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Abstract: We study symmetric minimal surfaces in the three-dimensional Heisenberg group Nil
3
using the

generalized Weierstrass type representation, the so-called loop group method. In particular, we will present

a general scheme for how to construct minimal surfaces in Nil
3
with non-trivial geometry. Special emphasis

will be put on equivariant minimal surfaces. Moreover, we will classify equivariant minimal surfaces given

by one-parameter subgroups of the isometry group Iso◦(Nil
3

) of Nil
3
.
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In every class of surfaces those with a large group of symmetries have usually particularly nice properties.

Themost well known examples are rotationally invariant surfaces, namely surfaces of revolution in Euclidean
3-space R3

. More generally, surfaces in R3

invariant under helicoidal motion have been studied extensively.

In particular, do Carmo and Dajczer proved that the associated family of a non-zero constant mean curvature

(CMC in short) surface of revolution consists of helicoidal surfaces of constant mean curvature [12].

As is well known, the constancy of mean curvature for surfaces in R3

is equivalent to the harmonicity

of the Gauss map. Based on this fundamental connection between CMC surfaces and harmonic maps, we

can construct CMC surfaces via the loop group theoretic Weierstrass type representation of harmonic maps

(now referred as to the generalized Weierstrass type representation) due to Pedit, Wu and the first named

author of the present paper [27]. From the harmonic map point of view, we notice the fundamental fact that

the Gauss map of helicoidal CMC surfaces in R3

, especially CMC surfaces of revolution in R3

, are symmetric

harmonicmaps into the unit 2-sphereS2

. Haak [35] gave an alternative proof of the doCarmo-Dajczer theorem

by using the generalized Weierstrass type representation. The general theory of symmetry of CMC surfaces

in R3

is well organized [17, 18]. It is known that rotationally symmetric harmonic maps of Riemann surfaces

are characterized as those with a many surface classes. For example, in our previous paper [21], the present

authors established a generalizedWeierstrass type representation for minimal surfaces in the 3-dimensional

Heisenberg group Nil
3
which is one of the model spaces of Thurston geometries [46]. In this paper we study

symmetric minimal surfaces in Nil
3
via the generalized Weierstrass type representation established in [21].

To illustrate the methods discussed in this paper, we present here a brief account of the geometry of

symmetric minimal surfaces in the Heisenberg group.
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• In 1995, Caddeo, Piu and Ratto studied rotational minimal surfaces in Nil
3
. On the other hand, in 1999,

Figueroa, Mercuri and Pedro studied helicoidal CMC surfaces as well as translation invariant CMC sur-

faces (including minimal ones) in Nil
3
.

• Berard and Cavalcante studied the stability of rotational minimal surfaces [2].

Since we only know few examples of symmetric minimal surfaces above constructed using exclusively

methods of classical differential geometry, it is difficult to describe the moduli spaces of minimal surfaces

with symmetry in Nil
3
. To describe a moduli space, one needs first a systematic construction of symmetric

minimal surfaces.

For this purposewe use the generalizedWeierstrass representation (loop groupmethod) forminimal sur-

faces in Nil
3
. The starting point of the generalized Weierstrass representation is to connect minimal surfaces

in Nil
3
and harmonic maps into the hyperbolic 2-spaceH2

as well as loops of flat connections (see Appendix

A of the present paper).

Those interactions between minimal surfaces, harmonic maps and loops of flat connections are derived

from the following important discoveries:

• In 2009, Fernandez and Mira found a correspondence between minimal surfaces in Nil
3
and (non-

maximal) spacelike CMC surfaces in Minkowski 3-space L3

(see [30]).

• In 2005, Berdinsky and Taimanov gave a spinor representation and nonlinear Dirac equations of the

surfaces in Nil
3
[4]. Berdinski [3] obtained a system of matrix valued functions which has spinor field

solutions to the nonlinear Dirac equations given in [4] (see Appendix A.4). In case of minimal surfaces,

Berdinsky’s system describes harmonic maps into the Riemannian symmetric spaceH2

= SU
1,1

/U
1
.

It is crucial to understand the serious differences between Euclidean CMC surface theory and minimal

surface theory in Nil
3
. In the Euclidean case, the Gauss map of a CMC surface is a harmonic map into the

unit 2-sphere S2

= SU
2
/U

1
. Next, the universal covering group of the Euclidean motion group is expressed

as SU(2) ⋉ su(2). Thus the special unitary group SU(2) acts isometrically on both S2

and R3

.

On the other hand, the normal Gauss map of a minimal surface in Nil
3
takes value in the hyperbolic 2-

spaceH2

= SU
1,1

/U
1
. However, the identity component of the isometry group of Nil

3
is Nil

3
⋊U

1
. Thus there

is no isometric action of SU
1,1

on Nil
3
. This difference means that we can not associate to each g ∈ SU

1,1
an

isometry of Nil
3
.

From a symmetry point of view, we realize that one-parameter subgroups of SU
1,1

act on normal Gauss

maps as isometries, but not on the corresponding minimal surfaces in Nil
3
.

Thus we can not apply the general theory of symmetric harmonic maps [14, 17, 18] to minimal surfaces in

Nil
3
.

To overcome these difficulties, in the present paper, we investigate first the action of isometries on min-

imal surfaces in Nil
3
and their effects on the normal Gauss maps. In addition we describe these actions as

monodromy of extended frames. This enables us to study minimal surfaces with symmetry via loop group

method. Based on these fundamental facts, we establish a general theory of minimal surfaces in Nil
3
with

symmetry. In this paper we consider exclusively minimal surfaces in Nil
3
without vertical points. In particu-

lar, we consider only symmetries associated with transformations in the identity component of SU
1,1

.

This is the first time that the loop group method contributes to the study of minimal surfaces in 3-

dimensional homogeneous Riemannian spaces of non-constant curvature. This paper is organized as follows.
In Section 1,we startwith introducing thenotion of symmetry for surfaces inNil

3
.We give a fundamental char-

acterization of symmetric minimal surfaces in Nil
3
in terms of the property of corresponding normal Gauss

maps (Theorem 1.5). Theorem 1.5 clarifies the serious differences betweenminimal surface theory in Nil
3
and

that of CMC surfaces in Euclidean 3-space. Based on Theorem 1.5, we will discuss how to construct minimal

surfaces in Nil
3
with non-trivial topology via the generalizedWeierstrass type representation [21]. Wewill give

a detailed study of the potentials invariant under all deck transformations. One of the key clues of these stud-

ies is the Iwasawa decomposition of the loop group of SU
1,1

. Because of the non compactness of SU
1,1

, the

Iwasawa decomposition of loop group is much involved, see [5, 21, 41]. Note that in case of CMC surfaces in
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R3

the key clue is the loop group of the compact simple Lie group SU
2
. The non-compactness of SU

1,1
causes

case by case studies on monodromy matrices. To obtain detailed information on the behavior of extended

frames under deck transformations, we consider meromorphic extensions of minimal surfaces. As a result

we obtain closing conditions for minimal surfaces with symmetry (Theorem 2.11, Corollary 2.12).

In Section 3,wewill briefly discuss the construction ofminimal cylinders by amethodwhich is analogous

to the one introduced in [23] for CMC cylinders in Euclidean 3-space. In particular, wewill show the existence

of such cylinders which are not equivariant, see Example 3.1. In [24], we will discuss minimal cylinders in

Nil
3
detail. For later use, in Section 4, we recall the classification of homogeneous minimal surfaces in Nil

3
.

In the final section, we start with an explicit description of one-parameter groups of isometries on Nil
3
.

Lemma 5.2 and Theorem 5.3 give a complete description of one-parameter groups of isometries of Nil
3
(com-

pare with [33]). These results themselves are valuable for the Riemannian geometry of Nil
3
. By our results, we

can arrive at the classification of equivariant minimal surfaces in Nil
3
(Corollary 5.6). It turned out that equiv-

ariant minimal surfaces in Nil
3
(in the sense of Definition 5.1) are exhausted by minimal helicoidal surfaces

and minimal translation invariant surfaces. Our goal of the present paper is to give a construction method

for equivariant minimal surfaces in Nil
3
via the generalized Weierstrass type representation. To this end,

we need to determine the potentials (data of generalized Weierstrass type representation) for equivariant

minimal surfaces. For the detailed analysis of one-parameter groups of automorphism on Riemann surfaces

and compatible actions of one-parameter groups of isometries of Nil
3
, we will introduce the notion of R-

equivariant minimal surface and S1

-equivariant minimal surface in Nil
3
. We will determine potentials for

those equivariant minimal surfaces. We will finally give a method of construction of all equivariant minimal

surfaces by virtue of the generalizedWeierstrass type representation. An explicit construction of equivariant

minimal surfaces will be done in a future publication [43].

Throughout this paper we will assume that all Riemann surfaces occurring are connected and denote by

S2

, H2

, C the unit sphere in R3

, the unit disk (sometimes equivalently replaced by the upper half-plane H)
and the complex plane, respectively. Since there does not exist any compactminimal surface inNil

3
[32], each

Riemann surface occurring in this paper will haveH2

or C as its universal cover.

As we have pointed out before, in this paper we use the generalized Weierstrass type representation es-

tablished in [21]. For the convenience of the reader we have added a fairly extensive Appendix. Here we recall

results of [21] which are of relevance to this paper. But we also expand the discussion of loc.cit., where it is

useful for the goals of this paper. In Appendix Awe recall the notation and the results of Sections 1–5 of [21]. In

Appendix B we describe in some detail the various realizations of the normal Gauss map in the unit diskH2

,

the upper hemisphere S2

+
, and the hyperboloidQ2

(a model of the hyperbolic 2-space). This clarifies the dis-

cussion of loc.cit. We also introduce the notion of a general extended frame, which is contained implicitly in

loc.cit, but is needed explicitly for the investigation of symmetries in this paper. Appendix C presents details

beyond loc. cit relating to the representation of extended frames of harmonic maps into any of the three real-

izations ofH2

listed above, and also to the validity of Theorem 6.1 of loc. cit under weaker assumptions. The

latter actually presents the Sym formula in the way needed for loc. cit and this paper. We thus have corrected

the phrasing of the statement of Theorem 6.1, loc. cit. The proof was given under the weaker assumptions

already in loc. cit. In Appendix D we prove that essentially all (anyway real analytic) geometric matrix func-

tions occurring in this paper can be extended to globally meromorphic matrix functions in two independent

complex variables. This is needed in Section 2.3.1 of this paper. Finally, the last Appendix E gives a geometric

meaning to the linear isomorphism from su
1,1

to nil
3
, used in the proof of the Sym formula Theorem 6.1. of

[21].

1 Minimal surfaces with symmetries in Nil3
In this section, we discuss symmetries of minimal surfaces in the 3-dimensional Heisenberg group Nil

3
. For

fundamental properties of the homogeneous Riemannian space Nil
3
, we refer to our previous paper [21] or
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to Appendix A.1. Since there does not exist any compact minimal surface (without boundary) in Nil
3
, we will

discuss in this paper exclusively non-compact Riemann surfaces.

A symmetry of some surface S in some (metric) space N is an isometry ρ of N which maps S onto itself:
ρ(S) = S. In this paper we consider the case, where ρ is an orientation preserving isometry of Nil

3
. It turns out

(see Theorem5.9) that in some cases a symmetry is implementedby apair ofmaps (γ, ρ) such that theminimal

surface f : R→ Nil
3
satisfies f (γ.p) = ρ.f (p) for all p ∈ R, with some Riemann surface R and automorphism

γ ∈ Aut(R). Thus we start from the following definition of symmetric surfaces in a Riemannian manifold. We

will denote by Iso(N) the group of isometries of N and by Iso◦(N) its connected identity component.

Definition 1.1. Let f : R→ N be a map from a Riemann surface R into a Riemannian manifold N. Moreover,
let γ and ρ be elements of Aut(R) and Iso(N), respectively. Then f is symmetric with respect to (γ, ρ) ∈ Aut(R)×

Iso(N) if

f ◦ γ = ρ ◦ f (1.1)

holds.

1.1 Navigating between a Riemann surface and its universal cover

We will frequently consider a conformal immersion f : R → Nil
3
from some Riemann surface R into the

3-dimensional Heisenberg group Nil
3
and its lift

˜f : R̃→ Nil
3
to the universal cover R̃ of R. Then

˜f = f ◦ πR,

where πR : R̃→ R denotes the natural projection.

Following the procedure of [21] we need to consider a matrix valued function Φ, the generating spinors

ψj and an extended frame F for the discussion of f and the corresponding objects, capped with a “∼” for ˜f
(see Appendix A.2).

Note that extended frames are always defined on the universal cover of a given Riemann surface, whence

we always drop the superscript “∼” for extended frames. Then we obtain, see also the appendix A.2,

f −1∂f = Φ =

3∑
k=1

ϕkek

with respect to the natural basis {e
1
, e

2
, e

3
} of Lie algebra nil

3
of Nil

3
and the corresponding representation

for
˜f . Here ∂ and ¯∂ are defined as

∂ =

1

2

(
∂
∂x − i

∂
∂y

)
,

¯∂ =

1

2

(
∂
∂x + i ∂∂y

)
for a conformal coordinate z = x + iy. Hence

˜Φ = Φ ◦ πR and
˜ϕj = ϕj ◦ πR

for j = 1,2,3. It will be convenient to abbreviate

f (z, z̄) = (f
1

(z, z̄), f
2

(z, z̄), f
3

(z, z̄))

by f (z) = (f
1

(z), f
2

(z), f
3

(z)). Then

f (z)

−1∂f (z) =

d
dt
∣∣∣
t=0

(
f (z)

−1f (z + t)
)

(1.2)

=

(
∂f

1
(z), ∂f

2
(z), ∂f

3
(z) +

1

2

(−f
1

(z)∂f
2

(z) + f
2

(z)∂f
1

(z))

)
,

in view of the fact that the product in Nil
3
is given by the formula (see also appendix A.1):

(x
1
, x

2
, x

3
) · (u

1
, u

2
, u

3
) =

(
x

1
+ u

1
, x

2
+ u

2
, x

3
+ u

3
+

1

2

(x
1
u

2
− x

2
u

1
)

)
. (1.3)
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Now let us consider the generating spinors ψ
1

(dz)

1/2

and ψ
2

(dz̄)

1/2

of the conformal immersion f : R→ Nil
3

(see [21, Section 3] or appendix A.2).

We need to express
˜ϕj and ϕj by the ˜ψj and ψj respectively. These functions are uniquely defined up to

a sign and from the defining equation we obtain
˜ψ2

j = ψ2

j ◦ πR. Since the choice of sign has no effect on the
discussion of minimal surfaces in Nil

3
, without loss of generality we choose the sign such that

˜ψj = ψj ◦ πR.

Next we discuss the relation between the normal Gauss maps of f and ˜f . The left translated unit normal of f
in nil

3
to the origin of a conformal immersion f : R → Nil

3
takes value in the hyperboloid model Q2

of the

hyperbolic 2-spaceH2

embedded in theMinkowski 3-spaceL3

, see Appendix B.1 or [21]. Via its stereographic

projection ofQ2

ontoH2

, we obtain a map g into the Poincaré diskH2

and call it the normal Gauss map.
Since the normal Gauss maps g and g̃ of f and ˜f are expressed by the corresponding generating spinors

(which have the relation stated above) it is clear that we also have

g̃ = g ◦ πR.

Consideringnowamap f with a symmetry (γ, ρ), that is, satisfying equation (1.1),weobtain the corresponding

equation

˜f (γ̃.z) = ρ.˜f (z),

where γ̃ denotes the automorphism of R̃ induced by γ.

1.2 The transformation behaviour of the generating spinors, the normal Gauss map
and the extended frame

First we recall from [21] that the isometry group of Nil
3
has two connected components. The identity com-

ponent acts by orientation preserving diffeomorphisms and the elements of the other connected component

reverse the orientation. In this paper wewill consider exclusively orientation preserving transformations and

therefore will only consider Iso◦(Nil
3

), the identity component of the isometry group Iso(Nil
3

) of Nil
3
. We re-

call that Iso◦(Nil
3

) is isomorphic to the the semi-direct productNil
3
⋊U

1
ofNil

3
andU

1
, Iso◦(Nil

3
)
∼
= Nil

3
⋊U

1
,

with the action:

((a
1
, a

2
, a

3
), eiθ).(x

1
, x

2
, x

3
) = (a

1
, a

2
, a

3
) · (cos θx

1
− sin θx

2
, sin θx

1
+ cos θx

2
, x

3
), (1.4)

where “ · ” denotes the product in Nil
3
defined by (1.3). Since Nil

3
⊂ Nil

3
⋊ U

1
is normal in Iso◦(Nil

3
) we can

write ρ as
ρ = ps,

where p ∈ Nil
3
and s = eiθ ∈ U

1
.

The Lie algebra iso(Nil
3

) of Iso◦(Nil
3

) is generated by four Killing vector fields

E
1

=

∂
∂x

1

−

1

2

x
2

∂
∂x

3

, E
2

=

∂
∂x

2

+

1

2

x
1

∂
∂x

3

, E
3

=

∂
∂x

3

and E
4

= −x
2

∂
∂x

1

+ x
1

∂
∂x

2

, (1.5)

respectively. The commutation relations are respectively

[E
4
, E

1
] = E

2
, [E

4
, E

2
] = −E

1
and [E

1
, E

2
] = E

3
.

Next we recall from Appendix A.2 of the appendix the notation: f −1∂fdz = Φdz on a simply connected do-

mainD that takes values in the complexification nilC
3
of the Lie algebra nil

3
. With respect to the natural basis

{e
1
, e

2
, e

3
} of nil

3
, we expand Φ as Φ =

∑
3

k=1

ϕkek and obtain (ϕ
1

)

2

+ (ϕ
2

)

2

+ (ϕ
3

)

2

= 0, since f is conformal.

Theorem 1.2. Let f : D→ Nil
3
be a minimal surface in Nil

3
and (γ, ρ) a symmetry of f . Writing ρ = ps, where

p ∈ Nil
3
and s = eiθ ∈ U

1
as above, we obtain for f ◦ γ the transformation formula

f (γ.z)

−1
ˆ∂f (γ.z) = (s.f (z))

−1

(s.ˆ∂f (z)) (1.6)
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=

(
cˆ∂f

1
− sˆ∂f

2
, s∂f

1
+ cˆ∂f

2
,

ˆ∂f
3

+

1

2

(−f
1

ˆ∂f
2

+ f
2

ˆ∂f
1

)

)
,

where ˆ∂ =

∂
∂(γ .z)

, c = cos θ and s = sin θ.

Proof. Recall that we will use the abbreviation f (z, z̄) = f (z). Now consider the equation ρ.f (z) = (ps).f (z)

and differentiate. By the formula for the action of ρ defined in (1.4), we obtain ˆ∂(ps.f (z)) = ps.(ˆ∂f (z)), where

ps.∂f denotes the action of ps ∈ Iso◦(Nil
3

) on the tangent bundle TNil
3

∼
= Nil

3
⋉ nil

3
. Hence

f (γ.z)

−1
ˆ∂f (γ.z) = (ρ.f (z))

−1
ˆ∂(ρ.f (z)) = (s.f (z))

−1

.p−1

.p.(s.ˆ∂f (z)),

thus

f (γ.z)

−1
ˆ∂f (γ.z) = (s.f (z))

−1

(s.ˆ∂f (z)).

Clearly, the right side only involves the “fiber rotation” given by θ. From (1.4), we obtain

s.(ˆ∂f
1
,

ˆ∂f
2
,

ˆ∂f
3

) = (cˆ∂f
1
− sˆ∂f

2
, sˆ∂f

1
+ cˆ∂f

2
,

ˆ∂f
3

),

where c = cos θ and s = sin θ. Thus in view of the formula given in (1.2), we obtain

(s.f )−1

(s.ˆ∂f ) =

(
−(cf

1
− sf

2
), −(sf

1
+ cf

2
), −f

3

)
· (cˆ∂f

1
− sˆ∂f

2
, sˆ∂f

1
+ cˆ∂f

2
,

ˆ∂f
3

)

=

(
cˆ∂f

1
− sˆ∂f

2
, sˆ∂f

1
+ cˆ∂f

2
,

ˆ∂f
3

+

1

2

{
−(cf

1
− sf

2
)(sˆ∂f

1
+ cˆ∂f

2
) + (sf

1
+ cf

2
)(cˆ∂f

1
− sˆ∂f

2
)

})
=

(
cˆ∂f

1
− sˆ∂f

2
, sˆ∂f

1
+ cˆ∂f

2
,

ˆ∂f
3

+

1

2

(−f
1

ˆ∂f
2

+ f
2

ˆ∂f
1

)

)
.

This completes the proof.

Corollary 1.3. Retaining the notation used above we obtain the following formula :

(f ◦ γ)

−1
ˆ∂(f ◦ γ) =

(
ˆϕ

1
,

ˆϕ
2
,

ˆϕ
3

)
=

(
ˆψ

2

2

−
ˆψ2

1
, i
(

ˆψ
2

2

+
ˆψ2

1

)
, 2

ˆψ
1

ˆψ
2

)
,

where ˆ∂ =

∂
∂(γ .z)

, ˆϕj , (j = 1, 2, 3) and ˆψj , (j = 1, 2) are the components of (f ◦γ)

−1
ˆ∂(f ◦γ) and the corresponding

spinors respectively. From the last section we know f −1∂f = (ϕ
1
, ϕ

2
, ϕ

3
), hence(

ˆϕ
1

ˆϕ
2

)
=

1

∂(γ.z)

(
c −s

s c

)(
ϕ

1

ϕ
2

)
.

Moreover,
ˆψ

1
= ϵeiθ/2ψ

1
(∂(γ.z))

−1/2 and ˆψ
2

= ϵeiθ/2ψ
2

(∂(γ.z))

−1/2

,

with ϵ = ±1.

Proof. It only remains to prove the last two claims. To verify this we observe that from the matrix equation

we infer 2
ˆψ

2

2

=
ˆϕ

1
− i ˆϕ

2
= ∂(γ.z)

−1

(cϕ1
− sϕ

2
− isϕ

1
− icϕ

2) = 2∂(γ.z)

−1

(c − is)ψ
2

2

2
ˆψ2

1
= −

ˆϕ
1
− i ˆϕ

2
= −(∂(γ.z))

−1

(cϕ1
− sϕ

2
+ isϕ

1
+ icϕ

2) = 2(∂(γ.z))

−1

(c + is)ψ2

1

.

Thus we obtain in view of the relations discussed in the previous subsection:

ˆψ
1

= ϵ
1
eiθ/2ψ

1
(∂(γ.z))

−1/2

and
ˆψ

2
= ϵ

2
eiθ/2ψ

2
(∂(γ.z))

−1/2

, (1.7)

with ϵj = ±1. The equation above for (s.f )−1

(s.∂f ) shows that the third component does not change with θ.
Therefore we have

ˆψ
1

ˆψ
2
∂(γ.z)

−1

= ψ
1
ψ

2
and ϵ

1
= ϵ

2
= ϵ = ±1 follows.
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As a consequence, the normal Gauss map satisfies the following transformation formula

g(γ.z) =

ˆψ
2

ˆψ
1

=

eiθ/2 ψ
2

e−iθ/2 ψ
1

= eiθg(z). (1.8)

This shows that g(γ.z) = R.g(z), that is,

Corollary 1.4. Retaining the notation above, the normal Gauss map has the transformation behaviour g ◦ γ =

R ◦ g, where R is the rotation about 0 ∈ H2 by the angle θ.

Next we consider an extended frame F of the minimal surface f in Nil
3
. By equation (B.2) we know that any

other extended frame
˜F of f is given by

˜F = AF for some A ∈ ΛSU
1,1σ such that A|λ=1

= id. Applying this to

ˆf = f ◦ γ we obtain in view of (1.7) the equation

F(γ.z, γ.z, λ = 1) = M(γ, λ = 1)F(z, z̄, λ = 1)k(γ, z, z̄) (1.9)

where

M(γ, λ = 1) = diag(ei θ2 , e−i θ2 ), k(γ, z, z̄) = diag


∣∣∣√∂(γ.z)

∣∣∣√
∂(γ.z)

,

∣∣∣√∂(γ.z)

∣∣∣√
∂(γ.z)

 ∈ U
1
, (1.10)

and in particular M(1, λ = 1) = id.

1.3 Characterizing symmetries of a minimal immersion by symmetries of its
associated normal Gauss map

In the theorem below we characterize symmetric minimal surfaces in Nil
3
by symmetric harmonic normal

Gauss maps. Note that the unit diskH2

is represented in the formH2

= SU
1,1

/U
1
as a Riemannian symmetric

space, where SU
1,1

acts by Möbius transformations and the base point is z = 0.

Theorem 1.5. Let R be a Riemann surface, f : R→ Nil
3
a minimal surface and g : R→ H2 the normal Gauss

map of f . Then the following statements hold:

(a) If f is symmetric relative to (γ, ρ), then g is symmetric relative to (γ, R), that is,

g ◦ γ = R ◦ g

holds, where R is a rotation about 0 ∈ H2 such that the angle of R is given by that of the fiber rotation of ρ.
(b) Conversely, if g is symmetric with respect to (γ, R) such that R is a rotation about0 ∈ H2, then f is symmetric

with respect to (γ, ρ), that is,
f ◦ γ = ρ ◦ f (1.11)

holds, where ρ is an element in Iso◦(Nil
3

) and such that the angle of the fiber rotation of ρ is given by that
of R.

Proof. Recall that we will use the abbreviation f (z, z̄) = f (z).

Part (a): The claim follows from (1.8).

Part (b): Let g : R→ H2

be the normal Gauss map of f and assume g(γ.z) = eiθg(z) = R.g(z) holds. Since

f is already defined onR, it is easy to see that it suffices to verify equation (1.11) on the universal cover. Hence

we can assume without loss of generality that R is simply-connected.

Let F be an extended frame of the minimal surface f as in (A.17) such that the immersion (Ξ
nil
◦ ˆf )|λ=1

obtained by inserting F into the Sym formula (C.3) at λ = 1 becomes the original minimal surface f . (Note
that such an extended frame exists by Theorem C.3.)
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Then the extended frame F of f satisfies

ˆF(z, z̄, λ) = F(γ.z, γ.z, λ) = M(γ, λ)F(z, z̄, λ)k(γ, z, z̄), (1.12)

where

M(γ, λ = 1) = diag(ei θ2 , e−i θ2 ), and in particular M(1, λ = 1) = id,

and k(γ, z, z̄) is a λ-independent U
1
-valued map, see also Proposition 2.1. So far, in the last equation, M and

k may not be defined uniquely. However, since the monodromy of g is a one-parameter group, the lift F, for
λ = 1, inherits the property of having a one-parameter group of monodromy matrices. As a consequence, the

matrix k is a crossed homomorphism, see also Section 2.1. The introduction of λ does not change k, whence
the monodromy matrix is a (λ-dependent) one-parameter group. From this the representation above follows

uniquely.

Now a straightforward computation shows that
ˆf changes by γ as

ˆf (γ.z) =

(
Ad(M)fL3 (z) + X

)o
+

(
Ad(M)

(
−

i
2

λ∂λ fL3 (z)

)
+

1

2

[X, Ad(M)fL3 (z)] + Y
)d

,

and thus

ˆf (γ.z)|λ=1
=

{
Ad(M)

ˆf (z) + Xo +

1

2

(
[X, Ad(M)fL3 (z)]

)d
+ Yd

}∣∣∣∣
λ=1

where X and Y are defined by

X = −iλ(∂λM)M−1

, and Y = −

i
2

λ∂λX = −

1

2

λ∂λ(λ(∂λM)M−1

),

respectively.¹ Note [X, Ad(M)fL3 (z)]

d
= [Xo , (Ad(M)fL3 (z))

o
]

d
and (fL3 (z))

o
= (

ˆf (z))

o
. Then we set

X|λ=1
= pE

1
+ qE

2
+ *E

3
=

1

2

(
* −q + ip

−q − ip *

)
,

and

Y|λ=1
= *E

1
+ *E

2
+ rE

3
=

1

2

(
−ir *

* ir

)
,

where the basis Ei(i = 1, 2, 3) was defined in (B.1), p, q, r are some real constants. Altogether this shows

ˆf (γ.z)|λ=1
=

{
Ad(M)

ˆf (z) +

1

2

(
[Xo , (Ad(M)fL3 (z))

o
]

)d
+ T
}∣∣∣∣

λ=1

where

T =

1

2

(
−ir −q + ip

−q − ip ir

)
,

Hence
ˆf and thus the resulting minimal surface f = (Ξ

nil
◦ ˆf )|λ=1

in Nil
3
is symmetric with respect to (γ, ρ),

that is,

f (γ.z) = ρ.f (z),

holds, where ρ is given by ρ = ((p, q, r), eiθ). The angle of fiber rotation is clearly given by that of R.

Remark 1.6.

1 X and Y are slightly different from Xλ and Yλ defined in [21], that is, X = −Xλ and Y =

1

2

Yλ, respectively.
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1. Part (a) in Theorem 1.5 is due to Daniel [11] in the case where either ρ is a translation by an element of

Nil
3
or a rotation.

2. The proof of part (a) above works for general ρ ∈ Iso◦(Nil
3

) and part (b) proves the converse of part (a).

3. We would like to point out that part (a) actually holds for any surface in Nil
3
. In the proof of part (b) we

used the Sym-formula for minimal surfaces. Thus at this point we do not know whether it holds for any

surface in Nil
3
, or not.

2 Minimal surfaces in Nil3 from non-simply-connected surfaces
In this section we will discuss how one can construct minimal surfaces in Nil

3
which are defined on a non-

simply-connected Riemann surfaceR. The description will use potentials as discussed in [21]. We will discuss

the corresponding closing conditions of the monodromy representation of the fundamental group π
1

(R).

There are naturally two parts in this discussion.

2.1 Invariant potentials

Let R be an arbitrary connected non-compact Riemann surface and πR : R̃ → R its universal cover. Let

f : R→ Nil
3
be aminimal surface. Then also

˜f : R̃→ Nil
3
, defined by

˜f = f ◦πR is a minimal surface. Clearly,

this surface satisfies
˜f ◦ τ =

˜f for all τ ∈ π
1

(R), where the latter group is considered as the group of deck

transformations ofR acting on R̃. For aminimal surface in Nil
3
we have always considered the corresponding

normal Gaussmap. In the present situation we obtain two normal Gaussmaps, g : R→ H2

for f and g̃ : R̃ :→
H2

for
˜f . They are related by g̃ = g ◦ πR. Let ˜F denote the extended frame of g̃. (For more on the relation

between the surface and its lift to the universal cover, see Section 1.1.)

Hereafterweuse loop groups for our study.We refer to AppendixA.5 for fundamental facts on loop groups

used frequently in this paper.

Proposition 2.1. For any extended frame ˜F of g̃ and for every τ ∈ π
1

(R), there exists some diagonal matrix
˜k(τ, z, z̄) in U

1
and M(τ, λ) taking values in ΛSU

1,1σ such that

˜F(τ.z, τ.z, λ) = M(τ, λ)
˜F(z, z̄, λ)

˜k(τ, z, z̄) and M(τ, λ = 1) = id . (2.1)

Proof. Since f is symmetric with respect to (τ, id), (1.9) can be rephrased as

˜F(τ.z, τ.z, λ = 1) = M(τ, λ = 1)
˜F(z, z̄, λ = 1)

˜k(τ, z, z̄) and M(τ, λ = 1) = id .

Therefore

˜F(τ.z, τ.z, λ) = M(τ, λ)
˜F(z, z̄, λ)

˜k(τ, z, z̄, λ)

follows, where M and
˜k take values in ΛSU

1,1σ and U
1
, respectively. To show

˜k is independent of λ, look at
the Maurer-Cartan form α̃λ of ˜F. Then the Maurer-Cartan forms of

˜F(τ.z, τ.z, λ) and
˜F(z, z̄, λ) have the same

λ distribution. Thus ˜k is independent of λ. Therefore (2.1) holds.

Note that we also use τ for the induced action of τ on R̃ and
˜k(τ, z, z̄) satisfies the “crossed-homomorphism”

property:

˜k(µτ, z, z̄) =
˜k(τ, z, z̄)

˜k(µ, τ.z, τ.z).

Then we have the following theorem.

Theorem 2.2. Every crossed homomorphism ˜k(τ, z, z̄) occurring above is a “co-boundary”, that is, it can be
written in the form

˜k(τ, z, z̄) =
˜k

0
(z, z̄)

˜k−1

0
(τ.z, τ.z),
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where ˜k
0
is a real-analytic U

1
-valued function. In particular, the frame ˆF =

˜F˜k
0
satisfies ˆF(τ.z, τ.z, λ) =

M(τ, λ)
ˆF(z, z̄, λ) for τ ∈ π

1
(R). As a consequence, for every minimal surface in Nil

3
there exists a frame de-

fined on R. More precisely,
ˆF(τ.z, τ.z, λ = 1) = M(τ, λ = 1)

ˆF(z, z̄, λ = 1)

for τ ∈ π
1

(R).

Remark 2.3. It is important to distinguish our extended frame built from the ψj’s in (A.17) from the above

“invariant frame”.

Before giving the proof we recall: Following the discussion for other surface classes, like CMC surfaces inR3

,

one will construct an invariant potential. For this one usually needs to do two steps. The first step follows the

Appendix of [27]:

Theorem 2.4 (Lemma 4.11 in [27]). If R is non-compact, then there exists some (real analytic) matrix function
˜V

+
: R̃→ Λ+

SL
2
Cσ such that the matrix ˜C defined by

˜C(z, λ) :=
˜F(z, z̄, λ)

˜V
+

(z, z̄, λ)

is holomorphic in z ∈ R̃ and λ ∈ C*.

Now
˜C inherits from its construction and from

˜F the transformation behaviour

˜C(τ.z, λ) = M(τ, λ)
˜C(z, λ)W

+
(τ, z, λ), (2.2)

where τ ∈ π
1

(R) andW
+

: R̃→ Λ+

SL
2
Cσ is holomorphic in z and λ. The second step is to prove the existence

of an invariant potential.

Theorem 2.5. The matrix function W
+
is a crossed homomorphism, that is, the identity

W
+

(τµ, z, λ) = W
+

(τ, µ.z, λ)W
+

(µ, z, λ)

holds for all τ, µ ∈ π
1

(R). Moreover, there exists some holomorphic matrix function P
+

: R̃ → Λ+

SL
2
Cσ such

that
W

+
(τ, z, λ) = P

+
(z, λ)P

+
(τ.z, λ)

−1

.

In particular, C =
˜CP

+
satisfies

C(τ.z, λ) = M(τ, λ)C(z, λ)

for all τ ∈ π
1

(R) and all λ ∈ C*.

Proof. Following the proof of Theorem 3.2 of [19] or the proof of Theorem 31.2 of [34] and using Theorem

8.2 in [6] which implies the vanishing of H

1

(D, Λ+

SL
2
Cσ), one obtains that the cocycle W

+
(γ, z, λ) splits in

Λ+

SL
2
Cσ.

From Theorem 2.5 we immediately have the following Corollary.

Corollary 2.6. The differential one-form η = C−1dC is invariant under π
1

(R) and is called an invariant holo-
morphic potential. In particular, eachminimal surface ofNil

3
can be constructed from some invariant holomor-

phic potential.

Proof of Theorem 2.2. Let ˜F be as in Proposition 2.1 and C as in Theorem 2.5. Then
˜F = CP−1

+

˜V−1

+
= CL

+
. Here

L
+
is real analytic. From the equation (2.1) we now obtain

C(τ.z, λ)L
+

(τ.z, τ.z, λ) = M(τ, λ)C(z, λ)L
+

(z, z̄, λ)
˜k(τ, z, z̄).

Since C(τ.z, λ) = M(τ, λ)C(z, λ) this equation yields the equation

L
+

(τ.z, τ.z, λ) = L
+

(z, z̄, λ)
˜k(τ, z, z̄)
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and this implies
˜k−1

0
(τ.z, τ.z) =

˜k−1

0
(z, z̄)

˜k(τ, z, z̄), where
˜k−1

0
denotes the leading term of L

+
, that is, the

expansion of L
+
with respect to λ is given by L

+
=

˜k−1

0
+ λL

+1
+ · · · . Note that in this equation we can assume

without loss of generality that
˜k

0
is unitary, and the claim follows.

2.2 From invariant potentials to surfaces

In this subsection we start from some Riemann surface R and consider a holomorphic potential η which is

defined on the simply-connected cover R̃ of R and is invariant under the fundamental group π
1

(R) as in

Corollary 2.6. Reversing the construction discussed above (which lead from an immersion to an invariant

potential), we first solve the ODE

dC = Cη,

with C(z
0
, λ) ∈ ΛSL

2
Cσ for some base point z

0
∈ R̃. It is easy to see that any such C satisfies

C(τ.z, λ) = ρ(τ, λ)C(z, λ)

for all τ ∈ π
1

(R) and where ρ(−, λ) : π
1

(R) → ΛSL
2
Cσ is a homomorphism. From the discussion of the pre-

vious subsection we know that themonodromy matrix ρ(τ, λ) needs to be contained in ΛSU
1,1σ. We therefore

need to consider two cases:

The monodromy case 1: The matrix ρ(τ, λ) is contained in ΛSU
1,1σ for all τ ∈ π1

(R). This case will be

discussed in Section 2.3.

The monodromy case 2: The matrix ρ(τ, λ) is not contained in ΛSU
1,1σ for all τ ∈ π1

(R), but one can

associate with C another monodromy matrix which is contained in ΛSU
1,1σ. This case will be discussed in

Section 2.4.

2.3 The monodromy case 1

We want to retrieve the relation between C and F. For this purpose, we quote [41] (see also [5, Theorem 2.1]):

Theorem 2.7 (Iwasawa decomposition). There is an open and dense subset I = Ie ∪ Iω of R̃ such that

C(z, λ) ∈ ΛSU
1,1σ · Λ+

SL
2
Cσ

if z ∈ Ie, and
C(z, λ) ∈ ΛSU

1,1σ · ω0
· Λ+

SL
2
Cσ

if z ∈ Iω , where ω0
=

(
0 λ

−λ−1

0

)
.

The open dense subset I will be called the Iwasawa core. It consists of two connected open cells, called Iwa-
sawa cells. Thenext step in our constructionprocedurewill be an Iwasawadecompositionof C.Wedistinguish

the two cases listed in the theorem above.

Theorem 2.8. Let η be an invariant potential on R̃ and C a solution to dC = Cη. Assume that the monodromy
representation ρ of C relative to π

1
(R) takes value in ΛSU

1,1σ. For z ∈ Ie, take the (unique) Iwasawa decompo-
sition

C(z, λ) = F(z, z̄, λ)V
+

(z, z̄, λ), (2.3)

where the diagonal entries of V
+0

for the expansion V
+

= V
+0

+ λV
+1

+ λ2V
+2
· · · are assumed to be positive.

Then

1. For each symmetry (τ, ρ(τ, λ)) of C the automorphism τ ∈ π
1

(R) leaves Ie and Iω invariant and acts bi-
holomorphically there.
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2. F(τ.z, τ.z, λ) = ρ(τ, λ)F(z, z̄, λ) for all z ∈ Ie.

Proof. (1) By the definition of a symmetry we have C(τ.z, λ) = ρ(τ, λ)C(z, λ) with ρ(τ, λ) ∈ ΛSU
1,1σ. Us-

ing (2.3) we derive C(τ.z, λ) = ρ(τ, λ)F(z, z̄, λ)V
+

(z, z̄, λ). This is an Iwasawa decomposition with factors

ρ(τ, λ)F(z, z̄, λ) and V
+

(z, z̄, λ). Hence τ.z ∈ Ie. Let now w ∈ Iω. Then τ(w) ∈ ̸ Ie , since τ leaves Ie invariant.
Since τ is an open map, the image of Iω under τ can not attain a point in R̃ \ Ie ∪ Iω either.

(2) The general theory tells us F(τ.z, τ.z, λ) = ρ(τ, λ)F(z, z̄, λ)k(z, z̄). On the other hand, we obtain

from (2.3) the equations F(τ.z, τ.z, λ)V
+

(τ.z, τ.z, λ) = C(τ.z, λ) = ρ(τ, λ)C(z, λ) = ρ(τ, λ)F(z, z̄, λ)V
+

(z, z̄, λ).

Hence k(z, z̄) = V
+

(z, z̄, λ)V
+

(τ.z, τ.z, λ)

−1

and k is actually the leading term of this product. But by assump-

tion, the leading term is positive real, while k is unitary. Therefore k = id.

Remark 2.9. The frame F obtained by Theorem 2.8 is a general extended frame of a harmonic map intoH2

in

the sense of Definition B.1, and it is an extended frame of some minimal surface in Nil
3
.

Note, as a consequence of part (1) above, τ also acts bijectively on R̃ \ Ie ∪ Iω. To discuss the behaviour of the
extended frame under τ ∈ π

1
(R) on z ∈ Iw, in the next subsubsection we consider an analytic continuation

of a minimal surface defined on z ∈ Ie to a minimal surface defined on z ∈ Iw using a unique meromorphic

extension.

2.3.1 Meromorphic extension of a minimal surface

In this subsubsection we extend a result of [20] to the present paper. We start by explaining what this result

means for the surfaces considered in [20, Section 9.3, 9.4], that is, the constant mean curvature 0 < H < 1

surfaces in the hyperbolic 3-space H3

. Let D be a simply connected domain in C and e ∈ D. Moreover, let η
be a holomorphic potential for a surface of the class considered. Then, solving the ODE dC = Cη, C(e, λ) = id

we obtain a “holomorphic extended frame” defined on D. It turns out that the “Gauss map” has as target

space a non-compact 4-symmetric space SL
2
C/U

1
. The Lie group SL

2
C defining this 4-symmetric space is

non-compact. In particular, not each matrix in the twisted loop group of SL
2
C associated to the 4-symmetric

space SL
2
C/U

1
has an Iwasawa decomposition of the form (2.3). However, as in the case of the present paper,

there exist twoopen Iwasawacells, Ie and Iw forwhich C has adecomposition similar towhatwas stated in the

Iwasawadecomposition Theorem just above. Applying the Sym-formula to the frameobtainedby the Iwasawa

decomposition for z ∈ Ie one obtains a surface of the type considered (actually a surface on each connected

component of Ie. It is not difficult to show that these surfaces are uniquely determined by C.) One can apply a
similar procedure for the set Iw. This way one always obtains (at least) two surfaces, one on Ie and one on Iw.

Howare these surfaces related?One can show that, in general, any extended framedefined from C by Iwasawa
decomposition experiences a catastrophic singularity along theboundarybetween Ie and Iw. It is nowof great

importance, that each constant mean curvature H < 1 surface in the hyperbolic 3-space H3

defined by the

extended frame (via the Sym formula for constant mean curvature H < 1 surfaces inH3

) has a meromorphic

extension to two complex variables (z, w) ∈ D × D. Thus this extension is a complex(ified) meromorphic

surface which restricts on Ie ∪ Iw to meromorphic surfaces of constant mean curvature 0 < H < 1. Loosely

speaking, each constantmean curvature 0 < H < 1 surface inH3

defined on the first cell Ie can be analytically

continued to the second cell Iω. For more details we refer to [20, Section 9.4](see also [23, Theorem 3.2]).

There is only little known about how these real surfaces are related. In general, these surfaces are highly

singular along the boundary between Ie and Iw. But in some cases the surfaces extend smoothly across the

boundary (with vanishing functional determinant, of course.) See [42] for some results in this direction.

Analogously, in the situation considered in this paper, the Sym formula in (C.3) for minimal surfaces in

Nil
3
defined on Ie can be analytically continued to Iω. This works as follows: Let C = FV

+
be an Iwasawa

decomposition for z ∈ Ie. In view of [23, Theorem 3.2], which can be checked to also hold in the present case,

one can extend Fl meromorphically to D × D, where l is a properly chosen λ-independent diagonal matrix.

Moreover, note that the proof of [23, Theorem 3.2] shows that l2
0
> 0 for z ∈ Ie and l2

0
< 0 for z ∈ Iw, where

l
0
is the (1, 1)-entry of l. These facts are proven in Appendix D below in detail. Then the Sym formula fL3 for
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spacelike surface in L3

in (C.2) can be rephrased as

fL3 = −iλ(∂λ(Fl))(Fl)−1

−

i
2

Ad(Fl)σ
3
,

where σ
3

=

(
1 0

0 −1

)
. Then fL3 clearly has a meromorphic extension to D ×D. Therefore the formula in (C.3)

ˆf = (fL3 )

o
−

i
2

λ(∂λ fL3 )

d
,

and thewhole Sym formula have accordingly ameromorphic extension toD×D. Note, so far we have used the
meromorphic extension of the frame obtained by an Iwasawa decomposition for values in the first Iwasawa
cell Ie.

Next we want to express this formula for the immersion by a formula using the frame occurring in the

Iwasawa decomposition of C(z, λ) for z ∈ Iω. Let C =
˜Fω

0

˜V
+
be an Iwasawa decomposition for z ∈ Iw. On the

one hand, choosing a λ-independent diagonal matrix k with positive entries such that k−2

= −l−2

(note that

the (1, 1)-entry l
0
of l satisfies −l−2

0
> 0 for z ∈ Iw), we have that

C = (Flk−1ω−1

0
)ω

0
(kl−1V

+
) (2.4)

is the Iwasawa decomposition for z ∈ Iw, see Appendix D.1 below. The formula just above yields, written

out, the original formula C = FV
+
. This is also an Iwasawa decomposition for the second Iwasawa cell, thus

˜F = Flk−1ω−1

0
. Therefore

Fl =
˜Fω

0
k.

Then, for z ∈ Iw, fL3 can be rephrased as

fL3 = −iλ(∂λ(
˜Fω

0
))(

˜Fω
0

)

−1

−

i
2

Ad(
˜Fω

0
)σ

3

Thus it is natural to use for z ∈ Iw formula (C.3) and the whole Sym formula and to use this formula for
˜Fω

0
.

Therefore in the second Iwasawa cell actually
˜Fω

0
is “the frame” to use.

2.3.2 Symmetries of the meromorphic extension

Herewediscuss symmetries of themeromorphic extension of aminimal surface. Like in [23, Section 3]we con-

sider the pair of potentials

(
η(z, λ), φ(η(w, λ))

)
, where φ denotes the involution of the loop algebra Λsl

2
Cσ

defined by (D.1) which determines the real form Λsu
1,1σ, the Lie algebra of ΛSU

1,1σ.

Assume that η is an invariant potential under π
1

(R), thus φ(η) is also invariant under π
1

(R). Consider

the pair of differential equations

d(C, R) = (C, R)(η, φ(η)).

Then we obtain for the second potential the solution R(w, λ) = φ(C(w, λ)), where φ denotes the real form

involution on the group level. Assume that

ρ(τ, λ) ∈ ΛSU
1,1σ ,

for some τ ∈ π
1

(R). Then relative to (τ, ρ) both solutions have the same monodromy matrix, that is,

C(τ.z) = ρ(τ, λ)C(z), R(τ̄.w) = ρ(τ, λ)R(w).

By using (D.2) and (D.3), we have

U(z, w, λ) = C(z, λ)V−1

+
(z, w, λ) = R(w, λ)V−1

−
(z, w, λ)B(z, w),

whence

R(w, λ)

−1C(z, λ) = V
−

(z, w, λ)

−1B(z, w)V
+

(z, w, λ), (2.5)
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where V
−

(z, w, λ) and V
+

(z, w, λ) have leading term id and B is diagonal.
In this form all three factors are uniquely determined. Therefore, since the left side does not change, if

one replaces w by τ̄.w and z by τ.z, this also holds for the three factors on the right side. Substituting this

into (2.5), we obtain the equations

R(τ̄.w, λ)

−1C(τ.z, λ) = R(w, λ)

−1C(z, λ),

V
±
(τ.z, τ̄.w, λ) = V

±
(z, w, λ), and B(τ.z, τ̄.w) = B(z, w).

Then

U(τ.z, τ̄.w, λ) = ρ(τ, λ)U(z, w, λ)S
+

(z, w, λ),

for some plus matrix S
+
. Since φ̂U = UB−1

, it follows that S
+
is diagonal.

2.3.3 The case C(z, λ) ∈ ΛSU1,1σ · ω0 · Λ+SL2Cσ in the monodromy case 1

For z ∈ Iω we choose the (unique) Iwasawa decomposition

C(z, λ) =
˜F(z, z̄, λ)ω

0

˜V
+

(z, z̄, λ), (2.6)

where the diagonal of the first term of
˜V

+
is assumed positive. In this subsubsection it is our goal to find a

transformation formula for symmetries of the surface over Iω generated by some potential η. We recall that

one should use the Iwasawa decomposition formula (2.4) and hence should use

˜Fω
0

= Flk−1

in the usual Sym formula not F. Thiswas obtained above by using [23, Theorem3.2] generalized to our present

case, seeAppendixD for details. Tofind the correct transformation formula for symmetriesweneed toproceed

analogously.

Theorem 2.10. Retain the assumptions of Theorem 2.8 and choose the unique Iwasawa decomposition C =

˜Fω
0

˜V
+
for z ∈ Iw as in (2.6). Then for all z ∈ Iw,

˜F(τ.z, τ.z, λ)ω
0

= ρ(τ, λ)
˜F(z, z̄, λ)ω

0
.

Proof. The general theory tells us ˜F(τ.z, τ.z, λ)ω
0

(λ) = ρ(τ, λ)
˜F(z, z̄, λ)ω

0
(λ)

˜k(z, z̄). On the other hand, we

obtain from (2.3) the equations

˜F(τ.z, τ.z, λ)ω
0

˜V
+

(τ.z, τ.z, λ) = C(τ.z, λ) = ρ(τ, λ)C(z, λ) = ρ(τ, λ)
˜F(z, z̄, λ)ω

0

˜V
+

(z, z̄, λ).

Hence
˜k(z, z̄) =

˜V
+

(z, z̄, λ)
˜V

+
(τ.z, τ.z, λ)

−1

and
˜k is actually the leading term of this product. But by assump-

tion, the leading term is positive real, while
˜k is unitary. Therefore ˜k = id.

2.3.4 The closing condition

Let us consider next a single symmetry (τ, ρ(τ, λ)) of C(z, λ). Then fromTheorem 1.5we infer that τ can induce
a symmetry of some minimal surface in Nil

3
if and only if ρ(τ, λ = 1) has only unimodular eigenvalues. Let

us consider now
ˆF = SF, where

S(λ) takes values in ΛSU
1,1σ and S(λ = 1) diagonalizes ρ(τ, λ = 1). (2.7)

Then we obtain the following theorem.
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Theorem 2.11. Retain the notation and the assumptions of Theorem 2.8 and assume that S satisfies (2.7). Let ˆf
be the minimal surface in Nil

3
defined on Ie or Iw and defined from ˆF = SF or S˜Fω

0
via the Sym formula (C.3).

Then the monodromy matrix M(τ, λ) = S(λ)ρ(τ, λ)S(λ)

−1 is in ΛSU
1,1σ has only unimodular eigenvalues and is

diagonal for λ = 1. Moreover, ˆf |λ=1
satisfies

ˆf (τ.z, τ.z, λ = 1) =
ˆf (z, z̄, λ = 1)

for all z ∈ Ie or z ∈ Iw if and only if

M(λ = 1) = ± id, Xo(λ = 1) = 0 and Yd(λ = 1) = 0 (2.8)

holds, where X = −iλ(∂λM)M−1 and Y = −

1

2

λ∂λ(λ(∂λM)M−1

), respectively.

Proof. We abbreviate
ˆf (z, z̄, λ = 1) by

ˆf (z). We want to characterize what it means that
ˆf (τ.z) =

ˆf (z) holds.

Using the definition of the action of the group of isometries we obtain (setting
ˆf = (

ˆf
1
,

ˆf
2
,

ˆf
3

)) as in the proof

of Part (b) in Theorem 1.5 :

(
ˆf

1
(τ.z),

ˆf
2

(τ.z),
ˆf

3
(τ.z)) = ((p, q, r), eiθ).(

ˆf
1

(z),
ˆf

2
(z),

ˆf
3

(z))

= (p, q, r) · (cos θˆf
1

(z) − sin θˆf
2

(z), sin θˆf
1

(z) + cos θˆf
2

(z),
ˆf

3
(z)),

where θ and (p, q, r) are defined by M(τ, λ = 1) = diag(ei θ2 , e−i θ2 ),

X|λ=1
=

1

2

(
* −q + ip

−q − ip *

)
, and Y|λ=1

=

1

2

(
−ir *

* ir

)
,

respectively. As a consequence, the following conditions are equivalent to
ˆf (τ.z) =

ˆf (z) :

p + cos θˆf
1

(z) − sin θˆf
2

(z) =
ˆf

1
(z), q + sin θˆf

1
(z) + cos θˆf

2
(z) =

ˆf
2

(z)

r +
ˆf

3
(z) +

1

2

(p(sin θˆf
1

(z) + cos θˆf
2

(z)) − q(sin θˆf
1

(z) + cos θˆf
2

(z)) =
ˆf

3
(z).

It is easy to verify that the first two equations only have a z-independent solution if cos θ ≠ 1. This does not

make sense in our case, since f defines a surface.We thus can assumewithout loss of generality that cos θ = 1.

But in this case p = q = r = 0 and the claim follows, sinceM, Xo and Yd clearly satisfy the conditions (2.8).

The condition M(τ, λ = 1) = id implies that we can choose without loss of generality S(λ) ≡ id above. Hence

we obtain

Corollary 2.12. Retain the notation and the assumptions of Theorem 2.11. Let ˆf be the minimal surface in Nil
3

defined on Ie or Iw and defined from F or ˜Fω
0
via the Sym formula (C.3). In particular, assume that the mon-

odromymatrices M(τ, λ) = ρ(τ, λ) are in ΛSU
1,1σ and all τ ∈ π1

(R) and attain the value id for λ = 1. Then ˆf |λ=1

satisfies for all z ∈ Ie or z ∈ Iw and all τ ∈ π1
(R) :

ˆf (τ.z, τ.z, λ = 1) =
ˆf (z, z̄, λ = 1)

if and only if the following holds:

Xo(λ = 1) = 0 and Yd(λ = 1) = 0.

Remark 2.13. If the general extended frame is in one of the two open cells, then it will stay in the same open

cell when subjected to the action of some symmetry. As a consequence, if a frame ever reaches the boundary

between the two open Iwasawa cells, then it will stay there under the action of any symmetry. If (τ, ρ) denotes

a symmetry of some f , then the image f (D) is the union of three parts: f (Ie), f (Iω), and f (B), whereB denotes

the boundary between the open Iwasawa cells.
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2.4 The monodromy case 2

We respectively discuss the monodromy case 2 with z ∈ Ie or z ∈ Iω.

2.4.1 The case of z ∈ Ie

For the construction of a symmetry (γ, ρ) one frequently starts from some potential η, which is (say up to a

gauge) invariant under γ

η ◦ γ = η#W
+
,

whereW
+

: D→ Λ+

SL
2
Cσ and where # means “gauging”, that is,

η#W
+

= W−1

+
ηW

+
+ W−1

+
dW

+
.

Note that η is an invariant potential under γ ifW
+

= id. Then the solution C(z, λ) to

dC = Cη

with some initial condition C(z = z
0
, λ) ∈ ΛSL

2
Cσ , z ∈ Ie satisfies

C(γ.z, λ) = L(γ, λ)C(z, λ)W
+

(γ, z, λ) (2.9)

for some L ∈ ΛSL
2
Cσ. If L ∈ ΛSU

1,1σ, then the Iwasawa decomposition C = FV
+
implies

F(γ.z, γ.z, λ) = L(γ, λ)F(z, z̄, λ)k(γ, z, z̄),

for some diagonalmatrix k ∈ U
1
. In general onewill obtain L ∉ ΛSU

1,1σ. Then the formula just above can not

be obtained. So it seems impossible to obtain a symmetry associated with the action of γ. However, in some

cases a symmetry (γ, ρ) does exist (see for example [16]). Then in addition to (2.9) we also have

C(γ.z, λ) = ρ(γ, λ)C(z, λ)Q
+

(γ, z, λ),

with ρ(γ, λ) ∈ ΛSU
1,1σ. Then

L(γ, λ)

−1ρ(γ, λ)C(z, λ) = C(z, λ)W
+

(γ, z, λ)Q
+

(γ, z, λ)

−1

.

Sincewe consider surfaces defined on Ie we choose a base point z0
∈ Ie such that C(z

0
, λ) = id. Putting z = z

0

yields

L(γ, λ)

−1ρ(γ, λ) = W
+

(γ, z
0
, λ)Q

+
(γ, z

0
, λ)

−1

.

As a consequence

ρ(γ, λ) = L(γ, λ)b
+

(γ, λ) ∈ ΛSU
1,1σ

and

b
+

(γ, λ)C(z, λ) = C(z, λ)B
+

(γ, z, λ)

with B
+

(γ, z, λ) = W
+

(γ, z, λ)Q
+

(γ, z, λ)

−1

.

Theorem 2.14. Assume η is a potential for a minimal surface in Nil
3
and satisfies

η ◦ γ = η#W
+

for some W
+
∈ Λ+

SL
2
Cσ, γ ∈ Aut(D) and where # denotes gauging. Then for the solution to dC = Cη, C(z

0
, λ) =

id for some fixed base point z
0
∈ Ie, we obtain

γ*C = LCW
+
,

where L ∈ ΛSL
2
Cσ. Moreover, the following statements are equivalent:
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1. There exists a ρ ∈ ΛSU
1,1σ such that (γ, ρ) is a symmetry of the minimal surface in Nil

3
associated with η.

2. There exists some b
+
∈ Λ+

SL
2
Cσ such that the following conditions are satisfied:

(a) L(λ)b
+

(λ)

−1 ∈ ΛSU
1,1σ,

(b) b
+

(λ)C(z, λ) = C(z, λ)B
+

(z, λ) for some B
+

(z, λ) ∈ Λ+

SL
2
Cσ,

(c) L(λ)b
+

(λ)

−1|λ=1
has unimodular eigenvalues.

Proof. From the discussion above, the necessary part is clear. Thus we only need to prove sufficiency. But

C ◦ γ = LCW
+

= Lb−1

+
b

+
CW

+
= ρ(λ)CB

+
W

+
with ρ(λ) = L(λ)b

+
(λ)

−1

. Since ρ is in ΛSU
1,1σ, the statement is

proven.

Remark 2.15.

1. The third condition in (2) of Theorem 2.14, that is, L(λ)b
+

(λ)

−1|λ=1
has unimodular eigenvalues, is purely

local, since in general the eigenvalues of L(λ)b
+

(λ)

−1

on λ ∈ S1

are not unimodular, see Remark 5.23.

2. We will apply this result to the construction of equivariant minimal surfaces with a complex period else-

where.

3. Note, the case just discussed can only happen, if there exist several “monodromy matrices” M(γ, λ) and

“gauges” T
+

(γ, z, λ) satisfying C(γ.z, λ) = M(γ, λ)C(z, λ)T
+

(γ, z, λ). In particular, the isotropy group of

the dressing action is “non-trivial” at the surface determined by C(z, λ).

2.4.2 The case of z ∈ Iω

This case is similar to the case of z ∈ Ie. We again consider some potential η, which is (say up to a gauge)

invariant under γ

η ◦ γ = η#W
+
,

whereW
+

: D→ Λ+

SL
2
Cσ. Then any solution C(z, λ) to

dC = Cη

with some initial condition C(z = z
0
, λ) ∈ ΛSL

2
Cσ , z0

∈ Iω satisfies

C(γ.z, λ) = L(γ, λ)C(z, λ)W
+

(γ, z, λ) (2.10)

for some L ∈ ΛSL
2
Cσ. If L ∈ ΛSU

1,1σ, then the Iwasawa decomposition C =
˜Fω

0

˜V
+
implies

˜F(γ.z, γ.z, λ)ω
0

= L(γ, λ)
˜F(z, z̄, λ)ω

0
H

+
(z, z̄, λ)

for some matrix H
+
. But since we have assumed L to be in ΛSU

1,1σ, we obtain H
+
∈ ΛSU

1,1σ, whence

H
+

(z, z̄, λ) = k(γ, z, z̄) for some diagonal matrix k ∈ U
1
.

In general one will obtain L ∉ ΛSU
1,1σ. Then the formula just above can not be obtained. So it seems

impossible to obtain a symmetry associated with the action of γ. However, in some cases a symmetry (γ, ρ)

does exist (see for example [16]). Then in addition to (2.10) we also have

C(γ.z, λ) = ρ(γ, λ)C(z, λ)Q
+

(γ, z, λ),

with ρ(γ, λ) ∈ ΛSU
1,1σ. Then

L(γ, λ)

−1ρ(γ, λ)C(z, λ) = C(z, λ)W
+

(γ, z, λ)Q
+

(γ, z, λ)

−1

.

Since we consider surfaces defined on Iω we choose a base point z
0
∈ Iω such that C(z

0
, λ) = ω

0
. Putting

z = z
0
in the last equation above yields

L(γ, λ)

−1ρ(γ, λ)ω
0

= ω
0
W

+
(γ, z

0
, λ)Q

+
(γ, z

0
, λ)

−1

.
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As a consequence, setting b = ω
0
W

+
(γ, z

0
, λ)Q

+
(γ, z

0
, λ)

−1ω−1

0
, we derive

ρ(γ, λ) = L(γ, λ)b(γ, λ) ∈ ΛSU
1,1σ

and

b(γ, λ)C(z, λ) = C(z, λ)B
+

(γ, z, λ)

with B
+

(γ, z, λ) = W
+

(γ, z, λ)Q
+

(γ, z, λ)

−1

and

ω−1

0
b ω

0
∈ Λ+

SL
2
Cσ .

Theorem 2.16. Assume η is a potential for a minimal surface in Nil
3
and satisfies

η ◦ γ = η#W
+

for some W
+
∈ Λ+

SL
2
Cσ, γ ∈ Aut(D) and where # denotes gauging. Then for the solution to dC = Cη, C(z

0
, λ) =

ω
0
for some fixed base point z

0
∈ Iω we obtain

γ*C = LCW
+
,

where L ∈ ΛSL
2
Cσ. Moreover, the following statements are equivalent:

1. There exists a ρ ∈ ΛSU
1,1σ such that (γ, ρ) is a symmetry of the minimal surface in Nil

3
associated with η.

2. There exists some b ∈ ΛSL
2
Cσ such that the following conditions are satisfied:

(a) ω−1

0
bω

0
∈ Λ+

SL
2
Cσ,

(b) Lb ∈ ΛSU
1,1σ,

(c) bC = CB
+
for some B

+
(z, λ) ∈ Λ+

SL
2
Cσ,

(d) L(λ)b(λ)|λ=1
has unimodular eigenvalues.

Proof. From the discussion above, the necessary part is clear. Thus we only need to prove sufficiency. But

C ◦ γ = LCW
+

= Lbb−1CW
+

= ρ(λ)CB−1

+
W

+
with ρ(λ) = L(λ)b(λ), where we have used that item (b) above also

holds for b−1

and B−1

+
. Since ρ is in ΛSU

1,1σ, the statement is proven.

3 Minimal cylinders
The construction method for minimal surfaces in Nil

3
outlined above applies to all minimal surfaces in Nil

3

which have a non-trivial fundamental group. The case of a trivial fundamental group has already been dis-

cussed in [21].

Formost subclasses ofminimal surfaces inNil
3
, as generally for all (sub-)classes of “integrable surfaces”,

a thorough discussion usually requires additional and special techniques. Most of the rest of this paper is

devoted to adiscussionof “equivariant”minimal surfaces inNil
3
. This also includes the class of homogeneous

surfaces mentioned in the next section.

Another natural class of surfaces consists of all minimal cylinders in Nil
3
. A thorough discussion of this

class of minimal surfaces in Nil
3
would go beyond the scope of this paper, but will be presented in [24].

In this section wewill present an example of a non-equivariant minimal cylinder in Nil
3
. We have proven

mathematically all the required properties (in particular the closing conditions for the period) in [24], but

will point out here only the basic data and show some pictures computed following the loop group method

presented in this paper.

Example 3.1 (A minimal cylinder in Nil
3
). Let ζ be the holomorphic potential, defined on C,

ζ (z, λ) = λ−1

(
0 v(z̄)

−v(z) 0

)
dz + λ

(
0 −v(z̄)

v(z) 0

)
dz, (3.1)
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where

v(z) =

1 − i sin z
(−i + sin z)

2

.

Clearly, the scalar function v, and consequently the one-form ζ (z, λ), are invariant under the transformation

z 7→ z + p, where p is any integer multiple of 2π. For our goal of constructing a minimal cylinder in Nil
3
we

consider this potential to have the period p = 2π.
Let us consider the solution dC = Cζ with C(0, λ) = id. Then C

0
(z) = C(z, λ = 1) is given by

C
0

(z) = id .

Note, that C
0

(z + p) = C
0

(z) holds for all z ∈ C.
Since ζ takes values in Λsu

1,1σ for z ∈ R, it is easy to verify that for real z the matrix function C(z, λ) is,

up to a diagonal gauge, an extended frame of some minimal surface f in Nil
3
. Moreover, one can verify that

the matrix function C(z, λ) defined above satisfies

C(z + p, λ) = M(λ)C(z, λ) (3.2)

with M(λ) ∈ ΛSU
1,1σ for λ ∈ S1

and

M(λ = 1) = C
0

(p) = id . (3.3)

Now a straightforward computation shows Xo|λ=1
= 0 and Yd|λ=1

= 0, respectively. This proves that the

minimal surface in Nil
3
constructed by the potential stated above yields, for λ = 1, aminimal cylinder in Nil

3
.

This fact is illustrated by the following pictures:

Figure 3.1: Two views of the same minimal cylinder in Nil
3
from the hermitian potential ζ given in (3.1). The right-hand side pic-

ture is a rotation view of the left-hand side picture. The figures are made from MATLAB program of the loop group construction
outlined in Appendix B programmed by David Brander (Technical University of Denmark).

Finally we point out that the minimal cylinder just constructed is not equivariant, since the Abresch-

Rosenberg differential of the surface is 4(cos

2 z + sin

2

3z)dz2

which has zeros on C while it is constant on C
for the equivariant case.
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4 Homogeneous minimal surfaces in Nil3
The homogeneousminimal surfaces in Nil

3
were classified in Appendix B of [21]. For the sake of completeness

we recall this result.

4.1 Classification of homogeneous minimal surfaces

A surface f : M → Nil
3
is called homogeneous if there exists an injectively immersed Lie group G ⊂ Iso◦(Nil

3
)

which acts transitively on f (M).

Since Iso◦(Nil
3

) acts transitively on all of Nil
3
, clearly G ≠ Iso◦(Nil

3
). If dimG = 3, then, for every point in

f (M), there exists a 1-dimensional isotropy group. After left translation by same element in Nil
3
⊂ Iso◦(Nil

3
),

we can assume that f (M) contains some element c of the center of Nil
3
and we take this element as our base

point. Since Nil
3
is normal in Iso◦(Nil

3
) one can write every h ∈ Iso(Nil

3
) in the form h = pϕ where p ∈ Nil

3

and ϕ ∈ U
1
as we have used in the proof of Theorem 1.5. We obtain c = h(c) = pc, whence p = id. This shows

that the isotropy group is U
1
and we can assume without loss of generality that G contains a 2-dimensional

subgroup G
0
⊂ Nil

3
which already acts transitively. A simple argument with Lie algebras shows that there is,

up to conjugacy, exactly one 2-dimensional subgroup permitting conjugacy by elements of Iso◦(Nil
3

).

Finally, assume that we have some 2-dimensional subgroup G ⊂ Iso◦(Nil
3

) which acts transitively on

someminimal surface f (R) inNil
3
.We can assumeagain that f (R) inNil

3
contains an element c ∈ center(Nil

3
)

and that G is not contained in Nil
3
.

Proposition 4.1. Homogeneous surfaces in Nil
3
are congruent to one of the following surfaces:

1. An orbit of a normal subgroup

G(t) = {(x
1
, tx

1
, x

3
) ∈ Nil

3
| x

1
, x

3
∈ R} ⊂ Nil

3
,

or
G(∞) = {(0, x

2
, x

3
) ∈ Nil

3
| x

2
, x

3
∈ R} ⊂ Nil

3
.

2. An orbit of the Lie subgroup
{((0, 0, s), eit) | s, t ∈ R} ⊂ Nil

3
⋊ U

1
.

In the former case, surfaces are vertical planes. Surfaces in the latter case are Hopf cylinders over circles. Thus
the only homogeneous minimal surfaces in Nil

3
are vertical planes. In particular the quadratic differential B

vanishes identically on homogeneous surfaces.

Remark 4.2.

1. Note that part (1) follows from [21] and part (2) follows from Theorem 5.3 below.

2. The homogeneousminimal surfaces in Nil
3
are exactly thoseminimal surfaces in Nil

3
for which the func-

tion w in (A.7) cannot be defined, that is, they are exactly those minimal surfaces in Nil
3
for which the

loop group approach does not work, that is, the case of B ≡ 0.

5 Equivariant minimal surfaces in Nil3
In this section we will discuss minimal surfaces in Nil

3
which possess a one-parameter group of symmetries.

We begin by stating the following basic definition.
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Definition 5.1. Let f : R → Nil
3
be a surface. Then f is called equivariant, if there exists a pair of one-

parameter groups (γt , ρt) ∈ Aut(R) × Iso◦(Nil
3

) such that

f ◦ γt = ρt ◦ f (5.1)

holds.

In Theorem 5.9, we will show that if a minimal surface S ⊂ Nil
3
is invariant under a one-parameter group

ρt ∈ Iso◦(Nil
3

), ρt .S = S, there exists a special Riemann surface S, an immersion f : S → Nil
3
with f (S) = S

and a one-parameter group γt ∈ Aut(S) such that f is equivariant in the sense of (5.1) with respect to (γt , ρt).

5.1 One-parameter groups of Iso◦(Nil3)

To carry out our study of equivariant minimal surfaces we will need a more detailed description of the isom-

etry group Iso◦(Nil
3

). By definition, each element of the isometry group Iso◦(Nil
3

) = Nil
3
⋊ U

1
is of the form

((a
1
, a

2
, a

3
), eiθ). Recall the group multiplication

(a
1
, a

2
, a

3
) · (x

1
, x

2
, x

3
) =

(
a

1
+ x

1
, a

2
+ x

2
, a

3
+ x

3
+

1

2

(a
1
x

2
− a

2
x

1
)

)
of Nil

3
and the action of Iso◦(Nil

3
) on Nil

3
:

((a
1
, a

2
, a

3
), eiθ) · (x

1
, x

2
, x

3
) = (a

1
, a

2
, a

3
) · (cos θx

1
− sin θx

2
, sin θx

1
+ cos θx

2
, x

3
).

Note, the isometry ((0, 0, 0), eiθ) acts onNil
3
as a homomorphismof groups. It will be convenient to introduce

a “shorthand writing” for certain typical group elements. We will use

α ≡ ((a
1
, a

2
, 0), 1), c ≡ ((0, 0, c), 1), eiθ ≡ ((0, 0, 0), eiθ).

Then everything is expressed in terms of α = (a
1
, a

2
) = a

1
+ ia

2
, c and eiθ. In particularwe have: Each element

ρ of Iso◦(Nil
3

) can be written uniquely in the form

ρ = αceiθ .

Here is the list of the multiplications of the basic generators with respect to the semi-direct product group

structure introduced above:

1. The group of all c is a one-dimensional group isomorphic to R.
2. The group of all eiθ is a one-dimensional group isomorphic to S1

.

3. The centralizer of Iso◦(Nil
3

) consist exactly of all c.

4. For α, β ∈ C ∼= R2

, αβ = (α+β)c(α, β) holds,where c(α, β) =

1

2

Im(ᾱ·β) and “ · ” denotes themultiplication

of the complex numbers ᾱ and β.
5. For β ∈ C ∼= R2

, eiθβ = (eiθ · β)eiθ, where “ · ” again denotes the multiplication of the complex numbers

β and eiθ.

Putting this all together, one can easily verify

(αceiθ)(βdeiτ) = (α + eiθ · β)

(
c + d +

1

2

Im(ᾱ · eiθ · β)

)
ei(θ+τ)

.

Note that the identity element in Iso◦(Nil
3

) is 1 = ((0, 0, 0), 1) and

(αceiθ)

−1

= e−iθ(−c)(−α) = (−e−iθ · α)(−c)e−iθ . (5.2)

Finally for a = αc ∈ Nil
3
, we have eiθa = (eiθ · α)ceiθ and denotes it by

eiθa = eiθ[a]eiθ , (5.3)
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that is, eiθ[a] = (eiθ ·α)c. In particular eiθ[c] = c follows. Finallywemention that the one-parameter group ρθ ∈
Iso◦(Nil

3
) generated by the Killing vector field E

4
= −x

2

∂
∂x

1

+ x
1

∂
∂x

2

consists of rotations ρθ = ((0, 0, 0), eiθ) of

angle θ about the x
3
-axis. In our shorthand writing this is ρθ = eiθ.

An isometry ρ(c)

t ∈ Nil
3
⋊ U

1
of the form

ρ(c)

t = (ct)eit = ((0, 0, ct), eit),

where c ∈ center(Nil
3

), t ∈ R, is called a helicoidal motion with pitch c. By what was said above it is clear that
this motion moves the points in Nil

3
along the e

3
-axis Re

3
and rotates them about this axis simultaneously.

The family of all transformations ρ(c)

t forms for fixed c a one-parameter group. In general, a helicoidal motion
along the axis α + Re

3
through the point α = (a

1
+ ia

2
, 0) = (a

1
, a

2
, 0) ∈ R2 ⊂ Nil

3
and with pitch c has the

form:

ρ(c,α)

t = α{(tc)eit}α−1

= (tc){αeit}α−1 ∈ Iso◦(Nil
3

). (5.4)

Clearly, the transformations ρ(c,α)

t (t ∈ R) form a one-parameter group. Moreover, a simple computation

yields the natural and unique representation:

ρ(c,α)

t = (α · (1 − eit))
(
ct − |α|

2

2

sin t
)
eit . (5.5)

A translation motion ρt ∈ Nil
3
in direction (a

1
, a

2
, c) ∈ Nil

3
is given by

ρt = (tα)(tc) ∈ Iso◦(Nil
3

). (5.6)

In general one can consider any one-parameter group, not only a translationmotion nor only a helicoidal

motion along the axes α + Re
3
, α = ah. However, the following Theorem 5.3 implies that actually any one-

parameter group which is not given by translations can be interpreted as a helicoidal motion, (for example

[33, Theorem 2]).

Lemma 5.2. Let ρ = pϕ ∈ Iso◦(Nil
3

) with p = π
0
pc, where π0

∈ R2, pc ∈ center(Nil
3

) and ϕ = eiq ∈ U
1
for

some q ∉ 2πZ. Then ρ can be represented uniquely in the form

ρ = cαϕα−1

for some α ∈ R2 ⊂ Nil
3
and c ∈ center(Nil

3
).

Proof. We compute the coefficients of any expression of the form

cαϕα−1

with c ∈ center(Nil
3

), α = ah = a
1

+ ia
2
and ϕ = eiq. Since ϕ satisfies (5.3), ϕα = ϕ[α]ϕ and we derive

αϕα−1

= α
(
ϕα−1ϕ−1

)
ϕ = αϕ[α−1

]ϕ.

Now a straightforward computation shows that w = (cαϕα−1

)ϕ has the coefficients

w
1

= a
1
− a

1
cos q + a

2
sin q, w

2
= a

2
− a

1
sin q − a

2
cos q, w

3
= c −

1

2

(a2

1
+ a2

2
) sin q,

where we set w = (w
1
, w

2
, w

3
) ∈ Nil

3
. Using q ∉ 2πZ it is easy to prove that (a

1
, a

2
, c) → (w

1
, w

2
, w

3
) is

a diffeomorphism from R3

to R3

. Therefore the p defined by ρ can be derived from some (a
1
, a

2
, c) and the

claim follows.

Theorem 5.3. Assume ρt is a one-parameter group in Iso◦(Nil
3

) which is not contained entirely in Nil
3
. Then

with the notation of Lemma 5.2, ρt can be represented in the form

ρt = ctαϕtα−1

,

where ct = tc ∈ center(Nil
3

), α = ah ∈ Nil
3
is independent of t, and ϕt = eitq with q ≠ 0.
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Proof. Let ρt denote the given one-parameter group. We can write ρt = πtptϕt. Assuming without loss of

generality q(0) = 0 this decomposition is unique. By definition ρt+s = πt+spt+sϕt+s . Moreover,

ρtρs = πtptϕtπspsϕs = γt,sht,sϕtϕs .

The equality ρt+s = ρtρs now implies thatϕt is a one-parameter group.Henceϕt = eitq where q ≠ 0, otherwise

ρt would be contained entirely in Nil
3
. Now we write ρt = ctαtϕtα−1

t as in Lemma 5.2. Then

ρsρr = (csαsϕsα−1

s )(crαrϕrα−1

r ) = ρr+s .

Using formula ϕa = ϕ[a]ϕ by (5.3), we rephrase the middle term above as

(csαsϕsα−1

s )(crαrϕrα−1

r ) = (csαsϕs[α−1

s ])(crϕs[αrϕr[α−1

r ]]ϕs+r)
= (cscrαsϕs[α−1

s ])(ϕs[αrϕr[α−1

r ]]ϕr+s),

where we have also used that ϕs[cr] = cr holds, since ϕ[c] = c for all c ∈ center(Nil
3

). Comparing this to ρr+s
we observe

(crcsαsϕs[α−1

s ])(ϕs[αrϕr[α−1

r ]]) = cr+sαr+sϕr+s[α−1

r+s]. (5.7)

Recall that αt has no component in center(Nil
3

), that is, αt = aht , whence ϕt[αt] = eiqt · αt. But then
αr+sϕr+s[α−1

r+s] = αr+s − eiq(r+s)
· αr+s modulo center(Nil

3
) and (αsϕs[α−1

s ])(ϕs[αrϕr[α−1

r ]]) = αs − eisq · αs +

eisq · (αr − eirqαr) modulo center(Nil
3

) follows. As a consequence we obtain the following equation of com-

plex numbers

(1 − eiqs) · αs + eiqs · (1 − eiqr)αr = (1 − eiq(r+s)
) · αs+r . (5.8)

Differentiating (5.8) for s at s = 0 we obtain −iq · α
0

+ iq(1 − eiqr) · αr = −iq · eiqr · αr + (1 − eiqr) · d
dr · αr. This

equation simplifies to yield

iq · (αr − α0
) = (1 − eiqr) · ddr αr . (5.9)

Differentiating (5.8) for r at r = 0, we obtain eiqs(−iq)α
0

= −iqeiqs · αs + (1 − eiqs) · d
ds αs, which simplifies to

iqeiqs · (αs − α0
) = (1 − eiqs) · dds αs . (5.10)

From (5.9) and (5.10), we obtain that αt is constant (say equal to α). Since now α = αr = αs = αr+s and since
also (5.7) holds, we obtain

(crcsαϕs[α−1

])(ϕs[αϕr[α−1

]]) = cr+sαϕr+s[α−1

]. (5.11)

Since ϕ
*
is a homomorphism of Nil

3
, we obtain

(ϕs[α−1

])(ϕs[αϕr[α−1

]]) = (ϕs[α−1

])(ϕs[α])(ϕs[ϕr[α−1

]]).

Therefore the factors on the right cancel. This implies crcs = cr+s and the claim follows.

Remark 5.4. The theorem above was stated (without proof) in Theorem 2 in [33].

In view of Theorem 5.3 above we introduce the following definition.

Definition 5.5. Let f : R→ Nil
3
be a conformal immersion from a Riemann surface R into Nil

3
.

1. f is said to be a helicoidal surface if the image f (R) is invariant under a one-parameter group of helicoidal

motions {ρ(c,α)

t }t∈R as defined in (5.5), that is,

f (R) = ρ(c,α)

t .f (R)

holds for all t ∈ R. In particular, f is said to be a rotational surface if the helicoidal motion does not have

a pitch.
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2. f is said to be a translation invariant surface if the image f (R) is invariant under a one-parameter group

of translation motions {ρt}t∈R defined as in (5.6), that is,

f (R) = ρt .f (R)

holds for all t ∈ R.

As a corollary of Theorem 5.3, we have the following.

Corollary 5.6. The family of equivariant minimal surfaces in the sense of Definition 5.1 consists of all minimal
helicoidal surfaces and all minimal translational surfaces.

Example 5.7. The standard helicoid

f (x
1
, x

2
) = (x

1
, x

2
, c tan

−1

(x
2
/x

1
))

is a helicoidal minimal surface in Nil
3
. In fact this surface is invariant under the helicoidal motion of pitch c.

Remark 5.8. Caddeo, Piu and Ratto [8] studied rotational surfaces of constant mean curvature (including

minimal surfaces) in Nil
3
via “equivariant submanifold geometry” in the sense ofW. Y. Hsiang [37]. Moreover,

Figueroa, Mercuri and Pedrosa [33] investigated surfaces of constant mean curvature invariant under some

one-parameter isometry group. Forminimal surfaces the results of this paper recover their results. Themoduli

space of all equivariant minimal surfaces in Nil
3
will be given in the forthcoming paper [43].

5.2 Equivariance induced by one-parameter groups of Iso◦(Nil3)

Wenow show that a one-parameter group of symmetries of a conformalminimal immersion f fromaRiemann

surfaceR in Nil
3
induces aminimal horizontal plane or a one-parameter group of symmetries for a conformal

minimal immersion
˜f of a strip S. More precisely we have the following theorem.

Theorem 5.9. Let f be a conformal minimal immersion from a Riemann surface R into Nil
3
and ρt a one-

parameter group in Iso◦(Nil
3

) acting as a group of symmetries of f , that is, ρt .f (R) = f (R) holds.

1. Assume that the one-parameter group ρt acts with fixed points. Then f (R) is a horizontal plane.
2. Assume that the one-parameter group ρt acts without fixed points. Then there exists an open strip S ⊂ C

containing the real axis and an immersion ˜f : S→ Nil
3
such that f (R) =

˜f (S) and

ρt .˜f (z) =
˜f (γt .z),

for all z ∈ S, holds.

Proof. (1): Since ρt is classified as in Definition 5.5 and has fixed points by assumption, it must be a rota-

tion around the axis through a point (a, b, 0) ∈ Nil
3
parallel to the e

3
-axis. Then we can choose a simply-

connected domain
˜D ⊂ Cwhich contains z = 0 and a minimal immersion

˜f :
˜D→ Nil

3
such that

˜f ( ˜D) ⊂ f (R)

and
˜f (0) is one of fixed points of ρt. Moreover there exists a γt : z 7→ zeit as a local one-parameter group of

˜D such that 0 ∈ ˜D is a fixed point of γt and ˜f is equivariant with respect to (γt , ρt). Then for the harmonic

normal Gauss map g : D→ H2

and an extended frame F of f we obtain

g(γt .z, γt .z) = eiatg(z, z̄) (5.12)

for some a ∈ R and the extended frame F satisfies

F(γt .z, γt .z, λ) = Mt(λ)F(z, z̄, λ)k(t, z, z̄), (5.13)
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where Mt(λ) ∈ ΛSU
1,1σ and Mt(λ = 1) = diag(eait/2

, eait/2

) and k(t, z, z̄) ∈ U
1
, see Proposition 2.1. For z = 0

we infer

F(0, λ) = Mt(λ)F(0, λ)k(t, 0), (5.14)

Replacing F by
ˆF(z, z̄, λ) = F(0, λ)

−1F(z, z̄, λ), we obtain
ˆF(0, λ) = id and, setting

ˆMt(λ) =

F(0, λ)

−1Mt(λ)F(0, λ) we derive

ˆF(γt .z, γt .z, λ) =
ˆMt(λ)

ˆF(z, z̄, λ)k(t, z, z̄). (5.15)

As a consequence we obtain

ˆMt(λ) = k(t, 0)

−1

= k
0

(t). (5.16)

In particular, k
0

(t) =
ˆMt(λ) is independent of λ and contained in U

1
. Hence

ˆMt(λ) is diagonal. As a conse-

quence we have two cases:

Case 1. ˆMt(λ) = id for all t ∈ R. In this case also Mt(λ) = id for all t ∈ R. But then f (eitz) = f (z) for all

t ∈ R and f is not a surface.
Case 2. ˆMt(λ) = k

0
(t) = diag(eiat/2

, eiat/2

) ≠ id, that is, a ∈ R \ 2πZ. Since ˆF(0, λ) = id we can perform

the Birkhoff decomposition
ˆF(z, z̄, λ) =

ˆF
−

(z, λ)
ˆL

+
(z, z̄, λ) around z = 0 and obtain

ˆF
−

(γt .z, λ) = k
0

(t)ˆF
−

(z, λ)k
0

(t)−1

. (5.17)

Note that
ˆF(0, 0, λ) = id implies that

ˆF
−
is holomorphic with respect to z in an open neighbourhood of z = 0.

Let η
−

(z, λ) =
ˆF−1

−
dˆF

−
, then η

−
(z, λ) = λ−1ξ (z)dz is the normalized potential associated with the minimal

surface f , the normal Gauss map g, and the frame
ˆF. Then we obtain from (5.17):

ξ (eitz)eit = k
0

(t)ξ (z)k
0

(t)−1

. (5.18)

Writing

ξ = λ−1

(
0 −p

Bp−1

0

)
, (5.19)

the equation (5.18) yields

p(eitz)eit = eiatp(z), (5.20)

and we have

B(eitz)e2it
= B(z), (5.21)

since B(z)dz2

is a globally defined quadratic differential. Note that a takes values in R \ 2πZ. From the last

equation it now follows that B(z) is identically zero.

From equation (5.20) we infer that p is of the form p(z) = pjzj for some j ∈ Z and pj ≠ 0. Moreover,

j + 1 = a holds.
Since we know that

ˆF
−
is holomorphic at z = 0 it follows that p is holomorphic at z = 0, whence j ≥ 0

follows. Now, if j > 0, then the surface f has a branch point at z = 0, a contradiction. As a consequence, j = 0.

This case has already been considered in [21, Section 6] and it was shown that the corresponding minimal

surfaces are horizontal planes. Then since the Abresch-Rosenberg differential Bdz2

vanishes on
˜f ( ˜D) ⊂ f (R),

it vanishes on f (R) and the whole surface f (R) is the horizontal plane.

(2): Since ρt acts without fixed points on f (R), around any p
0
∈ f (R) there exists a chart ψ

0
: D

0
→ Nil

3

such that ψ(0) = p
0
and D

0
is an open rectangle containing the origin and with axes parallel to the usual

coordinate axes ofR2

. Moreover, for all z ∈ D
0
and sufficiently small t ∈ I = (−ϵ, ϵ) we have with f

0
= f ◦ ψ

0
:

f
0

(z + t) = ρt .f0(z).

This follows from the fact that the (never vanishing) vector field generating the one-parameter group action

ρt can be represented as ∂
∂x in some chart.

Let S denote the strip parallel to the real axis and containing R which has the same height as D
0
. By [7]

there exists a Delaunay type matrix D(λ) which generates a minimal immersion f ♯o on Swhich coincides with
f
0
on D

0
, see also Theorem 5.20.



310 | Josef F. Dorfmeister, Jun-ichi Inoguchi, and Shimpei Kobayashi

We claim f ♯o(S) ⊂ f (R). Suppose this is wrong, then there exists a line segment L in S, parallel to the

x-axis, such that f ♯o leaves f (R) at some endpoint l
0
of L. Let us write l

0
= (t

0
, y

0
) and let us assume without

loss of generality t
0
> 0. Let s > 0 such that (s, y

0
) ∈ D

0
. Then t

0
= ms + s* with 0 < s* < s and m ∈ Z. As

a consequence f ♯
0

(0 + t
0

) = (ρs)m .f0(s*) ∈ f (R). Now we can choose a small chart around q
0

= f ♯
0

(t
0

) which

corresponds to a small box inR2

centered at (t
0
, y

0
) such that, analogous to the argument above, f ♯

0

maps the

small box into f (R). Hence f ♯
0

maps a strictly larger line segment L ⊂ L♯ into f (R). This contradiction implies

f ♯
0

(S) ⊂ f (R).

Finally we want to show f ♯
0

(S) = f (R). For this we choose S considered above as large as possible. Let us
consider first the case, where S ends in the upper half-plane at the line Tu and in the lower half-plane at the
line Tl, both parallel to the x-axis. If there exists any point in f (R) which is not contained in f ♯

0

(S), then we

choose a curve in f (R) connecting such a point with f ♯
0

(0). This curve needs to intersect f ♯
0

(Tu) or f ♯
0

(Tl). At
a point of intersection we apply the argument above and obtain an open strip containing the corresponding

boundary line of the image of f ♯
0

. Therefore f ♯
0

can be extended beyond this boundary line, a contradiction.

We thus only need to consider the case ,where the strip is either half-infinite or all of C and where in f (R)

there is a boundary point q
0
of f ♯

0

(S), which can be obtained by taking a limit to ∞ inside S. Then by the

argument above we obtain a finite open strip B containing q
0
and an equivariant conformal map f ′

0
such that

on some sub-strip of B and some half-plane the conformal maps f ♯
0

and f ′
0
have the same image. Since both

maps are equivariant under real translations, they induce a bi-holomorphic change of coordinates of the type

(x, y) 7→ (x, h(y)). Hence h(y) = y + c. This is impossible, since one strip has infinite width and the other one

has only finite width.

Remark 5.10. Above we have shown that the invariance of f (R) under a one-parameter group without fixed

points can be realized by an immersion of some open strip S. However, in general it is not possible to define
a one-parameter group on the original surface R.

5.3 One-parameter groups of Aut(R)

It is well known that only a few Riemann surfaces admit a one-parameter group of automorphisms. For

non-compact simply-connected Riemann surfaces only the following cases occur (up to conjugation by bi-

holomorphic automorphisms (see, for example [29, Section V-4]): Let us denote the complex plane by C and

the upper half plane byH, that isH = {z ∈ C | Im z > 0}.

(1a) C and all translations parallel to the x-axis,
(1b) C and all multiplications z → etaz with a ∈ C*

.

(2a) H and all translations parallel to the real axis,

(2b) H and all multiplications z → az with a positive real,
(2c) H and all automorphisms fixing the point i.

In the cases (1b) and (2c) the Riemann surface contains a point which is fixed by the one-parameter group.

We will show in Theorem 5.13 below that these cases only consist of very special minimal surfaces. In case

(1b), if one removes the origin and considers the map C → C*

= C ∖ {0}, w → eaw, then the group action

pulls back to translation parallel to the x-axis. A similar observation holds in case (2c), if one interprets it

as rotation about the origin of the unit disk. In case (2b), one can map H via z → log(z) − iπ/2 to the strip

parallel to the real axis between y = π/2 and y = −π/2 such that the one-parameter group turns into the

group of translations parallel to the real axis.

In the following cases one can consider the universal cover and thus obtains strips with the one-

parameter group of translations parallel to the real axis.

(3a) H2

*

= H2 ∖ {0} and all rotations about the origin,
(3b) C*

and all multiplications z → etaz with a ∈ C*

,
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(3c) Aa,b and all rotations about the origin, where 0 < a < b and Aa,b = {z ∈ C, 0 < a < |z| < b}.

Beyond the cases listed above, only tori admit one-parameter groups of automorphisms. Note that above

already all conformal types of cylinders have been listed.

Definition 5.11. Equivariant surfaces for which the group acts by translations (on a strip) will be called

R-equivariant. Equivariant surfaces for which the group acts by rotations (about a point) will be called S1-
equivariant.

The cases (1b) and (3b) do not fall directly into these two categories. Note, all S1

-equivariant cases have a

natural fixed point contained in the domain of definition, or not.

Theorem 5.12. Let f : R→ Nil
3
be an equivariant minimal surface of the type (3a), (3b) or (3c). Since the fixed

point of γt is not contained inR, one can realize the universal cover S ofR as a strip containing the x-axis, such
that the induced map ˜f : S → Nil

3
is R-equivariant relative to all real translations in the first two cases and in

direction a in the last case. Moreover, in the cases (3a) and (3c) ˜f is periodic and has a (smallest) positive real
period, and in the case (3b) the period is 2π/a.

Proof. We only need to prove the last assertion. Suppose there does not exist a smallest positive period. Then

there exists a sequence pn of positive periods converging to 0. Since f is real analytic, f is constant, a contra-
diction, since f is assumed to be a surface. In the case (3b) we consider the universal cover πa : C→ C*

, w →
eaw. Then the given action corresponds to w → w + t. Hence the period is 2π/a.

5.4 Special equivariant minimal surfaces

Next we will show that S1

-equivariant minimal surfaces with fixed point or vanishing Abresch-Rosenberg

differential are very special.

Theorem 5.13.

1. Consider an equivariant minimal surface in Nil
3
with fixed point in Nil

3
, that is, it is in one of the cases (1b)

or (2c). Then the Abresch-Rosenberg differential vanishes identically and such a minimal surface is only a
horizontal plane.

2. Consider an equivariant minimal surface in Nil
3
without fixed point and vanishing Abresch-Rosenberg dif-

ferential. Then such a minimal surface is only a vertical plane.

Proof. (1) The statement follows directly from (1) in Theorem 5.9.

(2) By Proposition 2 in [21], such aminimal surface is only a horizontal plane or a vertical plane. The only

vertical plane does not have any fixed point.

5.5 Basics about R-equivariant minimal surfaces

By our discussion in Sections 5.3 and 5.4, fromhere onwe only need to considerR-equivariant surfaceswhich
are defined on some strip S and have non-vanishing Abresch-Rosenberg differentials. Specific properties of
the different cases will be discussed elsewhere. For simplicity of notation we will, as before, abbreviate a

function p(z, z̄) by p(z). Hence the expression p(z) does not necessarily denote a function depending only on

z.

Theorem 5.14. Let f : S → Nil
3
be an R-equivariant minimal surface relative to the one-parameter group

(γt , ρt), γt .z = z + t, and ρt a one-parameter group in Iso◦(Nil
3

) which is not contained in Nil
3
. Let g denote the
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(non-holomorphic) normal Gauss map of f . Then we obtain

f (z + t) = ρt .f (z) and g(z + t) = eiatg(z) (5.22)

with 0 ≠ a ∈ R.
Moreover,

1. For an extended frame F of f as given in (A.17), there exists some k(t, z) ∈ U
1
satisfying

F(z + t, λ) = Mt(λ)F(z, λ)k(t, z), (5.23)

where Mt ∈ ΛSU
1,1σ, Mt(λ = 1) = diag(eiat/2

, e−iat/2

).

2. There exists a unitary diagonal matrix ℓ such that the frame Fℓ = Fℓ satisfies kℓ(t, z) ≡ id.

Proof. The transformation behaviour (5.23) of F follows, since F : S→ ΛSU
1,1σ is a lift of g : S→ H2

, see also

(1.12). Also note, sinceMt|λ=1
is a homomorphism, it is easy to verify that k(t, z) satisfies the cocycle condition

k(t + s, z) = k(t, z)k(s, z + t), (5.24)

and we obtain (see for example Theorem 2.2 and [26, Theorem 4.1]):

k(t, z) = ℓ(z)ℓ(z + t)−1

,

where ℓ(z) = ℓ(x + iy) = k(x, iy)

−1

. ² As a consequence, replacing the original frame F by Fℓ one obtains an
extended frame as desired.

Remark 5.15.

1. In the theorem above one could also permit one-parameter families ρt which are contained in Nil
3
. This

case will be discussed in Section 5.10 below.

2. Theorem 5.14 also holds for any general extended frame F of a harmonic map g which satisfies (5.22).

Definition 5.16. A general extended frame satisfying

F(z + t, λ) = Mt(λ)F(z, λ)

will be called R-equivariant.

5.6 A chain of extended frames

For a detailed discussion of the relation between spacelike CMC surfaces in Minkowski 3-space L3

and min-

imal surfaces in Nil
3
it is important to use extended frames with specific additional properties. In [21], also

see (A.17), a specific extended frame was defined for all λ = 1 and the matrix entries were (by definition) the

spinors associated with the associated family {f λ}λ∈S1 of f . Note that the spinors of a minimal surface in Nil
3

are defined uniquely up to a common sign. By continuity in λ, the choice of sign for the ψj thus is the same

for all λ, whence irrelevant.
Hence the first extended frame in our chain is an extended framementioned above anddenoted by F(z, λ)

in (5.23). As pointed out in Theorem 5.14, this extended framewill, in general, not beR-equivariant under the

2 The following is a brief proof:

ℓ(z)ℓ(z + t)−1

= k(x, iy)

−1k(x + t, iy)

= k(x, iy)

−1 {k(x, iy)k(t, iy + x)} = k(t, z).

Where we have used equation (5.24) with z replaced by iy, t by x and s by t.
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action of the translational one-parameter group z → z+ t. But we have shown that there exists some function

ℓ(z) such that Fℓ = Fℓ defines an R-equivariant general extended frame for the translational one-parameter

group. The frame Fℓ is our second frame. Finally we consider an R-equivariant extended frame which also

attains the value id at z = 0 for all λ: ˆF(z, λ) = Fℓ(0, λ)

−1Fℓ(z, λ).

Thus we have the following triple of extended frames

F −→ Fℓ −→ ˆF. (5.25)

Remark 5.17. Note, the frames F and Fℓ generate the same surfaces in L3

and in Nil
3
via the respective Sym

formulas. The frame
ˆF generates inL3

a surfacewhich is isometric to the previously generated surface, but the

corresponding surface in Nil
3
has, in general, no simple relation to the other (two) surfaces in Nil

3
. However,

as will explained below, exactly this frame yields a very simple “degree-one-potential” from which we will

be able to construct what we want. Note, in such a chain, if one assumes that any of these extended frames

has a translational one-parameter group of symmetries, then all three frames have such a symmetry. The

frames
ˆF are R-equivariant general extended frames of the normal Gauss map g, where g : S → H2

is non-

holomorphic (since the surface has non-vanishingAbresch-Rosenberg differential) harmonic, and also define

spacelike CMC surfaces in Minkowski 3-space L3

. For more details on R-equivariant harmonic maps see, for

example [7] and for spacelike CMC surfaces in L3

see, for example [5].

5.7 The construction principle

In order to construct R-equivariant minimal surfaces in Nil
3
we will start in general from some special po-

tential and will arrive at some R-equivariant general extended frame
ˆF, assuming the monodromy has the

required properties. (In a sense just reversing the arrows in (5.25) above.) What special potentials we will

need to start from will be the contents of the next sections.

At any rate, we will obtain the transformation behaviour (for t ∈ R and z ∈ S′):

ˆF(z + t, λ) =
ˆMt(λ)

ˆF(z, λ)

and we also know
ˆF(0, λ) = id. We will apply [7] to construct all of such frames. Note, while the potential will

be defined on some strip S, ˆF may be defined on some smaller strip S′ only, see [43].
After

ˆF has been constructed we want to use this frame to construct R-equivariant minimal surfaces in

Nil
3
. But for this it is important to require that

ˆMt is diagonalizable for λ = 1. In particular, the eigenvalues of

ˆMt need to be unimodular at λ = 1, see Theorem 5.14. Therefore, in general, we need to change the frame
ˆF

to another frame, for which the monodromy is diagonal for λ = 1. This is achieved by putting F = SF, where
S diagonalizes the monodromy as required. (For more details see below.) Comparing to the chain of frames

above we observe, that this new frame plays the role of Fℓ.

Remark 5.18. The general extended frame
ˆF with the right choice of initial condition S gives the extended

frame Fℓ = SˆF, which is not F. However, this is irrelevant for the resulting minimal immersion f . More pre-
cisely, if one plugs F and Fℓ into the Sym formula, then the resulting minimal surfaces are the same. Thus we

will only consider Fℓ.

As pointed out already above, the change from
ˆF to Fℓ is by multiplication:

Fℓ(z, λ) = S(λ)
ˆF(z, λ)

with S(λ) ∈ ΛSU
1,1σ. Note since ˆMt is diagonalizable at λ = 1 for all t ∈ R, one can choose S(λ) such that the

monodromy Mt(λ) = S(λ)
ˆMt(λ)S(λ)

−1

of Fℓ is diagonal for λ = 1. More precisely, since
ˆMt(λ = 1) diagonaliz-

able, we have two cases:

Case 1. The eigenvalues of ˆMt(λ = 1) are both 1. This means
ˆMt(λ = 1) = id. Then we can choose S(λ) ∈

ΛSU
1,1σ arbitrary.

Case 2. The unimodular eigenvalues of
ˆMt(λ = 1) are different. In this case there exists somematrix S ∈ SU

1,1
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such that S ˆMt(λ = 1)S−1

is diagonal. Inserting λ and λ−1

respectively off-diagonal into S we obtain a matrix

S(λ) ∈ ΛSU
1,1σ such that Mt(λ) = S(λ)

ˆMt(λ)S(λ)

−1

is diagonal for λ = 1. ³

Altogether we obtain that Fℓ(z, λ) = S(λ)
ˆF(z, λ) is a general extended frame for g which has monodromy

Mt(λ), and Mt(λ = 1) is diagonal. As a consequence, we obtain an R-equivariant minimal surface in Nil
3

defined on some strip S′ containing the real axis by applying the Sym formula stated in Section C.2.

Remark 5.19. In both cases above the choice of “initial condition” S ∈ ΛSU
1,1σ is not unique. Here is what

happens for different choices:

Case 1. In the case of
ˆMt(λ = 1) = id different initial conditions generally yield different equivariant

minimal surfaces, see Section 5.10.

Case 2. Assume the eigenvalues of
ˆMt(λ = 1) are unimodular and different. Let

˜S ∈ ΛSU
1,1σ be another

initial condition such that
˜S ˆMt˜S|λ=1

= S ˆMtS−1|λ=1
. Then

˜S = δSwith some loop δ ∈ ΛSU
1,1σ such that δ|λ=1

is

diagonal. Let Fℓ and ˜Fℓ be the corresponding general extended frames associatedwith the initial conditions S
and

˜S, respectively. Thenwe obtain ˜Fℓ = δFℓ. Inserting Fℓ and ˜Fℓ into the Sym formula, the resultingminimal

surfaces are the same up to a rigid motion (see the proof of (b) of Theorem 1.5 for the computation).

5.8 Degree one potentials

In the last subsectionwe have seen that for everyR-equivariantminimal surface in Nil
3
its normal Gaussmap

is an R-equivariant harmonic map intoH2

. These maps have been investigated in [5]. It will be more helpful

to us to follow the approach of [7], translated into our setting. Here is our rendering of results of these two

papers which are particularly relevant to this paper.

We consider f : S → Nil
3
to be an R-equivariant minimal surface relative to the one-parameter group

(γt , ρt), γt .z = z + t, that is,
f (γt .z) = ρt .f (z).

Let g : S → H2

denote its (non-holomorphic) harmonic normal Gauss map and
ˆF an R-equivariant general

extended frame for g which attains the value identity at 0. Let
ˆMt(λ) ∈ ΛSU

1,1σ denote the monodromy of
ˆF.

By following [7, Section 3] in our setting and [5] we obtain the following characterization of all R-
equivariant minimal surfaces in Nil

3
:

Theorem 5.20. Every R-equivariant non-holomorphic harmonic map g : S → H2 associated with an R-
equivariant minimal surface in Nil

3
can be obtained from a constant holomorphic potential η = Ddz of the

form
D ∈ Λsu

1,1σ , D(λ) = λ−1w
−1

+ w
0

+ λw
1
, detD(λ = 1) ≥ 0, (w

−1
)

12
≠ 0, (5.26)

where all wj are independent of λ and z and (w
−1

)
12

denotes the (1, 2)-entry of w
−1
. In particular D has purely

imaginary eigenvalues for λ = 1.
Conversely, every constant η = Ddz as in (5.26) with initial condition S ∈ ΛSU

1,1σ such that SDS−1|λ=1
is

diagonal, generates an R-equivariant harmonic map g : S → H2 defined on some strip S ⊂ C parallel to the
real axis, and, by the Sym-formula (C.3), generates an R-equivariant minimal surface in Nil

3
.

Proof. Following the proof of [7, Section 3] verbatim we obtain the first two statements of (5.26). The last

statement expresses the fact that we assume f to be an immersion at the base point “z = 0”. Hence, to finish

the proof of the first part of the claim we only need to prove the statement about the eigenvalues of D. But
for the monodromy

ˆMt of ˆF defined in the last subsection we have
ˆMt(λ) = Fℓ(0, λ)

−1Mt(λ)Fℓ(0, λ). Thus

ˆMt(λ = 1) has the same eigenvalues as Mt(λ = 1), where Mt is the monodromy of a general extended frame

Fℓ. But ˆMt(λ) = exp(tD(λ)) by definition of D(λ), see [7], andwe know that
ˆMt(λ = 1) is diagonalizable for all t.

3 S may depend on t, however, a straightforward computation shows that S = diag(u(t), u(t)−1

)
˜S where ˜S is independent of t.

Thus we can assume without loss of generality that S is independent of t.
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Hence D(λ = 1) has only purely imaginary eigenvalues and the claim follows. The proof of the second part of

the claim follows from [7, Section 3] and the fact thatweneeddiagonalizablemonodromy in our situation.

Remark 5.21.

1. The potential η = Ddz will be called the degree one potential of an R-equivariant minimal surface f .
2. The theorem above does not specify the size of the strip S in the second part of the theorem, since the

Iwasawa decomposition of exp(zD) is not global. This issue will be discussed in the forthcoming paper

[43].

3. Since D ∈ Λsu
1,1σ, the diagonalizablity condition in Theorem 5.20 immediately implies that detD(λ =

1) ≥ 0 and moreover, when detD(λ = 1) = 0, then D(λ = 1) = 0 follows. On the contrary, in Proposition

5.31 when detD(λ = 1) = 0 and D(λ = 1) ≠ 0 or detD(λ = 1) < 0, we obtain non-equivariant minimal

immersions which have an equivariant normal Gauss map.

With the notation of Theorem 5.20, and the explanation of the construction principle in the previous subsec-

tion, the procedure of constructingR-equivariant minimal surfaces in Nil
3
from degree one potentials D is as

follows:

Let us consider the solution C, taking values in ΛSL
2
Cσ, of the holomorphic ODE dC = Cη with η = Ddz

and initial condition id, Hence we obtain C(z, λ) = exp(zD(λ)). Then we perform an Iwasawa decomposition

of C near z = 0. We obtain

C =
ˆFV

+
,

where
ˆF and V

+
take values in ΛSU

1,1σ and Λ+

SL
2
Cσ, respectively. We then choose S ∈ ΛSU

1,1σ such that it

diagonalizes D for λ = 1, that is S(λ) exp(tD(λ))S(λ)

−1

is diagonal at λ = 1. Since S(λ) exp(tD(λ))S(λ)

−1

takes

values in ΛSU
1,1σ, we have for Fℓ = S(λ)

ˆF

Fℓ(z + t, λ) = Mt(λ)Fℓ(z, λ), Mt(λ) = S(λ) exp(tD(λ))S(λ)

−1

.

Then by the construction, Fℓ is a general extended frame of some R-equivariant harmonic map g : S → H2

.

Moreover since Mt(λ = 1) is diagonal by construction, the corresponding minimal surface f in Nil
3
is also

R-equivariant:
f (z + t) = ρt .f (z)

where ρt ∈ Iso◦(Nil
3

).

5.9 Monodromy matrices and symmetries induced by R-equivariant actions

Note that to compute ρt for all R-equivariant minimal surfaces, which are obtained from degree one poten-

tials, it is not necessary to work out the Iwasawa decomposition explicitly. It suffices to know themonodromy

Mt(λ) = S(λ) exp(tD(λ))S(λ)

−1

. In particular, the transformation behaviour of theR-equivariant minimal sur-

face f in Nil
3
under the transformation z 7→ z + t:

f (z + t) = ρt .f (z), ρt = ((pt , qt , rt), eitθ),

is determined by Mt explicitly. In fact we consider a degree one potential η = Ddz, z ∈ C and λ ∈ C*

, and

write the matrix D in the form

D(λ) = λ−1

(
0 a
b 0

)
+

(
ic 0

0 −ic

)
+ λ
(

0
¯b

ā 0

)
=

(
ic λ−1a + λ¯b

λ−1b + λā −ic

)
, (5.27)

where a ∈ C×

, b ∈ C, c ∈ R and detD(λ = 1) = c2

− |a +
¯b|2 ≥ 0. Then Theorem 1.5 actually tells us how to

compute eitθ and ρt. Let ˆf be the immersion obtained by inserting Fℓ = S(λ)
ˆF into the Sym formula (C.3) with

λ = 1. Then the proof of Theorem 1.5 shows that
ˆf changes under γt as follows

ˆf (γt .z) =

{
Ad(Mt)ˆf (z) +

1

2

[Xot , (Ad(Mt)fL3 (z))

o
]

d
+ Xot + Ydt

}∣∣∣∣
λ=1

,
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where fL3 is the map defined in (C.2), and

Xt = −iλ(∂λMt)M−1

t , Yt = −

i
2

λ∂λXt = −

1

2

λ∂λ(λ(∂λMt)M−1

t ).

As proved in Theorem 1.5, the resulting minimal surface f satisfies

f (γt .z) = ρt .f (z) with ρt =

(
(pt , qt , rt), eitθ

)
where we set θ = detD|λ=1

= c2

− |a +
¯b|2 ≥ 0,

Xt|λ=1
=

1

2

(
* −qt + ipt

−qt − ipt *

)
and Yt|λ=1

=

1

2

(
−irt *

* irt

)
.

We want to compute Xt and Yt in more detail. For this we write λ = eiv, then for any function H(λ) we have

˙H =

d
dvH = iλ d

dλH. Thus
Xt = −

˙MtM−1

t , Yt =

1

2

{
¨MtM−1

t − (
˙MtM−1

t )

2

}
.

A straightforward computation shows the following corollary.

Corollary 5.22. If Mt = S ˆMtS−1, then Xt and Yt can be computed as

Xt|λ=1
= −S

(
[S−1

˙S, ˆMt] +

˙
ˆMt
)

ˆM−1

t S−1|λ=1
,

Yt|λ=1
=

1

2

S
(

[S−1
˙S, Lt] +

˙Lt − Lt ˆM−1Lt
)

ˆM−1

t S−1|λ=1
,

where we set Lt = [S−1
˙S, ˆMt] +

˙
ˆMt.

Note, an inspection of the last two formulas yields that Xt|λ=1
and Yt|λ=1

, and therefore also ρt, can be com-

puted from D.

Remark 5.23. The condition detD(λ = 1) > 0, that is, the monodromy matrix Mt(λ) = S(λ) exp(tD(λ))S(λ)

−1

has unimodular eigenvalues at λ = 1, is purely local, since detD(λ) takes non-positive values in general only

for some λ ∈ S1

.

5.10 Translation invariant minimal surfaces

It is clear that all R-equivariant minimal surfaces induce some one-parameter group {ρt}t∈R ⊂ Iso◦(Nil
3

),

and by Theorem 5.3, such one-parameter groups describe a helicoidal motion or a translation motion. There-

fore in the following sections we characterize helicoidal and translation invariant minimal surfaces by the

degree one-potentials in detail.

In this section we characterize translation invariant (5.6) minimal surfaces in Nil
3
.

Theorem 5.24. Let f be a translation invariant minimal surface. Then f is R-equivariant. Moreover, the corre-
sponding degree one potential η = Ddz as in (5.27) satisfies D|λ=1

= 0.
Conversely, let η = Ddz be as in (5.27) a degree one potential satisfying D|λ=1

= 0. Then the resulting
R-equivariant minimal surface is a translation invariant minimal surface.

Proof. Let f be a translation invariant minimal surface. Then it is clear that f does not have a fixed point on
the surface and thus it is an R-equivariant surface by Theorem 5.9 and Theorem 5.12 and thus there exists a

degree one potential Ddz with D as in (5.27). We also know f (z + t) = ρt .f (z) with ρt a one-parameter group

of isometries of Nil
3
as described in (5.6). In general, the rotation part of a symmetry ρt yields, up to a factor

1/2 the eigenvalues of Mt(λ) at λ = 1. Under our assumption the rotation part of ρt is trivial, whence the
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eigenvalues of Mt(λ) are identically 1 at λ = 1. But then the eigenvalues of D(λ = 1) vanish and since this

matrix is diagonalizable, D(λ = 1) = 0 follows.

Conversely, let us start from some degree one potential D satisfying D|λ=1
= 0. From this we infer that

ˆMt|λ=1
= exp(tD)|λ=1

= id, whence the resulting equivariant surface does not have a rotation part, that is,

θ = 0. Hence by Theorem 1.5, we conclude that the original one-parameter group in Iso◦(Nil
3

) actually is

contained in Nil
3
. Therefore the surface is a translation invariant minimal surface.

We now compute the one-parameter group {ρt}t∈R with ρt = (pt , qt , rt) ∈ Nil
3
given by the degree one

potential Ddz with D|λ=1
= 0 as follows. Since D|λ=1

= 0, we obtain that D has the form

D(λ) =

(
0 a(λ−1

− λ)

ā(−λ−1

+ λ) 0

)
, a ∈ C×

.

We know fromSection 5.7 that in the present casewe can choose for C(z, λ) any in initial condition S(λ) taking

values in ΛSU
1,1σ.

Example 5.25. We first choose the initial condition S(λ) ≡ id. Then Mt = exp(tD) and by Corollary 5.22, we

have

(1, 2)-entry of Xt|λ=1
= 2iat and (1, 1)-entry of Yt|λ=1

= 0.

Thus ρt is given by
ρt = ((pt , qt , rt), 1) = ((4t Re a, 4t Im a, 0), 1). (5.28)

Thus the surface is a translation invariant minimal surface with a direction ρt given in (5.28).

Example 5.26. We next normalize without loss of generality to a = 1: Conjugate, if necessary, D by a diagonal

matrix so that a is changed into a positive real number. Then change the complex coordinates by scaling.

Now we choose another initial condition S, namely S|λ=1
= “boost”,

S|λ=1
=

(
cosh p eiq sinh p

e−iq sinh p cosh p

)
∈ SU

1,1
, (p, q ∈ R).

Note, any
˜S ∈ ΛSU

1,1σ can be decomposed as

˜S = diag(eiℓ, e−iℓ)S,
(
ℓ ∈ R, ˜S ∈ ΛSU

1,1σ
)
,

where S|λ=1
is a boost. Then the resulting surface defined by using the initial condition S is congruent to the

surface given by the initial condition
˜S. Thuswe only need to consider a boost as an initial condition.Without

loss of generality we can assume p ≥ 0 and q ∈ [0, 2π). Since the Iwasawa decomposition of exp(zD) = FV
+

can be computed directly as

exp(zD) = exp

(
0 zλ−1

− z̄λ
−zλ−1

+ z̄λ 0

)
exp

(
0 (z̄ − z)λ

(−z̄ + z)λ 0

)
,

a straightforward computation yields

SF|λ=1
=

(
cosh s cosh p − ieiq sinh s sinh p i sinh s cosh p + eiq cosh s sinh p

−i sinh s cosh p + e−iq cosh s sinh p cosh s cosh p + ie−iq sinh s sinh p

)
,

where s = 2 Im(z). From this it is easy to see that as spinors ψ
1
and ψ

2
at λ = 1 one can choose

ψ
1
|λ=1

=

√
i(cosh s cosh p − ieiq sinh s sinh p), ψ

2
|λ=1

=

√
i(i sinh s cosh p + eiq cosh s sinh p).

Then another straightforward computation shows that the conformal factor of the metric of the resulting

surface is

eu/2

= 2(|ψ
1
|2 + |ψ

2
|2) = 2m cosh

(
4y + cosh

−1

(
cosh 2p
m

))
,
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where m =

√
(cosh 2p)

2

− (sin q sinh 2p)
2

and z = x + iy. Here note that m > 0. In particular if q = 0,

then |ψ
1
|2 + |ψ

2
|2 = cosh 2p cosh 4y. From this, for any pair (p, q) ∈ [0,∞) × [0, 2π), there exists a (p̃, 0) ∈

[0,∞) × {0} such that the conformal factors are the same function up to a translation in y. Therefore the
resulting translation invariant minimal surfaces are parameterized by p ∈ [0,∞).

For the present case, where q = 0, the resulting translation invariant minimal surface can be computed

as follows:

SF = S
(

cosh s i sinh s
−i sinh s cosh s

)
,

where s = 2 Im(λ−1z) and S|λ=1
=

(
cosh p sinh p
sinh p cosh p

)
. Then the resulting surface

ˆf can be computed as in the

proof of Theorem 1.5

ˆf (z) =

(
Ad(S)fL3 (z)

)o
+

(
Ad(S)

(
−

i
2

λ∂λ fL3 (z)

))d
+ Xo +

(
1

2

[X, Ad(S)fL3 (z)] + Y
)d ∣∣∣

λ=1

,

where X = −iλ(∂λS)S−1

, Y = −

i
2

λ∂λX,

fL3 (z)|λ=1
=

(
−

i
2

cosh(4y) 2ix − 1

2

sinh(4y)

−2ix − 1

2

sinh(4y)

i
2

cosh(4y)

)

and

−

i
2

λ∂λ fL3 (z)|λ=1
=

(
−ix sinh(4y) −iy − x cosh(4y)

iy − x cosh(4y) ix sinh(4y)

)
.

Let us consider the minimal surface

ˆfS(z) =

(
Ad(S)fL3 (z)

)o
+

(
Ad(S)

(
−

i
2

λ∂λ fL3 (z)

))d ∣∣∣
λ=1

.

Then the term Xo +

(
1

2

[X, Ad(S)fL3 (z)] + Y
)d ∣∣∣

λ=1

denotes the translation of
ˆfS(z). Moreover, the resultingmin-

imal translation invariant surface fS(z) is explicitly given by

fS(z) =

 4 cosh(2p)x + sinh(2p) cosh(4y)

sinh(4y)

−2 sinh(2p)y + 2 cosh(2p)x sinh(4y)

 , (5.29)

where z = x+ iy. It is easy to see that fS(z) satisfies (5.30) and thus it is a translation invariantminimal surface.

Remark 5.27. Note that fS in (5.29) is exactly the same surface as the following one given in [33, Theorem 6],

[39, Part II, Example 1.8]:

x
3

=

x
1
x

2

2

+ c

 x2

√
1 + x2

2

2

+

1

2

ln

(
x

2
+

√
1 + x2

2

)
(5.30)

with c = sinh 2p ∈ R (see also [11, Example 8.2]). These surfaces are products of two appropriate curves (see

[39, Part II, Example 1.8], [40]).

5.11 Helicoidal minimal surface

Next we consider helicoidal surfaces, in particular R-equivariant surfaces for which ρt is not contained en-
tirely in Nil

3
. By Theorem 5.20 and Theorem 5.24 this is exactly the case when the degree one potential D

satisfies detD|λ=1
= c2

− |a +
¯b|2 > 0.
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Computations with general coefficients a, b, c are obviously quite laborious. Therefore we will restrict
here to the case (5.31) below. Note that coefficients can be changed/simplified by using scalings of coordinates

and/or immersions and one canmove from one surface to another one in the same associated family etc. It is

conjectured, that up to such manipulations the basic helicoidal surfaces can all be generated from the ones

with a = 1 and c = 2. Therefore, we normalize a and c as

a = 1 and c = 2, (5.31)

respectively. It seems that we can prove that without loss of generality a and c can be normalized as in (5.31),

however, it is rather complicated and we postpone the proof until the forthcoming paper [43].

Then the condition detD|λ=1
> 0 is equivalent to that b is inside the open disk

D =

{
b ∈ C | |1 + b|2 < 4

}
, (5.32)

that is, the disk with center (−1, 0) and radius 2 in the complex plane. Thus we have the following theorem.

Theorem 5.28. Let f be a helicoidal minimal surface in Nil
3
. Then the corresponding degree one potential

η = Ddz satisfies detD|λ=1
> 0. Conversely, let η = Ddz be a degree one potential which satisfies condition

(5.31) and detD|λ=1
> 0. Then there exists a helicoidal minimal surface with respect to the axis through the point

α = ah ∈ Nil
3
parallel to the e

3
-axis with pitch c, where α and c are defined by

α =

i(2 + ℓ)(−6 +
¯b + b(3 + 2 Re b) + 4ℓ)

ℓ2

(1 + b)

√
4 − ℓ2

, (5.33)

c =

−2(3 Re b − (Re b)

2

− |b|2 Re b − |b|2)

ℓ4

, (5.34)

with ℓ =

√
detD|λ=1

=

√
3 − 2 Re b − |b|2 < 2.

Moreover, the minimal helicoidal surface becomes a rotational surface (for obvious reasons usually called
catenoid) if and only if the pitch c vanishes, that is, if

3 Re b − (Re b)

2

− |b|2 Re b − |b|2 = 0 (5.35)

holds.

Proof. Clearly, any helicoidal minimal surface f does not have a fixed point on the surface and thus it is anR-
equivariant surface by Theorem 5.12. Thus the normal Gauss map g is also equivariant and thus there exists a
degree one potential η = Ddz by Theorem 5.20. Since f it is not a translationminimal surface, the eigenvalues

of the monodromy matrix Mt are unimodular and distinct, thus D satisfies detD|λ=1
> 0.

Conversely, let η = Ddz be a degree one potential which satisfies condition (5.31) and detD|λ=1
> 0.

Then let e
1
and e

2
denote orthonormal (with respect to the indefinite Hermitian inner product) eigenvec-

tors of D|λ=1
. Then (e

1
, e

2
) ∈ SU

1,1
and the matrix S, given by

S−1

= diag(λ1/2

, λ−1/2

)(e
1
, e

2
) diag(λ−1/2

, λ1/2

), (5.36)

is contained in ΛSU
1,1σ. If we choose S as an initial condition for the solution to dC = Cη, then we obtain

Mt|λ=1
= S exp(tD)S−1|λ=1

= diag(eitℓ, e−itℓ).

Then by using Corollary 5.22, Xt = −iλ(∂λMt)Mt and Yt =

1

2

λ∂λ(λ(∂λMt)M−1

t ) can be computed as

the (1, 2)-entry of Xt|λ=1
=

i
2

α
(

1 − e2iℓt
)
,

the (1, 1)-entry of Yt|λ=1
= −

i
2

(
c2ℓt − |α|

2

2

sin 2ℓt
)
,
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where α, c and ℓ are given in (5.33) and (5.34), respectively. Thus in the relation f (γt .z) = ρt .f (z) the one-

parameter group ρt can be computed:

ρt =

((
Re(α(1 − e2iℓt

)), Im(α(1 − e2iℓt
)), c2ℓt − |α|

2

2

sin 2ℓt
)
, e2iℓt

)
.

From (5.5), ρt is a helicoidal motion with angle 2ℓt through the point (Re(α), Im(α), 0) and the pitch c.

Finally, from (5.33) and (5.34) it is easy to see that the helicoidal motion gives a rotation if and only if the

pitch c vanishes, that is, (5.35) holds. This completes the proof.

Remark 5.29.

1. Let us consider the case b = 0 in (5.27) with a = 1 and c = 2. It is easy to see that detD|λ=1
> 0 holds.

Moreover, this case was already considered in [21], and the resulting surface is a horizontal plane or a
horizontal umbrelladepending on the initial condition S. Sincewe are interested in the case of equivariant
minimal surfaces, we consider only horizontal planes.

2. Let us consider the case b = 1 in (5.27) with a = 1 and c = 2. It is easy to see that detD|λ=1
> 0 holds.

Moreover, this case was already considered in [21], and the resulting surface is a horizontal plane.
3. Let us consider the case a = 1 in (5.27)with c = 1−b and0 < b < 1. It is easy to see that detD|λ=1

> 0holds.

It is known that the resulting spacelike CMC surface fL3 in L3

, see Figure 3 in [5], is given by elementary

functions. It has been called semitrough [36, page 98] and the correspondingminimal surface is the same

surface as the one given in Example 8.4 of [11].

5.12 Minimal surfaces with R-equivariant normal Gauss maps

As we have shown that equivariant minimal surfaces Nil
3
have equivariant non-holomorphic harmonic nor-

mal Gauss maps and they induce the degree one potentials η = D dz. Conversely, η = D dz with D|λ=1
= 0

or detD|λ=1
> 0 induces an equivariant minimal surface in Nil

3
. In particular in the case of detD|λ=1

> 0,

the initial condition S ∈ ΛSU
1,1σ is important to construct an helicoidal minimal surface, and it is essentially

unique. If we choose an arbitrary intial condition S ∈ ΛSU
1,1σ, then the resultingminimal surface is no longer

equivariant.

Corollary 5.30. Let η = Ddz be a degree one potential which satisfies the condition (5.31) and detD|λ=1
> 0.

Then there exist a two-parameter family of minimal surfaces which are symmetric with respect to (γ, ρ) given by
γ : z 7→ z + 2π/

√
detD

∣∣
λ=1

and ρ = ((p, q, r), 1) given in (5.37), that is, the resulting surface is periodic, but it is
not equivariant in general.

Proof. We choose an initial condition
ˆS in the construction of the resulting minimal surface f given by the

degree one potential η = Ddz such that

ˆS = B
0
S ∈ ΛSU

1,1σ , where B
0
|λ=1

=

(
cosh p eiq sinh p

e−iq sinh p cosh p

)
(p, q ∈ R),

and S is the initial condition given in (5.36). Then the monodromy matrix

ˆMt = B
0
S exp(tD)S−1B−1

0

at λ = 1 can be computed as
ˆMt|λ=1

= B
0

diag(eiℓt , e−iℓt)B−1

0
|λ=1

, where ℓ =

√
detD|λ=1

> 0. Therefore, for

t
0

= 2π/ℓ, we obtain ˆMt
0

(λ = 1) = id, and thus the resulting surface is symmetric with respect to (γ, ρ), where

γ : z → z + 2π/ℓ and ρ = ((p, q, r), 1) and p, q, r ∈ R are given by

ˆXt
0

|λ=1
=

1

2

(
* −q + ip

−q − ip *

)
,

ˆYt
0

|λ=1
=

1

2

(
−ir *

* ir

)
, (5.37)
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with

ˆXt
0

|λ=1
= −

˙
ˆMt

0

ˆM−1

t
0

∣∣
λ=1

,
ˆYt

0

|λ=1
=

1

2

{
¨
ˆMt

0

ˆM−1

t
0

− (

˙
ˆMt

0

ˆM−1

t
0

)

2

} ∣∣
λ=1

.

Here · denotes the derivative with respect to v, λ = eiv. This completes the proof.

It is also natural to think about the remaining cases, that is, the cases where detD|λ=1
= 0 with D|λ=1

≠ 0 or

detD|λ=1
< 0. It is easy to see that the resulting normal Gauss maps from such degree one potentials η = D dz

are R-equivariant, however, the minimal surfaces in Nil
3
are not equivariant.

Proposition 5.31. Let η = Ddz be a degree one potential which satisfies the condition

detD|λ=1
= 0 with D|λ=1

≠ 0 or detD|λ=1
< 0.

Then the normal Gaussmap of the resultingminimal surface inNil
3
is equivariant, however the resulting surface

itself does not have any symmetry.

Proof. From the construction, it is clear that the normal Gauss map is equivariant. Since the monodromy

matrix given by the potential η does not have unimodular eigenvalues, thus the resulting surface does not

have any symmetry by Theorem 1.5.

A Preliminary results on Nil3, surfaces in Nil3 and flat connections
for the harmonic normal Gauss map

A.1 Heisenberg group Nil3

As in [21] we realize the three-dimensional Heisenberg group Nil
3
by R3

with the group multiplication

(a
1
, a

2
, a

3
) · (x

1
, x

2
, x

3
) =

(
a

1
+ x

1
, a

2
+ x

2
, a

3
+ x

3
+

1

2

(a
1
x

2
− a

2
x

1
)

)
.

and the left-invariant metric

ds2

= dx2

1
+ dx2

2
+

(
dx

3
+

1

2

(x
2
dx

1
− x

1
dx

2
)

)
2

.

The Lie algebra of Nil
3
will be denoted nil

3
. The standard basis e

1
, e

2
, e

3
of nil

3

∼
= R3

induces left-invariant

vector fields whichwill be denoted by E
1
, E

2
, E

3
, see (1.5). ByDwewill always denote a non-compact simply-

connected Riemann surface. Usually this will mean D the unit disk or the complex plane.

A.2 Surfaces in Nil3

Let f : R→ Nil
3
be a conformal immersion of a Riemann surface.

We consider the 1-form f −1∂fdz = Φdz on a simply connected domain D ⊂ R (or the universal cover

of R) that takes values in the complexification nilC
3
of the Lie algebra nil

3
. With respect to the natural basis

{e
1
, e

2
, e

3
} of nil

3
, we expand Φ as Φ =

∑
3

k=1

ϕkek and obtain that (ϕ
1

)

2

+ (ϕ
2

)

2

+ (ϕ
3

)

2

= 0, since f is
conformal. Then there exist complex valued functions ψ

1
and ψ

2
such that

ϕ
1

= (ψ
2

)

2

− ψ2

1
, ϕ

2
= i((ψ

2
)

2

+ ψ2

1
), ϕ

3
= 2ψ

1
ψ

2
,

where ψ
2
denotes the complex conjugate of ψ

2
. It is easy to check that ψ

1
(dz)

1/2

and ψ
2

(dz̄)

1/2

are well

defined on R. More precisely, ψ
1

(dz)

1/2

and ψ
2

(dz̄)

1/2

are respective sections of the spin bundles Σ and
¯Σ

over R.
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The sections ψ
1

(dz)

1/2

and ψ
2

(dz̄)

1/2

are called the generating spinors of the conformally immersed sur-

face f in Nil
3
. The conformal factor eu of the induced metric ⟨df , df ⟩ and the left translated vector field f −1N

of the unit normal N to nil
3
can be expressed by the generating spinors as follows:

eu = 4(|ψ
1
|2 + |ψ

2
|2)

2

, (A.1)

and

f −1N =

1

|ψ
1
|2 + |ψ

2
|2
(

2 Re(ψ
1
ψ

2
)e

1
+ 2 Im(ψ

1
ψ

2
)e

2
+ (|ψ

1
|2 − |ψ

2
|2)e

3

)
, (A.2)

where Re and Im denote the real and the imaginary part of a complex number respectively. We define a func-

tion h by
h = eu/2⟨f −1N, e

3
⟩ = 2(|ψ

1
|2 − |ψ

2
|2). (A.3)

Thenwe get a section h(dz)

1/2

(dz̄)

1/2

ofΣ⊗ ¯Σ. This section is called the support of f . The coefficient function

h is called the support function of f with respect to z. The support function h is represented as h = eu/2

cos ϑ.
Here ϑ denotes the angle between N and the Reeb vector field E

3
(called the contact angle of f ). From [21,

Proposition 3.3], it is known that f has support zero at p, that is, h(p) = 0 if and only if E
3
is tangent to f at p.

Thus a surface f is said to be nowhere vertical if it is nowhere tangent to E
3
.

In this paper we will usually assume that any surface considered in this paper is nowhere vertical. In

this case, the map f −1N has a nowhere vanishing third component. We usually normalize things so that this

component is positive.

Remark A.1. From (A.1) it follows that f has branch points exactly where ψ
1

(p) = ψ
2

(p) = 0 holds. From (A.3)

it follows that f is vertical exactly, where |ψ
1

(p)| = |ψ
2

(p)| holds. Hence a nowhere vertical surface has no
branch points and thus will be an immersion.

A.3 The normal Gauss map

We identify the Lie algebra nil
3
of Nil

3
with Euclidean 3-spaceR3

via the natural basis {e
1
, e

2
, e

3
}. Under this

identification, the map f −1N can be considered as a map into the unit 2-sphere S2 ⊂ nil
3
. We now consider

the normal Gauss map g of the surface f in Nil
3
. The map g is defined as the composition of the stereographic

projection π from the south pole with f −1N, that is, g = π ◦ f −1N : D → C ∪ {∞} and thus, applying the

stereographic projection to f −1N defined in (A.2), we obtain

g =

ψ
2

ψ
1

.

Note that the unit normal N is represented in terms of the normal Gauss map g as

f −1N =

1

1 + |g|2
(

2 Re(g)e
1

+ 2 Im(g)e
2

+ (1 − |g|2)e
3

)
. (A.4)

The formula (A.4) implies that f is nowhere vertical if and only if |g| < 1 or |g| > 1, and our usual assumptions

imply that always |g| < 1 holds.

Remark A.2. The normal Gauss map of a vertical plane satisfies |g| = 1. Conversely, if the normal Gauss map

g of a conformal minimal immersion f satisfies |g| ≡ 1, then f is a vertical plane.

A.4 Nonlinear Dirac equation and the Abresch-Rosenberg differential

It is known that the generating spinors ψ
1
and ψ

2
satisfy the following nonlinear Dirac equation, see [4, 21]

for example:

/D
(
ψ

1

ψ
2

)
:=

(
∂ψ

2
+ Uψ

1

−
¯∂ψ

1
+ Vψ

2

)
=

(
0

0

)
, (A.5)
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where

U = V = −

H
2

eu/2

+

i
4

h, (A.6)

and eu/2

and h are expressed by ψ
1
and ψ

2
via (A.1) and (A.3). ⁴ The complex function U(= V) is called the

Dirac potential of the nonlinear Dirac operator /D.
TheHopf differential A dz2

is the (2, 0)-part of the second fundamental form of f derived from N. It is easy
to see that A can be expanded as

A = 2(ψ
1
∂ψ

2
− ψ

2
∂ψ

1
) + 4iψ2

1
(ψ

2
)

2

.

Next, define B as the complex valued function

B =

1

4

(2H + i)˜A, where
˜A = A +

ϕ2

3

2H + i .

Here A and ϕ
3
are respectively the Hopf differential and the e

3
-component of f −1∂f for f in Nil

3
. The complex

quadratic differential
˜A dz2

will be called the Berdinsky-Taimanov differential. It is known that 2Bdz2

is the

original Abresch-Rosenberg differential [1, 30]. In this paper, by abuse of notation, we call Bdz2

the Abresch-
Rosenberg differential. We define a function w using the Dirac potential U(= V) by

ew/2

= U = V = −

H
2

eu/2

+

i
4

h. (A.7)

Here, to define the complex function w, we need to assume that the mean curvature H and the support func-

tion h do not have any common zero. For nonzero constant mean curvature surfaces this is no restriction,

however, for minimal surfaces, this assumption is equivalent to that h never vanishes, that is, that these sur-
faces are nowhere vertical. The opposite, minimal vertical surfaces which are always vertical are just vertical

planes, as explained above.

Theorem A.3 ([3]). Let D be a simply connected domain in C and f : D→ Nil
3
a conformal immersion and w

the complex function defined in (A.7). Then the vector ˜ψ = (ψ
1
, ψ

2
) satisfies the system of equations

∂ ˜ψ =
˜ψ ˜U, ¯∂ ˜ψ =

˜ψ ˜V , (A.8)

where
˜U =

(
1

2

∂w +

1

2

∂He−w/2+u/2

−ew/2

Be−w/2

0

)
,

˜V =

(
0 −

¯Be−w/2

ew/2 1

2

¯∂w +

1

2

¯∂He−w/2+u/2

)
. (A.9)

Here ew never vanishes on D.
Conversely, every vector solution ˜ψ to (A.8), where ew never vanishes onD and where (A.7), (A.9), (A.1) and

(A.3) are satisfied, is a solution to the nonlinear Dirac equation (A.5)with (A.6) and therefore is induced by some
conformal immersion into Nil

3
.

A.5 Loop groups

Here we recall definitions of various loop groups, see [44] in detail. Let SL
2
C be a special linear Lie group of

degree 2, and define a twisted loop group of SL
2
C, that is, a space of maps from S1

into SL
2
C:

ΛSL
2
Cσ = {g : S1 → SL

2
C | g(−λ) = σg(λ)}, (A.10)

where σ = Ad(σ
3

). We induce a suitable topology (such as a Wiener topology) on ΛSL
2
Cσ such that ΛSL

2
Cσ

becomes an infinite dimensional Banach Lie group. Then we can define several subgroups of ΛSL
2
Cσ:

ΛSU
1,1σ = g ∈ ΛSL

2
Cσ | σ3

(
g(1/

¯λ)

t
)
−1

σ
3

= g(λ)}, (A.11)

4 The potential in [4] differs from ours by multiplication −2.
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Λ±SL
2
Cσ = {g ∈ ΛSL

2
Cσ | g can be extended holomorphically to D±}, (A.12)

where D+

(resp. D−

) denotes inside (resp. outside) of the unit disk on the extended planeC∪{∞}. These
subgroups ΛSU

1,1σ, Λ+

SL
2
Cσ and Λ−SL

2
Cσ are called the twisted loop group of SU

1,1
, the “positive” and the

“negative” loop groups of SL
2
C, respectively. By Λ+

*

SL
2
Cσ we denote the subgroup of elements of Λ+

SL
2
Cσ

which take the value identity at zero. Similarly, by Λ−
*

SL
2
Cσ we denote the subgroup of elements of Λ−SL

2
Cσ

which take the value identity at infinity.

A.6 Flat connections

Recall that from our assumptions we know that the unit normal f −1N is upward, that is, the e
3
-component

of f −1N is positive. We assume from now on that

H = constant.

Hence the matrices
˜U and

˜V in (A.9) above simplify. Next we introduce a parameter λ as follows

˜Uλ =

(
1

2

∂w −λ−1ew/2

λ−1Be−w/2

0

)
,

˜Vλ =

(
0 −λ ¯Be−w/2

λew/2 1

2

¯∂w

)
. (A.13)

At this point we state a result which is crucial for the rest of the paper.

Theorem A.4. Assume that the mean curvature H is constant. Then equation (A.8) is solvable if and only if the
matrix zero-curvature condition

˜Uλz̄ − ˜Vλz = [
˜Uλ , ˜Vλ] (A.14)

holds.

Proof. Writing out the integrability condition for (A.8) we obtain an equation, where (ψ
1
, ψ

2
) is multiplied

to
˜Uλz̄ − ˜Vλz − [

˜Uλ , ˜Vλ]. Working out the equation (A.14) and subtracting one side from the other, we obtain a

diagonal matrix of trace 0. Since (ψ
1
, ψ

2
) only vanishes on a nowhere dense set, the integrability condition

is equivalent to that the diagonal coefficients vanish. But this is the claim.

From (A.14), it follows that there exists a matrix valued function
˜F : D→ ΛGL

2
Cσ such that ˜F−1d˜F =

˜Uλdz +

˜Vλdz̄.
For the purposes of this paper it will be convenient to change the matrices

˜Uλ and ˜Vλ by the gauge

diag(e−w/4

, e−w/4

). We thus obtain the equation

αλ = Uλdz + Vλdz̄ (A.15)

with coefficient matrices

Uλ =

(
1

4

∂w −λ−1ew/2

λ−1Be−w/2

−

1

4

∂w

)
, Vλ =

(
−

1

4

¯∂w −λ ¯Be−w/2

λew/2 1

4

¯∂w

)
. (A.16)

Note that this system of equations still is integrable, that is, satisfies the integrability condition (A.14) for the

new coefficient matrices. Using this matrix zero-curvature condition. we can show that minimal surfaces in

Nil
3
are characterized in terms of their normal Gauss map as follows. We first recall Theorem 5.3 in [21].

Theorem A.5. Let f : D→ Nil
3
be a conformal immersion which is nowhere vertical and αλ the 1-form defined

in (A.15). Moreover, assume that the unit normal f −1N is upward. Then the following statements are equivalent:

1. f is a minimal surface.
2. d + αλ is a family of flat connections of the trivial bundle D × SU

1,1
.
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3. The normal Gauss map g for f is a non-holomorphic harmonic map into the hyperbolic 2-space H2

=

SU
1,1

/U
1
.

Remark A.6.

1. The equivalence (1)⇔ (3) has been proven by [31], see also [11, 38]. We have given a new proof for this

reulst in [21].

2. The statement that the non-holomorphic harmonic normal Gauss map into H2

implies the item (2) also

holds and will be discussed in greater generality below.

3. We also note that the non-holomorphicity of the normal Gauss map derives from the fact that the upper

right corner of the (1, 0)-part of αλ (that is, Uλ) is purely imaginary, and never vanishes, since the surface

is nowhere vertical.

By (2) of Theorem A.5, there exists an F : D→ ΛSU
1,1σ such that F−1dF = αλ. The argument leading to (5.8)

in the proof of Theorem 5.3, [21], shows that actually the following matrix, written in terms of the generating

spinors, solves this equation for λ = 1:

F|λ=1
=

1√
|ψ

1
|2 − |ψ

2
|2

(√
i−1ψ

1

√
i−1ψ

2√
i ψ

2

√
i ψ

1

)
(A.17)

The frame F as given in (A.17) will be called an extended frame of the minimal surface f .

Remark A.7. The formula above can be rewritten by using a “hidden symmetry”: In view of (A.7) we obtain

for minimal surfaces in Nil
3
the relation

ew/2

=

i
2

(|ψ
1
|2 − |ψ

2
|2), (A.18)

where by (A.16) the right upper corner of the (1, 0)-part of α, the Maurer-Cartan form of the moving frame

F(z, z̄, λ) for λ = 1, is −ew/2

.

B The loop group construction of harmonic maps from D into
H2 = SU1,1/U1.

In Appendix A we have considered a minimal immersion into Nil
3
and have recalled the construction of an

S1

-family αλ of flat connections.Moreover,we have pointed out that for such aminimal immersion the normal

Gauss map g is a harmonic map into the unit diskH2

= SU
1,1

/U
1
. More precisely, g is obtained from f −1N by

a stereographic projection (where this is carried out in su
1,1

∼
= R3

which is considered as a Euclidean space).

In this section we briefly recall other realizations of the hyperbolic 2-space H2

and how all harmonic

maps into H2

= SU
1,1

/U
1
can be constructed by the loop group method. This construction is one of the two

main tools for the construction of all minimal surfaces in Nil
3
by the loop group method.

B.1 Realizing Minkowski 3-space L3 as the usual Euclidean 3-space R3

To relate the setting of the theory of harmonic maps into H2

= SU
1,1

/U
1
to our setting we need to consider

a natural isomorphism between the usual Euclidean space nil
3

∼
= R3

with natural basis e
1
, e

2
, e

3
, and the

Minkowski 3-spaceL3

realized by the Lie algebra nil
3
with natural basis E

1
, E

2
, and E

3
, spelled out explicitly

below.

TheKilling formof su
1,1

induces a Lorentzmetric on su
1,1

. Thuswe regard su
1,1

as theMinkowski 3-space

L3

. The basis of L3 ∼
= su

1,1

E
1

=

1

2

(
0 i
−i 0

)
, E

2
=

1

2

(
0 −1

−1 0

)
and E

3
=

1

2

(
−i 0

0 i

)
. (B.1)
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is an orthonormal basis of su
1,1

= L3

with timelike vector E
3
relative to the non-degenerate bilinear form

⟨A, B⟩ = 2 TrAB.
An explicit isometry J : L3 → su

1,1
is given by the map

(x
1
, x

2
, x

3
)

t 7→ x
3
E

3
− x

1
E

2
− x

2
E

1
.

It is easy to verify that that this map is an isomorphism of Lie algebras, where the Lie algebra structure of L3

is given by the usual cross product.

Note that the group SU
1,1

acts on su
1,1

= L3

by the adjoint representation. In particular, the timelike

vectorE
3
generates the rotation groupSO

2

∼
= Ad(exp(tE

3
))which acts isometrically onL3

by rotations around

the x
3
-axis. On the other hand, the isometries exp(tE

1
) and exp(tE

2
) are so called boosts.

B.2 Realizing the left translated unit normal and the normal Gauss map in su1,1

From Section A.3 we know that f −1N and g are realized in the same 3-dimensional vector space whichwewill

consider to be the natural R3

as well as to be the three-dimensional Minkowski space L3

. These (identical

vector) spaces will be provided with the usual non-degenerate bilinear forms relative to the natural basis

e
1
, e

2
, e

3
respectively and with e

3
the timelike vector in the Minkowski case.

By what was said in Section A.3 we know that f −1N takes values in the two sphere S2

relative to the

definite metric, actually in the upper hemisphere S2

+
, and g takes values in H2

, realized by the hyperbolic

2-spaceH2

as the unit disc (in the definite metric) in the complex planeC perpendicular (in both metrics) to

the e
3
-direction.

The stereographic projection π : S2

+
→ H2

(relative to the definite metric) maps f −1N bi-holomorphically

onto H2

. The group SU
1,1

acts on C by Möbius transformations, leaving H2

invariant, and this action trans-

forms via the stereographic projection to a group of conformal transformations on S2

which leaves S2

+
invari-

ant.

It is well known that the linear fractional action of SU
1,1

on S2

+
just mentioned is induced by the standard

linear action of SO

+

(2, 1) on L3

.

More precisely, for a concrete realization one considers the forward light cone with vertex at the “south

pole” −e
3
on the x

3
-axis and its boundary intersecting the x

1
x

2
-plane in the unit circle. Then the stereo-

graphic projection from the south pole to the x
1
x

2
-plane and the stereographic projection to the hyperboloid

Q2

=

{
v ∈ L3 | ⟨v, v⟩ = −1, ⟨v, e

3
⟩ < 0

}
inside the open forward light cone give diffeomorphisms, and an isometry from the unit diskH2

to the hyper-

bolidQ2

.

These projections are equivariant relative to the group actions of SU
1,1

discussed above. In particular,

the action of SU
1,1

is linear and implemented by the adjoint representation.

B.3 General extended frames of harmonic maps intoH2 = SU1,1/U1

In the last sections we have considered three diffeomorphic space forms of negative curvature, H2

, S2

+
, and

Q2

.

For a given minimal surface f : D→ Nil
3
we have correspondingly three normal Gauss maps:

• The normal Gauss map g : D→ H2

, see definition above.

• The translated unit normal f −1N = π−1 ◦ g : D→ S2

+
, with π a stereographic projection, see above.

• The corresponding map NL3 : D→ Q2

.

It is known [21] that the normal Gauss map is harmonic. Since the other maps are obtained from g by equiv-
ariant conformal diffeomorphisms, they are harmonic as well.
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By [27], each of these harmonic maps can be obtained by the loop group method: Let us explain briefly

how this works the case of g. Here we have as target space H2

= SU
1,1

/U
1
. First one chooses some frame

F : D → SU
1,1

, which is unique up to right multiplication by an element in U
1
. Note that this implies g = F

mod U
1
in our case. Then one introduces (as usual, see for example Section A.6 for more details) the loop

parameter into the Maurer-Cartan form α = F−1dF, arriving at αλ as above. Solving F−1dF = αλ one obtains
what we call for the time being a “general extended frame F(z, z̄, λ)”. From this extended frame one obtains

the (meromorphic) normalized frame F
−

(z, λ) by a Birkhoff decomposition (see for example Section C.3 for

more details).

TheMaurer Cartan form η
−

(z, λ) = F
−

(z, z̄, λ)

−1dF
−

(z, λ) is called the normalized potential. This is amero-

morphic one-form defined on D which has a special form, see for example (C.4).

Starting, conversely, from any normalized potential as stated above, one can reverse the steps: first solve

an ODE, then find a λ-dependent frame F ∈ ΛSU
1,1σ by an Iwasawa decomposition (see Step II in Section C.3)

and finally one obtains a harmonic map intoH2

by projection to the quotient spaceH2

.

Definition B.1. The extended frames defined above have not restrictions on the initial conditions nor on any

special additional property. They are therefore called the general extended frames.

Theorem B.2. For a harmonicmap g : D→ SU
1,1

/U
1
any two general extended frames F(z, z̄, λ)and ˜F(z, z̄, λ)

for g satisfy
˜F(z, z̄, λ) = A(λ)F(z, z̄, λ)k(z, z̄)

with some A(λ) ∈ ΛSU
1,1σ satisfying A(λ = 1) = id and k ∈ U

1
.

Proof. Let F(z, z̄, λ) and
ˆF(z, z̄, λ) be general extended frames of g, that is, F(z, z̄, λ = 1) and

˜F(z, z̄, λ = 1) are

frames of g. Therefore F(z, z̄, λ = 1) =
˜F(z, z̄, λ = 1)k(z, z̄) for some k ∈ U

1
. Now the claim follows.

Remark B.3.

1. An extended frame F of a minimal surface f as in (A.17) is of course a general extended frame of the

harmonic map induced by the normal Gauss map of f . Moreover, two extended frames
˜F and F of f are

related by

˜F = AF, (B.2)

with some A(λ) ∈ ΛSU
1,1σ satisfying A(λ = 1) = id. Here k ∈ U

1
is identity since F|λ=1

is given by the

generating spinors ψ
1
, ψ

2
of the minimal surface f .

2. If one wants the two loop group procedures outlined above to be inverse to each other, then one can

achieve this by choosing some fixed base point z
0
∈ D and assume that all matrix functions occurring

above attain the value id at z
0
.

C The loop group construction of minimal surfaces in Nil3
C.1 Extended frames of minimal surfaces in Nil3 and extended frames of harmonic

maps intoH2 ∼= SU1,1/U1

For the purposes of this paper we need to use special frames in order to construct minimal surfaces in Nil
3
.

For this we would like to point out, that in the proof of Theorem 6.1 in [21] it was shown that the map

NL3 : D → Q2

, equivalent to g, has a frame of the form (A.17). Moreover, the (1, 2)-entry of the (1, 0)-part

of the Maurer-Cartan form of this frame never vanishes on D, since we only considered minimal immersions

into Nil
3
there. We generalize this result by proving the following “folk theorem”:

Theorem C.1. Assume the matrix valued function ˆF : D→ ΛSU
1,1σ satisfies

α̂λ =
ˆF−1dˆF,



328 | Josef F. Dorfmeister, Jun-ichi Inoguchi, and Shimpei Kobayashi

where
αλ =

ˆUλdz +
ˆVλdz̄ (C.1)

with
ˆUλ =

(
a −λ−1b
λ−1c −a

)
,

ˆVλ =

(
q −λb
λr −q

)
,

and where b never vanishes on D. Then a = q = iu with u a real valued function, as well as p = c̄ and r =
¯b.

Moreover, after a diagonal gauge in ΛSU
1,1σ we can assume that b is purely imaginary and never vanishes on

D. In this case, after writing b in the form b = −ew/2 the matrices ˆUλ and ˆVλ attain the explicit form stated in
equation (A.15).

Sketch of the proof. The first claim follows from
ˆF ∈ ΛSU

1,1σ . Writing b in the form b = iveis with v and s real
valued functions we see that the diagonal gauge in ΛSU

1,1σ with (1, 1)-entry e−is/2

verifies the second claim.

Assuming the first two claims are satisfied, then the last claim follows by an evaluation of the integrability

condition of α̂λ.

Corollary C.2. If ˆF : D → ΛSU
1,1σ is a general extended frame of a harmonic map NL3 : D → Q2, such that

the (1, 2)-entry of the (1, 0)-part of the Maurer Cartan form of ˆF never vanishes onD, then there exists a matrix
function k : D → U

1
such that ˆF = Fk with F a general extended frame of g which satisfies (A.15) and is of the

form (A.17) for all λ ∈ S1. Moreover, equation (A.18) holds for all λ ∈ S1.

Proof. By the theorem above we can assume without loss of generality that the Maurer-Cartan form of
ˆF has

the form stated in (A.15). Using (A.18) we can define for all λ ∈ S1

the function hwhich is supposed to become

2(|ψ
1
|2 − |ψ

2
|2). Putting

ˆF
11

= ψ
1

√
2(ih)

−1/2

and
ˆF

12
= ψ

2

√
2(ih)

−1/2

,

we have rewritten
ˆF for all λ ∈ S1

in the special form (A.17).

By the results above we have found very special frames for harmonic maps into Q2

. What we still want to

show is that the functions ψj occurring in these frames define a minimal surface in Nil
3
. We will achieve this

in the next subsection.

C.2 Sym-formula

We regard su
1,1

as theMinkowski 3-spaceL3

as in Section B.1. We identify the Lie algebra nil
3
of Nil

3
with the

Lie algebra su
1,1

as a real vector space. Then the corresponding linear isomorphism Ξ : su
1,1
→ nil

3
is given

by

su
1,1
∋ x

1
E

1
+ x

2
E

2
+ x

3
E

3
7−→ x

1
e

1
+ x

2
e

2
+ x

3
e

3
∈ nil

3
.

It should be remarked that the linear isomorphism Ξ is not a Lie algebra isomorphism. For geometricmeaning

of this linear isomorphism, see Appendix E.

Next we consider the exponential map exp : nil
3
→ Nil

3
. We define a smooth bijection Ξ

nil
: su

1,1
→ Nil

3

by Ξ
nil

:= exp ◦Ξ. Under this identification Nil
3

= su
1,1

, and SO
2

= {exp(tE
3

)}t∈R acts isometrically on Nil
3

by rotations around the x
3
-axis.

In what follows we will take derivatives for the variable λ. Note that for λ = eiθ ∈ S1

, we have ∂θ = iλ∂λ.
The following result is essentially Theorem 6.1 of [21], but has weaker assumptions. It turns out that the proof

stays correct for the slightly more general assumptions stated just below.

Theorem C.3. Let F : D → ΛSU
1,1σ be a general extended frame of a harmonic map g : D → H2, such that

the (1, 2)-entry of the (1, 0)-part of the Maurer Cartan form of F never vanishes on D, and such that F satisfies
the conclusions of Corollary C.2.
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Define the maps fL3 and NL3 respectively by

fL3 = −iλ(∂λF)F−1

−

i
2

Ad(F)σ
3
. and NL3 =

i
2

Ad(F)σ
3
, (C.2)

where σ
3

=

(
1 0

0 −1

)
. Moreover, define a map f λ : D→ Nil

3
by

f λ := Ξ
nil
◦ ˆf with ˆf = (fL3 )

o
−

i
2

λ(∂λ fL3 )

d
, (C.3)

where the superscripts “o” and “d” denote the off-diagonal and diagonal part, respectively. Then, for each λ ∈
S1, the following statements hold:

1. The map fL3 is a spacelike constant mean curvature surface with mean curvature H = 1/2 in L3 and NL3 is
the timelike unit normal vector of fL3 .

2. The map f λ is a minimal surface in Nil
3
and NL3 is the isometric image of the normal Gauss map of f λ in the

hyperboloid Q2 under the natural isometry from the unit disk H2 onto Q2

(see Section B.2 for details). In
particular, any general extended frame of g is an extended frame of some minimal surface f . Furthermore,
f λ|λ=1

and f are the same up to a translation.

Conversely, for each minimal surface f : D → Nil
3
there exists an extended frame such that the Sym-formula

applied to this frame produces for λ = 1 the given immersion f .

Proof. We only need to prove the “converse” statement. To do this, we choose an extended frame F of the

form (A.17) for the given surface f . By the results above we know that F does induce (for λ = 1) a minimal

surface
˜f in Nil

3
via the Sym formula. Moreover, f and ˜f only differ by a translation in Nil

3
. It thus suffices

to prove that there exists a matrix A(λ) ∈ ΛSU
1,1σ satisfying A(λ = 1) = id such that the frame

ˇF = A(λ)F
induces, via the Sym formula, exactly the original surface f for λ = 1. In fact if we choose

A(λ) = exp B(λ) with B(λ) =

1

4

B
1

(λ − λ−1

) +

1

8

B
2

(λ − λ−1

)

2

such that B(λ) ∈ Λsu
1,1σ, then A(λ) ∈ ΛSU

1,1σ and A(λ = 1) = id. Moreover, the respective minimal surfaces

given by the frames F and ˇF differ by a translation T = (p, q, r) with

p = −Re(b
112

), q = − Im(b
112

) and r = −ib
211

,

respectively, where b
112

is the (12)-entry of B
1
and b

211
is the (11)-entry of B

2
.

In view of Corollary C.2, we obtain

Corollary C.4. Let F : D → ΛSU
1,1σ be a general extended frame of a harmonic map g : D → H2, such that

the (1, 2)-entry of the (1, 0)-part of the Maurer Cartan form of F never vanishes on D. Define the maps fL3 and
NL3 as in the last theorem. Then the conclusions of the theorem above also hold.

Moreover, from Corollary A.17 for g and Theorem C.3 we have

Corollary C.5. Let F be an extended frame of a minimal surface f as defined in (A.17), and let αλ denote the
Maurer-Cartan form of F. Moreover let ˆF be a any solution of ˆF−1dˆF = αλ which takes values in ΛSU

1,1σ, that
is, F and ˆF are related in the form F = AˆF with some z-independent matrix A ∈ ΛSU

1,1σ. Then plugging ˆF into
the Sym formula (C.3), we obtain a minimal surface ˆf in Nil

3
and ˆF is an extended frame for ˆf .

Remark C.6. In general, this surface ˆf is not isometric to the original minimal surface f , see Example 5.26.

C.3 Generalized Weierstrass type representation

We now briefly summarize the results of the generalized Weierstrass type representation in [21, Section 7] as

follows: Let F be an extended frame of some minimal surface f as in (A.17) defined on a simply connected
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domain D. The Birkhoff decomposition, see [21, Theorem 7.1] or [44], of F is given as

F = F
−
F

+
, F

−
∈ Λ−

*
SL

2
Cσ , F

+
∈ Λ+

SL
2
Cσ .

Then by [21, Theorem 7.2] F
−
is meromorphic with respect to z andmoreover, the Maurer-Cartan form F−1

−
dF

−

satisfies

ξ
−

= F−1

−
dF

−
= λ−1

(
0 −p

Bp−1

0

)
dz, (C.4)

where p is a meromorphic function onD and Bdz2

is the Abresch-Rosenberg differential which is a holomor-

phic quadratic differential. The meromorphic 1-form ξ
−
as in (C.4) will be called the normalized potential.

Conversely,

Step I.Let ξ
−
beameromorphic 1-formof the formstated in (C.4)whichhas a globalmeromorphic solution

to dC = Cξ
−
and solve the linear ODE:

dC = Cξ
−

with C(z
0
, λ) ∈ ΛSL

2
Cσ .

Step II. Apply the unique Iwasawa decomposition as stated in [21, Remark 8.1] for C near z
0
, that is,

C = FV
+
∈ ΛSU

1,1σ · Λ+

SL
2
Cσ or C = Fω

0
V

+
∈ ΛSU

1,1σ · ω0
· Λ+

SL
2
Cσ ,

where ω
0

=

(
0 λ

−λ−1

0

)
. Then from Theorem 8.2 in [21], it follows that there exists some diagonal matrix D ∈

ΛSU
1,1σ such that FD or ω

0
FD is an extended frame of someminimal surface in Nil

3
in the sense of Corollary

C.5.

Step III. In the final step, minimal surfaces in Nil
3
can be obtained by the Sym formula in Theorem C.3.

Remark C.7. We note that the normal Gauss map NL3 of the resulting minimal surface can be obtained by the

extended frame FD or ω
0
FD by

i
2

Ad(F)σ
3

or

i
2

Ad(ω
0
F)σ

3
,

which is in fact the unit normal to the spacelike constant mean curvature H = 1/2 surface fL3 in L3

defined

in (C.2).

Wewill explain how to produce all minimal surfaces by ourmethod. Themain point is Birkhoff splittability of

an extended frame of a minimal surface which satisfies (A.17). Starting from someminimal surface we obtain

a special frame
˜F as in (A.17). Note that

˜F is independent of λ. Choose some fixed base point z
0
∈ D and

consider B
0

=
˜F(z

0
). Now consider B(λ) =

(
b

11
λ−1b

12

λb
12

b
11

)
∈ ΛSU

1,1σ, where the bij (1 ≤ i, j ≤ 2) are the entries

of B
0
. Note that B(λ) is Birkhoff splittable B = B

−
B

+
with B

−
=

(
1 λ−1

0 1

)
, and B

+
lower triangular, as can be

verified by a simple computation. Note that B
+11

never vanishes.

Next solve the Maurer-Cartan form equation for F with initial condition B(λ) for each λ ∈ S1

. This will

produce an extended framewhich coincides with the original
˜F for λ = 1 andwhichwill be Birkhoff splittable

near the base point z
0
.

D Real form involution and global meromorphicity
Let η(z, λ) be a potential for a minimal surface in Nil

3
. Consider the solution to dC = Cη, satisfying C(0, λ) =

id. Let φ denote the involution which characterizes the real form ΛSU
1,1σ in ΛSL

2
Cσ. Then we have φ(g) =

σ
3

tg(1/
¯λ)

−1

σ
3
for g ∈ ΛSL

2
Cσ. By abuse of notation, put

φ
(
η(w, λ)

)
= −σ

3

tη(w̄, 1/
¯λ)σ

3
. (D.1)

We now introduce ι : A(z, w, λ) 7→ A(w, z, λ) for A : D ×D→ ΛSL
2
Cσ and define (group level)

φ̂
(
A(z, w, λ)

)
= ι(φA(z, w, λ)) = σ

3

tA(w̄, z̄, 1/
¯λ)

−1

σ
3
.



Minimal surfaces with non-trivial geometry in the three-dimensional Heisenberg group | 331

In this sense we abbreviate

R(w, λ) = φ(C(w, λ)) = σ
3

tC(w̄, 1/
¯λ)

−1

σ
3
.

Now, analogous to the usual loop group approach to the construction of integrable surfaces we consider next

Q(z, w, λ) = R(w, λ)

−1C(z, λ) and consider its (meromorphic) Birkhoff decomposition

Q(z, w, λ) = R(w, λ)

−1C(z, λ) = V−1

−
(z, w, λ)S(z, w)V

+
(z, w, λ), (D.2)

where V
+
and V

−
have leading term id, and S is a λ-independent diagonal matrix. As pointed out in [27], the

entries of V
+
, V

−
and S are quotients of the entries of C−1R. As a consequence they aremeromorphic functions

on D ×D. From (D.2), it is easy to see that

U = CV−1

+
= RV−1

−
S. (D.3)

D.1 Iwasawa decomposition and the decomposition of B

Eventually, we want to determine S in more detail. To start with we observe

φ̂(R−1C) = (R−1C)

−1

.

From this we infer the equations

φ̂(V
+

) = V
−

and φ̂(S) = S−1

. (D.4)

For U = CV−1

+
= RV−1

−
S, we thus obtain φ̂(U) = US−1

. We want to prove: S = ±(φ̂l)−1l for some λ-independent
diagonal matrix l. To begin with we consider S(0, 0). We observe that (D.4) implies that S(0, 0) is real (and

non-zero anyway).

Case 1: S(0, 0) > 0: Writing S(z, w) = diag(eb(z,w)

, e−b(z,w)

), we see that to prove our claim we need to find

some function a(z, w) such that

b(z, w) = a(z, w) + a(w̄, z̄)

with a(0, 0) real. But φ̂S = S−1

implies

b(w̄, z̄) = b(z, w).

Using this and a power series expansion of b and setting

a(z, w) =

∑
0<n<m

bnmznwm +

1

2

∑
n=0

bnnznwn .

we obtain b(z, w) = a(z, w) + a(w̄, z̄). Hence (so far at least locally) we obtain, as desired, S = (φ̂l)−1l. More-
over,

ˆU = Ul−1

satisfies φ̂(
ˆU) =

ˆU. In addition

C =
ˆU ˆV

+
,

with
ˆV

+
= lV

+
.

Case 2: S(0, 0) < 0: Write S = −S
0
, then φ̂S

0
= S−1

0
and S

0
(0, 0) > 0 holds. The argument given just above

produces some k satisfying S
0

= (φ̂k)

−1k. Then ˇU = Uk−1

satisfies φ̂(
ˇU) = −

ˇU, what we are not interested in.
Therefore we reconsider

R−1C =
ˆV−1

−
(− id)

ˆV
+

=
ˆV−1

−
((φ̂ω

0
)

−1ω
0

)
ˆV

+
,

with ω
0

=

(
0 λ

−λ−1

0

)
. We obtain

ˆU = C ˆV−1

+
ω−1

0
= R ˆV−1

−
(φω

0
)

−1

. (D.5)

Consequently we arrive at

C =
ˆUω

0

ˆV
+

and φ̂(
ˆU) =

ˆU .
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When w = z̄, then φ̂ is the anti-linear involution defining ΛSU
1,1σ and thus ˆU takes values ΛSU

1,1σ. Moreover

the leading term of
ˆV

+
= lV

+
has real entries. Let C = FV

+
be the (unique) Iwasawa decomposition on z ∈ Ie

as in (2.3). Then we have
ˆU = F and thus

Fl = U

holds, and Fl has a unique meromorphic extension. Moreover, on z ∈ Iw, we have

ˆU = Flk−1w−1

0

for
ˆU defined in (D.5).

E Geometric meaning of the linear isomorphism su1,1 and nil3

E.1 Unimodular Lie algebras

Let us consider a 3-dimensional real unimodular Lie algebra g with basis {e
1
, e

2
, e

3
}. This Lie algebra is

defined by the commutation relations:

[e
1
, e

2
] = c

3
e

3
, [e

2
, e

3
] = c

1
e

1
, [e

3
, e

1
] = c

2
e

2
.

We introduce an inner product on g so that {e
1
, e

2
, e

3
} is orthonormal with respect to it.

Here we introduce auxiliary parameters µ
1
, µ

2
, µ

3
by

µi =

1

2

(c
1

+ c
2

+ c
3

) − ci , i = 1, 2, 3.

Now we restrict our attention to the range:

c
1

= c
2

=: c ≤ 0, c
3

=: 2τ ≥ 0.

We denote themetric Lie algebra by g(c, τ). The corresponding simply connected Lie groupwith left invariant

metric is denoted by G(c, τ).

Then we have the following table of sectional curvatures:

K(e
1
∧ e

2
) = −3τ2

+ 2cτ, K(e
2
∧ e

3
) = K(e

1
∧ e

3
) = τ2

.

The quantity κ := K(e
1
∧ e

2
) + 3τ2

= 2cτ is called the base curvature of G(c, τ).

Example E.1 (Nil
3
). Let us choose c = 0 then g(0, τ) is isomorphic to nil

3
(τ). We have µ

1
= µ

2
= −µ

3
= τ, so

we get K(e
1
∧ e

2
) = −3τ2

, K(e
2
∧ e

3
) = K(e

1
∧ e

3
) = τ2

. Hence κ = 0.

Example E.2 (SU
1,1

). Next let us consider the case c < 0. In this case, the Lie algebra is isomorphic to su
1,1

and

the isometry group of the corresponding simply connected Lie groupG(c, τ) is 4-dimensional and K(e
1
∧e

2
) =

−3τ2

+ 2cτ, K(e
2
∧ e

3
) = K(e

1
∧ e

3
) = τ2

. Hence κ = 2cτ < 0.

One can see that nil
3

(τ) = limc→0
g(c, τ). We can show that there is a real analytic collapsing G(c, τ) →

Nil
3

(τ). Note that for c < 0, G(c, τ) is the universal covering of SU
1,1

.

E.2 Anti de Sitter space

Now we consider the metric induced from the Killing form of su
1,1

.

First we take the basis {e
1
, e

2
, e

3
} of g(c, τ) as before. Next we choose c so that c = −2τ > 0. Moreover

we define a scalar product ⟨·, ·⟩L by the rule {e1
, e

2
, e

3
} is orthogonal and

⟨e
1
, e

1
⟩L = ⟨e

2
, e

2
⟩L = −⟨e

3
, e

3
⟩L = 1.
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Denote by ω the left invariant 1-form on G(−2τ, τ) dual to e
3
. Then the two scalar products are related by

⟨·, ·⟩L = ⟨·, ·⟩ − 2ω2

.

This scalar product is given explicitly by

⟨X, Y⟩L =

1

2τ2

tr (XY).

This shows that the induced Lorentzian metric is bi-invariant and proportional to the Killing metric. Since

the metric is bi-invariant, we have

⟨R(X, Y)Y , X⟩ =

1

4

⟨[X, Y], [X, Y]⟩L .

This implies that G(−2τ, τ) is of constant curvature −τ2

.

From these observations we can interpret the isomorphism nil
3

(1/2)→ su
1,1

in the following way.

1. For τ > 0 and c < 0, we consider the unimodular Lie algebra g(c, τ) with basis {e
1
, e

2
, e

3
} and equip a

scalar product ⟨·, ·⟩ = ⟨·, ·⟩c,τ.
2. Take c = −2τ and change the inner product to the scalar product ⟨·, ·⟩L. Then we have the Minkowski

3-space L3

= Re
1
⊕Re

2
⊕Re

3
;

L3

:= (g(−2τ, τ), ⟨·, ·⟩L).

The Lie algebra is su
1,1

.

3. On the other hand, fixing the inner product ⟨·, ·⟩ on g(c, τ).

Then the resulting limc→0
g(c, τ) is Euclidean 3-space R3

= Re
1
⊕Re

2
⊕Re

3
with nilpotent Lie algebra

structure. Thus limc→0
g(c, τ) is nil

3
(τ).

Thus there is a linear isomorphism (identity map)

su
1,1

= g(−2τ, τ)←→ g(0, τ) = nil
3

(τ)

given by ei ←→ ei.
Thus the isomorphismfirst observed by Cartier [9] is just the identitymap. Note that the simply connected

Lie group G(−2τ, τ) equipped with left invariant Riemannian metric is the model space P̃SL
2
of Thurston

geometry.

E.3 Explicit models

Take the following split-quaternion basis:

i =

(
i 0

0 −i

)
, j′ =

(
0 −i
i 0

)
, k′ =

(
0 1

1 0

)
.

of su
1,1

. We define the basis {Eτ
1
, Eτ

2
, Eτ

3
} by

Eτ
1

= −τj′, Eτ
2

= −τk′, Eτ
3

= −τi.

This basis satisfies

[Eτ
1
, Eτ

2
] = 2τEτ

3
, [Eτ

2
, Eτ

3
] = −2τEτ

1
, [Eτ

3
, Eτ

1
] = −2τEτ

2
.

We use the scalar product

⟨X, Y⟩τ :=

1

2τ2

tr (XY),

then {Eτ
1
, Eτ

2
, Eτ

3
} is orthonormal. The sectional curvature is −τ2

. If we put ei = Eτi , then c1
= c

2
= −2τ < 0

and c
3

= 2τ > 0.

Thus we have the following fact.
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Theorem E.3. For a positive number τ, we take a basis {e
1
, e

2
, e

3
} of su

1,1
defined by ei = −τ Eτi . Introduce

two scalar products on su
1,1

by

• The inner product defined by the rule, {e
1
, e

2
, e

3
} is orthonormal with respect to it.

• The Lorentzian scalar product
⟨X, Y⟩L =

1

2τ2

tr (XY).

Then we have

• With respect to the Riemannian metric, SU
1,1

has sectional curvatures

K(e
1
∧ e

2
) = −7τ2

, K(e
2
∧ e

3
) = K(e

3
∧ e

1
) = τ2

.

The base curvature is −4τ2.
• With respect to the Lorentzian metric, SU

1,1
is of constant curvature −τ2.

In both cases the quotient spaceH2

= SU
1,1

/U
1
is of constant curvature −4τ2.

If we choose τ = 1/2, we recover the situations in this article.

If we define the sign ϵ by

ϵ =

{
+1 Riemannian metric

−1 Lorentzian metric.

The we have the unified formula for the sectional curvatures:

K(e
1
∧ e

2
) = −3ϵτ2

− 4τ2

, K(e
2
∧ e

3
) = K(e

3
∧ e

1
) = ϵτ2

.

E.4 Sister surfaces [10]

Let us take aminimal surface f : D→ Nil
3

(τ). Then its sister surface
˜f : D→ G(c, τ̃) is defined by the relation

−4τ2

= κ̃ − 4τ̃2

, τ2

= τ̃2

+
˜H2

,
˜H = −κ̃/4, κ̃ = 2cτ̃.

If we choose c = −2τ̃, we get −4
˜H2

= κ̃ = −4τ̃2

. Thus we may choose
˜H = τ̃ > 0. Thus τ̃ = τ/

√
2. Hence

˜f is a
constant mean curvature surface in G(−

√
2τ, τ/

√
2) with mean curvature τ/

√
2.
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