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Abstract

The Munich metropolitan area relies heavily on its rail network, the “S-Bahn”, a Regional Rail
Rapid Transit (RRRT) system, to provide fast rail access to many city districts and suburbs.
Yet, the entire system has become unreliable, with many train cancellations and delays in
recent years. So far, only aggregated performance statistics without much detail are available,
e.g., on the average duration of certain disruptions, limiting the opportunity to make disruption
announcements meaningful for individual travelers for re-planning their journey. However, for a
couple of years, the “S-Bahn” operator has published real-time announcements of disruptions
on social media that inform on the beginning and end of larger disruptions, allowing the creation
of a rich database of individual disruption with meaningful attributes such as cause, effect,
location, and duration. In this paper, we explore how these social media posts can be used to
infer the performance impacts of disruptions to the “S-Bahn” system and how this data can be
made useful for individual travelers to re-plan their journey. The social media data reveals that,
on average, five disruptions are published daily, leading to around one out of four scheduled
train trips being affected by delays or cancellations. Overall, we find that the disruption patterns
published on social media seem to match the official figures, allowing the use of such data
for building prediction models to help travelers re-plan their journeys in case of a disruption
announcement.
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1 Introduction

Munich is a city with around 1.5 million people and a total of 6 million in the greater metropolitan

area, Germany’s third largest conurbation. This polycentric area sees a diverse commuting

pattern: more than half a million commute within the city’s boundaries, half a million commute

from the surroundings into the city, and a quarter million commute from the city towards the

surrounding area. These traveler flows require a high-capacity, multimodal transportation

system with road and rail services. Munich has such a system: it is comprised of a multi-layer

orbital road system, a well-connected grid-like subway network called “U-Bahn”, running within

the city’s boundaries, and a radial rail system called “S-Bahn”, which stretches outside of

the city and into many regions of the metropolitan area. According to the typology of public

transport systems presented by Vuchich (2007) the “S-Bahn” falls into the category of Regional

Rail Rapid Transit (RRRT). Its main characteristic is long lines reaching far out to the suburbs,

with their inbound services not ending at inner-city termini but transversing city centers in

tunnels with multiple underground stations. Unlike regional rail or commuter rail, RRRT has

an even and relatively short headway throughout the day and serves travel purposes beyond

commuting. The “S-Bahn”, “U-Bahn”, some regional train lines as well as buses and trams of

Munich have an integrated fare system, called “Verkehrsverbund” which allows travelers to use

all services with a single ticket or travel pass (Pucher and Kurth, 1995; Buehler et al., 2019).

Compared to other metropolises, Munich’s rapid transit systems are fairly new, established

around the 1972 Olympics. Nevertheless, both are facing substantial overcrowding, not only in

peak hours but also outside the peak hours. The “S-Bahn” is transporting twice the number

of passengers compared to its design capacity; nevertheless, its design, development, and

operations are considered successful from a global perspective (Hale and Charles, 2010).

Recent fare innovations (Loder et al., 2024) and population growth are likely to further increase

ridership in the future. While the “U-Bahn” operates reliably, the “S-Bahn” is disrupted frequently,

delaying or disrupting the journeys of many travelers regularly. Annually, the operating agency

publishes aggregated performance indicators (Bayerische Eisenbahngesellschaft, 2024), show-

ing that on average, around 10% of service stops at train stations get canceled, and out of

the remaining, only 90% happen on time - with more six minutes being the operator’s own

threshold for calling a service delayed. However, precise data on disruptions causes, and

their corresponding effects, e.g., disruption duration and effects, are not public. Hence, the

aggregated statistics are not useful for travelers, e.g., to plan or reschedule their journey in the

event of disruptions (Cats et al., 2011; Leng and Corman, 2020), or for researchers, e.g., to

assess the accessibility losses on the entire region due to disruptions (Alitani et al., 2023) or

to elaborate on system improvements (Corman et al., 2010). Only shortly before the start of

the pandemic in 2020, the “S-Bahn” operator started to provide real-time information (RTI) to





          

travelers for some disruptions over its official social media channels. Providing RTI to travelers

aims at decreasing wait and travel times in case of being required to change the route, leading

to an increase public transport ridership through an associated increased satisfaction with the

service (Brakewood and Watkins, 2019). Here, a 2% increase in ridership attributed to the

introduction of RTI is reported for bus routes in New York City (Brakewood et al., 2015). The

information published by the “S-Bahn” operator includes information on the start time, location,

cause, and effect, and finally, the announcement of the end of the disruption. By publishing

these, the operator creates a rich database for a disaggregate analysis of disruptions in the

Munich “S-Bahn” system.

In this paper, we contribute with an empirical analysis of using this social media data as a data

source for assessing the impact of disruptions in the Munich “S-Bahn” system, including an

analysis of the validity of this data compared to the officially filed statistics. We use twelve

months of social media data, containing around 2,000 published disruptions from November

2022 to October 2023, and General Transit Feed Specification (GTFS) data to approximate the

aggregated performance indicators. We find that around one-quarter of all planned services

face disruptions, where the variance in the social media data matches the reported aggregated

performance indicators. We conclude that this data is informative for travelers and can be

used to some extent for, e.g., making predictions for travelers on the impact of an announced

disruption in space and time so that they can re-plan their journey.

2 Public transport disruptions and social media

Public transport disruptions can be planned, or unplanned (Zhu and Levinson, 2010). Planned

disruptions are primarily concerned with maintenance of the infrastructure, while unplanned

disruptions are concerned with all other unexpected events such as malfunctioning of tracks

or rolling stock, unavailability of staff, power supply failures, other system-relevant failures,

or weather impacts (Leng and Corman, 2020), where several phases exist: pre-disruption,

warning, response, impact, and recovery (Papangelis et al., 2016). Such unplanned disruptions

usually impact safety, operation efficiency, and service quality (Chen et al., 2022). In particular,

the latter is relevant for travelers when the disruption leads to delays or even canceled services,

requiring travelers to adapt their journey, in the worst case, even canceling the trip altogether

(Adelé et al., 2019). The operation control centers of transit agencies react to unplanned

incidents by applying manifold dispositive measures. Such measures can add to the delays

and service cancellations in order to return the entire system quickly to normal operation





          

(Bachmann et al., 2022). Hence, providing RTI to travelers in case of service disruptions can be

beneficial (Cats et al., 2011). In such a disruption, communicating the disposition timetable to

affected travelers allows them to adapt their journey in such a way that they can minimize their

travel time considering the new situation (Brakewood and Watkins, 2019; Leng and Corman,

2020), a feature that has the ability to increase ridership as travelers feel better-informed

(Brakewood et al., 2015; Brakewood and Watkins, 2019). Here, a simulation study quantified

that RTI can lead to travel utility improvements of 3% during peak hours, increasing up to 30%

in situations with denied-boarding and substantial overcrowding (Drabicki et al., 2021).

In recent years, social media has become a new communication channel for public transport

companies and agencies. Accelerated by the COVID-19 pandemic (Diaz et al., 2021; Zhang

et al., 2023), companies and agencies can communicate to customers (Das, 2024; Portland

State University et al., 2017; Liu et al., 2016; Kocatepe et al., 2015; Chan and Schofer, 2014;

Pender et al., 2014a; Alam and Sadri, 2022), quickly distribute surveys to customers on social

media during disruptions (Perroy et al., 2023), respond to service requests of customers (Cottrill

et al., 2017), but also can customer communicate their problems and sentiment to the public

and hence companies and agencies (Osorio-Arjona et al., 2021; Kuflik et al., 2017). In all

cases, the immediate nature of communication and monitoring on social media has been cited

as highly appealing (Pender et al., 2014b). Communication with customers also includes RTI

in times of service disruptions (Georgiadis et al., 2021), which can even be personalized (Gault

et al., 2019).

3 The Munich S-Bahn

The Munich “S-Bahn” system opened in April 1972. Formerly, the suburbs of Munich were

connected to the city by many regional rail lines with uneven service patterns. They spread into

the periphery from two termini, the Central Station and the Eastern Station located on opposite

sides of the center. The eastern and western branches did not have a direct connection to

one another. The “S-Bahn” introduced an inner-city tunnel (Trunk Line or “Stammstrecke”) that

enabled the eastern and western branches of the regional rail to be merged into diametrical

lines. At the same time, platforms were elevated and lengthened, modern, accessible electric

multiple units (EMU) with superior acceleration and speed characteristics were deployed, and

an identical headway was introduced to all lines. The basic headway at the branches was

initially 40 minutes, which was shortened to 20 minutes during peak hours. The significant

improvement in quality through the introduction of the “S-Bahn” led to a substantial increase in





          

Figure 1: Munich’s “S-Bahn” network in 2020. source: Zeno Heilmaier on Wikimedia commons,
license: CC BY-SA 4.0

travel demand. The initially estimated circa 220,000 passengers per year rose to over 470,000

passengers already in 1973 (Schricker, 2005).

As of 2024, the “S-Bahn” consists of eight lines, seven of them using the trunk line through

the city center. Figure 1 shows the network map. Services on all seven of those lines run on

a 20-minute basic headway, with single lines operating every 10 minutes during peak hours.

The lines operate on a fixed schedule with published departure times at each station. The

continuous increase in ridership and the resulting shortening of headway quickly revealed

several bottlenecks in the system’s initial design. The trunk line – meanwhile seeing thirty EMU

per hour and direction during peak hours (S-Bahn München, 2024) - is the most vulnerable part

of the network. Disruptions immediately affect all branches towards all suburbs. Importantly,

several of the branches do not have dedicated infrastructure for the “S-Bahn”. Services share

the track with regional and sometimes with freight traffic. Disruptions in these network parts

immediately affect all services in the corridor. Finally, several branches have single-track

sections that limit capacity and cause delayed propagation (DB InfraGo, 2024). To solve the

increasing capacity and reliability problems of the “S-Bahn”, a second trunk line, called “2.

Stammstrecke”, is currently being built and is set to open in the 2030s alongside targeted

enhancements in the branches (Wenner et al., 2020).





          

4 Data and methods

For this analysis, we use the social media posts on X, formerly Twitter, from “@streckena-

gent_M”, the official account of the Munich “S-Bahn” for communication with customers, which

includes RTI, to determine disruption frequencies, their duration, as well as their causes,

locations, and effects on passengers and the operational state of the system. The account has,

as of early 2024, around 70,000 followers and more than 41,000 published posts. A total of

5,475 posts from the time span between November 1st, 2022, and October 31st, 2023, have

been gathered for the analysis.

4.1 Data structure

All posts can generally be divided into two categories: Advance information and real-time

information (RTI). While advance information posts are common when reminding customers

of planned service disruptions, e.g., construction works or announced staff strikes, real-time

information is used in unplanned disruption scenarios, e.g., spontaneous infrastructure failure

or emergencies.

In this analysis, we utilize both kinds of posts. In case of communicating unplanned disruptions

within the Munich “S-Bahn” system as RTI, the account releases messages, an example is

shown in Figure 2. The initial message usually lists the line number and the affected station,

sometimes the direction, and the cause of the disruptions. In the case of Figure 2, the disruption

results from an issue with a level crossing. Once the issue is resolved, the social media account

usually publishes a post declaring the end of the disruption. Arguably, the time difference

between the first and last post serves as an estimate of the disruption duration for a specific

incident. Sometimes there are more than two posts per disruption to provide updates, e.g., on

rail replacement services. Contrarily, disruptions communicated as advance information, i.e.

planned disruptions, are usually published within just one post before the disruption event.

Formatting, structuring, and phrasing of the posts are neither automated nor standardized and

depend on the social media agent currently on duty. Inconsistencies, ambiguities, and mis-

spellings are possible and have occasionally been observed. Communication about disruptions

can not generally be connected to a specific threshold regarding the resulting operational state

of the system. Whether a specific disruption is significant enough to be mentioned on social

media seems to be, to a certain degree, an arbitrary decision made by the social media agent





          

Figure 2: Screenshot of a social media post.

on duty. As this is not the original data of disruptions, but a secondary data source, it bears

limitations:

• not all disruptions might be posted, e.g.

– bias in the selection of disruptions mentioned

– minor operational disruptions irrelevant to customers such as delays

• negligence in communicating the end of disruptions cannot be ruled out, i.e., the end

post might be delayed or forgotten

• inconsistent phrasing and structuring within posts

4.2 From posts to disruptions

The aim of this analysis is to gain insight into the number of disruptions that occurred within the

aforementioned time span, their causes, locations, duration, and effects on customers. As a

single disruption is frequently referred to in multiple posts across the disruption phases defined

by (Papangelis et al., 2016) (see initial message, updates and end posts), analyzing individual

posts alone would fail to capture the full scope of the disruption. We must, therefore, identify all

individual posts related to a single disruption and then group them together to one disruption

event. This process is to be referred to as regrouping. Given the inconsistent structure and





          

phrasing of the posts, the regrouping process is streamlined by initially organizing the relevant

data contained within them. The body texts of all posts are searched in a semi-automated

process based on keywords for information regarding the following disruption parameters: (i)

affected Line; (ii) disruption cause; (iii) effect of disruption.

For each disruption parameter, relevant categories are defined by manually scanning the

data set along with a set of keywords corresponding to each category. In a second step,

posts containing one or more keywords from the set get automatically cataloged under the

corresponding category. Keywords to organize posts by affected line include line names as

well as station names. In case a station served by multiple lines is disrupted, all passing lines

are considered to be affected. This is also the case of the Trunk Line that is serviced by seven

of the total eight “S-Bahn” lines. Due to its significant traffic load, short headway and high

vulnerability to disruptions, this segment is treated as a separate line for the purpose of this

analysis.

The list of keywords used to organize posts by cause of disruption is shown in Table 1. A total

of 20 different possible causes (categories), along with their respective keywords were defined.

This number is later increased to 27 during the regrouping process. Causes of disruptions

range from infrastructure-related faults, emergency situations, operational disruptions, and

other unforeseen events to faults related to weather, rolling stock, and construction sites, as

shown in Table 2. Organization by disruption effect follows a similar approach with categories

and associated keywords listed in Table 3.

The regrouping process is subsequently carried out manually by identifying commonalities

between individual posts, taking into account both the previously revealed three disruption

parameters as well as additional parameters: (iv) location of disruption; (v) timestamp of post

(disruption). Posts containing similar data are grouped into the same disruption event. Each

disruption event gets assigned all aforementioned disruption parameters from all associated

posts: (i) affected Line, (ii) disruption cause; (iii) effect of disruption; (iv) location of disruption; (v)

duration of disruption. In this analysis, we use the duration between the first-posted entry and

the last-posted entry as an estimate for the disruption duration, assuming that the information

propagation time is identical for the onset and end of the disruption from the place of ocurance

to the social media agent. Disruption events containing only one associated post consequently

have no disruption duration. In this analysis, we consider all of these disruptions planned, while

all disruptions with a non-zero duration are considered unplanned.
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Table 2: Grouping of disruptions cause categories

Category Disruption

Infrastructure “Level crossing (Bahnübergang)”, “Bridge (Brücke)”, “Catenaries
(Oberleitung)”, “Signal (Signal)”, “Signal tower (Stellwerk)”, “Track
switch (Weiche)”, “Tracks (Strecke)”, “Reduced speed (verminderte
Geschwindigkeit)”, “Signal box, Bridge (Stellwerk, Brücke)”,

Emergencies “Firefighting operation (Feuerwehreinsatz)”, “Emergency medical re-
sponse (Notarzteinsatz)”, “Police deployment (Polizeieinsatz)”

Unforeseen events “Objects (Gegenstände)”, “Emergency brake (Notbremse)”, “People
(Personen)”, “Strike (Streik)”, “Animals (Tiere)”, “Vandalism (Vandalis-
mus)”, “Soiling (Verunreinigung)”

Weather “Weather (Witterung)”
Rolling stock “Train repairs (Zugreparatur)”
Construction site “Construction site (Baustelle)”, “Construction site, Level crossing

(Baustelle, Bahnübergang)”, “Construction site, Bridge (Baustelle,
Brücke)”, “Construction site, Catenaries (Baustelle, Oberleitung)”,
“Construction site, Tracks (Baustelle, Strecke)”, “Signal tower, Con-
struction site (Stellwerk, Baustelle)”, “Signal tower, Construction site,
Bridge (Stellwerk, Baustelle, Brücke)”, “Track switch, Construction site
(Weiche, Baustelle)”

Operational “Passenger volume (Fahrgastaufkommen)”, “Embarking/Debarking
(Fahrgastwechsel)”, “Spontaneous staff shortage (Personalausfall)”,
“Line capacity uitilization (Streckenauslastung)”, “Train sequence delays
(Zugfolgeverzögerungen)”, “Previous train (vorausfahrender Zug)”

Other “Construction site, Passenger volume (Baustelle, Fahrgastaufkom-
men)”, “Catenaries, Objects (Oberleitung, Gegenstände)”, “Police de-
ployment, Construction site (Polizeieinsatz, Baustelle)”, “Police de-
ployment, Tracks (Polizeieinsatz, Strecke)”, “Train repairs, People (Zu-
greparatur, Personen)”

4.3 Final disruption data

The resulting data lists a total of 1,944 disruption events from November 1st, 2022, to October,

31st, 2023. Approximately 51 % of these events are fully described by two individual posts, a

start post and an end post respectively, while 16 % contain only one associated post. After

conducting sample-based testing, these are found to be mostly disruption events comprised of

advance information posts concerning construction works, i.e., they are as assumed planned

disruptions. 33 % of disruption events consist of three or more posts, thus including real-time

updates. Table 4 summarizes the five derived disruption parameters with their identification

rate, i.e., for how many disruptions this parameter has been identified, and a summary of how

the parameter was derived.





          

Table 3: Categories and keywords for organization by disruption effect (iii)

Disruption effects Keywords

Line closure (Streckensperrung) Closure (Sperrung), closed (gesperrt)
Train cancellations ((Teil-) Zugausfälle) Cancellation (Ausfall), Cancellations (Aus-

fälle), Cancellation (Entfall), no train journeys
(keine Zugfahrten)

Delays (Verspätung) Delays (Verspätung), Delays (Verzögerung)
Premature train turns (Vorzeitige Zugwendun-
gen)

Train turns (Zugwenden), Train turns (Zug-
wendungen), Trains turn prematurely (Züge
wenden vorzeitig), turn in (wenden in), turn
there (wenden dort), terminate in (enden in)

Stop omission (Haltausfall) Stop omission (Haltausfall), without stop
(ohne Halt), do not stop (halten nicht)

Line rerouting (Abweichende Linienführung) Differently (Abweichend), Bypass (Um-
leitung), rerouted (umgeleitet)

Table 4: Selected disruption parameters, their allocation rate, and derivation.

Disruption parameter Identified (%) Derivation

Affected Line 99.4 explicit mentions of line names and/or station
names

Cause of disruption 97.7 keywords corresponding to 27 different disruption
causes

Effect of disruption 91.8 keywords corresponding to 6 different disruption
effects

Location of disruption 89.3 explicit mentions of station names and/or track sec-
tions

Duration of disruption 84.1 disruptions with duration > 0

4.4 Approximation of affected train trips

The indicator of canceled service stops used in the official statistics of the transit agency has -

in the opinion of the authors -little value to passengers who plan journeys as an itinerary with a

concrete route rather than singular events of boarding and alighting. Furthermore, it does not

help to understand the propagation of the delay in the network. The indicator of affected train

trips on distinct lines seems more suitable for the purpose of this study.

In order to approximate the share of train trips affected by disruptions, we compare the final

disruption data with GTFS data of the agency (gtfs.de, 2024) using a MATLAB script and taking

into account start dates and end dates of disruptions as well as departure and arrival times of





          

scheduled train trips. A train trip is defined as a journey made by one train from its respective

departure station to its destination during a specific time period. Any train trip partly or wholly

taking place within the time frame of a disruption on its respective line is marked as affected.

For the purpose of this analysis, disruptions that occurred on the Trunk Line are considered for

every line traversing this network segment. In order for a trip to be considered affected, at least

one of the following three criteria has to be true:

1. Disruption occurs during trip

tt,s ≤ td,s < tt,e

2. Disruption ends during trip

tt,s < td,e ≤ tt,e

3. Entire trip takes place during disruption

tt,s ≥ td,s ∧ tt,e ≤ td,e

As the duration of disruptions is used to map the two data sets, disruption with only one

associated post does not cause any trips to be affected.

5 Results

The time series of the number of disruptions per month and in comparison, the number of social

media posts made per month are shown in Figure 3. Here, two observations can be made.

First, the number of posts per month is declining throughout the observation period, while

second, the number of disruptions revealed from these posts seems to remain constant for the

entire time. Hence, it can be concluded that the number of posts published per disruption is

declining, i.e., presumably resulting from a change in the underlying data generation process

within the “S-Bahn” Munich communications department. Further, Figure 3 suggests that

the overall level of disruptions in the system is neither improving nor worsening during the

observation period.

The disruptions affect all parts of the Munich “S-Bahn” system as seen in Figure 4. The Trunk





          

Figure 3: Time series of monthly social media posts and disruptions of the Munich “S-Bahn”
system during the observation period.
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Line, the “Stammstrecke” is located in the city center and is used by all lines except the “S20”

(c.f. Figure 1). Hence, a disruption in Figure 4 listed under Trunk Line affects all lines except

“S20”. A disruption listed for every other line in Figure 4 consequently implies that the disruption

occurred not on the Trunk Line, but on the respective branch of the line as seen in Figure 1.

Figure 4 shows the frequency distribution of disruptions by line for all planned and unplanned

disruptions, i.e., without and with an end post (left), all unplanned disruptions, i.e., with an end

post (middle), and the latter weighted by the disruption duration (right). Here, it can be seen by

comparing the left and middle graphs that the Trunk Line, “S2” and “S8” have the most planned

disruptions, compared to the other lines. Further, it can be seen that the Trunk Line has the

most unplanned disruptions too, followed by the “S2”, while the other lines experience around

half or fewer disruptions than the Trunk Line. Note, however, that all Trunk Line disruptions

affect all lines except the tangential “S20”. As the “S20” only has limited services, it is not

surprising that it experiences the lowest number of disruptions. Weighting the disruptions

by their duration reveals that the ones on the Trunk Line seem to be resolved rather quickly

compared to the other lines, e.g., “S2” or “S7”, which is intuitive considering the importance of

this line section.





          

Figure 4: Frequency distribution of disruptions by line: planned and unplanned disruptions (left),
unplanned disruptions (middle), and unplanned disruptions weighted by the disruption duration
(right).
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Figure 5: Frequency distribution of disruption causes (left) and distribution of the disruption
duration by disruption cause (right).
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The left side of Figure 5 shows the frequency distribution of unplanned disruptions by cause as

grouped in Table 2. It can be seen that the majority of unplanned disruptions are related to

the infrastructure, e.g., a malfunction of a signal or a switch, or an emergency situation, e.g.,

calling the police or an emergency physician. Perhaps surprisingly, the number of weather-

related, operational, or unforeseen events is considerably smaller. On the contrary, the right

side of Figure 5 shows the corresponding revealed disruption duration from the social media

data. It shows that, in particular, unplanned infrastructure malfunctions, construction sites and

operational disruptions have a duration greater than one hour. Weather-related disruptions

last substantially longer than that. Combining the large number of infrastructure-related

unplanned disruptions with their long average duration, indicates where the substantial decline

in performance and customer satisfaction of the “S-Bahn” originates. Intuitively, emergency

situations are usually resolved for most disruptions within less than one hour.

5.1 Effects of disruption

Figure 6 shows the distribution of unplanned disruption effects by disruption causes. Importantly,

as emphasized, one disruption can have multiple effects, which might overlap, i.e., they might

not be mutually exclusive. For example, track closures can lead to train trip cancellations, but

this may not be explicitly stated. Overall, it can be seen that all disruption effects can lead

to all disruption causes, but with different overall outcomes. For example, rolling stock- and

infrastructure-related disruptions rarely lead to track closures. The perhaps most interesting

findings from Figure 6 are that emergencies and unforeseen events, according to Table 2,

lead to a substantially lower share of trip/stop cancellations, while the share of delays and in

particular short turns is increased. In contrast, construction sites, and operational reasons

lead to more trip/stop cancellations. Considering the ambiguity in the data generation process

for the effects and the fact that the social-media data does not inform precisely on which

trips/stops are canceled or how the delays develop, the conclusion from Figure 6 becomes

that the social media data used may not be adequate enough to make inference regarding

disruption effects.





          

Figure 6: Distribution of unplanned disruption effects by disruption cause
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5.2 Comparison to official statistics

In the following, the validity of the disruption data from social media is assessed using the

official aggregate disruption statistics (Bayerische Eisenbahngesellschaft, 2024). These are

published by the “Bayerische Eisenbahngesellschaft” (short “BEG”; German for Bavarian

Railways Company), the public agency overseeing the regional railway services in the State of

Bavaria. Here, Figure 7 shows the share of affected train trips per line and Figure 8 their time

series for the entire network from the social-media data and the official statistics.

Figure 7 uses the social media data of the introduced method to estimate the affected train

trips, while from the official statistics, only the number of canceled service stops is available. In

other words, our estimate might be larger in many instances as we may label a trip as affected

on the respective line network, although due to some (operational) reasons, the operator was

able to run the service, presumably with delays. Nevertheless, Figure 7 only compares the

distribution of disruptions within the data. It can be seen that the overall share pattern seems

to match reasonably, with some differences observed for the “S1”, “S4”, “S6”, and “S7”. Again,

the fact that our estimate considers only timetable services and not operational flexibility might

be an explanation for the differences next to, of course, a bias in the social media data and the

labeling of affected train trips.





          

Figure 7: Distribution of affected trips across lines based on the social-media analysis and
official statistics.
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In Figure 8 we compare the monthly time series of our overall estimated number of affected

train trips to the official statistics. From the latter, we use the number of canceled service

stops and delayed train trips as well as their sum as an approximation of affected train trips.

Using these estimates, we see in Figure 8 that the overall magnitude of affected trips and the

pattern between the two data sources show a convincing match. Considering that our estimate

presumably overestimates the impact, while the official statistics do not report delays shorter

than six minutes, the gap might be smaller than observed. The pattern in the months of July

and August 2023 can be explained by the fact that the German rail operator usually uses the

summer months with less commuting demand for track maintenance, leading to usually fewer

planned trips in the first place. This is factored into the official estimate, but not in ours, as we

use an average reference timetable.

5.3 Predicting disruption duration for RTI

The findings from the previous analysis of the social media disruption data and its comparison

to the official statistics suggest that this secondary data source can be carefully used for





          

Figure 8: Monthly comparison of the affected trip share from the social-media analysis to the
official statistics of the BEG (Bayerische Eisenbahngesellschaft, 2024), approximated from
canceled and delayed trips.
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investigating disruptions in the Munich “S-Bahn” system. One possible outcome of such an

investigation could be an application that informs travelers in real-time with an estimated end

time of the disruption so that they can adapt their journey, eventually building it into automated

bot systems (Gault et al., 2019).

We use the data of 1,635 unplanned disruptions where we were able to estimate a disruption

duration to build a model to predict the expected duration given the cause of the disruption. To

achieve this, we regress the duration of disruptions on the variables of disruption cause as well

as affected line and the weekday as further control variables. We then predict the marginal

effects from the disruption cause, which are shown in Figure 9. The effects of the disruption

cause are referenced to infrastructure. In other words, the estimates show whether longer or

shorter disruptions can be expected for a given disruption cause. Here, the pattern from Figure

5 can be refined and operationalized.





          

Figure 9: Average marginal effects from the disruption cause. The effects of the disruption
cause are referenced to infrastructure. In other words, the estimates show whether longer or
shorter disruptions can be expected for a given disruption cause.
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6 Discussions and conclusions

In this paper, we investigated how real-time information data provided on social media by the

Munich “S-Bahn” operator can be used to reveal the disaggregate performance of the “S-Bahn”

system, i.e., how different disruptions affect services in the network. Disruptions have become

more frequent and services have become less reliable in recent years. Considering that the

“S-Bahn” is a key mode of transportation in Munich, this development is not only decreasing

travelers’ satisfaction but is having a real economic impact. For the analysis, we collected

social media posts published by the “S-Bahn” operator from November 1st, 2022 to October

31st, 2023, and identified more than 1,944 disruption events in those posts, where 1,635

were unplanned disruptions. We found that one out of four train trips seems to be affected

on average by disruptions, either through delays or cancellations, a number that matches, to

some extent, the official statistics. Considering that the data seems to exhibit some validity, we

further found the data can be used to predict the expected duration of a disruption based on

the disruption caused and affected line, parameters readily available in the first social media

post. Hence, we concluded that the social-media-based disruption data could be used in an

application to inform travelers accordingly so that they can re-plan their journeys, e.g., like the

TravelBot (Gault et al., 2019).





          

This analysis bears limitations. First, as no official disaggregate disruption data is publicly

available, a validation of our findings is not possible. Although the overall pattern and magnitude

of patterns match the official statistics, given that not much is known about the data generation

process on social media, i.e., when the operator selects to publish a disruption, the results

are just an indication. Hence, a conclusion about whether the results present a lower or upper

envelope cannot be made distinctively. Second, to assess the share of affected trips, we could

not access the actual GTFS timetable during planned disruptions, e.g., maintenance. Hence,

we cannot control for planned disruptions, which is likely to increase the estimate of the share

of affected trips. This fact presumably explains the peak in our estimate in summer 2023 as

seen in Figure 8, which is not present in the official estimate as their estimate relies on the

specific timetable of those months. Third, considering that the “S-Bahn” Munich system is not a

static system but evolves over time, our findings have, of course, limited validity for forecasting

impacts. Improvements in the maintenance of infrastructure and rolling stock may reduce the

number of disruptions in the future, leading to fewer disruptions. However, considering that the

entire data collection process can be highly automated, any application for travelers can be

updated regularly to account for the changes. Directions of future research include completing

the disruption data with all posts since the beginning as well as making it operate in real-time,

improving the validation of the data using other external data sources, and building prediction

models for informing travelers using advanced statistical learning methods for networks based

on the improved disruption data.

In closing, it is obvious that the presented data collection and analysis is not meaningful for the

“S-Bahn” operator as they have access to the primary and unbiased disruption data, but for

travelers and researchers who can use this data source to build applications that can improve

the journeys of travelers as well as help to develop approaches that may improve the situation

of the Munich “S-Bahn”. This investigation may not improve the performance situation of the

“S-Bahn” directly, however, it may increase awareness for the matter as it is one of the first

analyses showing at a disaggregate level in which performance situation single lines are and

what different effects can be expected by a given disruption cause.
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