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Zusammenfassung

Kausale Entdeckung bedeutet, einen gerichteten azyklischen Graphen (DAG) zu lernen, der ein kausales
Modell kodiert. Aufgrund des großen kombinatorischen Suchraums kann dieses Modellauswahlproblem
schwierig zu lösen sein, insbesondere wenn nicht-parametrische Kausalmodelle betrachtet werden. Eine
neuere Forschungsrichtung versucht, die kombinatorische Suche zu umgehen, indem sie die kausale Ent-
deckung als kontinuierliches Optimierungsproblem betrachtet. Zu diesem Zweck werden Beschränkungen
angenommen, die die Azyklizität des Graphen charakterisieren. Bestehende Arbeiten zu nicht-parametrischen
Einstellungen basieren auf endlich-dimensionalen Approximationen der nicht-parametrischen Beziehung
zwischen den Knoten, was zu einem Score-basierten kontinuierlichen Optimierungsproblem unter einer
glatten Azyklizitätsbeschränkung führt. In dieser Arbeit entwickeln wir einen alternativen Approximation-
sansatz, indem wir mit reproduzierenden Kernel-Hilbert-Räumen (RKHS) arbeiten und allgemeine sparsam-
keitsinduzierende Regularisierungsterme verwenden, die auf partiellen Ableitungen beruhen. In diesem
Rahmen führen wir einen erweiterten RKHS-Repräsentantensatz ein. Um Azyklizität zu erhalten, befür-
worten wir die log-determinante Formulierung der Azyklizitätsbeschränkung und zeigen ihre Stabilität.
Schließlich untersuchen wir die Leistung unseres resultierenden RKHS-DAGMA-Verfahrens in einer Reihe
von Simulationen sowie einer illustrativen Datenanalyse.

Abstract

Causal discovery amounts to learning a directed acyclic graph (DAG) that encodes a causal model. Due to
its large combinatorial search space, this model selection problem can be challenging to solve, especially
when considering non-parametric causal models. A line of recent research seeks to sidestep the combi-
natorial search by framing causal discovery as a continuous optimization problem. To this end, one adopts
constraints that characterize the acyclicity of the graph. Existing works on non-parametric settings are based
on finite-dimensional approximations of the non-parametric relationship between the nodes, resulting in a
score-based continuous optimization problem under a smooth acyclicity constraint. In this work, we develop
an alternative approximation approach by working with reproducing kernel Hilbert spaces (RKHS) and us-
ing general sparsity-inducing regularization terms that are based on partial derivatives. Under this setting,
we introduce an extended RKHS Representer Theorem. To hold acyclicity, we advocate the log-determinant
formulation of the acyclicity constraint and show its stability. Finally, we examine the performance of our
resulting RKHS-DAGMA procedure in a set of simulations as well as illustrative data analysis.
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1 Introduction

Structural equation models (SEMs) based on directed acyclic graphs (DAGs, also known as Bayesian net-
works) have found wide-spread applications ranging from computational biology [Zha+23] to manufactur-
ing [G+̈24] and finance [Ji+18]. In the realm of computational biology, Zhang et al. [Zha+23] developed a
causal active learning strategy that employs a Bayesian update for the causal model to identify interventions
that are optimal. Within the financial sector, Ji et al. [Ji+18] used DAG to uncover the contemporaneous and
lagged relations between Bitcoin and other asset classes. In the framework of SEMs, to represent a joint
dependence structure, every variable is modeled as a function of a subset of the other variables as well as
noise. In this setting, models based on DAGs assume that there are no causal feedback loops. Such an as-
sumption can be restrictive but is key for allowing the definition of non-linear models. Indeed, it is generally
unclear whether cyclic systems of structural equations admit a unique solution or a solution at all.

In many applications, the underlying DAG is not known, and methods for causal discovery, which learn
the DAG from data, promise to offer useful insights. Numerous algorithms have been proposed for causal
discovery, see, e.g., Drton and Maathuis [DM17] or Spirtes and Zhang [SZ19]. One classical approach
is provided by constraint-based algorithms which are based on testing conditional independences [MT99;
SG91; Tsa+03]. A second prominent approach is given by score-based algorithms [Chi02; HGC95]. In this
work, our focus will be on a score-based approach. Specifically, we will take up a recent theme whose aim
is to find a DAG that minimizes a model selection score based on a continuous optimization problem with a
continuous acyclicity constraint imposed on a weighted adjacency matrix, . This theme was initiated in the
NOTEARS algorithm [Zhe+18] which assumes a linear SEM and uses an exponential acyclicity constraint
changing the combinatorial optimization problem into a continuous optimization problem that is solved in
an augmented Lagrangian scheme. More precisely, consider, 2 í3⇥3 as the weighted adjacency matrix
of a graph ⌧ with 3 nodes whose edges correspond to the direct effects in a linear SEM. Let, �, be the
Hadamard product. Then the constraint of Zheng et al. [Zhe+18] is posed through the exponential acyclicity
function ⌘exp(, ) = Tr(4, �, ) � 3 . With the resulting constraint, score-based causal discovery becomes
amenable to the application of commonly used gradient-proxy algorithms for (non-) linear optimization
problems. Several follow-up works proposed other acyclicity characterizations [BAR22; Naz+23; NGZ20;
Yu+19]. Following related literature, we refer to this general approach as differentiable causal discovery.

Recent work also extended this methodology to non-parametric settings. Suppose we observe a 3-
dimensional stochastic system comprised of the real-valued random variables (- 9 )39=1. In a directed graph-
ical model presented through structural equations, each variable - 9 exhibits a relationship with the other
coordinates of random vector - := (- 9 )39=1. Assuming additive noise Y 9 , but allowing for non-linearity, it
then holds that

- 9 = 59 (- ) + Y 9 , 9 = 1, . . . ,3 . (1.1)

Here, each function 59 : í3 7! í is measurable and is modeled to belong to a function class of interest. In
particular, 59 does not depend on coordinate- 9 . Zheng et al. [Zhe+20] treat what we refer to as differentiable
causal discovery in a nonparametric setting. Namely, the authors propose to approximate the functions 59
by multi-layer perceptrons or via a (truncated) basis expansion in the original functional space, i.e., in the
space of functions where both the functions and their derivatives are square-integrable over domain X (an
expansion is then possible via the trigonometric basis of functions) and minimize the corresponding residual
loss subject to trace-based acyclicity constraint for the expansions of functions 59 . In the sequel, we work
under additional assumptions that the functions are continuously differentiable (which as we will show is for
example ensured when considering Gaussian RKHS). In the MLP framework of Zheng et al. [Zhe+20], the
entry,: 9 of the weighted adjacency matrix is defined as the !2 norm of the :th column of the weight matrix
in the first hidden layer of the 9 th MLP. In the case of approximation by basis expansions, the general non-
parametric model is assumed to be an additive model, so 59 (- ) =

Õ
:<9 59: (-: ), with each 59: approximated

by a finite number of orthonormal elements from the basis in the space of differentiable functions which



1 Introduction

2

derivatives are square-integrable. Then,: 9 is defined as the !2 norm of the coefficients corresponding to
the basis approximation of 59: .

Both the MLP approximation and the basis expansions in Zheng et al. [Zhe+20] yield finite-dimensional
optimization problems in terms of neural network weights or basis coefficients. The current MLP approx-
imation is sensitive to the size of hidden units. Although increasing the size of the hidden layers increases
the flexibility of MLP functions, larger networks require more samples to estimate the parameters [Zhe+20].
Moreover, the current MLP approximation relies on random initialization for the weights which causes obvi-
ous randomness in results [see the illustration from WBD24, Figure 2 therein]. Fine-tuning the architecture
of a neural network is, thus, a non-trivial task. On the other hand, the basis expansion approximation adopted
in the earlier work is restricted through its focus on additive models.

Contributions. In this work, we introduce a novel kernel-based methodology for differentiable causal
discovery in non-parametric settings. Our contributions can be summarized as follows:

• We approximate each function in (1.1) with the help of an RKHS given by a differentiable kernel
: and establish a version of an RKHS Representer Theorem for an empirical acyclicity-constrained
optimization problem (similar to that of Rosasco et al. [Ros+13] in the statistical learning scenario).
Given data (G8)=8=1, this leads to optimizing functions that are combinations of evaluations of the kernel
and its partial derivatives:

=’
8=1

U8: (G, G8) +
=’
8=1

3’
0=1

V08
m: (G, B)
mB0

����
B=G8

. (1.2)

• We use the implication that if G 7! 59 (G) is continuously differentiable for all G in a connected and
compact sample space X, then m59

mG:
= 0 implies that 59 does not depend on G: . Thus, we define the

weighted adjacency matrix directly via the partial derivatives of the functions 59 , which is model-
agnostic as one does not define the weights in terms of approximations to 59 .

• We base our optimization on the DAGMA method [BAR22] and adopt the log-determinant acyclic-
ity constraint ⌘ldet, for which we demonstrate stable optimization behaviour on the boundary of the
domain.

• We explore the behavior of kernel-based differentiable causal discovery in simulation experiments as
well as the collection of cause-effect datasets [Moo+16]. The code for our experiments is available at
the author’s GitHub site.1

Outline. Chapter 2 sets up notation and reviews the basic settings for directed acyclic graph (DAG) as well
as the DAG learning problem. In chapter 3, we investigate the DAG learning problem under the assumption
of the linear structure equation model (SEM), demonstrating that it can be reformulated as an equality con-
strained optimization problem. Then we review two essential optimization methods, namely the Lagrange
rule and the augmented Lagrange multiplier method [Nem99], to solve equality constrained optimization
problems. Finally, we study the application of the augmented Lagrange scheme to the DAG learning prob-
lem within the framework of linear SEM, resulting in the linear NOTEARS algorithm [Zhe+18]. Chapter
4 modifies the linear NOTEARS algorithm by incorporating adaptive Lasso to facilitate learning a sparse
DAG. This modification allows for adaptive penalty levels applied to different coefficients of the weighted
adjacency matrix [Xu+22]. Chapter 5 extends the linear NOTEARS algorithm into general non-parametric
DAGs [Zhe+20]. Moreover, we summarize the existing acyclicity constraints and discuss their stability
[Naz+23]. We also introduce an alternative optimization scheme ”DAGMA” using the central path ap-
proach [BAR22]. In chapter 6, we review fundamental facts for kernels and reproducing kernel Hilbert
space (RKHS) as well as the RKHS Representer Theorem [SC08]. In chapter 7, we introduce the spar-
sity regularizer and develop a novel extended RKHS Representer Theorem for the constrained optimization
problem with acyclicity constraint. Based on this, we formulate the overall learning objective and assemble
the ”DAGMA” optimization scheme. Finally, we compare the performance of RKHS-DAGMA with dif-
ferent versions of nonparametric NOTEARS [Zhe+20] in numerical experiments in chapter 8. Additional
details on the optimization methods are given in the Appendix.

1
https://github.com/yurou-liang/RKHS-DAGMA



3

2 Graphical Modelling

A Bayesian network is a probabilistic graphical model that represents a set of random variables and their
conditional dependencies via a directed acyclic graph (DAG) whose nodes represent the random variables.
Each edge represents a direct conditional dependency. In this chapter, we review some basic settings for
DAGs from Lauritzen [Lau96] and the DAG learning problem.

Definition 2.1 (DAG). Let G be a graph with vertices+ = {E1, . . . , E3 } and edges ⇢ ✓ + ⇥+ , i.e. ⌧ = (+ , ⇢).
If ⇢ is a set of ordered pairs, then⌧ is called a directed graph. A walk is a finite or infinite sequence of edges
which joins a sequence of vertices. A finite walk of⌧ is a sequence of edges (41, 42, . . . , 4:�1) for which there
is a sequence of vertices (E1, E2, . . . , E=) such that 48 = (E8 , E8+1) for 8 2 {1, . . . ,: � 1}. The walk is called
closed if E1 = E: . If a directed graph has no closed walk, it is called a directed acyclic graph (DAG).

Definition 2.2 (Adjacency matrix). Suppose a graph ⌧ = (+ , ⇢), a square 3 ⇥ 3 matrix � is called an
adjacency matrix of ⌧ if �8 9 = 1 when there is a directed edge from vertex 8 to 9 and �8 9 = 0 otherwise.

Definition 2.3 (Local Markov property). A DAG model ⌧ satisfies the local Markov property, if for all
U 2 + : U ?? {=3 (U) \ ?0(U) | ?0(U)} where =3 (U) are the non-descendants of U , ?0(U) are the parents of
U .

Example 2.4. The following DAG implies that ⌫ ?? ⇠ |� and ⌫ ?? ⇡ | (�,⇠).

Figure 2.1

Denote [3] := {1, 2, . . . ,3}. Consider a directed graph ⌧ = (+ , ⇢) with vertex set + = [3] and edge set
⇢ ⇢ + ⇥ + . As usual, we define the set of parents of a vertex 8 2 + as pa(8) = { 9 2 + : ( 9, 8) 2 ⇢}. We
associate with the graph ⌧ a random vector - = (-1, . . . ,-3 ) taking values in X ⇢ í3 with its distribution
ê over on some probability space (⌦, F ,ê), and we assume X is a bounded connected non-empty open set.

Proposition 2.5. For a subset � ⇢ [3], let -� = (-8)82�. Similarly, for a rectangular Borel set ⌫ 2 B
�
í3

�
,

⌫ = ⇥38=1⌫8 , we define ⌫� = ⇥82�⌫8 . When � = ;, we set -� ⌘ 0 and ⌫� = {0}. The probabilistic graphical
model [Maa+19] corresponding to graph ⌧ is the family of joint distributions ê- for - under which

ê- (⌫) = ê(- 2 ⌫) =
3÷
8=1

ê
�
-8 2 ⌫8 |-pa(8 ) 2 ⌫pa(8 )

�
8⌫ = ⇥38=1⌫8 2 B

�
í3

�
.

Proof. Assume the statement holds for all DAGs with : vertices. For DAG⌧ with : + 1 vertices, we reorder
the index of vertices so that (: + 1)�th vertex has no descendant. By Bayes’ Rule,

ê((-1, . . . ,-:+1) 2 ⌫ [:+1] )
ê(-pa(:+1) 2 ⌫pa(:+1) )

= ê((-1, . . . ,-:+1) 2 ⌫ [:+1] | -pa(:+1) 2 ⌫pa(:+1) )

= ê(-:+1 2 ⌫:+1 | -pa(:+1) 2 ⌫pa(:+1) ) · ê((-1, . . . ,-: ) 2 ⌫ [: ] | -pa(:+1) 2 ⌫pa(:+1) ),
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where we use the local Markov property for the second equation. Then

ê((-1, . . . ,-:+1) 2 ⌫ [:+1] ) = ê(-:+1 2 ⌫:+1 | -pa(:+1) 2 ⌫pa(:+1) ) · ê((-1, . . . ,-: ) 2 ⌫ [: ] )

=
:+1÷
8=1

ê(-8 2 ⌫8 | -pa(8 ) ),

where the second equality follows by assumption. The statement follows by induction.

Suppose for all 9 2 [3], the conditional expectations have the form Ö[- 9 |-pa( 9 ) ] = 59 (- ) + Y 9 , where 59 :
X ! í does not depend on -: if : 8 pa( 9), and

�
Y 9

�
92 [3 ] are stochastic error terms that are independent

over 9 . Let ò 2 í=⇥3 be a data matrix whose rows G8 , 8 = 1, . . . ,= represent = i.i.d. observations. Let G89 be
the 9�th coordinate of the 8�th observation. We denote the loss function by ✓ : í ⇥ í 7! í+. The typical
loss function is the quadratic loss: ✓ (~,b~) = (~ � b~)2. The goal is to estimate the functional dependency
structure of random vector - which can be represented as a DAG on the space of vertices+ . More precisely,
the goal is to estimate 5 = (51, . . . , 53 ) by minimizing the score function

!(5 ) := 1
2=

3’
9=1

=’
8=1

✓ (G89 , 59 (G8)) subject to the dependencies in 5 corresponding to a DAG. (2.1)

We describe structure learning in two cases: linear structural equation models [Zhe+18] and general non-
parametric structural equation models [Zhe+20].
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3 Structure Learning in Linear Structural Equation
Models

In this chapter, we introduce the linear NOTEARS algorithm developed by Zheng et al. [Zhe+18] based
on the linear structural equation model (SEM). Let , = {F1 | . . . |F3 } 2 í3⇥3 . For random vector - =
(-1, . . . ,-3 ), we assume a linear SEM: - 9 = F>9 - + Y 9 , and

�
Y 9

�
92 [3 ] are stochastic error terms that are

independent over 9 . Thus,, define a graph⌧ (, ) on 3 nodes with the adjacency matrix�(, )8 9 = 1{F8 9<0} .
In causal inference, one usually expect that a random variable depends only on a few other random variables.
Since,8 9 represents the direct impact of -8 to - 9 , we favor a weight, for which each entry,8 9 is small.
Thus, ✓1-regularization k, k1 =

Õ3
8, 9=1 |,8 9 | is added to the score function. Thus, the aim is to solve

min
, 2í3⇥3

1
2= kò �ò, k

2
� + _k, k1 subject to ⌧ (, ) is a DAG, (3.1)

where k�k� :=
qÕ

8, 9=1 |�8 9 |2.

3.1 Acyclicity Characterization

It is shown that the optimization problem (3.1) is NP-hard due to the combinatorial search space caused
by the acyclicity constraint [CHM04]. To solve this problem, Zheng et al. [Zhe+18] introduced a continu-
ous acyclicity constraint, transforming (3.1) into a continuous optimization problem. Ideally, an acyclicity
constraint ⌘ should satisfy following desiderata:

D1. ⌘(, ) = 0 if and only if, is acyclic;

D2. The values of h quantify the "DAG-ness" of the graph;

D3. ⌘ is smooth. More precisely, ⌘ is at least twice continuous differentiable everywhere;

D4. ⌘ and its derivative are easy to compute.

Note that the desiderata D1 characterizes the acyclicity. D2 means that the values of h quantify how
severe violations from acyclicity become as ⌧ (, ) moves further from DAG. Furthermore, D3 and D4
ensure the continuous optimization problem resulted by ⌘ can be solved by numerous common optimization
methods, for example, the augmented Lagrangian scheme which will be investigated in detail in section 3.2.

To study the acyclicity constraint, let us consider first the simpler case of binary adjacency matrices
⌫ 2 {0, 1}3⇥3 .

Special case: Binary adjacency matrices

Proposition 3.1.1. [Zhe+18, Proposition 1] Suppose ⌫ 2 {0, 1}3⇥3 . Let _8 (⌫) 2 É be the 8�th large
eigenvalue of ⌫ w.r.t. complex magnitude, i.e., |_1(⌫) |  |_2(⌫) |  · · ·  |_3 (⌫) |, and let A (⌫) be the
spectral radius of ⌫, i.e., A (⌫) = |_3 (⌫) |. Let ⌧ (⌫) denote the graph with adjacency matrix ⌫. Suppose
A (⌫) < 1, then ⌧ (⌫) is a DAG if and only if CA (� � ⌫)�1 = 3 .

Proof. Since CA (⌫: ) counts the number of length-: closed walks in a directed graph, then⌧ (⌫) is acyclic if
and only if CA (⌫: ) = 0 for all : = 1, . . . ,1, which is equivalent to

Õ1
:=1

Õ3
8=1(⌫: )88 =

Õ1
:=1 CA (⌫: ) = 0. Note

that under the assumption A (⌫) < 1, we have (� � ⌫)�1 = Õ1
:=0 ⌫

: . Then

CA (� � ⌫)�1 = CA (� ) +
1’
:=1

CA (⌫: ) = 3 +
1’
:=1

3’
8=1

(⌫: )88 = 3 + 0 = 3 .

We conclude the statement.
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However, the condition A (⌫) < 1 is generally not true. The following acyclicity characterization holds
for all possible ⌫.

Proposition 3.1.2. [Zhe+18, Proposition 2] For binary matrix ⌫ 2 {0, 1}3⇥3 , ⌧ (⌫) is a DAG if and only if
CA (4⌫) = 3 .

Proof. As in the proof of Proposition 3.1.1, ⌫ is acyclic if and only if (⌫: )88 = 0 for all : = 1, . . . ,1 and
8 = 1, . . . ,3 , which is equivalent to

0 =
1’
:=1

3’
8=1

(⌫: )88/:! =
1’
:=0

CA (⌫: )
:! � 3 = CA (4⌫) � 3 .

For the map ⌘exp : {0, 1}3⇥3 ! í,⌫ 7! CA (4⌫) � 3 , the domain ⌫ is defined on discrete space, hence
the derivative of ⌘ is not well-defined, which means the desiderata D4 is not satisfied. The following steps
extend this acyclicity characterization to continuous domain í3⇥3 .

The general case: Weighted adjacency matrices

Theorem 3.1.3 (Exponential acyclicity constraint). [Zhe+18, Theorem 1] A matrix, 2 í3⇥3 is the weight
matrix of a DAG ⌧ (, ) if and only if the exponential acyclicity constraint ⌘exp(, ) := CA (4, �, ) � 3 = 0,
where, �, denotes the Hadamard product. Moreover, ⌘exp(, ) has a simple gradient

5⌘exp(, ) = (4, �, )> � 2,

and satisfies all desiderata (D1)-(D4).

Proof. Let �(, ) be the adjacency matrix of ⌧ (, ). ⌧ (, ) is acyclic if and only if (�(, ): )88 = 0 for all
: � 1, 8 = 1, . . . ,3 . Since

�(, )8 9 = 1{F8 9<0} = 1{F2
8 9>0},

then (�(, ): )88 = 0 for all : � 1, 8 = 1, . . . ,3 if and only if [(, �, ): ]88 = 0 for all : � 1, 8 = 1, . . . ,3 .
Similar to the proof of Proposition 3.1.2, we conclude that ⌘(, ) := CA (4, �, )�3 = 0 if and only if⌧ (, ) is
a DAG. The gradient of ⌘ is followed by numerical calculations. Consequently, desiderata (D1), (D3), and
(D4) are satisfied. Note that CA (�(, ) + �(, )2 + . . . ) counts the number of closed walks in ⌧ (, ). Thus
exp(CA (�(, )) = Õ1

:=1
CA (�(, ): )

:! re-weights these counts. Replacing �(, ) by, �, amounts to counting
weighted closed walks, where the weight of each edge isF2

8 9 . Thus, the desiderata (D2) holds.

By Theorem 3.1.3, the optimization problem (3.1) is equivalent to the following equality constrained
problem:

min
, 2í3⇥3

1
2= kò �ò, k

2
� + _k, k1 s.t. ⌘exp(, ) = 0. (3.2)

In the next section, we review some optimization methods to solve (3.2).

3.2 Optimization

First, we consider the following general equality constrained problem (ECP):

min
x2í3

5 (x) subject to ⌘(x) =
 ⌘1(x)

...
⌘< (x)

!
= 0, (3.3)

where 5 (x),⌘8 (x), 8 = 1, . . . ,< are smooth (at least twice continuously differentiable) real-valued functions.
First, we review some optimization problems to solve (3.3) and then apply them to solve the constrained
optimization problem (3.2).



3.2 Optimization

7

3.2.1 Lagrange Rule

Definition 3.2.1. 1. The feasible surface is defined as ( := {x 2 í3 : ⌘(x) =
 ⌘1(x)

...
⌘< (x)

!
= 0}.

2. A feasible solution x is called regular for the system of constraints of the problem (3.3) if 5⌘8 (x), 8 =
1, . . . ,< are linearly independent vectors in í< or equivalently, the< ⇥ 3 matrix 5⌘(x) has full row
rank<.

3. A continuous map 5 : í3⇥3 ! í is said to be differentiable at a point u 2 í3⇥3 if there exists a linear
functional ) that maps from í3⇥3 to í, such that

lim
v!0

|5 (u + v) � 5 (u) �)v |
kvk2

= 0.

If 5 is differentiable at u, the operator ) is called the derivative of 5 at u. The operator is usually
denoted by ⇡5 (u) or 55 (u). If 5 is differentiable at every point of an open subset * ✓ í3⇥3 , then
5 is called differentiable on * . If 5 is differentiable at u, then for every v 2 í3⇥3 , ⇡5 (u) (v) =
3
3C

���
C=0
5 (u + Cv).

4. For a continuous map 5 : í3 ! í, if 5 is differentiable at u 2 í3 , the directional derivative of 5
along a vector v 2 í3 valued at u is defined by the limit

5v 5 (u) := lim
C!0

5 (u + Cv) � 5 (u)
C

= ⇡5 (u) (v) = 55 (u) · v .

5. A point x is called critical point of a function 5 if 55 (x) = 0.

Theorem 3.2.2 (Taylor’s Theorem). [Sar]

1. Univariate version: Let : � 1 be an integer and let the function 5 : í ! í be (: + 1) times
continuously differentiable on some open interval around the point 0 2 í. Then for any G on this
interval:

5 (G) = 5 (0) + 5 0(0) (G � 0) + 5 00(0)
2! (G � 0)2 + · · · + 5 (: ) (0)

:! (G � 0): + 5 (:+1) (b)
(: + 1)! (G � 0):+1

for some real number b between 0 and G .

2. Multivariate version: Let : � 1 be an integer and let 5 : í3 ! í be a (: + 1) times continuously
differentiable function on some open interval around the point a 2 í3 . Then for any G on this interval:

5 (x) = 5 (0) +
:’

|U |=1

⇡U 5 (a)
U! (x � a)U +

’
|U |=:+1

⇡U 5 (b)
U! [x � a]U ,

where b is some point on the line segment connecting a and x. The notations mean:

• U = (U1,U2, . . . ,U=) is a multi-index of non-negative integers;
• |U | = U1 + · · · + U=;

• U! = U1!U2! . . . U=!;

• ⇡U 5 = m |U | 5
mG

U1
1 ...mGU==

;

• (x � a)U = (G1 � 01)U1 (G2 � 02)U2 . . . (G= � 0=)U= .
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3. Matrix version: Let : � 1 be an integer and let 5 : í3⇥3 ! í be a (: + 1) times continuously
differentiable function on some open interval around the point,0 2 í3⇥3 . Then for any, on this
interval:

5 (, ) = 5 (,0) +
:’

|U |=1

⇡U 5 (,0)
U! (, �,0)U +

’
|U |=:+1

⇡U 5 (,b )
U! (, �,0)U ,

where,b is some point on the line segment between, and,0. The notations mean:
• U = (U11,U12, . . . ,U33 ) is a multi-index of non-negative integers;
• |U | = Õ

8, 9 U8 9 ;
• U! =

Œ
8, 9 U8 9 !;

• [, �,0]U =
Œ
8, 9 (F8 9 � (F0)8 9 )U8 9 .

To get ”geometrically tractable” feasible sets, it is assumed that at every point of the feasible sets, it
should admit a ”tangent plane”, which means the plane is the best approximate of the surface near that
point. So a natural candidate of the tangent plane to the surface ( at a point x 2 ( is the set of those points ~
obtained by the linearization at x of the smooth equations defining (:

⌘̄8 (~) = ⌘8 (x) + (~ � x)> 5 ⌘8 (x) x2(= (~ � x)> 5 ⌘8 (x) .

Hence, we denote

)x := {~ | (~ � x)> 5 ⌘8 (x) = 0, 8 = 1, . . . ,<} = {~ | 5 ⌘(x) (~ � x) = 0},

where 5 ⌘(x) = ©≠
´
[5⌘1(x)]>

...
[5⌘< (x)]>

™Æ
¨
= 0 2 í<⇥3 .

The next theorem says if x is a regular solution, then )x indeed defines the tangent plane to ( at point x.

Theorem 3.2.3 (Theorem on Tangent plane). [Nem99, Theorem 8.2.1] Let x 2 ( be a regular solution of
⌘(x) = 0 where ⌘8 is twice differentiable for all 8 = 1, . . . ,<. Then )x is the tangent plane to ( at x, namely,
there exists constant ⇠ s.t.

1. the distance from an arbitrary point x0 2 ( of the surface to)x is of the second order of magnitude as
compared to the distance from x0 to x:

8x0 2 ( 9(~0 2 )x) : kx0 �~0 k2  ⇠ kx0 � x k22;

2. the distance from an arbitrary point ~0 2 )x of the tangent plane to the surface is of the second order
of magnitude as compared to the distance from ~0 to G:

8~0 2 )x 9(x0 2 () : kx0 �~0 k2  ⇠ k~0 � x k22.

Proof. 1. For any x0 2 ( , by Taylor’s Theorem:

⌘8 (x0) = ⌘8 (x) + (x0 � x)> 5 ⌘8 (x) +
1
2 (x

0 � x)>⇡2⌘8 (b) (x0 � x),

where b is on the line segment between x and x0. Since x, x0 2 ( , i.e., ⌘8 (x) = ⌘8 (x0) = 0, then

| (x0 � x)> 5 ⌘8 (x) | =
1
2 (x

0 � x)>⇡2⌘8 (b) (x0 � x).

In (3.3), ⌘8 is assumed to be twice continuously differentiable. Thus ⇡2⌘(b) is continuous on the
compact set defined by the line segment between x and x0, and

��⇡2⌘(b)
��
2  ⇠1 consequently. Then

| (x0 � x)> 5 ⌘8 (x) | =
1
2 (x

0 � x)>⇡2⌘8 (b) (x0 � x)  ⇠1kx0 � x k22
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for some positive constant ⇠1. For a fixed x0, we can take a ~0 2 )x s.t.:

kx0 �~0 k2  ⇠2 | (x0 � x)> 5 ⌘8 (x) � (~0 � x)> 5 ⌘8 (x)|                {z                }
=0

| = ⇠1⇠2kx0 � x k22,

where ⇠2 denotes a positive constant.
2. By Taylor’s Theorem, for any ~0 2 )x :

⌘8 (~0) = ⌘8 (x) + (~0 � x)> 5 ⌘8 (x) +
1
2 (~

0 � x)>⇡2⌘8 (b) (~0 � x),

where b is on the line segment between x and ~0. Since x is feasible and ~0 2 )x , similarly to the
proof of statement 1, we can obtain that |⌘8 (~0) |  ⇠3k~0 � x k22 for some positive constant ⇠3. We
take x0 2 ( s.t. kx0 �~0 k2  ⇠4 |⌘(x0) � ⌘(~0) | for some positive constant ⇠4. Since x0 2 ( , then
kx0 �~0 k2  ⇠4 |⌘(~0) |  ⇠3⇠4k~0 � x k22.

Remark 3.2.4. Note that we assume for every x 2 ( , there exists )x , Theorem 3.2.3 shows that the plane
approximates the surface ( locally within accuracy which is “infinitesimal of higher order” as compared to
the distance to x.

Theorem 3.2.5 (First Order Necessary Optimality conditions for ECP - the Lagrange rule). [Nem99, The-
orem 8.2.2] Let x⇤ be a locally optimal solution of ECP (3.3) and let it be a regular point for the system of
equality constraints of the problem (3.3). Note that )x⇤ is well-defined by regularity, then following proper-
ties hold:

1. The directional derivative of 5 taken at x⇤ in every direction along the plane )x⇤ is zero:

For all e with x⇤ + e 2 )x⇤ : e> 5 5 (x⇤) = 0 ,i.e., if 5 ⌘(x⇤) · e = 0, then e> 5 5 (x⇤) = 0.

2. There exists uniquely defined (by x⇤) Lagrange multipliers _⇤8 , 8 = 1, . . . ,<, s.t.

55 (x⇤) +
<’
8=1

_⇤8 5 ⌘8 (x⇤) = 0,

or equivalently, for the Lagrange function

L(x ; _) := 5 (x) +
<’
8=1

_8⌘8 (x) = 5 (x) + _>⌘(x) : 5x!(x⇤; _⇤) = 0.

Proof. 1. The statement can be proved by contradiction. Assume there exists a direction e with 5⌘(x⇤)e = 0
and e> 5 5 (x⇤) < 0. W.l.o.g. we can assume e> 5 5 (x⇤) < 0 (otherwise we replace e by �e). Consider
~C := x⇤ + Ce, then 5⌘(x⇤) (~C � x⇤) = 5⌘(x⇤) · Ce = 0 since x⇤ is feasible. Thus, ~C 2 )x⇤ . Note that
3
3C |C=0 5 (~C ) = e> 5 5 (x⇤) def

=: �U < 0, then for all small enough C :

5 (~C )  5 (x⇤) �
U

2 C . (3.4)

By the regularity of x⇤ and Theorem 3.2.3, for every C , there exists a xC 2 ( s.t.

k~C � xC k2  ⇠ k~C � x⇤k22 = ⇠ kek22|{z}
=:⇠1

C2. (3.5)

Since 5 is continuously differentiable, then by Mean Value Theorem, 5 is Lipschitz continuous in the neigh-
bourhood of x⇤. Thus for small enough C > 0,

|5 (xC ) � 5 (~C ) |  ⇠2kxC �~C k2
(3.5)
 ⇠1⇠2C

2.
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By (3.4): 5 (~C ) � 5 (xC )  5 (x⇤) � 5 (xC ) � U
2 C which implies

5 (xC )  5 (x⇤) + 5 (xC ) � 5 (~C ) �
U

2 C  5 (x
⇤) + |5 (xC ) � 5 (~C ) | �

U

2 C  5 (x
⇤) � U2 C +⇠1⇠2C

2. (3.6)

Since (3.6) holds for arbitrary small and positive C , it follows 5 (xC ) < 5 (x⇤). Note that xC is a feasible
solution of ECP (3.3), thus 5 (xC ) < 5 (x⇤) which contradicts to that x⇤ is optimal solution of ECP (3.3).

2. Since x⇤ is locally optimal of (ECP), by statement 1: For all e with x⇤ + e 2 ) , it holds e>x⇤ 5 5 (x⇤) = 0,
i.e., 55 (x⇤) is orthogonal to {e | 5 ⌘(x⇤)e = 0}. Recall from linear algebra: a vector p is orthogonal to
{e : �e = 0} if and only if p + �>_ = 0 for a certain vector _. Denote p := 55 (x⇤) = 0,� := 5⌘(x⇤), then
there exists Lagrange multipliers _⇤ 2 í< s.t.

0 = 55 (x⇤) + [5⌘(x⇤)]>_⇤ = 55 (x⇤) +
<’
8=1

_⇤8 5 ⌘8 (x⇤).

Uniqueness of _⇤: From the above proof, � 5 5 (x⇤) = [5⌘(x⇤)]>_⇤. Since x⇤ is regular, 5⌘(x⇤) has full
rank, thus _⇤ is unique.

Remark 3.2.6. To see the necessity of the regularity of a feasible solution, we introduce the following
example. Let’s consider the ECP:

min
(G1,G2 )2í2

G2 s.t.
⇢
⌘1(x) := (G1 � 1)2 + G22 = 1
⌘2(x) := (G1 + 1)2 + G22 = 1 .

Then,

5 ⌘1(x) =
⇣
2(G1 � 1)2G2

⌘
= 2

�G1G2� � 2
⇣
1
0
⌘
,

5 ⌘2(x) =
⇣
2(G1 + 1)

2G2
⌘
= 2

�G1G2� + 2
⇣
1
0
⌘
.

So 5⌘1(G) and 5⌘2(G) are linearly dependent at feasible point (G1, G2) = (0, 0), which means the feasible
point (G1, G2) = (0, 0) is not regular. Denote _ = (_1, _2)>, the Lagrange function is

L(x, _) = L(x, _1, _2) = G2 + _1 [(G1 � 1)2 + G22 � 1] + _2 [(G1 + 1)2 + G22 � 1] = 0.

Then,

mL(x, _1, _2)
mG

=
⇣
0
1
⌘
+ 2_1 [

�G1G2� �
⇣
1
0
⌘
] + 2_2 [

�G1G2� +
⇣
1
0
⌘
] = 2(_1 + _2)

�G1G2� +
⇣
2_2 � 2_11

⌘
.

Note that the only feasible point is (G1, G2) = (0, 0), so there doesn’t exists (_1, _2) s.t. mL(x,_1,_2 )
mx = 0.

Theorem 3.2.7 (Second Order Optimality conditions for ECP). [Nem99, Theorem 8.2.3] Let x⇤ be a feasible
solution for the ECP (3.3), let x⇤ be regular for the system of constraints of the problem (3.3), and let

L(x ; _) := 5 (x) +
<’
8=1

_8⌘8 (x) = 5 (x) + _>⌘(x)

be the Lagrange function of the problem. Then.

1. [Second Order Necessary Optimality condition]
Let G⇤ be a locally optimal solution to the problem. Then x⇤ satisfies the First Order Optimality condition:

9_⇤ : 5xL(x⇤; _⇤) = 0; 5_L(x⇤; _⇤) = 0

and, besides this, the Hessian of the Lagrangian with respect to x, reduced to the tangent plane is positive
semidefinite:

5⌘(x⇤)4 = 0 =) e> [52xL(x⇤; _⇤)]e � 0.
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2. [Second Order Sufficient Optimality condition]
Let x⇤ satisfy the First Order Optimality condition

9_⇤ : 5xL(x⇤; _⇤) = 0; 5_L(x⇤; _⇤) = 0
and let, besides this, the Hessian of the Lagrangian with respect to x, reduced to the tangent plane, be
positive definite:

5⌘(x⇤)4 = 0, e < 0 =) e> [52xL(x⇤; _⇤)]e > 0.
Then x⇤ is locally optimal solution to the problem.

3.2.2 Augmented Lagrange Multiplier Method

Although the Lagrange rule is powerful, in practice, it is computationally costly or even impossible to get
the closed-form solution from the Lagrange rule. In this section, we introduce an iterative way to solve ECP
(3.3) which is called the augmented Lagrange multiplier method. We consider the same ECP (3.3).
Definition 3.2.8 (Non-degenerate solution). A feasible solution x⇤ to ECP (3.3) is called a non-degenerate
solution to the ECP if x⇤

1. is regular for the constraints of the problem;

2. satisfies the second-order sufficient optimality conditions, i.e.,

9_⇤ : 5x!(x⇤; _⇤) = 0; 5_!(x⇤; _⇤) = 0, (3.7)

and the Hessian of the Lagrange function w.r.t. x reduced to the tangent plane is positive definite:

5⌘(x⇤)4 = 0, e < 0 =) e> [52x!(x⇤; _⇤)]e > 0.

Remark 3.2.9. Above definition involves both x⇤ and the Lagrange multiplier _⇤, which is a property of the
pair (x⇤, _⇤). Since x⇤ is regular for the constraints, by Theorem 3.2.5, there exists a Lagrange multiplier _⇤
satisfying (3.7), and is uniquely defined by x⇤, so the definition is indeed a property of x⇤ alone.

Back to the ECP (3.3), let us add a quadratic penalty term so that the penalized objective: 5d (x) =
5 (x) + 1

2d
Õ<
8=1 ⌘

2
8 (x). And we define ECPd :

min
x2í3

5d (x) subject to ⌘(x) = 0. (3.8)

Note that the penalty term is zero on the feasible surface, so ECPd (3.8) is equivalent to ECP (3.3). The
following lemma shows the advantage of ECPd (3.8).
Lemma 3.2.10. Let x⇤d be a non-degenerate local solution to ECPd (3.8), and let

Ld (x, _) := 5d (x) + _>⌘(x) = 5d (x) +
<’
8=1

_8⌘8 (x)

be the Lagrange function of ECPd (3.8). Let _⇤d denote the vector of Lagrange multipliers corresponding to
the solution x⇤d so that 5xLd (x⇤, _⇤) = 0,

1. let x⇤ denote the non-degenerate solution to ECP (3.3), and let _⇤ be the Lagrange multiplier corre-
sponding to x⇤ s.t. 5xL(x⇤, _⇤) = 0, then x⇤ = x⇤d , _⇤ = _⇤d .

2. for d large enough, the matrix 52xLd (x⇤, _⇤) is positive definite.

Proof. 1. Since ECP (3.3) and ECPd (3.8) are equivalent on the feasible surface, then x⇤ = x⇤d . We write
always x⇤ for simplicity. Note that

5x L(x⇤, _⇤) = 5x 5 (x⇤) +
<’
8=1

_⇤8 5 ⌘8 (x⇤) = 0,

5x 5d (x) = 5x 5 (x) + d
<’
8=1

⌘8 (x) 5 ⌘8 (x)
⌘ (x⇤ )=0
=) 5x 5d (x⇤) = 5x 5 (x⇤) .

Since _⇤d is uniquely defined by 5xLd (x⇤, _⇤d ) = 5x 5d (x⇤) +
Õ<
8=1 _

⇤
d8 58 (x⇤) = 0, then _⇤d = _⇤, thus

we write always _⇤ for simplicity.
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2. Note that

Ld (x, _) = 5d (x) +
<’
8=1

_8⌘8 (x) = 5 (x) +
<’
8=1

_8⌘8 (x) +
1
2d

<’
8=1

⌘8 (x)2 = L(x, _) + 1
2d

<’
8=1

⌘8 (x)2,

then

5xLd (x, _) = 5xL(x, _) + d
<’
8=1

⌘8 (x) 5x ⌘8 (x) .

Furthermore,

52xLd (x, _) = 52xL(x, _)|      {z      }
=:� (x,_)

+d
<’
8=1
5x⌘8 (x) [5x⌘8 (x)]> + d

<’
8=1

⌘8 (x) 52x ⌘8 (x)
|                 {z                 }

=:⌫ (x )

.

Denote �(x) := 5x⌘(x) =
✓
[5⌘1(x)]>. . .
[5⌘< (x)]>

◆
, then

52xLd (x, _) = � (x, _) + d�>(x)�(G) + d⌫(x) .

By assumption, x⇤ is a non-degenerate solution of (ECP), i.e., � (x⇤, _⇤) is positive definite at the sub-
space) of directions tangent to feasible surface at point x⇤. Note that for any s 2 í3 , s>�>(x⇤)�(x⇤)s =
|�(x⇤)s |2 � 0, i.e.,�>(x⇤)�(x⇤) is positive semidefinite. Note that x⇤ is feasible, then for any s 2 í3 :

s> 52x Ld (x⇤, _⇤)s = s>� (x⇤, _⇤)s + ds>�>(x⇤)�(x⇤)s . (3.9)

Let ) be the kernel of matrix �(x⇤): ) := {s |�(x⇤)s = 0} = {s | 5 ⌘(x⇤)s = 0}.
If s 2 ) , (3.9) = s>� (x⇤, _⇤)s > 0 by the non-degeneration of x⇤.
If s 8 ) : s>�>(x⇤)�(x⇤)s > 0, then (3.9) > 0 for d large enough.

Lemma 3.2.11. [Nem99, Theorem 11.1.1] If 52xL(x, _) is positive definite on entire space, then there exists
a convex neighbourhood + of x⇤ in í3 and a convex neighbourhood ⇤ of _⇤ in í< s.t.

1. for every _ 2 ⇤,L_ (x) : x 7! L(x, _) is strongly convex in + , so the critical point x⇤(_) is uniquely
defined in + , and x⇤(_) is a non-degenerate minimizer of L_ in + .

2. Define optimal value of L_ (x) in + as: L(_) = L_ (x⇤(_)), L(_) : _ 7! L_ (x⇤(_)) is concave and
twice continuous differentiable in ⇤ with gradient 5_L(_) = ⌘(x⇤(_)).

Remark 3.2.12. Since x⇤(_⇤) is feasible, by Lemma 3.2.11 statement 2 it follows 5_L(_⇤) = 0. Due to the
concavity of L(_), L attains its maximum over ⇤ at point _⇤. By Lemma 3.2.11: (x⇤, _⇤) is local saddle
point of Lagrange function, more precisely, there exists a neighbourhood of (x⇤, _⇤) (namely, + ⇥ ⇤) s.t.
L|(+ ⇥⇤) attains at (x⇤, _⇤) its minimum in x and its maximum in _. Therefore, to find x⇤, it’s same as to
solve the dual problem: (⇡d ): max

_
L(_) where L(_) = min

x
L(x, _).

Theorem 3.2.13 (Augmented Lagrange Multiplier Method). [Nem99, section 11.2] To solve ECP (3.3),
augmented Lagrange function is defined as: Ld (x, _) := 5 (x) + _>⌘(x) + d

2 k⌘(x)k
2. At :�th iteration, we

update

x: = argminx Ld (x, _:�1),
_: = _:�1 + d⌘(x: ) .

Proof. Consider ECPd (3.8): min
x2í3

5 (x) + d
2 k⌘(x)k

2 s.t. ⌘(x) = 0 which is equivalent to ECP (3.3) on the

feasible surface. ECPd has the Lagrange function:

Ld (x, _) = 5 (x) +
d

2

<’
8=1

⌘28 (x) +
<’
8=1

_8⌘8 (x)
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By Lemma 3.2.11: Take d large enough s.t. the Hessian 52xLd (x, _) taken at point (x⇤, _⇤) is positive
definite on the entire space, where x⇤ denotes the non-degenerate solution of (ECP) to be approximated,
and let _⇤ be the corresponding vector of Lagrange multipliers (existence by Theorem 3.2.5). By Remark
3.2.12: To find x⇤, it’s enough to solve the dual problem (⇡d ) :

max
_2í<

Ld (_) where Ld (_) = min
x2í3

Ld (x, _) .

So at :�th step: we update

x: = argminx Ld (x, _:�1),
_: = argmin_ Ld (x: , _) .

By Lemma 3.2.11: 5_Ld (x: , _) = ⌘(x: ), so _: can be updated by gradient descent:

_: = _:�1 + d⌘(x: ) .

3.2.3 Linear NOTEARS Algorithm

Recall that to estimate the dependency structure under linear SEM, we aim at solving the ECP (3.2):

min
, 2í3⇥3

1
2= kò �ò, k

2
� + _k, k1 s.t. ⌘exp(, ) = 0,

where ⌘exp(, ) := CA (4, �, ) � 3 . Note that (3.2) is a non-convex constrained problem since the feasible set
{, : ⌘exp(, ) = 0} is a non-convex set (see following counter-example).

Example 3.2.14. Consider,1 =
⇣
0 1
0 0

⌘
and,2 =

⇣
0 0
1 0

⌘
. Then for,1, we have following linear SEM:

-1 = Y1,
-2 = -1 + Y2.

For,2, we obtain

-1 = -2 + Y1,
-2 = Y2.

Note that

, :
1 = 0 8: � 2, so ⌘exp(,1) =

1’
:=0

CA (, :
1 )

:! � 2 =
CA (, 0

1 )
0! � 2 = ⌘exp(,2) = 0.

However,

⌘exp(
1
2,1 +

1
2,2) =

1’
:=0

CA (
✓
0 1

21
2 0

◆:
)

:! � 2 �
CA (

✓
0 1

21
2 0

◆0
)

0! +
CA (

✓ 1
4 0
0 1

4

◆
)

1! � 2 � 2 + 1
2 < 0.

Zheng et al. [Zhe+18] developed an algorithm called linear NOTEARS based on the augmented Lagrange
multiplier methods to solve the ECP (3.2) whose Lagrange function is

Ld (, ,U) = 1
2= kò �ò, k

2
� + _k, k1 +

d

2 |⌘exp(, ) |2 + U⌘exp(, ),

where d > 0 and U denotes the Lagrange multiplier.
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Algorithm 1 Linear NOTEARS

1: Input: Data matrix ò, initial guess (,0,U0) with,0 2 í3⇥3 , U0 2 í, progress rate b 2 (0, 1), tolerance
Y > 0, threshold l > 0.

2: Output: b, , the estimated weighted adjacency matrix.
3: for C  0, 1, 2 . . . do
4: Solve primal,C+1  argmin, Ld (, ,UC ) with d such that ⌘exp(,C+1) < b⌘exp(,C ) .
5: Dual ascent UC+1  UC + d⌘(,C+1) .
6: if ⌘exp(,C+1) < Y, then
7: set e, =,C+1 and break.
8: Threshold matrix b, = e, · 1( | e, | > l) .

Remark 3.2.15. 1. The subproblem in line 4 of algorithm 1 can be solved by the proximal quasi-Newton
(PQN) method [Zho+14] which is given in detail in the appendix A.1.

2. In the realization of the linear NOTEARS algorithm from Zheng et al. [Zhe+18], the initial guess of
(,0,U0) is simple zero matrix and constant 0 respectively. Meanwhile, the progress rate b is set to
0.25, if the condition ⌘(,C+1) < b⌘(,C ) is not satisfied, then d is updated by 10 times of itself. The
default value of the tolerance Y and threshold l are 1 ⇥ 10�8 and 0.3 respectively.
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4 Structure Learning in Linear Structural Equation
Models Based on Adaptive Lasso

The linear NOTEARS algorithm uses strict thresholding which is not flexible for practical data. On the
other hand, the penalty term for sparsity in loss function from (3.2) treats all coefficients with indistinctive
penalty levels. This construction puts much more penalty on large coefficients rather than false positive ones
(the weight of the edges be learned as existence but actually not). This may result in false positive edges
that cannot be zeroed out and miss-learned results for edges with large weights. To avoid these problems,
Xu et al. [Xu+22] developed the linear NOTEARS-AL algorithm which extends the linear NOTEARS algo-
rithm with adaptive Lasso to achieve learning the sparse DAG structure from purely observational data and
showed its asymptotic oracle properties.

One intuition is to apply adaptive penalty levels to different coefficients. More precisely, one can modify
(3.2) to

min
, 2í3⇥3

1
2= kò �ò, k

2
� + _=

3’
8, 9=1

|28 9,8 9 | subject to ⌘exp(, ) = 0, (4.1)

where 28 9 represents the specified penalty for ,8 9 . More details about how to choose 28 9 are given in the
section 4.2.

Expecting minor false positive edges can be shrunk to zeros while reserving the true edges at the same
time, we would like the corresponding 28 9 to be larger for the former and small for the latter so that minor
false edges are heavily penalized and true positive edges are lightly penalized. Xu et al. [Xu+22] shows,
with a proper choice of 28 9 and under some mild conditions, the adaptive Lasso method satisfies asymptotic
oracle properties that are described in detail in section 4.1.

ECP (4.1) can be solved in a similar way to solving the ECP (3.2) corresponding to the linear NOTEARS
algorithm, namely, by the augmented Lagrange multiplier method. The first step of each iteration is to find
the local minimum of the augmented Lagrange function with a fixed Lagrange multiplier U from the last
iteration:

min
, 2í3⇥3

!= (, ) = 1
2= kò �ò, k

2
� + _=

3’
8, 9=1

|28 9,8 9 | +
d

2 |⌘exp(, ) |2 + U⌘exp(, ) .

4.1 Asymptotic Oracle Properties

Definition 4.1.1 (Convergence in probability). A sequence {⇡=} of random matrices converges to a random
matrix ⇡ in probability (denoted by ⇡=

%! ⇡) if for all Y > 0 : lim
=!1

ê(k⇡= � ⇡ k� > Y) = 0.

Xu et al. [Xu+22] considered the following two conditions:

C1. Under the assumed linear SEM: - 9 = F>9 - + Y 9 , 9 = 1, . . . ,3 , the random noise Y 9 are identically
independent distributed with mean 0 and variance f2 < 1.

C2. For data matrix ò 2 í=⇥3 , 1
=ò
>ò converges to a positive definite matrix ⇡ 2 í3⇥3 in probability.

Notation 4.1.2. , 2 í3⇥3 denotes underlying true weighted adjacency matrix. Define

A = {(8, 9) :,8 9 < 0}b={indices for terms whose true parameters are non-zero},
A2 = {(8, 9) :,8 9 = 0}b={indices for terms that do not exist in the underlying true model},
A8 = {(8, 9) : (8, 9) 2 A}, and assume w.l.o.g A8 = {(8, 1), (8, 2), . . . , (8,38)}.
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We assume that condition C2 holds, i.e., 1
=ò
>ò

=!1�! ⇡ . Let ⇡ =
⇣
⇡80 ⇡81
⇡82 ⇡83

⌘
where ⇡80 is a 38 ⇥ 38

symmetric matrix corresponding to the coefficients with index in A8 . Then let òA8 :=
©≠≠
´
G11 . . . G138
...

. . .
...

G=1 . . . G=38

™ÆÆ
¨

denote the corresponding submatrix of the data matrix ò. Similarly, denote,A8 =

 ,18
...

,388

!
. Let 98 :=

✓Y18
...Y=8

◆

2 í=⇥1 be the random noise of = observations corresponding to the random variable -8 .
A sequence of random variables .= is said to be $? (=<) from some < 2 í if for any Y > 0, there exists a
constant " > 0 and a positive integer # such that:

ê( |.= |  " · =<) � 1 � Y for all = � # .

{.=} is said to be >? (=<) if

lim
=!1

ê( | .=
=<

| � Y) = 0 for every positive Y .

Lemma 4.1.3 (Local minimizer). [Xu+22, Theorem 1] Under the conditions C1 and C2, let 0= := _=2A
where 2A represents the random 28 9 ’s associated with the non-zero coefficients in , . If 0= = >? (=@) for
some @  � 1

2 , then there exists a local minimizer of != (, ), denoted by b,=, which means, there exists Y > 0
such that != (, ) � != ( b,=) for all, with

���, � b,=

���
�
< Y. Moreover, it satisfies

��� b,= �,
���
�
= $? (=�

1
2 ).

Proof. Let [= := =? with ? < 0, % =
©≠≠
´

X1,1 X1,2 . . . X1,3
X2,1 X2,2 . . . X2,3
...

...
. . .

...
X3,1 X3,2 . . . X3,3

™ÆÆ
¨

with k% k� = 2, where 2 is a constant.

⇡= (%) := != (, + [=%) � != (, )
= ;= (, + [=%) � ;= (, ) + _=

’
8, 9

28 9 {|,8 9 + [=X8, 9 | � |,8 9 |}

+ d2 {|⌘exp(, + [=%) |2 � |⌘exp(, ) |2} + U{⌘exp(, + [=%) � ⌘exp(, )},

where ;= (, ) = 1
2= kò �ò, k

2
� . Let 0=,8 9 := _=28 9 , (8, 9) 2 A, we obtain that for = !1, i.e.,, +[=% !, ,

⇡= (%) � ;= (, + [=%) � ;= (, ) +
’

(8, 9 )2A
0=,8 9 {|,8 9 + [=X8, 9 | � |,8 9 |}+

d

2 {|⌘exp(, + [=%) |2 � |⌘exp(, ) |2} + U{⌘exp(, + [=%) � ⌘exp(, )}
4-eq.
� ;= (, + [=%) � ;= (, ) � [=

’
(8, 9 )2A

0=,8 9 |X8, 9 |+

d

2 {|⌘exp(, + [=%) |2 � |⌘(, ) |2} + U{⌘exp(, + [=%) � ⌘exp(, )}
Taylor
= 5;= (, )>([=%) +

1
2 ([=%)

> [52;= (, )] ([=%) (1 + >? (1)) � [=
’

(8, 9 )2A
0=,8 9 |X8, 9 |+

d

2 {|⌘exp(, + [=%) |2 � |⌘exp(, ) |2} + U{⌘exp(, + [=%) � ⌘exp(, )}
=: � + � � + � � � + �+ ,

where we define

� := 5;= (, )>([=%);
� � := 1

2 ([=%)
> [52;= (, )] ([=%) (1 + >? (1));

� � � := �[=
’

(8, 9 )2A
0=,8 9 |X8, 9 |;

�+ := d

2 {|⌘exp(, + [=%) |2 � |⌘exp(, ) |2} + U{⌘exp(, + [=%) � ⌘exp(, )}.



4.1 Asymptotic Oracle Properties

17

Denote* := ò �ò, , then by the Chain Rule

m;= (, )
m,8 9

=
1
2=

3’
:,;=1

mk* k2�
m*:;

· m(ò �ò, ):;
m,8 9

=
1
2=

3’
:,;=1

2*:; ·
m(�ò, ):;
m,8 9

= �1
=

3’
:,;=1

(ò �ò, ):; ·
mò: ·,·;
m,8 9

= �1
=

3’
:=1

(ò �ò, ): 9ò:8

= �1
=

3’
:=1

(ò>)8: (ò �ò, ): 9 = �
1
=
[ò>(ò �ò, )]8 9 .

In other words, m;= (, )
m, = � 1

= [ò>(ò �ò, )].

For � ,

� = 5;= (, )>([=%) = [= (5;= (, )>)%
= [= (�

1
=
(ò �ò, )>ò)% = � 1p

=
[= (
p
=
1
=
(ò �ò, )>ò|                   {z                   }

:=�

)% .

Since

k�k� =
����p=(� �, >) 1= (ò>ò � ⇡ + ⇡)

����
�

4

p
=(

����1=ò>ò � ⇡
����
�
+ 1
=
k⇡ k� )

��(� �, >)���|         {z         }
:=⌫

=
p
=

����1=ò>ò � ⇡
����
�
· ⌫ + k⇡ k�p

=
⌫,

the second term is $? (=�
1
2 ). Consider the first term, for any Y > 0:

ê(
p
=
�� 1
=ò
>ò � ⇡

��
� · ⌫

=�
1
2

� Y) = ê(=
����1=ò>ò � ⇡

����
�
· ⌫ � Y) � ê(

����1=ò>ò � ⇡
����
�
� Y

⌫
) = 0,

for = !1 by condition C2, then
p
=( 1=ò>ò � ⇡) (� �, >) = $? (=�

1
2 ). Therefore, � = �$? ( 1p

=
[=)% .

For � � ,
� � =

1
2[

2
={%> [

1
=
ò>ò]%}(1 + >? (1)) > 0.

For � � � ,
� � � = �[=

’
(8, 9 )2A

0=,8 9 |X8 9 | � �[=�=@3,

where � = max{0=,8 9/@= : (8, 9) 2 A}, and � 2 $ (1) by the assumption 0= = >? (=@).

For �+ , since ⌘(, ) � 0 for all, 2 í3⇥3 , we can drive that

�+ = [⌘exp(, + [=%) � ⌘exp(, )]{d2 [⌘exp(, + [=%) + ⌘exp(, )] + U}.

So for d > 0 large enough, �+ � 0. Thus,

⇡= (%) � �$? (
1p
=
[=)% + 1

2[
2
={%> [

1
=
ò>ò]%}(1 + >? (1)) � [=�=@3 + �+ .

For = large enough, 1
=ò
>ò ! ⇡ by condition C2, then � � = $? (=2?). When ? > � 1

2 , � �
�� = $? (=?+

1
2 ) > 1

for = !1, which means that II dominates I. Similarly, by @  � 1
2 , we obtain that II dominates III, then for

any given Y > 0, there exists a large enough constant 2 such that

ê{ inf
kX k=2

!= (, + [=X) > != (, )} � 1 � Y . (4.2)
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By Extreme Value Theorem and the continuity of != (, ), there exists a minimizer of != (, ) over the com-
pact set {, + [=X : kX k�  2}. Then by (4.2), with probability at least 1 � Y, the minimizer is inside the ball
{, + [=X : kX k� < 2}, which implies the minimizer is a local minimizer of != (, ) over í3⇥3 . Hence, we
can conclude that there exists a local minimizer of != (, ) (denoted by b,=) such that for 0 > ? > � 1

2 ,��� b,= �,
���
�
= $? ([=) = $? (=�

1
2 ) .

Definition 4.1.4 (Triangular array). A triangular array of random variables is of the form

.11

.21 .22

.31 .32 .33. . .

where the random variables in each row

1. are independent of each other;

2. have zero mean;

3. have finite variance.

Lemma 4.1.5 (Multivariate Lindeberg-Feller CLT). ([Vaa00]) Suppose {~=8}8= is a triangular array of
3 ⇥ 1 random vectors such that s= = 1

=

Õ=
8=1(~=8), += := 1

=

Õ=
8=1 Var(~=8)! + where + is positive definite. If

for every Y > 0, 1
=

Õ=
8=1Ö[k~=8 k221{ k~=8 k2�Y

p
=}] ! 0, then

p
=s=

3! N(0,+ ).

Lemma 4.1.6. Assume the mild condition: For all fixed 8 = 1, . . . ,=, it holds

max
1:=

��(òA8 ):
��
2 = max

1:=
[(G:1 )2 + · · · + (G:38 )

2] 1
2 = > (= 1

2 ),

and additionally let conditions C1 and C2 hold, then 1p
=
ò>A8

98
3! N(0,f2⇡80).

Proof. Let x:A8
:=

©≠≠
´
G:1
...
G:38

™ÆÆ
¨
2 í38 . Consider the vector x:Y:8 where Y:8 is the random noise scalar, then

s= := 1
=

=’
:=1

x:A8
Y:8 =

1
=
ò>A8

98 ,

+= := 1
=

=’
:=1

Var(x:A8
Y:8) =

1
=

=’
:=1

f2x:A8
(x:A8

)) =
f2

=
ò>A8

òA8

condition 2�! f2⇡80.

1) x:A8
Y:8 is a triangular array: By condition 1, Y:8 ?? Y:; . By condition 2, it follows

Ö[x:A8
Y:8] = 0 ; Var(x:A8

Y:8) = f2x:A8
(x:A8

)) < 1.

2) Lindeberg-Feller condition:

1
=

=’
8=1

Ö[
���x:A8

Y:8
���2
2
1{

���x:A8
Y:8

���
2
�Yp=}] =

1
=

=’
8=1

Ö[|Y:8 |2
���x:A8

���2
2
1{ |Y:8 |

���x:A8

���
2
�Yp=}]

ass.=
1
=

=’
8=1

Ö[|Y:8 |2> (=)1{ |Y:8 |> (1)�Y }] = Ö[|Y8 |2> (=)1{ |Y8 |> (1)�Y }|                    {z                    }
:=)=

] .

Since )=
%! 0 and consequently, Ö[)=] ! 0, then by multivariate Lindeberg-Feller CLT, the statement

holds.
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Remark 4.1.7. The mild condition in Lemma 4.1.6 is satisfied by the design since
(G:1 )2+···+(G:38 )

2

= !
0 as = !1 for all : = 1, . . . ,= and fixed 8.

Theorem 4.1.8 (Oracle properties). [Xu+22, Theorem 1] Under conditions 1 and 2, let 1= := _=2A2 where
2A2 represents the 28 9 ’s associated with the zero coefficients in, , let c,= be the local minimizer from Lemma
4.1.3, if

p
=1= !1 as = !1, then c,= satisfies following properties:

(Sparsity) lim
=!1

ê( b,A2 = 0) = 1,

(Asymptotic normality) For all 8 2 {1, 2, . . . ,3} : p=( b,A8 �,A8 )
3! N(0,f2⇡�180 ) as = !1.

Proof. Sparsity: It’s sufficient to show that for all (8, 9) 2 A2 :

8>>>><
>>>>:

m!= (, )
m,8 9

����
, =c,

< 0 if � Y= < b,8 9 < 0,

m!= (, )
m,8 9

����
, =c,

> 0 if 0 < b,8 9 < Y=,

with probability going to 1 where Y= = $ (=� 1
2 ). From the proof of Lemma 4.1.3: For ;= (, ) := 1

2= kò �ò, k
2
� ,

m;= ( b, )
m,8 9

= �1
=
[ò>(ò �òb, )]8 9 = �

1
=
[ò>(ò �ò, +ò, �òb, )]8 9

= �1
=
[(ò>)8 · (ò· 9 �ò,· 9 )] +

1
=
[ò>ò( b, �, )]8 9

= �1
=
[(ò>)8 · (ò· 9 �ò,· 9 )] +

1
=
(ò>)8 · [ò( b, �, )] · 9

= �1
=
[(ò>)8 · (ò· 9 �ò,· 9 )] +

1
=
(ò>)8 ·

’
:

ò·: ( b,: 9 �,: 9 ).

Together with Theorem 3.1.3,

m!= ( b, )
m,8 9

= � 1
=
[(ò>)8 · (ò· 9 �ò,· 9 )] +

1
=
(ò>)8 ·

’
:

ò·: ( b,: 9 �,: 9 )

+ _=28 9 sign{b,8 9 } + 2b,8 9 (d⌘exp( b, ) + U) (4c, �c, )>8 9 .

By Lemma 4.1.3 and condition C2,

1
=
[(ò>)8 · (ò· 9 �ò,· 9 )] = $? (=�

1
2 ),

1
=
(ò>)8 ·

’
:

ò·: ( b,: 9 �,: 9 ) = $? (=�
1
2 ).

By Theorem 3.1.3, ⌘(, ) � 0, then for d large enough:

2b,8 9 (d⌘exp( b, ) + U) (4c, �c, )>8 9

(
< 0 if � Y= < b,8 9 < 0,
> 0 if 0 < b,8 9 < Y= .

Since Y= = $ (=� 1
2 ), then |2b,8 9 (d⌘exp( b, ) + U) (4c, �c, )>8 9 | = $ (=� 1

2 ).
Consider the term _=28 9 sign{b,8 9 }, let 1=,8 9 = _=28 9 . Therefore, for all (8, 9) 2 A2 , if

p
=1=,8 9 ! 1, then the

sign of m!= (c, )
m,8 9

is dominated by sign{b,8 9 }.

Asymptotic normality: Denote

� (, ) := 1
2= kò �ò, k

2
� , � � (, ) := _=

’
8, 9

|28 9,8 9 |, � � � (, ) = d

2 |⌘exp(, ) |2 + U⌘exp(, ),
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so that
!= (, ) = � (, ) + � � (, ) + � � � (, ),

then
5A8!= ( b,A8 ) = 5A8 � ( b,A8 ) + 5A8 � � ( b,A8 ) + 5A8 � � � ( b,A8 ) .

By the Taylor expansion at b,A8 =,A8 , as = !1:

5A8 � ( b,A8 ) = 5A8 � (,A8 ) + [52A8
� (,A8 )] ( b,A8 �,A8 ) + ( b,A8 �,A8 )>? (1)

= �1
=
ò>A8

(òA8 �òA8,A8 ) +
1
=
ò>A8

òA8 ( b,A8 �,A8 ) + ( b,A8 �,A8 )>? (1) .

Let ⇠A8 denote corresponding adaptive penalty weights 28 9 s, then

5A8 � � ( b,A8 ) = _=⇠A8 sign( b,A8 )
= _=⇠A8 sign(,A8 ) + ( b,A8 �,A8 )>? (1) .

Moreover,

5A8 � � � ( b,A8 ) = (d⌘exp( b,A8 ) + U) 5 ⌘( b,A8 )
= (d (CA (4c,A8 �c,A8 ) � 3) + U) (4c,A8 �c,A8 )> � 2b,A8

= ( b,A8 �, ⇤A8
)>? (1) .

Since b,A8 is the sub weighted adjacency matrix of the local minimizer b,= of != (, ), then

0 = 5A8!= ( b,A8 ) = �
1
=
ò>A8

(òA8 �òA8,A8 ) +
1
=
ò>A8

òA8 ( b,A8 �,A8 ) + _=⇠A8 sign(,A8 )
+ ( b,A8 �,A8 )>? (1). (4.3)

By 0= = _=⇠A,0=,8 9 = >? (=�
1
2 ), and

��� b,A �,A
���
�
= $? (=�

1
2 ),

0 = (4.3) = �1
=
ò>A8

(òA8 �òA8,A8 ) +
1
=
ò>A8

òA8 ( b,A8 �,A8 ) + >? (=�
1
2 ),

then p
=
1
=
ò>A8

òA8 ( b,A8 �,A8 ) =
1p
=
ò>A8

(òA8 �òA8,A8 ) � >? (1),

and equivalently,

p
=( b,A8 �,A8 ) = ( 1

=
ò>A8

òA8 )�1|             {z             }
condition 2�! ⇡�180

·[ 1p
=
ò>A8

(òA8 �òA8,A8 )
|                             {z                             }

:=�

�>? (1)] .

By Lemma 4.1.6 and it’s remark: �
3! N(0,f2⇡80) which implies that
p
=( b,A8 �,A8 ) ! N(0,f2⇡�180 ).

Remark 4.1.9. The sparsity property shows that given 0= = >? (=@) for some @  � 1
2 ,
p
=1= !1, then linear

NOTEARS-AL (algorithm 2) can consistently remove all irrelevant variables with probability tending to 1.
The asymptotic normality property shows that by magnifying the difference by

p
= for non-zero estimators,

the pattern turns out to be a normal distribution.
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4.2 Proper Choice of Specified Penalty

It remains to determine proper 28 9 ’s so that the non-zero related part 0= = >? (=@) for some @  � 1
2 and zero

related part
p
=1= !1 are satisfied. Define the ordinary least square (OLS) estimates

b,>;B = argmin, 2í3⇥3
1
2= kò �ò, k

2
� subject to ⌘exp(, ) = 0 (4.4)

Similar to Lemma 4.1.3, we can obtain that
��� b,>;B �,

���
�
= $? (=�

1
2 ). Suppose _=

p
= ! 0, _==

A+1
2 ! 1 for

some specific A > 0, we can define 28 9 = 1
|c,>;B8 9 |A

, then for (8, 9) 2 A,

0=

=�
1
2
=

1
| b,>;B8 9 |A

_=

=�
1
2
! 0.

For (8, 9) 2 A2 ,
p
=1= = _=

|c,>;B8 9 |A
p
=. Note that b,>;B is

p
=�consistent, therefore,

p
=1= �

_=

( |,8 9 | + |⇠=� 1
2 |)A
p
=

� _=

(⇠=� 1
2 )A
p
= =

_=
⇠
=

A+1
2
=!1�! 1.

4.3 NOTEARS with Adaptive Lasso

Hence, the algorithm is divided into two parts:

1. Solve b,>;B from Equation (4.4);

2. Plug adaptive penalty parameter ⇠ = (28 9 )(8, 9 )2 [3 ]2 in Equation (4.1) and solve it.

Part 1: Similar to the linear NOTEARS algorithm, (4.4) can be solved by the augmented Lagrange multiplier
method. More precisely, at (: + 1)�th iteration, we update

,:+1 = argmin, 2í3⇥3
1
2= kò �ò, k

2
� +

d

2 |⌘exp(, ) |2 + U:⌘exp(, ),
U:+1 = U: + d⌘exp(,:+1) .

Then we obtain the adaptive penalty parameters matrix ⇠ 2 í3⇥3 with entries 28 9 = 1
|c,>;B8 9 |W

.

Part 2: Let ,⇠ := ⇠ �, where � denotes the Hadamard product. Consequently, , = ,⇠ ↵ ⇠ where ↵
denotes the Hadamard division. Then (4.1) can be transformed as

argmin,⇠ 2í3⇥3
1
2= kò �ò,⇠ ↵ ⇠ k2� + _= k,⇠ k1 subject to ⌘exp(,⇠ ↵ ⇠) = 0. (4.5)

Similarly, ECP (4.5) can be solved by the augmented Lagrange multiplier method, i.e., at (C+1)�th iteration:

,⇠C+1 = argmin,⇠ 2í3⇥3
1
2= kò �ò,⇠ ↵ ⇠ k2� + _= k,⇠ k� +

d

2 |⌘exp(,⇠ ↵ ⇠) |2 + UC⌘exp(,⇠ ↵ ⇠), (4.6)

UC+1 = UC + d⌘exp(,⇠C+1 ↵ ⇠).

Note that (4.6) can be solved by PQN method (appendix A.1), and we obtain the following gradient terms
similarly to the proof of Lemma 4.1.3 and by Theorem 3.1.3 respectively:

m 1
2= kò �ò,⇠ ↵ ⇠ k2�

m,⇠
= �1

=
ò>(ò �ò,⇠ ↵ ⇠) ↵ ⇠ .
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Let b,⇠ denote the solution of ECP (4.5), then b,= = b,⇠ ↵⇠ is the final estimate for, . Summing up above
steps, Xu et al. [Xu+22] concluded the following algorithm:

Algorithm 2 Linear NOTEARS with adaptive lasso

1: Input: Data matrix ò, initial guess (,0,U0) with ,0 2 í3⇥3 ,U0 2 í, progress rate b 2 (0, 1), and
tolerance Y > 0.

2: Output: b,=, the estimated weighted adjacency matrix.
3: OLS Loop:
4: for :  0, 1, 2, . . . do
5: Solve,:+1 = argmin, 2í3⇥3

1
2= kò �ò, k

2
� +

d
2 |⌘exp(, ) |2 + U:⌘exp(, ) with d such that

⌘exp(,:+1) < Y⌘exp(,: ).

6: Dual ascent U:+1  U: + d⌘exp(,:+1).
7: if ⌘exp(,:+1) < Y, then
8: set b,>;B =,:+1,⇠ := 1 ↵ | b,>;B |W ,,⇠ := ⇠ �, and break.
9: Adaptive lasso loop:

10: for C  0, 1, 2, . . . do
11: Solve,⇠,C+1 = argmin,⇠ 2í3⇥3

1
2= kò �ò,⇠ ↵ ⇠ k2� +_= k,⇠ k� + d2 |⌘exp(,⇠↵⇠) |2+UC⌘exp(,⇠↵⇠)

12: with d such that ⌘exp(,⇠,C+1 ↵ ⇠) < b⌘exp(,⇠,C ↵ ⇠).
13: Dual ascent UC+1 = UC + d⌘exp(,⇠,C+1 ↵ ⇠).
14: if ⌘exp(,C+1) < Y, then
15: set b,⇠,= =,⇠,C+1 and break.
16: Return the adaptive estimate b,= := b,⇠,= ↵ ⇠.

The results of NOTEARS-based methods are sensitive to the value of hyper-parameter _=. Xu et al.
[Xu+22] utilizes cross-validation to find the optimal _=. With a set of candidates of _=, by NOTEARS-AL,
we can obtain a set of candidate models ( = {B=,= = 1, 2 . . . ,# }, where B= = {(8, 9) 2 {1, . . . ,3}2 : b,=.8 9 <
0}.

Algorithm 3 The Cross-validation method

Step 0. Divide the data ò into validation set òE and training set òC , and |òE | = =E, |òC | = =C ,=E +=C = =.
For model B= (= = 1, 2, . . . ,# ). Using the training set òC , compute the solution e, C

= , where

e, C
= = argmin, 2í3⇥3 ,,B2=

=0
1
2=

��òC �, >òC

��2
� .

Evaluate the prediction performance of e, C
= on the validation set òE by loss function 1

2=

���òE � ( e, C
= )>òE

���2
�
.

Take the model B 2 {(= : = = 1, . . . ,# } with smallest loss on validation set òE .

A more sufficient validation set is needed to find the best model to achieve model-selection consistency,
especially when the candidate model set is large. Instead of using the traditional K-fold cross-validation
method, whose validation set is only 1/ of data, Xu et al. [Xu+22] suggested swapping the proportion of
the validation set and training set.



23

5 Structure Learning in General Non-Parametric
Structural Equation Models

The linear dependence structure is a stringent restriction on the class of models. Zheng et al. [Zhe+20]
extended the linear NOTEARS to general non-parametric SEMs by approximating the non-parametric re-
lationships between the random variables by either multi-layer perceptrons or via a (truncated) basis ex-
pansion, namely, NOTEARS-MLP and NOTEARS-SOB. As in the case of linear NOTEARS, Zheng et al.
[Zhe+18] remained the exponential acyclicity constraint ⌘exp(, ) := CA (4, �, ) � 3 and also utilized the
augmented Lagrange scheme. In section 5.1, we investigate both NOTEARS-MLP and NOTEARS-SOB
in detail. Several follow-up works proposed other acyclicity characterizations [BAR22; Naz+23; NGZ20;
Yu+19]. In section 5.2, we summarize those existing acyclicity constraints and discuss their stability. Be-
sides the augmented Lagrange scheme, Bello, Aragam, and Ravikumar [BAR22] developed a preferable
optimization approach called DAGMA which is studied in section 5.3.

Recall that - = (-1, . . . ,-3 ) is a random vector whose dependency structure is encoded by a DAG
⌧ = (+ , ⇢) on 3 nodes. Under the setting of general non-parametric SEM, we assume that for all 9 2 [3],
the conditional expectations have the form Ö[- 9 |-pa( 9 ) ] = 59 (- ) + Y 9 , where 59 : X ! í does not depend on
-: if : 8 pa( 9), and

�
Y 9

�
92 [3 ] are stochastic error terms that are independent over 9 . Let ⌧ (5 ) be the graph

defined by 5 . We denote by ⇠1(X) the space of continuously differentiable functions over X. Furthermore,
let ê- be the distribution of the random vector - , we use the usual notation for the ê-� equivalence classes
of square-integrable functions w.r.t. measure ê- , i.e., we denote !2(X,ê- ) the (equivalence) class of real-
valued functions [5 ] such that

Ø
X 5

2(G)ê- (3G) is finite. We will drop dependence on the domain and on the
underlying distribution ê- and simply write !2 := !2(X) or !2 := !2(í3 ) in cases when the domain is clear
from the context. Furthermore, we denote k·k1 to be the essential supremum norm w.r.t Lebesque measure
on a (subset) X ⇢ í. For an element 6 2 ⇠1(X), 6 : X 7! í we denote m

mG:
6(G) for its partial derivative (as

a map G 7! m
mG:
6(G)) and denote m

mG:
6(G) |G=B for its value at point G = B.

Given data matrix ò 2 í=⇥3 whose rows G8 , 8 = 1, . . . ,=, represent = i.i.d. observations. We consider the
quadratic loss: ✓ (~,b~) = k~ �b~k22, the aim is to estimate 5 = (51, . . . , 53 ) by minimizing the score function:

min
5
!(5 ) = 1

2=

3’
9=1

=’
8=1

✓ (G89 , 59 (G8)) subject to ⌧ (5 ) 2 DAG. (5.1)

Let � 1(í3 ) denote a subset of ⇠1(X) where the function and its derivative are both square-integrable. We
assume that each 59 2 � 1(í3 ).

5.1 Non-Parametric NOTEARS Algorithms

5.1.1 Acyclicity Characterization

Definition 5.1.1 (Weighted adjacency matrix). Let m: 59 denote the partial derivative of 59 (G) w.r.t. G: .
The weighted adjacency matrix , = , (5 ) = , (51, . . . , 53 ) 2 í3⇥3 is defined with entries [, (5 )]:, 9 :=��m: 59��!2 .
Remark 5.1.2. [, (5 )]:, 9 :=

��m: 59��!2 = (
Ø
|m: 59 |23`)

1
2 = 0 if and only if m: 59 = 0. Since 59 2 ⇠1(X),

m: 59 = 0 is equivalent to that 59 is independent of -: . Therefore,, (5 ): 9 encodes the dependency structure
among - 9 .
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Similar to the linear NOTEARS algorithm in chapter 3, we have the exponential acyclicity constraint
⌘exp(, (5 )) := CA (4, �, ) � 3 . Then the ECP (5.1) can be transformed to

min
5
!(5 ) subject to ⌘exp(, (5 )) = 0. (5.2)

5.1.2 Approximation Families

Since ECP (5.2) is infinite-dimensional, the key is to reduce it to a finite dimension. The general recipe is
as follows:

1. Choose a model family for the conditional expectation Ö[- 9 |-?0 ( 9 ) ] (e.g. general nonparametric,
additive, index, etc.);

2. Choose a suitable family of approximations that can be parametrized by some parameters \ (e.g.
neutral networks, orthogonal series, etc.);

3. Translate the loss function !(5 ) and constraint, (5 ) into parametric forms !(\ ) and, (\ ) using the
approximating family;

4. Solve the resulting finite-dimensional problem.

Zheng et al. [Zhe+20] developed two approximation families, the multilayer perceptrons and basis ex-
pansions.

Multilayer Perceptrons

Consider a multilayer perceptron (MLP) with ⌘ hidden layers and a single activation function f : í! í:

MLP(D;� (1) , . . . ,� (⌘) ) = f (� (⌘)f (. . .� (2)f (� (1)D)))

where � (; ) 2 í<;⇥<;�1 ,<0 = 3 .

Theorem 5.1.3 (Universal Approximation Theorem [HSW89]). For any 59 2 � 1(í3 ), a MLP can approx-
imate 59 arbitrarily well by increasing the number of the hidden layers ⌘ or the number of hidden neurons
<; in each layer.

Proposition 5.1.4 (Independency identification). [Zhe+20, Proposition 1] Consider

F := {5 |5 (D) = MLP(D;� (1) , . . . ,� (⌘) ), 5 independent of D: },
F0 := {5 |5 (D) = MLP(D;� (1) , . . . ,� (⌘) ),:th col of � (1) = 0},

then F = F0.

Proof. 1. F0 ✓ F : for any 50 2 F , 50(D) = MLP(D;� (1) , . . . ,� (⌘) ), where � (1)
1: = 0 for all 1 = 1, . . . ,<1.

Thus the linear function � (1)D is independent of D: . Therefore,

50(D) = MLP(D;� (1) , . . . ,� (⌘) ) = f (� (⌘)f (. . .� (2)f (� (1)D)))

is independent of D: , which means 50 2 F .

2. F ✓ F0 : for any 5 2 F , 5 (D) = MLP
�
D;� (1) , . . . ,� (⌘) � and 5 is independent of D: . We will show

that 5 2 F0 by constructing a matrix �̃ (1) , such that

5 (D) = MLP
⇣
D; �̃ (1) ,� (2) , . . . ,� (⌘)

⌘

and �̃ (1)
1: = 0 for all 1 = 1, . . . ,<1. Let D̃ be the vector such that D̃: = 0 and D̃: 0 = D: for all : 0 < : .
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Since D̃ and D differ only on the :th dimension, and 5 is independent of D: , we have

5 (D) = 5 (D̃) = MLP
⇣
D̃;� (1) , . . . ,� (⌘)

⌘
. (5.3)

Now define �̃ (1) be the matrix such that �̃ (1)
1: = 0 and �̃ (1)

1: 0 = �
(1)
1: for all : 0 < : . Then we have the

following observation: for each entry B 2 {1, . . . ,<1},

⇣
�̃ (1)D

⌘
B
=

3’
: 0=1

�̃B: 0D: 0 =
’
: 0<:

�B: 0D: 0

=
3’

: 0=1
�B: 0D̃: 0 =

⇣
� (1)D̃

⌘
B
.

Hence,
�̃ (1)D = � (1)D̃ .

Therefore, by (5.3)
5 (D) = 5 (D̃)

= MLP
⇣
D̃;� (1) , . . . ,� (⌘)

⌘
= f

⇣
� (⌘)f

⇣
· · ·� (2)f

⇣
� (1)D̃

⌘⌘⌘
= f

⇣
� (⌘)f

⇣
· · ·� (2)f

⇣
�̃ (1)D

⌘⌘⌘
= MLP

⇣
D; �̃ (1) ,� (2) , . . . ,� (⌘)

⌘
.

By definition of F0, we know that MLP
⇣
D; �̃ (1) ,� (2) , . . . ,� (⌘)

⌘
2 F0. Thus, 5 2 F0 which completes

the proof.

Let \ 9 = (� (1) , . . . ,� (⌘) ) denote the parameters for the 9 th MLP and \ = (\1, . . . , \3 ). By Proposition
5.1.4, it follows

���:th-column(� (1)
9 )

���
2
= 0 if and only if [, (5 )]: 9 :=

��m: 59��!2 = 0. Therefore, Zheng et al.

[Zhe+20] define [, (\ )]: 9 :=
���:th-column(� (1)

9 )
���
2
. Moreover, to enforce sparsity, the regularization term���� (1)

9

���
1
:=

Õ
8,: | (� (1)

9 )8: | is added to the score function. The problem (5.2) can be reduced to

min
\

1
2=

3’
9=1

=’
8=1

(G89 �MLP(G8 ;\ 9 ))2 + _
���� (1)

9

���
1

s.t. ⌘exp(, (\ )) = 0. (5.4)

Basis Expansions

Theorem 5.1.5 (Approximation theorem [Sch67]). Let {iA }1A=1 be the orthonormal basis of � 1(í) s.t.
Ö[iA (- )] = 0 for all A , then for any 5 2 � 1(í) can be written uniquely:

5 (D) =
1’
A=1

UAiA (D), UA =
π
í3
iA (D) 5 (D)3D .

Zheng et al. [Zhe+20] assumed an additive model with one-dimensional expansions. More precisely,

59 (D1, . . . ,D3 ) =
’
:<9

59: (D: ) =
1’
A=1

U 9:AiA (D: ) .
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Proposition 5.1.6 (Approximation error [Efr08]). For any 5 (D) = Õ1
A=1 UAiA (D), define finite series b5 ' :=Õ'

A=1 UAiA . Given integers ': , assume 59: is sufficiently smooth, which means, 59: is < times continuously
differentiable for< large enough. Then

���59: � b5 ':9:
���
!2

= $ (1/': ), so the overall approximation error is on
the order $ (3/min

:
': ).

Note that [, (5 )]: 9 = m59
m-:

= 0 if and only if U 9:A = 0 for all A and in practice, we approximate 59:
by finite basis expansion, i.e., 59: (D: ) =

Õ':
A=1 U 9:AiA (D: ). It suffices to check that only U 9:A = 0 for all

A = 1, . . . ,': which is equivalent to
Õ':
A=1 U

2
9:A = 0, so let \ = {U 9:A 89,:, A }, Zheng et al. [Zhe+20] define

[, (\ )]: 9 = [Õ':
A=1 U

2
9:A ]

1
2 . Let �: be the matrix [�: ]8A = iA (- (8 )

: ) 2 í=⇥': . After adding orthogonal series
smoothing [Rav+09] and ✓1-regularization term to enforce sparsity, the ECP (5.2) can be reduced to:

min
\

1
2=

3’
9=1

=’
8=1

(G89 �
’
:<9

[�: ]8 · · U 9: )2 + _1
’
:<9

1
2=U

>
9:�
>�:U 9: + _2

’
:<9

��U 9:��1 s.t. ⌘exp(, (\ )) = 0. (5.5)

5.1.3 Optimization

Both (5.4) and (5.5) are optimization problems with ✓1�regularization, which can be written in the following
generic form:

min
\
!(\ ) + _k\ k1 s.t. ⌘(, (\ )) = 0. (5.6)

As in the linear case, (5.6) can be solved by an augmented Lagrange scheme with the Lagrange function:

!d (\C ,UC ) = !(\C ) +
d

2 |⌘(, (\C )) |2 + UC⌘(, (\C )) + _k\ k1.

Zheng et al. [Zhe+20] concluded the following non-parametric NOTEARS algorithm:

Algorithm 4 Non-parametric NOTEARS algorithm

1: Input: Data matrix ò, initial guess (,0,U0) with,0 2 í3⇥3 , U0 2 í, progress rate b 2 (0, 1), tolerance
Y > 0 and threshold l > 0.

2: Output: b, , the estimated weighted adjacency matrix.
3: for C  0, 1, 2 . . . do
4: Solve primal \C+1  argmin, !d (\C ,UC ) with d such that ⌘(\C+1) < b⌘(\C ).
5: Dual ascent UC+1  UC + d⌘(, (\C )).
6: if ⌘(, (\C+1)) < Y, then
7: set e, =, (\C+1) and break.
8: Threshold matrix b, = e, · 1( | e, | > l) .

Remark 5.1.7. 1. Similarly, the subproblem in line 4 of the algorithm 4 can be solved by the proximal
quasi-Newton (PQN) method [Zho+14] in the appendix A.1. Moreover, since the ✓1�regularizer is
not differentiable at 0. Zheng et al. [Zhe+20] cast (5.6) into a box-constrained form:

min
\
� (\ ) + _k\ k1 () min

\+�0,\��0
� (\+ � \�) + _1>(\+ � \�) .

2. In the realization of the NOTEARS-MLP and NOTEARS-SOB algorithms from Zheng et al. [Zhe+20],
the initial guess of U0 is simple constant 0, and,0 is randomly initialized. In case of NOTEARS-MLP,
the sigmoid function is used as the activation function. Meanwhile, the progress rate b is set to 0.25,
if the condition ⌘(,C+1) < b⌘(,C ) is not satisfied, then d is updated by 10 times of itself. The default
value of the tolerance Y and threshold l are 1 ⇥ 10�8 and 0.3 respectively.

3. Let � 1( [�c, c]) denote the space of functions over [�c, c] that the functions and their deriva-
tives are both square-integrable. Considering the norm k 5 k� 1 (( ) = (

Ø
(
|5 (G) |23G +

Ø
(
|5 0(G) |23G) 1

2 ,
{sin(:G), cos(:G),: = 1, . . . ,1} is a basis of � 1( [�c, c]).
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Proof. For any 5 2 � 1( [�c, c]), define

5= (G) =
00
2 +

=’
:=1

(0: cos(:G) + 1: sin(:G)),

where

00 =
1
c

π �c

c
5 (G)3G ;

0: =
1
c

π �c

c
5 (G) cos(=G)3G ;

1= =
1
c

π �c

c
5 (G) sin(=G)3G .

By Dirichlet’s Theorem, 5 (G) = lim
=!1

5= (G). Hence, we obtain that

5 0(G) =
1’
:=1

(�:0: sin(:G) + :1: cos(:G));

5 0= (G) =
=’
:=1

(�:0: sin(:G) + :1: cos(:G)) .

By Parseval’s Theorem: ��5 0 � 5 0=��2!2 = c
1’

:==+1
:2(02: + 12: ) . (5.7)

Since 5 0 2 !2, by Parseval’s Theorem,
Õ1
:==+1 :

2(02: + 12: ) < 1. Therefore,
��5 0 � 5 0=��2!2 = (5.7) ! 0

for = !1. Similarly, k 5 � 5= k2!2 ! 0 for = !1. Thus,

k 5 � 5= k� 1 ! 0 as = !1,

which means {sin(:G), cos(:G),: = 1, . . . ,1} is a basis of � 1( [�c, c]). The orthogonality follows
from the orthogonality of sin(:G) and cos(:G) for : > 0.

When constructing NOTEARS-SOB, Zheng et al. [Zhe+20] used the orthogonal series iA (D) =
BA sin(D/BA ), BA = 2/((2A � 1)c), A = 1, 2, . . . , 10 [HS12] to approximate functions in �1(í).

5.2 Stability of Acyclicity Constraints

Besides the exponential acyclicity constraint in the NOTEARS algorithm, there are several other acyclicity
constraints. In this section, we summarize the class of existing acyclicity constraints and discuss their sta-
bility during optimization. Since, �, has non-negative entries, we write � 2 í3⇥3�0 instead of, �, in
this chapter for simplicity.

Nazaret et al. [Naz+23] developed the definition of power series trace constraints and gave three criteria
for stability. This paper showed that the power series trace constraints are unstable. Moreover, it also
introduced the spectral acyclicity constraint and showed its stability.

Definition 5.2.1 (Power Series Trace Family). [Naz+23, Definition 1] For any non-negative coefficients
(0: ):2é⇤ 2 íé⇤

�0, consider the power series 50 (G) =
Õ1
:=1 0:G

: . Then for any matrix � 2 í3⇥3�0 with non-
negative entries, the Power Series Trace (PST) function is defined as

⌘0 (�) = )A [50 (�)] =
1’
:=1

0:)A [�: ] .
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Remark 5.2.2. Since )A (�: ) represents the total weight of all length-: cycles in⌧ (�) where the weight of
a cycle is the product of its edge weights. ⌘0 (�) can be seen as a linear combination of weights of cycles in
all possible lengths in the graph represented by �.

Theorem 5.2.3 (PST constraint). [Naz+23, Theorem 1] For any sequence (0: ):2é⇤ 2 íé⇤
�0, if we have

0: > 0 for all : 2 [3], then for any matrix � 2 í3⇥3�0 , we have

8>><
>>:
⌘0 (�) = 0 () � is acyclic,
⌘0 (�) � 0,
5⌘0 (�) =

Õ1
:=1 :0: (�>):�1.

We say that ⌘0 is a PST constraint.

Proof. For any matrix � 2 í3⇥3�0 , we have

)A [�: ] =
’

(80,...,8: )2 [3 ]:+1
80=8:

:÷
✓=1

�8✓�1,8✓ . (5.8)

⌧ (�) has a cycle of length : if and only if there exists (80, . . . , 8: ) 2 [3]:+1 such that 80 = 8: and for all ✓ 2
[:] : �8✓�1,8✓ > 0. Then by (5.8), ⌧ (�) has a cycle of length-: if and only if )A [�: ] > 0.
Since 0: > 0 for all : 2 [3], then

⌘0 (�) = 0 () )A [�: ] = 0. 8: 2 [3] .
() � doesn’t contain any cycle of any length : 2 [3] .
() � is acyclic.

Since � � 0, then )A [�: ] � 0 and consequently, ⌘0 (�) � 0. The gradient of ⌘0 follows directly by
computation.

Example 5.2.4. By Theorem 5.2.3, several standard power series are PST constraints. For example,

Name U: 50 ⌘0 r⌘>0
⌘exp

1
:! exp(G) � 1 Tr exp(�) � 3 exp(�)

⌘log
1
: log

� 1
1�G

�
� log det(� ��) (� ��)�1

⌘inv 1 1
1�G Tr(� ��)�1 (� ��)�2

⌘binom

⇣
3
:

⌘
(1 + G)3 � 1 Tr(� +�)3 � 3 3 (� +�)3�1

Nazaret et al. [Naz+23] introduced following three criteria for acyclicity constraints to exhibit stable
optimization.

Definition 5.2.5. [Naz+23, Definition 2] An acyclicity constraint ⌘ is stable if these criteria hold for almost
every � 2 í3⇥3�0 :

• E-stable ⌘(C�) = $C!1(C).

• V-stable If ⌘(�) < 0, then ⌘(Y�) = ⌦Y!0+ (Y), which means, for Y ! 0+, ⌘(Y�) � 2Y for some positive
constant 2.

• D-stable ⌘(�) and r⌘(�) are well-defined.

Remark 5.2.6. E-stability ensures that ⌘ does not explode to infinity; D-stability ensures that ⌘ and its
gradient exist. V-stability ensures ⌘ does not vanish rapidly to 0. Without V-stability, ⌘(�\ ) can shrink
quickly very close to 0 during the optimization process, while ⌧ (�\ ) remains far from a DAG.

Theorem 5.2.7 (PST unstability). [Naz+23, Theorem 2] For3 � 2, any PST constraint⌘0 is both E-unstable
and V-unstable. More precisely,
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• E-unstable 9� 2 í3⇥3�0 ,⌘0 (C�) = ⌦B!1(C3 ).

• V-unstable 9� 2 í3⇥3�0 ,⌘0 (Y�) = $Y!0+ (Y3 ).

Also, any PST constraint for which 50 has a finite radius of convergence is D-unstable (e.g., ⌘log,⌘inv).

Proof. Take a PST constraint ⌘0 for some (0: ): 2 í3⇥3�0 with 0: > 0 for : 2 [3]. The E-unstability and
V-unstability are shown by a particular adjacency matrix ⇠. Define ⇠ as the adjacency matrix of the cycle
1! 2! . . .! 3 ! 1 with edges weights of 1. That is:

⇠ =

26666666664

0 1 0 . . . . . . 0
0 1 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 . . . 1
1 0 . . . 0

37777777775
.

We have ⇠3 = �3 and Tr
⇥
⇠:

⇤
=

n
3 if : = 0 mod 3
0 if : < 0 mod 3 . We obtain for any C 2 í�0,

⌘0 (C⇠) = 3
1’
✓=1

0✓3C
✓3 .

In particular, since the coefficient (0: ):2é⇤ � 0 and 03 > 0, we have for any

C � 0,⌘0 (C⇠) � 303C3 = ⌦C!+1(C3 ) .

This proves the E-instability.
Define D = min(1, A0/2) where A0 is the radius of convergence of 50. Then, for any Y 2 [0,D2),

⌘0 (Y⇠) = 3
+1’
✓=1

0✓3Y
✓3

= Y33

 +1’
✓=1

0✓3Y
(✓�1)3

!

 Y33
 +1’
✓=1

0✓3D
2(✓�1)3

!

 Y33
 +1’
✓=1

0✓3D
✓3 + 03

!
(5.9)

 Y33 (50 (D) + 03 ) .
= $Y!0+

⇣
Y3

⌘
,

where we obtain (5.9) by noting that 2(✓ � 1) � ✓ and D  1. Finally, since D < A0, 50 (D) is finite. Hence the
result.
The D-instability result follows from the definition of the radius of convergence.

Another class of acyclicity constraints is based on the spectrum of the weighted adjacency matrix.

Proposition 5.2.8. For any matrix � 2 í3⇥3�0 , the followings are equivalent:

1. ⌧ (�) 2 DAGs.

2. �: = 0 for some : � 1, i.e. � is nilpontent.

3. The spectral radius of �: A (�) = 0.
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Proof. 1 () 2:
”(”: Assume �: = 0 for some : � 1, then there does not exist a walk of arbitrary high length.
If ⌧ (�) is a cycle, there exists a walk of arbitrarily high length, which is a contradiction to the above.
”)”: If ⌧ (�) is acyclic, then similarly to the case based on linear SEMs, all diagonal elements of � are
zeros, which implies that � is nilpotent.
2 () 3: � nilpontent () all eigenvalues _8 (�) = 0 88 2 [3] () spectral radius A (�) = 0.

Based on Proposition 5.2.8, two other acyclicity constraints are developed. We write, �, instead of
� explicitly for the following theorem.

Theorem 5.2.9 (Log-determinant acyclicity characterization). [BAR22, Theorem 1] Let B > 0, define óB =
{, 2 í3⇥3 |B > A (, �, )} where A (, �, ) denotes the spectral radius of, �, , and let ⌘Bldet : ó

B ! í
be defined as ⌘Bldet(, ) := � log det(B� �, �, ) + 3 log B. Then the following holds:

(i) ⌘Bldet(, ) � 0, with ⌘Bldet(, ) = 0 if and only if ⌧ (, ) is a DAG.

(ii) 5⌘Bldet(, ) = 2(B� �, �, )�) �, , with 5⌘Bldet(, ) = 0 if and only if ⌧ (, ) is a DAG.

Proof. Note that for any B > 0 and matrix ⌫ 2 í3⇥3 , we have det(B⌫) = B3⌫. Then, log det(B� �, �, ) �
3 log B = log(B3 det(� � B�1, �, )) � 3 log B = log det(� � B�1, �, ) . Moreover, since, �, 2 óB , we
have that B > A (, �, ) or equivalently 1 > A (B�1, �, ). Therefore, we set B = 1 w.l.o.g.
(ii): By matrix calculus,

5⌘Bldet(, ) = 2(B� �, �, )�) �, .

Note that the gradient is well-defined since (B� �, �, ) is an "-matrix and by Berman and Plemmons
[BP94], the inverse (B� �, �, )�1 exists. By Taylor’s Theorem,

(B� �, �, )�1 = 1
B
� + 1

B2
(, �, ) + 1

B3
(, �, )2 + . . . ,

Therefore, after taking the transpose, [(B� �, �, )�) ]8 9 is non-zero if and only if there exists a walk from
9 to 8. After taking the Hadamard product, [(B� �, �, )�) �, ]8 9 is non-zero if and only if,8 9 < 0 and
[(B� �, �, )�) ]8 9 < 0, which means there exists a direct edge from 8 to 9 and also a walk from 9 to 8,
which implies that there exists a closed walk from 8 to 8 passing through 9 . Thus, 5⌘Bldet(, ) = 0 if and only
if ⌧ (, ) is a DAG.
(i): It holds

⌘B=1ldet(, ) = � log det(� �, �, ) = � log(
3÷
8=1

_8 (� �, �, )) =
3’
8=1
� log(1 � _8 (� �, �, )),

thus at the boundary of óB , ⌘B=1ldet(, ) ! 1. Therefore, the global minima of ⌘B=1ldet must be in the interior
of óB and corresponds to the set of the stationary points, i.e., 5⌘B=1ldet(, ) = 0. Together with (ii), DAGs are
local and global minima of ⌘B=1ldet.
By Proposition 5.2.8 if, is a DAG, then _8 (, �, ) = 0 for all 8, which implies det(� �, �, ) = 1, and
consequently ⌘B=1ldet(, ) = 0. Since DAGs are global minima, this implies that for all, 2 óB , ⌘B=1ldet(, ) �
0.

Theorem 5.2.10. ⌘Bldet(·) satisfies the following stability properties:
For all � 2 í3⇥3�0 it holds:

• V-stable If ⌘Bldet(�) < 0, then for Y ! 0+, ⌘Bldet(Y�) � 2Y for some positive constant 2.

• D-stable ⌘Bldet(�) and r⌘Bldet(�) are well-defined where 5⌘Bldet(�) = (B�3 ��)�) , with 5⌘Bldet(�) = 0 if
and only if � is a DAG.

Proof. • D-stable: Proved by Theorem 5.2.9.
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• V-stable: Note that log det(B� � �) � 3 log B = log(B3 det(� � B�1�)) � 3 log B = log det(� � B�1�).
Moverover, B > d (�) is equivalent to 1 > d (B�1�). So let’s consider B = 1 w.l.o.g. For any Y > 0 such
that Y |d (�) |  1 it holds

⌘Bldet(Y�) = � log det(� � Y�) = � log(
3÷
8=1

_8 (� � Y�)) =
3’
8=1
� log(1 � Y_8 (�)) .

We prove the statement of the Theorem under the assumption that the eigenvalues {_8 (�)}82 [3 ] of �
are complex numbers and under the additional assumption that

Õ3
8=1 _8 (�) < 0. Using the Cauchy-

integral formula applied for the principal branch of the complex logarithm function I 7! log(1 � I)
(which is analytic within domain |I | < 1) we get:

� log(1 � Y_8 (�)) = Y_8 (�) +
Y2_28 (�)
2c8

π
[0

log(1 �F)3F
(Y_8 (�) �F)F2 ,

where [0 is any closed circle or radius A0, Y |_8 (�) | < A0 < 1. Therefore, summing over all complex
values _8 (�) and by using triangle inequality |0 � 1 | � |0 | � |1 |, for 0,1 2 É we deduce that it holds:

�����
3’
8=1
� log(1 � Y_8 (�))

����� � Y
�����
3’
8=1

_8 (�)
����� �

1
2c

�����
3’
8=1

Y2_28 (�)
π
[0

log(1 �F)3F
(F � Y_8 (�))F2

�����.

Now, notice thatF 7! log(1�F )
F�Y_8 (�) is continuous, therefore, by Weierstrass Theorem, it is bounded on [0

(since [0 is bounded domain), yielding that
��� log(1�F )
F�Y_8 (�)

���   , for some  > 0. Finally, since Y |_8 (�) |
A0

< 1
and [0 is a circle of radius A0 we obtain by using ML inequality for the complex integral:

����Y2_28 (�)
π
[0

log(1 �F)3F
F � Y_8 (�)F2

����  2cY2_28 (�)
 

A0
,

which in turn implies that
�����
3’
8=1
� log(1 � Y_8 (�))

����� � Y
�����
3’
8=1

_8 (�)
����� �

 

A0
Y2

�����
3’
8=1

_28 (�)
�����

= Y

�����
3’
8=1

_8 (�)
����� �

 

A0
Y2

3’
8=1

_28 (�)

= Y

�����
3’
8=1

_8 (�)
����� �

 Y2k�k22
A0

� Y

���Õ3
8=1 _8 (�)

���
2 ,

where the last inequality holds provided Y is chosen small enough (more precisely if we choose Y 
min

⇢
|d (�) |�1, A0 |

Õ3
8=1 _8 (�) |

2 k�k22

�
). Thus, we proved the claim.

Theorem 5.2.11 (Spectral acyclicity constraint). [Naz+23, Theorem 3] The spectral radius is an acyclicity
constraint

⌘spectral(�) := |_3 (�) | = 0 () ⌧ (�) is a DAG.

It’s differentiable almost everywhere, with gradient

5⌘spectral(�) = E3D>3 /E>3 D3 ,

where D3 , E3 are respectively the right and left eigenvectors associated with _3 (�).
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Proof. By Proposition 5.2.8, ⌘spectral(�) = 0 if and only if ⌧ (�) is a DAG. Magnus [Mag85] shows that
⌘spectral is differentiable at every � that has mutually distinct eigenvalues, with the formula provided in the
Theorem. The set of matrices with all distinct eigenvalues is dense in the set of matrices [HJ12, Theo-
rem 2.4.7.1], which finalizes the proof.

Remark 5.2.12. Since É is algebraically closed, then every matrix has eigenvalues in É. So ⌘spectral is well
defined everywhere.

Theorem 5.2.13 (Stability of spectrum based constraints). [Naz+23, Theorem 4] ⌘spectral is stable.

Proof. • E-stable: For any B � 0 and matrix �,⌘spectral(B�) = |B |⌘spectral(�) = $B!1(B).
• V-stable: For any Y > 0 and matrix � such that ⌘spectral(�) > 0,

⌘spectral(Y�) = |Y |⌘spectral(�) = ⌦Y!0+ (Y) .

• D-stable: Proved by Theorem 5.2.11.

Remark 5.2.14. Note that PST constraints are V-unstable for 3 � 2. Furthermore, although ⌘spectral is
E-stable, V-stable and D-stable, we observe that in practice, for the same weighted adjacency matrix , ,
⌘spectral(, ) and ⌘Bldet(, ) operate on distinctly different scales, with ⌘spectral(, ) being substantially larger
than ⌘Bldet(, ). This considerable difference in magnitude raises challenges in assessing whether ⌘spectral(, )
can be regarded as sufficiently small to be considered zero. Thus, we choose ⌘Bldet(, ) as our acyclicity
constraint.

5.3 Alternative Optimization Scheme: DAGMA

Besides the augmented Lagrange scheme, Bello, Aragam, and Ravikumar [BAR22] developed a simpler
optimization method named DAGMA which resembles the central path approach of barrier methods [BV04].
We consider the same ECP (5.6) from Section 5.1.3 with the log-determinant acyclicity constraint.

min
\
!(\ ) + _k\ k1 s.t. ⌘Bldet(, (\ )) = 0. (5.10)

Algorithm 5 DAGMA

1: Input: Data matrix ò, initial central path coefficient ` (0) , decay factor U 2 (0, 1), ✓1 parameter _ > 0,
log-det parameter B > 0, number of iterations ) and threshold l > 0.

2: Output: b, , the estimated weighted adjacency matrix.
3: Initialize ` (0) so that, (` (0) ) 2óB .
4: for C  0, 1, 2 . . . ,) � 1 do
5: Starting at ` (C ) , solve ` (C+1) = argmin\ ` (C ) (!(\ ) + _k\ k1) + ⌘Bldet(, (\ )) .
6: Set ` (C+1) = U` (C ) .
7: Threshold matrix b, =, (\ () ) ) · 1( |, (\ () ) ) | > l) .

Lemma 5.3.1. [BAR22, Lemma 6] Algorithm 5 returns a DAG whenever ` (C ) ! 0.

Proof. In the proof of Theorem 5.2.9, it is shown that DAGs are global minima of ⌘Bldet. Note that at the
limit of the central path (` (C ) ! 0), we solve the following problem:

b\ = argmin\ ⌘Bldet(, (\ )) .

Thus, the solution, (b\ ) must be a DAG.

Remark 5.3.2. 1. We require that the initial point, (\ (0) ) be inside óB . Since the zero matrix is in the
interior of óB for any B > 0, one can simply set \ (0) = 0.

2. The default value of the hyperparameters are ` (0) = 1,U = 0.1, V1 = 0.01, B = 1,) = 4.

3. Line 5 can be solved by ADAM optimizer [KB14].
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6 Kernel Methods and RKHS Representer Theorem

In this chapter, we review the kernel method, reproducing kernel Hilbert space (RKHS) and their relevant
properties, and most importantly, the RKHS Representer Theorem as presented in Steinwart and Christmann
[SC08].

6.1 Kernel Methods and their Properties

Definition 6.1.1 (Kernel and its feature map). [SC08, Definition 4.1] Let ã denote the set í or É, and let
X be a non-empty set. Then a function : : X ⇥ X ! ã is called a kernel on X if there exists a ã-Hilbert
space �0 and a map � : X ! �0 such that for all G, G 0 2 X we have

: (G, G 0) = h�(G 0),�(G)i�0 .

We call � a feature map and �0 a feature space of : .

Remark 6.1.2. Note that kernel : does not determine feature map � nor feature space �0 uniquely.

Definition 6.1.3 (Kernel matrix). [SC08, Definition 6.1.2] For fixed G1, . . . , G= 2 X, the = ⇥ = matrix  :=
(: (G8 , G 9 ))8, 9 is called the kernel matrix.
A function : : X ⇥ X ! í is called positive semi-definite if, for all = 2 é, U1, . . . ,U= 2 í and all
G1, . . . , G= 2 X, the kernel matrix is positive semi-definite, i.e.,

=’
8=1

=’
9=1

U8U 9: (G8 , G 9 ) � 0. (6.1)

Furthermore, : is said to be positive definite if, for mutually distinct G1, . . . , G= 2 X, equality in (6.1) holds
only for U1 = . . . = U= = 0. Finally, : is called symmetric if : (G, G 0) = : (G 0, G) for all G, G 0 2 X.

Remark 6.1.4. A kernel : with feature map � : X ! � is always positive definite, since for = 2
é,U1, . . . ,U= 2 í, and G1, . . . , G= 2 X we have

=’
8=1

=’
9=1

U8U 9: (G8 , G 9 ) =
*
=’
8=1

U8�(G8),
=’
9=1

U 9�(G 9 )
+
�0

� 0.

If : is an í-valued kernel, then : is always symmetric.

Proposition 6.1.5 (Sufficient and necessary condition for kernels). [SC08, Theorem 4.16] A function : :
X ⇥ X ! í is a kernel if and only if it is symmetric and positive definite.

6.2 RKHS and its Properties

Definition 6.2.1. [SC08, Definition 4.18] Let X < ; and � be a ã-Hilbert function space over X, i.e., a
ã-Hilbert space that consists of functions mapping from X into ã.

1. A function : : X ⇥ X ! ã is called a reproducing kernel of � if we have : (·, G) 2 � for all G 2 X
and the reproducing property

5 (G) = h5 ,: (·, G)i�
holds for all 5 2 � and all G 2 X.
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2. The space � is called a reproducing kernel Hilbert space (RKHS) over X if for all G 2 X the Dirac
functional XG : � ! ã defined by

XG (5 ) := 5 (G), 5 2 � ,

is continuous.

Remark 6.2.2 (Reproducing kernels are kernels). [SC08, Lemma 4.19] Let � be a Hilbert function space
over X that has a reproducing kernel : . Then � is an RKHS and � is also a feature space of : , where the
feature map � : X ! � is given by

�(G) = : (·, G), G 2 X.

We call � the canonical feature map.

Theorem 6.2.3 (Every RKHS has a unique reproducing kernel). [SC08, Theorem 4.20] Let � be an RKHS
over X. Let � 0 be the space of linear functionals that map from � to ã. Then : : X ⇥ X ! ã defined by

: (G, G 0) := hXG , XG 0 i� 0, G, G 0 2 X,

is the only reproducing kernel of � .

Theorem 6.2.4 (Every kernel has a unique RKHS). [SC08, Theorem 4.21] Let X < ; and : be a kernel
over X with feature space �0 and feature map q0 : X ! �0. Then

� := {5 : X ! ã | 9F 2 �0 with 5 (G) = hF ,q0(G)i�0 for all G 2 X}

equipped with the norm

k 5 k� := inf{kF k�0 : F 2 �0 with 5 = hF ,q0(·)i�0}

is the only RKHS for which : is a reproducing kernel. Consequently, both definitions are independent of the
choice of �0 and �0. Moreover, RKHS � of : is "smallest" feature space of : in the sense that, the operator
+ : �0 ! � defined by

+F := hF ,�0(·)i�0, F 2 �0,

is a metric surjection, i.e., +⌫�0 = ⌫� , where ⌫�0 and ⌫� are the open unit balls of �0 and � , respectively.
Finally, the set

�pre :=
(

=’
8=1

U8: (·, G8) : = 2 é,U1, . . . ,U= 2 ã, G1, . . . , G= 2 X
)

is dense in � , and for 5 :=
Õ=
8=1 U8: (·, G8) 2 �pre we have

k 5 k2� =
=’
8=1

=’
9=1

U8U 9: (G 9 , G8).

Theorem 6.2.4 can be used to determine the RKHS of a given kernel and its modification such as re-
strictions. Recall that every É-valued kernel on X that is actually í-valued has an í-feature space. The
following Corollary describes the corresponding í-RKHS.

Corollary 6.2.5. [SC08, Corollary 4.22] Let : : X ⇥X ! É be a kernel and � its corresponding É-RKHS.
If we actually have : (G, G 0) 2 í for all G, G 0 2 X, then

�í := {5 : X ! í | 96 2 � with Re6 = 5 }

equipped with the norm

k 5 k�í := inf{k6k� : 6 2 � with Re6 = 5 }, 5 2 �í,

is the í-RKHS of the í-valued kernel : .

Definition 6.2.6. 1. The supremum norm of a kernel : is defined as k: k1 := supG2X
p
: (G, G).



6.2 RKHS and its Properties

35

2. Let : be a kernel on X with feature map � : X ! � . Define kernel metric 3: on X:
For G, G 0 2 X, 3: (G, G 0) := k�(G) � �(G 0)k� .

Remark 6.2.7. 1. Let � be RKHS of kernel : , note that : is a reproducing kernel of � by Theorem
6.2.4, then : (·, G 0) 2 � 8G 0 2 X. By reproducing property,

: (G, G 0) = : (·, G 0) (G) = h: (·, G 0),: (·, G)i� .

Then
|: (G, G 0) |2 = |h: (·, G 0),: (·, G)i� |2  k: (·, G 0)k2� · k: (·, G)k2� = : (G 0, G 0) · : (G, G),

where the last inequality is followed by the Cauchy-Schwarz inequality. Therefore, supG,G 0 2X |: (G, G 0) | =
supG2X : (G, G). So : is bounded if and only if

k: k1 := sup
G2X

p
: (G, G) < 1.

2.

3: (G, G 0) =
p
h�(G) � �(G 0),�(G) � �(G 0)i�

=
p
h�(G),�(G)i� � 2h�(G),�(G 0)i� + h�(G 0),�(G 0)i�

=
p
: (G, G) � 2: (G, G 0) + : (G 0, G 0) .

So 3: is independent of choice of �.

In the following, we introduce some properties of RKHS. (Chapter 4.3 of Steinwart and Christmann
[SC08])

Proposition 6.2.8 (RKHSs of bounded kernels). [SC08, Lemma 4.23] Let X be a set and : be a kernel on X
with RKHS � . Then : is bounded if and only if every 5 2 � is bounded. Moreover, in this case the inclusion
83 : � ! ✓1(X) is continuous and we have k83 : � ! ✓1(X)k = k: k1.

Proposition 6.2.9 (RKHSs of measurable kernels). [SC08, Lemma 4.24] Let X be a measurable space and
: be a kernel on X with RKHS � . Then all 5 2 � are measurable if and only if : (·, G) : X ! í is
measurable for all G 2 X.

Proposition 6.2.10 (Differentiability of feature maps). [SC08, Lemma 4.34] Let X ✓ í3 be an open subset,
: be a kernel on X, � be a feature space of : , and � : X ! � be a feature map of : . Let m8m8+3: denote
the mixed partial derivative of : (G, G 0) wrt. 8�th coordinates in G and G 0 and let 8 2 {1, . . . ,3} be an index
such that the mixed partial derivative m8m8+3: exists and is continuous. Then the partial derivative m8� of
� : X ! � with respect to the 8�th coordinate exists, is continuous, and for all G, G 0 2 X we have

hm8�(G), m8�(G 0)i� = m8m8+3: (G, G 0) = m8+3m8: (G, G 0) .

In other words, m8m8+3: is a kernel on X ⇥ X with feature map m8�.

Remark 6.2.11. In Theorem 7.2.1, we prove the ”differentiable reproducing property” which is similar to
Proposition 6.2.10.

One of the most commonly used kernels is the Gaussian RBF kernel:

Definition 6.2.12 (Gaussian RBF kernel). [SC08, Proposition 4.10] For 3 2 é, W > 0, G = (G1, . . . , G3 ) 2
í3 , and G 0 = (G 01, . . . , G 03 ) 2 í3 , we define

:W (G, G 0) := exp
✓
�
kG � G 0 k22

W2

◆
= exp

 
�W�2

3’
9=1

(G 9 � G 09 )2
!
.

:W is called the Gaussian RBF kernel with width W .

Proposition 6.2.13. [SC08, Proposition 4.46] For 0 < W1 < W2 < 1, and non-empty set X ⇢ í3 , let �W1
and �W2 denote the RKHS corresponding to the Gaussian RBF kernel with width W1 and W2 respectively. We
obtain 83 : �W2 (X) ! �W1 (X) with

��83 : �W2 (X) ! �W1 (X)
��  (W2W1 )

3
2 .
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6.3 RKHS Representer Theorem

We assume in machine learning approach that we have collected ⇡ := ((G1,~1), . . . , (G=,~=)) of input/output
pairs. We use this to learn a function 5 : X ! Y such that 5 (G) is a good approximation pf possible response
~ to an arbitrary G . Let ê denote the unknown probability distribution on X ⇥ Y. More precisely, a pair
(G,~) is generated in two steps. First, the input value G is generated according to the marginal distribution
êX . Second, the output value ~ is generated according to the conditional probability ê(·|G) on Y given the
value of G . Note that by letting G be generated by an unknown distribution êX , we basically assume that we
have no control over how the input values have been and will be observed. Furthermore, assuming that the
output value ~ to a given G is stochastically generated by ê(·|G) accommodates the fact that in general, the
information contained in G may not be sufficient to determine a single response in a deterministic manner.
In particular, this assumption includes the two extreme cases where all input values determine an almost
surely unique output value. Finally, assuming that the conditional probability ê(·|G) is unknown contributes
to the fact that we assume that we do not have a reasonable description of the relationship between the input
and output values.

Moreover, in order to access the quality of a learned function 5 , it’s not sufficient to consider the value
of the loss function ✓ (G,~, 5 (G)) for a particular choice of (G,~), but in fact we need to consider how small
the function (G,~) 7! ✓ (G,~, 5 (G)) is. Here, we consider the commonly used expected loss of 5 defined as
below:

Definition 6.3.1 (✓-risk). [SC08, Definition 2.2] Let ✓ : X ⇥Y ⇥í! [0,1) be a loss function and ê be a
probability measure on X ⇥Y. Then, for a measurable function 5 : X ! í, the ✓-risk is defined by

R✓,ê(5 ) :=
π
X⇥Y

✓ (G,~, 5 (G))3ê(G,~) =
π
X

π
Y
✓ (G,~, 5 (G))3ê(~ |G)3êX(G) .

For a given sequence of data observations ⇡ := ((G1,~1), . . . , (G=,~=)) 2 (X ⇥ Y)=, we write D :=
1
=

Õ=
8=1 X (G8 ,~8 ) , where X (G8 ,~8 ) denotes the Dirac measure at (G8 ,~8). In other words, D is the empirical

measure associated to ⇡ . The risk of a function 5 : X ! í with respect to this measure is called the
empirical ✓-risk:

R✓,D(5 ) = 1
=

=’
8=1

✓ (G8 ,~8 , 5 (G8)) .

Lemma 6.3.2 (Convexity of risks). [SC08, Lemma 2.13] Let ✓ : X ⇥Y ⇥í! [0,1) be a (strictly) convex
loss and ê be a distribution on X ⇥Y. Then R✓,D : L0(X) ! [0,1] is (strictly) convex.

Let ✓ : X ⇥ Y ⇥ í ! [0,1) be a loss, � be the RKHS of a bounded measurable kernel : on X. We
consider the regularized empirical ✓-risk:

Rreg
✓,D,_ (5 ) := _k 5 k

2
� + R✓,D(5 ) . (6.2)

Let 5D,_ denote the minimizer of Rreg
✓,D,_ (·) in � . More precisely,

_
��5D,_

��2 + R✓,D(5D,_) = inf
5 2�

_k 5 k2� + R✓,D(5 ).

We call 5D,_ as empirical SVM solution.

Lemma 6.3.3 (Existence of minimizers). [SC08, Theorem A.6.9] Let ⇢ be a reflexive Banach space and
5 : ⇢ ! í [ {1} be a convex and lower semi-continuous map. If there exists an " > 0 such that
{G 2 ⇢ : 5 (G) < "} is non-empty and bounded, then 5 has a global minimum, i.e., there exists an G0 2 ⇢
with

5 (G0)  5 (G), G 2 ⇢ .

Moreover, if 5 is strictly convex, then G0 is the only element minimizing 5 .
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Theorem 6.3.4 (RKHS Representer theorem). [SC08, Theorem 5.5] Let ✓ : X ⇥ Y ⇥ í ! [0,1) be a
convex loss and ⇡ := ((G1,~1), . . . , (G=,~=)) 2 (X ⇥ Y)=. Furthermore, let � be an RKHS of a bounded
measurable kernel : over X. Then, for all _ > 0, there exists a unique empirical solution 5D,_ 2 � of the
regularized empirical ✓-risk (6.2). In addition, there exist (U1, . . . ,U=) 2 í such that

5D,_ (G) =
=’
8=1

U8: (G, G8), G 2 X. (6.3)

The above theorem shows that the empirical minimizer of Rreg
!,D,_ (5 ) can be represented by a linear

combination of the canonical feature map.

Proof. • Uniqueness: Assume that Rreg
!,D,_ (5 ) = _k 5 k

2
� + R✓,D(5 ) has two minimizers 51, 52 2 � with

51 < 52. Since we have

1
4 k 51k

2
� + 1

4 k 52k
2
� �

1
2 h51, 52i� =

1
4 (k 51k

2
� + k 52k2� � 2h51, 52i� ) =

1
4 k 51 � 52k

2
� > 0.

Then,
1
2 h51, 52i� <

1
4 k 51k

2
� + 1

4 k 52k
2
� . (6.4)

Consider 5 ⇤ := 1
2 (51 + 52),

k 5 ⇤k� =
����12 (51 + 52)

����
2

�
=
1
4 k 51k

2
� + 1

2 h51, 52i� + 1
4 k 52k

2
�

(6.4)
<

1
2 k 51k

2
� + 1

2 k 52k
2
� .

Together with the convexity of 5 7! R✓,D(5 ) and _k 51k2� + R✓,D(51) = _k 52k2� + R✓,D(52), it follows
that

_k 5 ⇤k2� + R✓,D(5 ⇤) < _k 51k2� + R✓,D(51) .

Thus 51 is not a minimizer of Rreg
!,D,_ (5 ) which contradicts to the assumption.

• Existence: Since convergence in � implies pointwise convergence, we obtain the continuity of R✓,D :
� ! [0,1) by the continuity of !. Then Lemma 6.3.2 shows the convexity of this map. Moreover,
5 7! _k 5 k2� is also convex and continuous, and hence so is 5 7! _k 5 k2� +R✓,D(5 ). Now consider the
set

� := {5 2 � : _k 5 k2� + R✓,D(5 )  "},

where " := R✓,D(0). Then 0 2 � obviously. In addition, 5 2 � implies _k 5 k2�  " , and hence
� ⇢ ("/_) 1

2⌫� , where ⌫� is the closed unit ball of � . In other words, � is a non-empty and bounded
subset, and thus Lemma 6.3.3 gives the existence of a minimizer 5D,_.

• Representation (6.3): We denote - 0 := {G8 : 8 = 1, . . . ,=} and � |- 0 := span{: (·, G8) : 8 = 1, . . . ,=}.
Let � |?- 0 be the orthogonal complement of � |- 0 in � . Then by the Hilbert Projection Theorem it
follows that every 59 2 � , 9 2 [3] can be uniquely decomposed as 59 = 5

k
9 + 5 ?9 , where 5 k9 2 � |- 0 and

5 ?9 2 �?|- 0 . By reproducing property, it holds

5 ?9 (G8) =
⌦
5 ?9 ,: (·, G8)

↵
�
= 0.

Thus,
R✓,D(5 k ) = R✓,D(5 ).

Note that h5 k , 5 ?i� = 0, hence

k 5 k� =
���5 k���

�
+

��5 ?��� �
���5 k���

�
.
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We conclude that

inf
5 2�

_k 5 k2� + R✓,D(5 )  inf
5 2� |- 0

_k 5 k2� + R✓,D(5 )

= inf
5 2�

_
���5 k���2

�
+ R✓,D(5 k )

 inf
5 2�

_k 5 k2� + R✓,D(5 ).

Therefore, we obtain that

inf
5 2�

_k 5 k2� + R✓,D(5 ) = inf
5 2� |- 0

_k 5 k2� + R✓,D(5 ),

which finalizes the proof.
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7 Structure Learning in General Non-Parametric
Structural Equation Models based on RKHS

The general non-parametric NOTEARS algorithms introduced in chapter 5 approximate the non-linear rela-
tionships between random variables either by MLPs or basis expansions. However, the MLP approximation
is sensitive to the size of hidden units. Although increasing the size of the hidden layers increases the flexi-
bility of MLP functions, larger networks require more samples to estimate the parameters [Zhe+20]. More-
over, the current MLP approximation relies on random initialization for the weights which causes obvious
randomness in results [see the illustration from WBD24, Figure 2 therein]. Fine-tuning the architecture of
a neural network is, thus, a non-trivial task. On the other hand, basis expansion approximation is restricted
through its focus on additive models. Motivated by these, we introduce a novel approximation family by
kernel methods in this chapter. In section 7.1, we introduce a model-agnostic sparsity regularizer based
on partial derivatives. Similar to Rosasco et al. [Ros+13], we establish a version of an RKHS Representer
Theorem for an empirical acyclicity constrained optimization problem. We approximate the non-parametric
relationships with the help of an RKHS given by a differentiable kernel. Finally, we assemble the DAGMA
optimization scheme (section 5.3) and develop an algorithm called ”RKHS-DAGMA” in section 7.3.

7.1 Sparsity Regularizer

In causal inference, we usually expect that a random variable depends only on a few other random variables.
In other words, we favor functions for which each partial derivative is small at different points. Recall that
we assume functions 59 : X ! í, 9 2 [3] are in the class ⇠1(X), and the functions 59 and their derivatives
are both square-integrable. Denote ê- to be the joint distribution of the random vector - , we consider
the following sparsity regularizer (see Rosasco et al. [Ros+13] for applications in statistical learning and
asymptotic optimality of the obtained minimizer on the classes of functions which contain RKHS � ).

⌦1(59 ) =
3’
:=1

���� m59 (·)mG:

����
!2

=
3’
:=1

sπ
X

✓
m59 (G)
mG:

◆2
ê- (3G) . (7.1)

To develop a version of the data-based decision rule we need to consider an empirical counterpart for
k·k!2 of the derivative. Thus, we "mimic" it by plugging in the empirical measure D := 1

=

Õ=
8=1 X (G8 ) . We set

���� m59 (·)mG:

����
=
:=

vt
1
=

=’
8=1

(
m59 (G8)
mG:

)2.

Then the empirical estimate of (7.1) is

⌦D
1 (59 ) =

3’
:=1

���� m59 (·)mG:

����
=
.

Similarly, the empirical estimate of the coefficient,9: of the weighted adjacency matrix is

, D
: 9 =

���� m59 (·)mG:

����
=
.
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7.2 Constrained Empirical Optimization Problem Solved by Kernel
Methods

For each 9 2 [3], we assume 59 : X ! í, 9 2 [3] is in a reproducing kernel Hilbert space (RKHS) �
generated by a bounded continuously-differentiable kernel : on X and use an additional term _

��59��2� to
penalize function complexity. Then we aim to minimize the following loss function:

3’
9=1

⇢
1
2=

=’
8=1

(G89 � 59 (G8))2 + g (2⌦D
1 (59 ) + _

��59��2� )
�

s.t. ⌘Bldet(, D) = 0, (7.2)

where g, _ are positive numbers and B > 0 being some fixed number (typically set to 1). Following ideas as
in Rosasco et al. [Ros+13], we show a version of RKHS Representer Theorem for the optimization criteria
(7.2) with the log-determinant acyclicity constraint. The main point of the result below is to show that
the solution of the log-determinant constrained empirical minimization problem (7.2) over the reproducing
Hilbert space � admits a solution of the form (for every 9 2 [3]):

b5 g9 =
=’
8=1

U8: (G8 , ·) +
=’
8=1

3’
0=1

V08
m: (·, B)
mB0

����
B=G8

.

Theorem 7.2.1. Let X be a bounded connected non-empty open set in í3 , : (·, ·) be a bounded countiniously
differentiable kernel. Then the constrained minimizer of (7.2) can be written as

b59 g (G) =
=’
8=1

U 98 : (G, G8) +
=’
8=1

3’
0=1

V 908
m: (G, B)
mB0

����
B=G8

, G 2 X, (7.3)

where U 9 , (V 908)=8=1 2 í= and 0, 9 2 [3]. Then,

���b59 g
���2
�
=

=’
8,;=1

U 98 U
9
; : (G

8 , G; ) + 2
=’

8,;=1

3’
0=1

U 98 V
9
0;

m: (G8 , G; )
mG;0

+
=’

8,;=1

3’
0,1=1

V 908V
9
1;

m: (G8 , G; )
mG80mG

;
1

. (7.4)

Proof. (7.3): Consider arbitrary elements 5 ,6 2 � ; since 6 2 � and � is complete, there exists a sequence
of elements (6)=�1, 6= 2 � such that it converges to 6 in the norm of Hilbert space � . Furthermore, for
every = 2 é we have:

h5 ,6=i� � h5 ,6i�  |h5 ,6=i� � h5 ,6i� | = |h5 ,6= � 6i� |
Cauchy-Schwarz

 k 5 k� · k6= � 6k� .

Note that since : is bounded it implies that 5 is bounded [see ex. SC08, Lemma 4.23]. Furthermore, since
6= ! 6 in the norm of the space � we have that

lim
=!1
h5 ,6=i� � h5 ,6i = 0,

which implies that map G 7! h·, Gi� is continuous. Similarly, one can prove scalar product is continuous in
the first coordinate.

For coherence of further proof, we first refine the proof that for the open set X ⇢ í3 , for every 0 2 [3],
G 2 X we have that m

mG0
: (·, G) 2 � and moreover that "differential reproducing property" holds, i.e., that

m

mG0
5 (G) =

⌧
5 ,

m

mB0
: (·, B)

����
B=G

�
�

,8G 2 X, 5 2 � .

Namely, we refine the proof (see Theorem 1 point a), b) in Zhou [Zho08]) in case U = 0 to show that
the "derivative element" exists in � . We deviate from the proof of Theorem 1 in the part to establish that
differential reproducing property holds for all 5 2 � . The latter part is different from that of Zhou [Zho08] as
it uses the completeness of � and the fact that weak convergence and pointwise convergence are equivalent
in RKHS � .
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Consider arbitrary G 2 X; since X is open there exists A > 0 such that -A := {G + ~,~ 2 í3 , k~k2  A } ⇢
X. For 0 2 [3], denote 40 to be 0�th orthonormal vector in the standard Euclidean basis in í3 . For arbitrary
G 2 X denote ⌘̃G,0 to be the function ⌘̃G,0 : X 7! í such that ⌘̃G,0 (~) = m

mB0
: (B,~) |B=G for all ~ 2 X, i.e., for

all G , ~ 7! m
mB0
: (B,~) |B=G . Since, from the definition of the RKHS, : (·, G) 2 � we have that set of functions

� 7! í ⇢
1
C
(: (·, G + C40) � : (·, G)), |C |  A

�
(7.5)

is such that it holds for every C, |C |  A :

����: (·, G + C40) � : (·, G)
C

����
2

�
=

1
C2

⇣
: (G + C40, G + C40) � : (G, G + C40) � : (G + C40, G) + : (G, G)

⌘


���� m2

mG0mG0
: (·, ·)

����
2

1
,

where the last inequality follows from the fact that : (·, ·) is a continuously differentiable function in every
coordinate and application of the Mean Value Theorem (twice, once in every coordinate). The latter inequal-
ity implies that set (7.5) lies within a ball of radius

��� m2

mG0mG0
: (·, ·)

���
1

in Hilbert space � ; it is known (since
⇤�weak convergence is equivalent to weak convergence in Hilbert spaces) that the ball in the Hilbert space
is weakly sequentially compact (see ex. [Rud91], Chapter 3). Thus, there exist a sequence (C=), such that
lim=!1 C= = 0 and the sequence 1

C=
(: (·, G + C=40) � : (·, G)) converges weakly to an element ⌘G 2 � . The

latter means that for arbitrary 5 2 � it holds:

lim
=!1

⌧
1
C=
(: (·, G + C=40) � : (·, G)), 5

�
�
= h⌘G , 5 i� . (7.6)

Consider 5 = : (·,~), where ~ 2 X arbitrary. Since : (·,~) is differentiable (as a function of first coordinate)
we have that for the LHS of the last equality it holds:

lim
=!1

⌧
1
C=
(: (·, G + C=40) � : (·, G)),: (·,~)

�
�
= lim
=!1

1
C=
(: (G + C=40,~) � : (G,~))

=
m

mB0
: (B,~)

����
B=G

= ⌘̃G,0 (~) .

But from the other side, it holds that

lim
=!1

⌧
1
C=
(: (·, G + C=40) � : (·, G)),: (·,~)

�
�
= h⌘G ,: (~, ·)i = ⌘G (~)

and this for arbitrary ~ 2 X. We conclude that ⌘̃G,0 = ⌘G (as a map X 7! í) and since ⌘G 2 � , so does
⌘̃G and by identifying m

mG0
: (·, G) := ⌘G the existence of such element that m

mG0
: (G,~) =

D
m
mG0
: (G, ·),: (·,~)

E
follows.

Now we show that "differentiable reproducing property" holds, i.e., that the convergence to the limit
m
mG0

(: (·, G)) is pointwise (and not only as a weak limit) and we can exchange the differential and inner
product sign. The latter is equivalent to the folklore fact that the weak convergence is equivalent to pointwise
convergence when the underlying space is RKHS. Indeed, consider any sequence 6= that converges weakly
to an element 6 2 � . The latter means we have for all 5 2 � it holds that lim=!1h6=, 5 i = h6, 5 i.
Then, in particular, the latter holds for all : (G, ·), G 2 X yielding the necessity. To show the sufficiency,
if lim=!1 6= (G) = 6(G) for all G 2 - then lim=!1h6=, 5 i = h6, 5 i for all 5 2 B?0={: (G, ·)} (by linearity
of the inner product and its continuity). The claim then follows since � is complete. From this statement
we deduce that the limit in Equation (7.6) is actually a pointwise limit, thus for every G 2 X we have
limC!0

1
C (: (·, G + C40) � : (·, G)) = m

mG0
: (·, G) and moreover for every 5 2 � holds:

⌧
m

mG0
: (·, G), 5

�
�
=

⌧
lim
C!0

1
C
(: (·, G + C40) � : (·, G)), 5

�
= lim
C!0

5 (G + C40) � 5 (G)
C

=
m5 (G)
mG0

,
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where we used continuity of inner product and reproducing property in the second equality. Thus, we have
that derivative exists and the "differential" reproducing property holds.

Denote - 0 := {G8 , 8 = 1, . . . ,=} and � |- 0 := span{: (·, G8), m: ( ·,B )mB0
|B=G8 : 8 = 1, . . . ,=,0 = 1, . . . ,3}, let

�?|- 0 be the orthogonal complement of � |- 0 in � (notice that it exists and well-defined as every element in
the span exist and well-defined). Then, from the Hilbert Projection Theorem it follows that every 59 2 � ,
9 2 [3] can be uniquely decomposed as 59 = 5

k
9 + 5 ?9 , where 5 k9 2 � |- 0 and 5 ?9 2 �?|- 0 .

Let 40 2 í3 being 0-th vector of the standard Euclidean basis in í3 ; by reproducing property and definition
of �?|- 0 in � , it holds

5 ?9 (G8) =
⌦
5 ?9 ,: (·, G8)

↵
�
= 0,

Using the fact (proved above) that for 59 2 � the differentiation reproducing property holds, together with
the orthogonal property we get:

m5 ?9
mG0

�
G8

�
=

⌧
5 ?9 ,

m: (·, B)
mB0

|B=G8
�
�

5 ?9 2�?|- 0
= 0.

By reproducing property in � , we deduce that for every 9 2 [3], it holds

1
2=

=’
8=1

(G89 � 59 (G8))2 =
1
2=

=’
8=1

(G89 � 5
k
9 (G8))2,

whereas the differential reproducing property implies that it holds

, D
09 (5 ) =

1
=

=’
8=1

m5 29 (G8)
mG80

=
1
=

=’
8=1

⇣
m5 k9 (G8)

⌘2
mG80

=, D
09 (5 k ) .

Notice furthermore, that ���� m59 (G)mG0

����
=
=

������
m5 k9 (G)
mG0

������
=

which in turn implies that ⌦D
1 (59 ) = ⌦D

1 (5 k9 ).
Thus, by denoting

R!,D(5 ) + g (2⌦D
1 (5 ) + _k 5 k2�3 ) =

3’
9=1

⇢
1
2=

=’
8=1

(G89 � 59 (G8))2 + g [2⌦D
1 (59 ) + _

��59��2� ]
�
,

for 5 = (51, . . . , 53 ) 2 �⌦3 (where we denote the direct product of 3 copies of � as �⌦3 ), we get that over
the acyclicity constraint the following chain of the equalities holds:

inf
5 2�3 ,⌘Bldet (, D (5 ) )=0

R!,D(5 ) + g (2⌦D
1 (5 ) + _k 5 k2�3 )

= inf
5 2�3 ,5 =5 k+5 ?,

5 k 2� |3
- 0 ,⌘

B
ldet (,

D (5 k ) )=0

R!,D(5 k ) + g (2⌦D
1 (5 k ) + _

��5 k��2�3 + _
��5 ?��2�3 )

= inf
5 2�3 ,5 =5 k+5 ?,5 k 2� |3

- 0 ,

k 5 ?k�3 =0,⌘Bldet (,
D (5 k ) )=0

R!,D(5 k ) + g (2⌦D
1 (5 k ) + _

��5 k��2�3 )

= inf
5 2� |3

- 0 ,⌘
B
ldet (, D (5 ) )=0

R!,D(5 ) + g (2⌦D
1 (5 ) + _k 5 k2�3 ) .

Thus, we showed that it holds:

inf
5 2�3 ,

⌘Bldet (,
D (5 ) )=0

R!,D(5 ) + g (2⌦D
1 (5 ) + _k 5 k2�3 ) = inf

5 2� |3
- 0 ,

⌘Bldet (,
D (5 ) )=0

R!,D(5 ) + g (2⌦D
1 (5 ) + _k 5 k2�3 ),
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Thus, the first claim of the Theorem holds.
To prove (7.4), we first note that by the differential reproducing property it holds that

h m: (·, G)
mG0

,
m: (·,~)
m~1

i� =
m2: (G,~)
mG0m~1

. (7.7)

Plugging in the formula for the solution of the constrained minimization problem and using reproducing and
differential reproducing properties we obtain:

���b59 g
���2
�
=

*
=’
8=1

U 98 :
�
·, G8

�
+

=’
8=1

3’
0=1

V 908
m: (·, G8)
mG80

,
=’
8=1

U 98 :
�
·, G8

�
+

=’
8=1

3’
0=1

V 908
m: (·, G8)
mG80

+
�

=
=’

8,;=1
U 98 U

9
; :

⇣
G8 , G;

⌘
+ 2

=’
8,;=1

3’
0=1

U 98 V
9
0;

*
m:

�
·, G;

�
mG;0

,:
�
·, G8

�+
�

+
=’

8,;=1

3’
0,1=1

V 908V
9
1;

*
m:

�
·, G8

�
mG80

,
m:

�
·, G;

�
mG;1

+
�

=
=’

8,;=1
U 98 U

9
; :

⇣
G8 , G;

⌘
+ 2

=’
8,;=1

3’
0=1

U 98 V
9
0;

m:
�
G8 , G;

�
mG;0

+
=’

8,;=1

3’
0,1=1

V 908V
9
1;

m:
�
G8 , G;

�
mG80mG

;
1

, (7.8)

which finalizes the proof.

Motivated by Theorem 7.2.1, we estimate every function 59 by their kernel estimators as above. We
provide our algorithm with the common-used Gaussian kernel which is based on the Euclidean distance of
two input data points. For W > 0, 9 2 [3] let :� 9W : í3�1 7! í be a Gaussian kernel defined as

:� 9W (G, G 0) := exp
 
�W�2

3’
8<9

(G8 � G 08 )2
!
, (7.9)

i.e., it corresponds to the Gaussian kernel :W
�
G, G

0 �
= exp

⇣
�

���G�G 0���2
2

W2

⌘
evaluated as if the 9�th coordinate

was set to a constant.
Note that each random variable can’t be the cause of itself, 59 shouldn’t have G 9 as its input, thus we

replace : in (7.3) with :� 9 to approximate 59 , i.e.

b59 (G) =
=’
8=1

U 98 :
� 9 (G, G8) +

=’
8=1

3’
0=1

V 908
m:� 9 (G, B)

mB0

����
B=G8

.

Let \ 9 = {U 9 , V 908 : 0 2 [3], 8 2 [=]} denote the parameters for 59 and \ = (\1, . . . , \3 ). Then the loss function
is constructed as follows:

3’
9=1

⇢
1
2=

=’
8=1

(G89 � b59 \ (G8))2 + g [2⌦D
1 (b59 \ ) + _��b59 \��2� ]

�
. (7.10)

To evaluate the acyclicity constraint on the dataset, using Representer Theorem for the function b59 , we
consequently obtain for every :, 9 2 [3]:

, D
: 9 (b59 \ ) =, D(\ ): 9 =

������
mb59 \ (G)
mG:

������
=

=
⇢
1
=

=’
8=1

"
=’
;=1

U 9;
m:� 9 (G8 , G; )

mG8:
+

=’
;=1

3’
0=1

V 90;
m:� 9 (G8 , G; )
mG8:mG

;
0

#2� 1
2
, (7.11)

and consequently

⌦D
1 (b59 \ ) =

3’
:=1

vut
1
=

=’
8=1

(
mb59 \ (G8)
mG:

)2 =
3’
:=1

, D(\ ): 9 . (7.12)
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Remark 7.2.2. Since we exploit the Gaussian kernel, we want that the decision rule (and, generally speak-
ing, considered classes of prediction functions) returned by the Algorithm to belong to the space of continuously-
differentiable functions (and thus implying the condition that if partial derivative exists and equal to zero
then the function does not depend on that coordinate). Below we justify this fact by showing that any func-
tion that belongs to Gaussian RKHS �W (X) also belongs to ⇠1(X). Let �W be the RKHS of the real-valued
Gaussian RBF kernel :W for W > 0. Notice, from Theorem 10.45 in Wendland [Wen04] it follows that, since
:W (·, ·) is (infinitely many times) differentiable, so the associated RKHS �W (X) is a subset of the space of
continuously differentiable functions. Therefore, the inclusion �W (X) ⇢ ⇠1(X) holds, which implies that
for every 5 2 �W it holds k 5 k⇠1 (X) < 1.

7.3 Optimization

Combining Equations (7.10), (7.11), (7.12) together with log-determinant acyclicity constraint, we obtain
the following constrained empirical optimization problem:

min
\

3’
9=1

⇢
1
2=

=’
8=1

(G89 � b59 \ (G8))2 + g [2⌦D
1 (b59 \ ) + _��b59 \��2� ]

�

s.t. � log det(B�3 �, D(\ ) �, D(\ )) + 3 log(B) = 0.

As introduced in DAGMA, we use a central path optimization method to solve the constrained optimization
problem. We give our method in Algorithm 6 and call it RKHS-DAGMA. Note that the subproblem (7.13)
of Algorithm 6 means that starting at \ = \ (C ) , \ (C+1) is obtained by the ADAM optimizer [KB14].

Algorithm 6 RKHS-DAGMA

1: Input: Data matrix X, initial coefficient (learning step) ` (0) (e.g., 1), decay factor U 2 (0, 1) (e.g., 0.1),
sparsity parameter g (e.g., 1⇥ 10�4), function complexity parameter _ (e.g., 1⇥ 10�3), log-det parameter
B > 0 (e.g., 1), number of iterations ) (e.g., 6) and threshold l (e.g., 0.1).

2: Output: W, the estimated weighted adjacency matrix.
3: Initialize \ (0) so that, D(\ (0) ) 2óB .
4: for C  0 to ) � 1 do
5: Starting at \ (C ) , solve

\ (C+1) = argmin\ ` (C )
3’
9=1

⇢
1
2=

=’
8=1

(G89 � b59 \ (G8))2 + g [2⌦D
1 (b59 \ ) + _��b59 \��2� ]

�
) + ⌘Bldet(, D(\ )) . (7.13)

6: Set ` (C+1) = U` (C ) .
7: Threshold matrix b, =, D(\ () ) ) · 1(, D(\ () ) ) > l).
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8 Experiments

The contents of this section are divided into three parts. First, we analyze the performance of the RKHS-
DAGMA model in a rather simplistic setting of the bivariate prediction (distinguishing cause-effect) within
artificially constructed toy models. Second, we evaluate and compare the properties of the RKHS-DAGMA
solution with non-parametric NOTEARS algorithms like NOTEARS-MLP and NOTEARS-SOB on the
sampled directed Erdős-Rényi graphs of growing dimension. Finally, we compare the performance of
RKHS-DAGMA with NOTEARS-MLP and NOTEARS-SOB on the real-world bivariate datasets [Moo+16].

8.1 Toy Example

We illustrate the performance of RKHS-DAGMA by two simple simulations with two nodes and 100 data
points. Plots show the ground truth data points of corresponding simulations (blue) and estimated function
values (red) obtained by RKHS-DAGMA in the bivariate causal models . = - 2 + Y,- ⇠ U[0, 10] (left) and
. = 10 sin(- )+Y,- ⇠ U[�3, 3] (right). Denote,est as the estimated weighted adjacency matrix without any
thresholding. Results of figure 8.1(a) correspond to the estimated matrix,est =

⇣ 0 10.35
6.22 ⇥ 10�4 0

⌘
. Thus,

results of 8.1(b) give,est =
⇣ 0 4.91
8.49 ⇥ 10�4 0

⌘
. In both cases, we observe,12 is significantly large, and

,21 is sufficiently small to be ignored after thresholding, indicating that the RKHS-DAGMA finds correct
causal relationships. (see 8.1 and explanations therein).

(a) quadratic relationship (b) sinus relationship

Figure 8.1 Toy examples

8.2 Structure Learning

Next, we examine the structure recovery of RKHS-DAGMA compared to the baselines nonparametric
NOTEARS methods by comparing the estimated DAG with the ground truth generated from Erdős-Rényi
directed graph with the given topological ordering of the vertices. Noting that in Zheng et al. [Zhe+20],
several graph models are considered such as ER1, ER2, ER4, SF1, SF2, SF4 where ER< denotes Erdős-
Rényi graph with< ⇥3 edges; same for scale-free (SF) graph. Here we focus on one of the hardest settings,
the ER4 graphs where the enhancements of NOTEARS algorithms are less competitive compared to other
algorithms like fast greedy equivalence search [Ram+17], DAG-GNN [Yu+19], greedy equivalence search
with generalized scores [Hua+18] (see Figure 4 in Zheng et al. [Zhe+20]).
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Simulation Given ground truth DAG, we simulate ER4 DAGs according to the procedure of Zheng et al.
[Zhe+20] with the functional relationship in the following three ways: The first way is by the Gaussian
process:

59 (- ) = 6 9 (-pa( 9 ) ) + Y 98 9 2 [3],

where 6 9 is sampled from RBF GP with lengthscale 1. In detail, for the sub data matrix òpa( 9 ) 2 í=⇥?

where ?  3 , 6 9 (-pa( 9 ) ) ⇠ N(0, (òpa( 9 ) ,òpa( 9 ) )) with

 (òpa( 9 ) ,òpa( 9 ) )0,1 = exp
 
�
��ÆG0 � ÆG1��22

2;2

!
,

where ÆG0, ÆG1 denotes the 0�th and 1�th row of òpa( 9 ) respectively and lengthscale ; = 1. Moreover, Y 9 ⇠
N(0, �=) is a standard Gaussian noise.
We call the second way additive GP:

59 (- ) =
’

:2pa( 9 )
6: 9 (-: ) + Y 9 ,

where each 6: 9 is sampled from RBF GP with lengthscale 1.
The third way is by a MLP network with hidden size 100 and a sigmoid activation function where all weights
are sampled from U((�2.0,�0.5) [ (0.5, 2.0)). Moreover, we add an additional simulation type called the
combinatorial model where the non-linear relationship is a linear combination of various common non-linear
functions:

59 (- ) =
’

:2pa( 9 )
6: 9 (-: ) + Y 9 ,

where 6: 9 is randomly picked from following non-linear functions:

6(G) = exp(�|G |), 6(G) = 0.05G2, 6(G) = sin(G).

As mentioned in Bello, Aragam, and Ravikumar [BAR22], the initial point , (\ (0) ) is required to be
inside óB . Zero matrix is always inside óB for any B > 0, thus we set parameters \ (0) be 0. Since
our approximation method and sparsity regularizer fundamentally differ from NOTEARS algorithms, the
hyperparameters _ and g are tuned by grid search. In RKHS-DAGMA, we take sparsity parameter g =
1 ⇥ 10�4, function complexity parameter _ = 1 ⇥ 10�3 and threshold l = 0.1. Additionally, we take ` (0) = 1
and the default value for ) = 6, if the resulting weighted adjacency matrix is not a DAG, we enhance ) to
7. We set W = 0.43 for the Gaussian kernel (see Remark 8.2.1 for the intuitive explanation of such choice, a
proper parameter choice should also be done by grid search). Due to the explicit computation of derivatives
and Hessian of the kernel function, we set the maximum number of iterations of the ADAM optimizer to 10%
of corresponding values in DAGMA to compensate for the additional cost. For NOTEARS algorithms, we
choose the default hyperparameters as described in Waxman, Butler, and Djurić [WBD24] and Zheng et al.
[Zhe+20]. We choose the structural Hamming distance (SHD) which is the total number of edge additions,
deletions, and reversals needed to convert the estimated graph into the true graph, to evaluate the model
performance. Thus, the lower the SHD is, the better the model performs. To avoid the scaling impact, we
plot the model comparison separately.
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(a) (b)

(c) (d)

Figure 8.2 Comparison between RKHS-DAGMA and NOTEARS-MLP by SHD (lower is better) for random data
generated from 8.2(a) the ER-4 GP model, 8.2(b) the ER-4 GP-additive model, 8.2(c) the ER-4 MLP model, 8.2(d)
the model with combination of functions. Boxplots show the median and quartiles across 10 different simulations for
each simulation model.
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(a) (b)

(c) (d)

Figure 8.3 Comparison between RKHS-DAGMA and NOTEARS-SOB by SHD (lower is better) for random data
generated from 8.3(a) the ER-4 GP model, 8.3(b) the ER-4 GP-additive model, 8.3(c) the ER-4 MLP model, 8.3(d)
the model with combination of functions. Boxplots show the median and quartiles across 10 different simulations for
each simulation model.

Our results indicate that RKHS-DAGMA consistently outperforms NOTEARS-SOB among all types of
simulations in structured Hamming distance (SHD). Additionally, compared to NOTEARS-MLP, RKHS-
DAGMA demonstrates superior performance (in terms of the SHD) in simulations based on GP, additive
GP, and combinatorial models, while maintaining competitive results in MLP experiments (see figure 8.2
and figure 8.3).

Remark 8.2.1. While considering the experimental setting with different dimensions of the underlying
Erdős-Rényi graphs, we notice that the complexity of the decision rule increases as the dimension grows.
Thus, one observes a "classical" phenomenon of the curse of dimensionality [see for example Gir21; Gy02].
In a nutshell, high-dimensional i.i.d. observations are "essentially" equidistant from each other while the
distance between the points grows with the growing dimension, which poses a problem for high-dimensional
metric-based methods. To handle this problem, one employs an observation that in order to reduce the
estimation error of the signal one uses decision rules of higher regularity.

In our case, since we are employing the machinery of RKHS rules based on the Gaussian kernel (7.9),
and since we have that for the RKHS it holds �W2 ⇢ �W1 for W2 > W1 > 0 and �W being the Gaussian
RKHS with reproducing kernel : (G, ·) := :W (G, ·) = exp

⇣
� kG� · k

2

W2

⌘
(see Proposition 6.2.13), it would result

with the larger choice of W when the dimensionality of the problem (⇢'(43)) is large. Notice that for the
bounded domains X the same effect (i.e., restricting to the spaces of larger smoothness), when estimating
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the unknown functions with Gaussian kernel, can be ensured by considering the re-scaled domain with
parameter 1

W .

8.3 Real Data

Finally, we compared the model performance of RKHS-DAGMA to that of NOTEARS-MLP, and NOTEARS-
SOB on a benchmark collection of different datasets with cause-effect pairs from Mooij et al. [Moo+16].
These are the bivariate datasets, each consisting of one pair of statistically dependent variables. We remove
6 datasets that contain multi-dimensional random variables. First, we standardize all remaining datasets. If
the sample size exceeds 400, the dataset is divided into 300 grids based on the first covariate to reduce com-
putational costs. The median of each grid is then calculated and used for model evaluation. RKHS-DAGMA
achieves the best accuracy of 55.88% among the remaining 102 different datasets, while NOTEARS-SOB
and NOTEARS-MLP achieve an accuracy of 45.10% and 0.98% correspondingly. We suppose the bad per-
formance of NOTEARS-MLP is due to the small sample size with a relatively large number of hidden units
compared to the number of nodes and the specific definition of the weighted adjacency matrix depends on
the weight of the first hidden layer which may be quite different than those defined by derivatives [WBD24].
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9 Conclusion

In this work, we addressed the non-parametric DAG learning problem utilizing a procedure that exploits
the machinery of infinite-dimensional (Gaussian) RKHS. Namely, we showed in Theorem 7.2.1 that the
RKHS-DAGMA Algorithm which solves a (combined) constrained empirical optimization problem with
log-determinant acyclicity constraint, admits an explicit solution as a finite-dimensional representation of
the kernel elements of the data and their derivatives. Furthermore, this solution can be computed using
central path methods similar to the ones used in the DAGMA algorithm. We compared the efficiency of
the RKHS-DAGMA algorithm with the known baselines in the setting of nonparametric structural equation
modeling such as NOTEARS-MLP and NOTEARS-SOB (see ex. Zheng et al. [Zhe+20]) in the settings
comparable to those of Zheng et al. [Zhe+20]. The versatility of the non-linear RKHS-DAGMA algorithm
appears to be especially useful on the datasets where the non-linear nature of dependency (see experiments
on the cause-effect data in Subsection 8.3) comes into play. The code is available at https://github.
com/yurou-liang/RKHS-DAGMA.
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A Appendix

A.1 Proximal Quasi-Newton (PQN) Method

Consider the problem (P): min
8

5 (8) := ; (8) + _k8k1, where ; (8) is a convex differentiable loss function,
then 8 can be updated by the following algorithm:

Algorithm 7 PQN for unconstrained problem [Zho+14]

Input: 80,60 = 5; (F0), activate set A = [?] = 1, . . . , ?, L-BFGS memory size<, termination criterion Y
For : = 0, 1, 2 . . . :

(a) Shrink A to rule out 9 withF 9 = 0 or small subgradient |m9!(F) |.
(b) If shrinking stopping criteria is satisfied,

(i) Reset A = [?] and L-BFGS memory.
(ii) Update shrinking stopping criteria and continue.

(c) Solve following equation for descent direction 3: using coordinate update below on active set:

d: = argmind2í? g>: d + 1
2d
>⌫:d + _k8: + dk1,

where g: is the gradient of 5 (F) and ⌫: is the L-BFGS approximation of the Hessian of ; (8) which
is computed by followings:

(d)

⌫C = ⌫0 �&'&> = ⌫0 �&b&,
where sC = 8C+1 � 8C and ~C = gC+1 � gC ,

& := [⌫0(C .C ],' :=

(>C ⌫0(C !C
!>C �⇡C

��1
, b& := '&>,

(C = [s0, . . . , sC�1],.C = [~0, . . . ,~C�1],

⇡C = diag[s>0 ~0, . . . , s
>
C�1~C�1] and (!C )8 . 9 =

⇢
s>8�1~ 9�1 if 8 > 9,
0 otherwise,

⌫0 = ~>C�1sC�1/s>C�1sC�1� .

In practice, the memory of BFGS is limited to<.
(e) Note that for each coordinate 9 , problem (c) has a closed form update d  d + I⇤e 9 given by

I⇤ = argminI
1
2 ⌫ 9 9|{z}

0

I2 + (g9 + (⌫d) 9 )|         {z         }
1

I + _ | (8C ) 9 + 3 9|      {z      }
2

+I | = �2 + ( (2 � 1
0
,
_

0
),

where the soft threshold function ( (G,0) := sign(G)max( |G | � 0, 0).
(f) Line search for step size d 2 (0, 1] until the following ”Armijo rule” is satisfied:

5 (8: + dd: )  5 (8: ) + d21(_k8: + d: k1 � _k8: k1 + g>: d: ),

where 21 is some small constant, typically set to 10�3 or 10�4.
(g) Generate new iterate 8:+1  8: + dd: .

(h) Update g, s,~,&,', b& restricted to A.
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