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Prediction of material toughness using ensemble learning 
and data augmentation
Mykyta Smyrnov a, Florian Funcke a,b and Evgeniya Kabliman a

aTechnical University of Munich, TUM School of Engineering and Design, Department of Materials 
Engineering, Chair of Materials Engineering of Additive Manufacturing, Garching, Germany; bBMW 
Group FIZ, Munich, Germany

ABSTRACT  
The present work investigates the impact resistance of 
metallic parts produced using Laser Powder Bed Fusion 
and the possibility of its prediction using machine learning 
algorithms. The challenge lies in finding optimal process 
parameters before printing based on the existing data. 
Economic constraints often result in the availability of only 
a limited amount of data for predictive purposes. In this 
work, around one hundred data points from Charpy impact 
tests on AlSi10Mg0.5 were used to analyse the correlation 
between the impact resistance and process parameters, 
including information about sample porosity. The present 
research implements a data augmentation technique that 
artificially increases the volume of training data by 
applying domain-specific transformations to the original 
limited dataset. Using this technique, the dataset had been 
extended to over one thousand data points. To identify the 
most suitable approach for the specific issue at hand, 
several algorithms were explored: Regression Neural 
Network, K-Nearest Neighbours, Decision Tree, Random 
Forest, AdaBoost, Gradient Boosting, XGBoost, as well as 
ensemble combinations of Random Forest with AdaBoost, 
Gradient Boosting, and XGBoost algorithms. The results 
suggest that the Random Forest and the boosting 
algorithms generalise best given the sparse testing data. 
The best-performing models yield a prediction fitness 
reaching 86 percent. Therefore, an effective model for 
predicting the impact resistance had been developed and 
can be used to optimise the quality of additively 
manufactured parts.
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1. Introduction

Understanding the process-structure-property correlation is of crucial impor
tance when implementing new technology or designing new materials. 
However, is not always easy to describe these relations due to the complexity 
of a manufacturing process and microstructure development. Therefore, 
there is a need for the development and application of techniques that would 
support revealing the process-structure-property relations. Herein, machine 
learning (ML), or more broader artificial intelligence, is intensively used in 
material science. In the last decade, numerous papers have been published to 
address this issue, particularly in the field of emerging technologies like additive 
manufacturing (AM) [1–3].

AM has emerged as a groundbreaking technology that allows the creation 
of objects by depositing material layer by layer, in contrast to traditional man
ufacturing methods, where the material is typically removed [4]. Therefore, it 
is currently implemented in various industrial sectors such as automotive, 
aerospace, or medicine to new a few. AM and Laser Powder Bed Fusion 
(PBF-LB) in particular, have multiple benefits, such as unprecedented 
design flexibility in geometries, increased integral part design leads to 
reduced joining procedures, and lower production waste [5]. However, 
some challenges include relatively high costs and possible production 
defects [5, 6]. In particular, PBF-LB-fabricated specimens might contain 
pores that affect the ability of a specimen to withstand external stresses [6]. 
The other challenge is a large number of process parameters that need to 
varied to achieve the process stability and optimal product quality [5]. 
When addressing the automotive industry, such properties as material tough
ness related to the crash performance are of crucial importance. The most 
common testing method to obtain this property is the Charpy impact test, 
which measures the energy absorbed by a material during the fracture of a 
specimen [7]. Although achieving high-quality parts is possible, the complex
ity of the parametric setup makes it challenging to anticipate material qualities 
precisely before printing. One way is to use ML and in particular regression 
algorithms to recognise data patterns and make predictions based on the 
available limited historical data [8].

The previous works show several attempts to predict the Charpy impact 
energy using ML. For example, Muscat et al. used a variation of artificial 
neural networks to predict the Charpy impact energy of heat-treated steels. 
The researchers showed a distinguished result achieving a correlation of 82 
percent while successfully mitigating the issue of overfitting when training on 
a dataset with 1661 samples [9]. Another research described the efficient test 
prediction of low-alloyed carbon steel, where the researchers managed to 
achieve a correlation of 95 percent using a deep neural network for a dataset 
of 7211 samples [10]. Considering the various studies on predicting the 
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Charpy impact energy using diverse statistical and machine learning methods, 
it is evident that constructing a reliable prediction model is feasible with an 
adequately large dataset. However, during process qualification or optimis
ation of the PBF-LB process, much smaller datasets are typically available, 
which rarely exceed more than 200 samples with large variations of printing 
parameters [11–13]. This creates the question, of how to apply ML methods 
to such small datasets. The present paper explores the applicability of ML tech
niques to predict Charpy impact energies based on a small dataset. To boost 
the results, novel techniques such as data augmentation by ensemble 
methods are investigated.

2. Methods

The dataset used in the present work was generated using the Charpy impact 
testing of samples produced using PBF-LB from AlSi10Mg0.5 alloy. For that, 
several Charpy V-notch samples were printed in the build direction with a geo
metry according to DIN EN ISO 148-1 (55 mm× 10 mm× 10 mm). The speci
mens, as well as the density cubes, were produced in the same batch as 
described in [14]. The variation of the PBF-LB process parameters as well as 
the microstructure evaluation are described in the previous paper as 
well [14]. The testing of samples was performed according to DIN EN ISO 
148-1 using the PSW 30 impact testing machine from Losenhausen Maschinen
bau AG and a 300 J pendulum from VEB Leipzig (now Kögel Werkstoff- und 
Materialprüfsysteme GmbH). The resulting dataset consisted of 122 data 
vectors. The following PBF-LB parameters were considered as independent 
variables as summarised below and illustrated in Figure 1: 

Figure 1. A concept of the laser path demonstrating the independent variables as the core 
structural patterns.
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. Contour Laser Power: The energy transferred by the laser at the contour of a 
specimen slice.

. Contour Scan Speed: The speed at which the laser travels around the contour.

. Contour Distance: The spacing between successive laser passes during 
contouring.

. Fill-line Scan Speed: The speed of the laser traveling during the filline phase.

. Hatch Laser Power: The energy transferred by the laser during the hatching 
of a specimen.

. Hatch Scan Speed: The speed of the laser during the hatching phase.

. Hatch Laser Diameter: The diameter of the laser beam during hatching.

. Hatch Distance: The spacing between successive laser passes during 
hatching.

. Layer Thickness: The height of each layer of powder material deposited.

Different ML algorithms were applied to enable the regression of the process 
parameters and prediction of a continuous output value. In particular, the fol
lowing algorithms were implemented and evaluated: Regression Neural Net
works, Decision Tree, Random Forest, k-Nearest Neighbours, Gradient 
Boosting, AdaBoost, XGBoost, AdaBoost + Random Forest, Gradient Boosting 
+ Random Forest, XGBoost + Random Forest [15–21]. The latter three algor
ithms are the combinations of ensemble methods, where Random Forest is used 
as a pre-trainer or as a modification of the initial algorithm [22]. These combi
nations serve the purpose of reducing the bias-variance trade-off, compared to 
single methods [23, 24]. The detailed implementation of the ML algorithms is 
beyond the scope of this work. The performance of the chosen ML algorithms 
was evaluated using the following error metrics: mean absolute error MAE and 
coefficient of determination, R2 [25].

Dataset splitting is a major challenge when training and testing ML models 
because it requires a careful approach specific to the nature of the data [16]. For 
this research work, first, the classical group data splitting – further naïve split
ting was investigated. The term naïve splitting implies a distinctive splitting 
technique that takes into account the grouped nature of the dataset. The group
ing criteria are the process parameter sets, each consisting of multiple data 
points. Since the training data cannot be used during the testing phase, the 
train/test splitting should occur in a particular manner where a single group, 
i.e. a process parameter set, does not occur in both the training and testing data
sets. For this, the GroupShuffleSplit from scikit-learn was used [26]. The initial 
dataset of 122 vectors was split into 98 and 24 feature vectors using the 80-20 
splitting strategy.

In order to ensure that the splitting does not cause overfitting due to the 
small number of feature vectors, a data augmentation technique was intro
duced. Arslan et al. describe appending Gaussian noise as a recommended 
and effective augmentation strategy for regression tasks [27]. It involves 
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creating artificial data points sampled from the Gaussian distribution prob
ability density function given by Equation (1), which is built using a mean 
and a standard deviation taken from each feature per process parameter 
set [28, 29]. These artificial vectors are generated by sampling noise from the 
original dataset, therefore increasing the actual size of the training dataset. Sub
sequently, ML models are trained exclusively on the augmented dataset con
sisting of artificial data. The training procedure was conducted using the 
previously mentioned Python libraries. The computational backbone of this 
process was a machine equipped with the Apple M1 Pro chip and 32 GB 
of combined RAM/VRAM. On average, the complete training of all models 
was accomplished within a remarkably short duration of 9 minutes and 30 
seconds. Here several factors influence the training speed: the small dataset 
simplifies the computational complexity, the optimised hardware to 
perform the calculations, where there is enough memory to fit all the 
models without a need for temporal data storage. Where some models had 
a form of regularisation – early stopping, which prevents models from a 
growing variance while not improving the error, indicating that the model 
starts to overfit, other models were regularised using other techniques, like 
pruning in case of decision trees, where branches with weak performance 
are removed. All this contributes to the shorter training time [16]. Following 
the training step, the model’s performance and generalisation capabilities 
were evaluated during the testing step using the original unseen data. The 
process of artificial data creation is reflected in the toy scheme in Figure 2. 
This image shows a simplified version of the process of creating artificial 
data, where the left block is responsible for the augmentation. While rows 
are grouped by the impact value [J], the algorithm iteratively runs for every 
feature column and samples noise from the distributions generated out of 
the selected column values. All the feature columns are included in the aug
mentation, except the process parameter set column, which is removed before 

Figure 2. Data augmentation using Gaussian noise sampled from the grouped features [30].
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the data augmentation step. The final augmented dataset contains added var
iance of s2, where σ is a standard deviation. After the last parameter set is 
processed, the total dataset is shuffled, and the training proceeds. In order 
to improve the performance further, hyperparameter tuning was performed 
on the presented models. The underlying technique is Grid Search using 
the GridSearchCV from the scikit-learn library [26].

N(x:m, s) =
1
������
2ps2
√ exp −

(x − m)2

2s2

􏼒 􏼓

(1) 

where 

. χ: The Gaussian random variable

. μ: The mean value

. σ: The standard deviation

Furthermore, the average pore area fraction [%] was measured for every speci
men and used as an additional input feature for the training process. This step 
was expected to affect the accuracy and robustness of the ML models trained 
using the merged dataset, as this data could provide more insights into the 
internal non-linear relations in the data.

3. Results

3.1. Naïve splitting

First, the naïve approach of the data splitting was applied for all considered ML 
algorithms. The best-performing ones for the naïve splitting are displayed in 

Figure 3. Comparison of models after naïve splitting. (a) MAEtest metric and naïve splitting and 
(b) R2

test metric and naïve splitting.
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descending order from worst to best model in Figure 3b: XGBoost, XGBoost + 
Random Forest, AdaBoost, Gradient Boosting, AdaBoost + Random Forest, 
Gradient Boosting + Random Forest, Random Forest, Regression NN, k-NN 
and Decision Tree. The highest score of the listed algorithms reached R2

test of 
81.52 percent and MAEtest of 0.5 J for XGBoost. The lowest score for R2

test is 
50.11 percent and the worse score for MAEtest is 0.75 J for k-NN. The resulting 
bar charts can be seen in Figure 3a and b, where the performance of the 
different methods can be compared. In the naïve approach, the dataset included 
98 data points for training and 24 for testing.

3.2. Data augmentation

In the following step, the data augmentation was introduced to train the 
selected ML models exclusively on the augmented dataset. During this 
step, the dataset included 1015 augmented data points for training and 
122 original data points for used testing. The final amount of augmented 
data points was provided from an empirical investigation balancing 
between increasing the dataset size and the introduction of excessive syn
thetic noise, where the latter would rather disrupt the underlying data pat
terns. The bench-marking for a number of augmented points in a similar 
domain varies from study to study, for instance, Zhu et al. nearly tripled 
the amount of data by the augmentation and for them the the disparity 
between the discriminator’s accuracy for real data regulated the amount of 
the generated data [31]. The best-performing algorithms within the data 
augmentation approach were AdaBoost + Random Forest, Gradient Boost
ing, XGBoost + Random Forest, Random Forest, Regression NN, and 
XGBoost. These algorithms delivered a score above 80 percent of the R2

test 
metric. It implies, that the models could explain more than 80 percent of 
the testing data points of the target variable. In average, the R2

test score 
gained 12.18 percent and the MAEtest improved by 0.23 J. The k-NN 
regression method gained the most, according to the R2

test and the MAEtest 
metrics. Its value increased for the R2

test score by 26.3 percent and for the 
MAEtest by 0.36 J. The improvement of the selected models can be attributed 
to the robustness and flexibility of the algorithms to the noise and outliers. 
The least successful was the Decision Tree algorithm, scoring approximately 
70 percent, according to the R2

test error metric. The comparison can be seen 
on the bar plots in Figure 4a and b, where algorithms are sorted by their 
performance. The grey area of the MAE plots indicates a decrease in 
error metric values compared to the naïve splitting. The blue area on top 
of the bars indicates an increase in values. The AdaBoost R2

test score dis
played only a moderate improvement, whereas the XGBoost did not show 
any improvement according to the R2

test metric and moderately improved 
according to MAEtest, showing that these two algorithms do not greatly 
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benefit from noisy data. Alternatively, the compromise for this problem 
involves training on an expanded dataset composed of augmented data, as 
well as testing on previously unseen data. This fact brings up a higher prob
ability of a well-performing model in production.

3.3. Hyperparameter optimisation

The hyperparameter optimisation on an augmented dataset reached the goal of 
improving the performance in most of the algorithms, excluding the Gradient 
Boosting + Random Forest model, where the default hyperparameters were 

Figure 4. Comparison of models after data augmentation. (a) MAEtest metric and data augmen
tation and (b) R2

test metric and data augmentation.

Figure 5. Comparison of models after hyperparameter tuning. (a) MAEtest metric and hyper
parameter tuning and (b) R2

test metric and hyperparameter tuning.
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already considered to be near-optimal, as they showed relatively high perform
ance and the thorough searching for other combinations of hyperparameters 
demonstrated a deterioration in predictability. For the other models, the hyper
parameter tuning resulted in different gains. The corresponding bar plots are 
shown in Figure 5a and b, where the grey and blue areas indicate a change com
pared to the R2

test and MAEtest metric values before hyperparameter tuning. The 
best-performing algorithm remains to be the AdaBoost + Random Forest, while 
the most successful tuning was done on XGBoost, increasing by R2

test + 3 
percent. The average raise after the hyperparameter tuning is 1.14 percent, 
according to the R2

test metric. The average change in MAEtest score is 
− 0.01 J. XGBoost is the method that showed the largest improvement. Accord
ing to the R2

test metric, its delta score is +2.29 percent, reaching 82.12 percent in 
total. On the other hand, the MAEtest score deteriorated by delta +0.1 J, yield
ing 0.48 J. This behaviour points out that the XGBoost model fits the testing 
data well regarding variance. However, several single predicted points might 
significantly deviate from the true values, which may affect the MAEtest. This 
observation may require further investigation. The least-gaining method is 
Gradient Boosting + Random Forest yielding delta +0.5 percent in R2

test and 
reaching 36.46 percent in total. These changes can also be observed in the 
respective bar plot. The hyperparameter tuning additionally introduced the 
regularisation for the Regression NN. This step included L1, L2, and 
dropout techniques of the model weights, as well as having Gaussian noise 
introduced to it. The R2

test score demonstrated an improvement after the hyper
parameter tuning. Respectively, the MAE values confirm that trend. Overall, 
the investigated ML models gained delta +13.32 percent on average, according 
to the R2

test, and in comparison to the naïve results. Accordingly, the average 
change in MAEtest score is delta −0.23 J. The most improved model was k- 
NN with a delta value of +28.00 percent for the R2

test metric and delta −0.37  
J for the MAEtest metric. The least improved model according to the R2

test 
was XGBoost, yielding a delta +0.60 percent difference concerning the naïve 
splitting results. Similarly, the MAEtest metric for XGBoost yields only delta 
−0.03 J, indicating that hyperparameter tuning on augmented data did not sig
nificantly influence this score.

3.4. Porosity data

After the introduction of the porosity data, almost all the models allegedly 
improved their prediction quality. The corresponding bar charts can be seen 
in Figure 6a and b, where the grey and blue areas indicate the difference in 
the values before introducing the porosity data. The AdaBoost + Random 
Forest continues to outperform the other models, according to R2

test. 
However, the most significant gain introduced by porosity data was presented 
by the Decision Tree algorithm having a delta of MAEtest equals 0.07 J and delta 

PHILOSOPHICAL MAGAZINE LETTERS 9



R2
test of 6.03 percent, with R2

test reaching 79.25 percent and MAEtest reaching 
0.38 J. The best-performing method according to the MAEtest metric is 
Random Forest scoring 0.32 J. This difference in the best-performing models 
might exist due to the reason that the R2

test metric emphasises the variance 
captured by one model. Therefore the model with a high R2

test might be 
overall fitting the data well but it might still have significant errors on single 
data outliers. On the other hand, the lower-valued MAEtest metric consistently 
predicts closer to the true values, although the metric might not capture the 
overall variance as efficiently. While most of the models managed to improve 
their prediction performance after the introduction of the porosity data, the 
XGBoost + Random Forest and the Regression NN algorithms were not as per
forming, according to the R2

test and the MAEtest metrics. The Regression NN 
yielded the MAEtest score of delta − 0.03 J and the R2

test score of delta −0.028 
percent upon the introduction of porosity data, reaching 0.41 J and 80.31 
percent correspondingly. The k-NN model did not yield any changes of the 
metric values upon introducing the porosity data. Overall, it is possible to con
clude that the porosity data does influence the performance of most of the 
models, but the effect is not constantly supreme. The investigated models 
improved by delta −0.25 J on average of the MAEtest score and delta +14.71 
percent given by the R2

test score, with respect to the naïve splitting results. 
The method with the largest improvement is k-NN having delta MAEtest of 
delta −0.37 J when comparing it to the naïve splitting results. The R2

test score 
yielded the Decision Tree model as the most improved model, reaching R2

test 
of delta 29.14 percent. Correspondingly, the least improved method is 
XGBoost, yielding the MAEtest score of delta − 0.05 J and the R2

test score of 
delta +3.96 percent.

Figure 6. Comparison of models including the porosity data. (a) MAEtest metric and porosity 
data and (b) R2

test metric and porosity data.
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3.5. Discussion

Given the results above, the best performing algorithm for predicting Charpy 
impact testing is the ensemble combination of the AdaBoost regressor and 
Random Forest as a base estimator, reaching 86.28 percent for the R2

test 
metric and 0.32 J for MAEtest. On the other hand, the MAEtest metric yielded 
Random Forest as the best-performing model, reaching 0.32 J. The next two 
most performing models were XGBoost and Gradient Boosting, according to 
R2

test. The MAEtest yields AdaBoost + Random Forest and Gradient Boosting 
+ Random Forest as the next two most performing models. Across these 
three algorithms, the most important features consistently were the contour 
laser power, the contour scan speed, and the hatch laser power. Specifically, 
the contour laser power has a variance of 10.7e5 W, which is a rather high 
value. The other two features exhibit a significant variance as well, as a larger 
variance carries potentially more information that might be useful for predic
tions [16]. The least important features were the filling scan speed, the hatch 
distance, and the layer thickness. It follows the reasoning because the variance 
for the hatch distance is 55e-5 mm, which shows a minimal variance in the data. 
The filling scan speed value is nearly constant and equals 800, which does not 
yield a significant variance. The layer thickness variance follows the same logic, 
which is nearly constant and takes only two possible values: 50 and 100 m.

The correlation analysis displayed for the naïve splitting and data augmenta
tion with the porosity data for the ensemble combination AdaBoost + Random 
Forest in Figure 7a and b, correspondingly. Each dot represents the Charpy 
impact energy with its respective predicted value (horizontal axis) and true 
value (vertical axis) in the test dataset. The straight line attempts to summarise 

Figure 7. Comparison of the correlation analysis. (a) Naïve splitting and (b) Data augmentation 
incl. porosity data.
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the dependency between the variables linearly. The shaded area around the 
regression line represents the confidence interval for the mean of the target 
variable, meaning a reasonable certainty about the line’s position. The distri
bution of the predicted and true values is shown on the top and right 
margins of both plots. The plot in Figure 7a suggests that the variability in 
the data was not fully captured by the initial learning approach, as indicated 
by the presence of outliers. This plot displays only a limited number of 
points, due to the small size of the original dataset. It is noticeable that 
several points are located at a certain distance from the regression line, indicat
ing relatively poor predictability. This conclusion is also reflected by the error 
metrics, where MAEtest reaches 0.56 J and R2

test reaches 71.44 percent. In con
trast, the augmented data correlation analysis shown in Figure 7b reveals that 
the majority of the points are clustered around the regression line, suggesting 
improved predictability, having MAEtest reaches 0.32 J and R2

test reaches 86.28 
percent. Moreover, a large portion of the improvement took place after the 
introduction of the porosity data, reaching a delta of 1.62 percent according 
to the R2

test metric. This plot also features a larger number of points due to 
data augmentation. The confidence band appears narrower compared to that 
in the naïve splitting plot, which indicates a better model fit to the augmented 
data. However, there are still some points that are remotely located and could 
not be accurately predicted. Addressing this issue may require more sophisti
cated data pre-processing techniques In the context of tree methods, boosting, 
and neural networks, the investigated models improved the quality of predic
tions. The efficiency of ensemble methods also indicates the inherent complex
ity of predicting Charpy impact testing. Ensembles are especially useful when 
the relationship between features and target is non-linear. Their ability to 
combine multiple base estimators and iteratively correct errors likely contribu
ted to the satisfactory results in this research.

4. Summary and conclusions

The present paper investigated supervised ML methods to predict the tough
ness of additively manufactured metals. In particular, the PBF-LB process has 
been investigated when applied to the aluminum alloy AlSi10Mg0.5. Several 
regression algorithms were considered herein: Regression Neural Network, 
K-Nearest Neighbours, Decision Tree, Random Forest, AdaBoost, Gradient 
Boosting, XGBoost, as well as ensemble combinations of Random Forest with 
AdaBoost, Gradient Boosting, and XGBoost algorithms. Data augmentation 
using Gaussian noise was applied to increase the limited data set of measured 
values. The generated dataset was then used to train the models with pre-tuned 
hyperparameters.

Table 1 summarises the final results listing the performance of the con
sidered algorithms in descending order. The AdaBoost + Random Forest 
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algorithm demonstrated the best performance reaching the R2
test score of 86.28 

percent and 0.32 J of the MAEtest score after training on the augmented dataset 
including the porosity data. The method gained a significant improvement after 
the introduction of data augmentation. The extended dataset mitigated the 
problem of overfitting and offered an opportunity for the model to learn 
deeply underlying patterns in the data. For this reason, the data augmentation 
technique with sampling noise from a Gaussian distribution can be rec
ommended for a similar problem with a small dataset. Furthermore, the poros
ity data extended the feature count of the dataset and further improved the 
predictability. Finally, the ensemble combination of the AdaBoost + Random 
Forest algorithms can be recommended as the suitable predictor of the 
Charpy impact energy. Given the complexity inherent in ensemble models, 
the AdaBoost + Random Forest combination is recommended for its balance 
between predictive power and interpretability. For better accessibility, software 
solutions that offer a user-friendly interface for parameter tuning, such as 
scikit-learn, are advisable. This allows even those with limited ML expertise 
to leverage these findings effectively. Scikit-learn stands out for its comprehen
sive documentation and ease of use, making it an ideal platform for implement
ing the suggested models and conducting parameter optimisation through 
strategies like grid search [26]. The conducted research demonstrated that it 
is possible to predict the toughness of additively manufactured metallic 
materials using various regression techniques. In particular, the high impor
tance of contour laser power, contour scan speed, and hatch laser power fea
tures was observed suggesting that PBF-LB operations should prioritise 
precise control and optimisation of these parameters to enhance material 
toughness. However, the effectiveness of using machine learning in AM is 
influenced by various factors. Many parameters need to be varied during the 
manufacturing to achieve high quality of samples. The optimisation of these 
parameters requires the conduction of a large number of experiments that 
are not technically and economically feasible. Thus, only a limited amount is 
usually available and additional data sources should be considered, e.g. from 
microstructure investigations such as the analysis of pore area fraction. This 
brings further valuable information about the fracture toughness as differences 

Table 1. Performance of different algorithms.
Algorithm R2

test MAEtest[J]

AdaBoost + Random Forest 0.863 0.32
XGBoost 0.855 0.452
Gradient Boosting 0.84 0.33
Random Forest 0.833 0.318
Gradient Boosting + Random Forest 0.826 0.33
XGBoost + Random Forest 0.825 0.34
AdaBoost 0.819 0.39
Regression NN 0.803 0.41
Decision Tree 0.793 0.38
k-NN 0.784 0.38
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in the sample density influence this property. Therefore, the industry should 
consider the porosity of additively manufactured materials as an additional 
feature that influences the resulting mechanical properties of the material. As 
shown in this study, the inclusion of porosity data was beneficial to the predict
ability of Charpy impact energies, which can be utilised to enhance the crash 
behaviour of printed parts e.g. for automotive applications. Future research 
can focus on exploring the impact of further factors, model generalisation, 
and developing advanced techniques for optimising ML models in AM, such 
as different ways of data augmentation for regression.
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