFH, shows the smallest

translational and rotational errors for Case 1. The fitness score is the highest and inlier

RMSE the lowest of all the examined algorithms. In addition, all runs yielded a successful

registration, i.e., within the SR thresholds. Our Method 1 was able to achieve the second

lowest translational and rotational error as well as the best inlier RMSE of 0.1088.

In this experiment, TEASER++ demonstrated its efficacy in accurately registering a small

subset of the BIM point cloud with the complete BIM point cloud. Since the source and

target point clouds were identical within the region of interest, the algorithm effectively

generated TRIMs to resolve the rotation and translation, as the majority of FPFH features
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(a) Exemplary Initial Situation Case 1 (same-
source). Notice that both point clouds come from
the original BIM model.

(b) Exemplary Initial Situation Case 2 (cross-
source). SLAM point cloud to the left, and entire
BIM point cloud in the right

Figure 6.9: Setup for Exp. 3.

Table 6.4: Results of Exp. 3.
Case Method TE [m]↓ RE [° ]↓ Fitness↑ RMSE↓ SR [%]↑

RANSAC (FPFH) 33.63 36.32 0.81 1.50 0
No. 1 TEASER (FPFH) 0.03 0.03 1.00 0.24 100
Same- TEASER (Sem) NA NA NA NA NA
Source Ours (Method 1) 0.14 0.29 1.00 0.11 100

Ours (Method 2) 44.66 32.11 0.86 1.35 0
RANSAC (FPFH) 38.97 46.08 0.50 1.60 0

No. 2 TEASER (FPFH) 40.15 18.97 0.56 1.56 0
Cross- TEASER (Sem) NA NA NA NA NA
Source Ours (Method 1) 2.50 23.92 0.98 0.57 71

Ours (Method 2) 57.24 17.56 0.78 1.39 0

were consistent. The same effectiveness was observed with Method 1, where the identical

nature of the source and target point clouds allowed for precise feature matching and 100

% SR.

Method 2 found correspondences but not the correct ones, thus resulting in a catastrophic

failure. This failure is due to the large number of columns and their similar distribution

in different parts of the building.

Case 2 was successfully registered only using Method 1. To achieve this, the grid resolu-

tion was increased to 0.8. However, this resolution was not chosen arbitrarily; a detailed

discussion on the optimal grid resolution is presented in Subsubsection 6.3.4.
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Method 2 frequently assigned a high fitness score to candidates rotated 180° from the

correct orientation, leading to entirely incorrect registrations. This failure occurred be-

cause the symmetric distribution of columns in the target floor plan and the source point

cloud created two peaks in the histogram instead of one, leading to an inaccurate median

translation estimate.

Optimal Parameters for Method 1 - Exp. 3

In the proposed Method 1, the grid resolution of the OGM is crucial for the detection of

matching FAST features. As the results presented in Table 6.5 show, the optimal grid

resolution lies around 0.8 for the setup of Exp. 3.

Table 6.5: Results of Method 1 with different grid resolutions.
Grid Resolution TE [m]↓ RE [°]↓ Fitness [-]↑ RMSE [m]↓ Time [s]↓

0.1 30.74 0.60 0.99 1.37 7.86
0.2 15.84 0.60 0.97 1.01 6.88
0.3 14.17 0.60 0.96 1.07 6.98
0.4 8.25 0.60 0.97 1.05 6.80
0.5 19.66 0.60 0.97 0.95 6.85
0.6 1.52 0.60 1.00 0.88 6.92
0.7 0.34 0.60 1.00 0.28 6.79
0.8 0.08 0.60 1.00 0.21 6.56
0.9 0.41 0.60 1.00 0.32 6.70
1 0.80 0.60 1.00 0.58 6.77

As shown in Figures 6.10 and 6.11, a smaller grid resolution results in smaller distinct

squares to be occupied by the algorithm that creates the OGM. For higher resolutions,

small, sparse elements will be merged as one. Depending on the size of the point cloud, a

different grid resolution is needed.

With an optimal grid resolution, the registration process is notably robust. However,

the accuracy of the initial angle calculation—described in Step 2 of Subsection 6.3.2—is

critical. If the rotational angle is sufficiently accurate (i.e., if at least one of the four

candidates is within 3 degrees of the true angle), then both the translation and the overall

registration accuracy will be significantly improved.
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(a) (b)

(c) (d)

Figure 6.10: Feature matching as a function of grid resolution. Grid resolutions shown
are: (a) 0.2, (b) 0.4, (c) 0.6, and (d) 0.8. Subfigures (a) through (d) demonstrate that
as grid resolution increases, image resolution decreases due to point merging, leading to a
higher similarity between FAST features and BRIEF descriptors.
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(a) (b) (c) (d)

Figure 6.11: Registration accuracy as a function of grid resolution. Subfigures (a) through
(d) illustrate the registration results for various cases using different grid resolutions, corre-
sponding to those shown in Fig. 6.10. Accuracy improves with increasing grid resolution.
As grid resolution increases, walls become more uniform, with fewer holes and greater
similarity, allowing the ORB algorithm to more effectively match corresponding features
as finer details are merged.

Based on extensive experimentation, it can be concluded that Method 1 provides the

best performance for cross-source registration when employing the optimal grid resolu-

tion. However, it is important to note that this method has not achieved a 100% SR,

meaning that it can still fail in approximately 20% of cases, as demonstrated by the three

documented experiments.

Additionally, for registration involving the same-source point cloud, TEASER++ remains

a highly effective choice, particularly when using FPFH features. Relying solely on seman-

tic column centers may lead to significant failures, as evidenced by the results from Exp.

3.

With the low-drifted SLAM point cloud now properly aligned with the reference map,

the next objective is to further refine the sensor poses. This refinement ensures that the

permanent elements of the newly acquired map accurately correspond to those in the

reference map, ultimately leading to the creation of a correct, up-to-date, and well-aligned

map representation. In the upcoming section, the optimization process of adjusting sensor

poses using either a 3D BIM model or a semantic reference map will be elaborated.

136



6.4 BIMCaP: BIM-based AI-supported LiDAR-Camera Pose

Refinement4

A framework designed to align a sequence of synchronized LiDAR scans and RGB images

with a 3D BIM model is proposed, thereby refining the initial approximated camera poses,

which inherently suffer from drift owing to the characteristics of SLAM algorithms. The

proposed framework can be divided into three significant steps.

Step 1. The initial step of the proposed methodology involves fusing camera images and

sparse LiDAR scans in precise depth maps. This process is facilitated through a hybrid

approach employing interpolation and a Deep Learning (DL) technique, which then allows

the projection of the pixel information (such as semantic information) into the 3D space.

Step 2. Subsequently, in the second step, semantic segmentation is applied to the images,

enabling the detection of permanent elements such as walls, columns, and floors within

the reconstructed 3D map. Simultaneously, a point cloud and a vectorized floor plan with

semantic information are created from the BIM model. This vectorized semantic floor

plan will be used as a reference map for the alignment of the real-world data.

Step 3. In the third step, a statistical approach is employed to generate initial synthetic

camera poses. These poses are then refined through a BA module, which integrates cus-

tom cost functions. These functions are designed to iteratively enhance the accuracy of

sensor poses, thereby ensuring optimal alignment between the generated map and the se-

mantically vectorized floor plan from the BIM model. This refinement process selectively

considers only permanent elements, which are identified through semantic segmentation

in real-world images and projected into three-dimensional space using the previously esti-

mated depth maps.

Fig. 6.12 illustrates the proposed semantic-aware pose optimization framework.
4The methods described in this section were developed in collaboration with Anna Ribic as part of her

interdisciplinary project, and Shaowen Qi as part of his master thesis; both supervised by the author of
this dissertation. Portions of this section were previously published in (M. A. Vega-Torres, Ribic, et al.,
2024)

137



Depth maps

Approx. 
Camera Poses

Semantic maps

Semantic point cloud BIM model

Geometric 
Term

Alignment 
Terms:
• Floor,
• Ceiling,
• Columns,
• Walls.

Bundle Adjustment
Refined Camera Poses

RGB images

Figure 6.12: Overview of the proposed BIMCaP framework for sensor pose refinement.
The depth maps are used to project the semantic maps (created from the images) into the
3D space using the approximated initial poses (drifted due to SLAM). Different terms aim
to correlate the data measured over permanent elements (i.e., reliable landmarks) with the
BIM model. Moreover, a geometric term ensures geometric consistency among real-world
images.

6.4.1 Step 1: LiDAR and Camera Fusion

To fuse the information from the LiDAR and the camera, the visible point cloud within

the camera’s FoV is first projected onto the image plane. The goal is then to generate a

dense map that aligns coherently with both the image and LiDAR data.

The projection of LiDAR points onto the camera image is carried out using the camera’s

intrinsic and extrinsic parameters, as well as the package provided by Trzeciak et al.

(2023a). This package ensures that the camera image is undistorted and that only the

corresponding LiDAR points, which are timestamp-synchronized with the small FoV of the

camera, are projected from the 3D space onto the 2D image. As a result, depth information

is obtained for several pixels within the image. However, this depth information remains

sparse due to the use of a 360◦ LiDAR with only 16 rays in the vertical direction.

It is important to note that to ensure proper functionality with sensors having a reduced

FoV (such as solid-state LiDARs or RGB-D cameras), only the LiDAR data within the

camera’s FoV is utilized.

138



The sparsity of the point cloud would not be sufficient to leverage all the information from

the image in the 3D space; therefore, subsequently, the goal is to create a dense depth

map using the point cloud and the corresponding camera image.

Currently, numerous DL methods serve for depth estimation, yet many of them are opti-

mized for outdoor environments (such as the KITTI dataset). Therefore, their accuracy

tends to decline in indoor settings, which constitutes the focus of this investigation. Follow-

ing extensive experimentation with various methodologies, a hybrid method was adopted

that combines linear interpolation with CompletionFormer (CF) (Y. Zhang et al., 2023).

Fig. 6.13 illustrates the results of this hybrid approach, showing the original CF output

alongside the refined outcome involving an initial linear interpolation.

(a) (b)

(c) (d)

Figure 6.13: Depth completion with sparse LiDAR point cloud: (a) original image from
the ConSLAM dataset with original sparse projected LiDAR scan; (b) depth map using
only CompletionFormer; (c) depth map using only linear interpolation and (d) using linear
interpolation and CompletionFormer. It is evident that (d) yields the best results since it
is smother than (c) and more coherent with the measurements than (b).
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6.4.2 Step 2: Semantically Enriched Maps

In this step, the goal is to create maps that will allow the sensor pose correction in the

subsequent step. This step is divided into two sub-steps: Firstly, a reference semantic

vectorized floor plan is created from the BIM model, and secondly, the 3D map created

with real-world data is enriched with semantic information. This semantic enrichment

serves a pivotal role in distinguishing permanent elements within real-world data, such as

walls, columns, and floors, which can be reliably aligned with the BIM model.

Reference Map

To prepare for implementing the pose correction module, the 3D BIM model’s geometry

is simplified into a 2D semantic vectorized floor plan. Since walls and columns are per-

pendicular to the XY plane, this reduction not only retains all vertical structural element

information but also allows efficient pose optimization in subsequent stages.

To generate the 2D semantic vectorized floor plan, the BIM model undergoes conversion

from IFC format to a 3D semantic point cloud as explained in section 6.3.15. An illustra-

tion of such a point cloud can be observed in Fig. 6.14b.

The created synthetic 3D point cloud is projected vertically into 2D images within a

specified height range, typically within ± 20 cm from the floor level. Semantic labels are

utilized to filter each element in the point cloud. Subsequently, image processing methods

such as contour and line detection are employed to identify line segments representing

individual elements in the 2D projection. These detected lines are then consolidated,

including their start and end points, to form the vectorized semantic floor plan. A resulting

floor plan is depicted in Fig. 6.14c.

In previous contributions, such as those in Sections 4.3 and 5.3.1, it was demonstrated the

feasibility of generating vectorized floor plans directly from BIM models using IfcConvert.

Here, the purpose is to develop a more general method that enables the generation of se-

mantic vectorized floor plans from semantically enriched point clouds, thereby eliminating

the limitation of relying solely on semantic BIM models as required by IfcConvert.
5The code to convert BIM models into semantically enriched point clouds can be found here: Link
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(a)

(b) (c)

Figure 6.14: Reference map preparation: (a) original 3D BIM model (without ceiling);
(b) uniformly sampled 3D point cloud with semantic information from the BIM; and (c)
vectorized semantic floor plan, from which the walls and columns (in black and yellow)
are used for pose refinement in the subsequent pose optimization step.

Semantic Segmentation of Real-world Data

To filter permanent elements that are possible to be matched from the real-world data

with the BIM model, SOTA image semantic segmentation algorithms are leveraged. More

specifically, a modified version of Grounding-DINO (S. Liu et al., 2023) is used. However,

for the object detection task, the DINO algorithm (F. Li et al., 2022) was replaced with

a tiny version of the RTMDet algorithm (Lyu et al., 2022) pre-trained with the Common

Objects in Context dataset (COCO) dataset and 250 labeled images of the ConSLAM

dataset, which contains custom classes typical of a construction site. These images were

labeled semi-automatically using the Computer Vision Annotation Tool (CVAT) (CVAT.ai

Corporation, 2023).

Thus, the proposed approach enables the detection of objects of interest, expanding be-

yond the foreground elements identified by the original Grounding DINO version. Fig.

6.15 illustrates the results of the semantic enrichment before and after the proposed en-
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hancement, and Fig. 6.16a shows the top view of the resulting semantically enriched 3D

point cloud after projecting the semantic labels to the 3D space with the previously gen-

erated depth maps. In this last figure, it is also visible that it is possible now to filter

walls, columns, floor, and ceiling points in the depth maps, which can reliably be used

for registration with the BIM model and, therefore, for camera pose optimization. It is

worth mentioning that the floor and ceiling predicted labels were also used to optimize

the depth maps, creating smoother surfaces in these regions with blurring operations in

the 2D depth maps.

(a) (b)

(c) (d)

Figure 6.15: Semantic segmentation over 2D images of the ConSLAM dataset: (a) in-
ference with the original Grounding DINO algorithm (b) inference result after replacing
DINO with pre-trained RTMDet for object detection. (b) comprehends predicted labels
for the walls in the background, which are critical for the proposed camera pose refinement
framework. Similarly, (c) and (d) are, respectively, the results of Grounding DINO and
the results of the proposed pipeline.

6.4.3 Step 3: Sensor Pose Calculation and Refinement

The initial approximations of sensor poses are ideally determined using a Visual-SLAM

framework. However, the experimentation with cutting-edge SLAM algorithms such as
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DROID-SLAM or Go-SLAM yielded unsatisfactory results when applied to the ConSLAM

dataset, functioning correctly only for limited segments of the trajectory. Despite these

limitations, advancements in odometry systems suggest that addressing this challenge will

become feasible in the future. Therefore, and since the goal is to refine slightly drifted poses

and experiment under different magnitudes of drift, a synthetic trajectory was created

instead, simulating the output of a SLAM framework. This process is explained in the

following subsection. Subsequently, the method that is used to improve the accuracy of

these poses is introduced.

Synthetic Pose Calculation.

To ensure alignment with the typical trajectory patterns observed in existing SLAM sys-

tems and to provide the flexibility needed to assess the stability of the method under

varying initial positions, synthetic trajectories were carefully engineered. The creation of

these trajectories focused on replicating the gradual drift characteristic of SLAM-generated

trajectories, where errors at each pose incrementally increase over time.

Accordingly, the translation offset from the original sensor pose ∆Ti+1 was modeled as a

normally distributed random variable with mean ∆ti and variance σ2
t . Formally, ∆Ti+1 ∼

N
(
∆ti, σ

2
t

)
with ∆T1 ∼ N

(
0, σ2

t

)
where ∆ti is the previously sampled offset value, and

the variance σ2
t is an adjustable hyper-parameter which would determine the offset of

the trajectory from the ground truth poses. Regarding the camera rotation, degree offsets

∆ϕ ∼ N
(
0, σ2

p

)
,∆θ ∼ N

(
0, σ2

th

)
were randomly sampled around pitch and yaw directions.

Fig. 6.16b presents the resulting map using a synthetically drifted trajectory.

Pose Optimization.

Inspired by the FACaP framework (Sokolova et al., 2022), several terms are incorporated

into the cost function to refine the sensor pose with the BIM model using BA. To construct

a consistent 3D map from real-world sequential images, a geometric term is employed

to capture the divergence between 3D point estimations from two distinct viewpoints.

This geometric term integrates photogrammetric constraints; in this case, COLMAP was

utilized to obtain features and correspondences among sequential images. Fig. 6.16b and

6.16c visualize some of these features.
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Additionally, a floor term is utilized to ensure that segmented points corresponding to the

floor are confined to a single plane and are aligned with the floor surface defined in the BIM

model. Similarly, a ceiling term is introduced to incorporate information from the model’s

ceiling for optimization purposes. Wall and column elements are also included, as they are

crucial for correcting rotations around the vertical axis (yaw variations) and horizontal

translations. These adjustments are vital for the precise alignment of the reconstructed

environment, thereby ensuring its geometric consistency.

The following equation contains all the main terms:

L =
∑

(p,p′)∈M

∥∥p− p′
∥∥
2

+ λF
∑
p∈PF

dist (p, πF ) + λCe
∑

p∈PCe

dist (p, πCe)

+ λW
∑
p∈PW

dist
(
p, πf (q(p))

)
+ λCo

∑
p∈PCo

dist
(
p, πf (q(p))

)
,

where (p, p′) denotes a pair of 3D back projected key points grouped in M ; π and P

represent planes and points; λ is the weight given to each lost function; and the sub-

indices F , W , Co, and Ce represent floor, walls, columns, and ceiling; q(p) is the nearest

floor plan point; and the distance to the corresponding wall or column line in the vectorized

floor plan is denoted as πf (q(p)).

6.4.4 Experiments and Results

Dataset and Evaluation Details

To ensure reproducibility and enable benchmarking, the developed method was tested on

the ConSLAM dataset (Trzeciak et al., 2023a, 2023b). ConSLAM represents a pioneering

effort, offering the first open-access dataset acquired in an indoor cluttered construction

site. This dataset encompasses sequences of RGB and LiDAR data together with Terres-

trial Laser Scanner (TLS) point clouds. The latter was leveraged as a resource for the

generation of a BIM model with centimeter-level accuracy. The GT poses of ConSLAM

were calculated using SLAM2REF (M. A. Vega-Torres, Braun, & Borrmann, 2024c), an

enhanced version of BIM-SLAM (M. A. Vega-Torres et al., 2023) and OGM2PGBM (M. A.

Vega-Torres, Braun, & Borrmann, 2022) for large-scale maps, which is robust to LiDAR

144



(a)

(b) (c)

Figure 6.16: Features used for optimization (a) Top view semantic segmented map gener-
ated with the ground truth poses and the segmentation results of walls (in red) and floor
(in blue) as explained in Section 6.4.2; (b) map created with synthetic poses of Exp. 1
(obtained as explained in Section 6.4.3), here the COLMAP features are visible; (c) view
from an indoor observer’s perspective of the point cloud with highlighted Scale-Invariant
Feature Transform (SIFT) features used in the geometric term for optimization.

motion distortion and Scan-Map deviations. These data are also open-access (M. A. Vega-

Torres, Braun, & Borrmann, 2024b).

To quantify the quality of the whole trajectory before and after pose optimization, the

standardized Root Mean Square Error (RMSE) of the Absolute Trajectory Error (ATE)

in position (also referred to as translation) and in rotation were used, defined as in (Z.

Zhang & Scaramuzza, 2018) as follows:

ATEpos =

(
1

N

N−1∑
i=0

∥∆pi∥2
) 1

2

,

ATErot =

(
1

N

N−1∑
i=0

∥∠ (∆Ri)∥2
) 1

2

.
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where
∆Ri = Ri

(
R̂′

i

)⊤
,

∆pi = pi −∆Rip̂′
i

and ∠(·) means converting the rotation matrix to an angle axis representation and using

the rotation angle as the error. Moreover, for better comparison, some of the metrics

introduced in (Sokolova et al., 2022) including the Map Mean Entropy (MME), Mean

Plane Variance (MPV), and the Nearest Neighbor Distance (NND) were incorporated.

The MME serves to assess the quality of 3D maps, with a higher MME signifying favorable

alignment between the input cloud and the reference map. The MPV evaluates the vari-

ance among planes within the map, with lower MPV values indicating more uniform and

well-defined surfaces. The NND quantifies the average distance between adjacent points

in the point cloud, with smaller NND values indicating denser point clouds. The MME

value of 0.761, calculated using the GT poses (as shown in 6.6), represents the optimal

alignment between the real-world point cloud and the BIM model. For understanding,

this value would be zero if no deviations between the actual environment and the model

(Scan-Map deviations) exist.

Pose Refinement Results

The results of the proposed framework are compared against the SOTA FACaP pipeline

(Sokolova et al., 2022) and evaluated meticulously with three different experiments. The

first experiment consists of a synthetic trajectory that has an offset of around 1.4 meters

in translation and 10 degrees in rotation (Exp. 1), the second one has an offset of only 30.3

cm in translation and 8.82 deg in rotation (Exp. 2), and the third one only has rotation

offset of 9.6 degrees (Exp. 3).

Table 6.6 shows initial metrics based on ground truth and synthetic poses for Exp. 1,

along with results after pose optimization using various terms of the FACaP pipeline and

the proposed BIMCaP framework. Fig. 6.17 illustrates the evaluation of the error while

optimizing Exp. 3.

The findings from Exp. 1 (Tab. 6.6) emphasize the efficacy of utilizing all terms for

optimizing translational errors. However, this approach may not consistently yield optimal

results when addressing rotational errors. Notably, while BIMCaP demonstrates a superior
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Table 6.6: Comparison of validation measurements for Exp. 1 using the different methods.
All values are in meters except for the rotational Absolute Trajectory Error (ATE), which
is given in degrees. The best overall results are highlighted in bold, while the best results
per method are underlined. G, F, W, Co, and Ce stand for the geometric, floor, wall,
column, and ceiling terms, respectively.

Source G F W Co Ce MME↓ MPV↓ NND↓ ATEpos↓ ATErot↓

GT poses - - - - - 0.761 0.040 0 0 0
Exp. 1 - - - - - 1.027 0.059 0.557 1.391 9.99
FACaP ✓ ✓ ✓ - - 0.979 0.054 0.503 1.321 15.40

✓ - - - - 1.013 0.058 0.566 1.385 8.84
- ✓ - - - 0.966 0.053 0.503 1.358 16.50
- - ✓ - - 1.031 0.059 0.545 1.378 9.82

BIMCaP ✓ ✓ ✓ ✓ ✓ 0.956 0.052 0.460 1.281 11.84
✓ ✓ ✓ - ✓ 0.959 0.052 0.456 1.281 11.81
✓ ✓ ✓ - - 0.975 0.053 0.505 1.311 12.58
- ✓ - - - 0.966 0.054 0.519 1.351 13.63
- - ✓ ✓ - 1.034 0.059 0.549 1.378 9.75
- - - - ✓ 0.982 0.054 0.480 1.387 12.71

reduction in translational error by 4 cm compared to FACaP, both methodologies become

trapped in a local minimum, impeding the accurate optimization of the poses. This issue

can be attributed to the substantial difference between the synthetic poses and the ground

truth.

Table 6.7: Pose optimization results for Exp. 2 and 3: given a small translational and
rotational offset. In addition to the ATEpos and ATErot, the RMSE for the Yaw, Pitch,
and Roll axes separately in degrees is provided.

Source/Method ATEpos (cm)↓ ATErot (deg)↓ Yaw↓ Pitch↓ Roll↓

Exp. 2 before optim. 30.3 8.82 4.31 4.31 0.29
FACaP 30.2 7.70 3.79 3.79 0.21
BIMCaP 30.4 5.61 2.73 2.75 0.23
Exp. 3 before optim. 0 9.60 4.70 4.72 0.29
FACaP 6.2 7.92 3.91 3.90 0.19
BIMCaP 7.2 6.04 2.96 2.96 0.22

Exp. 2 and 3 results (Table 6.7 and Fig. 6.17) indicate superior performance of both

methods in optimizing rotational errors over translational errors. Notably, BIMCaP sig-

nificantly enhances yaw and pitch angles during the pose optimization process. Fig. 6.18

illustrates how BIMCaP aligns the floor and ceiling points to the correct planes, contrary

to FACaP, which tries to fit a plane among the given measurements without any reference.
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Figure 6.17: Development of the translational (a) and rotational error (b) given only a
rotational offset as described for Exp. 3.

Exp. 3 exposes a limitation in the proposed approach, as optimizing trajectory with only

rotational offsets resulted in unintended translations. This could be due to the simulta-

neous optimization of both translation and rotation, causing discrepancies. Additionally,

the challenge of accurately calculating sensor poses is intensified by the reduced FoV and

the sparse ground truth poses.

(a) (b)

(c) (d)

Figure 6.18: Side views of the different maps. (a) ground truth map; (b) map created
with synthetic poses of Exp. 1; (c) map after FACaP optimization and (d) after BIMCaP
optimization. The BIMCaP result shows better alignment with the real floor and ceiling
planes.

148



6.5 Contributions and Limitations

6.5.1 Contributions

This chapter presented significant contributions to the field of cross-source point cloud

global registration and sensor pose refinement with a particular focus on the integration

of 3D LiDAR and camera measurements and 3D BIM models. The key contributions are

as follows:

C 3.1 Cross-source global registration for aligning SLAM-reconstructed point

clouds with BIM models (RQ 3.1):

- A method was provided to convert a BIM model into a semantically enriched

point cloud, which is then as a target point cloud for registration.6. As well

as a source of information for automatic real-world point cloud labeling.

- Rapid and accurate estimation of primary wall angles is achieved using the

principal normal direction count method. This technique allows for precise

initial angle computation for point cloud alignment based on the structure’s

main axes.

- The research demonstrated the feasibility of using OGMs as a viable method

for cross-source point cloud registration using ORBs 2D features, providing

insights into their strengths and weaknesses and achieving over 70% SR in all

the conducted cross-source and same-source registration experiments.

- Comprehensive analysis is provided to expose the limitations and advantages

of existing SOTA algorithms (such as TEASER++ and RANSAC as well as

a proposed method based on column centers) in same-source and cross-source

point cloud registration.

C 3.2 Semantic enrichment of 3D maps in real-world construction sites with

LiDAR-camera fusion (RQ 3.2):

- A combination of linear interpolation and a neural approach for depth com-

pletion tasks is proposed, which enables the retrieval of a smooth depth map
6The code to convert BIM models into semantically enriched point clouds can be found here: Link
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from a very sparse LiDAR scan (16 rays in the vertical direction) and an RGB

image.

- A new methodology for semantic segmentation of images of indoor construc-

tion sites was developed. In particular, the method is not only able to detect

objects present in the construction environment but also detect not only ele-

ments from the foreground but also the background of the image.

- The object detection method was made open-source (Link to pre-trained RT-

MDet model), as well as the labels of the 250 very unique images of the

open-access ConSLAM dataset. Link to the data.7.8.

C 3.3 Refinement of drifted data with a reference BIM model (RQ 3.3):

- BIMCaP was introduced, an open-source framework that enables alignment

and correction of a sequence of camera and reduced FoV LiDAR measurements

with a semantic vectorized floor plan, which is automatically created from a

BIM model. Link to the repository.

- BIMCaP considers only reliable selected semantic landmarks (such as floor,

walls, columns, and ceiling) for drift correction while disregarding other ele-

ments (such as clutter, windows, and doors). This filtering process enables a

reliable registration that is even robust to large levels of Scan-Map deviations.

- The technique was evaluated using the open-access ConSLAM dataset, en-

suring reproducibility and benchmarking by comparing it against a SOTA

method.

- BIMCaP was compared against the SOTA FACaP method (Sokolova et al.,

2022) in several experiments, demonstrating an improvement of 4 cm in trans-

lational error.

7Here, there is another dataset with more classes; however, only 88 labeled images. These labels
were not used since they have proved to be excessive and imbalanced. Nonetheless, they could be further
expanded: Link to dataset

8For a comprehensive list of all open contributions, refer to Section 1.14.
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6.5.2 Limitations

This chapter demonstrated substantial progress and key contributions; however, it is also

crucial to acknowledge the limitations of the proposed methodologies:

L 3.1 Limitations of the global registration method:

- The cross-global registration method demonstrated effective results for initial

rough alignment in the conducted experiments. However, it is dependent on

the point cloud being enriched with semantic information, which may not

always be readily obtainable. Another significant limitation arises if the point

cloud contains a high percentage of drift, as the method assumes minimal drift

for accurate alignment.

- The method’s performance is highly sensitive to the chosen parameters. In-

correct parameter selection can lead to suboptimal results, necessitating a

thorough parameter study to identify the optimal values (e.g., grid size) for

generalizing the algorithm. Currently, the algorithm’s efficacy is constrained

by the specific dimensions and parameters used in the presented experiments.

- The method partially relies on the Manhattan-World assumption, which pos-

tulates that buildings’ primary structures align with orthogonal axes. While

this assumption generally holds, exceptions exist. The method can still func-

tion if the building’s main axis contains a rectangular pattern, even if the

facade is of a different geometry, e.g., circular.

- The translation estimate is derived from the median distances of correct corre-

spondences. This approach may lack robustness, particularly in scenarios with

few structural columns, significant deviations in column positions, or highly

occluded elements. Such situations can undermine the reliability of the trans-

lation estimate, affecting the overall accuracy of the registration. A potential

approach to addressing the problem of occluded and partially scanned ele-

ments could involve neural point cloud completion (such as proposed by Zhou

et al. (2022) or by P. Cai et al. (2024)). By completing elements such as walls

and columns, registration could be improved by using only their centroids.

L 3.2 BIMCaP limitations:
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- While all the main processes of the framework, such as BA for pose refinement

and the creation of a vectorized floor plan from a BIM model or a point cloud,

are fully automated, they must be executed separately. This requires manual

placement of data in a specific order and structure. Integrating these steps into

a unified system would streamline the process and reduce manual intervention.

- Despite the proposed BIMCaP method achieving better results than the

SOTA, the numerical values remain significantly distant from the ground

truth. This discrepancy is likely due to the limited number of keyframes used

in the optimization process. Utilizing more keyframes would provide addi-

tional features for various terms, including geometric ones, thereby improving

convergence to the correct poses. However, the conducted experiments were

limited to the number of keyframes for which the ground truth positions were

available.

- The dataset used to train the semantic segmentation is relatively small, limit-

ing its generalizability. As a result, the method may not perform well across

all construction sites. A larger dataset, comprising samples from diverse con-

struction sites worldwide, would enhance the method’s applicability and ro-

bustness.

This chapter presented innovative methodologies that advance the field of cross-source

global point cloud registration, sensor pose refinement with a BIM model, and construc-

tion site image semantic segmentation. Despite certain limitations—such as sensitivity

to specific parameters, limited generalizability of semantic segmentation, and a notable

disparity between optimized poses and ground truth—the proposed methods represent

significant progress in addressing the primary challenge of aligning real-world data, char-

acterized by clutter and small SLAM drift, with a BIM model or reference map. These

contributions offer important insights and lay a foundation for further research and devel-

opment in this domain.
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Chapter 7

Conclusions and Further Development

This dissertation addressed the challenging problem of developing comprehensive methods

for long-term localization and mapping that leverage LiDAR, IMU, and camera sensors

and that utilize reference 3D BIM models or point clouds for alignment and correction

of the sensor poses. This dissertation has a particular focus on correcting drifted data

acquired in changing and cluttered environments.

This chapter restates the three main research questions (elaborated in Chapter 1) and an-

swers them, thereby providing a comprehensive overview of the research. Simultaneously,

it provides a summary of the contributions, underscoring the breadth and depth of the

work undertaken in this dissertation.

Subsequently, this chapter presents recommendations for future work that could be inves-

tigated to enhance map-based long-term localization and mapping methodologies.

7.1 Conclusions on the Map-based Long-term Localization

and Mapping Techniques

This section presents a summarized answer to the main research questions, drawing the

main findings and conclusions of this dissertation. At the end of this section, an overall

conclusion statement that synthesizes and underscores the importance of this research and

its implications is provided.

RQ 1. How can 3D BIM models be leveraged for real-time 2D LiDAR and

image localization systems?

In Chapter 4, it was demonstrated the feasibility of generating Occupancy Grid Maps

(OGMs) from BIM models and converting these OGMs into Pose Graph-based Maps

(PGBMs). This conversion enhances pose tracking accuracy in environments character-
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ized by significant deviations between the real world and the reference map (Scan-Map

deviations). The proposed method holds substantial promise for mobile robot developers

using cost-effective 2D LiDAR sensors and operating in dynamic and changing environ-

ments. It facilitates the transition from traditional Particle Filter (PF) algorithms (such

as AMCL or GMCL) to advancedGraph-based Localization (GBL) methods (such as

Cartographer or SLAM Toolbox), thereby ensuring more precise pose tracking of the

mobile platform, even in the presence of clutter or environmental changes. Additionally,

a thorough comparison of SOTA algorithms for pose tracking and global localization

tasks was provided.

Moreover, a method aimed at achieving rapid camera pose tracking with a reference 3D

model was introduced. This method leverages Vanishing Points (VPs) and Vanishing

Lines (VLs) extracted from real-world images and BIM-simulated views to correct cam-

era poses effectively. Real-time camera pose tracking can be particularly useful for mixed

and virtual reality applications, in which precise alignment between the virtual content

and the real world is crucial. An enhanced pose tracking ensures seamless integration of

virtual elements with the physical environment, thereby improving user immersion and

interaction.

Additionally, accurate camera or LiDAR pose estimation is crucial for mapping using

autonomous mobile systems. Knowledge of the sensor’s exact position and orientation

enables the creation of precise and reliable maps, which are essential for navigating and

interacting effectively in dynamic environments.

While the methods presented in Chapter 4 are designed for real-time pose estimation,

based on the quantitative results, it is evident that these time constraints compromise

the accuracy of the tracked pose. Therefore, in line with the motivations and objectives

outlined in Chapter 1, the subsequent chapters prioritize developing a highly accurate,

updated, and aligned map, emphasizing precision over real-time performance.

RQ 2. How can reference 3D BIM models or point clouds be utilized for align-

ment and correction of session data from 3D LiDAR and IMU measure-

ments?

Considering the limitations of real-time systems, Chapter 5 presents major advancements

in generating aligned, updated 3D maps of environments using even heavily drifted

session data obtained from SLAM or LiDAR-inertial odometry algorithms. The method,
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named SLAM2REF, integrates innovative place recognition descriptors and registration

algorithms. This comprehensive approach also identifies both positive and negative

changes in the environment.

The approach first transforms reference maps into session data, i.e., single sequential

LiDAR scans with known positions. Extracted feature descriptors from these scans,

specifically the proposed Indoor Scan Context Descriptor (ISCD), which enables the

usage of place recognition algorithms to quickly achieve a first alignment of the real-

world data and the reference map. Subsequently, the alignment is refined with K-nearest

neighbors (KNN) loop detection and a final Iterative Closest Point (ICP) registration

with dense target point clouds from the reference map.

SLAM2REF represents a particularly important contribution for SLAM, localization,

and pose estimation researchers, enabling them to calculate reliable ground truth poses

of self-captured data given a reference map without the need for expensive sensors or

specialized indoor setups for accurate pose tracking, as elaborated more in detail in Chap-

ter 1. Moreover, the method could also be leveraged by surveyor practitioners (e.g., in

construction sites or emergencies) to align and correct drifted maps with prior reference

maps, being able to detect changes and create a comprehensive updated representation

of the environment.

However, the proposed method has several limitations, including a comparatively small

accepted level of Scan-Map deviations to establish correct correspondences for the initial

alignment and constraints related to the FoV of the sensor measurements, requiring not

less than 360-degree 3D LiDAR measurements.

In the subsequent chapter, these limitations were addressed by incorporating camera

data, extracting semantics from real-world data, and applying a bundle adjustment

algorithm to improve sensor poses derived from restricted FoV measurements.

RQ 3. How can semantics and LiDAR-camera fusion be utilized to create a

robust alignment and correction method of SLAM-acquired real-world 3D

data with a BIM model or a semantic 3D map?

Chapter 6 introduces novel methodologies for seamlessly registering point clouds from di-

verse sources, overcoming the challenge of aligning noise and slightly drifted real-world

data with a BIM model or reference semantically enriched map. The proposed regis-
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tration methodologies effectively simplify the alignment process, assuming Manhattan

World and only a small percentage of drift in the acquired map. Moreover, semantic

landmarks were leveraged, in particular columns and walls, to reliably align the point

clouds, avoiding wrong alignments because of false positive correspondences with clutter

or dynamic elements.

To refine the sensor poses after global registration, BIMCaP was proposed. BIMCaP

not only shows superior performance than a SOTA algorithm in sensor pose refinement

but also shows how it is possible to fuse sparse LiDAR scans with camera images using

a combination of classical and neural depth completion methods. Moreover, a method

was proposed to create vectorized semantic floor plans from BIM models or semantically

enriched 3D maps, simplifying the geometric and semantic information available in the

model.

Another important contribution in Chapter 6 represents the data and models that enable

semantic segmentation on images of real-world indoor construction sites. By pre-training

an object detection algorithm with the created labeled data and leveraging a SOTA

segmentation algorithm, it is possible to detect permanent elements in the construction

site (such as walls and columns), which, as stated before, represent critical elements not

only for cross-source global registration but also for sensor pose refinement.

7.2 Contributions to the Field

The following list summarizes the main contributions of this dissertation to the field of

map-based long-term localization and mapping.

- Developed a novel methodology for transforming 2D Occupancy Grid Maps (OGMs)

into Pose Graph-based Maps (PGBMs), called OGM2PGBM.

- Conducted comprehensive evaluations of SOTA 2D LiDAR localization algorithms.

- Developed automated methods for generating accurate OGMs and 3D session data

from large-scale BIM models and point clouds.

- Introduced Indoor Scan Context (ISC) and YawICP for fast indoor place recognition

and point cloud registration.
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- Introduced SLAM2REF, a holistic multi-session anchoring system for aligning and

correcting drifted sensor poses using 3D BIM models or point clouds, achieving high

reliability and accuracy.

- Developed methods for analyzing and detecting changes in aligned 3D data.

- Leveraged principal normal direction count and feature matching for cross-source

global point cloud registration using semantic landmarks.

- Proposed BIMCaP framework for aligning and correcting sensor measurements with

BIM models using reliable semantically filtered landmarks and also advancing se-

mantic segmentation on images of construction sites.

- The majority of the proposed methods were evaluated using open-access datasets and

have been made open-source to ensure reproducibility and facilitate benchmarking.

This initiative aims to contribute to the rapid advancement of more effective and

resilient methodologies by future researchers. For a comprehensive list of all open-

source contributions, refer to Section 1.14.

7.3 Practical Implications

The following list highlights the key practical implications of the developed methods for

researchers and practitioners in the mapping and autonomous navigation industry.

- Researchers will be less limited while obtaining accurate ground truth poses for the

evaluation ofSLAM or localization algorithms, not depending on highly cost sensors

or specialized indoor setups for pose tracking.

- People working in the survey industry might be able to correct wrongly scanned re-

gions with the help of a reference 3D map and the proposed SLAM2REF framework.

- Developers and users working with autonomous mobile vehicles and 3D LiDARs

might leverage the proposed Indoor Scan Context Descriptor (ISCD) for fast place

recognition within 3D reference maps, and those working with 2D LiDARs might

benefit from a robust real-time pose tracking algorithm for which the proposed

OGM2PGBM pipeline can be of great use.

157



- With the help of the created labeled dataset and segmentation methods, future

researchers on autonomous mobile systems on construction sites might benefit in

terms of semantic segmentation on real-world images of indoor construction sites,

for which currently there is a very scarce amount of open-access data.

- With the provided open-access datasets and open-access alignment methods, it is

hoped that a more automated, efficient, high-quality, and less human-risky construc-

tion process will be achieved.

- Similarly, first responders might find it very helpful to have clearly visible 3D infor-

mation of the incident area aligned and corrected with a reference map for them to

rescue victims effectively, avoiding dangerous areas and not putting themselves into

high-risk situations.

- The proposed innovative handheld mapping and mounting systems (M. A. Vega-

Torres & Borrmann, 2024; M. A. Vega-Torres & Pfitzner, 2023), specifically devel-

oped for the Go1 robot but adaptable to any robot with a flat surface, are designed

to serve as comprehensive tools or guides for future researchers. These systems

aim to facilitate the development of cost-effective and robust mobile mapping and

autonomous robotic systems, thereby accelerating advancements in this field. For

additional details, please refer to Appendix B.

- The comparison of available legged robots, detailed in Appendix B, can help possible

future users make informed decisions when considering the purchase of one of these

systems.

- In the field of Mixed and AR, the proposed advancements in precise sensor pose

correction and robust localization can significantly enhance the accuracy and relia-

bility of AR experiences. By aligning real-world data with virtual elements using the

proposed SLAM2REF or BIMCaP methods, developers can create more immersive

and contextually accurate AR applications. This can be particularly beneficial in

sectors such as architecture, construction, and maintenance, where precise overlay

of digital information on physical environments is crucial.

- Another significant practical implication lies in mobile robotics within the retail

industry, where there is a constant need for periodic map updates and robustness to
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environmental changes. Using the proposed BIMCaP framework, these systems can

align their data exclusively with permanent elements of the reference map (such as

columns, walls, floors, and ceilings). This capability enables the creation of accurate,

updated maps and the precise detection of changes. Consequently, this will lead to

improved inventory management and more efficient operations within retail stores.

This dissertation has advanced the field of map-based long-term localization and map-

ping by addressing critical challenges and providing innovative solutions. By leveraging

3D BIM models and point clouds, developing new methodologies for pose refinement and

alignment, and integrating semantic data and camera information, it was demonstrated

that it is possible to significantly improve the accuracy of maps acquired with SLAM sys-

tems in changing environments. Our contributions, including the SLAM2REF and BIM-

CaP frameworks, demonstrate significant potential for real-world applications in mapping

challenging environments, such as construction sites.

Moreover, this research underscores the importance of combining traditional techniques

with modern deep-learning-based algorithms to enhance landmark filtering, depth com-

pletion, and map alignment. These advancements not only provide valuable insights for

researchers but also offer practical tools for industry practitioners, enabling more precise

and reliable mapping in various contexts.

The implications of this work extend beyond the immediate scope of this dissertation,

paving the way for future developments in collaborative robot mapping, robust pose track-

ing, and efficient construction site management. By making the created datasets and

algorithms available as open-source resources, the goal is to foster further innovation and

facilitate the adoption of the proposed methods in diverse applications.

In summary, this research lays a solid foundation for ongoing advancements in the field,

highlighting the transformative potential of integrating BIM models, point clouds, seman-

tic data, and cutting-edge algorithms for improved localization and mapping in complex

and changing environments.
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7.4 Limitations and Recommendations on Future Directions

This section outlines the primary limitations of the current work and offers recommenda-

tions for future research to enhance the proposed solutions and facilitate their practical

application. It is divided into six key points addressing the extension of these solutions.

Although some recommendations for future studies are provided throughout the chapters,

this section presents a comprehensive overview.

- The transformation of 2D OGMs to PGBMs requires substantial computational re-

sources and expertise, making it unsuitable for real-time applications and large-scale

maps. In this regard, a Docker to make the implementation on other machines much

easier was provided. However, the computational time could potentially be increased

by selecting only certain key positions to simulate the scans. A more sophisticated

process would be to avoid running the trajectory builders of graph-based SLAM algo-

rithms to create the respective PGBMs and instead create these maps directly while

the data is being simulated. The difficulty here is that every algorithm has its way

of serializing PGBMs, so each of them would require a different implementation.

- The developed image localization pipeline is highly dependent on environmental con-

ditions, requiring a low level of Scan-Map deviations to accurately match vanishing

points and vertical lines. These dependencies limit its applicability in dynamic or

cluttered environments. For such environments, using neural algorithms for room

layout detection can be of utility; however, with the limitation of working only on

Manhattan-World environments.

- In terms of landmark extraction for registrations, identifying accurate correspon-

dences in environments with Scan-Map deviations is challenging. The proposed

SLAM2REF method relies on scans from locations with minimal deviations to en-

sure place recognition and alignment with features from the BIM model. Addition-

ally, retrieving highly accurate 6-DoF poses for all keyframe scans is difficult due

to sensor noise, undistortion inaccuracies, and the presence of Scan-Map deviations.

One potential solution to this issue is to use point cloud semantic segmentation algo-

rithms for individual 3D LiDAR scans. However, most existing methods have been

designed for outdoor environments. To adapt these algorithms for indoor construc-
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tion settings, labeled datasets specific to indoor construction environments would be

necessary.

- Extending the efficiency and robustness of the SLAM2REF method towards a real-

time framework represents a promising direction for various tasks, including collab-

orative robot mapping and localization (Cramariuc et al., 2022; Lajoie & Beltrame,

2024), such as to be able to solve the kidnapping robot problem in indoor environ-

ments with the proposed Indoor Scan Context Descriptor (ISCD). Also, an essential

aspect of achieving more robust alignment involves leveraging deep-learning-based

place recognition algorithms, which are anticipated to become progressively reliable

for indoor scenarios with sufficient training data in the future.

- The cross-source global registration method, while effective for initial rough align-

ment, depends on semantically enriched point clouds, which may not always be

available. High drift in point clouds can also limit the effectiveness of the method.

Furthermore, the method assumes a Manhattan-World geometry, which may not

hold in all scenarios. Translation estimates based on median distances may lack

robustness in certain situations, e.g., in scenarios with few structural columns or

highly occluded elements, affecting registration accuracy. A possible technique that

can support tackling the issue of occluded and partially scanned elements might in-

volve neural point cloud completion. Complete elements (such as walls and columns)

would allow a better registration using only their centroids.

- The BIMCaP framework, although achieving better results than SOTA methods, still

requires the manual execution of separate processes, limiting automation. Moreover,

numerical results remain distant from the ground truth, most likely due to the limited

number of keyframes used in optimization. Additionally, the dataset used for training

the semantic segmentation method is relatively small, restricting generalizability. A

larger, more diverse dataset would enhance the method’s robustness and applicability

across different construction sites.

161



162



Literaturverzeichnis

Abaspur Kazerouni, I., Fitzgerald, L., Dooly, G., & Toal, D. (2022). A survey of state-

of-the-art on visual slam. Expert Systems with Applications, 205, 117734. https:

//doi.org/https://doi.org/10.1016/j.eswa.2022.117734

Acharya, D., Khoshelham, K., & Winter, S. (2019). BIM-posenet: Indoor camera locali-

sation using a 3D indoor model and deep learning from synthetic images. ISPRS

Journal of Photogrammetry and Remote Sensing, 150, 245–258. https://doi.org/

10.1016/j.isprsjprs.2019.02.020

Acharya, D., Tennakoon, R., Muthu, S., Khoshelham, K., Hoseinnezhad, R., & Bab-

Hadiashar, A. (2022). Single-image localisation using 3D models: Combining hier-

archical edge maps and semantic segmentation for domain adaptation. Automation

in Construction, 136, 104152. https://doi.org/10.1016/j.autcon.2022.104152

Agostinho, L. R., Ricardo, N. M., Pereira, M. I., Hiolle, A., & Pinto, A. M. (2022). A

Practical Survey on Visual Odometry for Autonomous Driving in Challenging Sce-

narios and Conditions. IEEE Access, 10, 72182–72205. https://doi.org/10.1109/

ACCESS.2022.3188990

Alliez, P., Bonardi, F., Bouchafa, S., Didier, J.-Y., Hadj-Abdelkader, H., Muñoz, F. I.,

Kachurka, V., Rault, B., Robin, M., & Roussel, D. (2020). Real-time multi-

SLAM system for agent localization and 3D mapping in dynamic scenarios. 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

4894–4900.

Alshikh Khalil, M. A., & Hatem, I. (2021). GMCL as a proposed replacement to AMCL

in ros for mobile robots localization in known-based 2D environments.

Asadi, K., Ramshankar, H., Noghabaei, M., & Han, K. (2019). Real-time image localization

and registration with BIM using perspective alignment for indoor monitoring of

construction. Journal of Computing in Civil Engineering, 33(5), 04019031. https:

//doi.org/10.1061/(ASCE)CP.1943-5487.0000847

Azzam, R., Taha, T., Huang, S., & Zweiri, Y. (2020). Feature-based visual simultaneous

localization and mapping: A survey. SN Applied Sciences, 2(2). https://doi.org/

10.1007/s42452-020-2001-3

163

https://doi.org/https://doi.org/10.1016/j.eswa.2022.117734
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117734
https://doi.org/10.1016/j.isprsjprs.2019.02.020
https://doi.org/10.1016/j.isprsjprs.2019.02.020
https://doi.org/10.1016/j.autcon.2022.104152
https://doi.org/10.1109/ACCESS.2022.3188990
https://doi.org/10.1109/ACCESS.2022.3188990
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000847
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000847
https://doi.org/10.1007/s42452-020-2001-3
https://doi.org/10.1007/s42452-020-2001-3


Bai, C., Xiao, T., Chen, Y., Wang, H., Zhang, F., & Gao, X. (2022a). Faster-LIO:

Lightweight tightly coupled LiDAR-inertial odometry using parallel sparse incre-

mental voxels. IEEE Robotics and Automation Letters, 7(2), 4861–4868. https :

//doi.org/10.1109/LRA.2022.3152830

Bai, C., Xiao, T., Chen, Y., Wang, H., Zhang, F., & Gao, X. (2022b). Faster-LIO:

Lightweight Tightly Coupled Lidar-Inertial Odometry Using Parallel Sparse In-

cremental Voxels. IEEE Robotics and Automation Letters, 7(2), 4861–4868. https:

//doi.org/10.1109/LRA.2022.3152830

Behley, J., & Stachniss, C. (2018). Efficient surfel-based slam using 3d laser range data in

urban environments. Proc. of Robotics: Science and Systems (RSS).

Besl, P., & McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. https://doi.

org/10.1109/34.121791

Blanco, J. L., & Rai, P. K. (2014). nanoflann: a C++ header-only fork of FLANN, a library

for Nearest Neighbor (NN) wih KD-trees.

Blanco-Claraco, J. L. (2021). A tutorial on SE(3) transformation parameterizations and on-

manifold optimization. CoRR, abs/2103.15980. https://arxiv.org/abs/2103.15980

Blum, H., Milano, F., Zurbrügg, R., Siegwart, R., Cadena, C., & Gawel, A. (2021). Self-

improving semantic perception on a construction robot. CoRR, abs/2105.01595.

https://arxiv.org/abs/2105.01595

Blum, H., Stiefel, J., Cadena, C., Siegwart, R., & Gawel, A. (2020). Precise robot localiza-

tion in architectural 3D plans. arXiv preprint arXiv:2006.05137.

Boche, S., Laina, S. B., & Leutenegger, S. (2024). Tightly-Coupled LiDAR-Visual-Inertial

SLAM and Large-Scale Volumetric Occupancy Mapping. https://arxiv.org/abs/

2403.02280

Boche, S., Zuo, X., Schaefer, S., & Leutenegger, S. (2022). Visual-Inertial SLAM with

Tightly-Coupled Dropout-Tolerant GPS Fusion. 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 7020–7027. https://doi .

org/10.1109/IROS47612.2022.9981134

Boniardi, F., Caselitz, T., Kummerle, R., & Burgard, W. (2017). Robust LiDAR-based

localization in architectural floor plans. 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 3318–3324. https://doi.org/10.1109/

IROS.2017.8206168

164

https://doi.org/10.1109/LRA.2022.3152830
https://doi.org/10.1109/LRA.2022.3152830
https://doi.org/10.1109/LRA.2022.3152830
https://doi.org/10.1109/LRA.2022.3152830
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/34.121791
https://arxiv.org/abs/2103.15980
https://arxiv.org/abs/2105.01595
https://arxiv.org/abs/2403.02280
https://arxiv.org/abs/2403.02280
https://doi.org/10.1109/IROS47612.2022.9981134
https://doi.org/10.1109/IROS47612.2022.9981134
https://doi.org/10.1109/IROS.2017.8206168
https://doi.org/10.1109/IROS.2017.8206168


Boniardi, F., Caselitz, T., Kümmerle, R., & Burgard, W. (2019). A pose graph-based

localization system for long-term navigation in cad floor plans. Robotics and Au-

tonomous Systems, 112, 84–97. https://doi.org/10.1016/j.robot.2018.11.003

Boniardi, F., Valada, A., Mohan, R., Caselitz, T., & Burgard, W. (2019). Robot local-

ization in floor plans using a room layout edge extraction network, 5291–5297.

http://arxiv.org/pdf/1903.01804v2

Borrmann, A., Biswanath, M., Braun, A., Chen, Z., Cremers, D., Heeramaglore, M., Hoeg-

ner, L., Mehranfar, M., Kolbe, T. H., Petzold, F., Rueda, A., Solonets, S., & Zhu,

X. X. (2024). Artificial intelligence for the automated creation of multi-scale dig-

ital twins of the built world—ai4twinning. In T. H. Kolbe, A. Donaubauer, & C.

Beil (Eds.), Recent advances in 3D geoinformation science (pp. 233–247). Springer

Nature Switzerland.

Botín-Sanabria, D. M., Mihaita, A.-S., Peimbert-García, R. E., Ramírez-Moreno, M. A.,

Ramírez-Mendoza, R. A., & Lozoya-Santos, J. d. J. (2022). Digital twin technology

challenges and applications: A comprehensive review. Remote Sensing, 14(6). https:

//doi.org/10.3390/rs14061335

Braun, A., & Borrmann, A. (2019). Combining inverse photogrammetry and BIM for

automated labeling of construction site images for machine learning. Automation

in Construction, 106, 102879. https://doi.org/10.1016/j.autcon.2019.102879

Braun, A., Tuttas, S., Borrmann, A., & Stilla, U. (2020). Improving progress monitor-

ing by fusing point clouds, semantic data and computer vision. Automation in

Construction, 116, 103210. https://doi.org/10.1016/j.autcon.2020.103210

Caballero, F., & Merino, L. (2021). DLL: Direct LiDAR localization. a map-based local-

ization approach for aerial robots. 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 5491–5498.

Cai, D., Li, R., Hu, Z., Lu, J., Li, S., & Zhao, Y. (2024). A comprehensive overview of

core modules in visual SLAM framework. Neurocomputing, 590, 127760. https :

//doi.org/10.1016/j.neucom.2024.127760

Cai, P., Scott, D., Li, X., & Wang, S. (2024). Orthogonal dictionary guided shape com-

pletion network for point cloud. Proceedings of the AAAI Conference on Artificial

Intelligence, 38(2), 864–872. https://doi.org/10.1609/aaai.v38i2.27845

165

https://doi.org/10.1016/j.robot.2018.11.003
http://arxiv.org/pdf/1903.01804v2
https://doi.org/10.3390/rs14061335
https://doi.org/10.3390/rs14061335
https://doi.org/10.1016/j.autcon.2019.102879
https://doi.org/10.1016/j.autcon.2020.103210
https://doi.org/10.1016/j.neucom.2024.127760
https://doi.org/10.1016/j.neucom.2024.127760
https://doi.org/10.1609/aaai.v38i2.27845


Campos, C., Elvira, R., Gomez, J. J., Montiel, J. M. M., & Tardós, J. D. (2021). ORB-

SLAM3: An accurate open-source library for visual, visual-inertial and multi-map

SLAM. IEEE Transactions on Robotics, 37(6), 1874–1890.

Cao, S., Lu, X., & Shen, S. (2021). GVINS: Tightly Coupled GNSS–Visual–Inertial Fusion

for Smooth and Consistent State Estimation. IEEE Transactions on Robotics, 38,

2004–2021. https://api.semanticscholar.org/CorpusID:232607229

Chen, K., Nemiroff, R., & Lopez, B. T. (2023a). Direct LiDAR-Inertial Odometry and

Mapping: Perceptive and Connective SLAM. https://arxiv.org/abs/2305.01843

Chen, K., Nemiroff, R., & Lopez, B. T. (2023b). Direct LiDAR-inertial odometry:

Lightweight LIO with continuous-time motion correction. 2023 IEEE International

Conference on Robotics and Automation (ICRA), 3983–3989.

Chen, X., Li, S., Mersch, B., Wiesmann, L., Gall, J., Behley, J., & Stachniss, C. (2021).

Moving Object Segmentation in 3D LiDAR Data: A Learning-Based Approach

Exploiting Sequential Data. IEEE Robotics and Automation Letters, 6(4), 6529–

6536. https://doi.org/10.1109/LRA.2021.3093567

Chen, X., Milioto, A., Palazzolo, E., Giguère, P., Behley, J., & Stachniss, C. (2019).

SuMa++: Efficient LiDAR-based Semantic SLAM. 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 4530–4537. https://doi.org/

10.1109/IROS40897.2019.8967704

Chen, Z., Xu, Y., Yuan, S., & Xie, L. (2024). iG-LIO: An incremental GICP-based tightly-

coupled LiDAR-inertial odometry. IEEE Robotics and Automation Letters, 1–8.

https://doi.org/10.1109/LRA.2024.3349915

Cioffi, G., & Scaramuzza, D. (2020). Tightly-coupled Fusion of Global Positional Measure-

ments in Optimization-based Visual-Inertial Odometry. 2020 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 5089–5095. https:

//api.semanticscholar.org/CorpusID:212633981

Collins, F., Pfitzner, F., & Schlenger, J. (2022). Scalable construction monitoring for an

as-performed progress documentation across time. Proceedings of 33. Forum Bauin-

formatik.

Cramariuc, A., Bernreiter, L., Tschopp, F., Fehr, M., Reijgwart, V., Nieto, J., Siegwart, R.,

& Cadena, C. (2022). Maplab 2.0–a modular and multi-modal mapping framework.

IEEE Robotics and Automation Letters.

166

https://api.semanticscholar.org/CorpusID:232607229
https://arxiv.org/abs/2305.01843
https://doi.org/10.1109/LRA.2021.3093567
https://doi.org/10.1109/IROS40897.2019.8967704
https://doi.org/10.1109/IROS40897.2019.8967704
https://doi.org/10.1109/LRA.2024.3349915
https://api.semanticscholar.org/CorpusID:212633981
https://api.semanticscholar.org/CorpusID:212633981


CVAT.ai Corporation. (2023, November). Computer Vision Annotation Tool (CVAT) [MIT

License].

Cvišić, I., Marković, I., & Petrović, I. (2022). Soft2: Stereo visual odometry for road

vehicles based on a point-to-epipolar-line metric. IEEE Transactions on Robotics,

39(1), 273–288.

D. Caruso, J. Engel, & D. Cremers. (2015). Large-scale direct SLAM for omnidirectional

cameras. International Conference on Intelligent Robots and Systems (IROS).

Dantas, R., Peter, S., Wang, X., Vega-Torres, M. A., & Dugstad, A. (2022). Towards Real-

time Image Localization with BIM models. In Proceedings of 33. forum bauinfor-

matik.

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-Time

Single Camera SLAM. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 29(6), 1052–1067. https://doi.org/10.1109/TPAMI.2007.1049

Dellaert, F. (2021). Factor graphs: Exploiting structure in robotics. Annual Review of

Control, Robotics, and Autonomous Systems, 4, 141–166.

Dellaert, F., Kaess, M., et al. (2017). Factor graphs for robot perception. Foundations and

Trends in Robotics, 6(1-2), 1–139.

Dellenbach, P., Deschaud, J.-E., Jacquet, B., & Goulette, F. (2022). CT-ICP: Real-

time Elastic LiDAR Odometry with Loop Closure. 2022 International Confer-

ence on Robotics and Automation (ICRA), 5580–5586. https://doi.org/10.1109/

ICRA46639.2022.9811849

Dugstad, A., Dubey, R., Abualdenien, J., & Borrmann, A. (2022). BIM-based disaster

response: Facilitating indoor path planning for various agents. Proc. of European

Conference on Product and Process Modeling 2022, 265–289.

Engel, J., Schöps, T., & Cremers, D. (2014). Lsd-slam: Large-scale direct monocular slam.

In Lecture notes in computer science (pp. 834–849). Springer International Pub-

lishing. https://doi.org/10.1007/978-3-319-10605-2_54

Ercan, S., Blum, H., Gawel, A., Siegwart, R., Gramazio, F., & Kohler, M. (2020). Online

synchronization of building model for on-site mobile robotic construction. 37th

International Symposium on Automation and Robotics in Construction (ISARC

2020)(virtual), 1508–1514.

Feng, H., Chen, Q., & Garcia de Soto, B. (2021). Application of digital twin technologies

in construction: An overview of opportunities and challenges. Proceedings of the

167

https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/ICRA46639.2022.9811849
https://doi.org/10.1109/ICRA46639.2022.9811849
https://doi.org/10.1007/978-3-319-10605-2_54


International Symposium on Automation and Robotics in Construction (IAARC).

https://doi.org/10.22260/isarc2021/0132

Follini, C., Magnago, V., Freitag, K., Terzer, M., Marcher, C., Riedl, M., Giusti, A., &

Matt, D. T. (2020). BIM-integrated collaborative robotics for application in build-

ing construction and maintenance. Robotics, 10(1), 2. https://doi.org/10.3390/

robotics10010002

Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2016). On-manifold preintegration

for real-time visual–inertial odometry. IEEE Transactions on Robotics, 33(1), 1–

21.

Forster, C., Zhang, Z., Gassner, M., Werlberger, M., & Scaramuzza, D. (2017). SVO:

Semidirect Visual Odometry for Monocular and Multicamera Systems. IEEE

Transactions on Robotics, 33(2), 249–265. https://doi.org/10.1109/TRO.2016.

2623335

Fox, D., Burgard, W., Dellaert, F., & Thrun, S. (1999). Monte Carlo Localization: efficient

position estimation for mobile robots. Proceedings of the National Conference on

Artificial Intelligence, (Handschin 1970), 343–349.

Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leutenegger,

S., Davison, A. J., Conradt, J., Daniilidis, K., & Scaramuzza, D. (2022). Event-

Based Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 44(1), 154–180. https://doi.org/10.1109/TPAMI.2020.3008413

Gawel, A., Blum, H., Pankert, J., Krämer, K., Bartolomei, L., Ercan, S., Farshidian, F.,

Chli, M., Gramazio, F., Siegwart, R., et al. (2019). A fully-integrated sensing

and control system for high-accuracy mobile robotic building construction. 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2300–2307.

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI

dataset. International Journal of Robotics Research (IJRR).

Gladkova, M., Korobov, N., Demmel, N., Ošep, A., Leal-Taixé, L., & Cremers, D. (2022).

Directtracker: 3D multi-object tracking using direct image alignment and pho-

tometric bundle adjustment. International Conference on Intelligent Robots and

Systems (IROS).

168

https://doi.org/10.22260/isarc2021/0132
https://doi.org/10.3390/robotics10010002
https://doi.org/10.3390/robotics10010002
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/TPAMI.2020.3008413


Gopee, M. A., Prieto, S. A., & García de Soto, B. (2023). Improving autonomous robotic

navigation using ifc files. Construction Robotics, 7(3–4), 235–251. https://doi.org/

10.1007/s41693-023-00112-8

Gopee, M. A., Prieto, S. A., & García de Soto, B. (2022). Ifc-based generation of semantic

obstacle maps for autonomous robotic systems. Computing in Construction. https:

//doi.org/10.35490/ec3.2022.161

Grisetti, G., Kümmerle, R., Stachniss, C., & Burgard, W. (2010). A Tutorial on Graph-

Based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31–43.

https://doi.org/10.1109/MITS.2010.939925

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved Techniques for Grid Mapping

With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics, 23(1),

34–46. https://doi.org/10.1109/TRO.2006.889486

Grupp, M. (2017a). Evo: Python package for the evaluation of odometry and SLAM.

https://github.com/MichaelGrupp/evo

Grupp, M. (2017b). Evo: Python package for the evaluation of odometry and SLAM.

Gschwandtner, M. (2013). Support framework for obstacle detection on autonomous trains

[Doctoral dissertation, Department of Computer Sciences, University of Salzburg].

Gschwandtner, M., Kwitt, R., Uhl, A., & Pree, W. (2011). Blensor: Blender sensor simula-

tion toolbox. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam,

B. Benes, K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, & J. Ming (Eds.), Advances

in visual computing (pp. 199–208). Springer Berlin Heidelberg.

Gutmann, J.-S., & Schlegel, C. (1996). AMOS: comparison of scan matching approaches

for self-localization in indoor environments. Proceedings of the First Euromicro

Workshop on Advanced Mobile Robots (EUROBOT ’96), 61–67. https://doi.org/

10.1109/EURBOT.1996.551882

Halder, S., & Afsari, K. (2023). Robots in inspection and monitoring of buildings and

infrastructure: a systematic review. Applied Sciences, 13(4), 2304.

Haque, A., Elsaharti, A., Elderini, T., Elsaharty, M. A., & Neubert, J. (2020). UAV au-

tonomous localization using macro-features matching with a cad model. Sensors

(Basel, Switzerland), 20(3). https://doi.org/10.3390/s20030743

He, G., Zhang, F., Li, X., & Shang, W. (2021). Robust mapping and localization in

offline 3D point cloud maps. 2021 6th IEEE International Conference on Ad-

169

https://doi.org/10.1007/s41693-023-00112-8
https://doi.org/10.1007/s41693-023-00112-8
https://doi.org/10.35490/ec3.2022.161
https://doi.org/10.35490/ec3.2022.161
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/TRO.2006.889486
https://github.com/MichaelGrupp/evo
https://doi.org/10.1109/EURBOT.1996.551882
https://doi.org/10.1109/EURBOT.1996.551882
https://doi.org/10.3390/s20030743


vanced Robotics and Mechatronics (ICARM), 765–770. https://doi.org/10.1109/

ICARM52023.2021.9536181

Hedau, V., Hoiem, D., & Forsyth, D. (2010). Thinking inside the box: Using appearance

models and context based on room geometry. European Conference on Computer

Vision, 224–237.

Hendrikx, R. W. M., Pauwels, P., Torta, E., Bruyninckx, H. J., & van de Molengraft,

M. J. G. (2021). Connecting semantic building information models and robotics: An

application to 2D LiDAR-based localization. 2021 IEEE International Conference

on Robotics and Automation (ICRA), 11654–11660. https ://doi .org/10 .1109/

ICRA48506.2021.9561129

Hendrikx, R., Bruyninckx, H., Elfring, J., & Van De Molengraft, M. (2022). Local-to-global

hypotheses for robust robot localization. Frontiers in Robotics and AI, 171.

Henning, D. F., Laidlow, T., & Leutenegger, S. (2022). Bodyslam: Joint camera localisa-

tion, mapping, and human motion tracking. In S. Avidan, G. Brostow, M. Cissé,

G. M. Farinella, & T. Hassner (Eds.), Computer vision – eccv 2022 (pp. 656–673).

Springer Nature Switzerland.

Hess, W., Kohler, D., Rapp, H., & Andor, D. (2016). Real-time loop closure in 2D LiDAR

SLAM. 2016 IEEE International Conference on Robotics and Automation (ICRA),

1271–1278. https://doi.org/10.1109/ICRA.2016.7487258

Hofstadler, C. (2007). Bauablaufplanung und Logistik im Baubetrieb. Springer.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap:

An efficient probabilistic 3D mapping framework based on octrees. Autonomous

robots, 34, 189–206.

Huang, L. (2021). Review on LiDAR-based SLAM Techniques. 2021 International Confer-

ence on Signal Processing and Machine Learning (CONF-SPML), 163–168. https:

//doi.org/10.1109/CONF-SPML54095.2021.00040

IfcOpenShell Contributors. (2023a). Ifcconvert documentation [URL: https://blenderbim.

org/docs-python/ifcconvert/usage.html]. https://blenderbim.org/docs-python/

ifcconvert/usage.html

IfcOpenShell Contributors. (2023b). Ifcconvert: An application for converting IFC geome-

try into several file formats [URL: https://ifcopenshell.sourceforge.net/ifcconvert.

html]. https://ifcopenshell.sourceforge.net/ifcconvert.html

170

https://doi.org/10.1109/ICARM52023.2021.9536181
https://doi.org/10.1109/ICARM52023.2021.9536181
https://doi.org/10.1109/ICRA48506.2021.9561129
https://doi.org/10.1109/ICRA48506.2021.9561129
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/CONF-SPML54095.2021.00040
https://doi.org/10.1109/CONF-SPML54095.2021.00040
https://blenderbim.org/docs-python/ifcconvert/usage.html
https://blenderbim.org/docs-python/ifcconvert/usage.html
https://blenderbim.org/docs-python/ifcconvert/usage.html
https://blenderbim.org/docs-python/ifcconvert/usage.html
https://ifcopenshell.sourceforge.net/ifcconvert.html
https://ifcopenshell.sourceforge.net/ifcconvert.html
https://ifcopenshell.sourceforge.net/ifcconvert.html


Jia, G., Li, X., Zhang, D., Xu, W., Lv, H., Shi, Y., & Cai, M. (2022). Visual-SLAM

classical framework and key techniques: A review. Sensors, 22(12). https://doi.

org/10.3390/s22124582

Jurić, A., Kendeš, F., Marković, I., & Petrović, I. (2021). A comparison of graph optimiza-

tion approaches for pose estimation in SLAM. 2021 44th International Convention

on Information, Communication and Electronic Technology (MIPRO), 1113–1118.

https://doi.org/10.23919/MIPRO52101.2021.9596721

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012).

iSAM2: Incremental smoothing and mapping using the bayes tree. The Interna-

tional Journal of Robotics Research, 31(2), 216–235.

Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental Smoothing and

Mapping. IEEE Transactions on Robotics, 24(6), 1365–1378. https://doi.org/10.

1109/TRO.2008.2006706

Karimi, S., Braga, R. G., Iordanova, I., & St-Onge, D. (2021). Semantic navigation using

building information on construction sites. http://arxiv.org/pdf/2104.10296v1

Karimi, S., Iordanova, I., & St-Onge, D. (2020). An ontology-based approach to data

exchanges for robot navigation on construction sites. Journal of Information Tech-

nology in Construction.

Kayhani, N., Schoellig, A., & McCabe, B. (2023). Perception-aware tag placement planning

for robust localization of UAVs in indoor construction environments [Cited by: 1;

All Open Access, Green Open Access]. Journal of Computing in Civil Engineering,

37(2). https://doi.org/10.1061/JCCEE5.CPENG-5068

Kayhani, N., Zhao, W., McCabe, B., & Schoellig, A. P. (2022). Tag-based visual-inertial

localization of unmanned aerial vehicles in indoor construction environments using

an on-manifold extended kalman filter. Automation in Construction, 135, 104112.

https://doi.org/https://doi.org/10.1016/j.autcon.2021.104112

Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., & Teller, S. (2010).

Multiple relative pose graphs for robust cooperative mapping. 2010 IEEE Interna-

tional Conference on Robotics and Automation, 3185–3192.

Kim, G., Choi, S., & Kim, A. (2021). Scan context++: Structural place recognition robust

to rotation and lateral variations in urban environments. IEEE Transactions on

Robotics, 38(3), 1856–1874.

171

https://doi.org/10.3390/s22124582
https://doi.org/10.3390/s22124582
https://doi.org/10.23919/MIPRO52101.2021.9596721
https://doi.org/10.1109/TRO.2008.2006706
https://doi.org/10.1109/TRO.2008.2006706
http://arxiv.org/pdf/2104.10296v1
https://doi.org/10.1061/JCCEE5.CPENG-5068
https://doi.org/https://doi.org/10.1016/j.autcon.2021.104112


Kim, G., & Kim, A. (2018). Scan context: Egocentric spatial descriptor for place recog-

nition within 3D point cloud map. 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 4802–4809.

Kim, G., & Kim, A. (2022). LT-mapper: A modular framework for LiDAR-based lifelong

mapping. 2022 International Conference on Robotics and Automation (ICRA),

7995–8002.

Kim, G., Yun, S., Kim, J., & Kim, A. (2022). SC-LiDAR-SLAM: A front-end agnostic ver-

satile LiDAR SLAM system. 2022 International Conference on Electronics, Infor-

mation, and Communication (ICEIC), 1–6. https://doi.org/10.1109/ICEIC54506.

2022.9748644

Kim, J., Chung, D., Kim, Y., & Kim, H. (2022). Deep learning-based 3D reconstruction

of scaffolds using a robot dog. Automation in Construction, 134, 104092.

Kim, K., & Peavy, M. (2022). BIM-based semantic building world modeling for robot task

planning and execution in built environments. Automation in Construction, 138,

104247. https://doi.org/10.1016/j.autcon.2022.104247

Kim, S., Peavy, M., Huang, P.-C., & Kim, K. (2021). Development of BIM-integrated con-

struction robot task planning and simulation system. Automation in Construction,

127, 103720. https://doi.org/10.1016/j.autcon.2021.103720

Ko, P., Prieto, S. A., & García de Soto, B. (2021). Abecis: An automated building exterior

crack inspection system using uavs, open-source deep learning and photogramme-

try. Proceedings of the International Symposium on Automation and Robotics in

Construction (IAARC). https://doi.org/10.22260/isarc2021/0086

Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source

multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), 3, 2149–2154.

Koide, K., Miura, J., & Menegatti, E. (2019). A portable three-dimensional LiDAR-based

system for long-term and wide-area people behavior measurement. International

Journal of Advanced Robotic Systems, 16(2), 1729881419841532.

Koide, K., Oishi, S., Yokozuka, M., & Banno, A. (2022). Scalable fiducial tag localization on

a 3D prior map via graph-theoretic global tag-map registration. 2022 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 5347–5353.

https://doi.org/10.1109/IROS47612.2022.9981079

172

https://doi.org/10.1109/ICEIC54506.2022.9748644
https://doi.org/10.1109/ICEIC54506.2022.9748644
https://doi.org/10.1016/j.autcon.2022.104247
https://doi.org/10.1016/j.autcon.2021.103720
https://doi.org/10.22260/isarc2021/0086
https://doi.org/10.1109/IROS47612.2022.9981079


Konolige, K., Agrawal, M., & Sola, J. (2011). Large-scale visual odometry for rough terrain.

Robotics Research: The 13th International Symposium ISRR, 201–212.

Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B., & Vincent, R.

(2010). Efficient sparse pose adjustment for 2D mapping. 2010 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 22–29. https://doi.org/10.

1109/IROS.2010.5649043

Krijnen, T. (2015). Ifcopenshell. https://github.com/IfcOpenShell/IfcOpenShell

Kropp, C., Koch, C., & König, M. (2018). Interior construction state recognition with 4d

BIM registered image sequences. Automation in Construction, 86, 11–32. https:

//doi.org/10.1016/j.autcon.2017.10.027

Kumar, D., & Muhammad, N. (2023). A Survey on Localization for Autonomous Vehicles.

IEEE Access, 11, 115865–115883. https://doi.org/10.1109/ACCESS.2023.3326069

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). G2o: A

general framework for graph optimization. 2011 IEEE International Conference

on Robotics and Automation, 3607–3613. https://doi.org/10.1109/ICRA.2011.

5979949

Labbé, M., & Michaud, F. (2019). Rtab-map as an open-source LiDAR and visual si-

multaneous localization and mapping library for large-scale and long-term online

operation. Journal of Field Robotics, 36(2), 416–446.

Lai, T. (2022). A Review on Visual-SLAM: Advancements from Geometric Modelling to

Learning-based Semantic Scene Understanding. https://arxiv.org/abs/2209.05222

Laidlow, T., Bloesch, M., Li, W., & Leutenegger, S. (2017). Dense RGB-D-inertial SLAM

with map deformations. 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 6741–6748. https://doi .org/10.1109/IROS.2017.

8206591

Laina, S. B., Boche, S., Papatheodorou, S., Tzoumanikas, D., Schaefer, S., Chen, H., &

Leutenegger, S. (2024). Scalable Autonomous Drone Flight in the Forest with

Visual-Inertial SLAM and Dense Submaps Built without LiDAR. https://arxiv.

org/abs/2403.09596

Lajoie, P.-Y., & Beltrame, G. (2024). Swarm-SLAM: Sparse decentralized collaborative

simultaneous localization and mapping framework for multi-robot systems. IEEE

Robotics and Automation Letters, 9(1), 475–482. https://doi.org/10.1109/lra.2023.

3333742

173

https://doi.org/10.1109/IROS.2010.5649043
https://doi.org/10.1109/IROS.2010.5649043
https://github.com/IfcOpenShell/IfcOpenShell
https://doi.org/10.1016/j.autcon.2017.10.027
https://doi.org/10.1016/j.autcon.2017.10.027
https://doi.org/10.1109/ACCESS.2023.3326069
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1109/ICRA.2011.5979949
https://arxiv.org/abs/2209.05222
https://doi.org/10.1109/IROS.2017.8206591
https://doi.org/10.1109/IROS.2017.8206591
https://arxiv.org/abs/2403.09596
https://arxiv.org/abs/2403.09596
https://doi.org/10.1109/lra.2023.3333742
https://doi.org/10.1109/lra.2023.3333742


Landgraf, Z., Scona, R., Laidlow, T., James, S., Leutenegger, S., & Davison, A. J. (2021).

Simstack: A generative shape and instance model for unordered object stacks. Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),

13012–13022.

Lee, T.-C., Kashyap, R. L., & Chu, C.-N. (1994). Building skeleton models via 3-d medial

surface axis thinning algorithms. CVGIP: Graphical Models and Image Processing,

56(6), 462–478.

Leutenegger, S. (2020). Okvis 2.0 for the fpv drone racing vio competition 2020.

Leutenegger, S. (2022). OKVIS2: Realtime Scalable Visual-Inertial SLAM with Loop Clo-

sure. https://arxiv.org/abs/2202.09199

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2014). Keyframe-based

visual–inertial odometry using nonlinear optimization. The International Journal

of Robotics Research, 34(3), 314–334. https://doi.org/10.1177/0278364914554813

Leutenegger, S., Melzer, A., Alexis, K., & Siegwart, R. (2014). Robust state estimation for

small unmanned airplanes. 2014 IEEE Conference on Control Applications (CCA),

1003–1010. https://doi.org/10.1109/CCA.2014.6981466

Leutenegger, S., & Siegwart, R. Y. (2012). A low-cost and fail-safe Inertial Navigation

System for airplanes. 2012 IEEE International Conference on Robotics and Au-

tomation, 612–618. https://doi.org/10.1109/ICRA.2012.6225061

Li, F., Zhang, H., Liu, S., Guo, J., Ni, L. M., & Zhang, L. (2022). Dn-detr: Accelerate detr

training by introducing query denoising. Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 13619–13627.

Li, H., Chan, G., Wong, J. K. W., & Skitmore, M. (2016). Real-time locating systems

applications in construction. Automation in Construction, 63, 37–47.

Li, L., Kong, X., Zhao, X., Huang, T., Li, W., Wen, F., Zhang, H., & Liu, Y. (2021). SSC:

Semantic scan context for large-scale place recognition. 2021 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2092–2099.

Lin, J., & Zhang, F. (2022). R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-

Visual tightly-coupled state Estimation and mapping package. 2022 International

Conference on Robotics and Automation (ICRA), 10672–10678. https://doi.org/

10.1109/ICRA46639.2022.9811935

174

https://arxiv.org/abs/2202.09199
https://doi.org/10.1177/0278364914554813
https://doi.org/10.1109/CCA.2014.6981466
https://doi.org/10.1109/ICRA.2012.6225061
https://doi.org/10.1109/ICRA46639.2022.9811935
https://doi.org/10.1109/ICRA46639.2022.9811935


Lin, J., Zheng, C., Xu, W., & Zhang, F. (2021). R 2 LIVE: A Robust, Real-Time, LiDAR-

Inertial-Visual Tightly-Coupled State Estimator and Mapping. IEEE Robotics and

Automation Letters, 6(4), 7469–7476. https://doi.org/10.1109/LRA.2021.3095515

Liu, H., Chen, M., Zhang, G., Bao, H., & Bao, Y. (2018). ICE-BA: Incremental, Consis-

tent and Efficient Bundle Adjustment for Visual-Inertial SLAM. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 1974–1982. https://doi.

org/10.1109/CVPR.2018.00211

Liu, J., Gao, W., & Hu, Z. (2020). Optimization-Based Visual-Inertial SLAM Tightly

Coupled with Raw GNSS Measurements. 2021 IEEE International Conference on

Robotics and Automation (ICRA), 11612–11618. https://api.semanticscholar.org/

CorpusID:225039931

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., et

al. (2023). Grounding dino: Marrying dino with grounded pre-training for open-set

object detection. arXiv preprint arXiv:2303.05499.

Liu, Y., Fu, Y., Chen, F., Goossens, B., Tao, W., & Zhao, H. (2021). Simultaneous lo-

calization and mapping related datasets: A comprehensive survey. arXiv preprint

arXiv:2102.04036.

Lopez-de-Teruel, P. E., Garcia, F. J., Canovas, O., Gonzalez, R., & Carrasco, J. A. (2017).

Human behavior monitoring using a passive indoor positioning system: A case

study in a sme [14th International Conference on Mobile Systems and Pervasive

Computing (MobiSPC 2017) / 12th International Conference on Future Networks

and Communications (FNC 2017) / Affiliated Workshops]. Procedia Computer

Science, 110, 182–189. https://doi.org/https://doi.org/10.1016/j.procs.2017.06.

076

Lukierski, R., Leutenegger, S., & Davison, A. (2022). Estimating dimensions for an en-

closed space using a multi-directional camera [US Patent 11,276,191].

Lukierski, R., Leutenegger, S., & Davison, A. J. (2017). Room layout estimation from rapid

omnidirectional exploration. 2017 IEEE International Conference on Robotics and

Automation (ICRA), 6315–6322. https://doi.org/10.1109/ICRA.2017.7989747

Lv, J., Xu, J., Hu, K., Liu, Y., & Zuo, X. Targetless calibration of LiDAR-IMU system

based on continuous-time batch estimation. In: In 2020 ieee/rsj international con-

ference on intelligent robots and systems (iros). IEEE. 2020, 9968–9975.

175

https://doi.org/10.1109/LRA.2021.3095515
https://doi.org/10.1109/CVPR.2018.00211
https://doi.org/10.1109/CVPR.2018.00211
https://api.semanticscholar.org/CorpusID:225039931
https://api.semanticscholar.org/CorpusID:225039931
https://doi.org/https://doi.org/10.1016/j.procs.2017.06.076
https://doi.org/https://doi.org/10.1016/j.procs.2017.06.076
https://doi.org/10.1109/ICRA.2017.7989747


Lv, J., Zuo, X., Hu, K., Xu, J., Huang, G., & Liu, Y. (2022). OA-LICalib: Observability-

aware intrinsic and extrinsic calibration of LiDAR-IMU systems. IEEE Transac-

tions on Robotics, 38(6), 3734–3753.

Lyu, C., Zhang, W., Huang, H., Zhou, Y., Wang, Y., Liu, Y., Zhang, S., & Chen, K.

(2022). RTMDet: An empirical study of designing real-time object detectors. arXiv

preprint arXiv:2212.07784.

Macario Barros, A., Michel, M., Moline, Y., Corre, G., & Carrel, F. (2022). A comprehen-

sive survey of visual SLAM algorithms. Robotics, 11(1). https://doi.org/10.3390/

robotics11010024

Macenski, S., & Jambrecic, I. (2021). SLAM toolbox: SLAM for the dynamic world. Jour-

nal of Open Source Software, 6(61), 2783. https://doi.org/10.21105/joss.02783

Macenski, S., Moore, T., Lu, D. V., Merzlyakov, A., & Ferguson, M. (2023). From the desks

of ROS maintainers: A survey of modern & capable mobile robotics algorithms in

the robot operating system 2. Robotics and Autonomous Systems, 168, 104493.

https://doi.org/10.1016/j.robot.2023.104493

Macenski, S., Singh, S., Martín, F., & Ginés, J. (2023). Regulated pure pursuit for robot

path tracking. Autonomous Robots, 1–10.

Mantha, B., & Garcia de Soto, B. (2019). Designing a reliable fiducial marker network

for autonomous indoor robot navigation. Proceedings of the 36th International

Symposium on Automation and Robotics in Construction (ISARC). https://doi.

org/10.22260/isarc2019/0011

Mantha, B. R. K., de Soto, B. G., Menassa, C. C., & Kamat, V. R. (2020, February).

Robots in indoor and outdoor environments. In Construction 4.0 (pp. 307–325).

Routledge. https://doi.org/10.1201/9780429398100-16

Mantha, B. R. K., & Garcia de Soto, B. (2022). Investigating the fiducial marker net-

work characteristics for autonomous mobile indoor robot navigation using ros and

gazebo. Journal of Construction Engineering and Management, 148(10). https :

//doi.org/10.1061/(asce)co.1943-7862.0002378

Mantha, B. R., Jung, M. K., García de Soto, B., Menassa, C. C., & Kamat, V. R. (2020).

Generalized task allocation and route planning for robots with multiple depots

in indoor building environments. Automation in Construction, 119, 103359. https:

//doi.org/https://doi.org/10.1016/j.autcon.2020.103359

176

https://doi.org/10.3390/robotics11010024
https://doi.org/10.3390/robotics11010024
https://doi.org/10.21105/joss.02783
https://doi.org/10.1016/j.robot.2023.104493
https://doi.org/10.22260/isarc2019/0011
https://doi.org/10.22260/isarc2019/0011
https://doi.org/10.1201/9780429398100-16
https://doi.org/10.1061/(asce)co.1943-7862.0002378
https://doi.org/10.1061/(asce)co.1943-7862.0002378
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103359
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103359


McDonald, J., Kaess, M., Cadena, C., Neira, J., & Leonard, J. (2013). Real-time 6-DOF

multi-session visual SLAM over large-scale environments [Selected Papers from

the 5th European Conference on Mobile Robots (ECMR 2011)]. Robotics and Au-

tonomous Systems, 61(10), 1144–1158. https://doi.org/https://doi.org/10.1016/j.

robot.2012.08.008

Merrill, N., Guo, Y., Zuo, X., Huang, X., Leutenegger, S., Peng, X., Ren, L., & Huang,

G. (2022). Symmetry and uncertainty-aware object SLAM for 6DoF object pose

estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 14901–14910.

Montemerlo, M. (2003, July). FastSLAM: A Factored Solution to the Simultaneous Lo-

calization and Mapping Problem with Unknown Data Association (Publication

No. CMU-RI-TR-03-28) [Doctoral dissertation, Carnegie Mellon University].

Moura, M. S., Rizzo, C., & Serrano, D. (2021). BIM-based Localization and Mapping

for Mobile Robots in Construction. 2021 IEEE International Conference on Au-

tonomous Robot Systems and Competitions, ICARSC 2021, 12–18. https://doi.

org/10.1109/ICARSC52212.2021.9429779

Mourikis, A. I., & Roumeliotis, S. I. (2007). A Multi-State Constraint Kalman Filter for

Vision-aided Inertial Navigation. Proceedings 2007 IEEE International Conference

on Robotics and Automation, 3565–3572. https://doi.org/10.1109/ROBOT.2007.

364024

Muhle, D., Koestler, L., Jatavallabhula, K. M., & Cremers, D. (2023). Learning Correspon-

dence Uncertainty via Differentiable Nonlinear Least Squares. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a Versatile and

Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–

1163. https://doi.org/10.1109/TRO.2015.2463671

Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: an Open-Source SLAM System for

Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics, 33(5),

1255–1262. https://doi.org/10.1109/TRO.2017.2705103

Mylonas, G., Kalogeras, A., Kalogeras, G., Anagnostopoulos, C., Alexakos, C., & Muñoz,

L. (2021). Digital twins from smart manufacturing to smart cities: A survey. IEEE

Access, 9, 143222–143249. https://doi.org/10.1109/ACCESS.2021.3120843

177

https://doi.org/https://doi.org/10.1016/j.robot.2012.08.008
https://doi.org/https://doi.org/10.1016/j.robot.2012.08.008
https://doi.org/10.1109/ICARSC52212.2021.9429779
https://doi.org/10.1109/ICARSC52212.2021.9429779
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ACCESS.2021.3120843


Nam, D. V., & Gon-Woo, K. (2021). Solid-State LiDAR based-SLAM: A Concise Review

and Application. 2021 IEEE International Conference on Big Data and Smart

Computing (BigComp), 302–305. https://doi.org/10.1109/BigComp51126.2021.

00064

Naumann, J., Xu, B., Leutenegger, S., & Zuo, X. (2024). NeRF-VO: Real-Time Sparse

Visual Odometry With Neural Radiance Fields. IEEE Robotics and Automation

Letters, 9(8), 7278–7285. https://doi.org/10.1109/LRA.2024.3421192

NavVis, News, L., Magazine, L., the American Surveyor, GoGeomatics, International, G.,

Week, G., BIMplus, Source, S., & GeoConnexion. (2022). State of Mobile Mapping

Survey 2022.

Oelsch, M., Karimi, M., & Steinbach, E. (2021). R-LOAM: Improving LiDAR Odometry

and Mapping with Point-to-Mesh Features of a Known 3D Reference Object. IEEE

Robotics and Automation Letters, 6(2), 2068–2075. https://doi.org/10.1109/LRA.

2021.3060413

Oelsch, M., Karimi, M., & Steinbach, E. (2022). Ro-loam: 3D reference object-based tra-

jectory and map optimization in LiDAR odometry and mapping. IEEE Robotics

and Automation Letters, 1–1. https://doi.org/10.1109/LRA.2022.3177846

Opoku, D.-G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application

in the construction industry: A literature review. Journal of Building Engineering,

40, 102726.

Ozog, P., Carlevaris-Bianco, N., Kim, A., & Eustice, R. M. (2016). Long-term mapping

techniques for ship hull inspection and surveillance using an autonomous underwa-

ter vehicle. Journal of Field Robotics, 33(3), 265–289.

Pan, Y., Xiao, P., He, Y., Shao, Z., & Li, Z. (2021). MULLS: Versatile LiDAR SLAM

via Multi-metric Linear Least Square. 2021 IEEE International Conference on

Robotics and Automation (ICRA), 11633–11640. https : / / doi . org / 10 . 1109 /

ICRA48506.2021.9561364

Papatheodorou, S., Funk, N., Tzoumanikas, D., Choi, C., Xu, B., & Leutenegger, S. (2023).

Finding Things in the Unknown: Semantic Object-Centric Exploration with an

MAV. 2023 IEEE International Conference on Robotics and Automation (ICRA),

3339–3345. https://doi.org/10.1109/ICRA48891.2023.10160490

Perez-Grau, F. J., Caballero, F., Viguria, A., & Ollero, A. (2017). Multi-sensor three-

dimensional monte carlo localization for long-term aerial robot navigation. Inter-

178

https://doi.org/10.1109/BigComp51126.2021.00064
https://doi.org/10.1109/BigComp51126.2021.00064
https://doi.org/10.1109/LRA.2024.3421192
https://doi.org/10.1109/LRA.2021.3060413
https://doi.org/10.1109/LRA.2021.3060413
https://doi.org/10.1109/LRA.2022.3177846
https://doi.org/10.1109/ICRA48506.2021.9561364
https://doi.org/10.1109/ICRA48506.2021.9561364
https://doi.org/10.1109/ICRA48891.2023.10160490


national Journal of Advanced Robotic Systems, 14(5). https://doi.org/10.1177/

1729881417732757

Pfaff, P., Burgard, W., & Fox, D. (2006). Robust monte-carlo localization using adap-

tive likelihood models. In H. I. Christensen (Ed.), European robotics sympo-

sium 2006 (pp. 181–194, Vol. 22). Springer-Verlag. https : //doi . org/10 . 1007/

11681120{\textunderscore}15

Pfitzner, F., Braun, A., & Borrmann, A. (2023). Object-Detection Based Knowledge Graph

Creation: Enabling Insight into Construction Processes. ASCE International Con-

ference on Computing in Civil Engineering 2023, in press.

Platinsky, L., Davison, A. J., & Leutenegger, S. (2017). Monocular visual odometry: Sparse

joint optimisation or dense alternation? 2017 IEEE International Conference on

Robotics and Automation (ICRA), 5126–5133. https://doi.org/10.1109/ICRA.

2017.7989599

Prieto, S. A., Garcia de Soto, B., & Adan, A. (2020, October). A methodology to monitor

construction progress using autonomous robots. In H. Osumi (Ed.), Proceedings

of the 37th international symposium on automation and robotics in construction

(isarc) (pp. 265–289). International Association for Automation and Robotics in

Construction (IAARC). https://doi.org/10.22260/ISARC2020/0210

Prieto, S. A., Giakoumidis, N., & García de Soto, B. (2024). Multiagent robotic systems

and exploration algorithms: Applications for data collection in construction sites.

Journal of Field Robotics, 41(4), 1187–1203. https://doi.org/10.1002/rob.22316

Prieto, S. A., Xu, X., & García de Soto, B. (2024). A guide for construction practitioners

to integrate robotic systems in their construction applications. Frontiers in Built

Environment, 10. https://doi.org/10.3389/fbuil.2024.1307728

Qiao, Z., Yu, Z., Yin, H., & Shen, S. (2023). Pyramid Semantic Graph-Based Global Point

Cloud Registration with Low Overlap. 2023 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 11202–11209. https://doi.org/10.1109/

IROS55552.2023.10341394

Qin, T., Li, P., & Shen, S. (2018). VINS-Mono: A Robust and Versatile Monocular Visual-

Inertial State Estimator. IEEE Transactions on Robotics, 34(4), 1004–1020. https:

//doi.org/10.1109/TRO.2018.2853729

Ramezani, M., Wang, Y., Camurri, M., Wisth, D., Mattamala, M., & Fallon, M. (2020).

The Newer College Dataset: Handheld LiDAR, inertial and vision with ground

179

https://doi.org/10.1177/1729881417732757
https://doi.org/10.1177/1729881417732757
https://doi.org/10.1007/11681120{\textunderscore }15
https://doi.org/10.1007/11681120{\textunderscore }15
https://doi.org/10.1109/ICRA.2017.7989599
https://doi.org/10.1109/ICRA.2017.7989599
https://doi.org/10.22260/ISARC2020/0210
https://doi.org/10.1002/rob.22316
https://doi.org/10.3389/fbuil.2024.1307728
https://doi.org/10.1109/IROS55552.2023.10341394
https://doi.org/10.1109/IROS55552.2023.10341394
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TRO.2018.2853729


truth. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). https://doi.org/10.1109/iros45743.2020.9340849

Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., & Girolami, M. (2020). Construction with

digital twin information systems. Data-Centric Engineering, 1, e14. https://doi.

org/10.1017/dce.2020.16

Schlenger, J., Pfitzner, F., Braun, A., Vilgertshofer, S., & Borrmann, A. (2023). Dig-

italer Zwilling Baustelle–Baustellenüberwachung zur automatisierten Zeit-und

Kostenkontrolle. Bautechnik, 100(4), 190–197.

Shaheer, M., Bavle, H., Sanchez-Lopez, J. L., & Voos, H. (2022). Robot localiza-

tion using situational graphs and building architectural plans. arXiv preprint

arXiv:2209.11575.

Shaheer, M., Millan-Romera, J. A., Bavle, H., Sanchez-Lopez, J. L., Civera, J., & Voos,

H. (2023). Graph-based global robot localization informing situational graphs with

architectural graphs.

Shan, T., & Englot, B. (2018). LeGO-LOAM: Lightweight and Ground-Optimized Lidar

Odometry and Mapping on Variable Terrain. 2018 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 4758–4765. https://doi.org/10.

1109/IROS.2018.8594299

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., & Rus, D. (2020a). LIO-SAM:

Tightly-coupled LiDAR inertial odometry via smoothing and mapping. 2020

IEEE/RSJ international conference on intelligent robots and systems (IROS),

5135–5142.

Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., & Rus, D. (2020b). LIO-

SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

5135–5142. https://doi.org/10.1109/IROS45743.2020.9341176

Shinkansan. (2021). SLAM - 2019-ugrp-dpoom. GitHub - https://github.com/shinkansan/2019-

UGRP-DPoom/blob/master/SLAM.

Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial relationships in

robotics. In I. J. Cox & G. T. Wilfong (Eds.), Autonomous robot vehicles (pp. 167–

193). Springer New York. https://doi.org/10.1007/978-1-4613-8997-2_14

Sokolova, A., Nikitin, F., Vorontsova, A., & Konushin, A. (2022). Floorplan-aware camera

poses refinement. 2022 IEEE/RSJ International Conference on Intelligent Robots

180

https://doi.org/10.1109/iros45743.2020.9340849
https://doi.org/10.1017/dce.2020.16
https://doi.org/10.1017/dce.2020.16
https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.1109/IROS45743.2020.9341176
https://doi.org/10.1007/978-1-4613-8997-2_14


and Systems (IROS), 4857–4864. https : / / doi . org / 10 . 1109 / IROS47612 . 2022 .

9981148

Soto, B. G. d., & Skibniewski, M. J. (2020, February). Future of robotics and automation

in construction. In Construction 4.0 (pp. 289–306). Routledge. https://doi.org/10.

1201/9780429398100-15

Sturm, J., Engelhard, N., Endres, F., Burgard, W., & Cremers, D. (2012). A benchmark

for the evaluation of RGB-D SLAM systems. 2012 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, 573–580. https://api.semanticscholar.

org/CorpusID:206942855

Tardif, J.-P., George, M., Laverne, M., Kelly, A., & Stentz, A. (2010). A new approach

to vision-aided inertial navigation. 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems. https://doi.org/10.1109/iros.2010.5651059

Tee, Y. K., & Han, Y. C. (2021). Lidar-Based 2D SLAM for Mobile Robot in an Indoor

Environment: A Review. 2021 International Conference on Green Energy, Com-

puting and Sustainable Technology (GECOST), 1–7. https://doi .org/10.1109/

GECOST52368.2021.9538731

Trzeciak, M., Pluta, K., Fathy, Y., Alcalde, L., Chee, S., Bromley, A., Brilakis, I., & Alliez,

P. (2023a). Conslam: Construction data set for SLAM. Journal of Computing in

Civil Engineering, 37(3), 04023009.

Trzeciak, M., Pluta, K., Fathy, Y., Alcalde, L., Chee, S., Bromley, A., Brilakis, I., & Alliez,

P. (2023b). ConSLAM: Periodically Collected Real-World Construction Dataset for

SLAM and Progress Monitoring. In L. Karlinsky, T. Michaeli, & K. Nishino (Eds.),

Computer Vision – ECCV 2022 Workshops (pp. 317–331, Vol. 13807). Springer

Nature Switzerland. https://doi.org/10.1007/978-3-031-25082-8{\textunderscore}

21

Umeyama, S. (1991). Least-squares estimation of transformation parameters between two

point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(4), 376–380. https://doi.org/10.1109/34.88573

Vega-Torres, M. (2022, November). Occupancy Grid Map to Pose Graph-based Map for

long-term 2D LiDAR-based localization (Version 1.0). Zenodo. https://doi.org/

https://doi.org/10.5281/zenodo.7330270

Vega-Torres, M. A., & Borrmann, A. (2024). CMS Sensor Mounting System. https://doi.

org/https://doi.org/10.14459/2024mp1750434

181

https://doi.org/10.1109/IROS47612.2022.9981148
https://doi.org/10.1109/IROS47612.2022.9981148
https://doi.org/10.1201/9780429398100-15
https://doi.org/10.1201/9780429398100-15
https://api.semanticscholar.org/CorpusID:206942855
https://api.semanticscholar.org/CorpusID:206942855
https://doi.org/10.1109/iros.2010.5651059
https://doi.org/10.1109/GECOST52368.2021.9538731
https://doi.org/10.1109/GECOST52368.2021.9538731
https://doi.org/10.1007/978-3-031-25082-8{\textunderscore }21
https://doi.org/10.1007/978-3-031-25082-8{\textunderscore }21
https://doi.org/10.1109/34.88573
https://doi.org/https://doi.org/10.5281/zenodo.7330270
https://doi.org/https://doi.org/10.5281/zenodo.7330270
https://doi.org/https://doi.org/10.14459/2024mp1750434
https://doi.org/https://doi.org/10.14459/2024mp1750434


Vega-Torres, M. A., Braun, A., Bauer, H., Noichl, F., & Borrmann, A. (2021, Septem-

ber). Efficient Vertical Object Detection in Large High-Quality Point Clouds of

Construction Sites. In Proc. of the 2021 european conference on computing in

construction. https://doi.org/10.35490/EC3.2021.156

Vega-Torres, M. A., Braun, A., & Borrmann, A. (2022, September). Occupancy Grid

Map to Pose Graph-based Map: Robust BIM-based 2D- LiDAR Localization for

Lifelong Indoor Navigation in Changing and Dynamic Environments. In Proc. of

european conference on product and process modeling 2022. https://doi.org/10.

1201/9781003354222-72

Vega-Torres, M. A., Braun, A., & Borrmann, A. (2023). BIM-SLAM: Integrating BIM

Models in Multi-session SLAM for Lifelong Mapping using 3D LiDAR. Proc. of

the 40th International Symposium on Automation and Robotics in Construction

(ISARC 2023). https://doi.org/10.22260/ISARC2023/0070

Vega-Torres, M. A., Braun, A., Noichl, F., Borrmann, A., Bauer, H., & Wohlfeld, D. (2022).

Recognition of temporary vertical objects in large point clouds of construction

sites. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and

Construction, 174(4), 134–149. https://doi.org/10.1680/jsmic.21.00033

Vega-Torres, M. A., Braun, A., & Borrmann, A. (2024a). OGM2PGBM. https://doi.org/

https://doi.org/10.14459/2024mp1749236

Vega-Torres, M. A., Braun, A., & Borrmann, A. (2024b, June). ConSLAM BIM and GT

poses. https://doi.org/10.14459/2024MP1743877

Vega-Torres, M. A., Braun, A., & Borrmann, A. (2024c). SLAM2REF: Advancing long-

term mapping with 3D LiDAR and reference map integration for precise 6-DoF

trajectory estimation and map extension. Construction Robotics, 8(2), 13. https:

//doi.org/10.1007/s41693-024-00126-w

Vega-Torres, M. A., & Pfitzner, F. (2023, September). Investigating Robot Dogs for Con-

struction Monitoring: A Comparative Analysis of Specifications and On-site Re-

quirements. In Proceedings of the 34th forum bauinformatik 2023. https://doi.org/

https://doi.org/10.13154/294-10094

Vega-Torres, M. A., Ribic, A., García de Soto, B., & Borrmann, A. (2024, July). BIMCaP:

BIM-based AI-supported LiDAR-Camera Pose Refinement. In Proc. of the 31th

int. conference on intelligent computing in engineering (eg-ice). https://github.

com/MigVega/BIMCaP

182

https://doi.org/10.35490/EC3.2021.156
https://doi.org/10.1201/9781003354222-72
https://doi.org/10.1201/9781003354222-72
https://doi.org/10.22260/ISARC2023/0070
https://doi.org/10.1680/jsmic.21.00033
https://doi.org/https://doi.org/10.14459/2024mp1749236
https://doi.org/https://doi.org/10.14459/2024mp1749236
https://doi.org/10.14459/2024MP1743877
https://doi.org/10.1007/s41693-024-00126-w
https://doi.org/10.1007/s41693-024-00126-w
https://doi.org/https://doi.org/10.13154/294-10094
https://doi.org/https://doi.org/10.13154/294-10094
https://github.com/MigVega/BIMCaP
https://github.com/MigVega/BIMCaP


Vespa, E., Funk, N., Kelly, P. H. J., & Leutenegger, S. (2019). Adaptive-Resolution Octree-

Based Volumetric SLAM. 2019 International Conference on 3D Vision (3DV), 654–

662. https://doi.org/10.1109/3DV.2019.00077

Vizzo, I., Guadagnino, T., Mersch, B., Wiesmann, L., Behley, J., & Stachniss, C. (2023a).

KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and Robust Reg-

istration If Done the Right Way. IEEE Robotics and Automation Letters, 8(2),

1029–1036. https://doi.org/10.1109/LRA.2023.3236571

Vizzo, I., Guadagnino, T., Mersch, B., Wiesmann, L., Behley, J., & Stachniss, C. (2023b).

KISS-ICP: In defense of point-to-point icp–simple, accurate, and robust registra-

tion if done the right way. IEEE Robotics and Automation Letters, 8(2), 1029–

1036.

von Stumberg, L., & Cremers, D. (2022). DM-VIO: Delayed marginalization visual-inertial

odometry. IEEE Robotics and Automation Letters (RA-L) & International Con-

ference on Robotics and Automation (ICRA), 7(2), 1408–1415. https://doi.org/

10.1109/LRA.2021.3140129

Wang, H., Wang, C., Chen, C.-L., & Xie, L. (2021). F-LOAM : Fast LiDAR Odometry

and Mapping. 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 4390–4396. https://doi.org/10.1109/IROS51168.2021.9636655

Wang, H., Wang, C., & Xie, L. (2020). Intensity scan context: Coding intensity and ge-

ometry relations for loop closure detection. 2020 IEEE International Conference

on Robotics and Automation (ICRA), 2095–2101.

Wang, Y., Funk, N., Ramezani, M., Papatheodorou, S., Popović, M., Camurri, M.,

Leutenegger, S., & Fallon, M. (2021). Elastic and Efficient LiDAR Reconstruc-

tion for Large-Scale Exploration Tasks. 2021 IEEE International Conference

on Robotics and Automation (ICRA), 5035–5041. https : / / doi . org / 10 . 1109 /

ICRA48506.2021.9561736

Wang, Z., Zhang, L., Shen, Y., & Zhou, Y. (2023). D-LIOM: Tightly-Coupled Direct

LiDAR-Inertial Odometry and Mapping. IEEE Transactions on Multimedia, 25,

3905–3920. https://doi.org/10.1109/TMM.2022.3168423

Wu, W., Zhong, X., Wu, D., Chen, B., Zhong, X., & Liu, Q. (2023). LIO-Fusion: Rein-

forced LiDAR Inertial Odometry by Effective Fusion With GNSS/Relocalization

and Wheel Odometry. IEEE Robotics and Automation Letters, 8(3), 1571–1578.

https://doi.org/10.1109/LRA.2023.3240372

183

https://doi.org/10.1109/3DV.2019.00077
https://doi.org/10.1109/LRA.2023.3236571
https://doi.org/10.1109/LRA.2021.3140129
https://doi.org/10.1109/LRA.2021.3140129
https://doi.org/10.1109/IROS51168.2021.9636655
https://doi.org/10.1109/ICRA48506.2021.9561736
https://doi.org/10.1109/ICRA48506.2021.9561736
https://doi.org/10.1109/TMM.2022.3168423
https://doi.org/10.1109/LRA.2023.3240372


Xin, Y., Zuo, X., Lu, D., & Leutenegger, S. (2023). SimpleMapping: Real-Time Visual-

Inertial Dense Mapping with Deep Multi-View Stereo. 2023 IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), 273–282. https://doi.org/

10.1109/ISMAR59233.2023.00042

Xu, B., Li, W., Tzoumanikas, D., Bloesch, M., Davison, A., & Leutenegger, S. (2019).

MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic SLAM. 2019 In-

ternational Conference on Robotics and Automation (ICRA), 5231–5237. https :

//doi.org/10.1109/ICRA.2019.8794371

Xu, W., Cai, Y., He, D., Lin, J., & Zhang, F. (2022). FAST-LIO2: Fast direct LiDAR-

inertial odometry. IEEE Transactions on Robotics, 1–21. https://doi.org/10.1109/

TRO.2022.3141876

Xu, W., & Zhang, F. (2021). FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Pack-

age by Tightly-Coupled Iterated Kalman Filter. IEEE Robotics and Automation

Letters, 6(2), 3317–3324. https://doi.org/10.1109/LRA.2021.3064227

Xu, X., & Garcia de Soto, B. (2020). On-site autonomous construction robots: A review of

research areas, technologies, and suggestions for advancement. Proceedings of the

International Symposium on Automation and Robotics in Construction (IAARC).

https://doi.org/10.22260/isarc2020/0055

Xu, X., & Garcia de Soto, B. (2023). Deep reinforcement learning-based task assignment

and path planning for multi-agent construction robots. Proceedings of the 2nd

Future of Construction Workshop at the International Conference on Robotics and

Automation (ICRA 2022). https://doi.org/10.22260/icra2023/0008

Xu, X., & García de Soto, B. (2022). Reinforcement learning with construction robots:

A review of research areas, challenges and opportunities. Proceedings of the 39th

International Symposium on Automation and Robotics in Construction. https://

doi.org/10.22260/isarc2022/0052

Xu, X., Holgate, T., Coban, P., & García de Soto, B. (2021). Implementation of a robotic

system for overhead drilling operations: A case study of the jaibot in the uae.

Proceedings of the International Symposium on Automation and Robotics in Con-

struction (IAARC). https://doi.org/10.22260/isarc2021/0089

Yang, B., Dong, Z., Liang, F., & Liu, Y. (2016). Automatic registration of large-scale

urban scene point clouds based on semantic feature points. ISPRS Journal of

184

https://doi.org/10.1109/ISMAR59233.2023.00042
https://doi.org/10.1109/ISMAR59233.2023.00042
https://doi.org/10.1109/ICRA.2019.8794371
https://doi.org/10.1109/ICRA.2019.8794371
https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1109/TRO.2022.3141876
https://doi.org/10.1109/LRA.2021.3064227
https://doi.org/10.22260/isarc2020/0055
https://doi.org/10.22260/icra2023/0008
https://doi.org/10.22260/isarc2022/0052
https://doi.org/10.22260/isarc2022/0052
https://doi.org/10.22260/isarc2021/0089


Photogrammetry and Remote Sensing, 113(11), 43–58. https://doi.org/10.1016/j.

isprsjprs.2015.12.005

Yang, H. (2018). Github - pgmmapcreator: Create pgm map from gazebo world file for

ros localization. https://github.com/hyfan1116/pgmmapcreator

Yang, R., Yang, G., & Wang, X. (2023). Neural Volumetric Memory for Visual Locomotion

Control. Conference on Computer Vision and Pattern Recognition 2023. https :

//openreview.net/forum?id=JYyWCcmwDS

Yao, L., Yu, H., & Lu, Z. (2021). Design and driving model for the quadruped robot: An

elucidating draft. Advances in Mechanical Engineering, 13(4), 16878140211009035.

Yin, H., Lin, Z., & Yeoh, J. K. (2023). Semantic localization on BIM-generated maps using

a 3D LiDAR sensor. Automation in Construction, 146, 104641. https://doi.org/

https://doi.org/10.1016/j.autcon.2022.104641

Yu, Y., Gao, W., Liu, C., Shen, S., & Liu, M. (2019). A GPS-aided Omnidirectional Visual-

Inertial State Estimator in Ubiquitous Environments. 2019 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 7750–7755. https:

//doi.org/10.1109/IROS40897.2019.8968519

Zelinsky, A., Jarvis, R. A., Byrne, J., Yuta, S., et al. (1993). Planning paths of complete

coverage of an unstructured environment by a mobile robot. In A. Zelinsky, R. A.

Jarvis, J. C. Byrne, & S. Yuta (Eds.), Proceedings of international conference on

advanced robotics (pp. 533–538, Vol. 13). Citeseer. http://pinkwink.kr/attachment/

cfile3.uf@1354654A4E8945BD13FE77.pdf

Zhang, J., & Singh, S. (2014). LOAM: LiDAR odometry and mapping in real-time.

Robotics: Science and Systems, 2(9), 1–9. https://doi.org/10.15607/RSS.2014.X.

007

Zhang, L., Camurri, M., Wisth, D., & Fallon, M. (2022). Multi-camera LiDAR inertial

extension to the newer college dataset.

Zhang, L., Helmberger, M., Fu, L. F. T., Wisth, D., Camurri, M., Scaramuzza, D., & Fallon,

M. (2023). Hilti-Oxford Dataset: A millimeter-accurate benchmark for simultane-

ous localization and mapping. IEEE Robotics and Automation Letters, 8(1), 408–

415. https://doi.org/10.1109/LRA.2022.3226077

Zhang, Y., Shi, P., & Li, J. (2024). 3D LiDAR SLAM: A survey. The Photogrammetric

Record, 39(186), 457–517. https://doi.org/10.1111/phor.12497

185

https://doi.org/10.1016/j.isprsjprs.2015.12.005
https://doi.org/10.1016/j.isprsjprs.2015.12.005
https://github.com/hyfan1116/pgmmapcreator
https://openreview.net/forum?id=JYyWCcmwDS
https://openreview.net/forum?id=JYyWCcmwDS
https://doi.org/https://doi.org/10.1016/j.aut con.2022.104641
https://doi.org/https://doi.org/10.1016/j.aut con.2022.104641
https://doi.org/10.1109/IROS40897.2019.8968519
https://doi.org/10.1109/IROS40897.2019.8968519
http://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf
http://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf
https://doi.org/10.15607/RSS.2014.X.007
https://doi.org/10.15607/RSS.2014.X.007
https://doi.org/10.1109/LRA.2022.3226077
https://doi.org/10.1111/phor.12497


Zhang, Y., Guo, X., Poggi, M., Zhu, Z., Huang, G., & Mattoccia, S. (2023). Completion-

former: Depth completion with convolutions and vision transformers. Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18527–

18536.

Zhang, Z., & Scaramuzza, D. (2018). A tutorial on quantitative trajectory evaluation for vi-

sual (-inertial) odometry. 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 7244–7251.

Zheng, C., Zhu, Q., Xu, W., Liu, X., Guo, Q., & Zhang, F. (2022). FAST-LIVO: Fast and

Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry. 2022 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 4003–4009.

https://doi.org/10.1109/IROS47612.2022.9981107

Zheng, X., & Zhu, J. (2023). Traj-LO: In defense of LiDAR-only odometry using an effec-

tive continuous-time trajectory. arXiv preprint arXiv:2309.13842.

Zhou, H., Cao, Y., Chu, W., Zhu, J., Lu, T., Tai, Y., & Wang, C. (2022). Seedformer: Patch

seeds based point cloud completion with upsample transformer. In Computer vision

– eccv 2022 (pp. 416–432). Springer Nature Switzerland. https://doi.org/10.1007/

978-3-031-20062-5_24

Zienkiewicz, J., Tsiotsios, A., Davison, A., & Leutenegger, S. (2016). Monocular, Real-

Time Surface Reconstruction Using Dynamic Level of Detail. 2016 Fourth Inter-

national Conference on 3D Vision (3DV), 37–46. https://doi.org/10.1109/3DV.

2016.82

Zimmerman, N., Wiesmann, L., Guadagnino, T., Läbe, T., Behley, J., & Stachniss, C.

(2022). Robust onboard localization in changing environments exploiting text spot-

ting. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 917–924. http://arxiv.org/pdf/2203.12647v1

186

https://doi.org/10.1109/IROS47612.2022.9981107
https://doi.org/10.1007/978-3-031-20062-5_24
https://doi.org/10.1007/978-3-031-20062-5_24
https://doi.org/10.1109/3DV.2016.82
https://doi.org/10.1109/3DV.2016.82
http://arxiv.org/pdf/2203.12647v1


Appendix A

List of Mathematical Variables

The table below lists the mathematical variables used in Chapters 2 and 5, along with

their corresponding descriptions.

Table A.1: Explanation of Variables

Variable Description

p(X|z)
Posterior density of the states X given the measurements

Z.

F = (U ,V, E)
Factor graph comprising nodes (xi or ϕi) connected by

edges eij .

E Set of factor edges eij .

U Set of factor nodes ϕi.

V Set of variable nodes xi.

Xi Group of variables xi connected to a factor ϕi.

ϕ(X) Global function factorized as ϕ(X) =
∏

i ϕi(Xi).

zi Measurements (observed data point or variable).

hi(xi, li)
Mean measurement function of xi and li. Represents the

expected value of zi given xi and li.

Σi

Covariance matrix associated with zi, representing zero-

mean Gaussian noise.

p(zi|xi, li) Conditional density on the measurement zi.

N (zi;hi(xi, li),Σi)
Multivariate normal distribution for the variable zi with

mean hi(xi, li) and covariance matrix Σi.

∥hi(xi, li)− zi∥2Σi
Mahalanobis distance between zi and its mean hi(xi, li).

SE(3) Special Euclidean group.

η
Normally distributed zero-mean measurement noise with

covariance Σc.

SR Synthetic reference session.
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Variable Description

SQ Real-world motion-undistorted query session.

xR Set of poses of the reference session.

xQ Set of poses of the query session.

f(·) Odometry model function.

us
i Constraints between consecutive poses xi and xi+1.

Ms Number of poses in the session S.

Ne Number of encounters between sessions.

ps Prior factor.

∆∗
Q

Anchor node, which facilitates the global alignment of

the query session to the reference map.

G

Pose-graph map containing coordinates of pose nodes,

odometry edges, and optionally recognized intra-session

loop edges with uncertainty matrices.

(Pi, di)
Pairs of 3D LiDAR scans Pi with their corresponding

global descriptors di of the ith keyframe.

n Total number of equidistantly sampled keyframes.

Nc

Amount of Top descriptors candidates selected from the

reference session after the comparison of the rotational

invariant descriptors.

Σc

Covariance matrix of the detected loops or encounters

incorporated into the factor graph problem as factors be-

tween sessions with anchoring.

x∗
Q Optimized 6-DoF poses of each scan of the query session.

c
Loop closure detections, also called encounters denoting

correspondences between the sessions.

νQ
Confidence level list providing the reliability of each pose

after scan registration.

h(·) Original measurement model.

h′(·)
Modified measurement model that incorporates anchor

nodes.

xR,j 6-DoF (in SE(3)) Pose j in the reference session.
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Variable Description

xQ,j 6-DoF (in SE(3)) Pose j in the query session.

∆R Anchor node for the reference session (also in (in SE(3)).

∆Q Anchor node for the query session (in SE(3)).

cj
Difference in the global frame between poses xR and xQ

(pose in SE(3)).

⊕ SE(3) pose composition operator.

⊖ SE(3) pose difference operator.

ϕ(xR,i, xQ,j ,∆R,∆Q)
Factor between sessions with anchoring, used in pose

graph optimization.

ΣP

Covariance assigned to the anchor node of the reference

session, set to be insignificantly small.

ΣL

Covariance assigned to the anchor node of the query ses-

sion, set to be significantly large.

Qx∗
Q

Optimized poses of the query session in the local coordi-

nate system.

Wx∗
Q

Optimized poses of the query session transformed to the

global coordinate system of the reference map.

W
Global coordinate system, same as the coordinate system

of the reference session.

Fi

Fitness score distance threshold. The fitness score is the

percentage of source inliers after point cloud registration,

considering a maximum Point-to-Point (P2P) distance

threshold.
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Appendix B

Investigating Robot Dogs for

Construction Monitoring1

B.1 Introduction

Research considering improving digitization on construction sites has increased signifi-

cantly within the last years (Opoku et al., 2021). The digital twin construction, a digital

representation of the construction environment, introduces a platform for many construc-

tion applications (Sacks et al., 2020). An ongoing challenge is to acquire periodic data on

the entire construction site to create a comprehensive digital twin.

Robot dogs are inspired by the structure and motion of quadruped animals (Yao et al.,

2021) and usually consist of a body with four mechanical legs allowing use on diverse

terrains.

A time-exhaustive task of construction managers is keeping their site projects on track

since regular manual site inspections are required. In this regard, autonomous robot-

based construction monitoring provides a promising approach to reducing the effort. Most

of the research regarding robot application in construction focuses on UAVs rather than

ground-based, legged robots, which might be a better fit for construction sites (Halder &

Afsari, 2023), particularly for indoor scenarios.

The potential usability of robot dogs on construction sites, focusing on their ability to

facilitate data acquisition, access hard-to-reach areas of the site, and sustain with limited

power supply options, has to be investigated to embrace future research directions.

This appendix contains the following: (a) a detailed comparison of available legged robots;

(b) the design of a compact mapping system for Unmanned Ground Vehicles (UGVs); (c)

a discussion about the potential for autonomous digital twin creation in construction and
1Portions of this appendix were previously published in (M. A. Vega-Torres & Pfitzner, 2023)
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identification of the challenges that need to be addressed for successful implementation.

These contributions support advancing the use of robotics and mapping technologies in

construction monitoring and management.

B.2 Background

Construction sites are complex environments that significantly differ from controlled indus-

trial production environments. Similar to other industries, the objective of construction is

that the on-site factors are controlled in such a manner that buildings can be produced in

an economically optimal way. Work, equipment, and resources are decisive in enhancing

the on-site production rate (Hofstadler, 2007). Due to the unique character of construction

sites, diverse, robust, and dynamic monitoring approaches are needed (H. Li et al., 2016).

The amount of research considering the application of robots in construction has grown

significantly in recent years (Halder & Afsari, 2023). Several companies have emerged

that try to adopt a robotic workforce to solve complex, labor-intensive problems. Or even

more importantly, to relieve humans of doing dangerous work.

Among the different types of UGVs (wheeled, legged, or tracked), only legged robots

provide the flexibility necessary to navigate by rugged hills or low-lying wet swamps,

which are usually present in construction sites.

One of the few studies concentrating on legged-robot-based progress monitoring demon-

strates how a robot can support safety management by tracking the location and size of

scaffolding (J. Kim et al., 2022). Until now, suitability, robustness, cost, and deployment

on construction sites of such legged robot systems are open topics.

Therefore, an analysis of the currently available quadruped-legged robots is conducted to

inspect their practicality for construction monitoring. Moreover, a case study for auto-

matic data acquisition with a self-developed mapping system is provided.

B.3 Quadruped robots

This section provides a comprehensive list (as of May 2023) of legged robots available in

the European market, together with their main characteristics and current prices. Due
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(a) A1 (b) Go1 (c) Aliengo

(d) Spot (e) B1 (f) ANYmal

Figure B.1: Currently in Europe available quadruped robots; as of May 2023.

to relevance and usability, robots heavier than 50 kg or smaller than 40 cm tall are not

included.

B.3.1 Available quadruped robots

Figure B.1, tables B.1, and B.2 present the list of robots analyzed in this research together

with their main properties. The table is organized by robot weight in ascending order.

Some indices were calculated similarly as by Yao et al. (2021).

Table B.1: Comparison of quadruped robots. Rel. Year: Release Year; BL: body length
(m); H: robot height while standing (m); W: robot weight (kg) without additional payload;
PL: max payload (kg); PLC: payload capacity (%) payload/weight; IP: Ingress protection.

Name Company Rel.
Year

BL
(m)

H
(m)

W
(kg)

PL
(kg)

PLC
(%) IP

A1 Unitree 2020 0.50 0.40 12 7 58.3 -
Go1 Unitree 2021 0.65 0.40 12 52 41.7 -
Aliengo Unitree 2019 0.65 0.60 20 13 65.0 -
Spot Boston Dyn. 2020 1.10 0.61 32 14 43.8 54
B1 Unitree 2021 1.10 0.67 50 40 80.0 68
ANYmal Anybotics 2019 0.93 0.89 50 23 46.0 67

2Some specifications say that the maximum payload of the Go1 Edu is 10 kg.
1All prices are for the German market as of May 2023.
2Some specifications say that the maximum speed of the Go1 Edu is 5 m/s.
3Assuming a payload of 10 kg and a speed of 5 m/s as for the Go1 Edu, this value increases to 646

Eur.
4The price of the Go1 depends on the version: Air, Pro, Edu, etc.
5This price of the ANYmal is not from an official seller, it might be wrong. Official prices are not

disclosed to the public.
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Table B.2: Continuation of Table 1. V: maximum speed (m/s); NS: normalized speed, max-
imum speed/body length; NWC: normalized work capacity, normalized speed×payload
capacity; SS: maximum stairways step height (cm) recommended by the manufacturer; S:
slope (in degrees) it can climb on a flat surface; T: run time range (h) with one battery
provided by fabricator; M: external link to more information; Min P/Max P: minimum
and maximum price (€) in Germany.

Name V
(m/s) NS NWC SS

(cm)
S

(deg) T (h) M Min P 1

(Tsd. €)
Max P

(Tsd. €)
A1 3.3 6.6 385.0 12 35 1 - 2.5 13.5 -
Go1 3.72 5.7 239.03 12 35 1 - 2.5 5.6 23.14

Aliengo 1.5 2.3 150.0 18 25 2.5 - 4.5 44.4 -
Spot 1.6 1.5 63.6 22 30 1.5 75.0 -
B1 1.8 1.6 130.9 20 35 2 - 4 70.0 86.9
ANYmal 1.3 1.4 64.3 25 30 2 150.05 -

It is necessary to mention that companies like Tencent, Xiaomi Cyberdog, and Deep-

Robotics were not considered here due to the current unavailability of their products in

Europe.

B.3.2 Suitability analysis for construction site monitoring

Depending on diverse on-site conditions, one robot can be more suitable than another.

Table B.1 shows that it is possible to separate the listed robots into two groups: the

ones with and those without water (ingress) protection. Assuming that the robot will not

be exposed to heavy rain or submerged in the water, an ingress protection (IP) of 54 is

suitable for construction site monitoring. Only the robots with Ingress Protection (IP) of

67 or above can be exposed to heavy rain or submerged in the water.

For the use case presented here, the payload is not a critical point. Considering that a

mapping system weighs less than five kilograms, every robot listed here can carry this

payload.

The maximum stairway step height is decisive when developing a completely autonomous

system for construction monitoring on multiple stories. In general, high staircase steps

remain a challenge. While some studies have been trying to push to the maximum limits of

the capabilities of different robots, like the A1 (R. Yang et al., 2023), these attempts still

need to improve stability. Assuming a standard step size of 19 cm, which is not guaranteed
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to have during the construction phase, only the Spot, B1, and ANYmal robots would be

suitable candidates.

Another essential aspect to consider is the weight of the robot when the robot needs to

be repositioned manually. Since specific robot dogs are significantly heavier, at least two

people are required to carry the Spot, B1, and ANYmal robots.

The Normalized Work Capacity (NWC) considers the robots’ maximum speed, body

length, and payload. Among the compared robots, the A1 archives the highest NWC.

However, considering the maximum specifications of the Go1 Edu, having an NWC of 646,

five times more than every IP-protected robot.

The index suggests that these robots are suitable choices for quickly and effectively carrying

out the scanning process. Assuming the robot’s maximum step size limitation, a possible

solution is to place a robot for each level on the construction site.

As Table B.2 indicates, robot dogs’ battery capacities averages are at 2.25 hours, which

represents a limitation for scanning large on-site environments. Battery capacities depend

on the use case and, therefore, must be tested thoroughly on-site.

Based on the analysis presented in this section, the Go1 Edu robot emerges as a good

trade-off between the requirements of the proposed use case and price. Its impressive

normalized work capacity of 646, which is five times higher than any IP-protected robot,

indicates that the Go1 Edu can efficiently perform the scanning process. Moreover, when

considering the maximum step size limitation, deploying a Go1 Edu robot on each level of

the construction site can provide a potential solution for effective and timely monitoring.

B.4 Data acquisition process

Among the different current available legged robots presented, the case study was con-

ducted with the Go1 Edu from the Unitree company.

Since it has four legs and 12-DoF, this robot can handle various terrains, even stairs up

to 12 cm in height. It comes with a drive system, which enables a speed of up to 3.7 m/s

(or 11.88 km/h). In addition, its power management system allows an operating time of

up to 2.5 hours. Furthermore, the motors have a torque of 23.70 N�m at the body/thighs
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and 35.55 N�m at the knees, allowing jumps or backflips. The Go 1 Edu has three nano

processors, one Raspberry Pi, five RGB-D cameras, and four ultrasonic sensors. Moreover,

it has a payload of up to 5 kg and comes with a research programming API.

As the main purpose is to leverage the capabilities of the robot for autonomous naviga-

tion and mapping, a mapping system that can be used independently of the robot was

developed. In this way, the system can also be operated as a handheld or over any other

robot.

B.4.1 Mapping system

Since having different sensor modalities contributes to achieving accurate pose estimation

and, therefore, a more accurate map acquisition, a system that integrates LiDAR, Camera,

and IMU sensors was developed. For the proposed robot-independent system, the ASRock

4x4 BOX-5800U mini personal computer equipped with 32 GB of RAM, together with two

batteries XTPower XT-27000 DC-PA, were selected.

The selection of the PC prioritized two key criteria: high CPU performance and low

power consumption. High CPU performance was essential for handling the intensive multi-

threaded computations required by SOTA SLAM systems, while low power consumption

was crucial to support efficient onboard processing.

Moreover, if the PC is not used for mapping (while connected to the system), it is also

very suitable to be used as a standard workstation once connected to a display, keyboard,

and mouse.

Figure B.2 shows the Go1 robot dog equipped with the developed mapping system3 and

the schematic connection between the different components.

B.4.2 Mounting System

The mounting system for attaching the sensor to the robot was designed with three primary

requirements in mind. First, it needed to maintain a low center of gravity to ensure the

robot’s stability was not compromised. Second, the design aimed to minimize material

usage, keeping the system lightweight (under 5 kg) and portable for both the robot and
3The 3D parts of this system are accessible here (M. A. Vega-Torres & Borrmann, 2024)
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Figure B.2: Developed mobile mapping system. (a) The system is placed over the Go1
robot, with the help of the custom-designed mounting system which allows the montage
on any robot with a flat surface and also allows the usage of the system as a handheld; (b)
corresponding connection and data transfer diagram of the mapping system
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handheld operation. Third, the rear section of the robot’s loin was intentionally left

unobstructed to ensure access to the robot’s plugs, which can be utilized in an extended

version of the system, for example, for autonomous navigation.

The system consists of twelve custom-designed 3D-printed components, two metal Maker-

Beams, and various screws and inserts. Its modular design not only facilitates easy main-

tenance but also allows for quick replacement of individual parts if they become damaged,

enhancing the system’s durability and flexibility.

Moreover, the shape of the different parts considers the system’s possible usage above other

robots (with a flat surface) or as a handheld system. To use it as a handheld system, one

can easily separate the LiDAR and camera and add them to a handle, and the mini-PC

and battery could be placed on a backpack.

B.4.3 Acquisition process

For the data acquisition process, the next steps were followed:

1. All the sensors and mini-PC are connected to the power delivery;

2. A remote connection with the mini-PC through a remote desktop application is

established;
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(a) Robots view using object detection to
understand the environment.

(b) Point cloud reconstructed from the mea-
surements of the sensors over the robot with
an SLAM system.

(c) Bird-view of the robot and construction worker detected by the UAV’s camera.

Figure B.3: Real-world on-site experiments with the robot dog.

3. The Software Development Kit (SDK) of each sensor is launched using nodes of the

ROS;

4. A synchronization process between the images and the LiDAR data allows the record-

ing of LiDAR scans and camera images with the same time stamps at 10 Hz of

frequency.

5. A SLAM system, specifically an enhanced version of FAST-LIO (W. Xu et al., 2022)

with loop closure capabilities, is leveraged to create 3D maps of the environment in

real-time.

The data acquisition was conducted on a building construction site within the Munich

area, covering a total area of 12.500 square meters. Figure B.3b illustrates the resulting

3D point cloud.

The acquired data consist of sequential images, LiDAR scans, and IMU measurements.
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While total autonomy is still in development, a BIM model can be leveraged to navigate

the robot autonomously in controlled environments using the ROS navigation stack as

explained in (M. A. Vega-Torres, Braun, & Borrmann, 2022).

B.4.4 Analysis of acquired data

Once the 3D data is acquired, it can subsequently be aligned, corrected, and analyzed with

the support of a BIM model, as explained in (M. A. Vega-Torres, Braun, & Borrmann,

2024b; M. A. Vega-Torres, Ribic, et al., 2024; M. A. Vega-Torres et al., 2023). After

this process, all the data, even if they were acquired at different time stamps, should

be in the same coordinate system. This means that the camera images, as well as the

LiDAR scans, should have known poses aligned with the BIM model. Further, automatic

semantic enrichment of 3D point cloud is possible with the method proposed here (M. A.

Vega-Torres, Braun, Noichl, et al., 2022). This method would allow the detection of cranes,

scaffolding, and formwork, which are elements that are very often present on construction

sites.

On the other hand, the gained imaged data can be processed further by object detection

pipelines and linked to other components in the construction environment, as explained

more in detail here (Pfitzner et al., 2023). An example image from the robot’s view with

a detected crane is shown in figure B.3a. In this case, the robot dog extends SOTA

monitoring methods for indoor areas, which are not covered by crane cameras or UAVs

(Collins et al., 2022). Considering the unsolved imperfections of current digital twins

aiming to cover the entire construction site (Schlenger et al., 2023), the robot dog presents

a promising data acquisition extension.

B.5 Discussion

In general, to bring robot dogs, specifically the Go1 robot to construction sites, the follow-

ing challenges should be overcome. For manual operation, the reliability of the Go1 robot

dog was demonstrated to be sufficient in general. However, when aiming at autonomous

navigation, small problems appeared specifically when launching software updates. Even
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though full customer support is provided, the issues proved to be time-consuming, indi-

cating the prototypical state of the robot.

On the construction site, many moving objects and a dynamically changing environment

are encountered. These complex conditions lead to inaccuracies in the mapping process,

which in turn can cause issues for the robot’s autonomous localization and navigation.

Furthermore, due to the presence of high stairway steps or significant slopes, some areas

were not reachable for the robot at all and required carrying the robot. Nonetheless, in

these cases, the lighter weight of the Go1 compared to other robot dogs proved to be

advantageous.

As most of the construction site is outside, the robot dog has to face diverse temperatures,

dust, and rain conditions. Unfortunately, the Go1 lacks adequate resistance to these

conditions, thereby impeding the ability to conduct further experiments in harsh weather

conditions.

The battery capacity of the robot dog showed a noteworthy limitation. After around only

30 minutes of exhaustive use, the robot dog’s battery was almost empty. Currently, the

Go1 cannot be charged automatically; this requires manual effort. Specifically, at a large

construction site like the presented one, comprehensive autonomous scanning can become

an issue, considering the limited battery capacity.

At the current state of development of robot dogs, semi-autonomous employment of a

quadruped robot is feasible when fulfilling the following requirements:

1. Comprehensive and reliable 3D BIM models or 3D maps must be available to ensure

autonomous localization and navigation.

2. Major changes to the construction site must continuously be updated on the 3D

map.

3. The deployment of the robot dog should be handled level-wise, avoiding as many

barriers as possible.

4. Precise and fast path planning algorithms are required to allow the autonomous

navigation of the robot.
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5. The manufacturers should significantly improve the battery capacity, and a method

for autonomous charging should be employed.

B.6 Conclusion

This study explored the practicality of employing the currently available robot dogs in

construction sites, with a specific emphasis on their effectiveness in enabling data acquisi-

tion.

In addition, a real-world experiment on a large-scale construction site using a quadruped

robot equipped with a self-developed mapping system was conducted.

It is possible to conclude that robot dogs are suitable for scanning construction sites on a

frequent basis, specifically indoor environments. Robot dogs can extend current monitor-

ing solutions by providing valuable semantic and geometric data, facilitating the creation

of a digital twin. However, the following limitations must be addressed prior to a feasi-

ble deployment: their limited battery capacity, their lack of adaptability to dynamic and

harsh environments, and their prototypical condition. It is arguable that the deployment

of multiple robot dogs can overcome some of the current limitations. In summary, this

contribution demonstrates that robot dogs can be a valuable tool for monitoring com-

plex construction environments in the future, specifically when technical improvements

diminish their limitations.
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