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1 Introduction

In 2015, the Boston Consulting Group (BCG) reviewed the current state and the future of autonomous driving

systems [1]. They predicted that “vehicles capable of urban autopilot could be ready in 2022, paving the way

for fully autonomous vehicles by 2025” in reference to Mercedes announcements. Retrospective, the reality

looks different: Since 2022, Mercedes has focused on their highway pilot, neglecting urban autonomy. Argo

AI, focusing on urban autonomous driving, was entirely closed down by Ford and Volkswagen in the same

year. In 2023, Cruise, one of the global leaders in urban autonomous driving, was forced to halt its robotaxi

operations in the United States due to safety concerns [2]. The technological and algorithmic progress has

turned out to be slower than expected for several reasons. First, the complexity of the problem and the

technology needed for solving was underestimated. Second, increasingly more legal and security issues arise,

such as liability, data protection, privacy, or vulnerability [3]. However, the potential of autonomous driving

remains enormous. It promises safer roads, fewer traffic accidents, less congestion, and more accessible

mobility. This thesis will attempt to contribute to enabling robust and applicable autonomous driving, especially

in the field of localization and mapping.

1.1 Motivation and Potential

When reviewing currently running public applications of Autonomous Vehicles (AVs), it becomes evident

that the operation on public roads is minimal and limited. There are some running real-world applications;

however, they have strict requirements for their use case and operational domain.

Status of Localization and Mapping

Today, it seems that the most promising approach is to start with limited and simplified applications and then

steadily increase the application domain. These limited domains can be, e.g., highway pilot, cordoned-off

areas, or off-road applications [4]. Data-driven approaches especially show high data dependency and

insufficient capability of generalization. However, conventional algorithms also tend to overfit the specific

applications for which they have been developed. Therefore, more general and better applicable algorithms

are needed to advance the state of autonomous driving on public roads [4].

Precise and robust localization of the ego vehicle is a fundamental part of Autonomous Driving (AD) software

[5]. Most existing approaches base the localization on using pre-built maps. However, existing approaches

are overfitted to their corresponding application and use case. To further expand robots and autonomous

vehicles on public roads, better generalizing algorithms are needed. Therefore, it is not sufficient to stick to

public datasets for development and evaluation, but the algorithms need to be applied to real-world systems.

The algorithms developed within the scope of this thesis will be applied to two vehicle platforms in entirely

different applications. These will be introduced in the following section.
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1 Introduction

Vehicle Platforms and Applications

As this thesis aims to apply the algorithms to real-world use cases, developed algorithms will be evaluated

with the two available research vehicle platforms: the AV-21, an autonomous formula-style race car and

Excellent Driving GARching (EDGAR), a shuttle for urban traffic (Figure 1.1)

(a) IAC AV-21 (b) EDGAR research vehicle

Figure 1.1: Used vehicle platforms in this thesis.

Both of these applications come with specific challenges which have to be addressed in this thesis. In the

domain of autonomous racing, localization, and mapping algorithms have to deal with poorly structured and

repeating environments around race tracks, making it difficult to estimate the ego pose correctly. Additionally,

high velocities cause noise in sensor data, such as motion distortion, and are responsible for large baselines

between individual sensor data points. As existing approaches failed the task, this thesis will present novel

algorithms to handle these challenges with the fusion of different sensor modalities, mainly Light Detection

And Ranging (LiDAR) and camera (Chapter 4). It will also evaluate how these algorithms can be transferred

to public roads.

For the scope of autonomous urban transport, the focus shifts towards the map creation and handling.

Nowadays, only commercial providers for autonomous driving services have tools to create High Definition

(HD) maps with minimal manual processing [6–8]. This thesis will provide an open-source mapping toolchain

compatible with open standards for the research community. The current state of research provides several

algorithms to solve partial problems, such as Simultaneous Localizaton And Mapping (SLAM). To constantly

and quickly extend mapped areas, a software pipeline from raw sensor data to applicable HD maps will be

developed. Existing algorithms will be enhanced and combined to create an entire open-source HD mapping

pipeline. This will be applied and evaluated with the EDGAR research vehicle.

Based on all results, the discussion (Chapter 6) will give an outlook on how to create a more integrated

software stack that can be applied to the two presented and future research platforms.

1.2 Autonomous Driving - Terminology and Definitions

As most robots do, AVs follow the standard sense-plan-act paradigm that leads to the three main software

modules: perception, planning, and control. In the perception module, the environment is perceived through

sensors, and the data is translated into an understandable format, e.g., objects, vehicles, lanes, etc. The

planner uses this information to plan the vehicle’s behavior, considering interaction with surrounding vehicles.

The controller’s task is to transform this motion plan into actuator signals and guarantee a smooth and safe

driving behavior. Figure 1.2 visualizes a typical architecture for an autonomous vehicle, as also described by

Pendleton et al. [5]. An overview of the current state of the art of AVs and their remaining challenges was

provided by Parekh et al. [9].
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Vehicle Hardware Platform

Automated Driving Software Stack

Sensors
Camera
LiDAR
Radar 
GNSS 
IMU 
... 

Actuators
Steering 
Throttle 
Brake 

Gearbox 
Indicators 

...

Perception
Detection

Localization &
Mapping

Objects
Lanes
Free Space
Traffic Signs

HD Mapping
Online Localization
Odometry

Map

Planning
Global
Behaviour
Local

Control
Trajectory Tracking
Vehicle Interface
Emergency Stop

Figure 1.2: Standard architecture of an automated driving software stack.

To establish a consistent understanding, the most relevant terms for the scope of this thesis will be defined

below. As far as possible, the definitions follow common usage and definitions in related work. In the case of

multiple interpretations of a term in usage or literature, only the one specified here is valid in the context of

this work. The terms and definitions are presented in logical order.

Automation Levels:

Initially released in 2014 and latest in 2021, the Society of Automotive Engineers (SAE) published a

definition of the levels of automation for autonomous driving systems [10]. Levels 0 to 5 are defined:

• Level 0: No Driving Automation

• Level 1: Driver Assistance

• Level 2: Partial Driving Automation (Human Supervision)

• Level 3: Conditional Driving Automation (Human Fallback)

• Level 4: High Driving Automation (limited Operational Design Domain (ODD))

• Level 5: Full Driving Automation

Perception:

Perception is the process by which an autonomous system, such as an autonomous vehicle, gathers and

interprets sensory information from its environment to gain an understanding of its surroundings and its

own state. The main components are detection (objects, traffic signs, free space, etc.), localization, and

mapping, as shown in Figure 1.2.
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1 Introduction

Simultaneous Localization and Mapping (SLAM):

SLAM is a computational technique to create maps of an unknown environment while simultaneously

determining the robot’s location within that environment. The foundations will be explained in Section 2.2.

Mapping:

Mapping is the process of creating a map that will be used for online localization and other driving tasks,

such as path planning or motion prediction. It is usually performed offline; thus, the computation time is

not critical. There is a distinction between Standard Definition (SD) maps containing basic road geometry

and HD maps including details such as lanes or geometry information for localization.

HD Map:

HD maps can be assembled of different layers. As used by most current approaches and also in this

thesis, in the following, this term will refer to a map consisting of two layers. A geometric layer for

localization (usually a 3D point cloud map) and a vectorized road and lane map for driving tasks such as

motion planning and prediction.

Localization:

Localization is the process of using online sensory data to determine the ego position within an offline-

generated map. It is performed online while driving and has to run in real-time.

Odometry:

Odometry refers to the use of motion sensor data to estimate a change in position over time. In contrast

to localization, no absolute position but only its change is estimated.

State Estimation:

State estimation refers to the continuous process of determining the vehicle’s current position, orientation,

velocity, and other relevant parameters. It provides highly frequent updates on the vehicle’s current state.

Therefore, different sensor modalities, e.g., Inertial Measurement Unit (IMU), Global Navigation Satellite

System (GNSS), or the output from a localization module, are fused with a vehicle dynamics model. The

state estimate is used by the controller to achieve the desired state.

Operational Design Domain (ODD):

ODD refers to the specific conditions and operational constraints in which an autonomous vehicle is

intended to operate safely. It defines the environmental, geographical, temporal, and operational limits

within which the autonomous system is designed to function. For level 5 autonomy, the system must not

be limited to a specific ODD.

1.3 Structure of the Thesis

The structure, scope, and content of this thesis are illustrated in Figure 1.3. This figure also shows the two

different applications: autonomous racing and public traffic. The corresponding publications, in which partial

contents of this thesis have already been published, are shown in green.

Following the motivation for this thesis, a quick introduction of the vehicle platforms, and providing general

background information in the field of AD, the contributions will be outlined in the next section (Section 1.4).

This is followed by a review of related work, which provides a basis for understanding the current state

of environmental perception, SLAM, and methods for precise localization and mapping (Chapter 2). The

fundamentals of computer vision are introduced, and different approaches to solve the SLAM problem, using
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different sensor modalities, are presented. Finally, applied mapping pipelines for AVs are introduced, and

their limitations are elaborated. The core of the research is articulated through a clearly defined problem

statement that outlines the research gap and derives the research questions and the methodology used to

address these questions (Chapter 3).

The study is divided into two operational domains: autonomous racing and public traffic. High-speed environ-

ments and race tracks induce several challenges, such as feature-poor environments, fixed specific sensor

setups, and circumstances due to the high velocities. Therefore, novel sensor-fusion-based localization

approaches are developed for the Indy Autonomous Challenge (IAC) (Chapter 4). These approaches are

then extended to be more general and validated with public datasets for autonomous driving on public roads.

The results of each algorithm are presented and discussed directly in the corresponding section. Sections

based on existing publications are identified as such with an introductory sentence. The findings are then

transferred to the EDGAR research vehicle. The aim is to develop an entire pipeline for offline map building

and online localization in urban environments. Novel challenges are induced, such as the multi-LiDAR setup

and, in particular, the usability of approaches to make them applicable in real-world applications with limited

human processing effort. Based on the results from the racing domain, an open localization and mapping

framework is introduced and demonstrated with the EDGAR research vehicle to address applicability of

HD mapping (Chapter 5). The pipeline is validated on the Technical University of Munich (TUM) campus in

Garching and in the city center of Munich.

Chapter 6 presents the high-level discussion of the thesis, all presented approaches, and their corresponding

results and limitations. It examines the relationship of the approaches to the research questions. Directions

for future research are defined. The discussion section extends to the dependencies of the data used,

the challenges faced, and potential solutions, forecasting the future of HD mapping and the transition

towards an integrated perception and local mapping system. Chapter 7 concludes the thesis with a brief but

comprehensive summary.
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1.4 Contributions

This thesis is based on peer-reviewed publications [11–14, 16, 18, 20], in which parts of this thesis have

previously been published. The thesis contains contributions in the field of sensor fusion for applied localization

and mapping and pixel-wise depth estimation (Chapter 4) and provides an open mapping pipeline for

autonomous driving in urban regions (Chapter 5). The main contributions of this thesis can be summarized

as follows.

• A localization approach for high-speed race cars on low-feature race tracks [11–13].

For localization on oval high-speed race tracks, first LiDAR-based approaches are evaluated.

Reasons why these approaches, which have been developed for other use cases, fail are

elaborated. A novel approach using camera images for longitudinal and LiDAR point clouds

for lateral localization is developed and validated on race tracks in simulation.

• An extension of the well-known ORB-SLAM3 to include depth measurements from

LiDAR sensors [14, 15].

The extension allows for the input of separately generated dense depth maps in addition to

RGB images from a camera. The novel Red, Green, Blue - LiDAR (RGB-L) mode directly

reads LiDAR point clouds and uses conventional computer vision methods for fast and efficient

depth upsampling. This approach has shown to be especially performant in terms of runtime

and outperforms the stereo mode in specific scenarios.

• A Visual Transformer (ViT) for pixel-wise depth estimation of camera images and sparse

Radio Detection and Ranging (RaDAR) measurements [16, 17].

To use dense depth maps independently of expensive LiDARs, CamRaDepth is presented,

using camera images and sparse RaDAR inputs. It combines a transformer encoder with a

depth decoder and a dedicated semantic segmentation decoder branch. By this, fine details

can be restored despite the sparsity of the RaDAR reflections. For an efficient training process,

heavy use of transfer learning is made. The approach outperforms the state of the art and

shows convincing results even if RaDAR data is unavailable during inference.

• A concept for a novel visual-LiDAR SLAM, called CaLiMO (Camera LiDAR Mapping and

Odometry).

CaLiMO assigns depth from LiDAR to visual camera features. The graph is constructed

with image flow tracking and LiDAR scan matching constraints. It shows promising results;

however, future research needs to be carried out.

• An expandable open-source offline HD mapping and online localization framework,

applied to our research vehicle EDGAR [18, 19].

Finally, an entire pipeline is developed and presented to quickly generate HD maps of

previously unmapped regions. The pipeline includes modules for 3D point cloud and semantic

lanelet mapping, compatible with Autoware. The mapping pipeline combines open-source

algorithms and represents the first available open-source mapping pipeline to create HD

maps from sensor data. The pipeline and created maps are evaluated using the EDGAR

research vehicle.

• A comprehensive discussion of all topics leading to a novel perception concept [20].

All of the approaches mentioned above are discussed in a common chapter. From this

discussion, challenges and possible solutions are presented. These are put together in a

novel concept for end-to-end multi-task perception, leading to mapless autonomy for future

research and applications.
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1 Introduction

All publications that have been published within the scope of this work and that this work refers to are

summarized in Chapter 7.
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2 Related Work

This section reviews the current state of the art in localization and mapping for AVs. Therefore, a general

background on the perception of the environment by AVs is given first, including different sensor technologies,

the fundamentals of machine vision, and existing datasets that can be used (Section 2.1). Subsequently, the

SLAM problem is introduced, and algorithms for solving the problem with different sensor modalities and

methodologies are presented (Section 2.2). The concluding part of this section shows how the presented

approaches have been applied and extended. The focus is on complete pipelines from raw sensor data to

HD maps and their application in AV systems (Section 2.3).

2.1 Environment Perception of Autonomous Vehicles

As environmental perception is one of the core tasks of AD, much research has already been conducted

in this field. A general overview of the environmental perception of intelligent vehicles was published by

Zhu et al. [21]. There are survey articles on autonomous vehicle perception systems, presenting different

approaches and remaining challenges [22, 23]. In addition, the transfer from simulation to the real world has

been investigated [24]. These papers focused primarily on perception algorithms, whereas other publications

mainly focused on available sensor technologies and hardware [25].

2.1.1 Sensors

The following section introduces and briefly describes the most common sensors used in AVs. For additional

information, surveys can be found on sensor technology [26] and sensor fusion approaches to combine

sensor-specific properties [27].

Global Navigation Satellite System (GNSS):

GNSS sensors receive the current location and time from satellites in a constellation on defined orbits.

To determine the global position of the sensor and provide accurate geographic coordinates, signals

from at least four satellites need to be received. The most well-known standards are NAVSTAR Global

Positioning System (GPS), Galileo, Beidou, and GLONASS. The accuracy is around 1 m to 10 m. To

reach cm level accuracy, differential GNSS can be used with additional correction signals, such as Real

Time Kinematic (RTK).

Inertial Measurement Unit (IMU):

An IMU is a sensor system that combines accelerometers and gyroscopes to measure changes in

velocity and orientation. It provides information about the vehicle’s linear and angular motion by tracking

how it accelerates and rotates. IMUs are essential for estimating the attitude and state of a vehicle.

9



2 Related Work

Inertial Navigation System (INS):

An Inertial Navigation System (INS) combines accelerometers, gyroscopes, and a computing unit to

continuously estimate the position, orientation, and velocity of a moving object by dead reckoning without

the need for external references.

Wheel Odometer:

A wheel odometer operates by tracking the movement made by the wheels. The vehicle’s velocity and the

distance traveled are then calculated using the known circumference of the wheel. It is to be mentioned

that the circumference can change due to reasons like tire wear, temperature, etc.

Camera:

Cameras are optical instruments that capture visual, two-dimensional images of the surroundings. Lenses

are used to adjust parameters like the Field Of View (FOV), focal length, etc., and induce distortion

that has to be compensated for. Another source of distortion can be a moving camera in combination

with exposure time or a rolling shutter. As cameras are passive sensors, they are highly dependent on

illumination conditions. Computer vision algorithms use camera images e.g., to identify and track objects,

read road signs, and interpret traffic signals. Different types of cameras exist, for example, monocular,

stereo, Red, Green, Blue - Depth (RGB-D), thermal, or event cameras.

Light Detection And Ranging (LiDAR):

LiDAR sensors emit and receive laser pulses to measure distances to objects in the environment using

the time-of-flight principle. They produce three-dimensional point clouds of the environment. Depending

on the scan pattern of the laser, motion distortion has to be compensated for. As LiDARs are active

sensors, they do not depend on external illumination; however, they can be influenced by weather

conditions, such as rain, snow, or fog.

Radio Detection and Ranging (RaDAR):

RaDAR sensors emit radio waves and detect their reflections off objects. They determine the objects’

distance, angle (azimuth), and relative radial velocity by analyzing the Doppler shift in the reflected signals.

Currently, RaDARs with fixed height are the standard, with so-called “4D imaging RaDARs” becoming

increasingly popular. These receive reflections from different heights. Due to their long wavelength,

RaDARs are robust against different weather conditions.

2.1.2 Fundamentals of Machine Perception

In order to lay the theoretical foundation of this thesis, some fundamentals of machine perception and

machine vision are established below. These mathematical relationships and sensor models form the basis

for the algorithms which are presented later.

Pinhole Camera Model

The pinhole camera is a simple model to describe the relationships between the 3D environment and the 2D

image captured by a camera. Figure 2.1 visualizes the model: The final image lies in the image plane (i.e.,

the location of the light sensor). Light rays arriving at this plane are restricted to passing through an aperture

with a small pinhole, in this model, only a point. No lens is used to focus the light; thus, no distortion occurs.

This limits the incoming light rays so that from each location, only the ray from one direction arrives at the

sensor, allowing the image to form as shown in Figure 2.1 [28].
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Pinhole Camera

Pinhole

Light Rays

Image
Formation

Figure 2.1: Visualization of a pinhole camera. The small opening (pinhole) blocks most of the light rays such that,
from each location, only one light ray may pass through.

As real-world 3D coordinates are depicted as a 2D images, a 3D-2D transformation occurs. This projection

can be described mathematically as a transformation of the real-world 3D coordinates (x , y, z)T in IR3 to

the 2D image coordinates (u, v) in IR2 [27]. This projection is performed by the projection matrix P ∈ IR3x4.

To allow a mathematical formulation of the problem, both the camera x = (u, v, 1)T and the real-world

coordinates X = (x , y, z, 1)T are usually transformed into homogeneous coordinates.

Applying Equation 2.1 finally gives the camera coordinates of a point in the 3D world [28, 29]

x = PX . (2.1)

The matrix P is composed of two parts: K holds the intrinsic camera parameters and [R|T] the camera

rotation and translation to the world coordinate system. Equation 2.2 shows the general form of the matrix [29]

P= K

�

R|T
�

=





fx 0 px

0 f y py

0 0 1









r11 r12 r13 t x

r21 r22 r23 t y

r31 r32 r33 tz



 . (2.2)

In the camera matrix K, fx and f y describe the focal length of the camera in the x and y directions,

respectively. The focal length is the distance from the lens to the image sensor and is a characteristic of every

camera. Theoretically, the focal point of the image lies at the center of the image plane. The two parameters

px and py allow for compensation if this does not apply to the actual camera. The parameters ri define the

rotation and t i the translation of the camera [29]. All these parameters are measured during a process called

camera calibration [30].

It should be noted that only linear corrections have been included above. In general, cameras also have

non-linear distortions that may need to be corrected (e.g., introduced by lenses). In computer vision, various

algorithms compensate for these errors, such as expressing several parameters as functions of pixel

coordinates (u, v).

The projection described above is not invertible: The depth of a point represented by a pixel cannot be

reconstructed from the 2D image alone, as no 3D depth information is contained in the 2D image. Additional

devices, sensors, or algorithms are needed to reconstruct the depth information [28, 29].

LiDAR Projection

LiDAR data are typically stored as a matrix of the 3D coordinates of each received reflection. For example, in

many datasets, the LiDAR point clouds are stored in a matrix L ∈ IRnx4 with n points. Each row represents
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one point and consists of the coordinates X = (x , y, z, r)T . x , y , and z represent the spatial 3D coordinates

of the corresponding point relative to the LiDAR center. r is the reflectance value, representing the amount of

light returned for each point. It depends on color, material, and surface structure. In contrast to the measured

intensity value, it is scaled by the measured distance from the sensor. The points can be transformed from the

LiDAR frame L into the camera image frame C to find associations between LiDAR points and pixels in the

camera image plane. Therefore, the point cloud is projected to the camera origin using the projection matrix
L
PC. This consists of the previously introduced camera matrix PC , the geometric translation matrix L

TC and

the rotation matrix L
RC from the LiDAR to the camera. These have to be estimated via calibration. Under the

assumption that the camera orientation matches the world orientation,
�

R|T
�

(Equation 2.2) becomes the

identity matrix I [28, 29]. Then, L
PC can be formulated as

L
PC = PC

�L
RC |

L
TC

�

=





fx 0 px 0

0 f y py 0

0 0 1 0





�

L
RC

L
TC

0
T 1

�

. (2.3)

The homogeneous coordinate representation of a LiDAR point can be written as X̂ = (x , y, z, 1)T . Here,

only the geometric position is considered without the reflectivity. Equation 2.4 denotes the homogeneous

coordinates in the image plane of the camera

x̌ =





x̌

y̌

ž



 =L
PC X̂ . (2.4)

To recover the coordinates of the pixels, first x̌ has to be normalized by ž (Equation 2.5) [28, 29]:

x =





u

v

1



 =





x̌/ž

y̌/ž

ž/ž



 , (2.5)

where u and v must be rounded for an association of LiDAR points with discrete pixels.

Visual Depth Perception and Estimation

In contrast to LiDAR, cameras can only sense a two-dimensional representation of the surroundings.

Therefore, additional steps are required to reconstruct the depth of camera images. This reconstruction can

be achieved mainly in three ways: Either through two cameras in a stereo setup, which estimate the depth by

the disparity between the images, by using sparse depth inputs and ‘completing’ them, or by estimating the

depth only based on 2D image inputs.

Disparity and Stereo Vision

Stereo vision is a technique for determining the distance of objects based on triangulation, similar to human

binocular vision. It uses two cameras positioned at a fixed separation distance, called the baseline B, to

capture images from slightly different perspectives. Figure 2.2 shows the fundamental principle of depth

estimation using stereo vision.
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Two cameras, Camera 1 and Camera 2, are rigidly mounted side by side with a fixed baseline B. Each

camera captures an image of the same scene from its respective viewpoint. The observation of an object, for

example, the car in Figure 2.2, by both cameras results in its image appearing at different lateral positions on

the image planes. These are denoted by x1 in Image 1 and x2 in Image 2.

The horizontal shift between the object’s position in the two images is the disparity δ. A computer matches

the images and calculates the corresponding disparity δ for each found correspondence. The disparity is

inversely proportional to the distance of the object from the camera lenses: the larger the disparity, the closer

the object. This limits the range of this depth estimation approach. The object’s distance or depth D can be

calculated from the disparity and the focal length f of the camera. The relationship between these variables

can be denoted as

D =
f B

δ
. (2.6)

Equation 2.6 is derived from the principles of triangulation, where the baseline B and the disparity form

a triangle. Regarding aspect ratio, this triangle is equivalent to the triangle formed by the object and its

projections in the image planes. The precise matching of point correspondences between the two images

and the disparity calculation are crucial parts of stereo depth estimation.

                    
          

   
   
 

Camera1 Camera 2

Baseline
B

Focal
Length

f

Disparity
δ

Depth
D

Image 1 Image 2

y1

x1 x1 x2

Figure 2.2: Depth estimation via disparity between images from two cameras in a stereo setup.

Depth Prediction

Another way to reconstruct depth from camera images is monocular depth prediction. In contrast to stereo

view, monocular depth prediction is usually done with deep learning models, supervised or unsupervised.

Zhao et al. [31] published a detailed survey on camera depth prediction.

VA-DepthNet [32] is currently the best-performing approach on the KITTI benchmark for camera depth

prediction by adding variational constraints to a neural network. Liu et al. [33] achieved state-of-the-art

results on various datasets by estimating multivariate Gaussian distributions for the depth of each pixel.

iDisc [34] learns high-level patterns of the environment to improve supervised monocular depth prediction.

Yan et al. [35] introduced CADepth-Net, a self-supervised approach that shows competitive results. Self-

supervised approaches use the image disparity of consecutive images due to motion to supervise the training

process. These are still inferior to supervised approaches in terms of depth accuracy. However, they have

two main advantages: they do not need ground-truth data and can estimate the depth of finer details and

structures.
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Depth Completion

In addition to two-dimensional camera images, depth completion makes use of comparably sparse depth

measurements, e.g., from LiDAR or RaDAR. The aim is to precisely interpolate depth information for each

pixel of the corresponding camera image between the depth measurements.

The reviews by Hu et al. [36] and Xie et al. [37] present current approaches and compare their results.

Most recent publications use supervised deep learning algorithms to estimate dense depth. However, some

approaches use conventional Computer Vision (CV) methods [38]. CompletionFormer [39], DynSPN [40],

and SemAttNet [41] are the best-performing approaches for depth completion validated on the KITTI

dataset [42]. They are all supervised approaches using a depth ground truth for training. CompletionFormer

outperforms other approaches by integrating convolutional attention into ViT blocks. The combination of a

spatial propagation network with dynamic affinity matrices was presented in DynSPN. SemAttNet fuses RGB

images, LiDAR data, and semantic segmentation using a learned attention mechanism [43].

2.1.3 Available Datasets

To evaluate and compare AD algorithms, common datasets are necessary. Several publicly available percep-

tion datasets have been published to advance technologies related to AD. Table 2.1 presents a curated list of

prominent datasets that contribute to the research and development of HD maps, localization, and mapping

for AD systems.

Table 2.1: Comparison of public AD perception datasets with a focus on localization and mapping.
Note: Even if two LiDARs are used in the Argoverse (2) datasets, we do not consider it a multi-LiDAR setup,
as there are only two similar rotating LiDARs stacked on top of each other.

Dataset LiDAR Camera RaDAR Multi-LiDAR HD Map Year Note

KITTI [42] ✓ ✓ ✗ ✗ ✗ 2012
Argoverse [44] ✓ ✓ ✗ ✗ ✓ 2019
nuScenes [45] ✓ ✓ ✓ ✗ ✓ 2020 HD map added belatedly
Waymo Open Dataset [46] ✓ ✓ ✓ ✗ ✗ 2020
Audi A2D2 Dataset [47] ✓ ✓ ✓ ✓ ✗ 2020 5 tilted LiDARs
MulRan [48] ✓ ✗ ✓ ✗ ✗ 2020
Oxford Radar RobotCar [49] ✓ ✓ ✓ ✓ ✗ 2020
Lyft Level5 [50] ✓ ✓ ✗ ✗ ✓ 2021
PandaSet [51] ✓ ✓ ✓ ✓ ✗ 2021
3DHD [52] ✗ ✗ ✗ ✗ ✓ 2022 Only HD map
Argoverse 2 [53] ✓ ✓ ✗ ✗ ✓ 2023
NTU4RadLM [54] ✓ ✓ ✗ ✗ ✗ 2023 4D RaDAR + thermal
RACECAR [55] ✓ ✓ ✓ ✓ ✗ 2023 High-speed (IAC)

The table indicates the sensor modalities used and whether a manually created ground-truth HD map is

contained in the corresponding dataset. An additional row indicates if the recording vehicle used a multi-

LiDAR setup. This makes the dataset more applicable to our research vehicles (EDGAR and the IAC racecar),

as they both use a multi-LiDAR setup. In these datasets, HD map mainly stands for the vector map of the

road and lane geometries. Only some datasets also provide a 3D point cloud map for localization evaluation.

The RACECAR dataset [55] originated from the IAC, and parts of this thesis contributed to it.
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2.2 Simultaneous Localization and Mapping - SLAM

SLAM is one of the fundamental challenges in robotics and autonomous navigation systems. It is a com-

putational process used by robots and autonomous vehicles to build a map of an unknown environment

while simultaneously keeping track of its own pose within that environment. This dual-objective challenge

involves the real-time acquisition of environmental data through sensors, interpreting these data to map the

structure of the environment, and using the same data to deduce the vehicle’s pose relative to this map.

SLAM algorithms can integrate multiple data sources, including visual, LiDAR, RaDAR, and inertial, to create

and continuously update a representation of the environment and the vehicle’s navigation path, essential

for enabling autonomous systems to move and operate independently. The following section provides an

overview of the fundamentals of SLAM and existing approaches to its challenges.

2.2.1 The SLAM Process

xk

mi

mj

xk-1

zk,j

zk,i

uk+1

xk+1

f
Estimated

Robot Landmark

True

Figure 2.3: Depiction of the SLAM problem. The robot, in this case, a vehicle, needs to estimate its state xk and the
environmental landmarks m simultaneously using observations z [56]. Image adapted from [57].

The general SLAM process, applied to an AV, is depicted in Figure 2.3. The robot begins with an initial

estimate of its state, xk−1, and observes its environment to identify fixed landmarks, such as mi and m j .

These observations are captured through sensor readings zk,i and zk, j , which measure the relative positions

of the landmarks from the robot’s current location, xk. As the robot navigates, it uses these observations

to update its map, determining whether the landmarks are known (and thus updating their positions on the

map) or unknown (adding them as new features to the map). The robot’s next estimated position, xk+1, is

predicted using a motion model that incorporates the control inputs uk+1, representing the robot’s intended

movements. The SLAM algorithm must reconcile the predicted movement with the incoming sensor data to

refine the robot’s position and the map’s accuracy. Estimated positions of the robot and landmarks, shown in

blue, may not always align with their true positions (white with black outlines). This discrepancy requires an

optimization step in which the algorithm minimizes the error between the estimated and true positions. This

correction is particularly crucial after a loop closure event, where the robot recognizes a previously visited

location and can adjust for any drift that has occurred since then. [57–60]

Throughout the robot’s travel, the SLAM algorithm continuously integrates new data, adjusts the map, and

refines the estimated trajectory of the robot, ensuring that it maintains an accurate understanding of the

environment and its place within it [61].

Usual SLAM algorithms can be divided into front-end and back-end [62]. The front-end processes the data

from the sensors into a form suitable for analysis, while the back-end carries out the reasoning on the

processed data provided by the front-end. This interaction is depicted in Figure 2.4.
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Figure 2.4: High-level overview of a SLAM implementation with front-end and back-end. Adapted from [62].

Front-End

In the SLAM front-end, the raw sensor data from consecutive frames are processed and associated to

estimate the change of the sensor pose. This allows the subsequent part of the algorithm, the back-end, to

reconstruct the surrounding map and the ego motion within this map.

Data Processing:

Data processing is the stage in which the sensor input is transformed into a format that can be used for

trajectory estimation. For example, distinctive points or features are detected in the data. The outcome of

data processing is a set of relevant data points that represent the environment in a way that is conducive to

matching and map building in subsequent stages. [62]

Data Association:

Once the features or measurements have been extracted from the sensor data, the SLAM system must

determine which features in the current set of observations correspond to which features in the map built

simultaneously. This is critical because the correct associations are essential for maintaining an accurate and

consistent map over time. Inaccurate data association can lead to errors in the estimated trajectory of the

vehicle and the constructed map. [62]

Back-End

Two main methods are used to handle and further process the information from the front-end: filtering-based

and graph-based approaches.

Filtering-Based Methods:

Filtering-based methods use a probabilistic approach to continuously update the map and vehicle location.

As new data from the front-end arrive, filters such as a Kalman Filter (KF), Extended Kalman Filter (EKF),

Unscented Kalman Filter (UKF), or Particle Filter (PF) integrate these data to revise the estimated state of

the vehicle. Filtering-based SLAM considers the problem of SLAM as a state estimation problem. Data from

the front-end and motion models are combined to estimate probability distributions and their associated

uncertainties and provide continuous state estimates. This state comprises information about the current ego

position and the surrounding map. The filter updates the state recursively to estimate the current position

and map based on sensor measurements and vehicle actions. As more data are collected, the estimate is

improved and refined. Filtering-based approaches excel in structured and spatially limited applications with

known dynamics. Due to computational efficiency, real-time updates can be provided in such applications. [62]

Graph-Based Methods:

Graph-based methods model the SLAM problem as a graph where nodes represent the poses of landmarks

or the robot, and edges represent the spatial constraints derived from sensor measurements. Such graphs

are generally called pose graphs in the SLAM domain. Additional nodes are incorporated into the pose graph

when new ego poses and landmarks are detected. Constraints connect the sequential nodes with information
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on vehicle movement and associated landmark detections. Loop closure constraints can be added if new

nodes are similar enough to previously detected ones. The goal is to optimize the pose graph and minimize

errors using efficient mathematical optimization. This method is particularly effective for optimizing the entire

trajectory and map globally, mainly when loop closures occur. [62]

The most famous solvers for graph-based SLAM are: GTSAM [63], g2o [64], Ceres [65], iSAM [66],

SLAM++ [67]. Nowadays, mainly graph-based SLAM methods are used as they show the best results

in terms of accuracy and runtime for most applications. Moreover, this approach scales better to different

sensor setups, bigger environments, etc.

Alsadik et al. [68] published a general literature survey on SLAM that included fundamental and current

approaches. In addition, more specific review papers have been published on the application of SLAM in the

field of AD [69, 70]. Chghaf et al. [71] conducted a literature review on SLAM for AD that additionaly focused

on the implementation of multimodal approaches.

Deep Learning-Based SLAM

Recently, an increasing number of SLAM algorithms have included deep learning for different parts of

algorithms, such as loop closure [72] or feature extraction and matching [73]. Other approaches make use of

deep learning for the entire mapping process. In contrast to other modules such as object detection, deep

learning-based SLAM approaches still lag behind the conventional SLAM approaches described above [74].

2.2.2 LiDAR SLAM

Following the introduction of the SLAM problem and general approaches in the previous sections, specific

algorithms are presented below. First, LiDAR-based approaches are covered, which can be divided into

registration- and feature-based.

Registration-Based:

Registration-based methods try to align consecutive point clouds to find the transformation between them.

This process is also called scan matching. The most well-known scan matching algorithm is Iterative Closest

Point (ICP) [75]. It iteratively refines the alignment of two point clouds by minimizing the sum of the squared

distances between the single points. Generalized Iterative Closest Point (GICP) [76] uses standard point-to-

point but also point-to-plane correspondences. To address the problems of ICP and GICP with outliers and

initial misalignment, the Normal Distribution Transform (NDT) algorithm was proposed [77, 78].

SuMa [79] and SuMa++ [80] are registration-based approaches. Their core includes a surfel (surface element)

map, pose graph optimization, and loop closure. IMLS-SLAM [81] introduces a specific point cloud sampling

strategy and uses Implicit Moving Least Squares (IMLS) scan-to-model matching instead of standard ICP.

Even without loop closure, the approach achieves convincing results.

Recently, some new approaches have been published that tried to make more efficient use of ICP in 3D

LiDAR SLAM. KISS-ICP [82] is an accurate and robust approach for different applications. It achieves these

results by focusing on the core (point-to-point ICP and adaptive thresholding) and removing complexity rather

than overfitting to a specific use case. CT-ICP [83] combines the continuity in the scan matching process

with the discontinuity between discrete scans. This scan matching approach is integrated into a full-SLAM

framework with loop closure capabilities. Traj-LO [84] uses a similar approach that combines point-to-plane

matching with a continuous-time trajectory and is currently the best-performing LiDAR approach on the KITTI

odometry benchmark [42]. FAST-LIO 2 [85] is the improved version of the feature-based FAST-LIO [86]

(presented in the next section). The authors changed the approach to direct raw scan registration and could

improve computational requirements by this measure. ELO (Efficient LiDAR Odometry) [87] was developed
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specifically for AVs. In the 2D range image, the point clouds are segmented into ground- and non-ground

points for efficient usage. Normals of non-ground points are estimated, and ground points are projected into

Bird’s-Eye View (BEV). Everything is combined in an ICP.

Feature-Based:

Feature-based methods first extract distinctive features (such as edges, corners, or planes) from the LiDAR

data. Instead of all points in a point cloud, only these salient features are matched and aligned across

successive scans. This approach can be more efficient since it processes fewer data points and can be

more robust to varying densities in the point cloud. However, it may lose some detail because it disregards a

portion of the data. Also, the computational effort for the feature extraction must not be neglected. Different

feature detectors and descriptors have been introduced for 3D LiDAR data [88–91].

LOAM (LiDAR odometry and mapping) [92] was one of the first feature-based 3D LiDAR SLAMs. It extracts

edge and planar features and estimates the robot pose by minimizing point-to-plane and point-to-edge

distances. The algorithm still ranks among the best-performing approaches on the KITTI odometry bench-

mark [42]. LOAM paved the way for several extensions and new implementations built on it, even years

later: F-LOAM [93] focuses on computation efficiency for real-time applications. Lego-LOAM [94] (lightweight

and ground-optimized) adds constraints through ground segmentation and runs on embedded hardware in

real-time. LOAM Livox [95] was specifically developed for small LiDARs with limited FOV, such as those of

the company Livox. M-LOAM [96] is a multi-LiDAR SLAM algorithm based on a sliding window approach. In

addition to odometry and mapping, it allows for extrinsic online calibration of the sensors by sensor-to-map

matching. Google Cartographer [97] is a hierarchical approach working in 2D and 3D. Due to the approach

with local sub-maps and global optimization, it scales well to large environments. In the MULLS [91] SLAM,

eight different feature classes are extracted from 3D point clouds and matched by the proposed multi-metric

linear least squares (MULLS) ICP. The back-end consists of hierarchical pose graph optimization for efficient

computation. Many approaches use additional inertial measurements to improve accuracy. LIO-SAM [98]

does so using a factor graph approach and also employs an IMU for motion compensation of the incoming

point clouds. Additional measures, such as keyframe selection and an efficient sliding window approach, were

taken to allow real-time capability. FAST-LIO [86] fuses LiDAR and inertial measurement with an iterated EKF.

A new formula for Kalman gain computation was introduced to keep computation times low even when using

a large number of measurements. WiCFR [99] reached convincing results among LiDAR SLAM algorithms.

To robustly extract features, a point roughness evaluation based on geometric scaling was introduced. The

detected features are used for the construction of motion constraints with a weighted bimodal least squares

algorithm.

Deep Learning-Based:

With the increasing emergence of deep learning algorithms for various perception tasks, also deep learning-

based SLAM approaches emerge. These either try to solve the SLAM problem in an end-to-end manner or

substitute single modules, such as scan registration. However, as the survey shows, to this date, conventional,

geometry-based approaches still outperform data-driven approaches. DeepVCP [100] achieves a registration

accuracy comparable to the above-mentioned geometric methods. Internally, it also detects point features

in the point clouds. Unlike conventional approaches, ground-truth transformations between consecutive

LiDAR scans are needed for training. PointNetVLAD [101] is used for large-scale place recognition with

deep learning-supported feature extraction. SegMap [102] uses a data-driven descriptor to extract features

from 3D point clouds. These features are then used for map building and also were shown to be benefi-

cial for dense reconstruction. LO-Net [103] is a deep LiDAR odometry, trained in an end-to-end fashion.

Therefore, a geometric constraint loss is used during the training. It outperformed existing deep LiDAR

odometry approaches and managed to be on par with conventional algorithms. L3-Net [104] is a deep

LiDAR localization, specifically designed for AVs. In contrast to the LO-Net, it matches sensor scans with a
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pre-built map, achieving cm-level accuracy. The authors argue that re-training the net for other applications is

advantageous over the hand-crafted tuning of conventional algorithms.

For a more comprehensive exploration of the topic and additional insights, there are dedicated review papers

about LiDAR SLAM [105–108].

2.2.3 Visual SLAM

This section presents the state of the art for camera-based visual SLAM. Similar to LiDAR SLAM, there are

feature-based, also called indirect approaches and direct approaches that use the whole camera image.

Indirect/Feature-Based:

Feature-based methods focus mainly on identifying and matching striking features in camera images. There

are different feature extractors and descriptors. Most of them use point features (Scale-Invariant Feature

Transform (SIFT) [109], Speeded Up Robust Feature (SURF) [110], Features from Accelerated Segment

Test (FAST) [111], Binary Robust Independent Elementary Features (BRIEF) [112], Oriented FAST and

Rotated BRIEF (ORB) [113], Binary Robust Invariant Scalable Keypoints (BRISK) [114], Good Feature To

Track (GFTT) [115], etc.). To increase robustness, line features, such as Line Segment Detector (LSD) [116],

can also be used. For motion estimation, geometric reprojection constraints are leveraged. This approach

can be carried out in one of two ways: through a filtering method or by employing the bundle adjustment

technique.

In the filtering method, previous positions are marginalized, and the derived information is depicted as a

probability distribution. This was first introduced in MonoSLAM [117, 118] and was solved using an EKF.

PTAM [119, 120] implemented a bundle adjustment approach. Furthermore, keyframes were introduced, and

the motion tracking and mapping threads were parallelized. OKVIS [121] presented a tightly coupled visual-

inertial keyframe-based SLAM approach. The reprojection and temporal IMU errors were jointly optimized

in a non-linear optimization problem. ORB-SLAM [122–124] is one of the most widely used vision-based

SLAM algorithms, using ORB features for robust real-time tracking and mapping. Its parallel processes for

localization, mapping, and loop closure correction enable a precise estimation of the ego trajectory and

map construction, marking it as a benchmark in SLAM research. The code includes direct integrations for

inertial sensors, stereo, and RGB-D setups. OpenVSLAM [125] is a versatile SLAM framework that supports

multiple camera configurations. It employs keyframe-based mapping and loop detection to achieve accurate

localization and mapping. It should be mentioned that the open-source code was taken offline due to legal

concerns. SOFT SLAM [126] is a SLAM approach that optimizes feature-based tracking for efficiency. It

integrates semantic information, optimizing data association and feature tracking in dynamic environments.

Following its approach, SOFT2 [127] builds on this foundation with improved algorithms for robustness in

highly dynamic scenarios, ensuring consistent performance and reliable mapping. SOFT2 currently holds the

first place on the KITTI odometry benchmark [42]. Therefore, not only is the algorithm responsible, but also

the camera setup was re-calibrated instead of using the default calibration files [128, 129].

Direct:

Direct Visual SLAM operates directly on pixel intensity values of raw images. This method maps changes in

pixel intensity across consecutive frames to estimate vehicle movement and the structure of the environment.

Consequently, these approaches use denser information than feature-based methods’ sparse point features.

Thus, also denser maps can be created with this approach. There are mainly two variants within Direct

Visual SLAM: semi-dense, which processes selected pixels, and dense, which considers every pixel in the

image. The advantage of direct visual SLAM is its ability to capture more detailed and nuanced environmental

information. However, it often requires more computational power and struggles with changing lighting

conditions and large baselines.
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SVO-SLAM [130] (Semi-Direct Visual Odometry) is a method that combines direct and feature-based

modules to achieve fast and accurate motion tracking. It directly uses pixel intensity information for odometry

while maintaining a sparse feature map for robustness, optimizing for both speed and precision in real-time

SLAM applications. DTAM [131] was one of the first published direct visual SLAM approaches. An early

direct visual SLAM approach for stereo setups was S-PTAM [132]. LSD-SLAM [133] (large-scale direct

monocular) is a monocular SLAM method that operates directly on the intensity values of pixels to estimate

semi-dense depth maps. Using direct image alignment and efficient keyframe management, it creates

large-scale, consistent maps of the environment, even on low-power devices. DPPTAM [134] extended the

LSD-SLAM with color-assumptions for planar areas. DSO-SLAM [135] (direct sparse odometry) with the

extension Stereo-DSO [136] focused on optimizing photometric errors over a sliding window of keyframes for

direct, sparse, and model-based visual odometry. This technique follows a chosen group of pixels through

multiple frames to construct a partially dense map. To make the approach more robust against changes in

lightning conditions, NID-SLAM [137] used normalized information distance (NID) instead of photometric

error minimization.

Deep Learning-Based:

Also, in visual SLAM, data-driven approaches are being published increasingly. Several approaches for visual

place recognition have been developed to initialize a localization algorithm [138–142]. Fusion++ [143] is

a deep object level SLAM for densely reconstructing maps using RGB-D cameras in indoor environments.

D3VO [144] (deep depth, deep pose, deep uncertainty) advances monocular SLAM by integrating deep

learning to estimate depth, camera pose, and uncertainty. It achieves high-precision 3D mapping and robust

pose estimation results. DeepSLAM [145] used an unsupervised learning approach with deep learning-based

individual modules, including Mapping-Net, Tracking-Net, Loop-Net, and graph optimization. SimVODIS [146],

and SimVODIS++ [147] perform visual odometry, object detection, and instance segmentation simultaneously,

building on top of Mask-RCNN [148, 149].

For further insights and perspectives on visual SLAM, the reader is directed to the extensive review articles

available [150–154]. The authors of [155] applied and compared the performance of visual SLAM approaches.

Some reviews specifically focus on localization and mapping for AVs [156]. The state of the art in visual

SLAM will continue to evolve by integrating more sensor modalities, such as LiDARs [157]. The following

section will review existing approaches in this field.

2.2.4 Sensor Fusion SLAM

The pursuit of accurate SLAM has led to the exploration of multimodal approaches to overcome sensor-

specific limitations. Although camera-based systems can deliver convincing results, they often face challenges

like scale drift or limited depth accuracy. Similarly, RGB-D and stereo cameras struggle with range limitations

in large-scale and outdoor environments. LiDAR SLAM, in contrast, addresses these issues. However, this

comes at the cost of increased hardware expenses and computational demands. Also, the limited resolution

and thus attention to detail can be limiting. [71]

This section delves into multimodal SLAM, an approach that takes advantage of the strengths of various

sensor modalities to improve robustness and accuracy. This section focuses on LiDAR-camera fusion

approaches. The corresponding section above has already presented approaches to fuse LiDAR or camera

with inertial data.

Visual-LiDAR SLAM can be divided into loosely coupled and tightly coupled strategies. As depicted in

Figure 2.5, loosely coupled approaches can further be distinguished in LiDAR-enhanced visual and visual-

enhanced LiDAR SLAM [158]. The following section will review the state of the art in these areas. It should be
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(a) LiDAR-enhanced visual SLAM (b) Visual-enhanced LiDAR SLAM (c) Tightly coupled visual-LiDAR SLAM

Figure 2.5: Different levels of fusion for visual-LiDAR SLAM. The first two are loosely coupled approaches.

mentioned that the distinction between these categories is not always clear-cut, as the boundaries between

these approaches are often fluid and can overlap.

LiDAR-Enhanced Visual SLAM:

The most common approach in LiDAR-enhanced visual SLAM is to use interpolation between available depth

measurements to retrieve the depth information of 2D image features. DEMO [159, 160] (depth enhanced

monocular odometry) combines the depth of LiDAR with depth of triangulation through camera motion. A

novel bundle adjustment algorithm uses features with available and missing depth information to estimate

the vehicle’s trajectory. LIMO [161] (LiDAR-monocular visual odometry) uses sparse LiDAR measurements,

which are projected into the camera frame to reconstruct the depth of 2D features. This way, better results

are achieved than with a standard feature-based visual SLAM. In [162], sparse depth measurements are

projected into camera images and used for motion tracking in a direct approach. The approach showed

robust results in different (large-scale) environments. VLOAM [163, 164] combines features with available

and unavailable depth information in a high-frequency visual odometry front-end. This is combined with

a low-frequency LiDAR odometry back-end for more precise and robust results. Currently, VLOAM ranks

second on the KITTI odometry benchmark [42].

Visual-Enhanced LiDAR SLAM:

In visual-enhanced LiDAR SLAM, the most-used approaches are either to use visual odometry for a better

initial guess for point cloud registration or to detect loop closure visually. The first was done in [165] by

improving a generalized ICP algorithm with an initial transformation based on camera image features. Also,

in [166], a 3D LiDAR SLAM was enhanced with a visual-inertial motion estimation front-end. [167] combines

a 3D LiDAR SLAM with a visual Bag of Words [168] method based on keyframes for loop closure detection.

A specific survey on LiDAR-centric multimodal SLAM approaches can be found in [169].

Tightly Coupled Visual-LiDAR SLAM:

Tightly coupled strategies for visual-LiDAR SLAM integrate both modalities into a unified optimization

framework. These approaches usually use graph representations to minimize all errors in an optimization

problem. They typically involve a multi-view-state formulation incorporating sensor measurements from both

modalities into the state vector. Although the implementation of these strategies can be complex due to

the need for raw data fusion or feature association across modalities, they tend to yield higher accuracy in

practice. [71]

VIL-SLAM [170] (visual-inertial-LiDAR) was one of the first tightly coupled approaches. It combined a

stereo visual front-end with LiDAR mapping and pose refinement and LiDAR-enhanced loop closure. LIC-

Fusion [171] (LiDAR inertial camera) combines IMU data, edge features from LiDAR point clouds and FAST

features from camera images in their proposed Multi-State Constraint Kalman Filter (MSCKF) framework.

LIC-Fusion 2.0 [172] extended the work by including plane-feature tracking based on a sliding window

approach. This adaption made the algorithm more robust to uncertainty in LiDAR matching. LVI-SAM [173]

(LiDAR-visual-inertial odometry via smoothing and mapping) incorporates two subsystems: a visual-inertial

system and a LiDAR-inertial system that can work independently to handle sensor failures or jointly for
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improved accuracy. The data are fused in a factor graph back-end. Superodometry [174] is an IMU-centric

approach to fuse IMU, LiDAR, and camera. It is built around a highly frequent IMU odometry, to which other

available sensors (such as GNSS, LiDAR-inertial odometry, visual-inertial odometry) can provide additional

constraints. The algorithm was designed in a lightweight way to account for real-time capability. R2 LIVE [175]

is a multi-sensor SLAM framework that integrates high-frequency filter-based odometry with low-frequency

factor graph optimization. It combines camera, LiDAR, and inertial sensor data within a KF for real-time

operation. The system uses a factor graph optimization to enhance the local map by refining the poses of the

keyframe and the positions of the visual landmarks. R3 LIVE [176] improved this work with a novel direct

visual-inertial odometry front-end without the need for feature detection. In [177], visual, LiDAR, and inertial

information is jointly optimized. For efficient computation, novel methods for line and planar feature extraction

from 3D point clouds are presented to allow for lightweight formulation of the 3D data. All information is

optimized in one single factor graph. In contrast to this, FAST-LIVO [178] registers raw point clouds with the

map in the LiDAR-inertial odometry front-end. The map points are attached with image patches, which are

then aligned with new images to minimize the direct photometric error. TVL SLAM [179] (tightly coupled

visual-LiDAR) combines a visual odometry based on ORB-SLAM2 [123] and a standardLiDAR odometry

in a joint bundle adjustment back-end. The resulting multimodal approach significantly outperforms both

visual and LiDAR SLAM. Coco-LIC [180] is a continuous-time LiDAR-inertial-camera odometry that integrates

information from LiDAR, IMU, and camera sensors in a tight fusion strategy using non-uniform B-splines.

SDV-LOAM [181] incorporates a semi-direct visual odometry and an adaptive sweep-to-map LiDAR odometry

to effectively achieve high tracking accuracy. A sweep reconstruction is applied to increase the LiDAR

odometry framerate. Additional information on multimodal, and especially LiDAR-visual(-inertial) SLAM can

be found in survey papers [158, 182, 183].

2.2.5 Conclusion

It is evident that SLAM, and especially visual SLAM, is an ongoing field of research. The state of the art

focuses on benchmark datasets and tries to outperform existing approaches. This leads to increasingly

complicated algorithms and a limited applicability to other use cases and platforms. KISS-ICP [82] goes in

the opposite direction. The authors prove that even if the algorithm does not rank on top of the leaderboard,

the algorithm shows convincing results among several applications and datasets. Multimodal SLAM systems

provide the best results in terms of accuracy. However, additional complexity is added to the algorithms, and

additional requirements are set to the sensor setup. A robust and applicable approach for many real-world

applications will prove superior to approaches that showed the best results on benchmark datasets and were

overfitted to this data.

2.3 Localization and Mapping for Autonomous Vehicles

The last section of the related works (Chapter 2) elaborates on the state of the art in localization and mapping

applied to the domain of AD. Different kinds of HD maps and methods for their generation are presented.

Maps are crucial for autonomous driving, as they provide information about the vehicle environment and thus

improve situational awareness and facilitate localization [184, 185]. In contrast to sensors, maps have an

unlimited range and provide information independently of external influences such as weather, daytime, etc.

In addition to maps used for localization and generated via SLAM (Section 2.2), HD maps contain semantic

information about the road and environment, such as lane markings, traffic lights, traffic signs, speed limits,

etc. [186]. A general overview of mapping for AVs can be found in corresponding survey papers [186, 187].

The 3DHD dataset [52] explicitly focuses on HD map usage in AD.
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2.3.1 Map Formats

In general, maps for AVs can be classified into SD maps and HD maps. SD maps provide basic road geometry

and topology sufficient for, e.g., navigation systems in human-driven vehicles. HD maps offer a more detailed

layer of information, including lane markings, traffic signals, and curb details, which are essential for precise

localization and decision-making of AVs. The granularity of HD maps allows higher accuracy and reliability

in complex driving scenarios where autonomous vehicles must make nuanced navigation decisions. The

following will focus on HD maps, which are used in current AD software stacks.

HD Map Structure

There are several different definitions of HD maps. The Automotive Edge Computing Consortium (AECC)

defines HD maps as the topology of a road network with high precision and resolution. To allow the map to

be used for precise tasks, such as localization, the term “high precision” refers to an accuracy of 10 cm to

20 cm [185, 188, 189].

To break HD maps down into their layers, there are mainly two approaches: The AECC differentiates the

layers by the time interval in which they change [190]. This model is visualized in Figure 2.6. The four layers

of this model are the following.

• The Permanent Static Layer contains information that changes within days or longer, e.g.,

the road structure or traffic signals.

• The Transient Static Layer includes elements with a lifespan of hours, such as road work,

accidents, etc.

• The Transient Dynamic Layer represents intervals of less than a few minutes, e.g., debris or

local weather events.

• The Highly Dynamic Layer describes objects that change within seconds or less, such as

traffic participants or pedestrians.

Figure 2.6: HD map layers as defined by the AECC [191].
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In contrast to this time-based approach, the commercial mapping company HERE defines the layers of an

HD map based on the level of detail and purpose [192]. Compared to the model from the AECC, no dynamic

layers exist. In this model, the HD map is divided into three layers:

• The Road Model is the foundation and is used for navigation. It represents the road network,

including its elevation and other characteristics, through a series of ordered polylines.

• The Lane Model carries information on lane level, such as lane types, markings, or speed

limits. It assists in the decision-making of the vehicle.

• The Localization Model includes roadside elements such as signs, barriers, or poles, which

can also support localization within the map.

Requirements

Independently of the exact structure of the map, every map has to fulfill specific requirements for efficient

use in AD. Poggenhans et al. [193] described the prerequisites for HD maps for AD. The authors derived

requirements based on the downstream task that relies on the map data:

• Routing: The road network with lane-level precision, including possibilities of lane changes

and restrictions for certain traffic participants.

• Behavior Planning: Detailed traffic regulations and information on the right-of-way.

• Behavior Prediction: Traffic regulations to predict appropriate and regulation-following

behavior of surrounding vehicles.

• Path Planning: The exact geometry of each lane is described by the left and right boundary.

Localization and actuator uncertainties can be taken into account. Also, areas for special

maneuvers such as parking or emergency stops.

• Localization: Observable elements to enable reliable localization within the map. The map

should contain as many features as possible to account for vehicles with different sensor

configurations.

• All of the above: Ensure that the map is up-to-date. Only by this can the map be used as a

reliable input for behavior, trajectory planning, and perception.

To fulfill all of these requirements (completeness, accuracy, and up-to-dateness), a modular and scalable

framework is required that allows easy expandability and modifiability of the map [193].

Frameworks

OpenStreetMap (OSM) is a collaborative effort to create a free and editable SD map of the world. It allows

users to view, edit, and use geographical data from any location on Earth. A community of mappers who

contribute and maintain data on roads, trails, points of interest, railway stations, and more worldwide has

created and constantly updated OSM. It offers a free and open-source alternative to proprietary mapping

services such as Google Maps. OSM provides comprehensive and up-to-date geographic information

available to everyone. However, the quality of the map depends on the mapping community [194].

For the representation of HD maps, the two common open-source frameworks are OpenDRIVE and Lanelet2.

These offer the free download of vector road maps.

OpenDRIVE:

In 2005, the Association for Standardization of Automation and Measuring Systems (ASAM) introduced the
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OpenDRIVE standard format, which has been continuously updated since then [195]. It uses a data format

based on Extensible Markup Language (XML) with a .xodr file extension to store the map data. The map

format is divided into three layers: The base layer is the reference line that forms the core element of every

road. Each reference line is determined by points and is described by a geometric shape such as a line, an

arc, or a polynomial, which determines the route and direction of the road. All other objects and features refer

to the reference lines. The second layer represents the lanes of the road. Each road has at least one lane,

while the maximum number of lanes is unlimited. A center lane with a width of 0 for each road defines the

driving direction. The last layer describes features such as signals along the road that correspond to traffic

rules and are also associated with a reference line. [186, 195]

Lanelet2:

The second framework for HD maps is the Lanelet2 format, which also uses an XML data format [193]. The

file extension is .osm, also used by OSM. Similarly to OpenDRIVE, the structure of Lanelet2 consists of

three layers. The physical layer defines real observable objects represented by points and linestrings. The

second layer is called the relational layer and connects the elements of the physical layer to lanelets, areas,

and traffic rules. Lastly, the topological layer provides additional context information and relationships for the

relational layer. In summary, the Lanelet2 format contains five basic elements, called primitives, which are

briefly explained below.

• Points are the core element of the map and are defined by their 3D position. They are the

only map elements containing positional data.

• Linestrings are ordered collections of points with linear interpolation between. These se-

quences are used to represent the shapes of map elements.

• Lanelets are sections of the map for directed motion, such as lanes, pedestrian crossings, or

rails. Traffic regulations and topological connections with other elements within a lanelet are

not altered. Lanelets are composed of a limiting linestring on each side and have regulatory

elements to represent traffic rules.

• Areas are sections intended for undirected movements, such as parking lots or green spaces.

One or more linestrings define them. They can include regulatory elements.

• Regulatory elements describe traffic regulations such as speed limits or right-of-way. Regula-

tory elements can have dynamic characteristics, indicating that a rule depends on a condition.

For instance, speed limits can vary depending on the time of day.

Both map formats, OpenDRIVE and Lanelet2, contain similar information and thus are convertible to each

other. They have individual pros and cons. A detailed comparison of the standards and their application can

be found in [196].

2.3.2 Challenges

This chapter outlines the key challenges based on the available HD map formats and the requirements for

HD maps.

Map Accuracy:

One key challenge is to build maps with sufficient accuracy. To be usable for all downstream tasks (localization,

path planning, motion prediction, etc.), the required precision is in a range of 10 cm to 20 cm [189, 197, 198].

This requires highly accurate mapping algorithms for the map used for localization (point cloud, feature, etc.)

but also for the semantic map (OpenDRIVE, Lanelet2). Also, the alignment of these map layers needs to

be on cm-level, and they have to be accurately georeferenced for online GNSS-localization. To allow such

precision, the spatial resolution of the map also needs to be sufficient [199].
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Real-Time Updating and Dynamic Environments:

There are different reasons why real-world traffic environments change from time to time. Some of them

can be detectable online by AVs (such as construction sites), and others are hard to detect (inconspicuous

changes, mapping errors). Due to these constant changes, the HD maps need to be continuously updated to

be used as reliable information sources. This is not feasible if carried out with specially equipped dedicated

mapping vehicles. Therefore, algorithms that can leverage the information from all AVs to continuously update

HD maps are needed. [200]

Scalability and Coverage:

A related challenge is scalability and map coverage. To completely map large areas and increase coverage,

there is a need for more efficient mapping algorithms and the fusion of several data sources. Again, this

cannot be done only by using dedicated mapping vehicles. A common idea to tackle this challenge is to use

crowd-sourced data, such as OSM, or human-driven vehicle data [201–203]. Other approaches use different

data sources, for example, areal imagery [204].

Costs and Effort:

Significant parts of the above-mentioned challenges can be summarized as cost and effort. To implement

autonomous driving on a large scale, it is necessary to have commercially viable business models that can be

implemented and realized. Thus, the cost and effort to generate, distribute, and constantly update HD maps

must be significantly reduced [205]. To minimize costs and increase the scalability of mapping approaches, it

is vital to have as few manual steps as possible. This strengthens the need for well-generalizing algorithms

that work well in different environments and ODDs [189].

Security, Privacy and Legal Considerations:

Implementing HD maps in autonomous driving raises several security, privacy, and legal issues. Privacy

is a significant concern, as these maps can contain confidential information about private properties or

individual movements. Legally, the ownership and use of this data can be controversial, raising questions

about responsibility for any inaccuracies or misuse. Establishing a legal framework that protects stakeholders

while encouraging innovation is difficult, as legislation often lags behind technological advances. It is

essential to address these issues to gain public trust and promote the widespread use of autonomous driving

technology. [205, 206]

Standardization and Interoperability:

As all organizations working on AD face the issues covered here, standardization can greatly support solving

them. The importance of standards cannot be overstated, as they provide individuals and organizations with a

shared understanding, making it easier to communicate, collaborate, and adhere to laws and regulations [196].

Currently, all manufacturers use their proprietary mapping formats and processes, and research mainly uses

OpenDRIVE and Lanelet2 [205, 207]. There is no common database for HD maps and already mapped

areas, leading to duplicate work and insufficient inter-operable data. This also leads to higher expenses for

each organization or company and slower development progress. The development of a unified national

or international standard could be a catalyst for a shared mapping ecosystem. This could be achieved

through collaboration between government agencies, research institutes and universities, private entities,

and automobile manufacturers, resulting in a single, reliable, and impartial map data source. This would not

only improve the accuracy and compatibility of data sources but also bring economic advantages by making

mapping a universally available service. [205, 208]
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2.3.3 HD Mapping Approaches

This section reviews existing approaches to solve the challenges in HD map creation. Therefore, approaches

to detect roads based on different data are introduced, and based on that, approaches to create, update, and

use HD maps are presented.

Road Detection

To create HD maps, the first necessary step is to detect roads in sensor data. This can be done with LiDAR,

camera, or sensor fusion approaches. Also, external data, such as aerial images from satellites or planes,

can be used to detect roads.

LiDAR-Based Methods:

A method to extract road boundaries from point cloud data is curb detection. However, not all roads are

bounded by curbs on both sides. There are three approaches to searching 3D point clouds for curbs:

• Based on saliency maps [209, 210]

• Based on voxels: detection of gradients within voxels [211–213]

• Search individual LiDAR scanlines for discontinuities [214–217]

Other approaches use statistical properties of the road surfaces for statistical road detection. Therefore,

distinctive features with respect to intensity, point density, and environmental characteristics are used to

differentiate between road and non-road points [218–221].

Road markings can provide good information for HD mapping when available. Therefore, some approaches

for road marking extraction from LiDAR data have been published already. Usually, these use the point

cloud as a 2D image from the BEV. As road markings are highly reflective, intensity thresholding can be used

to extract only these points [222–226]. In the next step, detected regions of high reflectivity are clustered into

single road marking elements, such as lines or arrows. Some algorithms apply an additional heuristic filtering

step [222, 223]. Deep learning-based approaches have also shown convincing results for detecting road

marking in lidar point clouds [227].

Another approach to extracting road points from LiDAR scans is to use 3D semantic segmentation ap-

proaches. Famous semantic segmentation algorithms for 3D point clouds are PointNet [228], PointNet++ [229],

RangeNet++ [230], PointSeg [231] and the works by Wang et al. [232], and Rochan et al. [233]. However,

these approaches depend highly on the training data and hardly generalize to other road types, sensors, etc.

Camera-Based Methods:

Several approaches have also been published for road detection in camera images. A basic and limited

approach based on conventional CV uses Hough-transformation [234] to detect bright road markings [235,

236].

Most of the recently published approaches use deep learning-based methods for road detection in 2D camera

images. This category comprises row-wise and anchor-based methods. The row-wise methods first partition

the image into a grid. A neural network is trained to predict the probability that each grid cell contains at

least a portion of a lane [237–239]. Instead of using 2D boxes, anchor-based detection methods use a line

defined by two parameters: the origin point at the lower edge of the image and an angle θ that dictates

the slope of the line. The anchor can be placed vertically (θ = 90°) or in a perspective way, with the latter

showing better results in the available publications. Algorithms that implement the anchor-based approach

are PointLaneNet [240], 3D-LaneNet [241], CurveLane-NAS [242], and [243].
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For road detection in 2D camera images, semantic segmentation algorithms trained with AD datasets can

also be used. Currently, the best-performing approaches are based on ViT [244], such as SegFormer [245].

For further information and details, the reader is referred to existing survey papers on semantic segmentation

in general [246] and especially with ViTs [247].

Sensor Fusion-Based Methods:

To overcome the limitations of the described approaches, sensor fusion can help. These approaches have

higher requirements for the data and need synchronized and precisely calibrated LiDAR and camera data. To

take into account the entire context of the environment, some methods implemented Conditional Random

Fields (CRFs) to fuse LiDAR and camera road detection results [248, 249]. Other approaches are based on

Fully Connected Network (FCN) for information fusion of LiDAR and camera [250, 251].

Aerial Imagery-Based Methods:

In addition to onboard sensor data, road markings or direct road surfaces can also be detected in aerial

imagery. The best working approaches use supervised neural networks trained to detect road markings

or roads. Different algorithms are based on feature pyramids [252, 253], self-attentive networks [254],

or Convolutional Neural Networks (CNNs) [255, 256]. Yang et al. [257] presented a non-deep learning

approach. It is semi-automated and combines manually chosen road points with a region-growing algorithm

in combination with morphological and vector operations. The approach promises to generalize better to

different applications, as it is less data-sensitive. But, human interaction is needed for this algorithm.

The presented approaches in the field of aerial imagery-based road detection have shown promising results.

However, there are some limitations. The algorithms evaluated are based on proprietary datasets for training

the extraction of lane markings or roads. To make these more scalable and applicable, it is preferable to

use open-source map data instead of limiting them to small, nonpublic datasets. Deep learning algorithms

especially tend to show strong domain specificity, demonstrating performance dependent on the context in

which they were trained, such as specific geographical regions like the United States or Germany.

HD-Map Creation

The road information extracted with the presented algorithms must be further processed to receive not only

roads but comprehensive HD maps. The following section will differentiate between “Offline Static Mapping”

and “Online Local Mapping”. The first presents algorithms to create semantic HD maps as in Subsection 2.3.1,

and the latter is a novel approach without offline generated HD maps.

Offline Static Mapping:

Gwon et al. [258] presented a pipeline to generate semantic lane-level maps from raw LiDAR scans and

GNSS data. Their approach extracts road markings based on the intensity values of accumulated point

clouds. A new road representation is introduced, modeling roads as sets of piecewise polynomial curves. A

similar LiDAR-based approach was published by Yu et al. [259].

Other approaches use aerial images to extract accurate vectorized maps. [260] introduced a mapping

pipeline based on aerial photos. First, lane boundaries in non-section areas are detected, and later, they are

heuristically connected. An overview of how Unmanned Aerial Vehicles (UAVs) can support HD mapping and

make it more scalable was published in [204].

Another common approach is to use crowd-sourced vehicle data, mainly GNSS. Although each individual

data point is noisy and limited in accuracy and information content, with enough data, precise HD mapping

results can be obtained [202]. The company Lyft uses OSM data for initial estimation of HD maps and

improves it with real-time vehicle data [6]. This allows for continuous map updates and considering changes,

such as construction sites.
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Only one publication is available that includes the entire mapping pipeline [188]. The authors presented the

whole approach, from raw sensor data to HD maps, including point cloud and vector maps. The authors

stated that many manual steps were required to obtain satisfactory results, especially for the vector map.

The code used is not published, and thus, the performance of this approach cannot be tested on other data

sources and environments. This underlines the need for research in the field of applicable and scalable HD

mapping pipelines.

Online Local Mapping:

In recent years, new techniques for the online creation of local HD maps have been developed that combine

LiDAR and camera-based approaches presented in Subsubsection 2.3.3. Known as end-to-end methods,

these strategies are based solely on neural networks to extract features and create maps depicting the ego

vehicle’s surroundings. However, in contrast to the offline methods described above, these methods do not

generate static maps but live maps of the direct environment, supposing the ego as the center of the local

map. This means that not only static but also dynamic objects, such as other vehicles, can be directly added

to the map. Most of these approaches use BEV to represent the data and the output maps. Despite the

increasing popularity of BEV, there are challenges in maintaining the unique strengths of each modality

during data transformation.

Several approaches, including HDMapNet [261], VectorMapNet [262], MapTR [263] and MapTRv2 [264],

have been developed to automatically and online generate HD maps. These methods fuse camera and LiDAR

data to map environmental features such as lanes and road boundaries. This procedure includes encoding

the features of images and point clouds and translating them into a unified BEV representation. Finally, the

features are decoded into vectorized maps. HDMapNet requires an extra step to merge the outputs, while

VectorMapNet and its refinements, MapTR, and MapTRv2, directly create polylines. MapTR and MapTRv2

enhanced scalability and modeling of complex map features. SuperFusion [265] recently achieved convincing

results on the nuScenes dataset [45]. The authors focused on an increased range for stable local mapping,

as this is the requirement of the subsequent path-planning algorithm. However, the approach only works

when both LiDAR and camera data are available. InstaGraM [266] is a method based solely on camera

images, not using LiDAR. The polylines of the map are modeled as graphs. This allows efficient real-time

computation without heuristic post-processing. Ding et al. [267] recently published PivotNet that outperformed

all other approaches only using camera images. It is based on transformers for BEV feature encoding and a

line-aware point decoder. Opposing the trend of focusing on vision-based approaches, LiDAR2Map [268]

uses camera images only during the training process to distill camera information. Online, during inference,

only data from LiDAR are used for map prediction. This method could outperform other LiDAR- and even

camera-based approaches. In [269] and [270], the authors combine the semantic segmentation of LiDAR

and camera to obtain a semantic map of the local environment. BEVFusion [271] (not to be confused with the

other BEVFusion [272]) goes one step further and combines local semantic mapping with 3D object detection.

Another similar approach to creating semantic maps that include dynamic objects is Bi-Mapper [273].

Other approaches expanded the idea of a more integrated perception system. As lane detection or online HD

mapping and object detection are not uncorrelated tasks, they can benefit from each other. This leads to the

novel task of BEV semantic segmentation, segmenting the local environment in roads, sidewalks, vehicles,

etc. Path-planning algorithms can directly use this information to plan appropriate behavior. Simple-BEV [274]

fuses cameras, RaDARs, and LiDARs for semantic BEV map prediction. This approach can produce accurate

results even with a simple 2D-to-BEV projection. SkyEye [275] is a self-supervised approach to predict local

semantic maps around the ego vehicle, including static and dynamic parts. To overcome limitations due

to the high data requirements of the previously presented approaches, two measures are taken: First, the

approach is self-supervised and only needs 2D annotated images and no BEV ground truth. Second, only

the front view camera is used to reduce the data needed for further training.
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A rapidly evolving field is 3D semantic prediction to not lose the three-dimensional context of the data.

Therefore, most approaches voxelize the surrounding and predict a semantic class for each voxel [276–281].

The following sections will focus on static HD maps for autonomous vehicles and show their application and

usage.

HD-Map Updates

As mentioned in Subsection 2.3.2, a significant challenge is to keep created HD maps up-to-date. Otherwise,

they cannot provide reliable information for AVs.

Many published approaches in research and also from the commercial provider Lyft [6] use crowd-sourced

lightweight vehicle information such as GNSS tracks. Pannen et al. [200, 282] introduced a particle filter-

based approach to detect changes in the map. This happens during particle-filter-based localization. By the

distribution of particles and probabilities, an estimate of how well the map represents the actual environment

can be made. With many available position and trajectory data, even with high noise, changes in road

topology can be detected [203]. Lyft uses crowd-sourced vehicle data for continuous map refinement [6].

Different methods of how to use these data for map updates have been investigated. For example, using

blockchain technology for crowd-sourced map updates [283]. To avoid data protection issues when using

vehicle position data, federated HD map updating can be implemented for protected privacy [206].

Kim et al. [284] introduced a method to update the point cloud layer of HD maps. Therefore, when a change is

detected in the LiDAR localization pipeline, the part is newly mapped using LiDAR SLAM, and the point cloud

map part is sent to the cloud to merge with the whole map. A similar approach is Simultaneous Localization

And Map Change Update (SLAMCU) [285]. Berrio et al. [286] developed and validated a long-term map

maintenance pipeline. They introduce new layers to the map for newly mapped and added features. These

layers are then overlayed with the original map. The authors also corrected the original maps based on

detections and viewpoints of the mapped features.

For further details on different map update approaches, survey papers are available [287, 288].

HD-Map Usage

There are two prominent online use cases for HD maps: As support for different perception tasks, such as

localization or object detection, and as decision criteria for behavior planning. These will be elaborated on in

the following. Figure 2.7 depicts all components of an AD software stack (as presented in Section 1.2) and

how the HD map is used throughout the stack.

Support for Perception:

The most common use case is to use the point cloud layer of the HD map for LiDAR localization. Therefore,

the current scans of the onboard LiDAR sensor are registered against the offline built map, for example,

using an ICP-based approach [289] to determine the ego position. LOL [290] adds some refinements for a

more robust and precise localization with pre-built maps. Other approaches use detected features or objects

to estimate the current transformation between the ego and the map frame [291].

Also, the semantic vector map can be used for localization. When done robustly and reliably, the heavy

and memory-intensive localization layer can be omitted [292]. Therefore, semantic features are detected in

the current sensor frame (usually a camera or LiDAR) and matched with semantic features in the HD map.

In [292], an approach for localization with LiDAR was presented on semantic maps without a point cloud

layer. Specific features can be detected in 2D camera images and compared to the features of the HD map

to find correspondences [293]. [294] detects lane markings in LiDAR point clouds and traffic signs in the
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Figure 2.7: Usage of HD maps across the AD software stack. Adapted from [287].

corresponding camera images. These detections are compared with a semantic map and fused with GNSS

and IMU in a probabilistic algorithm for precise localization.

Neural Map Prior (NMP) [295] combines online local mapping with updating offline created HD maps. The

main idea is to progressively combine global map prior updates and local map inference for each frame.

Therefore, an attention-based deep learning approach was chosen, and the map was used in a sparse neural

map tile representation for efficiency reasons.

HD maps can also be used for enhanced object detection. On the one hand side, detecting static objects, such

as traffic signs, road markings, etc., can be improved. This also improves the estimation of the drivable space

without any (static or dynamic) objects [296]. On the other hand, direct detection of dynamic objects, such as

other vehicles, can also benefit from prior information from HD maps, such as the road layout [297–299].

Criteria for Decision Making:

Finally, HD maps are also widely used for non-perception tasks in autonomous driving, as depicted in

Figure 2.7. Scene understanding is the interface between perception and the rest of the software stack. The

objective is to comprehensively understand the environment and the relations between everything detected

in the perception modules [300]. Therefore, HD maps can be of great use, as they provide static information

that can be used to improve the understanding of the surroundings, such as pedestrian crossings, traffic

signs, etc. [301].

As the environment of AVs is highly dynamic, it is not enough to only detect the surrounding objects, but

they also have to be predicted. Motion prediction refers to the task of estimating the future behavior of road

participants given their current states and a model of their static environment [287]. Thus, it is beneficial and

improves the performance of motion prediction algorithms to use an HD map as an additional input [302–304].

For the usual path planning approaches, HD maps are used to know the static driving space and additional

information relevant to the task, for example, speed limits and regulations. The map’s geometry is used to

define constraints which, combined with the dynamic objects detected and predicted, create the problem to

be solved by the path planner [305, 306].

In summary, one can see the importance of HD maps for the current state of the art in AD. Therefore, much

research has been conducted recently on generating, updating, and using them efficiently. However, many

remaining open challenges will be addressed in the following part of this thesis.
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Extending the findings of the related work (Chapter 2), this chapter draws conclusions that lead to open

challenges. Based on this, the main Research Question (RQ) of this thesis is defined, and the corresponding

Sub-Questions (SQs) are derived. These are addressed in the remainder of this work.

3.1 Conclusions from Related Work

First, the state of the art is briefly concluded, and some critical remarks are drawn. In the next section, RQs

are derived.

Conclusion 1: SLAM and map-based localization are important parts of AD software stacks.

SLAM is a key component of robotic systems in general and AD in particular. It is needed to generate

maps that can be used for map-based localization. Most modern software stacks for AD are based on map

data usage. Thus, research in this field has been conducted for many years. However, all approaches still

have limitations in different fields, stemming from input sensor data, hardware limitations, environmental

influences (such as weather), etc. Thus, SLAM applications are usually built for specific applications, and

their generalization is insufficient. In the context of this work, two specific applications for the following vehicle

platforms had to be solved:

• AV-21, the autonomous racecar for the IAC (Subsection 4.1.1)

• EDGAR, TUM’s autonomous level 5 research vehicle (Section 5.1)

Critical remark: No existing approaches were suitable for our specific applications.

None of the methods from related work could be applied for the two applications [11, 12, 18]. This is because

the vehicle platforms and the environments differ significantly from the data collection platforms of standard

datasets for AD. Usually, published algorithms are validated and tested on these. The sensor setups of our

vehicles include multiple LiDARs, in the case of the AV-21, without overlapping FOV, and lacking highly

precise time synchronization. Additionally, the AV-21 drives at low-feature race track environments and high

speeds. Section 2.2 showed that sensor fusion can efficiently overcome the limitations of monomodal SLAM

approaches. There is a need for localization algorithms that work with different multimodal sensor setups and

can handle imperfections in the data.

In autonomous racing, many challenges stem from the high velocities. These lead to larger baselines

between the individual frames, making it hard to precisely and robustly estimate the transformation between

consecutive data frames. Moreover, high velocities aggravate the negative effects of erroneous sensor

calibration and time synchronization. Especially on oval race tracks and long straights, algorithms have to

deal with sparse features that can be detected and matched. The environments tend to be repetitive which

can lead to a loss of tracking. Another challenge comes from the limited computational resources and the

real-time requirements. As the entire autonomous racing software stack runs on one single computer in the

vehicle, the localization approach needs to be resource-saving but still be able to use all sensor information
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in real-time. Currently, there are no algorithms that can solve all of these challenges and can reliably solve

the localization for our applications.

Conclusion 2: AD software stacks are highly dependent on HD maps.

As Section 2.3 revealed, most of the software modules in AD rely on HD maps. Therefore, most research

papers assume error-free and up-to-date maps. The creation of these maps is no big part of the current

research, which focuses on local semantic mapping to detect the direct environment of the ego. There is

still no entire HD mapping pipeline available. Research papers using HD maps focus on the downstream

application, not the map creation process. In the current state, only commercial providers such as Nvidia [8],

Mobileye [7], or Lyft [6] have the tools to create HD maps with small manual processing.

Critical remark: There is a lack of pipelines to create and handle HD maps in the research community.

In the real world, traffic environments can change quickly; mapping errors can occur, and HD maps may

not cover all the roads in the mapped area. It is not feasible to map entire cities with dedicated mapping

systems. Therefore, the creation and updating of HD maps must be based on highly available data, e.g., from

normal vehicles on the streets or, in the future, from automated vehicles. Although there has been research

in this field, there is still no applicable and generalizing pipeline for the entire life cycle of HD maps. The main

challenges are scalability, robustness, topicality of maps, generalization, and general applicability. Research

should focus not only on long-term solutions for AD but also on HD maps that represent the current state of

the art. Novel mapping pipelines are needed to quickly generate new HD maps. These maps can then be

subsequently replaced or supplemented by online mapping approaches.

In the concrete application of the EDGAR research vehicle, a mapping pipeline is needed that allows quick

mapping of new areas with limited human post-processing. It needs to use the sensor data from the research

vehicle and publicly available data, such as OSM. Only if these requirements are fulfilled, the whole research

team can profit from the outcomes. This mapping pipeline and the ability to quickly create high-quality maps of

different regions allow researchers to extend their specific approaches to new applications, not only focusing

on standard perception datasets with included HD maps. There is a need for open-source mapping tools to

close the gap between the aforementioned commercial providers and the research community. Currently, no

open-source mapping pipeline exists that allows to create maps with any research vehicle and use them for

research purposes. This thesis tries to reduce this gap by providing a mapping pipeline that is capable of

creating maps that follow open standards to be easily used in several research applications.

3.2 Research Questions and Methodology

Based on the conclusions drawn and the critical remarks derived, RQs are defined. The main RQ to be

answered brings the critical remarks and open challenges from related work together. The superordinated

goal of the following chapters is to answer it as comprehensively as possible.

RQ: How to formulate an open generic framework for robust and applicable

HD mapping and localization for AVs?

The RQ is derived from a critical analysis of the current state of the art. It revealed a gap in the development

of a universally applicable and efficient system for localization in complex environments and applied HD

mapping. The current landscape of AV research shows significant advances in both localization and mapping.

However, these systems often face applicability, robustness, and effectiveness challenges, especially in

diverse and dynamically changing environments. Some solutions excel in well-structured urban areas, but

their performance may degrade in more challenging settings, such as rural or unstructured environments.
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Approaches are specifically tailored for a single application and there are no adaptable frameworks available.

This thesis aims to design and evaluate a generic pipeline that addresses these shortcomings. This involves

integrating advanced sensor fusion and data processing techniques to achieve high accuracy and robustness

in localization and to create up-to-date and detailed HD maps. The term generic implies that the approach

needs to be designed in a way to work with different vehicle and sensor platforms. To work across different

ODDs, such as racing and urban driving, it needs to be robust against different environmental conditions.

As the approach will be part of different research platforms, it has to be easily applicable so that it can be

transferred to novel applications and extended with new approaches. To answer this RQ, it is broken down

into two subquestions.

SQ1: How can sensor fusion be used for localization and mapping algorithms in difficult real-world

applications?

First, the focus is put on the location of the race car AV-21 built for the IAC. Since existing methods

could not solve this task, new approaches are introduced in Section 4.1. Sensor fusion is found to be an

efficient technique for overcoming sensor limitations and handling this challenging application. The developed

algorithms are then evolved, tested, and validated for public traffic scenarios to manage the transfer of

approaches from closed race tracks to public roads.

In Section 5.3, a localization algorithm is presented for the multi-LiDAR setup of the research vehicle EDGAR.

It solves the previously mentioned challenges of the sensor setup, faulty calibration, and missing precise time

synchronization. This algorithm is also the basis for the HD mapping pipeline.

SQ2: How to design an open HD mapping pipeline for AVs?

The just mentioned multi-LiDAR-based localization approach for EDGAR builds the foundation for a point

cloud mapping algorithm. This allows the building of precise point cloud maps that can be used as a

localization layer of an HD map. On top of this, different methodologies for vector map building are presented.

Vector maps include semantic information, such as lane topologies, traffic rules, etc., and are used for motion

planning and prediction. The algorithms aim to be as automated as possible to meet the goal of an applicable

mapping approach with limited manual processing. For a quick map creation and an easy update process,

crowd-sourced data (mainly OSM) are evaluated and integrated. Finally, a tool to merge the data and create

a consistent HD map is presented to allow applicability within the software stack. This thesis presents an

entire HD mapping pipeline that can be applied to different vehicle platforms. To build a solid base for future

research across different applications and projects, the pipeline is designed openly, meaning the code, used

algorithms, and data are open source.

To bring the two subquestions together, in the end, an approach is presented to integrate localization modules

for autonomous racecars and the HD mapping pipeline into a common framework.
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in Diverse Environments

Parts of this chapter have been published in [11, 12, 14, 16, 307].

This chapter addresses the first research subquestion:

SQ1: How can sensor fusion be used for localization and mapping algorithms in difficult real-world applica-

tions?

Therefore, first, the localization approach developed for the IAC is presented. Building upon the results, the

following approaches will gradually try to transfer the findings and methods toward public roads.

4.1 High-Speed Localization

Localization of racecars at high speeds on race tracks is a crucial but challenging task in autonomous

racing. The main challenges arise from two points: high velocities and the environment. High speeds lead to

increased noise in sensor data, such as distortions through motion blur in LiDARs and cameras. Since sensor

data are recorded at fixed frame rates, the distance driven between the frames is proportional to the velocity.

Compared to urban regions, for example, the environment on race tracks is usually relatively monotonous

and repetitive. This particularly applies to oval race tracks, such as the Indianapolis Motor Speedway (IMS),

where the initial race of the IAC took place. Moreover, the requirements for the localization algorithm are high

as unprecise or unstable ego pose estimates can lead to a total loss of the vehicle.

4.1.1 Vehicle - AV-21

This chapter aims to give the necessary background to understand the requirements and general conditions.

First, the IAC is briefly described, and then the vehicle platform, the AV-21, and its sensor setup and compute

platform are presented.

Indy Autonomous Challenge

Each participating team in the IAC received an identical copy of the specially developed autonomous race car,

the Dallara AV-21. Thus, the hardware and sensor setup was predefined and can be seen as a framework

condition for the algorithmic development. Due to the tight schedule of the challenge, algorithms had to be

developed before the exact hardware specification was frozen and real-world data were available. Thus,

the simulation of vehicles, sensor data, and the environment was critical in successfully participating in

the final competition. The IAC took place on October 23, 2021, in Indianapolis, and the follow-up event,

the Autonomous Challenge at Consumer Electronics Show Las Vegas (AC@CES), was held during the

Consumer Electronics Show (CES) in Las Vegas on January 07, 2022. For more details on these events,

rules, the whole TUM software stack, and the results, the reader is referred to the related publications to
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which this thesis contributed [13, 307]. A more detailed consideration of the perception system, limitations,

and lessons learned have been published in [12].

The perception data from different teams was standardized and published as the RACECAR dataset [55].

The work in the context of this thesis contributed to this publication.

Vehicle Platform: AV-21

The Dallara AV-21 uses a Dallara IL-15 chassis, which is known from the Indy Lights Series [308]. Figure 4.1

shows a photo of TUM’s AV-21 avoiding static objects on the IMS. The driver seat, steering wheel, and pedals

were removed to create space for the computer, sensors, and other electronic components (battery, low-level

controller, etc.).

Figure 4.1: TUM’s AV-21 during the single-vehicle competition on October 23, 2021.

Table 4.1 gives an overview of the components installed in the autonomous system of the AV-21.

Table 4.1: The perception components of the Dallara AV-21. The FOV is given horizontally and vertically (h x v) [12].

Device Manufacturer Model Frame rate FOV (h x v)

2x GNSS Receiver NovAtel PwrPak7D Receiver 20 Hz GNSS, 100 Hz IMU -

3x LiDAR Luminar H3 1 Hz - 30 Hz 120°x 0°- 30°

2x Front Camera Allied Vision Mako G319C, 12 mm FL up to 37.6 Hz at full res. 34°x 24°

4x Side Camera Allied Vision Mako G319C, 3.5 mm FL up to 37.6 Hz at full res. 102.8°x 77°

2x Side RaDAR Aptiv MRR 10 Hz 90°x 5°

1x Front RaDAR Aptiv ESR 2.5 10 Hz 90°x 4.4°(short range),
20°x 4.4°(long range)

Computing Platform ADLink AVA-3501 - -

Network Switch Cisco IE500 - -

The AV-21 is equipped with various sensors to cover different software approaches and provide sufficient

data. Two NovAtel PwrPak7D GNSS receivers with RTK-correction, dual antenna setup, and an IMU each

are installed. Six cameras around the vehicle provide a total 360°view of the surroundings. The cameras

that are directed to the sides and rear of the vehicle have a 102.8°horizontal and 77°vertical FOV. An

Edmund Optics lens with a focal length of 3.5 mm is attached to them. For higher detection ranges, the front

cameras are equipped with a longer focal length (12 mm) resulting in a FOV of 34°horizontally and 24°
vertically. The two cameras are placed parallel as a stereo setup with a baseline of 24 cm. However, it should

be mentioned that the cameras are not calibrated, and the mounting is not rigid enough for conventional

stereo usage. Each of the three LiDARs has a horizontal FOV of 120°resulting in 360°total coverage. The
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vertical coverage can be dynamically configured between 0°and 30°. The AV-21 is also equipped with a

total of three RaDARs. The one directed to the front alternates between short- and long-range; those directed

to each side are mid-range RaDARs. A graphical overview of the entire sensor setup in BEV can be seen in

Figure 4.2. [12]

LiDAR Camera RaDAR

Figure 4.2: Sensor setup and FOV of the IAC racecar AV-21.

4.1.2 LiDAR-based Localization

As all of the approaches previously published for the localization of autonomous race cars used LiDAR

sensors, this was the first approach chosen for the IAC [309–311]. However, it has turned out that existing

approaches did not work for simulated and later real-world data from oval race tracks, such as the IMS. The

following will introduce the LiDAR pipeline and investigate the reasons for the failure of the LiDAR localization

approaches.

LiDAR Fusion and Prefiltering

First, the LiDAR pipeline from the single raw point clouds to the published topics in Robot Operating System

2 (ROS 2)1 will be presented. The steps carried out by the LiDAR driver and the preprocessing pipeline are

visualized in Figure 4.3. After receiving raw data from one of the three sensors, the driver waits a definable

amount of time (e.g., 100 ms at 10 Hz sensor frequency) and, if applicable, collects point clouds from the

other sensors. After this time, all received points are transformed into a common frame, fused into one point

cloud, and published. Subsequent algorithms can use either this full point cloud or the processed point cloud.

The preprocessing consists of three steps:

1. Geometric filtering that deletes points in certain parameterizable regions.

2. Voxel filtering to reduce the number of points based on voxelization.

3. Ground filtering to further reduce the point cloud size by removing street surface points.

In particular, the fusion methodology introduces several problems. As in the racecar, no time synchronization

was running; the timestamps from the sensor clocks could not be used because their offset was unknown.

Therefore, the ROS 2 timestamps from the computer clock had to be used. These denote the time at which the

computer receives the raw data from the sensor via the network switch and Ethernet. That leads to the time

1https://ros.org/
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Figure 4.3: Fusion and preprocessing pipeline of the three LiDARs.

interval from the actual data capture to the transmission and finally to the driver being neglected. Additionally,

the driver waits up to 100 ms for the sensors. This has two disadvantages. First, it leads to out-of-date

data, which has to be compensated for. At 300 km h−1 (83.3 m s−1), the car travels up to 8.33 m during

100 ms. Second, it leads to a significant time difference between the points of the different sensors, which are

published as one single point cloud. Therefore, advanced compensation algorithms are needed, as different

time compensations are required for different sections of the fused point cloud. These inconsistencies within

the point clouds lead to difficulties in scan matching [55] which finally prevented a robust LiDAR localization

on the IMS.

Point Cloud Registration

The performance of different algorithms was investigated in detail to further investigate the problems of

point cloud registration. Therefore, the most famous algorithms from the pcl [312], omp [313], and fast [314]

libraries were evaluated: ICP (pcl), ICP–nl (pcl), ICP–normals (pcl), GICP (pcl), GICP (fast), VGICP (fast),

NDT (pcl), NDT (omp). The evaluation and comparison pipeline process is presented in Algorithm 1.

Algorithm 1 Scan Registration Parameter Optimization
Require: Set Registration Method

1: for point cloud in samples do

2: if cloud == target then

3: Sample target prefiltering parameters
4: RUN distance filter

5: RUN voxel filter

6: RUN outlier radius removal

7: return Processed target point cloud
8: else if cloud == source then

9: Sample source prefiltering parameters
10: RUN distance filter

11: RUN voxel filter

12: RUN outlier radius removal

13: return Processed source point cloud
14: end if

15: Registration method query
16: Set registration parameters according to method
17: RUN point cloud alignment: processed target and processed source
18: Save sampled values, final transformation, and runtime
19: end for
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Figure 4.4: Comparison of scan registration methods on the IMS.

The full results of this analysis can be found in [315]. Key findings are briefly summarized below. Because

motion compensation did not yield meaningful improvements for the data used and to keep the comparison

focused on the registration algorithms, no motion compensation was applied to the point clouds. All experi-

ments have been performed on an Intel Core i7-9750h processor. For comparability, all registrations were

calculated in a single thread. The code using the above-mentioned libraries was written in C++. Figure 4.4

shows the performance of the mentioned scan matching algorithms on the IMS after parameter optimization.

The different behavior in turns and straights shows the high dependence on the environmental appearance.

Overall, the two GICP methods show the most promising performance in terms of accuracy and runtime.

Additionally, they are more robust to suboptimal parameterization, which has to be assumed for realistic

applications. All of these parameters were found to be highly dependent on their chosen values. The optimal

parameterization depends on the appearance of the frames and thus cannot be determined for all different

ODDs. The initial guess shows the strongest sensitivity. A bad initial guess leads to failed pose convergence

or exploding runtimes. Therefore, an accurate initial pose estimation is crucial. The NDT algorithms show

advantages in terms of runtime and are thus recommended for real-time applications, such as online localiza-

tion. Another finding is that robustness is more important than accuracy. When using a pre-built map, there

will be no global drift, and thus, the most important thing is that there is no loss of tracking in the localization

module. [315]

Point Cloud Mapping

These findings led to the successful offline creation of 3D point cloud maps of the oval race tracks driven:

IMS, Las Vegas Motor Speedway (LVMS), and Lucas Oil Raceway (LOR). Figure 4.5 shows these point cloud

maps in BEV.

The maps were built using the GICP implementation from the fast library [314] integrated into the

hdl_graph_slam [316]. This method provides a good trade-off in terms of accuracy and parametrization. The

generated maps were manually post-processed with the interactive_slam [317] for improved results and

removal of errors. This tool allows one to manually add constraints, such as loop closures, to refine graph

optimization and, thus, the output map. The GNSS signal with cm-level accuracy was used as the initial

guess for each scan registration. Therefore, a precise initial guess along the whole track was guaranteed,

and the point cloud scan matching only had to do the fine registration. Without highly precise GNSS data
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(a) Indianapolis Motor Speedway (IMS) (b) Las Vegas Motor Speedway (LVMS) (c) Lucas Oil Raceway (LOR) Indianapolis

Figure 4.5: BEV of generated point cloud maps of IAC race tracks. The tracks are individually scaled and do not
represent the real size ratios.

and solely based on scan matching, all mapping approaches failed to create globally consistent closed-loop

maps.

Map-based Localization

Due to the described challenges, a LiDAR-only localization using the created 3D point cloud maps was

impossible. Available open-source algorithms for map-based localization failed directly [55]. To investigate

the benefits of LiDAR registration for state estimation, a custom 3D EKF estimator was developed. Due to

the high accuracy of the GNSS, the addition of LiDAR scan matching inputs leads to a decreased accuracy.

However, when the GNSS signal is degraded, and its standard deviation increases to a few meters, or the

signal is completely cut, the estimated state benefits from scan registration. In summary, this approach can

increase the robustness of state estimation against short-term GNSS signal losses or outliers. However,

other approaches are needed to enable robust and precise localization on oval race tracks at high velocity

and without accurate GNSS reception. The following section will present a sensor-fusion-based approach to

this problem.

Many problems arise from the multi-LiDAR setup. Missing time synchronization, erroneous calibration, and

distortions at high speeds lead to degradation of scan matching. One way to tackle these challenges is to

adapt the vehicle configuration. Section 5.3 presents a novel approach for such setups. It was developed for

a passenger car, and its adaptability to racecars is currently under investigation. Also, road course race tracks

provide better features for localization and mapping. Figure 4.6 shows a 3D map of the Autodromo Nazionale

in Monza created with the new mapping pipeline. The developed mapping and localization approaches will

be investigated further on this track.
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Figure 4.6: BEV of the created 3D point cloud map of the Autodromo Nazionale in Monza.

4.1.3 Coordinate Separation for LiDAR-Camera Localization

This chapter is based on [11], published within the scope of this thesis. More details on the implementation,

experiments, and results can be found in the publication.

To avoid some of the problems of the previous chapter and enable localization on oval race tracks, a novel

approach based on sensor fusion was developed. It aims to combine the advantages of LiDAR and camera

for high-speed localization on oval race tracks. Since for the IAC, data could be recorded while teleoperation

was performed, it was possible to do mapping runs before going fully autonomous. Therefore, the algorithm

presented solves the task of online localization on race tracks at high speeds using offline-built maps. The

offline mapping process consists of two steps:

1. Detection of track boundaries and projection on a 2D plane.

2. Visual SLAM to build a feature map via OpenVSLAM [125].

The generated data are then used online with the methodology described in the following. The car is

assumed to be equipped with precise GNSS for mapping, at least one front-facing monocular camera, and

a 360°LiDAR. LiDAR SLAM and localization algorithms struggled mainly with monotonous and repeating

environments such as on long straights. Camera approaches had problems with increasing velocities and,

thus, increasing baselines, leading to decreased accuracy. This approach attempts to avoid these weaknesses

by combining the sensor-specific advantages of the camera and LiDAR.

Concept Overview

As the strength of LiDAR proved to be in detecting objects within a range of ∼ 80 m in 3D, and the camera

could also use distant features, for example, on long straights, the presented algorithm aims to combine

these advantages. Therefore, the LiDAR task is to detect the wall that limits the outside of the track (Steel

and Foam Energy Reduction Barrier (SAFER) barrier) to estimate the lateral position. The camera runs

a feature-based map registration for one-dimensional longitudinal localization. A track-bound coordinate

system decouples the lateral and longitudinal track positions. It consists of the longitudinal coordinate s, the

lateral coordinate d, and the headingψ as depicted in Figure 4.7. This coordinate system is known as Frenét

[318]. As the localization is developed for ground-bound vehicles only, it runs in 2D for the sake of robustness.

The general concept is depicted in Figure 4.8. The fused and transformed longitudinal and lateral localizations

are finally fused with the data from the GNSS and the IMU in a KF [319]. This generates the highly frequent

localization and state estimation output used in the other modules of the autonomous racing software stack.
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Figure 4.7: Trackbound Frenét frame with longitudinal s and lateral d coordinates [11].

Figure 4.8: Overview of the presented localization approach. Adapted from [11].

Longitudinal Localization

In initial investigations of available visual SLAM approaches, OpenVSLAM [125] showed the most promising

results. The accuracy and robustness were convincing, and in addition, a map saving and loading functionality

was already included. This has some significant advantages: Runtime and compute requirements decrease

as no map has to be built online. Furthermore, there is no drift in the position estimate, as the map guarantees

global consistency and can be optimized and validated offline. The map is projected into a one-dimensional

space along the track to avoid errors in its layout and scale. Each keyframe is assigned its position in the

relative longitudinal s coordinate from the start line (s = 0) to the finish line (s = 1). The total track length is

the sum of all the vectors between each of the N keyframes (K FR), calculated using the Euclidean norm:

t rack leng th=
∑N−1

i=0
||K FRi+1 − K FRi ||. (4.1)

sKFRn
=

∑n

i=0
||K FRi+1 − K FRi ||
∑N−1

i=0
||K FRi+1 − K FRi ||

. (4.2)

The corresponding s coordinate for each keyframe can be determined with the following equation:

sn = (posx y − K FRn) ·
K FRn+1 − K FRn

||K FRn+1 − K FRn ||
. (4.3)

s = sKFRn
+

||sn ||

||K FRn+1 − K FRn ||
. (4.4)
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Suppose the estimated position of the ego vehicle is between two keyframes. In that case, the s coordinate

will be interpolated by taking the orthogonal to the vector between the two closest keyframes. This procedure

is shown in Figure 4.9. [320]

0.40.5
0.6

0.7

0.8

0.9 0.0

0.1

0.2

0.3
0.44

(a) Scale-invariant 1D map for longitudinal localization.
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(b) Interpolation of the s coordinate between two keyframes KFR.

Figure 4.9: Transformation of an arbitrary track position into a one-dimensional longitudinal coordinate [11].

Lateral Localization and Heading Estimation

The second part of the localization pipeline, which runs in parallel, uses the LiDAR sensor and aims to

accurately estimate the vehicle’s lateral position and relative heading. After applying geometric filtering to the

raw point cloud to remove data without relevant information, the SAFER barrier outside the track is detected

as shown in Figure 4.10a. The best results for detecting wall points were achieved using basic geometric

filtering with fixed assumptions. With this, the ground can be filtered, and only points within a certain height

above the ground are kept. Based on these points, the boundary is approximated by a fitted B-Spline. This

is a piece-wise defined polynomial function that uses the detected points as control points to define the

polynomials.

Estimating the vehicle’s position and heading relative to the track comprises three steps. First, the closest

boundary point is determined as shown in Figure 4.10b. With this distance and the known distance from the

boundary to the center line, the d component of the Frenét coordinates can be determined in the second step.

The third step calculates the angle between the point cloud’s x axis, corresponding to the driving direction of

the ego vehicle, and the vector pointing towards the closest boundary point. The vehicle heading ψ relative

to the boundary can be determined with this angle. The process of the spline fitting and calculation of the

ego coordinates is shown in Figure 4.10c.

(a) Detection of the outer track boundary in a 360°
point cloud. The opponent vehicle is ignored.

(b) Transformation between the ego vehi-
cle and the detected boundary.

Closest
Point

Boundary
Points

Fitted
B-Spline

d

Ψ

(c) Spline fitting and coordinate calculation.

Figure 4.10: Lateral localization via boundary detection, interpolation, and transformation [11].

Since the boundary is assumed to be the farthest right point on the track, point clusters between the ego

vehicle and the boundary can be detected. This allows the removal of points that have to come from opposing
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vehicles or obstacles from the boundary spline fitting. Figure 4.10a shows how an opponent vehicle is

detected driving next to the ego (orange). [321]

Sensor Fusion

The prior 2D track information is saved in a lookup table that contains the following information for each data

point on the track centerline: s coordinate, its corresponding x y coordinates sx and sy , distance to the left

boundary, distance to the right boundary, and heading ψglobal in global Cartesian x y coordinates. With the

estimated s coordinate and the corresponding sx and sy , the lateral d coordinate, and the relative heading

to the boundary ψlocal, the global Cartesian x y pose can be calculated according to Equation (4.5) and

Equation (4.6).

x = sx + d cos (ψglobal +ψlocal). (4.5)

y = sy + d sin (ψglobal +ψlocal). (4.6)

Synchronized and triggered frames from LiDAR and the camera are needed for a precise sensor fusion. If

the sensors are not triggered simultaneously, the time difference has to be compensated for if simultaneity

cannot be assumed. The KF used to further fuse this pose estimate with the data of GNSS and IMU was

presented in [319].

Experiment

Since this methodology was developed before real-world data from the IAC or the IMS were available or

even the sensor suite was defined, synthetic simulated data had to be used for testing and validation. The

perception simulation was a custom development (FTM-Simulator) based on the Unity game engine. The

organizers provided the 3D models of the track, including the surroundings and the vehicle. Synthetic point

clouds were generated by a self-developed LiDAR model using ray casting [322]. The FTM-Simulator also

opens up the possibility of rendering camera images. Figure 4.11 shows simulated front-camera images

from the custom simulator, as well as from the video game Project Cars 2 and an onboard video from a

human-driven Indy car. Mainly because of the more detailed 3D track model, the camera images from the

video game appear more realistic. This impression was confirmed by comparing the OpenVSLAM on the

three types of videos.

To fuse the simulations for the camera and the LiDAR data, the longitudinal localization errors were first

determined on the image data created with Project Cars 2. Subsequently, these results were fed into the

lateral, LiDAR-based pipeline to obtain the final results. By this, the longitudinal error can be determined from

the camera simulation data, and later, this information can be used to run the remaining simulation.

Results

For the validation of the longitudinal localization, a feature map was created in a low-speed run. This map is

then used for localization during the validation runs. The results were obtained on an Intel i7-9850H Central

Processing Unit (CPU).

Different velocities with and without opposing racecars are tested on the same map. The average positioning

error for runs with speeds between 120 km h−1 and 300 km h−1 is 0.88 m with a computation time of around

70 ms. All runs are summarized in Table 4.2.
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(a) FTM-Simulator (b) Project Cars 2

(c) Formula 1 onboard camera

Figure 4.11: Simulated and real front camera image of the IMS main straight. Right side: SAFER barrier [11].

Table 4.2: Results of the Longitudinal Localization [11].

Longitudinal Deviation

Velocity Opponents Average RMSE Maximum Runtime Mistracked Frames

120 km h−1 ✗ 0.557 m 0.843 m 1.347 m 68.9 ms 5
200 km h−1 ✗ 0.384 m 0.661 m 1.884 m 68.6 ms 2
200 km h−1 ✓ 0.752 m 1.045 m 2.652 m 67.9 ms 12
250 km h−1 ✗ 1.326 m 1.851 m 2.163 m 68.4 ms 4
250 km h−1 ✓ 1.214 m 1.974 m 2.984 m 66.6 ms 7
300 km h−1 ✗ 0.457 m 1.185 m 3.042 m 70.6 ms 1
300 km h−1 ✓ 1.471 m 1.992 m 3.692 m 67.3 ms 22

The results of the lateral localization are summarized in Table 4.3. The pipeline based on LiDAR shows

more precise results than the camera-based longitudinal localization. The reason for this can be found

in the reference used for localization. No distant landmarks are extracted for the LiDAR pipeline, but the

SAFER barrier is within a few meters of the sensor. The camera has to use distant features for longitudinal

localization. However, due to the overall concept, the longitudinal localization needs to be precise to fully use

the potential of the lateral localization.

Figure 4.12 shows the results for the average lateral and longitudinal error of the corresponding algorithm in

dependence on the velocity and opponent vehicles. Opponent vehicles show a higher impact on longitudinal

localization. This proves the efficiency of the presented algorithm to detect and ignore opponent vehicles.

However, at 250 km h−1, it can be seen that the localization without opponents shows strikingly negative

results. As the algorithm is not deterministic, such behavior can happen for several reasons.

For more detailed results and data at a higher resolution around the track, the reader is referred to [11].
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Figure 4.12: Average Deviation of the longitudinal and lateral localization modules.

4.1.4 Results and Discussion

This chapter summarizes the results of the approaches presented in Subsection 4.1.2 and Subsection 4.1.3.

Based on this, the methodologies and results are discussed.

The first approach was based on fused point clouds from the three non-overlapping LiDARs. LiDAR-only

approaches could not build consistent and accurate maps of oval race tracks. Consistent point cloud maps

could only be created using a highly precise GNSS. These maps were shown to be able to support the

robustness of the state estimation. However, it was found that scan matching can only cover short-term

GNSS outages. High-speed driving in GNSS-denied environments is not possible with the current state. If

cm-level accuracy GNSS is available, the addition of point cloud registrations even decreases the precision of

the state estimate. The problems of this approach, which hindered better results, were found in several points.

A significant challenge and also a difference from most public data sets is the sensor and, specifically, the

LiDAR setup of the vehicle. Faulty calibration and missing precise time synchronization cause inconsistencies

in each fused 360°point cloud.

Therefore, a novel and integrated approach is proposed for multi-LiDAR fusion and mapping. The structure is

depicted in Figure 4.13. This approach will be implemented to the EDGAR research vehicle in Section 5.3.

An evaluation of this approach for autonomous racecars on different tracks is currently ongoing and will be

Table 4.3: Results of the Lateral Boundary Localization [11].

Lateral Deviation

Velocity Opponents Average RMSE Maximum Runtime

120 km h−1 ✗ 0.116 m 0.171 m 0.732 m 19.4 ms

200 km h−1 ✗ 0.152 m 0.226 m 0.854 m 19.8 ms

200 km h−1 ✓ 0.159 m 0.217 m 0.725 m 19.3 ms

250 km h−1 ✗ 0.156 m 0.244 m 0.931 m 20.1 ms

250 km h−1 ✓ 0.156 m 0.214 m 0.972 m 19.7 ms

300 km h−1 ✗ 0.192 m 0.280 m 0.941 m 19.6 ms

300 km h−1 ✓ 0.215 m 0.401 m 3.116 m 20.2 ms
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Figure 4.13: Proposed novel LiDARs fusion and mapping approach.

presented in future work. Also, deskewing needs to be performed on the raw point clouds to compensate for

motion distortion in the data. Here, a precise state estimation is necessary to extrapolate the position of the

points correctly.

Another significant challenge for the LiDAR-based localization and mapping approach is the track surround-

ings on oval race tracks. Compared to road courses that have been shown to work with LiDAR localization

in previous works, oval tracks are inferior in the number of features that can be used for scan matching

and localization. The limited range of LiDAR sensors makes it difficult to maintain accurate tracking along

these tracks, for example, at the long straights of the IMS. The ongoing development of the IAC will allow

comparisons between oval race tracks and road courses in future work.

This section presented a novel approach for the fusion of cameras and LiDARs to overcome these challenges.

It uses a visual SLAM-based approach for longitudinal localization and extracts the boundary wall (SAFER

barrier) from LiDAR point clouds for lateral localization and heading estimation. This approach showed

convincing results at velocities up to 300 km h−1 with and without opponent vehicles. One significant

advantage of this approach is that if the longitudinal localization becomes unprecise or even loses tracking, it

still allows the vehicle to keep a distance from the detected outer wall and avoid crashes. It must be discussed

that this approach was only validated with simulated camera images and point clouds. Transfer to the real

world has not been carried out. However, as the approaches are not deep learning-based, it can be assumed

that they will also work on actual data with adapted parameters. The longitudinal localization has already

been proven to be efficient in real video data from human-driven racecars. In future work and to obtain more

accurate results, the banking in the curves has to be compensated for the lateral localization. Figure 4.14

illustrates the situation. The LiDAR sensor measures the actual distance to the barrier dmeas. As the motion

planner needs a 2D position, this lateral coordinate is projected onto the ground plane and becomes dpro j .

This projection depends on the estimated banking angle θ . If the banking estimation (either offline and

map-based or online) is imprecise, the projection will propagate the error, and the 2D position estimate will

suffer; thus, the position estimate will be inaccurate.

θ
dmeas

dproj

SAFER
barrier

Figure 4.14: Difference between the measured lateral coordinate dmeas and dpro j in BEV projection.
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Synchronized and triggered sensors are assumed in the described experiment, which is not met by the real

vehicle. This leads to an additional loss of performance in the sensor fusion module. To reduce this impact,

the ego-motion in the time interval between the recording of the camera images and the LiDAR point clouds

needs to be compensated for. Only then are the data fused at the correctly extrapolated point on the track.

As the final real racecar had two independent RTK-corrected GNSS systems, these were the primary

localization source for the final races. The oval race tracks are open air without any significant obstacles

influencing the GNSS signal. Therefore, cm-level accuracy was reached along the whole track. Combined

with the EKF-based state estimation fused with IMUs, a precise state estimate could be output at a high

frequency. The presented methods are the foundation for future challenges and race tracks that will not allow

such precise GNSS localization.

4.2 Depth Enhanced Visual SLAM

The previous section showed how localization and mapping can benefit from sensor fusion, especially in

complex environments. To transfer the findings to public roads, this section presents methodologies to

enhance existing SLAM approaches with sensor fusion to improve their results. The section tries to find a

way to combine the attention to detail of the cameras with depth measurements from LiDAR. Therefore, one

of the most famous visual SLAM implementations, the ORB-SLAM3 [124] is chosen as the baseline and will

be enhanced with depth information in Subsection 4.2.1. The following Subsection 4.2.2 will extend this work

and aim to find advanced methods for generating dense depth information.

4.2.1 Indirect Visual SLAM with Dense Depth Maps

The content of this section is based on the publication [14], developed and published within the scope of this

thesis. The reader is referred to this publication for more in-depth information regarding detailed state of the

art, implementation, experiments, and results.

The code is available open-source under https:// github.com/ TUMFTM/ ORB_SLAM3_RGBL.

This work extends the visual SLAM ORB-SLAM3 [124] by integrating and upsampling depth data from a

LiDAR sensor. To efficiently fuse raw data from LiDAR and the camera, the LiDAR points are projected into the

camera frame as described in Subsubsection 2.1.2. Therefore, internal camera and external LiDAR-camera

calibration matrices are needed. An example of the resulting overlay of depth measurements and camera

pixels can be seen in Figure 4.15. The calibration matrices are given by the KITTI dataset [42].

0 m

10 m

20 m

30 m

40 m

50 m

Figure 4.15: LiDAR point cloud projected onto a grayscale image from the KITTI Odometry dataset [42]. Each point is
colored according to its distance from the sensor.

As this figure reveals, due to the higher spatial resolution of the camera, not every pixel can be assigned

a depth value from a LiDAR point. In the KITTI dataset [42], the sparsity after projection of the 64-layer
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Velodyne LiDAR amounts around 96 %. To assign depth values to pixels between the depth measurements,

the depth information needs to be upsampled by interpolation. The presented approach incorporates different

LiDAR point cloud upsampling methods directly in the ORB-SLAM3 [124].

Concept Overview

The ORB-SLAM3 already incorporates an RGB-D mode, designed to work with RGB-D cameras. In addition

to Red, Green, Blue (RGB) images, RGB-D cameras output depth information, usually from stereo or time-

of-flight sensors. These cameras typically have a range of a few meters and are mainly suitable for indoor

applications [323]. The presented approach builds on the RGB-D mode and extends it by adding LiDAR data.

This newly introduced mode is called RGB-L. Two approaches for LiDAR depth integration are implemented

and integrated into the ORB-SLAM3. The respective computation graphs are depicted in Figure 4.16. The first

approach (Figure 4.16a) uses the existing RGB-D mode and externally creates the upsampled depth maps.

The second approach (Figure 4.16b) directly integrates the depth upsampling module into the ORB-SLAM3

core module. Its interface receives the images and point clouds directly; the upsampled depth map is created

internally.

/slam_interfaceimage/camera

/lidar pcd /depth_node depthmap

orbslam3

System

Tracking

Frame

/pose

(a) Standard ORB-SLAM3 RGB-D mode with external depth map generation

/slam_interfaceimage/camera

/lidar pcd

orbslam3

System

Tracking

Frame

/pose

Depth Module

(b) Novel RGB-L mode with integrated depth module

Figure 4.16: Setup of the ORB-SLAM3 for working with LiDAR-based dense depth maps in the standard RGB-D
mode and the novel RGB-L mode [14].

Depth Map Generation and Upsampling

The depth module aims to first project the LiDAR points into the camera image plane and then to upsample

the data to obtain denser depth maps. As sparse depth measurements are available, this problem is generally

referred to as depth completion. As described in Subsubsection 2.1.2, depth completion can be performed

with conventional CV or deep learning methods.

The presented approach implements both approaches for comparison. The conventional method is imple-

mented in C++ and can be run as an external module or directly included in the ORB-SLAM3 as shown in

Figure 4.16. Numerous experiments with various conventional upsampling techniques have demonstrated

that an inverse dilation with a 5x5 diamond kernel produces the most favorable results among conventional

CV techniques [324]. Algorithm 2 represents the kernel dilation upsampling algorithm.
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Algorithm 2 Sparse LiDAR Points Projection and Upsampling with Diamond Kernel Dilation
Input: Sparse LiDAR points, camera image

Output: Upsampled depth map

1: Initialize empty depth map with size of image
2: Project sparse LiDAR points into image plane
3: for each projected LiDAR point do

4: Assign depth value to corresponding pixel in depth map
5: end for

6: DEFINE 5x5 diamond-shaped kernel with center point (2,2)
7: for each pixel (i,j) in depth map do

8: if pixel (i,j) has a depth value then

9: for each position (k,l) in diamond kernel do

10: Calculate corresponding image pixel (m,n) by offsetting (i,j) with (k,l)
11: if pixel (m,n) is within image boundaries then

12: Assign depth value of pixel (i,j) to pixel (m,n) if it has a higher depth value
13: end if

14: end for

15: end if

16: end for

17: return Depth map

A detailed investigation of different conventional CV algorithms and their performances can be found in

[324]. The presented method decreases the average sparsity of the depth maps from around 96 % to around

65 %, leading to a depth map more than five times denser. The resulting depth maps have a Mean Average

Error (MAE) of 1.03 m and a Root Mean Square Error (RMSE) of 4.41 m. Upsampling methods with denser

outputs showed worse results in the tracking performance of the ORB-SLAM3 as the uncertainty increases

between the discrete LiDAR points. Deep learning-based methods can predict outputs with a sparsity of 0 %,

meaning that every pixel receives a depth value assigned. For this work, the state-of-the-art network ENet

[325] was chosen for deep depth completion. It achieves an MAE of 0.39 m and an RMSE of 1.17 m on the

KITTI Depth dataset. As for the KITTI Odometry benchmark, no depth ground truth values are available;

these results were obtained on the KITTI Depth dataset. Since no LiDAR depth measurements are available

for the upper part of the image (Figure 4.15), the predicted values in this area are not used.

Results and Discussion

For the evaluation of this approach, the KITTI Odometry dataset [42] was chosen as it provides ground-truth

trajectories, and the appearance of the data is similar to the KITTI Depth data, on which deep learning-based

depth completion was validated. The presented approaches are compared with the ORB-SLAM3 stereo

mode.

The translational and rotational Relative Pose Errors (RPEs) across the sequences are summarized in

Table 4.4. The stereo and RGB-L modes exhibit similar performance levels, with the stereo mode having a

marginal edge. A notable observation is that deep learning methods show significantly lower accuracy in

both translational and rotational aspects. This might stem from the challenge of defining the general image

areas where the network shows convincing results. As described above, the top 30 % of the depth maps are

excluded from consideration to mitigate this. Another limitation of the neural network approach is related to

the KITTI ground truth, which caps depth values at 80 meters, leading to inaccuracies for objects located

further away that are captured by the camera. On the contrary, the RGB-L mode, which is more closely

based on actual LiDAR depth measurements, shows better generalization. Detailed analysis across various

52



4 Sensor Fusion for Localization and Mapping in Diverse Environments

sequences and sceneries reveals that the RGB-L mode is particularly effective in environments with few

distinctive features, namely highway and rural roads. This underlines the theory of the previous section that

sensor fusion is especially effective in difficult, feature-poor areas, such as highways or race tracks.

Table 4.4: Average translational error in % and rotational error in °/100 m of ORB-SLAM3. Optimum results are
highlighted in green, and the next best in blue [14].

Seq. Scenery Stereo RGB-L Deep Learning Stereo RGB-L Deep Learning

Translational RPE in % Rotational RPE in °/100 m

00 Urban 0.704 0.695 0.721 0.272 0.257 0.315
01 Highway 1.628 1.098 1.698 0.201 0.364 0.681
02 Urban 0.817 0.836 0.852 0.275 0.259 0.344
03 Urban 0.950 1.033 0.726 0.235 0.258 0.334
04 Rural 0.562 0.453 1.121 0.251 0.221 0.985
05 Urban 0.413 0.470 0.840 0.158 0.214 0.419
06 Urban 0.544 0.878 1.182 0.224 0.466 0.425
07 Urban 0.483 0.581 0.862 0.271 0.293 0.497
08 Urban 0.991 1.085 1.284 0.303 0.338 0.556
09 Rural 0.988 0.866 1.092 0.299 0.342 0.438
10 Urban 0.710 0.840 1.388 0.343 0.421 0.484

Average 0.800 0.801 1.070 0.244 0.312 0.498

Another advantage of the novel RGB-L mode becomes obvious when looking at the computational runtimes.

The mean runtimes and their variances across all sequences are depicted in Figure 4.17. The two modes

that depend on depth maps rather than stereo vision show significantly lower variances. Furthermore, the

mean runtime of RGB-L is 22.8 ms and thus is more than 40 % reduced compared to 41.2 ms in stereo

mode. It should be noted that the runtimes used for the deep learning-based RGB-D mode are calculated as

the sum of the ENet and the ORB-SLAM3 in RGB-D mode. Thus, additional latencies, for example, from the

data transmission, can arise in a real runtime application. The presented ORB-SLAM3 RGB-L mode shows

low compute requirements and runtimes. This can make the approach interesting for embedded applications

with low-power CPU and without Graphics Processing Unit (GPU).
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Figure 4.17: Runtime comparison of the presented methods [14].

For more detailed results, deeper investigations on the data used are needed. Therefore, different datasets

are to be evaluated. Due to the chosen approach based on conventional CV, this is possible without any
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retraining. Only the calibration matrices for the internal camera and camera-LiDAR calibration are needed.

Calibration is another topic for discussion. In the presented evaluation, the calibration given by the KITTI

dataset was used. However, investigations in related work revealed a high dependence of visual SLAM on

the accuracy of calibration [126, 127]. The public calibration files of the dataset are not perfectly correct and

thus induce errors in the depth upsampling. A sensitivity analysis with different modifications of the calibration

matrices could give more insight. In addition, the generation of depth maps leaves room for improvement. For

example, other input sensor modalities could be evaluated. The following section will present an approach to

generate dense depth maps with camera and RaDAR input data. Finally, since this approach has been shown

to be especially beneficial for low-feature environments, such as highways, combined with low computation

times, this approach can be interesting for autonomous racing applications. This transfer to race tracks is

currently under investigation and will be the subject of future research.

4.2.2 Depth Map Generation with Transformers

This section is based on the publication [16]. This article contains additional information on the network

layout, experiments, results, and discussion.

The open-source code is available under https:// github.com/ TUMFTM/ CamRaDepth.

As described in the previous section, this approach, called CamRaDepth (Camera-RaDAR fusion for Depth

estimation), aims to enhance the state of the art in terms of depth estimation. As many existing methods have

already exploited the use of expensive LiDAR measurements, this work aims to optimize the output from

RaDAR data in combination with 2D camera images. Therefore, a neural network is designed based on the

latest progress in the field of ViTs. Compared to LiDAR, RaDAR data are sparse and scarce. To make better

use of the data, the network estimates not only a pixel-wise depth map but also a semantic segmentation

mask of the image. This additional layer enables a better understanding of objects and semantics and, thus,

correlated depth structures.

Data Preprocessing

As there are not many automotive datasets available that provide RaDAR data, the nuScenes [45] dataset

was chosen for the evaluation and development of this approach. The model takes six feature maps as input:

three from the camera image and three from the RaDAR reflection:

• Camera: R, G, B color values

• RaDAR: distance, radial velocity, flow

The data preprocessing pipeline is based on the one presented in [326]. For a more detailed evaluation, the

nuScenes description text files are parsed to differentiate between day-clear, rainy, and night scenes. This

allows for additional evaluation of the contributions of the RaDAR data. The samples are divided into training,

validation, and test splits in a ratio of 0.8, 0.1, and 0.1, respectively.

To improve efficiency and runtimes, the camera image resolution of the nuScenes dataset is modified. The

original images, sized at 900× 1600, are resized to 416× 800 pixels. Similarly to Subsection 4.2.1, the

upper part of the image without depth ground truth data is cropped. A reduced image size is chosen for the

sake of computational requirements. At the same time, the resolution is still high enough to allow for accurate

estimations of depth, especially fine details.

To increase the density of the RaDAR points, superresolution [199] is used. Therefore, RaDAR frames over

a timespan of 0.3 s are accumulated with compensation for ego motion. Furthermore, the RaDAR flow is

calculated offline to be used during the training process. This step must be performed at runtime for the

application on a real vehicle and live data.
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As the nuScenes dataset does not provide depth ground truth, it has to be calculated from existing sensory

data. Also, the semantic segmentation labels needed to train the model’s segmentation branch must be

created. As LiDAR provides the most precise and robust depth information available, the depth ground truth

is based on it. Therefore, the four previous scans and the 21 subsequent scans of the 32-beam LiDAR are

accumulated [326]. These accumulated points are projected into the camera image with the given calibration

matrices to obtain the associations between the depth values and the camera pixels. The point clouds are

motion compensated, and moving objects detected by semantic segmentation are removed to decrease

inconsistencies in the data. This depth map is still sparse compared to the camera image, so a dilated depth

mask introduces a second ground truth layer in this approach. Therefore, the Algorithm 2 is used that already

showed convincing results in the previous approach. To generate semantic segmentation ground truth,

a state-of-the-art model, namely mseg [327] is used. Since the aim of the segmentation branch is only to

support depth estimation, the use of existing models for labeling instead of expensive manual labeling was

found sufficient.

Model Architecture, Training, and Inference

The main model architecture is based on the U-net [328]. Skip-connections are used to embed fine details

from the input camera images. The convolutional encoder is replaced by a simplified transformer backbone

[329] that has proven superior to convolutional approaches. The complete network architecture is shown in

Figure 4.18.

Camera

Radar

Transformer Encoder

Depth Decoder

Legend:

Depth map

Segmentation

Upsampling + skip connection
by concatination + DenseBlock

1x1 ConvBlock

Seg / Depth map

Seg Decoder

.

Figure 4.18: Architecture of the introduced CamRaDepth network with camera and RaDAR data, and supervised
segmentation branch. In later experiments, an unsupervised segmentation branch was added [16].

For efficient and robust learning, the depth values are first normalized to the [0, 1] range. After inference,

the model’s outputs are then rescaled back to their actual metric values. The encoder consists of four

transformer layers to reduce spatial dimensionality. The dimensionality is then upsampled through five steps

in the decoder. Therefore, bicubic interpolation layers are used. A heavier dense block is applied for the

final post-processing. From the second upsampling step on, depth calculation blocks are used to generate

intermediate depth maps. These allow for intermediate data fusion with the segmentation branch. The depth

maps are predicted using a sigmoid activation function. The segmentation branch generates two intermediate

segmentation masks. The segmentation and depth branch features are merged and put into the depth

activation blocks. The network uses group normalization instead of batch normalization, showing superior

performance with batch sizes smaller than 16. GELU [330] is chosen as activation function. A major problem
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was found in overfitting during the training process. To avoid this, several countermeasures are included in

the network, including dropout layers and superconvergence [331].

Different loss functions complement each other to produce accurate, robust, and detailed depth maps. An

Mean Squared Error (MSE) reconstruction loss is used for the LiDAR-based ground truth depth map and the

denser dilated depth map. The segmentation branch is trained by a Focal loss [332]. Finally, this approach

introduces a novel loss function called the Infinity loss. The idea is to identify the sky regions in the image

and push the depth towards infinity. As for these regions with infinitely large depth values, no ground-truth

depth can exist, and related approaches struggle in that region.

The depth value of each pixel ŷi j that is located in a region segmented as the sky is to be pushed to zero. As

inverse depth maps are used, this relates to an infinitely large depth. For each pixel in the predicted depth

map, the loss is defined by

LInfinity( ŷ , y, f t) = (1− y) ·max(0, ŷ) + y ·max(0, f t − ŷ) (4.7)

where ŷ denotes the predicted depth; y ∈ 0, 1 is 0 if the pixel is segmented as sky pixel, 1 otherwise. f t is

the true threshold for the sky.

In summary, four loss functions are applied:

• MSE loss between predicted depth map and LiDAR depth ground truth

• MSE loss between predicted depth map and dilated depth ground truth

• Focal loss between predicted segmentation and offline generated segmentation ground truth

• Infinity loss to push sky pixels to infinite depth

These four functions are weighted with values of 2, 0.75, 0.2, and 0.0005, respectively. The weightings have

been determined empirically and fixed, as dynamic weighting decreased the robustness during training.

CamRaDepth - Results and Discussion

The network is trained and validated on the nuScenes dataset [45]. By this, it could also be compared with

related methods in the field of camera-RaDAR-depth completion. To quantify the results, RMSE, MAE, and

Absolute Relative Error (Abs-REL) are used. The Abs-REL calculates the percentage of the prediction error

compared to the absolute depth. The interdependencies of the model are investigated utilizing ablation

studies. Therefore, transfer learning is a crucial technique so that the entire model is not trained from scratch

every time. It encompassed strategically adding or removing layers that needed training from scratch while

leveraging pre-converged layers to significantly speed up their training process. The initial model is trained

entirely from scratch, comprising three distinct branches: one dedicated to depth estimation and the others

to supervised and unsupervised semantic segmentation. After this initial model has reached convergence,

ablation studies are performed by removing one branch at a time. Each new iteration of the model is initialized

with the previously converged weights, facilitating a more rapid training process and leading to promising

results with greater efficiency. In total, six different evaluations are performed:

(1) Base model only with RGB input, no RaDAR

(2) Base model with RGB and RaDAR, no semantic segmentation

(3) Model with RGB, RaDAR, and unsupervised semantic segmentation

(4) Model with RGB, RaDAR, and supervised semantic segmentation

(5) Model with RGB, RaDAR, unsupervised, and supervised semantic segmentation
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(6) Base model with RGB and RaDAR, no semantic segmentation, trained from scratch

(7) Model with all branches, trained with data augmentation

All models are trained and executed using a NVIDIA V-100 GPU with 16 GB of VRAM. The total training

consists of 60 epochs and 20 fine-tuning epochs. Full training takes around 75 hours in total. Although the

models differ in number of branches and parameters, they all have an inference time of ∼ 55 ms per iteration.

Memory consumption on the GPU during inference amounts to around 1.5 GB. Model (7) is trained using

transfer learning as the initial weights are taken from the converged model (5). During the training process,

data augmentation is applied to obtain more robust results and better generalization. Therefore, the RaDAR

depth maps and the ones from LiDAR ground truth were swapped randomly, although their distributions differ

considerably. This swap was done with a probability of p = 0.18 to avoid overfitting. The largest model (5)

has a total of 23 million parameters. All results from the described experiments are summarized in Table 4.5.

It also contains the results of the baseline implementation, a purely convolutional implementation [333], and

approaches from related work.

Table 4.5: Comparison of the presented method with others, evaluated on nuScenes. The difference in performance
between the different variants of the model is negligible. It is predominantly influenced by two factors: the
number of training steps used in fine-tuning and the state of initial weights when applying transfer learning.
This can be observed by looking at (5), the first to train, and (3), the last. The importance of semantic
segmentation guidance is highlighted in (6), compared to (1), which was trained using guided weights. The
base model falls significantly behind when trained from scratch. [16]

Metric Input Resolution Max Depth Abs-REL ↓ MAE ↓ RMSE (in m) ↓

Conditions MIXED MIXED MIXED (50 m)

S
O

TA

RC-PDA [326] (results from [334]) RGB + Radar 192× 400 80 m 0.128 - 6.942 -
RC-PDA [326] RGB + Radar 192× 400 50 m (0.085) (1.655) - 3.179
Lin et al. [335] RGB + Radar 450× 800 - 0.100 2.061 5.180 -
RC-DPT [334] RGB + Radar 320× 576 80 m 0.095 - 5.165 -
Lee et al. [336] RGB + Radar 450× 800 70 m 0.104 2.104 5.209 -
Singh et al. [337] RGB + Radar 900× 1600 50 m - (1.728) - 3.747
Singh et al. [337] RGB + Radar 900× 1600 70 m - 2.073 4.591 -
Singh et al. [337] RGB + Radar 900× 1600 80 m - 2.179 4.899 -

Convolution + Atten + Seg [333] RGB + Radar 416× 800 100 m 0.127 2.924 5.442 3.869

O
U

R
S

(1) Transformer w/o Seg RGB 416× 800 100 m 0.087 1.971 4.008 3.156
(2) Transformer w/o Seg RGB + Radar 416× 800 100 m 0.088 1.963 3.987 3.152
(3) Transformer w/ Seg (Unsup.) RGB + Radar 416× 800 100 m 0.088 1.945 3.963 3.133
(4) Transformer w/ Seg (Sup.) RGB + Radar 416× 800 100 m 0.090 2.018 4.014 3.179
(5) Transformer w/ Seg (both) RGB + Radar 416× 800 100 m 0.091 2.050 4.043 3.193
(6) Transformer (from scratch) RGB + Radar 416× 800 100 m 0.096 2.197 4.362 3.482
(7) Transformer with data aug. RGB + Radar 416× 800 100 m 0.072 1.705 3.649 2.773

Figure 4.19 shows exemplary inputs and outputs of the network. One can see how the segmentation branch

reconstructs the semantic segmentation, whereas the unsupervised segmentation branch interprets the

image structure differently. Compared to the baseline model, the most significant performance boost was the

adaptation of ViT as an encoder. The base model trained from scratch could already reach an RMSE of 4.2 m

and was on a level with related publications. Also, the specific training method that uses superconvergence

[331] and cyclic learning rate scheduling helped overcome the higher errors the network tended to converge.

The significant impact and benefit of transfer learning can be seen when comparing models (2) and (6). Even

though they share the same network architecture, model (6) performs around 8.5 % worse in terms of RMSE.

The only difference is that it was trained from scratch. This means that even the base model can benefit

from already converged weights that have been trained with an additional segmentation branch. The network

does not need to perform the segmentation during inference. This can be seen by the negligible performance

benefit of the models with segmentation branches at inference. However, segmentation branches are of

benefit during the training process. The lack of generating detailed depth maps without segmentation can

be visually determined in Figure 4.20. Here, the model without segmentation, trained from scratch, fails to
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RGB + Radar RGB + LiDAR GT Dilated LiDAR GT

Depth Estimation Supervised Seg. Unsupervised Seg.

Figure 4.19: Inputs and outputs of the model. While the supervised segmentation model gives the most realistic-
looking depth map, the unsupervised segmentation model shows capabilities of detecting both fine
details and surfaces. [16]

reconstruct the details. The model without segmentation trained via transfer learning behaves similarly to

the one also running the segmentation during inference. Figure 4.20 also reveils the benefit of the novel

Infinity loss. The bottom right image shows how the model trained with additional Infinity loss successfully

segments the sky and asserts high depth values. However, the corner of the building (B) also shows that the

sky segmentation is imperfect.

RGB + LiDAR GT Sup. Seg. Prediction Depth w/o Seg. (fs)

Depth w/o Seg. Depth w/ Sup. Seg. Depth w/ Data Aug. & Infinity Loss

Figure 4.20: A rainy scene. This example shows how additional information from the segmentation branch adds
details to vast areas of uncertainty. Also, the effect of the Infinity loss for the sky can be seen. [16]

As Table 4.5 shows, another remarkable performance gain is achieved by adding the previously described

data augmentation scheme achieves another remarkable performance gain. Therefore, the model is first fully

trained with the standard RaDAR data and then fine-tuned, randomly (p = 0.18) replacing the RaDAR data

with LiDAR points. Applying this augmentation scheme from the initial training steps resulted in overfitting

behavior. The supervised semantic segmentation branch enables the model to perceive the depth of small

details; however, it sometimes enforces constant depth values at surfaces with degrading depth. Therefore,

an unsupervised segmentation branch is introduced that manages to find a balance between. The optimal

configuration of this unsupervised branch will have to be investigated in future research.
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Another point of discussion is the quality of the ground truth. As no ground truth is provided for the nuScenes

dataset and it is generally difficult to obtain ground truth data, it had to be calculated from LiDAR data.

However, this approach also has its disadvantages which will be elaborated in the following. Ego motion

compensation and removal of dynamic objects have been performed on the data, but this adds uncertainty

as the corresponding methods are not error-free. The calibration was taken from the dataset and also shows

shortcomings. Figure 4.21 shows how the correspondences between the camera image and the LiDAR

points are erroneous (B). Using data augmentation, an additional dilated LiDAR depth map and the Infinity

loss helped to contain the effects of this, but the problem with the ground truth data remains.

RGB + LiDAR GT RGB + Enhanced LiDAR GT

Depth w/ Sup. Seg. Depth w/ Data Aug. & Infinity Loss

Figure 4.21: Shortcomings of the ground truth. The lack of comprehensive depth ground-truth data in different areas
of interest leads to false predictions around isolated objects. A demonstrates the struggle to estimate
accurate distances for the infinitely far-away sky. B is an example of an “island” of uncertainty. A slight
miscalibration can be seen in the ground-truth image. [16]

Another problem comes from the limited FOV and range of the LiDAR taken to generate the ground truth. As

there are no ground-truth data for some regions of the image, the behavior of the network is undefined. Once

again, data augmentation and especially the Infinity loss helped to reduce the impact of this (Figure 4.21 A).

Due to the limited range of the ground truth, the range advantage of the RaDAR can not be quantified. Also,

the advantages of the RaDAR in bad weather cannot be used, as the model will still try to reconstruct the

LiDAR measurements.

In summary, it has to be stated that even if the training aims at the lowest error compared to depth maps

from LiDAR data, this is not desirable as this means also reconstructing the contained errors. To avoid

this, novel methods for ground truth generation will have to be evaluated. Another possibility is to use

unsupervised approaches. These use camera images from different perspectives to determine the desired

depth maps. Related work shows that these approaches preserve many details but are still inferior to

supervised approaches [36]. One possibility of combining the advantages of both methodologies could be

hybrid approaches.

More details on the results, especially in bad weather conditions, and a more detailed discussion of the

results are given in [16].

4.2.3 Results and Discussion

This section summarizes the results of Subsection 4.2.1 and Subsection 4.2.2. A discussion with a short

outlook for future research topics will be derived from this.
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The ORB-SLAM3 RGB-L [14] integrates LiDAR depth measurements directly into the well-known and

frequently used visual SLAM approach. To obtain the associations between the camera pixels and LiDAR

reflections, the comparably sparse LiDAR data had to be upsampled. This was done using both conventional

CV methods and deep learning methods. Surprisingly, the approach based on conventional CV outperformed

deep learning-based depth completion methods regarding the accuracy of SLAM. The accuracy of the stereo

mode could be matched and showed robust results, even outperforming it in feature-poor environments such

as highways. An additional benefit was the significantly decreased runtime. Due to the lightweight depth-

upsampling implementation, it could be reduced by around 40 %. Therefore, this approach demonstrated

that the fusion of LiDAR data can improve visual SLAM even with simple data fusion approaches. Here, it

should be discussed that deep learning-based depth completion using ENet [325] was validated on the KITTI

Depth [42] data. However, the SLAM results were generated using the KITTI odometry data. Therefore, slight

differences in data, calibration, etc., can lead to significant differences in data-driven approaches. This fact

urges the need for more complete datasets for localization and mapping.

Also, the neural network outputs depth estimations for every single pixel, even if the uncertainty is high.

This can be seen in the upper regions of the images, where no LiDAR points are available. As there are no

measurements, there is also no deviation from ground truth that can be penalized in the training process. This

leads to random behavior in these regions. Similar effects can appear in other image regions between the

LiDAR depth measurements. The dilation approach has the advantage that it only outputs depth estimations

in the neighborhood of measurements. This leads to more manageable uncertainties.

A general challenge of deep learning-based depth estimation is the ground-truth data used. For the ap-

proaches presented, the depth ground truth was generated by accumulating motion-compensated LiDAR

scans. To remove errors, the regions segmented as dynamic objects were removed. As the results of [16]

already showed, many problems arise from errors in the ground truth. The capability of LiDAR sensors is

limited, and thus, all LiDAR-based ground-truth data are not a real ground truth. Consequently, a neural

network that reconstructs these data exactly is not desirable. However, this is what it is trained for during the

training process. A solution for this problem can be self-supervised approaches. These generate depth data

based on images and ego-pose data during training. This also allows the network to reconstruct fine details

that are too fine to be properly captured by LiDARs [16]. However, self-supervised approaches are inferior to

supervised, trained networks in terms of performance. As no real ground truth is available, this comparison

will also have to be the subject of future investigations.

The increased requirements must be considered a general disadvantage of sensor fusion-based localization

approaches and the presented depth enhanced visual SLAM. Certain assumptions are made in the sensor

fusion, and the sensor setup needs to fulfill them. First, precise time synchronization (for example, Precision

Time Protocol (PTP) or Network Time Protocol (NTP)) is essential for the relation of the sensor data’s

timestamps to be known. Second, many approaches assume simultaneously triggered sensors. As many

sensors do not record all data points simultaneously (e.g., camera shutter or rotating LiDARs), the data must

be de-skewed to remove the induced motion blur. If sensors are not triggered simultaneously, their data

must be compensated for the difference in time. With known ego movement and a static environment, this is

possible. However, ego localization induces uncertainty, and dynamic surrounding objects cause errors in

the data as they cannot be compensated for. These problems also exist in monomodal SLAM but do not

propagate between sensor modalities.

The previous section’s second approach called CamRaDepth, aimed to generate robust depth maps even

without using expensive LiDAR sensors at runtime. However, since no ground-truth depth values are available,

the ground truth was generated based on the accumulation of LiDAR points. The approach showed how

well neural networks, especially transformer architectures, can “memorize” the capabilities of additional

sensors used during training. This can also be seen when comparing the results with and without RaDAR

during inference. There is almost no difference in accuracy. However, the performance was significantly
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lower when the model was trained from scratch, without seeing any data from RaDARs. Similar results

could be witnessed by looking at the semantic segmentation branch. Nevertheless, the concept of multi-task

learning was also proved. The approach showed that an additional semantic segmentation branch helps the

depth branch to reconstruct fine details. Future research will have to dig deeper into this topic to evaluate

if the depth branch can support semantic segmentation vice versa. Finally, incorporating self-supervised

approaches, perhaps in a hybrid way in combination with supervision, should be evaluated. They can help

generate more consistent ground-truth data.

The approach presented to incorporate depth data into visual SLAM was based on the existing ORB-SLAM3

[124]. Consequently, this implied some framework conditions. For future implementations, a more integrated

approach is desirable. This could also support the quality of depth estimation, as it could directly use the

information obtained from SLAM. Similarly to the CamRaDepth approach, different downstream tasks (SLAM

and depth estimation) using the same input data could benefit from each other. The following section presents

a concept for a more integrated SLAM approach.

4.3 CaLiMO - Tightly Coupled Camera LiDAR SLAM

As a novel approach with a more tightly coupled sensor fusion, this section introduces Camera LiDAR

Mapping and Odometry (CaLiMO). The tight sensor fusion approach allows for the use of a higher information

content of the sensor data. However, as already pointed out, this leads to high requirements for the sensor

setup and can also make the approach more sensitive to imperfections in the data sources.

4.3.1 CaLiMO Pipeline

Figure 4.22 shows the structure of the approach. In total, the algorithm is composed of four working threads:

• Tracking thread assigns depth from LiDAR to the detected visual GFTT features, runs

Lucas-Kanade (LK) flow tracking and detects keyframes.

• LiDAR odometry performs scan matching between the LiDAR point clouds corresponding

the detected keyframes.

• Local optimization is the graph-based back-end of the algorithm and optimizes the poses of

all keyframes and landmarks from the tracking thread.

• Loop closing thread consistently searches for loops in the trajectory and corrects the loop

error.

Subsequently, the components and the mentioned threads are presented and explained.

Tracking

The tracking thread is part of the front-end of CaLiMO. Therefore, it creates constraints for the graph

optimization by extracting and matching visual features, associating LiDAR depth information, and finding

keyframes.

Depth Association:

For the depth association, similar to Subsection 4.2.1, the LiDAR points are first projected into the image

space. It is essential for this approach to synchronize the frames of the LiDAR and the camera, ensuring

that the measurements from both sensors are temporally aligned. For accurate spatial alignment, precise
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Figure 4.22: Structure of CaLiMO corresponding to the threads in the implementation.

external and internal calibration of the sensors is crucial. The technique identifies the nearest LiDAR points

to the features of the image and constructs a local 3D plane for depth estimation. A k-d tree and the Fast

Library for Approximate Nearest Neighbors (FLANN) algorithm [338] facilitate the selection of these points

based on proximity within a predefined radius. The method prioritizes vertical coverage due to the sparser

vertical resolution of the LiDAR. However, features with wrong depth associations can appear and must be

filtered out in the tracking algorithm.

A visualization of a camera image with detected GFTT features and their projection into the 3D LiDAR point

cloud is shown in Figure 4.23.

Figure 4.23: Depth association of GFTT features from LiDAR data. Green points are tracked, red points are untracked
detected features.

Visual Tracking:

The visual tracking is based on the LK-flow algorithm [339], tracking a sparse set of pixels from frame to

frame. The selection of these pixels is typically based on the identification of key corner points in the images.

Therefore, it is assumed that the brightness of each pixel remains consistent in subsequent frames. A GFTT

feature detector is employed to optimize tracking performance. The GFTT detector is preferred for its accuracy

in detecting corner points for optical flow tracking, although it is computationally more demanding than other

detectors. The replacement with different feature detectors can be subject to future research. Although the

LK-flow method is efficient, it has limitations in dealing with changes in illumination and motion smoothness.

To address these, an image pyramid approach is adopted. Tracking starts at the highest level (e.g., smallest

image) and progresses to lower levels, reducing the impact of significant movements or illumination changes.

An additional outlier removal method is applied. The result is a reliable set of features for subsequent camera

pose computation, validating the effectiveness of the proposed method. [340]
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LiDAR Odometry

Additional LiDAR scan registration is applied between the keyframes for additional stability of the approach.

Some preprocessing steps are performed to apply efficient scan-matching LiDAR odometry. First, obvious

outliers that are out of range or out of FOV are removed by geometric filtering. Then, a voxel-grid filter is

applied to reduce the amount of data. There, a compromise has to be found between preserving fine features

and reducing the amount of data.

In the next step, an NDT algorithm is used to obtain the transformation between the current and the previous

keyframes. The initial pose estimation is given by the visual tracking algorithm described above. Even if NDT

does not produce valid results in the required runtime, the back-end will continue to optimize and output

results without the use of LiDAR odometry.

Graph Optimization

A graph-based back-end is implemented for a precise reconstruction of the pose and trajectory of the ego.

Motion-only bundle adjustment enables frame-to-frame tracking, which is required by the front-end of the

system. The camera pose can be computed by minimizing the reprojection errors of all observed landmarks

in the current frame.

The graph-based local optimization is crucial and required by the back-end. The main objective is to select

relevant vertices (e.g., keyframes and landmarks) and edges (e.g., measurements or odometry) from the

built graph and jointly optimize them at a lower frequency. The number of keyframes in the local optimization

window is set to eight to limit the problem and keep it solvable in real-time. Figure 4.24 depicts the algorithm

and how the graph is constructed. A LK-flow tracking is applied between the camera frames, and keyframes

are identified. For the GFTT matching between frames, the depth is associated with the corresponding

LiDAR point clouds. Additionally, the point clouds corresponding to the keyframes are matched using an NDT

approach.

Loop Closing

Camera images are used to detect loop closure. If a loop closure event is detected, the loop closing

optimization mainly tries to distribute the loop error over the entire trajectory and thus correct the loop error

globally. This thread does not have to run in real-time and can run at a slow frequency in the background.

The whole back-end and graph optimization was implemented using the g2o library2. [340]

Figure 4.24: Working principle of the CaLiMO pipeline.

2https://github.com/RainerKuemmerle/g2o
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4.3.2 Results and Discussion

To keep the results comparable, the KITTI odometry dataset [42] was chosen. It provides synchronized

and triggered LiDAR scans, camera images, and corresponding ground-truth trajectories. The results are

summarized in Table 4.6. Due to the implementation in C++, the algorithm runs in real-time on a consumer

processor (Intel Core i7-9750h).

Table 4.6: Average translational error in % and rotational error in °/100 m of CaLiMO on the KITTI odometry bench-
mark [42].

Seq. Scenery Translational RPE in % Rotational RPE in °/100 m

00 Urban 0.892 0.327
01 Highway lost tracking lost tracking
02 Urban 0.967 0.363
03 Urban 0.839 0.457
04 Rural 1.766 1.465
05 Urban 0.805 0.312
06 Urban 0.913 0.445
07 Urban 0.739 0.328
08 Urban 1.448 0.449
09 Rural 0.832 0.267
10 Urban 0.900 0.561

Average 0.956 0.497

It becomes evident that, in contrast to the ORB-SLAM3 RGB-L, CaLiMO fails to reconstruct the trajectory

from the highway sequence 02. In this sequence, a smaller number of features is found, which leads to

challenges for the visual tracking thread. Furthermore, due to the repetitive highway scenario, also the

LiDAR odometry cannot support the tracking sufficiently. Here, the more compute-intensive ORB features are

beneficial. In the future, these could also be integrated into the CaLiMO approach. Besides this sequence,

the algorithm manages to estimate valid trajectories for all sequences in rural and urban environments. The

presented results were obtained without loop correction. The loop closing thread managed to detect loop

occurrence events and correct the error in some cases. However, the average results suffered from loop

closure addition. Additional investigations are needed to solve this problem.

A big topic for improvement is the implementation and the resulting concurrency of the threads. This appears

when loop closure, and thus, global optimization is enabled and is executed in parallel to the local optimization

thread. In the current CaLiMO implementation, concurrency leads to indeterministic behavior, which is not

the case if only locally optimized trajectories are output. For future research, a more stable implementation

and some refactoring of the project are needed. Therefore, the current approach needs to be restructured to

avoid these issues. However, even without global optimization, the approach showed convincing results and

an interesting base for future work. The algorithm must be further enhanced, fine-tuned, and optimized to

reach state-of-the-art results.

4.4 Summary of the Results

After extensive exploration of several algorithms for sensor fusion, localization, and mapping in different

environments and use cases, autonomous racing and public traffic scenarios, this section aims to summarize

the key results and findings of Section 4.1, Section 4.2, and Section 4.3. The primary challenges encountered

in the localization approaches presented can be traced back to two root causes: the complexity of the
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environments and limitations stemming from the sensor setups. These challenges manifested themselves in

various forms in the different methodologies and scenarios investigated.

Complex Environments: One of the most significant obstacles was the variability and unpredictability

of different environments. Whether it was the high-speed dynamics of a race track or the repeating and

monotonous appearance of highways, each environment presented its unique set of challenges. These

complexities often tested the limits of algorithms and highlighted the need for robust and adaptable solutions

capable of performing under a wide range of conditions.

Sensor Limitations and Calibration: Another critical aspect that influenced the efficacy of the localization

techniques was the quality and calibration of the sensors used. Imperfect sensor setups, including problems

with temporal synchronization, spatial calibration accuracy, and data alignment, significantly affected system

performance. This finding underscores the importance of high-quality sensor data and precise calibration or

robust algorithms capable of handling such problems for achieving reliable and accurate localization and

mapping.

As all existing approaches of LiDAR localization and mapping failed for the use case of autonomous racing, a

novel approach was introduced in Subsection 4.1.3. It uses a camera for longitudinal and a LiDAR sensor for

lateral localization relying on pre-built maps. The algorithm was tested and found to be efficient in simulation.

However, due to the high requirements for sensor data and the tight timeline of the autonomous racing

challenge, the approach could never be validated in real-world applications.

A more general approach was developed to bring the idea of using fine-grained details from the camera

image with depth information from LiDAR from race tracks to public roads: ORB-SLAM3 RGB-L. It upsamples

depth information from LiDAR point clouds and projects them into the corresponding camera frame using the

calibration data. Even with a lightweight conventional CV approach to upsampling, using a 5x5 pixel-sized

diamond and dilation, the approach showed precision comparable to that of the ORB-SLAM3 in stereo mode.

In the difficult environments described, especially on highways, the RGB-L even outperformed the stereo

mode and showed to be more robust. Furthermore, the computation time could be reduced by around 40 %.

Subsequently, Subsection 4.2.2 investigated the pixel-wise depth estimation in more detail. Therefore,

CamRaDepth was developed using camera images and RaDAR measurements. The RaDAR reflections

are projected into the camera image, similar to the LiDAR points in the previous approach. It incorporates

a ViT encoder and a convolutional decoder. To improve the network’s ability to correctly estimate fine

details, an additional semantic segmentation branch was introduced for enhanced object-level understanding.

The approach showed to be efficient and outperformed the state of the art using the nuScenes dataset.

Evaluation and several ablation studies showed that the accuracy is insignificantly lower than with the full

model even when RaDAR data and the segmentation branch are not available at inference. However, during

training, the network benefits heavily from them. This leads to the conclusion that the CamRaDepth network

manages to save this information in the weights and “memorize” the effects during inference. Although deep

learning is an efficient tool for depth estimation, the ORB-SLAM3 RGB-L showed the best results with basic

dilation upsampling of LiDAR points for semi-dense depth maps. More data are needed for a more detailed

investigation of combining the approach with deep learning-based upsampling.

The final section of this chapter introduced CaLiMO. This approach aims for a tightly coupled visual LiDAR

SLAM. On the KITTI dataset, the approach showed meaningful results, managing to keep track of the

ego-pose throughout 10 out of 11 sequences. Nevertheless, the results fell short of the results previously

shown of ORB-SLAM3 RGB-L. It should be mentioned that CaLiMO in the current state struggles with global

optimization. Furthermore, more resources need to be put into the further development and parametrization

of this approach.
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In conclusion, while the research in this thesis made significant progress in advancing sensor fusion for

localization and mapping, it also highlighted the critical need for further development in dealing with different

environments and imperfect sensor setups. These insights pave the way for future research that focuses on

improving the robustness of localization algorithms to better adapt to the diverse challenges presented by

real-world scenarios.

The next chapter will present a mapping pipeline for an autonomous multisensor research vehicle. All of the

presented findings will be used to realize and apply this pipeline.
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ronments

Parts of this chapter appeared in [18].

This chapter mainly addresses the second research subquestion:

SQ2: How to design an open HD mapping pipeline for AVs?

Therefore, a novel mapping pipeline for the fully equipped research vehicle EDGAR is developed and

evaluated. Based on the previous Chapter 4, this chapter will further transfer the findings from localization and

mapping on race tracks to public roads. This chapter aims to build an applicable and arbitrarily expandable

localization and mapping pipeline for the research community in general and especially the research vehicle

EDGAR. The main focus is on LiDAR mapping for localization and semantic mapping to enable motion

planning, prediction, etc. Therefore, different existing algorithms and data sources are combined to create

the first open mapping pipeline for HD maps for automotive applications. The map format is based on open

standards to fulfill the requirements to be compatible with the Autoware based software stack. A preliminary

version of the pipeline presented was published in [18]. This chapter builds on this work and adds additional

functionalities, areas, evaluation, and results.

5.1 EDGAR Research Vehicle

Before the developed pipeline is presented, the autonomous research vehicle EDGAR is introduced in more

detail in this section. As the base vehicle platform, the EDGAR research vehicle uses a Volkswagen T7

Multivan e-Hybrid. This is equipped with various sensors, computers, actuators, etc. Figure 5.1 (a) shows the

vehicle in front of the TUM main building in Garching. A more detailed photo of the sensor rack, viewed from

the front of the vehicle, is depicted in Figure 5.1 (b). The most relevant sensors for the remainder of this work

are highlighted, namely GNSS and LiDARs.

Eight cameras ensure 360°vision around the vehicle, and six RaDARs to the front and rear can detect

vehicles at a large distance and measure their velocity by exploiting the Doppler effect. An RTK-corrected

GNSS receiver from NovAtel provides global positioning data. Under open sky and good conditions, it

reaches cm-level accuracy and can be used as a ground truth for localization. In addition, it includes an IMU

that allows for enhanced localization and state estimation through INS. The receiver outputs a filtered INS

solution calculated on the internal processor and the raw sensor data. Thus, GNSS and IMU data can also

be fused on the main computing platform.

In addition to the GNSS receiver, the LiDARs are the primary sensors for localization and mapping. EDGAR

comprises a total of four laser scanners to cover the area around the vehicle and high ranges to the front and

rear. Two spinning Ouster OS1-128 360°LiDARs with a vertical FOV of 45°are placed on the front corners

of the vehicle. Especially for long-range perception to the front and rear, two Innovusion Falcon Kinetic are

mounted at the front and rear centers of EDGAR. They provide a horizontal FOV of 120°and a vertical
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(a) EDGAR research vehicle on the TUM campus.

NovAtel PwrPak7D-E2

Innovusion Falcon KineticOuster OS1-128

(b) Roof-mounted sensor rack.

Figure 5.1: EDGAR research vehicle and detail photo of the roof-mounted sensor rack.

FOV of 25°. At 10 % reflectivity, they have a detection range of 250 m. Due to their solid-state design, the

FOV and a specific Region Of Interest (ROI) can be changed at runtime depending on the current situation.

The LiDAR setup of EDGAR with the FOVs of the sensors mentioned is depicted in BEV in Figure 5.2. The

multi-LiDAR configuration induces inherent challenges, mainly spatial calibration, temporal synchronization,

and synchronized triggering. The following sections will elaborate on these challenges and the proposed

solution approaches.

Ouster OS-1 128

Innovusion Falcon

GNSS Antenna

Figure 5.2: LiDAR setup of the research vehicle EDGAR.

An overview of the whole perception sensor setup and the compute configuration is given in Table 5.1. The

vehicle serial sensors can be accessed via a Controller Area Network (CAN) interface and are connected to

the main computer. A grandmaster clock is installed to provide a time signal for precise PTP synchronization

for all sensors.

Figure 5.3 shows the concatenation of four individual LiDAR point clouds from EDGAR transformed into a

common frame. The reflections of each LiDAR are painted in the corresponding color for better distinguisha-

bility.
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Table 5.1: Overview of the perception hardware components of EDGAR. The FOV is given horizontally and vertically
(h x v).

Component Manufacturer Model Frame rate FOV (h x v)

GNSS Receiver NovAtel PwrPak7D-E2 20 Hz GNSS, 100 Hz IMU -

2x LiDAR Mid-Range Ouster OS1-128 10 Hz - 20 Hz 360°x 45°

2x LiDAR Long-Range Innovusion Falcon Kinetic 10 Hz 120°x 25°

8x Cameras Basler acA1920-50gc up to 40 Hz depends on lens

6x RaDAR Continental ARS430 10 Hz ±60°x 2.2°(short range),
±9°x 2.2°(long range)

Compute Platform InoNet Mayflower B17 - -

Network Switch Netgear M4250-40G8XF-PoE+ - -

Innovusion Front
Innovusion Rear
Ouster Left
Ouster Right

Figure 5.3: Concatenated point cloud from all four LiDARs of EDGAR.

5.2 Pipeline Overview

This chapter introduces the general pipeline of the EDGAR software stack and, specifically, the mapping and

localization pipeline.

Generally, the software stack builds on the Autoware open-source framework [341]. The stack follows the

standard AD approach as presented in Section 1.2 and is based on the ROS 2 middleware. It provides

baseline implementations for all common software modules. Autoware is divided into two module collec-

tions, namely Core and Universe. Autoware.Core includes the most important modules needed for basic

autonomous driving. It adheres to certain code standards and is entirely written in C++. Autoware.Universe

provides additional packages to expand the software’s functionality and thus the usable ODDs. It simplifies

community contributions by reducing code contributions’ specifications and requirements.

The overall concept of the localization and mapping pipeline developed for EDGAR includes two separate

strands: offline mapping and online localization, with both sharing common algorithms. The concept overview

is depicted in Figure 5.4.
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Figure 5.4: Overview of the localization and mapping pipeline for the EDGAR research vehicle.

In the offline mapping pipeline, there are two outputs to be generated:

• A precise 3D point cloud map for online LiDAR localization

• A vector map of the lanes in the Lanelet2 format for motion planning, etc.

The point cloud mapping pipeline is built on the KISS-ICP [82]. This algorithm showed the best results in

terms of applicability and generalization. Different approaches are introduced for vectorized lane mapping

based on online data and vehicle sensors. The finally chosen approach leverages crowd-sourced OSM data

for semantic map generation. In addition, the FlexMap Fusion tool, developed within the scope of this thesis,

is introduced. It allows for georeferencing and fusion of different data sources. The mapping pipeline will be

presented in more detail in Section 5.4.

The online localization module also uses the adapted KISS-ICP and is similar to the point cloud mapping

pipeline but uses a pre-built point cloud map. An EKF uses the information from the LiDAR localization and

fuses it with additional vehicle sensors (GNSS, IMU, and wheel odometry) to output a high-frequency ego

state estimate.

5.3 Multi-LiDAR Scan Registration

Subsection 4.1.4 reveiled several challenges for multi-LiDAR scan matching. Therefore, the LiDAR fusion

scheme proposed in this section is implemented for the point cloud registration of EDGAR. Instead of

fusing all LiDARs as shown in Figure 5.3 and processing it afterward, each LiDAR is processed on its own.

Figure 5.5 depicts the LiDAR fusion scheme integrated into KISS-ICP. KISS-ICP offers a LiDAR odometry

and focuses on robustness and real-time capability. First experiments showed that it outperforms other

algorithms with custom data, even those that showed superior performance on benchmark datasets. After

an optional preprocessing, e.g., voxelization, geometric filtering, etc., of the single point clouds, they are all

transformed into a common base frame. Here, the projection of the center of the rear axle to the ground

plane is chosen as the base frame. Therefore, external spatial calibration data that have been identified

offline before are used. In this approach, every point cloud can be registered with its own timestamp, and no

assumptions or compensations are needed for point cloud fusion and registration. Synchronization errors can

be corrected through scan matching without inducing map inconsistencies. After each registration, a motion

update is performed. In this use case, a simple forward projection of the last registration result was performed.

However, in future work, these pose estimates could be treated as separate motion updates in a Kalman
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Figure 5.5: LiDAR fusion scheme for a robust point cloud registration for EDGAR’s multi-LiDAR setup.

Filter to also account for unequal precisions. The presented scheme for LiDAR fusion and scan matching is

used both for point cloud map building and for localization in existing pre-built maps. Therefore, two modes

for mapping and localization are implemented with the same underlying scan-matching methodology. In the

mapping mode, the local map is created at runtime and used for registration. In localization mode, a 3D point

cloud map is loaded, and the LiDAR frames are registered online. For initialization, the initial pose has to be

input. If available, this can be done using GNSS. Otherwise, the initial pose has to be set manually.

In summary, the following changes have been made to KISS-ICP [82, 342]:

• Implementation of multiple point cloud subscribers so that the node can listen to every LiDAR.

• Transformation of every point cloud to the base frame (rear axle center ground).

• Global map loading for localization on existing point cloud maps.

• Dynamic pose initialization for localization mode in an existing map coordinate frame.

• Motion update for each registration.

5.4 HD Mapping Pipeline

This section presents the developed open-source mapping pipeline focusing on quick mapping of unmapped

areas. The LiDAR registration methodology from Section 5.3 is used for the point cloud mapping process.

The last part presents the semantic mapping pipeline, e.g., the creation of lane-level maps in the Lanelet2

format.

5.4.1 Map Format

To provide compatibility with the Autoware framework and the EDGAR research vehicle software environment,

the map has to fulfill the following requirements:

1. 3D point cloud map as .pcd file and semantic lane map in the Lanelet2 format for compatibility

with Autoware.
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Figure 5.6: Expandable multi-layer HD map structure.

2. Arbitrary expandability for integrating, evaluating, and testing novel localization algorithms for

research purposes.

The resulting HD map structure aligns with the state of the art as presented in Subsection 2.3.1. Figure 5.6

illustrates the structure with the stacked layers of the map. The different layers are used for different use

cases, such as localization, motion planning, motion prediction, etc. All layers share the same coordinate

system so that positions can be used across different layers without any transformations. For the first

implementation and integration with the Autoware framework, the two base layers, namely a semantic layer in

the Lanelet2 format and a 3D point cloud map, are needed. Thus, the following will focus on these layers and

their generation. However, for future research, for example, feature maps could be used to evaluate visual

mapping and localization algorithms within the whole EDGAR software environment, thus leading to more

general results than evaluating algorithms isolatedly.

5.4.2 Point Cloud Mapping

The LiDAR scan registration for the point cloud mapping is based on the algorithm presented in Section 5.3.

However, since KISS-ICP is a LiDAR odometry only and does not offer loop closure capability, global

optimization, or GNSS integration, post-processing steps are required to generate globally consistent

maps [82]. Therefore, the Interactive SLAM toolbox [317] is used. The estimated ego poses by the KISS-ICP

and their corresponding point clouds are imported for manual and semi-automatic refinements. Additional

constraints, for example, loop closure, can be set to make the map globally consistent. Also, errors and wrong

constraints can be manually removed to improve the point cloud map quality. After this, an automatic fine

registration is applied by running scan registration with the newly set constraints. The final map is built by

transforming all point clouds to their corresponding positions and accumulating them. It can be saved as

a 3D point cloud in the .pcd format to be used in the online localization mode. To control and limit the size

of the final point cloud map, only keyframes are exported. The requirements for keyframes (e.g., change in

distance and rotation) can be adjusted to find a good trade-off between file size and map resolution. After

this, voxel filtering with a definable voxel size is also applied to reduce the amount of data further.

5.4.3 Semantic Mapping

Compared to point cloud mapping, semantic mapping of lanes and road geometries poses different challenges.

For comprehensive semantic road mapping, road markings and boundaries, such as walkways, road ditches,

etc., must be detected and mapped. Road markings can exhibit color, texture, and curvature variations, often

making them difficult to distinguish from surrounding objects. For road boundaries, generating heuristics

that generalize well across different ODDs is difficult. Deep learning-based methods can be used; however,
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as the related work revealed, they show high data dependency and thus need labeled training data from a

specific use case.

Additionally, semantic mapping requires an understanding not only of the geometric texture of the environment

but also of the contextual relationships. For example, lane markings and other road elements, such as lane

boundaries, intersections, and traffic signs, are related and must be interpreted correctly. These factors

introduce an additional layer of complexity, which demands more sophisticated machine learning techniques

to accurately interpret and represent lane information.

As Subsection 2.3.3 revealed, this complexity leads to a lack of performance of conventional algorithms

for the reliable detection and mapping of lane information. The same was determined for the EDGAR

project [343]. Both conventional and learning-based approaches failed to generalize well enough to allow for

a applicable, generalizing mapping pipeline. Therefore, current research focuses on the direction of deep

learning-based online HD mapping as presented in Subsubsection 2.3.3. However, these approaches are

highly data-dependent with a limited generalization to other domains, e.g., other sensor setups, locations,

seasons, etc. As sufficient data, especially labeled data, from EDGAR are not available, such approaches

are not applicable at the current state and will be further researched in future work.

To still be able to quickly create maps of previously unmapped areas without having to manually select the

lanes, OSM was chosen as the main data source [344]. It provides the geometric and semantic information

of the lanes, such as street type, speed limits, etc. The following will describe the approach to process this

information and generate maps in the Lanelet2 format.

Retrieval of
road network

Lane
construction

Conversion to
Lanelet2

lane width 
speed limit 
street type

name

Figure 5.7: Generation of the lanelet from OSM data. [344]

The high-level process of generating the lanelet map from OSM data is depicted in Figure 5.7. As OSM

contains only the center lines of the street and the number of lanes, the actual lane geometry has to be

estimated. Therefore, the width of each lane - if not included in the data - must be estimated based on

the type of road, which the OSM data contain as the corresponding highway tag. Based on the German

regulations of the Research Association for Road and Transportation (Forschungsgesellschaft für Straßen-

und Verkehrswesen e.V.) [345], the standard total road width (German: Regelquerschnitt, RQ) specifies

the setup of the entire road and the individual lane widths. The extracted values used for the generation of

lanelets are given in Table 5.2. To generate the final lanelet in the Lanelet2 format, additional information,

such as driving direction, speed limit, etc., is added to the corresponding lanes. If refinement of the semantic

map is needed, e.g., in intersections, the tool VectorMapBuilder [346] can be used.

In this step, not only the road geometry is extracted, but also additional semantic information contained in the

OSM data. This can be speed limits, pedestrian crossings, traffic lights, etc.
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Table 5.2: Assumed lane width based on the OSM highway tag [344, 345].

Description Assigned OSM types Standard total road width Lane width

Highway motorway RQ 29.5 3.75 m

Large main road trunk RQ 10.5 3.5 m

Medium main road primary, secondary, busway RQ 9.5 3 m

Inner city and access roads tertiary, unclassified, residential,
service, living_street

RQ 7.5 2.75 m

5.4.4 Georeferencing

For several reasons, georeferencing is an important step in creating precise HD maps. It allows the use

of GNSS data for localization in the map and fusion with LiDAR-based localization approaches. Without a

georeferenced map, no fixed transformation exists between the GNSS and the point cloud map coordinate

systems. Moreover, a joint georeferencing of the point cloud and the Lanelet2 maps guarantees their

alignment. As described above, the point cloud maps are generated and optimized without using GNSS

data. For the extraction of semantic maps, georeferenced data from OSM is used. However, this also has

to be post-processed to guarantee the consistency of all map layers. Therefore, a georeferencing and

map data fusion tool called FlexMap Fusion is developed. It is available as open source software under

https://github.com/TUMFTM/FlexMap_Fusion. The structure of the tool is depicted in Figure 5.8.

Figure 5.8: Structure of the FlexMap Fusion conflation tool [19].

To use local Cartesian coordinates, a map origin point is defined. It is either the starting point of the driven

trajectory, or it can be manually set. For the projection from geographic GNSS coordinates to Cartesian

coordinates, the Universal Transverse Mercator (UTM) transformation is used. The process of fusing two

maps that represent the same environment differently (here: point cloud and lanelet map) is usually referred

to as conflation. FlexMap Fusion comprises three modules for map conflation and georeferencing: During

Map Alignment, the maps are aligned with the RTK corrected ego GNSS trajectory in a projected local

coordinate frame. First, a rigid Umeyama transformation [347] is used. It rigidly translates and rotates one

map to find the optimal alignment without changing the maps’ geometric appearance or trajectories. To

actually align the maps and remove the accumulated error from map creation, e.g., in SLAM, a piecewise

linear rubber-sheet transformation is applied [348]. Therefore, the area to be mapped is triangulated using

control points. These control points can either be set manually (e.g., visually corresponding points, such as

sharp turns) or be taken from the GNSS trajectory (only points with low estimated standard deviation are

used). The algorithm applies linear transformations in each triangle based on the deviation of the maps at

the control points. This alignment enables the conflation of the different map data in the Map Conflation

module. This step uses a buffer-growing algorithm to identify the corresponding road sections between the

maps. After this, the information can be transferred between different maps. For example, the speed limit
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from OSM can be added to a lanelet map built using sensor data from the ego vehicle. The projection of the

aligned, conflated, and consistent maps to global coordinates in the Map Georeferencing step generates

the final output. This allows the map to be used for localization using GNSS data directly. More details on the

exact implementation of the algorithms can be found in [349].

5.5 Results and Discussion

This section presents the results and performance of the presented mapping pipeline [344]. Therefore, two

routes, one at the TUM campus in Garching and one in the Munich city center are mapped, and the results

are evaluated. Extending the results, the discussion will identify open points and future research directions.

Experimental Setup

Two custom datasets that have been recorded with EDGAR are used. One was recorded at the TUM Campus

Garching (Garching dataset) and the other one in the center of Munich between the main station and

the Theresienwiese, referred to as the “Wiesn” dataset. Figure 5.9 shows the driven GNSS trajectories in

BEV. The standard deviation estimated by the GNSS receiver internally is represented by the color at each

corresponding position. In the Garching dataset, the area behind the Galileo building exhibits the highest

uncertainty, with the standard deviation reaching a maximum of 0.814 m. The mean standard deviation

values 0.089 m. Figure 5.9 (b) depicts the route of the Wiesn dataset. The GNSS signal demonstrates

significantly reduced standard deviations, with the maximum being 0.184 m. The mean standard deviation

values 0.053 m. As estimated standard deviations from the NovAtel GNSS receiver are in the cm range for

the largest part of the trajectories, GNSS can be used as a reference signal for the ego position to evaluate

the map quality.

(a) Garching dataset. Behind the Galileo building, the GNSS
signal shows the highest uncertainty.
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(b) Wiesn dataset. It shows comparably less uncertainty
throughout the trajectory.

Figure 5.9: Recorded GNSS trajectories of the two evaluated datasets. The color represents the standard deviation
as estimated by the NovAtel receiver.

The progress of the parallel setup and development of the hardware platform and sensor driver implementation

can be seen in the contained data. As the Garching dataset was recorded a few weeks earlier, it only

comprises the two Ouster OS1-128 LiDARs and no time synchronization. In the Wiesn dataset, all four
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LiDARs are available, and they are synchronized using the PTP standard. By this, the exact timesteps and

the time between the recording of the LiDAR point clouds are known. Also, the external spatial calibration

between the LiDARs was improved. However, due to the increased data payload, in the Wiesn dataset, the

two Ouster LiDARs showed a decreased frame rate of only around 3 Hz. Also, the images from the front

cameras are available in the dataset. These will be used for a better understanding of the corresponding

situations in the discussion section. Table 5.3 comprises the data contents of the two evaluation datasets.

Table 5.3: Overview of the two EDGAR datasets for evaluation.

Garching Wiesn

Start of Recording 2023-07-20, 16:41 2023-09-29, 14:40

Scenery semi-urban urban

Start Location 48.2644°N, 11.6690°E 48.1367°N, 11.5519°E

Sensor Setup RTK-GNSS, 2x LiDAR RTK-GNSS, 4x LiDAR, PTP

Driven Distance 1565.3 m 1189.3 m

Duration 310.4 s 766.2 s

The following section will demonstrate the working principle and the results of the described mapping pipeline

on these two datasets. Therefore, first, the estimated ego trajectory is quantitatively evaluated after each

mapping step:

• LiDAR point cloud mapping using the customized KISS-ICP

• Loop closure and global optimization with Interactive SLAM

• Georeferencing with manual control points using the FlexMap Fusion tool

Following, the OSM-based semantic Lanelet2 maps are evaluated qualitatively. As no ground truth is available,

only a visual evaluation can be carried out.

Results

The results after each mapping step are summarized in Table 5.4. The following section will relate to this

table and explain the single steps of the pipeline. As elaborated in Subsection 2.3.2, it is assumed that the

required map precision is in a range of 10 cm to 20 cm. The created maps show a final median precision of

35.1 cm and 18.8 cm. This means that the maps are close to the desired range. However, the maximum

errors will have to be minimized in future work.

Table 5.4: Decrease of the mapping trajectory error after each mapping step. The RTK-GNSS signal filtered for
outliers is used as a reference trajectory. All values are given in m.

Garching Wiesn

RMSE Mean Median Std. Dev. σ Max RMSE Mean Median Std. Dev. σ Max

KISS-ICP 1.488 1.109 0.844 0.992 5.455 8.737 8.465 9.096 2.163 13.085

Interactive SLAM 0.706 0.550 0.488 0.443 2.321 0.775 0.630 0.620 0.451 1.928

Georeferencing 0.549 0.425 0.351 0.348 1.907 0.278 0.217 0.188 0.173 0.929

The first step of the map generation process is to create a first point cloud map with the adapted KISS-ICP

LiDAR odometry. For the Garching dataset, only the two Ouster LiDARs could be used; the Wiesn dataset

makes use of all four laser scanners. As no loop closure or GNSS was used in the first LiDAR mapping step,

the trajectories show an increasing drift over time. Since the KISS-ICP does not have a global reference, the

76



5 Open Mapping Framework for Urban Environments

Umeyama algorithm [347] is used to align the SLAM trajectory with the GNSS trajectory and calculate the

error. The aligned trajectories are shown in Figure 5.10.
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(a) Garching dataset.
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(b) Wiesn dataset.

Figure 5.10: Deviation between the GNSS and the aligned KISS-ICP. The deviation is calculated to the spatially
closest point.

It becomes evident that the Garching dataset shows significantly lower deviations. However, it should be

mentioned that the most significant part of the error in the Wiesn dataset comes from the outlier in the top

right corner. This leads to a shift of the entire trajectory in the rigid alignment process. Another problem can

also be seen with this error assessment. As no temporal relations are used, only the error to the spatially

closest point can be calculated. By this, longitudinal errors can be neglected, for example. This behavior

can be observed when the trajectories cross, e.g., in the top left corner of the Wiesn dataset. The error is

assumed to be zero, even if there is still a deviation between the estimated trajectory and the reference.

As the KISS-ICP does not have GNSS integration or loop closure capability [82], the Interactive SLAM [317] is

used to manually add loop closure and additional constraints to the KISS-ICP trajectory. The Interactive SLAM

then globally reoptimizes the entire trajectory and thus compensates for the accumulated drift. The manually

added loop closure constraints for both datasets are shown in Figure 5.11, marked as red stars. In the Wiesn

dataset, additionally, the faulty registered point clouds in the top right corner and their corresponding edges

have been removed. The improved results after application of the Interactive SLAM can be found in Table 5.4.

As the Wiesn dataset only provides one big loop, the error increases to its maximum at the top right. This is

the position furthest away from the loop closure at the beginning and end of the trajectory. In the Garching

dataset, the same road is driven in two directions, and thus, more loop closure constraints can be added,

leading to a smaller error in the trajectory.

The final step of the point cloud mapping pipeline marks the georeferencing using the custom-developed

rubber-sheeting and georeferencing tool FlexMap Fusion [19]. For georeferencing, distinct point pairs between

the GNSS trajectory and the trajectory after KISS-ICP and Interactive SLAM are selected. These are marked

as orange stars in Figure 5.12. The area around the trajectory is triangulated according to these control

points. As the error is known for each control point, it can be interpolated for each triangle, leading to a

linear transformation that is steady on the edges. The selection of suitable control points is especially difficult

on long straights. This results in the straights being relatively far away from the correction points and thus

showing increased deviations. This behavior can be seen in Figure 5.13.
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(b) Wiesn dataset.

Figure 5.11: Deviations between the GNSS and the aligned Interactive SLAM trajectory. The red stars show the
positions of manually added constraints, such as loop closures.
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(a) Garching dataset. Nineteen control points are selected.
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(b) Wiesn dataset. Twenty control points are selected.

Figure 5.12: Triangulation for the rubber-sheet transformation between the GNSS and the Interactive SLAM trajectory.
The orange stars illustrate the control points.

The final errors of the mapping pipeline are included in Table 5.4. The Wiesn dataset shows significantly

smaller deviations from the GNSS signal, which is used as a reference trajectory. A combination of several

factors can explain this:

• Two additional LiDAR sensors for long range and improved coverage to the front and the rear

of the vehicle.

• Added PTP synchronization for known time differences between all point clouds.

• Geometrically different environment: campus and urban.

After calculating and correcting the trajectory positions based on their corresponding point clouds, all single

scans are accumulated to obtain dense 3D maps. These can be used for online map-based localization.

Figure 5.14 shows the generated point cloud maps for a qualitative impression. A closer look at the maps
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(a) Garching dataset.
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(b) Wiesn dataset.

Figure 5.13: Deviations between the GNSS and the rubber-sheeted SLAM trajectory.

reveals a higher density for the Wiesn dataset. This is because scans from four LiDARs are accumulated

instead of only the two rotating Ousters.

(a) Garching dataset. (b) Wiesn dataset.

Figure 5.14: Created point cloud maps for the Garching and Wiesn datasets. The color encodes the z-coordinate.

The final part of this section elaborates on the results of the semantic map generation. Therefore, the

road information of OSM is extracted for the corresponding areas. Following the process presented in

Subsection 5.4.3, maps in the Lanelet2 format can be created. As there is no ground truth for the lane

geometries, this section will conduct a qualitative and visual evaluation of the results. Therefore, the created

semantic maps are overlaid with orthographic and georeferenced photos provided by the OpenData dataset

of the Bavarian government [350]. In addition, the lanes are overlayed with the previously created point cloud

maps to check for consistency across the different map layers. Figure 5.15 shows the generated Lanelet2

maps and the corresponding aerial orthophotos.

More detailed images from both the Garching dataset as well as the Wiesn dataset are shown in Figure 5.16.

The figures disclose that the lanes align well with the orthophotos. Even if a quantitative evaluation cannot

be carried out, the OSM based lanelet map builds a sufficient initial base for autonomous driving in urban
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(b) Wiesn dataset.

Figure 5.15: Result of OSM-based vector map generation. Orthophotos provided by OpenData [350].

regions to follow the lanes. However, it cannot be ruled out that after the first tests, the map must be refined

manually or based on onboard sensor data. The FlexMap Fusion tool offers the possibility to adjust a lanelet

map based on OSM data to an existing point cloud map in case of inconsistencies.
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(a) Garching dataset.
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(b) Wiesn dataset.

Figure 5.16: Plot of lanes (blue) on top of orthophotos provided by OpenData [350].

For the final result of the HD mapping pipeline, the point cloud maps are combined with the Lanelet2 maps.

As the two map layers are generated from different data sources, validating their correspondence, which the

georeferencing should give, is essential. Figure 5.17 shows the two generated maps with their overlaid layers

in the BEV. On this basis, the point cloud map can be used for localization, and the semantic layer can be

used for path planning, motion prediction, etc. The presented HD map is fully compatible with the Autoware

software stack.

For a more detailed check of the alignment of the maps, Figure 5.18 shows zoomed-in sections of the two

maps. The generation processes for the point cloud map and the lanelet map involve uncertainties in the data
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(a) Garching dataset. (b) Wiesn dataset.

Figure 5.17: Overlay of the point cloud map and the Lanelet2 map.

themselves, possible errors in data processing, heuristics for lane mapping, and georeferencing measures.

Despite these factors, the derived map layers show accurate alignment. The derived lanes represent drivable

spaces and do not intersect with static obstacles for almost the entire mapped area. However, Figure 5.18 (b)

reveals that on the right side, a parked car intersects with the map lane. It is not clearly visible if this represents

an error in the generated map or if the car is actually parked partially on the road. Such occurrences will

have to be evaluated in more detail. Therefore, a validation and evaluation pipeline should be developed to

quantitatively assess the results. Also, on the left side of this section, it can be seen that there is a slight

deviation between the lanelet map and the point cloud. This slight drift probably stems from the point cloud

mapping process, which relies on manual control points. Thus, uncertainties and map errors can occur,

especially between these points.

(a) Garching dataset. (b) Wiesn dataset.

Figure 5.18: Overlay and alignment of the generated point cloud and vector map in the Lanelet2 format.

In summary, Table 5.4 shows that after the whole mapping pipeline, accuracies can be reached that allow

online use of the created maps. An additional visual investigation proved the alignment of the point cloud

maps and the lanelet maps. However, the maximum errors of the maps are still in the range of meters.

Therefore, it is advised that the HD maps are validated in shadow mode before deploying them to the

autonomous driving software stack and entirely relying on them. Also, online monitoring of the HD maps and

detection of map errors should be implemented. An important point for future research will be the evaluation

and assessment of maps to guarantee correctness and accuracy.
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Discussion

Based on the results presented, the whole pipeline will be discussed below. First, some topics of the online

localization pipeline will be considered. The remainder of this section will focus on discussing the HD mapping

pipeline and defining points for future research.

Localization:

First experiments and tests proved that the created HD maps can be used for online localization both with

the standard Autoware localization and the custom KISS-ICP localization module. However, some points are

still open and will be discussed first. In the current implementation, pose initialization is done by taking a

pose from the GNSS receiver. This can cause problems in case of occlusion or GNSS disturbances such

as multipath reflections. The current backup is a manual pose initialization, which is also not feasible in

every case. The topic of pose initialization is also part of recent research, and some approaches are already

available that will have to be implemented and tested with EDGAR [351].

Another possible improvement of the localization module is estimating a dynamic covariance matrix. In

the way it is implemented, and according to the state of research, a fixed covariance is assigned to the

localization output. Usually, the values are based on observations and experience. However, the uncertainty

of the localization module can vary greatly depending on the current vehicle state, sensor performance, the

appearance of the environment, etc. Normal ICP based algorithms can only output information about the

point-wise distance. This does not have to correlate with the actual accuracy of the scan registration, as

already shown in Subsubsection 4.1.2. There are still possibilities to estimate a dynamic covariance. This

could be done by deriving heuristics based on past experiences, e.g., runtime variation or point distribution,

or by extracting uncertainty information directly from the registration algorithm.

Finally, more evaluation is needed to obtain more information on the performance of the localization module.

For the scope of this work, the amount of available data and scenery is quite limited. More data must be

recorded for future research and a more detailed evaluation. Especially in the context of the whole software

stack, this will reveal novel points for improvement that can be implemented in future works. Therefore, the

performance of the localization module will not be investigated isolated, but the effects of the localization

behavior on the rest of the software can be analyzed.

Mapping:

By the improved sensor setup (PTP synchronization, four LiDARs, calibration), significant improvements from

the Garching dataset to the Wiesn dataset could already be observed. However, in the Wiesn dataset, the

frame rate of the Ouster LiDARs dropped, leading to a restricted mapping performance, especially in terms

of the density of the map on the sides of the road. The cause of this problem lies within the vehicle platform.

Higher framerates of the LiDARs will improve results and denser 3D point cloud maps.

As for the EDGAR research vehicle, existing SLAM approaches failed to create satisfactory maps with all

LiDARs, the KISS-ICP [82] was adapted to handle all four laser scanners and combine their point clouds.

However, it is only a LiDAR odometry, meaning it does not provide any loop closure, global optimization, or

GNSS integration capability. To minimize the adverse effects of the accumulated drift, after the KISS-ICP

mapping, Interactive SLAM [317] was applied to manually add loop closure constraints and remove erroneous

constraints from the odometry. Therefore, manual steps are required, which also induce additional uncertainty.

In the desirable mapping pipeline, a SLAM back-end would be added to the KISS-ICP front-end. By this,

GNSS and IMU measurements could be directly included, output drift-compensated, and even georeferenced

trajectories and maps without manual post-processing.
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To obtain georeferenced maps without this back-end, the FlexMap Fusion tool was developed. It uses GNSS

data to georeference the created map a posteriori. The rubber sheeting algorithm used currently only works

two-dimensional, meaning that height drift cannot be compensated. Here, two suggestions for improvement

have to be made. First, correspondences between the KISS-ICP and the GNSS trajectory need to be found

based on their timestamps. By this, no manual control points need to be selected, leading to decreased

manual effort and uncertainty. Therefore, the Interactive SLAM needs to be adapted to save the timestamps of

all point clouds after processing. Second, extending the rubber-sheeting to three dimensions is desirable for

future applications. This allows to remove the drift in z-direction and align the point cloud map and the lanelet

map in all three dimensions. Therefore, the triangulation needs to be extended to divide the corresponding

volume into tetrahedrons and interpolate the control point errors in between.

A general challenge for mapping for autonomous driving is handling dynamic objects. By design, SLAM

algorithms work under the Markov assumption, assuming a static environment, and do not remove dynamic

objects from this assumption. In a case with many moving objects, e.g., at crowded corners in cities, dynamic

objects can even lead to mistracking in the mapping process. This behavior can be seen in Figure 5.19. In

this scene, the ego vehicle was waiting to turn right and cross the pedestrian crosswalk. As the ego was not

moving, but large parts of the surrounding (vehicles, pedestrians, cyclists) were, LiDAR registration failed,

and a vehicle movement was estimated (Figure 5.19 (b)). In the case of a standing ego vehicle, this could be

detected, for example, by considering wheel odometry and triggering a standstill mode. However, similar

cases can also appear on crowded and multi-lane roads when the ego vehicle moves. This makes it hard to

accurately map busy roads like the Mittlerer Ring in Munich.

(a) Corresponding camera image showing the crowded and
busy intersection.

(b) Estimated trajectory from the KISS-ICP, loaded into
Interactive SLAM.

Figure 5.19: Section from the Wiesn dataset where KISS-ICP struggles to estimate the correct trajectory.

In addition to these dynamic objects, some are static during mapping but can appear or disappear between

mapping and driving the mapped area. This could be, for example, parked cars, construction sites, etc.

Figure 5.20 shows an excerpt from the Wiesn dataset at a temporal construction site. There are temporary

yellow-marked lanes that lead through the opposite lanes. These lanes will occur in the point cloud map

but not in the OSM based lanelet map. Also, this construction site might be decommissioned at the time of

driving through this region again and trying to use the map.

To solve this challenge, there are a few solutions, as already described in Subsection 2.3.2. A greater number

of (human-driven) vehicles can be leveraged to detect and even remap such areas. These need to be able to

detect such map changes with sensors and collect the information. Another option is to detect and handle

these situations online while driving autonomously. However, this requires either a software stack capable of

driving without HD maps or a fallback, such as teleoperation.

Regarding semantic map generation, the presented pipeline mainly uses publicly and crowd-sourced data

OSM. These data showed to be significantly more detailed and up-to-date than Google Maps, for example.
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(a) Camera image from the Wiesn dataset. There are tem-
porary lanes due to a construction site.

(b) Corresponding scene in the point cloud map.

Figure 5.20: Section from the Wiesn dataset showing a construction site, temporary lanes, and parked and driving
cars.

However, as the data only comprise the centerline of the road and the number of lanes, heuristic assumptions

had to be made to generate a lanelet map including all lanes and their boundaries. This worked sufficiently

well for the two presented datasets; however, it relies on the highway tag from the data and induces

uncertainty. Also, this process can cause problems, as lane merges or intersections are not modeled as

detailed as needed. Another limitation of OSM data is that most of it does not contain altitude data for

three-dimensional map matching. During the creation of the two presented HD maps, it was observed that

the quality of the OSM data in the center of Munich was significantly better than at the Garching Campus.

This can lead to restrictions when applying the mapping pipeline to rural regions. Modeling intersections,

especially with several lanes and turn-off options, poses another challenge. Here, the heuristics in the OSM

to Lanelet2 module fail. This leads to the need for manual post-processing using the VectorMapBuilder1

tool. This process is not viable for scaling the mapping further and being able to create maps of whole cities.

Future work should investigate enhanced algorithms to handle lanelets better.

Conclusion:

In summary, this chapter presented the design of an HD mapping pipeline that allows rapid mapping of new

regions with limited manual processing. In contrast to available approaches presented in Subsection 2.3.3,

an entire pipeline was developed from raw data to usable HD maps.

The presented approach creates a 3D point cloud map and a semantic Lanelet2 map, which are aligned

and georeferenced. The point cloud maps are generated using the LiDAR sensors. Offline postprocessing

globally optimizes the generated point cloud. To generate semantic lanelet maps, OSM was used as the

primary data source. A novel tool was developed for georeferencing and fusion of the lanelet and point cloud

map. This should be done online in future work by directly integrating the GNSS data during the mapping run.

A SLAM framework is desirable, integrating the robust KISS-ICP solution with a full back-end.

The accuracy of the maps was found sufficient for autonomous driving with human supervision. However,

due to dynamic objects and changes in road layout, etc., it is currently impossible to create reliable HD maps

in every situation. Local detection of drivable space is needed to detect map changes and the possibility of

driving on roads with map errors. The presented pipeline is to be seen as a baseline for future research

and enhancements. It provides the capability to create and use maps of previously unmapped regions with

full Autoware integration. Future research will extend this approach and add more functionalities and novel

algorithms consecutively. The following chapter will discuss the future of HD mapping for autonomous driving

in more detail.

1https://tools.tier4.jp/feature/vector_map_builder_ll2/
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6 Discussion and Outlook

After presenting the approaches developed, their results, and the associated discussions individually in

Chapter 4 and Chapter 5, this chapter puts them into context with the research questions defined in Chapter 3.

On this basis, a comprehensive discussion of the entire work is provided. Extending these findings, the

limitations of the presented approaches are elaborated. These lead to future research topics and a general

outlook on perception, localization, and mapping for AVs.

6.1 Review of the Research Questions

Before providing a response to the main research question, the two subquestions will be answered. Therefore,

algorithms were developed for two real-world applications: the AV-21 for autonomous racing and the EDGAR

research vehicle for public traffic. Autonomous racing represented a significant challenge due to high velocities

and feature-poor environments. For the EDGAR research vehicle, the focus was shifted toward HD mapping

and how it can be applied to this project, the specific vehicle, and realized in a scalable way.

SQ1: How can sensor fusion be used for localization and mapping algorithms in difficult real-world

applications?

In Chapter 4, different methods were presented that make use of sensor fusion for the task of localization. As

existing algorithms were unable to solve the localization for the AV-21 on oval race tracks, a specific approach

was developed that fuses data from camera and LiDAR. Camera data were taken for the longitudinal and

LiDAR data for the lateral localization of the vehicle on the race track. This concept allows to benefit from the

individual advantages of different sensor modalities. Sensor fusion allowed the development of a working

localization concept that was validated in simulation. However, the concept is specific and thus limited to this

application domain. Based on the findings, the ORB-SLAM3 RGB-L [14, 15] was implemented that uses a well-

known visual SLAM framework and adds LiDAR measurements as upsampled depth maps. This approach

was shown to improve the performance of the visual SLAM both in terms of accuracy and runtime, especially

in environments with a limited amount of features. However, in some scenarios, the performance suffered.

Furthermore, this approach increases the requirements for the sensor setup, calibration, and triggering. By

the implementation of CamRaDepth [16, 17], a more enhanced method of pixel-wise depth map generation

based on deep learning transformer architecture was implemented and validated. It showed that through

a purposeful training process, depth measurements do not necessarily have to be available at inference

time for accurate depth maps. This can lead to decreased requirements for the sensor setup. However, the

approach benefitted significantly from the added RaDAR data. Also, adding semantic segmentation as an

additional modality improved the results. Finally, CaLiMO was introduced and showed potential for future

work. It is a SLAM concept that directly fuses information from LiDAR, camera, and IMU in a graph-based

back-end.

These approaches proved that sensor fusion could be used to increase the performance of localization

algorithms, especially in challenging environments, e.g., feature-poor environments. In some applications,
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such as autonomous oval racing, reliable localization is only possible through the use of sensor fusion.

However, it showed that these approaches tend to be specific and tailored for an ODD and use case. Future

approaches should try to use all available information and let the algorithm decide on what data to use in

what situation. Therefore, factor graphs offer a great possibility to optimize the whole trajectory graph at

runtime. Another challenge for sensor fusion in localization is the sensor setup. To be able to fuse sensor data

meaningfully, internal and external calibration, time synchronization, and, for some approaches, simultaneous

triggering are crucial. This leads to higher requirements for the robot platform.

To summarize and briefly answer the research question, sensor fusion can help overcome the limitations of

localization and mapping algorithms, especially in challenging applications. However, it leads to higher data

requirements and induces novel challenges such as calibration, time synchronization, etc. These can limit

the transferability of algorithms as seen in Chapter 4. Multimodal algorithms that generalize better to other

domains are a desirable topic of future research.

SQ2: How to design an open HD mapping pipeline for AVs?

In Chapter 5, a localization and mapping pipeline for the research vehicle EDGAR was developed and

validated. It is compatible with the Autoware framework and is mainly built on LiDARs point clouds, GNSS

data, and OSM lane information. In comparably feature-rich environments, e.g., in urban scenarios, LiDARs

can offer a robust data source for localization and mapping. The main problem stemmed from the sensor setup

with errors in the spatial calibration, no triggered sensors, and partially missing temporal synchronization.

Therefore, a novel LiDAR fusion approach based on KISS-ICP [18, 82] was introduced. As an additional data

source, crowd-sourced data from OSM were used for semantic information extraction, which is hard to get

from on-board LiDAR data. These provided advantages over semantic maps from sensor data regarding

accuracy and expense. The map was designed in a way that, in the future, additional sensors and map layers,

such as cameras, can be integrated. The developed map post-processing and fusion tool can be used to align

the maps and georeference them. This allows the comparison and benchmarking of different combinations

of maps, used sensors, algorithms, etc. The presented mapping approach allows for quick mapping of

previously unmapped areas. However, manual processing steps are still required throughout the process.

Additionally, slight drifts could still be observed, even after the georeferencing step. The approach proposed

in the previous section can also be helpful to reduce the drift. The globally optimal estimated trajectory

can be determined if all information, also GNSS, is directly used at map creation. In the current approach,

information is lost as the FlexMap Fusion tool does not use the entire graph built during the mapping process.

Another challenge will be the detection and handling of map changes, which has to be addressed in future

work. Currently, the fallback solution for the EDGAR research vehicle is a remote teleoperator that can take

over the vehicle.

Summing up, Chapter 5 developed an applicable mapping pipeline from sensor data to HD maps, which

showed efficient for the research vehicle EDGAR. This pipeline allows the mapping of spatially limited regions

with reasonable manual effort. However, to allow the mapping of increasingly larger areas, the manual steps

need to be removed in the future. Also, automated map validation and quality assessment are topics for

future research.

RQ: How to formulate an open generic framework for robust and applicable HD mapping and localiza-

tion for AVs?

Within the scope of this thesis, different approaches for enhanced localization have been introduced and

evaluated. Also, a scalable HD mapping pipeline was presented and validated with the research vehicle

EDGAR. This thesis dealt with two different use cases: urban autonomous driving and autonomous racing on

high-speed tracks. As both projects will be continued in the future, it is desirable to build the algorithms and

the code base so that functionalities can be used with both platforms. Therefore, the core functionality was
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Core Functionality

Localization Mapping

Scan Registration

AV-21 EDGAR

OSM Integration

Semantic Mapping

Racing Stack Integration
LiDAR Fusion

KISS-ICP

Interactive SLAMState Estimation

Autoware Integration

High-Speed Estimation

Additional GNSS

Figure 6.1: Proposed split of the algorithms. The core repository includes the main functionalities. The application is
done in the specific repositories.

extracted from the specific application code bases. It includes the multi-LiDAR scan registration, a basic state

estimation implementation, and the mapping postprocessing pipeline. These tools are needed for localization

and mapping of both race tracks and urban areas.

Figure 6.1 visualizes the project structure. The code is divided into three repositories. One core repository

contains and abstracts the described main functionalities for scan registration, localization, and mapping.

These are designed in a way to work with different platforms (Section 5.3). The algorithms are used by two

application-specific repositories for the AV-21 and EDGAR. This enables at least partial differentiation between

the main algorithms and application-specific adjustments. The current, mainly LiDAR-based localization

has been proven to work on street-course race tracks and urban areas. For oval race tracks, currently, the

state estimation mainly focuses on GNSS localization. Here, future work can focus on including additional

localization layers in the framework, such as the one presented in Subsection 4.1.3. However, the limitation of

computing resources will be an additional challenge to handle. The provided structure is the base for future

research. It allows a quick adaption of algorithms and applications to different use cases. The abstraction of

the core functionality allows for quick integration into new vehicle platforms.

In this way, algorithms can be developed and directly evaluated for two different ODDs. The structure can

be seen as a framework for future research in localization and mapping. It will support the development of

applicable, well-generalizing algorithms with limited overfitting to a specific application.

6.2 Review of the Applications and Future Recommenda-

tions

This section reviews the outcomes of this thesis, focusing on the implications for the two key applications:

autonomous racing and HD mapping the autonomous research vehicle EDGAR. Based on the findings,

recommendations for the future will be given.

Autonomous Racing

For autonomous racing, precise maps provide a huge advantage and are heavily recommended. They reduce

online computation as the track boundaries do not have to be extracted from sensor data. Also, map usage

allows the software stack to react to track sections out of the perception range. Following, the vehicle can e.g.

drive at higher speeds on straights as the next turn is already known hundreds of meters in advance.
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Chapter 4 presented approaches to overcome some of the limitations of localization for autonomous racing.

However, for the final races at the IMS and LVMS, the main source of localization was the redundant

RTK-corrected GNSS system that provides cm-level accuracy under open sky. The GNSS signals were

fused in an EKF-based state estimation to provide precise, robust, and high-frequent information on the

current vehicle state needed for trajectory planning and control. Besides the limited implementation effort

of this approach, another advantage is the small amount of computing power needed. This leaves more

computational power for the other modules of the autonomous racing software stack. Also, as a map, only

the track boundaries need to be extracted and no map for localization has to be built. This can safe lots of

track time which can be used to increase the performance of the remaining software modules. Moreover,

GNSS systems have less struggle with high velocities compared to cameras and LiDARs, such as distortion.

GNSS is not dependent on environmental features that are difficult to robustly detect and match on oval

race tracks. Thus, also for future racing applications under open sky, where good GNSS coverage can be

assumed, this is a well-working and proven concept for localization. The state estimation can help the race

car to safe-stop in case of GNSS failure.

However, localization solutions also need to be found for race tracks that do not have full GNSS coverage.

Also there, it is advised to use GNSS data when available and fuse it into the state estimation. This needs to

track the quality of the signal and rely on other localization sources in areas where the GNSS performance

decreases. When the GNSS signals are blocked, this usually means that there are obstacles surrounding

the track that shield the satellite signals. These obstacles usually provide features that can be used for

LiDAR or camera localization, leading to a synergy between GNSS in open, feature-poor regions and LiDAR

or camera-based localization in GNSS-denied regions of the track. Here, the LiDAR approach presented

in Subsubsection 4.1.2 and Section 5.3, represents a good starting point for future research. It allows to

offline build 3D point cloud maps that can be used for online LiDAR localization. The tool presented in

Subsection 5.4.4 can be used for georeferencing of the created maps. This allows a fusion of GNSS and

LiDAR localization within the state estimation.

Data from different race tracks with different layouts, environments, and characteristics will have to be

collected to enhance this approach, make it robust, and validate the results. This opens up great possibilities

for future research.

EDGAR Research Vehicle

For the EDGAR research vehicle, it is advised to use and create synergies by building upon the same core

concept as autonomous racing. This was already described in the previous section. Therefore, the LiDAR

mapping and localization approach was adapted to work with the specific sensor and multi-LiDAR setup of

the EDGAR research vehicle. To allow urban autonomous driving, this approach has to be enhanced with

several additions, such as mapping of road lanes, traffic lights and signs, crosswalks, etc. Therefore, OSM

provides a good database that can be used and enhanced with detected objects. To provide a good research

base and allow the evaluation of different algorithms, the mapping pipeline needs to stick to open standards,

such as the Lanelet2 format.

This thesis presented the first implementation of this open mapping research pipeline. However, there are

still some drawbacks that need to be solved in future research. First of all, the map accuracy needs to be

improved. The HD maps in this thesis showed accuracies in the region of 10 cm to 40 cm, with maximum

errors exceeding 1 m. The desired accuracy is below 20 cm. Therefore, the handling of dynamic objects is a

crucial step and needs to be addressed. In contrast to racing, it is not possible to do dedicated mapping runs

without other road users.
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Another topic that needs to be addressed in future work is the awareness of map accuracy. In areas with

lower accuracy, e.g. through construction sites, the driving style needs to be adapted and the vehicle needs

to rely more on sensor data to reduce the risk. Currently, during online localization, the map is always used in

the same way without monitoring the accuracy and reliability. To realize this, the software stack needs to be

aware of the map quality in different regions.

6.3 From Race Track to Public Roads

This thesis has presented different approaches for localization and mapping on race tracks and public roads.

As described before, these algorithms had to be specifically tailored to their ODD to obtain convincing results.

Thus, the question arises of what a transfer from the race track to public roads and vice versa can look like.

The previous section already presented a concept that divides between core functionality and application-

specific additions. This allows the use of the algorithms for both use cases and adds platform-specific layers

for each vehicle. However, in the current state, not all the localization concepts presented in Chapter 4

are included in this framework. The thesis proved that many of the findings of autonomous racing can be

transferred to the localization on public roads. Mainly, these are:

• Handling and fusion approach of multiple LiDAR sensors.

• Dependence on the sensor setup (calibration, time synchronization, triggering).

• The 3D point cloud mapping approach.

Nevertheless, it was not possible to transfer all developed algorithms directly due to integration effort and

applicability. Future research will have to be performed to further decouple the hardware and sensor setup of

the vehicle from the localization functionality. Algorithms that make maximum use of contained information

in sensor data are needed. In Subsection 4.1.3, this was achieved by explicitly splitting the tasks in the

localization algorithm according to the sensor data. Future approaches should implicitly manage sensor data

more intelligently to allow for comparable results at better generalization. This enables easy adaption to

other sensor setups and can also handle sensor failure at runtime. New sensors can then be added to this

approach.

Future research will have to focus on generalization from one domain to another. This will not only support

the transfer from race tracks to public roads but also expand the applicable ODDs with the final goal of

reaching ODD independent level 5 autonomy. A significant challenge towards reaching this goal is the data

base for vehicle evaluation. This will be addressed in the next section.

6.4 Data Dependency and Shortcomings of Available Datasets

Even though the algorithms presented in this thesis, and generally SLAM-based approaches, mainly do

not rely on data-driven deep learning approaches, it has turned out that they are still heavily dependent on

the data used for development. Thus, diverse and comprehensive datasets are necessary to implement

algorithms working across different ODDs. Diversity relates to different aspects of the data and needs to be

multi-dimensional. Mainly, the following characteristics of the data can be varied:

• Geometric properties of the environment

• Sensor setup of the ego vehicle

• Driven trajectory, loop closure events, distance

• Driving profile: accelerations, velocities, yaw rates, etc.
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• Weather and lighting conditions

• Number and density of surrounding traffic

Especially in terms of datasets with a multi-LiDAR setup, a deficiency was determined, leading to a lack of

algorithms capable of handling the EDGAR LiDAR setup. Additionally, many algorithms incorporate prior

knowledge or assumptions about the sensor positioning or the environment, e.g., a 360°LiDAR mounted

parallel to the floor is assumed [94]. If the algorithm is tested on multiple datasets and multiple sensor

configurations, such assumptions might not be valid, forcing algorithms to show better generalizing behavior.

Similar observations can be made for weather conditions, scenery etc. For example, many algorithms struggle

with the highway scenarios of the KITTI dataset as they were developed for urban areas. In our specific

case, the KISS-ICP showed the most convincing results not because it was the most enhanced algorithm but

because it was developed for different applications and ODDs.

Many existing datasets depict an optimal world with synchronized and triggered sensors, de-skewed point

clouds, precise calibration data, etc. In real-world applications, some of these advantages might not be

applicable, leading to different behavior of the algorithms and worse pose tracking capabilities. A wide variety

of different and diverse datasets is the foundation for level 5 autonomy. This will also be required when

it comes to validation, safety, and approval, a crucial step on the way to autonomy on public roads [352].

Diverse datasets can help ensure that SLAM algorithms meet strict safety requirements for deployment on

public roads.

Although traditional SLAM algorithms are not inherently data-driven, there is research on integrating machine

learning algorithms into conventional approaches. Integration of machine learning for components such as

feature extraction and matching or semantic understanding benefits from diverse datasets. The increasing

trend towards hybrid systems that integrate traditional SLAM with machine learning methods requires a

variety of datasets to train and optimize these models efficiently [353].

In summary, the need for more diverse datasets for autonomous vehicle localization is clear. If one dataset

includes diverse data as described above, algorithms can be directly tested without the need to adapt

interfaces, etc. Even for algorithms that are not inherently data-driven, the benefits of having diverse and

extensive datasets are numerous. They ensure that algorithms are robust, adaptable, and safe for real-world

applications, meeting the needs of increasingly complex ODDs for autonomous driving. The recently published

HeLiPR dataset [354] puts its focus on these topics. It offers four different LiDAR sensors and spatial and

temporal variance for different challenges in each sequence. This dataset is an excellent evaluation and

testing base for future algorithms.

6.5 Solution to Scalability and the Future of HD-Maps

Chapter 5 presented the development and realization of an HD mapping pipeline. The focus was to develop

a scalable approach to quickly add new, previously unmapped areas without the need for dedicated mapping

vehicles. Therefore, a point cloud mapping approach using on-board LiDARs was combined with a semantic

mapping approach using publicly available data from OSM. Manual refinement steps were necessary for both

map creation steps to generate consistent maps suitable for fully autonomous driving. For the point cloud

map, loop constraints were added, and faulty parts of the graph were manually removed. For this problem,

a solution has already been presented: The current approach needs to be extended with a back-end that

combines measurements from all sensors, including GNSS. Thus, the subsequent georeferencing step would

also be obsolete. Manual refinement was also necessary to generate lanelet maps to ensure the consistency

and correct assignment of all lanes. Complex lane merges and crossings pose problems especially. With the

pipeline presented, valid HD maps in the order of the size of those presented in Section 5.5 can be created

90



6 Discussion and Outlook

within a day from data recording. However, the pipeline is not suitable for creating maps of entire cities, such

as Munich. Even if all manual steps could be removed, the scalability problem would not finally be solved.

One big problem remaining is the map validation. This could be done for the EDGAR project by driving

through the mapped areas and validating the map under human supervision. Autonomous vehicles must rely

on the map without human validation for level 4 or even level 5 autonomy in large cities. Another problem

that was already discussed in Section 5.5 is the change of the area. Especially in big cities, the environment,

including the geometric structure and the road layout, can change from day to day. The presented approach

cannot detect map changes or handle them at runtime. This is an ongoing research topic. Solution ideas

have been presented in Subsection 2.3.2. If the detection of map changes and the correction of the existing

map are solved, the handling of the whole map data needs to be addressed. Large cities’ maps will reach

sizes too large to be entirely stored in each vehicle. Therefore, the maps will have to be distributed to each

car via a mobile network. This requires intelligent algorithms for map handling and dynamically uploading

and downloading updates.

To reach full level 5 autonomy, autonomous vehicles must work even if HD maps are not available or

faulty. This means that even if HD maps can improve perception capabilities, they must not be required for

autonomous driving at some point. If the maps are only taken as an additional input to sensor data, their

level of detail can be significantly reduced, also reducing all of the above-mentioned problems. The map

could be used and handled as sensor data, accounting for included uncertainty. On the other hand, one

could scrutinize the usage of HD maps at all if they are not required. There is ongoing research in the field of

online mapping (Subsubsection 2.3.3). This approach uses sensor data to map the environment around the

vehicle without using offline generated HD map data. Currently, this approach lags significantly behind offline

maps in terms of accuracy; however, it promises enormous potential for future research [261]. Section 6.6 will

present a concept for integrating online mapping into an end-to-end perception pipeline for future autonomous

vehicles.

6.6 Outlook: Towards End-to-End Perception and Local Map-

ping

In the final section of this thesis, a deep learning-based concept for future perception systems of AVs will be

presented. A first draft of the concept called DeepSTEP has already been published [20].

This concept works without offline generated data, such as an HD map, and is based solely on online sensor

data from different sensor modalities. Figure 6.2 depicts a generalized architecture of the approach. The

multimodal sensor data on the left side can be from LiDARs, cameras, RaDARs, etc. Here, map data can

also be encoded into the shared feature space for the usage of prebuilt maps. Sensor-individual feature

extractors encode these data into a common representation. As the different modalities have different data

representations (e.g., 2D vs. 3D), they all have to be transformed into a shared space, which can be, for

example, BEV or a 3D voxel representation.

The heart of this approach is the spatio-temporal fusion network. As a lot of information is contained in

the temporal context, e.g., cars cannot disappear within parts of a second even if they are occluded, this

concept makes use not only of the spatial but also the temporal relations encoded in the sensor data. The

network design aims to contain all the environmental information in the latent space. Different task-specific

decoders will use this for object detection, local mapping, etc. In addition to the temporal context, this is

another benefit of this approach: The different perception tasks are not uncorrelated (e.g., the probability

of detecting cars in a particular area and detecting a road in the same location), so they can benefit from

one another. Conventional perception approaches run fully detached object detection and local mapping

91



6 Discussion and Outlook

Downstream
Perception

Heads

Multimodal
Sensor Data

Feature
Extraction and
Transformation

Spatio-Temporal
Deep Fusion

Network

Latent
Environment

Representation

Sensor 1

Sensor 2

Sensor 3

Sensor n

. . .

Task 1

Task 2

Task m

Task 3

. . .

Figure 6.2: Proposed end-to-end perception approach. Adapted from [20].

algorithms. Combining them will make the network more efficient regarding data, runtime, and compute

requirements. As only one network is to be deployed, only one network must be trained and executed online

while driving.

In summary, the concept of DeepSTEP offers excellent possibilities for future research. Mainly, it can improve

current perception pipelines through the following three advantages:

• Incorporation of the temporal domain into the latent environment representation.

• The shared feature space for all perception tasks provides benefits for accuracy, runtime, and

data efficiency.

• The concept can be arbitrarily expanded on both ends by adding new sensors or additional

perception heads.
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This thesis dealt with the applied localization and mapping of AVs in different conditions and use cases.

Localization and mapping were identified as crucial components of AD software stacks. However, there is still

a lack of available algorithms, especially when it comes to various applications. As different sensor modalities

and other data sources, such as crowd-sourced maps, have distinct advantages and disadvantages, this

thesis investigated the hypothesis that sensor fusion can help overcome some of the limitations. Therefore,

algorithms were presented mainly for localization with multimodal data. Based on the findings, a localization

and HD mapping pipeline for urban areas was developed and validated.

The introductory chapter motivated the work and stressed its importance. Required general background

information on autonomous vehicles, sensors, and software components was provided. Solutions had to be

found for the localization of an autonomous race car and the HD map creation of an autonomous shuttle.

The related work (Chapter 2) started with the state of the art of environmental perception. The sensors

used were presented, and their models and mathematical formulations were derived. The final section

presented an overview of existing datasets that can be used for algorithm development and validation. Using

these sensors, various approaches to solving the SLAM problem were presented based on different sensor

modalities. These algorithms are used for the generation of the HD maps, which are used in most current

approaches. However, many challenges related to HD maps were derived, especially with regard to their

scalability. Chapter 3 concluded the related work and derived the research questions that this thesis tried to

answer:

How to formulate an open generic framework for robust and applicable HD mapping and localization for AVs?

To answer this question, two subquestions are to be answered:

How can sensor fusion be used for localization and mapping algorithms in difficult real-world applications?

How to design an open HD mapping pipeline for AVs?

The first subquestion was answered by Chapter 4. For the application of multimodal localization algorithms,

the vehicle platform AV-21, a fully autonomous race car, was used. As existing localization algorithms

failed under challenging conditions, novel approaches that took advantage of sensor fusion were presented.

First, LiDAR and camera data were combined in a novel localization algorithm. Therefore, camera images

were used to determine the longitudinal and LiDAR point clouds were used to determine the lateral track

position [11]. As this approach of combining depth measurements with camera images showed convincing

results, it was extended to a more general approach: ORB-SLAM3 RGB-L. LiDAR point clouds were projected

into the camera image and upsampled to correlate pixels with depth information. This approach was able

to outperform the stereo ORB-SLAM3 [124] in feature-poor environments and in terms of runtime [14].

CamRaDepth [16], a deep-learning based approach for pixel-wise depth estimation without LiDAR data was

developed that outperformed state-of-the-art algorithms. However, it could not improve the ORB-SLAM3

RGB-L over upsampling with conventional CV algorithms. More data are needed to obtain better results.

Finally, CaLiMO was presented, a SLAM approach using data from camera and LiDAR. First results showed

to be promising; however, more work needs to be put into this approach to reach the state of the art.

In Chapter 5, all findings were transferred to the EDGAR research vehicle, to answer the second subquestion.

This platform posed challenges through the multi-LiDAR setup with faulty calibrations and partially missing
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time synchronization. Therefore, a new scan matching approach was developed. This was extended to an

offline 3D mapping and an online localization module, both compatible with the Autoware base software stack.

For semantic lane mapping, OSM data were used, and a novel tool was presented to fuse all map data. The

pipeline was validated on the TUM Campus in Garching and a scenario in the city center of Munich. It was

possible to build valid and suitable HD maps for autonomous driving. However, few manual post-processing

steps were needed to remove map errors. Moreover, dynamic and semi-dynamic objects still pose unsolved

challenges for map creation [18]. A quantified validation and assessment of the map quality and accuracy

was identified as another important topic that needs to be addressed. The presented open mapping pipeline

builds a baseline for future research in the field of HD map generation.

Chapter 6 discussed all of the presented approaches comprehensively. This thesis introduced novel al-

gorithms that can solve some of the existing problems in autonomous vehicle localization and mapping.

Nevertheless, there are still many open points, especially the generalization between different vehicle plat-

forms, weather conditions, geometric environments, etc. To address this issue, a framework was presented

to abstract core functionality and decouple it from the vehicle-specific integrations. Another major problem is

the applicability of HD maps in terms of generation, deployment, and correction. This led to the question of

whether HD maps will be the future of autonomous driving. To reach level 5 autonomy, an AV must be able

to drive only with the information it receives from the sensors. However, to reach this goal, HD maps are a

necessary intermediate step. Finally, an end-to-end perception concept was presented that tries to maximize

information usage from sensor data [20].
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