

und Forschung

Assessing Uruguay's Green Hydrogen Potential: A Comprehensive Analysis of Electricity and Hydrogen Sector Optimization

Andrea Cadavid Isaza, Raphael Fiedler, Thomas Hamacher

Technical University of Munich

TUM School of Engineering and Design

Chair of Renewable and Sustainable Energy Systems

Rio de Janeiro, 29. July 2024

Uruguay Hydrogen Roadmap

Final version published in October 2023

"By 2040, hydrogen production could amount to one million tons per year. This will require the installation of approximately 18 GW of renewables and 9 GW of electrolyzers"

Uruguay's Roadmap for Green Hydrogen and Derivatives, MIEM 2023

GEFÖRDERT VOM Bundesministerium für Bildung

und Forschung

Uruguay Hydrogen Roadmap

Andrea Cadavid (TUM) | 9th ELAEE | Uruguay's Electricity and Hydrogen Sector optimization | 29.07.2024

Research questions

What is the impact of implementing the hydrogen roadmap on the electricity sector?

What are the possible export quantities if selling costs are based on expected production costs?

GEFÖRDERT VOM Bundesministeriur für Bildung und Forschung

4

Methodology – Optimization model

Optimization model for unit commitment and capacity expansion

- Electricity system of the country (One node)
- Intertemporal (2021, 2025, 2030, 2040, 2050)
- Internal electricity demand projections
- Domestic H₂ demand from the roadmap (constant through the year)
- Export expectations based on different "Sell" prices or mandatory demand
- LCOE and LCOH include integration costs (storage)

https://github.com/tum-ens/urbs

Methodology - Scenarios definition

6

Methodology - Reference Energy System

Andrea Cadavid (TUM) | 9th ELAEE | Uruguay's Electricity and Hydrogen Sector optimization | 29.07.2024

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Methodology - Demand

8

Results – Electrical installed capacity

Biomass plant Hydro dam Rio Negro Hydro dam Salto Grande Oil plant Open field PV Rooftop PV Slack Wind offshore Wind onshore

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

9

Results – Electricity Generation

Andrea Cadavid (TUM) | 9th ELAEE | Uruguay's Electricity and Hydrogen Sector optimization | 29.07.2024

Bundesministerium für Bildung und Forschung

Results - LCOE

Uruguay's Roadmap for Green Hydrogen and Derivatives, MIEM 2023

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

11

Results – Electrolyzer Capacity

Andrea Cadavid (TUM) | 9th ELAEE | Uruguay's Electricity and Hydrogen Sector optimization | 29.07.2024

für Bildung und Forschung

Results – Hydrogen Production

Andrea Cadavid (TUM) | 9th ELAEE | Uruguay's Electricity and Hydrogen Sector optimization | 29.07.2024

Bundesministerium für Bildung und Forschung

Results –LCOH

Uruguay's Roadmap for Green Hydrogen and Derivatives, MIEM 2023

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

14

Findings and future work

Meeting export and domestic demand of 1 million tons by 2040 requires an additional 31 GW renewable capacity and 15.5 GW of electrolyzer capacity.

Higher selling prices are needed to achieve export targets and justify investment in capacity expansion.

Hydrogen exports are would be 67,000 tons, not 667,000 tons, by 2040.

The Levelized Cost of Hydrogen (LCOH) peaks in 2030 due to necessary PV expansion with 3.37 and 3.70 USD/kg, then decreases.

Consider a scenario focusing solely on export demand without a mandated domestic supply requirement.

GEFÖRDERT VOL für Bildung

Bundesministeriun

und Forschung

Contact

Andrea Cadavid Isaza, M.Sc. Research Associate

Technical University of Munich TUM School of Engineering and Design Chair of Renewable and Sustainable Energy Systems

Lichtenbergstraße 4a 85748 Garching b. München

Tel. +49 89 289 52727

andrea.cadavid@tum.de www.epe.ed.tum.de/ens www.tum.de Thank you for your attention! Are there any questions?

> GEFÖRDERT VOM Bundesministerium für Bildung

und Forschung

Technologies	Capital costs					Annual O&M Costs					Efficiency			
Name	Unite	2021	D/KVV) 2030	2040	2050		2021	2030	2040	2050	2021	2030	, L□V) 20/10	2050
Oil plant	USD/kW	412	408	404	400	USD/kW/a	21	2000	2040	2000	38%	39%	40%	41%
Open field PV	USD/kW	820	450	385	320	USD/kW/a	12	10	10	10	100%	100%	100%	100%
Rooftop PV	USD/kW	640	350	300	250	USD/kW/a	10	8	8	8	100%	100%	100%	100%
Wind onshore	USD/kW	1150	1060	1030	1000	USD/kW/a	28	28	27	26	100%	100%	100%	100%
Wind offshore	USD/kW	4440	2600	2140	1680	USD/kW/a	110	75	65	55	100%	100%	100%	100%
Hydro dam	USD/kW	4839	3926	3013	2100	USD/kW/a	127	93	72	50	100%	100%	100%	100%
Biomass plant	USD/kW	2500	2400	2325	2250	USD/kW/a	85	85	83	80	35%	35%	35%	35%
Electrolysis system (Stack+BOP)	USD/kW	700	402	381	370	USD/kW/a	14.00	8.04	7.62	7.40	69%	69%	69%	69%

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Backup

- WACC: 7.38%
- Discount rate: 12%
- Average sell price to Brazil: 29 USD/ MWh
- Average sell price to Argentina: 23 USD/ MWh
- Demand derivation with 0.11 Mton / GW of electrolyzer (McKinsey)

18

GEFÖRDERT VOM