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Abstract

Many studies involve the collection of multivariate data with an interest in understanding
their dependencies. While some researchers aim to study all interrelations, others focus on
the dependency between non-overlapping sets of random variables. Canonical Correlation
Analysis (CCA) is a method for the latter, considering data partitioned into two groups.
The goal is to find linear combinations of random variables in both groups that have the
highest (canonical) correlation. Researchers can then study these combinations to explain
the dependency within the dataset. Despite its established use, CCA assumes normality of
the data. To overcome this restrictive assumption, generalizations have been proposed.
One such generalization is the Gaussian Copula CCA (GCCCA) model, which allows
the univariate marginals to have arbitrary continuous distributions while requiring that
the joint dependency is described by a Gaussian Copula. Recently, the GCCCA model
has been further generalized to the Cyclically Monotone CCA (CMCCA), allowing the
joint marginals to follow arbitrary distributions. In this thesis, we will present all three
models, including their estimation methods and establish their consistency. Given that
the CMCCA model is based on optimal transport, we will provide an introduction to this
topic, including cyclical monotonicity and gradients of convex functions. Additionally,
we will suggest two Bayesian methods for the GCCCA and CMCCA models. Finally, we
will present a simulation comparing the performance of all five methods.

Zusammenfassung

In vielen Studien werden multivariate Daten erhoben, wobei deren Abhängigkeit von In-
teresse ist. Einige sind an der Untersuchung aller Zusammenhänge interessiert, während
andere sich auf die Abhängigkeit von nicht überlappenden Gruppen von Zufallsvariablen
konzentrieren. Die Kanonische Korrelationsanalyse (CCA) gehört zu den letzteren und
betrachtet Daten, die in zwei Gruppen aufgeteilt sind. Ziel ist es, Linearkombinationen
von Zufallsvariablen aus beiden Gruppen zu finden, die die höchste (kanonische) Korrela-
tion aufweisen. Der Forscher kann dann die Linearkombinationen mit der höchsten Kor-
relation untersuchen und die Abhängigkeit des Datensatzes mit diesen erklären. Heute ist
die CCA eine etablierte Methode, die jedoch Normalität der Daten voraussetzt, sodass Ve-
rallgemeinerungen vorgeschlagen wurden, um diese restriktive Annahme zu überwinden.
Eine dieser ist das Gauß’sche-Copula-CCA Modell (GCCCA), bei dem die univariaten
Randverteilungen beliebige stetige Verteilungen haben können, aber die gemeinsame
Abhängigkeit durch eine Gaußsche-Copula beschrieben werden muss. Neulich wurde das
GCCCA-Modell weiter zur zyklisch monotonen CCA (CMCCA) verallgemeinert, so dass
die gemeinsame Verteilung der beiden Gruppen beliebige Verteilungen haben können.
Wir werden alle drei Modelle vorstellen, einschließlich eines Schätzers für jedes Modell,
für welche wir die Konsistenz beweisen. Da das CMCCA-Modell auf optimalem Transport
basiert, werden wir auch eine Einführung in dieses Thema geben und verwandte Begriffe,
wie zyklische Monotonie und Gradienten von konvexen Funktionen erläutern. Außer-
dem werden wir zwei Bayes’sche Methoden für die GCCCA bzw. CMCCA vorschlagen.
Zum Schluss wird eine Simulation vorgestellt, die die Genauigkeit aller fünf Methoden
vergleicht.
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1 Introduction

Until the 1930s, correlations and regressions were usually applied to one dimensional
data, until Hotelling developed the theory of Canonical Correlation Analysis (CCA) in
(Hotelling (1936)). Consider the following example for motivation. Let us say a researcher
is interested in the dependency of two non-overlapping sets of random variables. One set
is body characteristics of people given a fixed age, as height, weight, shoulder width, etc.
The other variables are performances in sections of an IQ test, as processing speed, work-
ing memory, verbal comprehension and perceptual reasoning. Now, a typical approach
at that point of time would have been to study all correlations which yields 3 · 4 = 12
numbers to explain the dependency. Although this approach is reasonable and 12 is not
a too high number, Hotelling developed a better procedure to tackle this problem with
CCA.

The idea of CCA is to study linear combinations of both variable sets which yield the
highest correlation. These will be then called canonical variates and their correlation is the
first canonical correlation. Thereafter, one will continue to find new linear combinations
of both sets of random variables which are uncorrelated with the previous maximizing
their correlation. Thereby, the requirement of being uncorrelated is there to ensure that
the new linear combinations explain dependencies that have not been covered before. This
procedure can be repeated as often the dimension of the smaller data set permits it, in our
example 3 canonical correlations in total. This procedure is particularly advantageous
in high-dimensional data sets as one can explain their dependency with a manageable
number of canonical variates and canonical correlations instead of estimating a huge block
of a correlation matrix.

Today, CCA has become an established method to examine the correlation of groups of
random variables. However, one of its fundamental assumptions is the normality of the
data which is obviously not satisfied in all cases. Therefore, there have been suggestions
for generalizing the classical CCA model, such as the Gaussian Copula CCA and more
recently the cyclically monotone CCA which allow more flexibility in the distribution of
the data. The latter will be the main topic of this thesis.

The expected prerequisites for this thesis are measure theory, linear algebra, analysis and
introductory courses to probability theory and statistics. We will begin with a chapter
about measure-theoretic probability theory, as the proofs later on may need some results.
Thereby, we will cover topics such as distributions, convergence of random vectors and
tightness.

Then, Chapter 4 will provide an introduction into optimal transport as the cyclically
monotone CCA model is based on it. Thereby, we will cover the function class of gradients
of convex functions which can be interpreted as a generalization of increasing functions
in higher dimensions. They are particularly interesting, as they are exactly our optimal
transport maps. Further, we will learn about cyclical monotonicity which allows tackling
discrete optimal transport problems by solving an optimal assignment problem. The
theory has been extensively studied in (McCann, 1995) and (Rockafellar, 1966).

After introducing it in Section 4.1, we cover an example for the use of optimal transport
in order to understand this concept better. We will present the center-outward distribu-
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1 Introduction

tion function, a concept invented in (Hallin et al., 2017) which allows to generalize the
distribution function and quantiles to higher dimensions. This is based on so called rank
statistics which can be interpreted as representants of samples with respect to another
distribution. The application of rank statistics is a current research trend. For example,
tests of equality and the independence of probability distributions based on rank statis-
tics have been proposed in (Deb and Sen, 2019) and (Shi et al., 2022), respectively. We
will later use them for Canonical Correlation Analysis.

In chapter 5, we will begin with a short recap of the multivariate normal distribution in
section 5.1. Then, we will introduce the classical CCA theory in Section 5.2 following
(Anderson, 2003). Thereby, we will present the estimation method and prove its consis-
tency. Then, we will consider generalizations of the classical model, such as the Gaussian
Copula CCA (GCCCA) in Section 5.3 which has also been proposed in Yoon et al. (2020).
There, the univariate marginals of the data are allowed to follow arbitrary continuous
distributions. One can then estimate the canonical correlations with Spearman’s ρ. We
will present this method and prove its consistency, as well.

In Section 5.4, we will then examine the main topic of this thesis, the cyclically monotone
CCA model which is based on optimal transport. The idea behind it is that when the
joint marginals of our observed data Y1 and Y2 follow some arbitrary distribution, we can
transport them to the multivariate normal distribution and then apply the classical CCA
estimator. This idea has been proposed and studied in Bryan et al. (2024). Also for this
method we will prove the consistency which will be done in Section 5.5.

In chapter 6, will present two more estimation methods for the GCCCA and the CMCCA
model, respectively. These will go in a different direction as the previous models and
follow a Bayesian approach. Therefore, we begin the chapter with an introduction into
Bayesian models and Markov Chain Monte Carlo algorithms, such as the Gibbs Sampler.
After doing this in Section 6.1, we present the Bayesian methods in Section 6.2 and 6.3,
respectively. These algorithms have been introduced in Hoff (2007b) and Bryan et al.
(2024), respectively.

Finally, we will make a simulation in Chapter 7 in order to assess the performance of all
five methods. These will compare the accuracy of all algorithms in different scenarios
such as varying distributions of the data, changed dimensions and different sample sizes.
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2 Notation

2 Notation

We will use the following notations in the thesis.

� The euclidean norm ∥·∥2 will be denoted by ∥·∥, i.e. we have for x = (x1, . . . , xd) ∈
Rd,

∥x∥ =

√√√√ n∑
i=1

x2i

� For n ∈ N, we will write
[n] := {1, . . . , n},

and
[n]0 := [n] ∪ {0}.

� We denote the set of all permutations of the set [n] by Sn.

� Let X be a set. We denote the power set of X by P(X) = {M :M ⊆ X}. Further,
let A ∈ P(X) be a subset. Then, we will denote the complement of A in X by
Ac = X \ A.

� Let X be a set. We denote the indicator function of the set by IX . We have

1X(x) =

{
1, if x ∈ X

0, otherwise.

Sometimes we will also use the notation IY , when Y is a claim. Then, we will have

1Y =

{
1, if Y is true

0, otherwise.

� For d ∈ N, Id will denote the identity matrix, i.e.

Id =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ∈ Rd×d.

� For d ∈ N, we set 1d = (1, . . . , 1) ∈ Rd.

3



3 Fundamentals of Measure-Theoretic Probability

3 Fundamentals of Measure-Theoretic Probability

In order to present the theory for Canonical Correlation Analysis, we will need some
results from measure-theoretic probability theory. This section explains some basic con-
cepts. Introductions to the prerequisites, measure theory and calculus-based probability
are provided in (Bauer, 2001) and (Georgii, 2013), respectively.

3.1 Preliminaries

We begin with some preliminaries, namely defining probability spaces, events, random
variables/vectors, independence, distributions, and expectation. Further, we will estab-
lish some basic properties.

Definition 3.1.1 (Probability space). Let Ω be a nonempty set. Further, let F ⊆ P(Ω)
be a σ-field on Ω, i.e.

(i) Ω ∈ F ,

(ii) A1, A2 . . . ∈ F =⇒
∞⋃
i=1

Ai ∈ F , and

(iii) A ∈ F =⇒ Ac ∈ F .

Then, we call the tuple (Ω,F) a measurable space. A map P : F → [0, 1] is called
probability measure on (Ω,F) if

(i) P(∅) = 0,

(ii) P(Ω) = 1, and

(iii) for all A1, A2 . . . ∈ F pairwise disjoint, we have

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

The triple (Ω,F ,P) is a probability space. The elements of F are called events.

Definition 3.1.2 (Borel σ-field). Consider the set of all open subsets of Rd,

O = {A ⊆ Rd : A open}.

We call
B(Rd) := σ(O)

the Borel σ-field on Rd, where σ(O) is the generated σ-field of O on Rd, i.e. the smallest
σ-field on Rd containing O.

For E ∈ B(Rd), we define the σ-field

B(E) := {E ∩ F : F ∈ B(Rd)},

which we call the Borel σ-field on E.
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3 Fundamentals of Measure-Theoretic Probability

Example 3.1.3 (Dirac Measure). Fix x ∈ Rd. The Dirac-Measure with mass in x,
defined as

δx : B(Rd) → [0, 1], δx(A) = 1A(x),

is a probability measure on (Rd,B(Rd)).

Example 3.1.4. Let Ω = [0, 1] and let F := B([0, 1]). Set P = λ|[0,1], where λ|[0,1] is the
restriction of the Lebesgue-measure on B(R) to B([0, 1]). Then, (Ω,F ,P) is a probability
space.

In the following, let (Ω,F ,P) be a probability space.

Definition 3.1.5 (Random vector). A measurable map

X : (Ω,F) → (Rd,B(Rd))

is called random vector. The set

σ(X) := {X−1(A) : A ∈ B(Rd)}

is called the generated σ-field by X. If d = 1, we call X random variable.

Notation 3.1.6. Let X be a random vector in Rd and let A ∈ B(Rd). We will use a
common notation for events throughout the thesis. For example we define

{X ∈ A} := {ω ∈ Ω : X(ω) ∈ A}
{∥X∥ ≤ 1} := {ω ∈ Ω : ∥X(ω)∥ ≤ 1}

Further, we will write P(X ∈ A) for P({X ∈ A}) and so on.

Definition 3.1.7 (Independence). Random vectors X1, . . . , Xn in dimension d1, . . . , dn
are independent if for all Bi ∈ B(Rdi)

P

(
n⋂

i=1

{Xi ∈ Bi}

)
=

n∏
i=1

P(Xi ∈ Bi).

An infinite collection of random vectors is called independent if every finite subset of
random vectors is independent.

Theorem 3.1.8. Suppose X1, . . . , Xn are independent random vectors with values in
Rd. Let f1, . . . , fn : Rd → Rd be measurable. Then, f1(X1), . . . , fn(Xn) are independent
random vectors.

Proof. This follows from (Durrett, 2019)[Theorem 2.1.10]. There the Theorem is pre-
sented in dimension 1. However, the proof in higher dimensions is analogous.

Definition 3.1.9 (Distribution). Let X be a random vector. Let µX be the push-forward
measure of P by X,

µX := X#P = P ◦X−1,

i.e.
µX(A) = P(X ∈ A) = P(X−1(A)) A ∈ B(Rd).

Then, µX is called the distribution of X and is a probability measure on (Rd,B(Rd)). We
write X ∼ µX .
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3 Fundamentals of Measure-Theoretic Probability

Definition 3.1.10 (Distribution Function). Let X ∼ µX be a random variable in dimen-
sion 1. The function

FX : R → [0, 1], FX(t) = µX((−∞, t]) = P(X ≤ t)

is called distribution function. If X1, . . . , Xn is a sample in dimension 1, the function

F (n) : R → [0, 1], F (n)(t) =
1

n
#{k ∈ [n] : Xk ≤ t}

is called empirical distribution function.

Definition 3.1.11 (Continuous Distribution). We say that a random variable X with
values in R has a continuous distribution if its distribution function FX is continuous.

Example 3.1.12. Consider the probability space from Example 3.1.4. Define

U : [0, 1] → R, U(ω) = ω.

Then, U is uniformly distributed on the interval (0, 1). We write U ∼ Unif(0, 1). Also,
U is continuous.

We can now introduce an important tool we will need later: the generalized inverse
transform method.

Definition 3.1.13 (Generalized Inverse). LetX be a random variable in dimension d = 1
with distribution function FX . The generalized inverse of FX is defined as

F−1
X : (0, 1) → R, u 7→ inf{t ∈ R : F (t) ≥ u}.

Note, that by the definition of FX , FX is increasing, and we have lim
t→−∞

FX(t) = 0 and

lim
t→∞

FX(t) = 1. Hence, F−1
X is well-defined with values in R.

Proposition 3.1.14 (Proposition 5.2 in (McNeil et al., 2005)). Let X be a random
variable in dimension d = 1 with distribution function FX and generalized inverse F−1

X .
Further, let U ∼ Unif(0, 1). We have

(i) F−1
X (U) ∼ µX ,

(ii) FX is continuous =⇒ FX(X) ∼ Unif(0, 1).

Hence, for every one-dimensional distribution µ, there exists a random variable Y with
Y ∼ µ by Example 3.1.12. The same holds for all distribution functions.

Some other properties of the generalized inverse we may need later are the following:

Theorem 3.1.15. Let X be a random variable in dimension 1 with distribution function
FX and generalized inverse F−1

X .

(i) We have P(X = F−1
X (FX(X))) = 1.

(ii) If FX is continuous, then F−1
X is strictly increasing. Furthermore, we have FX(F

−1
X (u)) =

u for all u ∈ (0, 1).

6



3 Fundamentals of Measure-Theoretic Probability

Proof. For (i) we refer to (McNeil et al., 2005)[Proposition A.4]. Claim (ii) can be found
in (McNeil et al., 2005)[Proposition A.3 (viii)].

Now, we define densities and absolutely continuous distributions.

Definition 3.1.16 (Density). Let X be a random vector with distribution µX . Let ν
be a measure on (Rd,B(Rd)). We say that X has a density with respect to ν, if µX

has a density with respect to ν, i.e. there exists a (B(Rd)/B([0,∞))-measurable function
fX : Rd → [0,∞) such that for all A ∈ B(Rd)

µX(A) =

∫
A

fX(x)dν(x).

Definition 3.1.17 (Absolutely Continuous). A probability measure µ is called absolutely
continuous if it has a density w.r.t. the Lebesgue-measure on Rd. We say a random vector
X is absolutely continuous if its distribution is absolutely continuous.

Notation 3.1.18. In the following we denote the set of all probability measures on
(Rd,B(Rd)) by Pd. Further, we write Pd

ac for the set of all absolutely continuous distri-
butions in Rd.

Example 3.1.19. Let X ∼ Bin(n, p) where n ∈ N and p ∈ (0, 1). Then, X has the
density

fX : R → [0,∞), fX(k) =

{(
n
k

)
pk(1− p)n−k if k ∈ {0, . . . , n}

0 otherwise,

with respect to the counting measure on (R,B(R)). Further, we have µX /∈ P1
ac.

Next, we will define the expectation and variance of random variables and vectors starting
in dimension 1.

Definition 3.1.20 (Expectation). Let X ≥ 0 be a non-negative random variable. Then,
we define the expectation of X by

E[X] =

∫
Ω

XdP ∈ [0,∞].

For an arbitrary random variable Y , we say Y is integrable, if E[|Y |] < ∞. For an
integrable random variable Y , we define

Y + := max{Y, 0} and Y − := max{−Y, 0}

and set
E[Y ] := E[Y +]− E[Y −].

Notation 3.1.21. We say that a random vector fulfills a property almost surely, shortly
a.s., if it fulfills it P-almost everywhere. For example X ≤ Y a.s., means that X(ω) ≤
Y (ω) for P-a.a. ω ∈ Ω or, equivalently, P(X ≤ Y ) = 1.

7



3 Fundamentals of Measure-Theoretic Probability

Some elementary results about the expectation are the following.

Theorem 3.1.22 (Theorem 1.6.1 in (Durrett, 2019)). Let X, Y ∈ L1. Then, the following
statements hold:

(i) E[X + Y ] = E[X] + E[Y ],

(ii) ∀a ∈ R : E[aX] = aE[X]

(iii) X ≤ Y a.s. =⇒ E[X] ≤ E[Y ].

Note that (i)-(iii) are also true for not necessarily integrable random variables X, Y ≥ 0.
In that case one replaces ∀a ∈ R with ∀a ≥ 0 in (ii).

Definition 3.1.23. Let X be a random variable and let p ≥ 1. We say X ∈ Lp if

E[|X|p] <∞.

Lemma 3.1.24. Let X be a random variable and let 1 ≤ p ≤ q. We have Lq ⊆ Lp i.e.,

E[|X|q] <∞ =⇒ E[|X|p] <∞.

Proof. Let E[|X|q] <∞. Applying Theorem 3.1.22 yields

E[|X|p] = E[|X|p1{|X|≤1}] + E[|X|p1{|X|>1}] ≤ 1 + E[|X|q] <∞.

Theorem 3.1.25 (Markov’s inequality). Let X ≥ 0 be a random variable and let c ≥ 0.
Then,

c · P(X ≥ c) ≤ E[X].

Proof. Observe that c1{X≥c} ≤ X a.s. and apply Theorem 3.1.22.

Definition 3.1.26 (Variance). Let X ∈ L2 be a random variable. Then, its variance,

Var[X] := E[(X − E[X])2] = E[X2]− E[X]2

is well-defined. Further, let Y ∈ L2 be another random variable. Then, the covariance,

Cov[X, Y ] := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

is well-defined. If both, Var[X] ̸= 0 and Var[Y ] ̸= 0, we can define their correlation as

Corr[X, Y ] :=
Cov[X, Y ]√
Var[X]Var[Y ]

. (3.1)

Now, we define the same terms for random vectors.

8



3 Fundamentals of Measure-Theoretic Probability

Definition 3.1.27. Let X = (X1, . . . , Xd) be a Rd-valued random vector and let p ≥ 1.
If Xi ∈ Lp for all i or, equivalently,

E[∥X∥p] <∞,

we say X ∈ Lp. For X ∈ L1, we define

E[X] :=

E[X1]
...

E[Xd]

 ∈ Rd.

For X ∈ L2, we define

Var[X] :=


Var[X1] Cov[X1, X2] · · · Cov[X1, Xd]

Cov[X2, X1] Var[X2] · · · Cov[X2, Xd]
...

...
. . .

...
Cov[Xd, X1] Cov[Xd, X2] · · · Var[Xd]

 ∈ Rd×d.

If additionally Var[Xi] ̸= 0 for all i, we set

Corr[X] :=


1 Corr[X1, X2] · · · Corr[X1, Xd]

Corr[X2, X1] 1 · · · Corr[X2, Xd]
...

...
. . .

...
Corr[Xd, X1] Corr[Xd, X2] · · · 1

 ∈ Rd×d.

This concludes the preliminary section.

3.2 Convergence of Random Vectors

The next important topic is the convergence of random vectors. Therefore, we will define
almost sure convergence and convergence in probability in this section, and present the
convergence results we need.

Throughout this subsection, let (Xn)n∈N and (Yn)n∈N be sequences of Rd1- and Rd2-valued
random vectors and let X and Y be Rd1- and Rd2-valued random vectors, respectively,
all defined on the same probability space.

Definition 3.2.1 (Convergence). The sequence (Xn)n∈N converges against X

� almost surely if there exists Ω̃ ∈ F with P(Ω̃) = 1 such that for all ω ∈ Ω̃

Xn(ω) −−−→ X(ω).

We write
Xn

a.s.−−−→ X.

� in probability if for all ε > 0

P(∥Xn −X∥ > ε) −−−→ 0.

We write
Xn

P−−−→ X.

9



3 Fundamentals of Measure-Theoretic Probability

One helpful lemma for showing convergence is the following. It allows us to prove the
convergence of a random vector componentwise.

Lemma 3.2.2. We have

(i) Xn
a.s.−−−→ X and Yn

a.s.−−−→ Y =⇒
(
Xn

Yn

)
a.s.−−−→

(
X
Y

)
, and

(ii) Xn
P−−−→ X and Yn

P−−−→ Y =⇒
(
Xn

Yn

)
P−−−→

(
X
Y

)
.

Proof. Claim (i) is trivial. For claim (ii), observe

P
(∥∥∥∥(Xn

Yn

)
−
(
X
Y

)∥∥∥∥ > ε

)
≤ P

(
∥Xn −X∥ > ε√

2

)
+ P

(
∥Yn − Y ∥ > ε√

2

)
−−−→ 0.

Convergence in probability and almost sure convergence are related in the following way:

Theorem 3.2.3. We have

Xn
a.s.−−−→ X =⇒ Xn

P−−−→ X.

Proof. The claim in dimension 1 is shown in (Shorack, 2017)[Theorem 5.7(i)]. With
Lemma 3.2.2 the multivariate version follows.

The next two convergence theorems we present are well known, namely, the Continuous
Mapping Theorem and the Strong Law of Large Numbers.

Theorem 3.2.4 (Continuous Mapping Theorem). Let g : Rd1 → Rd2 be continuous. We
have

(i) Xn
a.s.−−−→ X =⇒ g(Xn)

a.s.−−−→ g(X)

(ii) Xn
P−−−→ X =⇒ g(Xn)

P−−−→ g(X)

Proof. Claim (i) is trivial. Further, Claim (ii) can be shown using the subsequence
criterion in (Shorack, 2017)[Theorem 3.1 eq. (15)]. As it is provided in dimension 1 one
can show the claim componentwise and then apply Lemma 3.2.2.

Corollary 3.2.5. Now suppose all random vectors are defined in the same dimension
d = d1 = d2 and let a, b ∈ R. We have

(i) Xn
a.s.−−−→ X and Yn

a.s.−−−→ Y =⇒ aXn + bYn
a.s.−−−→ aX + bY

(ii) Xn
P−−−→ X and Yn

P−−−→ Y =⇒ aXn + bYn
P−−−→ aX + bY

Furthermore, we have in dimension d = 1,

(iii) Xn
a.s.−−−→ X and Yn

a.s.−−−→ Y =⇒ XnYn
a.s.−−−→ XY

(iv) Xn
P−−−→ X and Yn

P−−−→ Y =⇒ XnYn
P−−−→ XY

10



3 Fundamentals of Measure-Theoretic Probability

Proof. If Xn
a.s.−−−→ X and Yn

a.s.−−−→ Y , then

(
Xn

Yn

)
a.s.−−−→

(
X
Y

)
by Lemma 3.2.2. Now,

note that f : R2d → Rd, f(x, y) = ax + by and g : R2 → R, g(x, y) = xy are continuous.
Hence, (i) and (iii) follow from Theorem 3.2.4. Finally, (ii) and (iv) can be shown
analogously for convergence in probability.

Theorem 3.2.6 (Strong Law of Large Numbers). Let (Xn)n∈N be a sequence of indepen-
dent and identically distributed (i.i.d.) random vectors with X1 ∈ L1. Then,

1

n

n∑
i=1

Xi
a.s.−−−→ E[X1].

Proof. For the SLLN in dimension 1, we refer to (Durrett, 2019)[Theorem 2.4.1]. This
can be generalized to the multivariate version with Lemma 3.2.2 and Lemma 3.1.8.

A consequence of the Strong Law of Large Numbers is the Glivenko-Cantelli theorem:

Theorem 3.2.7 (Theorem 19.1 in van der Vaart (1998)). Let µ ∈ P1 be an arbitrary

one-dimensional distribution and let X1, X2, . . .
iid∼ µ be an i.i.d. sample. Further, let F

be the distribution function corresponding to µ and let F (n) be the (random) empirical
distribution function obtained from the first n samples, X1, . . . , Xn. Then, we have

∥F (n) − F∥∞ = sup
t∈R

|F (n)(t)− F (t)| −−−→ 0 a.s.

The next result we would like to present is the Dominated Convergence Theorem. The
common form, in which it is stated, has the assumption that the random vectors are
jointly bounded by an integrable random variable. However, there exists a stronger
version which only requires uniform integrability which we define next.

Definition 3.2.8 (Uniformly Integrable). The sequence (Xn)n∈N is uniformly integrable
if

lim
K→∞

sup
n∈N

E[∥Xn∥1{∥Xn∥≥K}] = 0.

A useful criterion for showing uniform integrability is the following:

Theorem 3.2.9. If
sup
n∈N

E[∥Xn∥p] <∞ (3.2)

for some p > 1 then, (Xn)n∈N is uniformly integrable.

Proof. We show the claim by using Theorem 5.6 in (Shorack, 2017). It states that a
family of integrable random variables (Zn)n∈N in uniformly inetgrable if there exists a
convex function G : [0,∞) → [0,∞) with

(i) G(0) = 0,

(ii) lim
x→∞

G(x)
x

= ∞, and

11
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(iii) sup
n∈N

E[G(|Zn|)] <∞.

Condition (3.2) implies that (∥Xn∥)n∈N is a family of integrable random variables by
Lemma 3.1.24. Setting G(x) = xp, shows that (∥Xn∥)n∈N is uniformly integrable. There-
fore, (Xn)n∈N is uniformly integrable.

Now, we can present the theorem:

Theorem 3.2.10 (Extended Dominated Convergence Theorem). If Xn
P−−−→ X and

(Xn)n∈N is uniformly integrable, then,

E[Xn] −−−→ E[X].

Proof. See Vitali’s Theorem (Theorem 5.5 in (Shorack, 2017)).

Another notion we will encounter is conditional expectation which we define next.

Definition 3.2.11 (Conditional Expectation). Let X ∈ L1 be a random variable in
dimension d = 1 and let G ⊆ F be a σ-field on Ω. Then, a random variable X0 ∈ L1 is a
version of the conditional expectation of X given G if

(i) X0 is G-measurable, and

(ii) for all A ∈ G, we have
E[X01A] = E[X1A].

We write X0 = E[X|G].

For a random variable Y or a family of random variables (Yi)i∈I , we define

E[X|Y ] := E[X|σ(Y )] and E[X|Yi, i ∈ I] := E[X|σ(Yi, i ∈ I)],

respectively, where I is an arbitrary index set and σ(Yi, i ∈ I) is the smallest σ-field such
that all Yi are measurable.

For a random vector X = (X1, . . . , Xd) ∈ L1, we define

E[X|G] :=

E[X1|G]
...

E[Xd|G]

 .

The definition is justified by the following theorem.

Theorem 3.2.12 (Theorem 9.2 in (Williams, 1991)). Let X ∈ L1 and let G ⊆ F be
a σ-field. Then, the conditional expectation E[X|G] exists and is a.s.-unique, i.e. if
Y = E[X|G] and Z = E[X|G], then Y = Z almost surely.

There are many results about conditional expectation, but the most important one to us
is the Bounded Convergence Theorem.

12
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Theorem 3.2.13 (Bounded Convergence for Conditional Expectation). Suppose

Xn
a.s.−−−→ X.

Assume that there exists C > 0 such that for all n ∈ N

∥Xn∥ ≤ C.

Now, let G ⊆ F be a σ-field on Ω. Then, we have

E[Xn|G]
a.s.−−−→ E[X|G].

Proof. See (Williams, 1991)[Section 9.7(g)].

This concludes the section of the convergence of random vectors.

3.3 Weak Convergence, Tightness and Prokhorov’s Theorem

The final preliminary topics we discuss are weak convergence, tightness and Prokhorov’s
Theorem.

The most results in this subsection will be about distributions, so let (µn)n∈N and (νn)n∈N
be sequences of probability measures in Pd1 and Pd2 , respectively, throughout this sub-
section. Further, let µ ∈ Pd1 and ν ∈ Pd2 .

Also, we will have some theorems about random vectors, so let (Xn)n∈N and (Yn)n∈N
be sequences of random vectors in Rd1 and Rd2 , respectively. Further, let X and Y be
random vectors in Rd1 and Rd2 , respectively. For notional convenience, we set d := d1.

Definition 3.3.1 (Weak Convergence). The sequence (µn)n∈N converges weakly to µ if∫
Rd

f(x)dµn(x) −−−→
∫
Rd

f(x)dµ(x) (3.3)

for all f : Rd → R continuous and bounded. We write

µn
w−−−→ µ.

The sequence (Xn)n∈N converges weakly against X if µXn

w−−−→ µX , or equivalently,

E[f(Xn)] −−−→ E[f(X)]

for all f : Rd → R continuous and bounded. We write

Xn
w−−−→ X.

A useful criterion for weak convergence is the following:

13
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Lemma 3.3.2. We have µn
w−−−→ µ if and only if

µn(A) −−−→ µ(A)

for all A ∈ B(Rd) with µ(∂A) = 0, where ∂A is the boundary of A.

Hence, we have Xn
w−−−→ X if and only if

P(Xn ∈ A) −−−→ P(X ∈ A)

for all A ∈ B(Rd) with P(X ∈ ∂A) = 0.

In dimension d = 1, we have Xn
w−−−→ X if and only if

FXn(t) −−−→ FX(t)

for all t ∈ R, where FX is continuous.

Proof. For the first claim, see (Billingsley, 1999)[page 26]. For the second claim see
(Durrett, 2019)[page 116 and Theorem 3.2.9].

The weak convergence of random vectors is related to the convergence in probability in
the following way.

Theorem 3.3.3. We have

Xn
P−−−→ X =⇒ Xn

w−−−→ X.

If X is a almost surely constant random vector, i.e. there exists some a ∈ Rd such that
P(X = a) = 1, we have

Xn
w−−−→ X =⇒ Xn

P−−−→ X.

Proof. For the first claim suppose Xn
P−−−→ X and let f : Rd → R be continuous and

bounded. Then, we have

f(Xn)
P−−−→ f(X)

by the Continuous Mapping Theorem (Theorem 3.2.4). Since the f(Xn) are uniformly
bounded by the supremum norm of f , i.e.

|f(Xn)| ≤ ∥f∥∞

for all n ∈ N, the collection (f(Xn))n∈N is uniformly integrable. We conclude from the
extended dominated convergence theorem (Theorem 3.2.10) that

E[f(Xn)] −−−→ E[f(X)].

Hence, Xn
w−−−→ X.

For the second claim suppose Xn
w−−−→ X such that P(X = a) = 1 for some a ∈ Rd. Let

ε > 0. Define the set

A := {x ∈ Rd : ∥x− a∥ > ε} ∈ B(Rd).

14
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Then,
∂A = {x ∈ Rd : ∥x− a∥ = ε}

and we have P(X ∈ ∂A) = 0. By Theorem 3.3.2, we have

P(∥Xn −X∥ > ε) = P(Xn ∈ A) −−−→ P(X ∈ A) = 0,

which shows Xn
P−−−→ X.

Hence, we get the following order of convergences: Almost sure convergence is the
strongest implying convergence in probability which implies weak convergence. All modes
of convergence fulfill a continuous mapping theorem. We have established it for the first
two. Next, we introduce the continuous mapping theorem for weak convergence.

Theorem 3.3.4. Let g : Rd → Rm be a measurable function and let Dg be the set of
discontinuities of g. If P(X ∈ Dg) = 0 then,

Xn
w−−−→ X =⇒ g(Xn)

w−−−→ g(X)

Proof. This is shown in (Billingsley, 1999)[page 26].

Other important definitions for a collection of distributions are tightness and relatively
compactness.

Definition 3.3.5 (Tight). The sequence (µn)n∈N is tight if

∀ε > 0 : ∃M > 0 : ∀n ∈ N : µn([−M,M ]d) ≥ 1− ε.

The sequence (Xn)n∈N is tight if (µXn)n∈N is tight or, equivalently, if

∀ε > 0 : ∃M > 0 : ∀n ∈ N : P(∥Xn∥ ≤M) ≥ 1− ε.

Definition 3.3.6 (Relatively Compact). The sequence (µn)n∈N is relatively compact if
for all subsequences (µnk

)k∈N, there exists a subsubsequence (µnkl
)l∈N and µ̃ ∈ Pd such

that
µnkl

w−−−→ µ̃.

The sequence (Xn)n∈N is relatively compact if (µXn)n∈N is relatively compact or, equiv-
alently, if for all subsequences (Xnk

)k∈N there exists a subsubsequence (Xnkl
)l∈N and a

random vector X̃ such that
Xnkl

w−−−→ X̃.

Prokhorov’s Theorem shows that tightness and relatively compactness are equivalent:

Theorem 3.3.7 (Theorem 5.1 and 5.2 in (Billingsley, 1999)). It holds

(µn)n∈N is tight ⇐⇒ (µn)n∈N is relatively compact.

Hence,
(Xn)n∈N is tight ⇐⇒ (Xn)n∈N is relatively compact.

15
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Tightness can be very useful to show convergence in some scenarios. With Theorem 3.3.7
we obtain the following criterion for tightness:

Corollary 3.3.8. Suppose
µn

w−−−→ µ.

Then, (µn)n∈N is tight.

Equivalently, if
Xn

w−−−→ X,

then, (Xn)n∈N is tight.

Proof. Since the whole sequence (µn)n∈N converges, it is relatively compact. By Theorem
3.3.7, (µn)n∈N is tight. The same holds for random vectors.

One scenario in which tightness can help to show weak convergence is the following:

Corollary 3.3.9 (Corollary of Theorem 5.1 in (Billingsley, 1999)). If (µn)n∈N is tight
and every subsequence that converges weakly, converges against the same distribution µ,
then, the entire sequence converges against µ:

µn
w−−−→ µ

The last two lemmata of this section are rather specific and are tailored to proofs later
throughout the thesis.

Definition 3.3.10. We define Γ(µ, ν) as the set of all probability measures in Pd1+d2

with marginals µ and ν on the first d1 and last d2 coordinates, respectively.

Lemma 3.3.11. Suppose (µn)n∈N and (νn)n∈N are tight. Then, any sequence of probability
measures (γn)n∈N in Pd1+d2 with γn ∈ Γ(µn, νn) for all n ∈ N is tight.

Proof. Let ε > 0. There exist M1,M2 > 0 such that for all n ∈ N

µn([−M1,M1]
d1) ≥ 1− ε/2 and νn([−M2,M2]

d2) ≥ 1− ε/2,

respectively. With M := max{M1,M2}, we have for all γn ∈ Γ(µn, νn) and all n ∈ N

γn
((
[−M,M ]d1+d2

)c) ≤ µn

((
[−M,M ]d1

)c)
+ νn

((
[−M,M ]d2

)c)
< ε,

which shows the claim.

Definition 3.3.12 (oP and OP ). We introduce the following notations:

(i) Xn ∈ oP (1) : ⇐⇒ Xn
P−−−→ 0,

(ii) Xn ∈ OP (1) : ⇐⇒ (Xn)n∈N is tight.

Lemma 3.3.13. Let (Xn)n∈N and (Yn)n∈N be sequences of random variables in R so that

Xn ∈ oP (1) and Yn ∈ OP (1).

Then,
XnYn ∈ oP (1).
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Proof. Let ε, δ > 0. Let M > 0 such that

sup
n∈N

P(|Yn| > M) <
δ

2
.

Further, let n0 ∈ N such that for all N ∋ n ≥ n0

P
(
|Xn| >

ε

2M

)
≤ δ

2
.

Then, we have for all N ∋ n ≥ n0

P(|XnYn| > ε) = P
(
|Xn||Yn|1{|Yn|≤M} + |Xn||Yn|1{|Yn|≤M} > ε

)
≤ P

(
|Xn||Yn|1{|Yn|≤M} >

ε

2

)
+ P

(
|Xn||Yn|1{|Yn|>M} >

ε

2

)
≤ P

(
|Xn| ·M1{|Yn|≤M} >

ε

2

)
+ P

(
1{|Yn|>M} ̸= 0

)
= P

(
|Xn| >

ε

2M

)
+ P(|Yn| > M) ≤ δ.

17



4 Optimal Transport

In the last section we have introduced the necessary mathematical background we need
for the theory later. This section will provide a brief introduction into optimal transport
which our method for Canonical Correlation Analysis will be based on.

4.1 Cyclical Monotonicity

We begin by considering Monge’s problem (see also (Monge, 1781)): How should one
move given piles of sand to fill up given holes of the same total finite volume? For a
mathematical formulation of this problem, let us assume w.l.o.g. that the total volume
of the piles and holes is equal to 1, respectively. Then, one can imagine the piles and
holes as probability measures µ1 and µ2 on (R3,B(R3)), respectively. Now, the objective
is to find a (measurable) transport map T ∗ : R3 → R3 solving the problem

inf
T

∫
R3

∥x− T (x)∥dµ1 subject to T#µ1 = µ2.

Thereby, the function T assigns every x ∈ R3 the point T (x) ∈ R3, where it gets trans-
ported to. Obviously, we are only interested in points x which lie in the support of µ1,
i.e. where sand is present. The integral calculates the entire distance the sand has been
transported with T . Finally, the condition T#µ1 = µ2 is there to ensure that when we
use the transport map T , all the sand holes have been filled with the sand piles. The
following picture from (Williams, 2020) illustrates the problem.

Figure 4.1: Example for an optimal transport problem

One could also view the problem in a discrete way. Let n green and n red points be
given. What is the best one-to-one way to connect each red point to a corresponding
green point? Thereby, one aims to minimize the sum of distances of the resulting pairs
of points. Figure 4.2 illustrates the problem in dimension 2.

More generally, the optimal transport problem can be formulated in d dimensions with
probability measures µ1 and µ2 on (Rd,B(Rd)) and a measurable loss L : R2d → [0,∞]:

18
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Figure 4.2: Example for a discrete optimal transport problem (solution on the right)

inf
T

∫
Rd

L(x, T (x))dµ1(x) subject to T#µ1 = µ2. (OT)

Although this problem looks simple, it has not been solved for a long time. For the
squared error loss L(x, T (x)) = ∥x − T (x)∥2, it has been shown that if µ1 and µ2 are
absolutely continuous with finite second moments (i.e. E[∥X1∥2] <∞ and E[∥X2∥2] <∞
for X1 ∼ µ1 and X2 ∼ µ2, respectively) then, the solution to (OT) exists, is a.e. unique
and the gradient of a convex function (see (Villani, 2009)[Theorem 9.4]).

Why does this problem matter for us, especially when our main topic is Canonical Correla-
tion Analysis? We will later see that transport maps can help us overcome the traditional
assumption of normality in CCA. Thereby, the mentioned function class of gradients of
convex functions will be particularly interesting for us as these functions will be exactly
our transport maps. Note that the property of being a gradient of a convex function can
be interpreted as a generalization of increasing functions in higher dimensions. Let us
provide some examples for optimal transport maps.

Example 4.1.1 (Transport Maps or Gradients of Convex Functions).

(i) Let A ∈ Rd×d be symmetric and positive semidefinite. Then, for all b ∈ Rd, the
function

φ : Rd → R, φ(z) =
1

2
zTAz + bT z

is convex. Hence, its gradient

∇φ : Rd → Rd, φ(z) = Az + b

is an optimal transport map.

(ii) Let f1, . . . , fd : R → R be increasing functions. Then, the function

G : Rd → Rd, z = (z1, . . . , zd) 7→ (f1(z1), . . . , fd(zd))

is the gradient of a convex function.
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(iii) Let f : (0,∞) → [0,∞) be an increasing function. Then, the function

J : Rd \ {0} → Rd, J(z) =
f(∥z∥)
∥z∥

z

is the gradient of a convex function.

(iv) Let Ψ : Rd → Rd be a continuously differentiable function with symmetric and
positive semidefinite Jacobian matrix DΨ(z) for all z ∈ Rd. Then, Ψ is the gradient
of a convex function.

(v) Let H : Rd → Rd be the gradient of a convex function, let b ∈ Rd, and let B ∈ Rd×d

be an arbitrary matrix. Then, the function

H̃ : Rd → Rd, H̃(z) = BTH(Bz + b)

is the gradient of a convex function.

Proof.

(i) Since, the Hessian
∇2φ : Rd → Rd×d, z 7→ A

is positive semidefinite on Rd, φ is convex.

(ii) Let f1, . . . , fd : R → R have antiderivatives F1, . . . , Fd : R → R which must be
convex. Now, let

F : Rd → R, F (z) =
d∑

i=1

Fi(zi).

Then, trivially ∇F = G and we have for all x, y ∈ Rd and λ ∈ [0, 1]

F (λx+ (1− λ)y) =
d∑

i=1

Fi(λxi + (1− λ)yi) ≤
d∑

i=1

(λFi(xi) + (1− λ)Fi(yi))

=λF (x) + (1− λ)F (y)

Hence, F is convex and G is its gradient.

(iii) Let F be an antiderivative of f . Since f ≥ 0, F is increasing and convex. By the
convexity of the norm the function,

Ĵ : Rd \ {0} → R, Ĵ(z) = F (∥z∥)

is convex. Further, we have ∇Ĵ = J which shows the claim.

(iv) SinceDΨ is symmetric on the convex domain Rd we may conclude from the Poincaré
Lemma that Ψ has a potential. This potential must also be convex since DΨ is
positive semidefinite on the whole domain.
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(v) Let ψ be a convex potential of H. Set

ψ̃ : Rd → R, z 7→ ψ(Bz + b)

Then, ∇ψ̃ = H and we have for all x, y ∈ Rd and λ ∈ [0, 1]

ψ̃(λx+ (1− λ)y) = ψ(B(λx+ (1− λ)y) + b) = ψ(λ(Bx+ b) + (1− λ)(By + b))

≤ λψ(Bx+ b) + (1− λ)ψ(By + b) = λψ̃(x) + (1− λ)ψ̃(y),

showing the convexity of ψ̃. Hence, H̃ is a gradient of a convex function.

The transport of probability distributions with gradients of convex functions has been
extensively studied in (McCann, 1995). The following proposition summarizes the main
results.

Proposition 4.1.2 (Proposition 2.1 in (Deb et al., 2023)). Let µ and ν be absolutely
continuous probability measures in Rd. Then, there exist gradients of convex functions
T, S : Rd → Rd such that T#µ = ν and S#ν = µ, respectively. Furthermore, T and S
are unique, µ and ν a.e., respectively. We also have (T ◦ S)(x) = x for µ-a.a. x and
(S ◦ T )(y) = y for ν-a.a. y, respectively.

Hence, given two absolutely continuous distributions µ and ν, we can find a µ-a.e.-unique
transport map T transporting µ to ν. Therefore, when Y ∼ µ, we have Z := T (Y ) ∼ ν.

Further, when given a sample Y1, . . . , Yn
iid∼ µ, the random variables Z1, . . . , Zn, defined

as Zi := T (Yi), can be interpreted as representants of the Y -sample with respect to the
distribution ν. We will later see why this is useful. The next question we deal with
is: What if the distribution µ, and hence also T is unknown? How can we transport a
sample Y1, . . . , Yn from an unknown distribution to its representants with respect to a
known distribution ν? To do this, we need to discretize the mentioned concepts.

So far we have transported a distribution µ to another distribution ν. Now, when given

a sample Y1, . . . , Yn
iid∼ µ with µ unknown, we need to transport a random set of vectors

representing µ to another random set representing ν. Hence, a discretization of ν will be
helpful:

Definition 4.1.3 (Grid). Let ν ∈ Pd. A triangular array of random vectors (X
(n)
k )n≥k≥1

is called grid of ν if
1

n

n∑
k=1

δ
X

(n)
k

w−−−→ ν a.s.

Or equivalently, there exists Ω̃ ∈ F with P(Ω̃) = 1 such that for all ω ∈ Ω̃

1

n

n∑
k=1

δ
X

(n)
k (ω)

w−−−→ ν.

Hence, for a grid (X
(n)
k )n≥k≥1 of ν and a large n ∈ N, the empirical uniform distribution

on the random set {X(n)
1 , . . . , X

(n)
n } is a random probability measure on (Rd,B(Rd))
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approximating ν. For some grids, X
(n)
k will be independent of n and we will simply write

(Xn)n∈N. The following theorem provides an easy general method to generate grids.

Theorem 4.1.4. Let ν ∈ Pd and let (Xn)n∈N be a sequence of independent and identically
distributed random vectors with X1 ∼ ν. Then, (Xn)n∈N is a grid of ν.

Proof. Let A ∈ B(Rd) with ν(∂A) = 0. Then, for all n ∈ N, the random variable
Yn := 1{Xn∈A} follows a Bernoulli-distribution:

Yn ∼ Ber(P(X1 ∈ A))

Clearly, (Yn)n∈N is a sequence of independent (by Lemma 3.1.8), identically distributed
and integrable random variables. Hence, by the Strong Law of Large Numbers (Theorem
3.2.6), there exists Ω̃ ∈ F with P(Ω̃) = 1 such that for all ω ∈ Ω̃

1

n

n∑
k=1

Yk(ω) −−−→ P(X1 ∈ A).

Hence, we have for all ω ∈ Ω̃

1

n

n∑
k=1

δXk(ω)(A) =
1

n

n∑
k=1

Yk(ω) −−−→ P(X1 ∈ A) = ν(A).

Hence, by Lemma 3.3.2 we have shown

1

n

n∑
k=1

δXk

w−−−→ ν a.s.

and the claim is proven.

Example 4.1.5. Let ν ∼ Unif[0, 1]. Then, when (Xn)n∈N is a sequence of identically
distributed random variables with X1 ∼ ν, (Xn)n∈N is a grid of ν by Theorem 4.1.4.

Another choice of a grid could be the following. For 1 ≤ k ≤ n, set Y
(n)
k to be deterministic

with Y
(n)
k = k

n
. Let us show that (Y

(n)
k )n≥k≥1 is a grid of ν. We have that the uniform

distribution on the set

Mn := {Y (n)
1 , . . . , Y (n)

n } =

{
1

n
,
2

n
, . . . , 1

}
converges weakly against ν. This is because we have for the distribution function Fn of
Unif(Mn)

Fn(t) = max

{
k

n
:
k

n
≤ t, k ∈ [n]0

}
−−−→ t,

for t ∈ [0, 1]. Hence, the convergence follows from Lemma 3.3.2.

Still, our goal is to transport a sample with unknown distribution Y1, . . . , Yn ∼ µ to
another known distribution ν. With the help of grids we know where we can transport
our sample to, namely to X

(n)
1 , . . . , X

(n)
n . But what would be the transport map? We also

need a discrete version of gradients of convex functions, in particular an optimal way to
assign the Yi’s to the X

(n)
i ’s. Therefore, we introduce the concept of cyclical monotonicity.
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4 Optimal Transport

Definition 4.1.6 (Cyclical Monotonicity). A subset S ⊆ Rd × Rd is called cyclically
monotone if, for all finite collection of points {(z1, y1), . . . , (zn, yn)} ⊆ S,

n∑
i=1

∥yi − zi∥2 ≤
n∑

i=1

∥yi − zσ(i)∥2 (4.1)

for all permutations σ ∈ Sn. This condition can be understood as optimal assignment of
the yi’s to the zi’s with respect to the squared error loss. Equivalently one can require
that for all {(z1, y1), . . . , (zn, yn)} ⊆ S,

n∑
i=1

⟨yi, zi⟩ ≥
n∑

i=1

⟨yi, zσ(i)⟩

for all permutations σ ∈ Sn. Another equivalent condition found in literature is that for
all {(z1, y1), . . . , (zn, yn)} ⊆ S,

n∑
i=1

⟨yi, zi+1 − zi⟩ ≤ 0 zn+1 := z1.

Proof. We show that these definitions are equivalent. Let {(z1, y1), . . . , (zn, yn)} ⊆ S. We
have for all σ ∈ Sn

n∑
i=1

∥yi − zi∥2 ≤
n∑

i=1

∥yi − zσ(i)∥2

⇐⇒
n∑

i=1

(
∥yi∥2 + ∥zi∥2 − 2⟨yi, zi⟩

)
≤

n∑
i=1

(
∥yi∥2 + ∥zσ(i)∥2 − 2⟨yi, zσ(i)⟩

)
⇐⇒

n∑
i=1

(
∥yi∥2 + ∥zi∥2 − 2⟨yi, zi⟩

)
≤

n∑
i=1

(
∥yi∥2 + ∥zi∥2 − 2⟨yi, zσ(i)⟩

)
⇐⇒

n∑
i=1

⟨yi, zi⟩ ≥
n∑

i=1

⟨yi, zσ(i)⟩,

which shows the equivalence of the first two definitions. Next, we show that the second
defintion implies the third. When we have

n∑
i=1

⟨yi, zi⟩ ≥
n∑

i=1

⟨yi, zσ(i)⟩,

for all permutations σ we can set σ to be the one with σ(i) = i + 1 for i ∈ [n − 1] and
σ(n) = 1. Then, we have

n∑
i=1

⟨yi, zi⟩ ≥
n∑

i=1

⟨yi, zi+1⟩ =⇒
n∑

i=1

⟨yi, zi+1 − zi⟩ ≤ 0,

where we set zn+1 = z1. For the last implication, assume that for all {(z1, y1), . . . , (zn, yn)} ⊆
S, we have

n∑
i=1

⟨yi, zi+1 − zi⟩ ≤ 0.
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4 Optimal Transport

Now, fix a set {(z1, y1), . . . , (zn, yn)} ⊆ S and a permutation σ ∈ Sn. We need to show
that

n∑
i=1

⟨yi, zσ(i) − zi⟩ ≤ 0.

We show this first under the assumption that σ is cyclical which means that successive
application of σ would take every element i ∈ [n] through the whole set, i.e.

∀i ∈ [n] : {σk(i) : k ∈ N} = [n],

where σk(i) = (σ ◦ · · · ◦ σ)(i) is the k-times composition of σ. Now, we reindex the set
with

(z′i, y
′
i) = (zσi−1(1), yσi−1(1))

for i ∈ [n], where σ0 is the identity, i.e. σ0(1) = 1. Since σ is cyclical we have
{(z′1, y′1), . . . , (z′n, y′n)} = {(z1, y1), . . . , (zn, yn)} ⊆ S and therefore,

0 ≥
n∑

i=1

⟨y′i, z′i+1 − z′i⟩ =
n∑

i=1

⟨yσi−1(1), zσi(1) − zσi−1(1)⟩

=
n∑

i=1

⟨yσi−1(1), zσ(σi−1(1))⟩ −
n∑

i=1

⟨yσi−1(1), zσi−1(1)⟩

=
n∑

i=1

⟨yi, zσ(i)⟩ −
n∑

i=1

⟨yi, zi⟩ =
n∑

i=1

⟨yi, zσ(i) − zi⟩.

For the second to last equality we used that σ is cyclical. Now, consider an arbitrary
σ. Let C1, . . . , Ck be the cycles of σ, i.e. all the sets of the form {σk(i) : k ∈ N} for
i ∈ [n]. Further, let σj be the restriction of σ to Cj. Then, σj is cyclical and we have
{(zi, yi) : i ∈ Cj} ⊆ {(z1, y1), . . . , (zn, yn)} ⊆ S. Hence, we have by our previous result

n∑
i=1,i∈Cj

⟨yi, zσj(i) − zi⟩ =
n∑

i=1,i∈Cj

⟨yi, zσ(i) − zi⟩ ≤ 0.

Summing over the cycles yields

0 ≥
k∑

j=1

n∑
i=1,i∈Cj

⟨yi, zσ(i) − zi⟩ =
n∑

i=1

⟨yi, zσ(i) − zi⟩

which finalizes the proof.

Suppose we have chosen a way to assign the Yi’s to the X
(n)
i ’s on the grid with a permu-

tation σ ∈ Sn. That is, for i ∈ [n], we transport Yi to X
(n)
σ(i). Then, the set{

(Y1, X
(n)
σ(1)), (Y2, X

(n)
σ(2)), . . . , (Yn, X

(n)
σ(n))

}
being cyclically monotone would imply that this assignment is optimal with respect to
the squared error loss, i.e. we would have

n∑
i=1

∥∥∥Yi −X
(n)
σ(i)

∥∥∥2 = min
π∈Sn

n∑
i=1

∥∥∥Yi −X
(n)
π(i)

∥∥∥2 .
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4 Optimal Transport

Hence, we have found a discrete version for optimal transport maps. But how is this
cyclical monotonicity related to gradients of convex functions? The following theorem
yields the answer.

Definition 4.1.7 (Cyclically Monotone Function). A function G : Rd → Rd is called
cyclically monotone if its graph

Gr(G) := {(z,G(z)) : z ∈ Rd} ⊆ Rd × Rd

is cyclically monotone.

Theorem 4.1.8 (Theorem 1 and Corollary 1 in (Rockafellar, 1966)). A function G :
Rd → Rd is cyclically monotone if and only if it is the gradient of a convex function.

With the help of the following lemma we can show our solution to the problem.

Lemma 4.1.9. Fix y1, . . . , yn ∈ Rd and z1, . . . , zn ∈ Rd. Then, there exists a (not
necessarily unique) permutation σ ∈ Sn such that the set {(zσ(1), y1), . . . , (zσ(n), yn)} ⊆
Rd × Rd is cyclically monotone.

Proof. Take a permutation σ ∈ Sn minimizing
n∑

i=1

∥yi − zσ(i)∥2.

Definition 4.1.10 (Empirical Ranks). Let µ, ν ∈ Pd
ac. Further, let (X

(n)
k )n≥k≥1 be a grid

of ν and let Y1, . . . , Yn
iid∼ µ be a sample. Let σn ∈ Sn be a permutation such that the set{

(X
(n)
σn(1)

, Y1), . . . , (X
(n)
σn(n)

, Yn)
}

is cyclically monotone. We define the so called empirical rank statistics (or empirical
representants) of the sample Y1, . . . , Yn with respect to ν as

R̂n
ν (Yk) = X

(n)
σn(k)

for k ∈ [n] (which are not necessarily unique). Further, let G be the µ-a.e. unique
cyclically monotone function pushing µ forward to ν. Then, the true rank statistics (or
true representants) of the sample Y1, . . . , Yn with respect to ν are defined as

Rµ
ν (Yk) = G(Yk)

for k ∈ [n] (which are defined µ-a.e.).

By the characterization of cyclical monotonicity in (4.1), we observe that the optimal
transport becomes an optimal assignment problem in the discrete case.

Example 4.1.11. Let ν = Unif[0, 1] and let µ ∈ P1
ac. Further, let Y1, . . . , Yn

iid∼ µ be an
observed sample. The µ-a.e unique cyclically monotone function transporting µ to ν is
the distribution function F corresponding to µ by Theorem 3.1.14. Hence, the true rank
statistics of Y1, . . . , Yn with respect to ν are F (Y1), . . . , F (Yn). Equivalently, we have

Rµ
ν (Yi) = F (Yi).
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4 Optimal Transport

Now, fix the grid of ν, ({
1

n
,
2

n
, . . . , 1

})
n∈N

from Example 4.1.5. Then, the empirical rank statistics of Y1, . . . , Yn with respect to ν
are given by

R̂n
ν (Yi) = Fn(Yi). (4.2)

Thereby, Fn is the empirical distribution function

Fn : R →
{
0,

1

n
,
2

n
, . . . , 1

}
, Fn(t) =

1

n
#{Xi : Xi ≤ t, i ∈ [n]}.

The claim in (4.2) follows since Fn is increasing, hence a cyclically monotone function and
therefore, its graph is a cyclically monotone set, and {(X1, Fn(X1)), . . . , (Xn, Fn(Xn))} is
cyclically monotone.

This concludes our introduction into optimal transport, gradients of convex functions
and cyclical monotonicity. Further literature we recommend for interested readers, are
McCann (1995) and Rockafellar (1966).

Let us summarize the results so far. Given two absolutely continuous probability distribu-
tions µ, ν ∈ Pd

ac, there is a µ-a.e. unique transport map T from µ to ν. This means, when

given a sample Y1, . . . , Yn
iid∼ µ, there are µ-a.e. unique “representants” (or rank statistics)

Rµ
ν (Y1), . . . , R

µ
ν (Yn) with respect to distribution ν. When µ is unknown, we can work with

empirical rank statistics R̂n
ν (Y1), . . . , R̂

n
ν (Yn). But what can rank statistics/representants

be used for? We provide an example in the next subsection.

4.2 Example: Quantiles and Ranks in Rd

What is the idea of optimal transport that we are going to use? Often when we work
with random variables/vectors, they may follow some arbitrary distribution. Then, we
would like to make inference, e.g. estimating their correlation. Sometimes this is easier
when working with some other specific distribution. Consider the following example:
The Pearson’s correlation defined as in (3.1) is a well established way to measure the
dependency of two random variables. However, it has some disadvantages, e.g. it is
undefined for random variables with infinite variance. Also, it only measures the linear
dependency and one can therefore lose a part of the interval [−1, 1]. This holds for
example for a Exp(1)- and a Unif[0, 1]-random variable. An alternative to Pearson’s
correlation is Spearman’s ρ.

For random variables X and Y with distribution functions FX and FY , Spearman’s ρ is
defined as

ρX,Y = Corr[FX(X), FY (Y )].

So what does Spearman’s ρ do? In the case where X and Y are absolutely continuous,
we know by Theorem 3.1.14 that FX(X) and FY (Y ) have Unif[0, 1]-distribution. Hence,
Spearman’s ρ calculates the correlation of the Unif[0, 1] versions of X and Y . In other
words, one can transport X and Y to Uniform distributions on [0, 1] with the cyclically
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4 Optimal Transport

monotone distribution functions F := FX and G := FY , and determine the correlation
Corr[F (X), G(Y )]. The transport to Unif[0, 1] has two advantages: Firstly, we do not
need to worry about the existence of second moments and secondly, Spearman’s ρ is
invariant under increasing transformations. Thirdly, values over the whole interval [−1, 1]
are always attainable for absolutely continuous random variables.

We will use this idea of transporting to a more convenient distribution to work with, when
we introduce our new method for Canonical Correlation Analysis. In order to understand
this concept better, we provide another example beforehand, namely the Centre-Outward
Distribution Function introduced in (Hallin et al., 2017). The theory around it suggests
a way to generalize the distribution function, the empirical distribution function, the
median, rank statistics and quantiles to higher dimensions. Note that the main goal
of this section is not to introduce this concept, but to comprehend the use of optimal
transport and the definitions in the previous section illustrated at this example, both in
the distribution and in the empirical case.

Consider the following problem: Suppose µ is a distribution in dimension 1 with corre-
sponding distribution function F ,

F : R → [0, 1], F (t) = µ((−∞, t]).

We are now interested in the quantiles of µ. As we are working in dimension 1, we can
simply define the q-th quantile as F−1(q) for q ∈ (0, 1), where F−1 is the generalized
inverse of F defined in Definition 3.1.13. Similarly, the median is given by F−1(1/2).
But what if we were working in dimension d > 1? The quantile can not be analogously
defined in higher dimensions as we do not have a canonical ordering of Rd as in the
one-dimensional case.

The empirical case is also interesting. When given a sample X1, . . . , Xn ∼ µ, the order
statistics are defined such that

X(1) ≤ X(2) ≤ · · · ≤ X(n).

Then, one can easily define the median as the value in the middle (in the n odd case). Due
to the canonical ordering of R it is also very easy to define the empirical quantiles. But
what if we were working in a higher dimension? Also, what is the empirical distribution
function in higher dimensions?

Transport maps can help us suggest a solution this problem. As established in Example
4.1.11, the distribution function is a transport map from a distribution µ to the Unif[0, 1]
distribution. Similarly, in the empirical case the empirical distribution function transports
the sample to the set

{
1
n
, 2
n
, . . . , 1

}
which approximates Unif[0, 1]. The problem in higher

dimensions is that it is difficult to work with the set [0, 1] equipped with Unif[0, 1] on
which the theory in dimension 1 is based on. Instead we will work with the unit ball in
higher dimensions equipped with a type uniform distribution. We will later see how this
can be done.

For now, let us begin with some intuition. Let X ∼ µ with µ ∈ P1
ac be absolutely

continuous and have distribution function F . Consider the increasing function F± :=
2F − 1, which we for now call center-outward distribution function. It is cyclically
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4 Optimal Transport

monotone since it is increasing, and it transports µ to the uniform distribution on the
unit ball U1 = Unif(−1, 1). The question is: Why is this transformation useful? The
answer is: It is not very helpful in dimension 1, but in higher dimensions it is. The
center-outward distribution F± contains the same information as F and we can define
familiar and new terms:

� The medians are given by the elements of F−1
± ({0}).

� The center-outward quantile regions are defined as C(q) := F−1
± ([−q, q]) for q ∈

(0, 1).

� The center-outward quantile contours are defined as C(q) := F−1
± ({−q, q}) for q ∈

(0, 1).

We observe the difference between the classical distribution function and the center-
outward distribution function. As the name already suggests the center-outward dis-
tribution function defines quantiles from a center-outward perspective. Everything is
centered around 0. We will later see that we can generalize this to higher dimensions.
Next, let us consider the empirical case in dimension 1.

Suppose we are given a sample X1, . . . , Xn
iid∼ µ. Then, the empirical rank statistics1

R
(n)
1 , . . . , R

(n)
n are defined as

R
(n)
i = #{k ∈ [n] : Xk ≤ Xi} i ∈ [n].

Further, the classical empirical distribution is given by

F (n)(t) =
1

n
#{k ∈ [n] : Xk ≤ t}.

Observe that only the values of F (n) on the sample {X1, . . . , Xn} are uniquely defined,
as F (n) can be defined arbitrarily in between as long as it remains increasing and we
have lim

t→−∞
F (n)(t) = 0 and lim

t→∞
F (n)(t) = 1. We can also say that F (n) maps the order

statistics

X(1), X(2), . . . , X(n) to
1

n
,
2

n
, . . . , 1.

We can now define the empirical center-outward distribution F
(n)
± analogously by mapping

X(1), X(2), . . . , X(n) to − n− 1

n+ 1
,−n− 3

n+ 1
, . . . ,

n− 1

n+ 1
,

where we assume n to be odd2. Outside the sample F
(n)
± can be defined such that it is

increasing and we have lim
t→−∞

F
(n)
± (t) = −1 and lim

t→∞
F

(n)
± (t) = 1. Again we can define the

familiar and new terms:
1Note that both the statistics from Definition 4.1.10 and here are called rank statistics. The ones

from the definition are with respect to a distribution. As the rank statistics from here take values in
[n], they may be interpreted as empirical rank statistics with respect to the uniform distribution on [n].
This can be shown with a similar argument as in Example 4.1.11.

2The case, n even, is also studied in (Hallin et al., 2017). It is very similar, but with slightly more
unconvenient notation. As we are mainly interested in the idea behind it than introducing the concept
we do not consider the n even case.
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� The empirical median is given by F
(n)−1

± ({0}).

� The center-outward ranks R
(n)
±,i are defined as R

(n)
±,i =

∣∣∣R(n)
i − n+1

2

∣∣∣ for i ∈ [n].

� The center-outward signs S
(n)
±,i are defined as S

(n)
±,i = sign

(
R

(n)
i − n+1

2

)
for i ∈ [n].

� The empirical quantile regions C(n)
± (q) =

{
Xi : R

(n)
±,i ≤

q(n+1)
2

}
for q ∈ (0, 1).

� The empirical quantile contours C(n)
±
(

2j
n+1

)
=
{
Xi : R

(n)
±,i ≤ j

}
for j ∈

[
n+1
2

]
.

Everything is again defined in a center-outward perspective. Also, note that the set{
−n−1

n+1
,−n−3

n+1
, . . . , n−1

n+1

}
is a grid of Unif[−1, 1], when interpreted as a triangular array of

fixed points increasing with n.

This concludes the definitions for dimension 1. We are now able to examine the interesting
part namely, generalizing these concepts to the higher dimension. Thereby, we will be
working with the unit ball equipped with a uniform type distribution which we introduce
next:

Definition 4.2.1 (Uniform Distribution on the Unit Ball). Let S be uniformly dis-
tributed on the unit sphere Sd−1 and let U be uniformly distributed on [0, 1]. Then,
we call the distribution of US the uniform distribution Ud on the d-dimensional (open)
unit ball Sd. Note that this is not the actual uniform distribution on the unit ball in
dimensions d ≥ 2.

In dimension 1 the center-outward distribution function was the µ-a.e. unique function
transporting µ to U1. This property will carry over to the higher dimension, as we will be
working with Sd equipped with Ud. We can now define the center-outward distribution
function based on Proposition 4.1.2.

Definition 4.2.2 (Center-Outward Distribution Function). Let X ∼ µ ∈ Pd
ac.

� The center-outward distribution function of X is the unique gradient of a convex
function F± pushing µ forward to Ud.

� The corresponding center-outward quantile function Q± is defined as the unique
gradient of a convex function pushing Ud forward to µ.

� The quantile regions of order q ∈ (0, 1) are defined as C(q) = Q±(qS̄d)

� The quantile contours of order q ∈ (0, 1) are defined as C(q) = Q±(qSd−1).

This definition is slightly different to the corresponding Definition 4.1 in (Hallin et al.,
2017). There, the center-outward distribution function is defined for non-vanishing dis-
tributions which is a stronger requirement:

Definition 4.2.3 (Non-Vanishing). An absolutely continuous distribution µ ∈ Pd
ac is

called non-vanishing if its density f satisfies the following property: For all D > 0 there
exist 0 < λD < ΛD such that

λD < f(x) < ΛD

for all x with ∥x∥ ≤ D. We write µ ∈ Pd
nv.
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For non-vanishing distributions, Definition 4.2.2 becomes particularly meaningful. In
that case, Proposition 4.2 in (Hallin et al., 2017) shows that the quantile regions C(q)
have boundaries C(q), and are connected and nested as q increases from 0 to 1. Further,
the set F−1

± ({0}) is a compact set of measure zero and can be defined as the set of center-
outward medians. Note that the center-outward medians can not be well-defined in the
absolutely continuous case. Proposition 4.1.2 only provides the existence of transport
maps almost everywhere.

In summary, the transport map from an arbitrary non-vanishing distribution µ ∈ Pd
nv

to the uniform distribution on the unit ball Ud enabled us to generalize the distribution
function, the median, and quantiles to the higher dimension. Optimal transport theory
will also be very useful in the empirical case, as we will see next.

In order to generalize our concepts we will need to find a grid for the uniform distribution
on the unit ball Ud:

Definition 4.2.4. We will formulate the grid visualized in Figure 4.3 mathematically.

Let (un)n∈N
iid∼ Unif(Sd−1) fix a sequence of directions. Next, factorize n as

n = nRnS + n0, nR, nS, n0 ∈ N, 0 ≤ n0 < min(nR, nS),

where nR, nS → ∞ when n→ ∞. Now, we obtain a grid of nRnS points in the unit ball at
the intersection of the directions (u1, . . . , unS

) and nR hyperspheres centered at the origin
with radii 1/(nR + 1), . . . , nR/(nR + 1). The remaining points are n0 indistinguishable
copies of the origin if n0 > 0.

Let us denote this collection of points by Z
(n)
1 , . . . , Z

(n)
n . We define the discrete distribution

which assigns the probability mass 1/n to every point but the origin, and the probability
mass n0/n to the origin, i.e.

U
(n)
d ∼ 1

n

n∑
i=1

Z
(n)
i .

We call U
(n)
d the uniform distribution over the augmented grid. By (Hallin et al., 2017),

the array (Z
(n)
k )n≥k≥1 is in fact a grid of Ud in the sense of Definition 4.1.3, i.e. we have

1

n

n∑
i=1

Z
(n)
i

w−−−→ Ud a.s.

Now, the grid for Ud enables us to define the empirical center-outward distribution func-
tion. Recall that in dimension 1, we were only interested in the restriction of the empirical
center-outward distribution function to the sample on which it was cyclically monotone.
This will also carry over to higher dimensions.

Definition 4.2.5 (Empirical Center-Outward Distribution Function). Let X1, . . . , Xn
iid∼

µ be a sample with µ ∈ Pd. Let (Z
(n)
k )n≥k≥1 be the grid of Ud as in Definition 4.2.4. We

define the empirical center-outward distribution function as

F
(n)
± : {X1, . . . , Xn} → {Z(n)

1 , . . . , Z(n)
n }, F (n)

± (Xi) = R̂n
Ud
(Xi),
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Figure 4.3: The augmented grid for U2 (taken from page 15 in (Hallin et al., 2017)).

where the empirical rank statistics are with respect to the grid (Z
(n)
k )n≥k≥1. Equivalently,

we have
F

(n)
± (Xi) = Zσ(i)

for an optimal permutation σ which satisfies
n∑

i=1

∥∥Xi − Zσ(i)

∥∥2 = min
π∈Sn

n∑
i=1

∥∥Xi − Zπ(i)

∥∥2 .
In particular, the set {(

X1, F
(n)
± (X1)

)
, . . . ,

(
Xn, F

(n)
± (Xn)

)}
is cyclically monotone.

The following picture illustrates the center-outward distribution of a sample.

Figure 4.4: Center-Outward Distribution function of a sample of Exp(1)⊗N (0, 1)
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Example 4.2.6. What can we see in the plots? On the left hand side there is a n = 17
sample of the distribution µ1⊗µ2, where µ1 ∼ Exp(1) and µ2 ∼ N (0, 1) are independent.
On the right hand side we see the grid of U2 as in Definition 4.2.4. Further, we see
which sample point gets mapped to which point on the grid, e.g. the observed point with
number 8 is the empirical center-outward median of the sample.

With the empirical distribution function we can now define the familiar concepts in a
higher dimension:

Definition 4.2.7. Let X1, . . . , Xn
iid∼ µ be a sample with µ ∈ Pd and empirical center-

outward distribution function F
(n)
± . Then, we define

� center-outward ranks: R
(n)
±,i = (nR + 1)∥F (n)

± (Xi)∥ for i ∈ [n].

� center-outward signs: S
(n)
±,i =

F
(n)
± (Xi)

∥F (n)
± (Xi)∥

for i ∈ [n] and 0 if undefined.

� center-outward quantile regions: C(n)
± (q) = {Xi | R(n)

±,i ≤ qnR} for q ∈ (0, 1).

� center-outward quantile contours: C(n)
± (j/nR) = {Xi | R(n)

±,i = j} for j ∈ [nR].

Next, we show examples for the mentioned terms.

Example 4.2.8. Consider again the sample from Example 4.2.6 with n = 17. We have
n0 = 1, nR = 2 and nS = 8. Some calculations:

R
(17)
±,12 = 1, R

(17)
±,1 = 2, S

(17)
±,14 =

(
0
1

)
, S

(17)
±,5 =

1√
2

(
−1
1

)
The following are examples for quantile regions and quantile contours.

Figure 4.5: Quantile Region C(17)
± (1/2) (left) and Quantile Contour C(17)

± (1/2) (right)

Finally, the center-outward distribution has a Glivenko-Cantelli type property:
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4 Optimal Transport

Theorem 4.2.9 (Theorem 5.1 in (Hallin et al., 2017)). Let (Xn)n∈N
iid∼ µ be a sample

with µ ∈ Pd
nv and empirical center-outward distribution function F

(n)
± . Further, let F± be

the actual center-outward distribution function with respect to µ. Then,

lim
n→∞

max
i=1,...,n

∥∥∥F (n)
± (Xi)− F±(Xi)

∥∥∥ = 0 a.s.

When rewriting the statement with the rank statistics from Definition 4.1.10, we have

lim
n→∞

max
i=1,...,n

∥∥∥R̂n
Ud
(Xi)−Rµ

Ud
(Xi)

∥∥∥ = 0 a.s.

Hence, the empirical rank statistics of the Xi’s on Ud converge uniformly against the true
rank statistics on Ud.

Let us summarize the results of this subsection. Although we see how strong the theory of
the center-outward distribution function is with the defined concepts in Definition 4.2.7
and the property in Theorem 4.2.9, this was not the main purpose of this subsection. The
idea was to get a better understanding for the use of optimal transport. So what can we
learn from this example? When we have theory around some distribution ν, but we are
working with a Y ∼ µ, we can transport µ to ν. Then, we can use the theory for ν with

the rank statistic Rµ
ν (Y ). When working with a sample Y1, . . . , Yn

iid∼ µ and µ is unknown
one needs a grid of ν and can use the empirical rank statistics R̂n

ν (Y1), . . . , R̂
n
ν (Yn) instead.

This concept has been a focal point of research in recent years. For example, tests of
equality and the independence of probability distributions based on rank statistics have
been proposed in (Deb and Sen, 2019) and (Shi et al., 2022), respectively. Also, rank
statistics can be used to define multivariate analogues of Spearman’s ρ and Kendall’s τ
as suggested in (Shi et al., 2024). Overall, there any many possible applications for rank
statistics. We will use them for estimation in Canonical Correlation Analysis later.
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5 Canonical Correlation Analysis

Now, we have introduced the measure-theoretic probability and optimal transport theory
we need. This chapter will deal with Canonical Correlation Analysis (CCA). We begin
with a recap of the multivariate normal distribution as the classical CCA theory is based
on it. Thereafter, we continue with the motivation, history, and the model of CCA. Next,
the Gaussian Copula CCA, a generalization to the classical model, will be introduced.
Finally, we will present our main topic, the Cyclically Monotone CCA model. Throughout
the chapter we discuss the formulations of all three models, present an estimation method
for each and prove their consistency.

5.1 Recap: Multivariate Normal Distribution

Definition 5.1.1 (Normal Distribution).

� A random variable Z follows a univariate standard normal distribution if Z has the
density

fZ(z) =
1√
2π
e−

z2

2 z ∈ R

with respect to the Lebesgue-measure in R. We write Z ∼ N (0, 1).

� A random variable Y follows a univariate normal distribution if Y = m + σZ for
some m ∈ R, σ ≥ 0 and Z ∼ N (0, 1). We write Y ∼ N (m,σ2).

� A random vector X = (X1, . . . , Xd) follows a multivariate normal distribution,
denoted by X ∼ Nd(m,Σ), if for all a ∈ Rd, aTX is univariate normal with aTX ∼
N (aTm, aTΣa), where m ∈ Rd and Σ ∈ Rd×d is positive semi-definite.

Definition 5.1.2. A quadratic and symmetric matrix A ∈ Rd×d is called positive-
semidefinite if for all x ∈ Rd, xTAx ≥ 0. A positive-semidefinite matrix is called positive
definite if it is also invertible.

The next important property of the normal distribution is that all of its moments exist:

Proposition 5.1.3. Let Y ∼ N (m,σ2) be normally distributed with m ∈ R and σ ≥ 0.
Then, all moments of Y exist and we have E[Y ] = m and Var[Y ] = σ2. Hence, by the
definition of the multivariate normal distribution, all its marginal and product moments
exist, too. In particular, we have E[X] = m and Var[X] = Σ for X ∼ Nd(m,Σ).

Proof. We refer to page 45 and Proposition 5.1 in (Bilodeau and Brenner, 1999).

Other properties we are interested in are linear transformations, independence, and con-
ditional distributions.

Proposition 5.1.4 (Proposition 5.2 and 5.3 in (Bilodeau and Brenner, 1999)). Let X ∼
Nd(m,Σ), let b ∈ Rn and let A ∈ Rn×d. Then, AX + b ∼ Nn(Am + b, AΣAT ). In
particular, if

X =

(
X1

X2

)
∼ Nd

((
m1

m2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

then, X1 ∼ Nd1(m1,Σ11), where d1 is the length of m1.
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5 Canonical Correlation Analysis

Proposition 5.1.5 (Proposition 5.4 in (Bilodeau and Brenner, 1999)). Let X ∼ Nd(m,Σ)
with

X =

(
X1

X2

)
∼ Nd

((
m1

m2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

Then, X1 and X2 are independent if and only if Σ12 = 0. In that case we write X1 ⊥⊥ X2.

Proposition 5.1.6 (Proposition 5.6 in (Bilodeau and Brenner, 1999)). Let X ∼ Nd(m,Σ)
with Σ positive definite and

X =

(
X1

X2

)
∼ Nd

((
m1

m2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

Then, the conditional distribution of X1 given the event X2 = x2 for some x2 ∈ Rd2 is
given by

X1|X2 = x2 ∼ Nd1

(
m1 + Σ12Σ

−1
22 (x2 −m2),Σ11 − Σ12Σ

−1
22 Σ21

)
.

Thereby, the matrix Σ11.2 := Σ11 − Σ12Σ
−1
22 Σ21 is called the Schur-complement.

Proposition 5.1.7. Let m ∈ Rd and Σ ∈ Rd×d be positive definite. Then, there exists a
random vector X with X ∼ Nd(m,Σ).

Proof. By Theorem 3.2.4 in (Tong, 1990), we haveX ∼ Nd(m,Σ) if there exist Z1, . . . , Zd
iid∼

N (0, 1) and A ∈ Rd×d such that AZ + m = X and AAT = Σ. By generalized inverse
transform in Theorem 3.1.14, there exists Z1 ∼ N (0, 1). It is an elementary result from
probability theory that we can always construct independent random variables. Hence,

there exist Z1, . . . , Zd
iid∼ N (0, 1). By the Cholesky factorization in (Horn and Johnson,

2013, Corollary 7.2.9), we can find L ∈ Rd×d, so that LLT = Σ. Letting Z = (Z1, . . . , Zd)
and X = LZ +m shows the claim.

This finalizes our recap for the multivariate normal distribution. We can now begin with
the history of Canonical Correlation Analysis.

5.2 Classical CCA

5.2.1 History and Motivation

The original theory for Canonical Correlation Analysis (CCA) was developed by Harold
Hotelling in (Hotelling, 1936). He examined the idea of applying correlations and regres-
sions not just to one-dimensional random variables.

An example for the theory of correlation is marksmen, side by side, firing shots at a target.
The deviations of their shots are partly due to individual errors and partly to a common
cause such as wind. When one wanted to investigate this association with approaches
available at that point of time, one could calculate the correlation of one-dimensional
variables. For example the correlation of the x-deviation of the shots and the x-velocity
of the wind could have been determined. However, studying only this dependence would
lead to an incomplete analysis as there are other variables which could be analyzed, such
as correlation of the x-,y- and z-velocity of the wind, and the x- and y-deviation of the
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5 Canonical Correlation Analysis

shots. But if one aims to make a more detailed analysis involving all mentioned variables,
the problem becomes more complicated. Of course one could estimate a 2× 3 block of a
correlation matrix in this case, providing 6 correlation values for interpretation. However,
in a higher dimensional data set this option would not be suitable as there are too many
correlations to work with.

One example could be the following scenario: Suppose one is interested in studying
the association of returns of two baskets of assets in a financial market. Thereby, one
aims to study the dependence between the two sets of assets rather than the correlation
inside each set. When the size of each basket is not small, let us say n ≥ 30, then, the
corresponding block of their correlation matrix contains at least 900 elements which is
not very informative. Canonical Correlation Analysis provides a solution to overcome
this problem. The approach is to find one linear combination of assets for each basket
which have the highest correlation. Thereafter, one can find two new linear combinations
of assets which are uncorrelated with the previous which have the highest correlation and
so on. The investigator would then observe that the interrelation of the two sets can
almost entirely be explained by a few of such linear combinations.

Today, CCA has become an established method to analyze the correlation of non-overlapping
sets of random variables. Let us provide another example: Suppose one is interested in the
academic success of students based on their personality. Variables for academic success
could be grades in subjects, like:

� X1: Languages

� X2: Mathematics

� X3: Humanities

� X4: Science

For Personality Traits one could take the ones from the Five-Factor Model:

� Y1: Agreeableness (being compassionate and polite)

� Y2: Conscientiousness (being industrious and orderly)

� Y3: Extraversion (being enthusiastic and assertive)

� Y4: Neuroticism (affinity towards negative emotion, withdrawal and volatility)

� Y5: Openness (intellect and openness to experience)

The variables X = (X1, . . . , X4) and Y = (Y1, . . . , Y5) are taken from (Journals, 2021).
Now, instead of considering all pairs of correlations, the approach of CCA is to learn
which combination of personality traits is correlated with strengths in which combination
of subjects.

The goal is to find linear combinations αT
1X and γT1 Y which have the maximum corre-

lation λ1 := Corr[αT
1X, γ

T
1 Y ] with α1 ∈ R4 and γ1 ∈ R5. Then, λ1 is called the first

canonical correlation of X and Y , and αT
1X & γT1 Y are called canonical variables. Hypo-

thetically, one pair of such linear combinations could look like this: High conscientiousness
combined with low neuroticism is positively correlated with good grades in mathematics
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5 Canonical Correlation Analysis

and science. Note that as described before we do not study the dependency within each
set. A relationship that CCA does not cover is e.g., the correlation of good grades in
languages and humanities with the performance in mathematics and science.

After identifying the first canonical variables αT
1X and γT1 Y , one can then continue to find

new linear combinations αT
2X and γT2 Y maximizing the correlation λ2 := Corr[αT

2X, γ
T
1 Y ]

with α2 ∈ R4 and β2 ∈ R5 subject to being uncorrelated with the first canonical variables
αT
1X and γT1 Y . Thereby, this constraint is there to ensure that the new pair of linear

combinations explains dependencies that have not been covered before. Then, λ2 is called
the second canonical correlation of X and Y and so on. We will later see that this could
be done 4 times, as this the number of variables in the smaller data set. In practice one
would stop after a satisfying number of canonical correlations, in particular when most
of the interrelations have been explained.

For further reading about Canonical Correlation Analysis we refer to (Hotelling, 1936),
(Anderson, 2003), and (Johnson and Wichern, 2007). In the following we will introduce
CCA mainly following (Anderson, 2003).

5.2.2 The Classical CCA Model

In the end of this section we will provide the main theorem about CCA, namely Theorem
5.2.1 which describes the theory concisely. For now let us begin with some intuitive steps
for the derivation of it.

One fundamental assumption of classical CCA is multivariate normality which also im-
plies invariance of the canonical correlations under linear combinations of the variables.
Let two multivariate normal data sets Y1 ∼ Np1(m1,Σ11), Y2 ∼ Np2(m2,Σ22) with p1 ≤ p2
be given such that they are jointly normal

Y =

(
Y1
Y2

)
∼ Np

(
m :=

(
m1

m2

)
,Σ :=

(
Σ11 Σ12

Σ21 Σ22

))
.

Thereby, we assume Σ ∈ Rp×p to be positive definite. As described we are interested in
finding linear combinations maximizing the correlation, i.e. solving the problem

max
α1∈Rp1 ,γ1∈Rp2

λ1 := Corr[αT
1 Y1, γ

T
1 Y2]. (P1)

If this problem can be solved, we want to find new linear combinations αT
2 Y1 and γT2 Y2

maximizing their correlation subject to being independent3 of all previous linear combi-
nations, i.e.

max
α2∈Rp1 ,γ2∈Rp2

λ2 := Corr[αT
2 Y1, γ

T
2 Y2] (P2)

subject to (αT
2 Y1, γ

T
2 Y2) ⊥⊥ (αT

1 Y1, γ
T
1 Y2).

If this problem can be solved, we again aim to find new linear combinations αT
3 Y1 and

γT3 Y2 maximizing their correlation subject to being independent of all previous linear

3Note that independence and having zero correlation are equivalent for normal random vectors by
Proposition 5.1.5.
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combinations, i.e.

max
α3∈Rp1 ,γ3∈Rp2

λ3 := Corr[αT
3 Y1, γ

T
3 Y2] (P3)

subject to (αT
3 Y1, γ

T
3 Y2) ⊥⊥ (αT

1 Y1, γ
T
1 Y2, α

T
2 Y1, γ

T
2 Y2).

Let us rewrite these problems for simplicity. Since Σ is positive definite (p.d.), Σ11 and

Σ22 must be p.d., too. Hence, they have p.d. square roots Σ
1/2
11 and Σ

1/2
22 , respectively.

Now consider the random variable

Z =

(
Z1

Z2

)
=

(
Σ

−1/2
11 (Y1 −m1)

Σ
−1/2
22 (Y2 −m2)

)
∼ Np

(
0,

(
Ip1 Σ

−1/2
11 Σ12Σ

−1/2
22

Σ
−1/2
22 Σ21Σ

−1/2
11 Ip2

))
,

where we derived its distribution with Proposition 5.1.4. Now, (P1) can be rewritten to

max
α1∈Rp1 ,γ1∈Rp2

λ1 := Corr[αT
1 (Σ

1/2
11 Z1 +m1), γ

T
1 (Σ

1/2
22 Z2 +m2)].

Since Σ
1/2
11 and Σ

1/2
22 are invertible, and the correlation is invariant under the addition of

constants, we conclude that by reparametrization (P1) is equivalent to

max
ξ1∈Rp1 ,ζ1∈Rp2

λ1 := Corr[ξT1 Z1, ζ
T
1 Z2].

Further, w.l.o.g. we can require our linear combinations to have unit variance. This
condition can be expressed as

1 = Var[ξT1 Z1] = E[ξT1 Z1Z
T
1 ξ1] = ξT1 E[Z1Z

T
1 ]ξ1 = ξT1 ξ1

1 = Var[ζT1 Z2] = E[ζT1 Z2Z
T
2 ζ1] = ζT1 E[Z2Z

T
2 ]ζ1 = ζT1 ζ1.

With W := Σ
−1/2
11 Σ12Σ

−1/2
22 , we then have

Corr[ξT1 Z1, ζ
T
1 Z2] =

Cov[ξT1 Z1, ζ
T
1 Z2]√

Var[ξT1 Z1]Var[ζT1 Z2]
=

E[ξT1 Z1Z
T
2 ζ1]√

ξT ξ · ζT ζ
= ξT1 Wζ1,

by Proposition 5.1.4. Finally, (P1) can be rewritten as

max
ξ1∈Rp1 ,ζ1∈Rp2

λ1 = ξT1 Wζ1 (P1*)

subject to ξT1 ξ1 = 1

ζT1 ζ1 = 1.

With Lagrange multipliers this problem can be solved, see Section 12.2 in (Anderson,
2003), and there exist maximizers ξ1, ζ1, and λ1 to (P1*) such that λ1 = Corr[ξT1 Z1, ζ

T
1 Z2].

One can easily observe that the maximizers for (P1) are then given by λ1, α1 = Σ
−1/2
11 ξ1

and γ1 = Σ
−1/2
22 ζ1.

Next, we rewrite (P2). The new condition (αT
2 Y1, γ

T
2 Y2) ⊥⊥ (αT

1 Y1, γ
T
1 Y2) is equivalent to

(ξT2 Z1, ζ
T
2 Z2) ⊥⊥ (ξT1 Z1, ζ

T
1 Z2). Since these linear combinations are normally distributed

by Proposition 5.1.4 and independence for normal variables is equivalent to having 0
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covariance by Proposition 5.1.5, the condition is equivalent to all four pairs having co-
variance 0, i.e.

0 = E[ξT2 Z1Z1ξ1] = ξT2 ξ1

0 = E[ξT2 Z1Z2ζ1] = ξT2 Wζ1

0 = E[ζT2 Z2Z
T
1 ξ1] = ζT2 Wξ1

0 = E[ζT2 Z2Z2ζ1] = ζT2 ζ1.

Finally, under the unit variance assumption, (P2) can be rewritten as

max
ξ2∈Rp1 ,ζ2∈Rp2

λ2 = ξT2 Wζ2 (P2*)

subject to ξT2 ξ2 = 1

ζT2 ζ2 = 1

ξT1 ξ2 = 0

ζT1 ζ2 = 0

ξT2 Wζ1 = 0

ζT2 Wξ1 = 0

It is shown in (Anderson, 2003) that this problem has a solution as well. In fact the
procedure of finding linear combinations can be done as long as the dimension permits
it, that is, p1 times. Assume that this is done and we obtain canonical correlations
1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λp1 ≥ 0 and vectors for linear combinations ξ1, . . . , ξp1 , ζ1, . . . , ζp1 .
If we summarize the λi’s in a diagonal matrix Λ in decreasing order and the vectors
in matrices, Ξ = (ξ1, . . . , ξp1) and Ψ = (ζ1, . . . , ζp1), the conditions of our optimization
problems imply that Ξ and Ψ must be orthogonal and we have ΞTWΨ = Λ, similar to the
singular value composition of W . This raises the question: Can canonical correlations be
obtained through a singular value composition of W?

The answer to that question is yes and is shown in a very long proof in section 12.2 of
(Anderson, 2003). We summarize the results in the following theorem.

Theorem 5.2.1 (Canonical Correlation Analysis). Let Y1 ∼ Np1(m1,Σ11), Y2 ∼ Np2(m2,Σ22)
be given such that they are jointly normal

Y =

(
Y1
Y2

)
∼ Np

(
m :=

(
m1

m2

)
,Σ :=

(
Σ11 Σ12

Σ21 Σ22

))
(CCA)

with Σ positive definite and p1 ≤ p2. Let Z be the multivariate normal random vector
with

Z =

(
Z1

Z2

)
=

(
Σ

−1/2
11 (Y1 −m1)

Σ
−1/2
22 (Y2 −m2)

)
∼ Np

(
0,

(
Ip1 W
W T Ip2

))
,

where W = Σ
−1/2
11 Σ12Σ

−1/2
22 ∈ Rp1×p2. Further, let W have singular value composition

W = Q1ΛQ
T
2 , Λ =


λ∗1 0 · · · 0 0 · · · 0

0 λ∗2 · · · 0
...

...
...

...
. . . 0

...
...

0 0 · · · λ∗p1 0 · · · 0

 ∈ Rp1×p2 ,

39



5 Canonical Correlation Analysis

where Q1Q
T
1 = Ip1 and Q2Q

T
2 = Ip2. Then, λ∗k is called the k-th canonical correlation of

Y1 and Y2. Further, let A := Σ
−1/2
11 Q1 and Γ := Σ

−1/2
22 Q2 have columns A = (α∗

1| · · · |α∗
p1
)

and Γ = (γ∗1 | · · · |γ∗p2), respectively. We call the triple (A,Γ,Λ) the CCA parameters of Y .
In particular, for k ∈ [p1], α

∗
k and γ∗k solve the optimization problem

max
αk∈Rp1 ,γk∈Rp2

λk = Corr[αT
k Y1, γ

T
k Y2]

subject to (αT
k Y1, γ

T
k Y2) ⊥⊥

(
α∗T
1 Y1, γ

∗T
1 Y2, . . . , α

∗T
k−1Y1, γ

∗T
k−1Y2

)
with optimal value λk = λ∗k. Finally, we have for k ∈ [p2] \ [p1]

γ∗
T

k Y2 ⊥⊥
(
α∗T
1 Y1, γ

∗T
1 Y2, . . . , α

∗T
p1
Y1, γ

∗T
p1
Y2, γ

∗T
p1+1Y2, . . . , γ

∗T
k−1Y2

)
.

Let us provide an example for this theorem.

Example 5.2.2. Suppose Y1 and Y2 have distributions

Y1 ∼ N2

((
2
−1

)
,

(
5 4
4 5

))
, and Y2 ∼ N2

((
−3
4

)
,

(
4 0
0 1

))
with joint distribution

Y =

(
Y1
Y2

)
=


Y1,1
Y1,2
Y2,1
Y2,2

 ∼ N4




2
−1
−3
4

 ,


5 4 1.75 0.625
4 5 1.25 0.875

1.75 1.25 4 0
0.625 0.875 0 1




What are the CCA parameters of Y ? The corresponding optimization problems are

max
α1∈R2,γ1∈R2

λ1 := Corr[αT
1 Y1, γ

T
1 Y2],

and

max
α2∈R2,γ2∈R2

λ2 := Corr[αT
2 Y1, γ

T
2 Y2]

subject to (αT
2 Y1, γ

T
2 Y2) ⊥⊥ (αT

1 Y1, γ
T
1 Y2).

We use the approach from Theorem 5.2.1. Now, one can compute

Σ
−1/2
11 =

(
5 4
4 5

)−1/2

=
1

3

(
2 −1
−1 2

)
and Σ

−1/2
22 =

(
4 0
0 1

)−1/2

=

(
0.5 0
0 1

)
.

Then, we have

W = Σ
−1/2
11 Σ12Σ

−1/2
22 =

1

3

(
2 −1
−1 2

)(
1.75 0.625
1.25 0.875

)(
0.5 0
0 1

)
=

(
0.375 0.125
0.125 0.375

)
Then, one can calculate the singular value decomposition

W = Q1ΛQ
T
2 =

1√
2

(
1 −1
1 1

)(
0.5 0
0 0.25

)
1√
2

(
1 1
−1 1

)
.
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Finally, one can compute

A =
1

3

(
2 −1
−1 2

)
1√
2

(
1 −1
1 1

)
=

1

3
√
2

(
1 −3
1 3

)
and

Γ =

(
0.5 0
0 1

)
1√
2

(
1 −1
1 1

)
=

1√
2

(
0.5 −0.5
1 1

)
.

The CCA parameters of Y are (A,Γ,Λ), but how can we interpret these results? Firstly,
note that the correlation of the linear combinations is invariant under scaling with positive
constants. Hence, linear combinations of Y1 and Y2 with maximum correlation are given
by

Y1,1 + Y1,2 and Y2,1 + 2Y2,2

with correlation 0.5 which is the first canonical correlation. The second pair of linear
combinations explaining the dependency of the set is given by

−Y1,1 + Y1,2 and − Y2,1 + 2Y2,2

with second canonical correlation 0.25. In summary, these two pairs explain the depen-
dency of the random vectors Y1 and Y2 and we have canonical correlations of 0.5 and
0.25.

The next question is: How can the CCA parameters be estimated in practice, i.e. when
given a sample?

5.2.3 Estimation of the CCA Parameters

In this subsection we provide the estimation method for the classical CCA model and
prove asymptotic results. Let us begin with the notation which is used in the following.

Notation 5.2.3. Let Y (1), Y (2), . . .
iid∼ Np(m,Σ) be given as in (CCA). We denote the

data matrix based on the first n samples by Y (n). Thereby, Y (1), Y (2), . . . , Y (n) are the
rows of Y (n) and we use the partitioned notation

Y (n) =
(
Y

(n)
1 Y

(n)
2

)
=

Y
(1)

...
Y (n)

 ∈ Rn×p, Y
(n)
k =

Y
(1)
k
...

Y
(n)
k

 ∈ Rn×pk .

Some times we will also suppress the index (n) in the exponent.

The determination of the CCA parameters is straightforward by plug-in estimation. Note
that the canonical correlations are obtained by the singular value decomposition of the
matrix W = Σ

−1/2
11 Σ12Σ

−1/2
22 . Hence, we need to estimate blocks of the covariance matrix

Σ. The following theorem provides a consistent method.

Theorem 5.2.4. In the setting of Notation 5.2.3, define

Ỹ
(n)

k = Y
(n)
k − 1

n
1n1

T
nY

(n)
k .

It holds for all k, l = 1, 2,
1

n
Ỹ

(n)T

k Ỹ
(n)

l
a.s.−−−→ Σkl.
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Proof. We define the sample mean,

Y
(n)

k =
1

n

n∑
i=1

Y
(i)
k =

1

n
1T
nY

(n)
k .

Note that we enter the samples as row vectors, hence, the sample mean Y
(n)

k ∈ R1×pk and
the true mean mk ∈ R1×pk are row vectors, as well. We have

1

n
Ỹ

(n)T

k Ỹ
(n)

l =
1

n

(
Y

(n)
k − 1nY

(n)

k

)T (
Y

(n)
l − 1nY

(n)

l

)
=

1

n

(
Y

(n)
k − 1nmk + 1nmk − 1nY

(n)

k

)T (
Y

(n)
l − 1nml + 1nml − 1nY

(n)

l

)
=

1

n

(
Y

(n)
k − 1nmk

)T (
Y

(n)
l − 1nml

)
− 1

n

(
Y

(n)

k −mk

)T
1T
n

(
Y

(n)
l − 1nml

)
− 1

n

(
Y

(n)
k − 1nmk

)T
1n

(
Y

(n)

l −ml

)
+

1

n

(
Y

(n)

k −mk

)T
1T
n1n

(
Y

(n)

l −ml

)
=

1

n

(
Y

(n)
k − 1nmk

)T (
Y

(n)
l − 1nml

)
−
(
Y

(n)

k −mk

)T (
Y

(n)

l −ml

)
=

1

n

n∑
i=1

(
Y

(i)
k −mk

)T (
Y

(i)
l −ml

)
−
(
Y

(n)

k −mk

)T (
Y

(n)

l −ml

)
.

By the Strong Law of Large Numbers (Theorem 3.2.6) and the fact that the matrix
product is continuous, the first and the second term converge to Σkl and 0, respectively.
Hence, the assertion is proven.

Now, we would like to plug the consistent estimators of Theorem 5.2.4 into the equations
of Theorem 5.2.1, but this involves the calculation of a matrix inverse and square root. We
shortly address their well-definedness in the following lemma and present the algorithm
thereafter.

Lemma 5.2.5. In the setting of Notation 5.2.3, we have that both, Ỹ
T

1 Ỹ 1 and Ỹ
T

2 Ỹ 2

are almost surely positive definite if n ≥ p2 + 1.

Proof. For k = 1, 2, clearly Ỹ
T

k Ỹ k is positive semi-definite, so let us show that it is also

invertible. By Complement 3.4.5 (c) in (Mardia et al., 1979), Ỹ
T

k Ỹ k ∼ Wpk(n − 1,Σ)
follows a Wishart distribution which we introduce in Definition 6.2.2. By Proposition

6.2.3, Ỹ
T

k Ỹ k is invertible with probability 1 if n ≥ pk + 1.

Algorithm 1 CCA Estimation

Input: Data Matrix Y = Y (n) with n ≥ p2 + 1
Output: CCA parameters Â, Γ̂, and Λ̂.

1: Set Ỹ 1 = Y 1 − 1
n
1n1

T
nY 1 and Ỹ 2 = Y 2 − 1

n
1n1

T
nY 2, respectively.

2: Set Ŵ =
(
Ỹ

T

1 Ỹ 1

)−1/2

Ỹ
T

1 Ỹ 2

(
Ỹ

T

2 Ỹ 2

)−1/2

3: Let Ŵ have singular value composition Ŵ = Q̂1Λ̂Q̂
T
2 .

4: Set Â =
(
Ỹ

T

1 Ỹ 1

)−1/2

Q̂1 and Γ̂ =
(
Ỹ

T

2 Ỹ 2

)−1/2

Q̂2, respectively.
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Algorithm 1 is consistent for the estimation of the CCA parameters. We can show this
with Theorem 5.2.4 and the following lemmas.

Lemma 5.2.6. The matrix inverse and square root are continuous on the space of positive
definite matrices.

Proof. The entries of a matrix inverse can be written as a continuous function of the
entries of the matrix and the determinant. Since the determinant is a polynomial of the
matrix entries, the inverse is continuous. For a proof of the continuity of the matrix
square root, we refer to (Wihler, 2009).

Lemma 5.2.7 (Theorem 3 and Theorem 6 in (Nathanson and Ross, 2023)). Let

R : Rn+1 \ (Rn × {0}) → Cn

be the function that assigns each (n + 1)-tuple (a0, . . . , an) the roots of the polynomial

f(z) =
n∑

i=0

aiz
i in increasing order. Then, R is continuous, i.e. the roots of a polynomial

of fixed degree n depend continuously on its coefficients.

Corollary 5.2.8 (Consistency of CCA). Let Y (1), Y (2), . . .
iid∼ Np(m,Σ) be as in (CCA).

Then, algorithm 1 is consistent for the estimation of W and the canonical correlations
λ1, . . . , λp1. That, is when Ŵ

(n) and Λ̂(n) with diagonal entries λ
(n)
1 , . . . , λ

(n)
p1 are obtained

from algorithm 1 with the first n samples Y (1), . . . , Y (n), we have

Ŵ (n) a.s.−−−→ W

and for all k ∈ [p1],

λ
(n)
k

a.s.−−−→ λk.

Proof. Combining Theorem 5.2.4 with Lemma 5.2.6 and the Continuous Mapping Theo-
rem yields

Ŵ (n) =

(
1

n
Ỹ

T

1 Ỹ 1

)−1/2(
1

n
Ỹ

T

1 Ỹ 2

)(
1

n
Ỹ

T

2 Ỹ 2

)−1/2
a.s.−−−→ Σ

−1/2
11 Σ12Σ

−1/2
22 = W

showing the consistency for W . Now, note that for k ∈ [p1], λk is the k-th biggest root
of the polynomial

f(λ) = det
(
Ŵ (n)T Ŵ (n) − λIp2

)
.

By Lemma 5.2.7, the continuity of the determinant and the Continuous Mapping Theo-
rem, we conclude

λ
(n)
k

a.s.−−−→ λk.

Another interesting result about the classical CCA is the asymptotic normality of the
squared canonical correlations.
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Theorem 5.2.9 (Asymptotic Normality of CCA). Let Y1, Y2, . . .
iid∼ Np(m,Σ) as in

(CCA) such that λ1 ̸= 1 and the nonzero canonical correlations are pairwise distinct.
Then, we have for all k ∈ [p1] with λk ̸= 0

√
n

(
λ
(n)
k

)2
− λ2k

2λk(1− λ2k)

w−−−→ N (0, 1),

where λ
(n)
k is the k’th canonical correlation obtained from Algorithm 1.

Proof. See Section 12.5 in (Anderson, 2003).

This concludes our section about the classical Canonical Correlation Analysis. Next, we
will consider models generalizing the classical CCA.

5.3 Gaussian Copula CCA

5.3.1 The Gaussian Copula CCA Model

Obviously, one drawback of the classical CCA is the normality assumption which may
not be fulfilled in many scenarios, so that there have been proposed models relaxing this
assumption. In this section, we introduce the Gaussian Copula model which allows the
marginals of the data to follow an arbitrary absolutely continuous distribution. However,
their dependency must be described by a Gaussian Copula. This model has also been
presented in (Yoon et al., 2020). Further reading about semiparametric CCA models we
recommend are (Agniel and Cai, 2017) and (Zoh et al., 2016).

We begin this section by defining the model setup, continue by discussing the implications
of the model assumptions and explain how the Gaussian Copula model generalizes the
classical CCA. Further, we present an estimation method of the Gaussian Copula CCA
(GCCCA) parameters and prove its consistency.

Definition 5.3.1 (Gaussian Copula Model). A random vector Y = (Y1, . . . , Yp) satisfies
the Gaussian Copula Model if there exists an underlying multivariate normal random
vector Z = (Z1, . . . , Zp) ∼ Np(0, C) and increasing functions f1, . . . , fp : R → R so that

fk(Yk) = Zk (GCCCA)

for all k ∈ [p]. Thereby, we assume C to be a correlation matrix which means being
positive definite and having diagonal entries 1. We write Y ∼ NPNp(C, f), where f =
(f1, . . . , fp). This is sometimes referred to as the nonparanormal distribution.

Remark 5.3.2. Note that the index notation in this section is slightly different to the last
section. Previously, we had Y =

(
Y1 Y2

)
to denote the two partitions. In this section we

write Y = (Y1, . . . , Yp) in order to emphasize the one-dimensional univariate marginals
as we will mostly focus on them in this section.

Definition 5.3.3 (Gaussian Copula CCA). Suppose Y ∼ NPNp(C, f) satisfies the Gaus-
sian Copula Model with an underlying Z ∼ Np(0, C). If Y is partitioned into (Y1, . . . , Yp1)
and (Yp1+1, . . . , Yp) with p1 ≤ p2 := p− p1 then, we define the GCCCA parameters of Y
as the CCA parameters of Z as in Theorem 5.2.1.
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There are three aspects that we will discuss for the model formulation. We begin with
the implications of the model assumptions.

What do the model assumptions imply? Another way this question can be for-
mulated is: If Y ∼ NPNp(C, f), what can we deduce about the distribution of Y or its
marginals? In fact, we show that Y ∼ NPNp(C, f) implies that the marginals Yk can
follow arbitrary continuous distributions.

Theorem 5.3.4. Let F1, . . . , Fp be continuous distribution functions and let C be a cor-
relation matrix. Then, there exists Y ∼ NPNp(C, f), so that Yk ∼ Fk for all k.

Proof. Let Z ∼ Np(0, C) be an underlying multivariate normal random vector which
exists by Proposition 5.1.7. Let Φ be the distribution function of a N (0, 1) random
variable. We define

Yk := F−1
k (Φ(Zk)).

By the generalized inverse transform (Theorem 3.1.14), we have Φ(Zk) ∼ Unif(0, 1) and
therefore, Yk = F−1

k (Φ(Zk)) ∼ µk. Further, since Fk is continuous, we have by Theorem
3.1.15 (ii), Φ−1(Fk(Yk)) = Zk. Finally, note that fk := Φ−1 ◦ Fk is increasing, so that
Y = (Y1, . . . , Yp) ∼ NPNp(C, f) satisfies the Gaussian Copula Model.

The converse is also true.

Theorem 5.3.5. Let Y = (Y1, . . . , Yp) ∼ NPNp(C, f) follow the Gaussian Copula model.
Then, for all k, the function fk has the form fk = Φ−1 ◦ Fk, where Fk is the continuous
distribution function of Yk. In particular, we have

Yk = F−1
k (Φ(Zk)) a.s. (5.1)

for all k.

Proof. Let k ∈ [p]. Note that since fk(Yk) = Zk ∼ N (0, 1), fk must be surjective. By
assumption it is also increasing and hence, continuous. Now, let us define the continuous
function Fk := Φ ◦ fk. We show that Fk is the distribution function of Yk. We have for
all t ∈ R

P(Yk ≤ t) ≤ P(fk(Yk) ≤ fk(t)) = Φ(fk(t)) = Fk(t)

P(Yk ≤ t) ≥ P({Yk ≤ t} ∪ {Yk > t, fk(Yk) = fk(t)}) ≥ P(fk(Yk) ≤ fk(t)) = Φ(fk(t)) = Fk(t).

Hence, Yk has the continuous distribution function fk. Finally, note that

fk(Yk) = Zk =⇒ Fk(Yk) = Φ(Zk) =⇒ Yk = F−1
k (Φ(Zk)) a.s.,

where we applied Theorem 3.1.15 (i) for the last implication.

Hence, the Gaussian Copula CCA allows exactly all continuous distributions as univariate
marginals. The next question we address is the parametrization of the Gaussian Copula.

Why this parametrization? Note that for Y ∼ NPNp(C, f), the multivariate normal
Z is parametrized with mean 0 and a correlation matrix C instead of an arbitrary mean
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m ∈ Rp and positive definite covariance matrix Σ ∈ Rp×p. Working with a correlation
matrix will turn out to be very useful, but for now let us address why this parametrization
is not a restriction.

Theorem 5.3.6. Suppose Y = (Y1, . . . , Yp) is a multivariate normal random vector, so
that there exist Z = (Z1, . . . , Zp) ∼ Np(m,Σ) with Σ ∈ Rp×p an arbitrary positive definite
covariance matrix and increasing functions f1, . . . , fp, so that

fk(Yk) = Zk

for all k. Then, Y satisfies the Gaussian Copula model. In particular, there exists a
correlation matrix C and increasing functions f̃1, . . . , f̃p, so that Y ∼ NPNp(C, f̃).

Proof. Since Σ = (σij) ∈ Rp×p is positive definite, all its diagonal entries are greater
than 0. Define the matrix C = (cij) ∈ Rp×p with cij =

σij√
σiiσjj

. Further, set f̃k :=

(fk −mk)/
√
σkk and define

Z̃k := f̃k(Yk) =
Zk −mk√

σkk
.

Then, Z̃ = (Z̃1, . . . , Z̃p) ∼ Np(0, C) and C is positive definite with diagonal entries 1 by
Proposition 5.1.4. Hence, Y ∼ NPNp(C, f̃).

Which models are covered? As the Gaussian Copula relaxes the normality assumption
of the CCA and allows arbitrary marginals, it should intuitively be larger than the CCA.
In fact, this is true and we have already shown it.

Corollary 5.3.7. Let Y be a multivariate random vector satisfying (CCA). Then, Y
satisfies the Gaussian Copula Model (GCCCA).

Proof. If Y satisfies (CCA), then this implies that Y fulfills the assumptions of Theorem
5.3.6, where we set Zk = Yk and fk to be the identity. Hence, Y satisfies the Gaussian
Copula Model.

This concludes our discussion of the Gaussian Copula CCA model. The next question
we deal with is: How can we estimate the GCCCA parameters when observing Y ?

5.3.2 Estimation of the GCCCA parameters

When solely observing Y ∼ NPNp(C, f), the estimation of the GCCCA parameters is
nontrivial, as they are based on the correlation matrix C of the unobserved Z. If we
knew C then, we could proceed as in Algorithm 1 and estimate a block of a covariance
matrix and make the singular value decomposition. Thankfully, there exists a lemma
which lets us make inference on C by using Spearman’s ρ. In this section we will present
this estimation method and prove its consistency. For now, let us begin with the notation
and setting throughout the section.
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Notation 5.3.8. Let Y (1), Y (2), . . .
iid∼ NPNp(C, f) be observed, so that Z(1), Z(2), . . .

iid∼
Np(0, C) are normal with a correlation matrix C and increasing functions f1, . . . , fp which
satisfy

fk(Y
(n)
k ) = Z

(n)
k

for all k ∈ [p] and all n ∈ N. We denote the data matrix based on the first n samples by
Y (n). Thereby, Y (1), . . . , Y (n) enter the matrix as row vectors:

Y (n) =

Y
(1)

...
Y (n)

 =
(
γ
(n)
1 γ

(n)
2 · · · γ

(n)
p

)
∈ Rn×p

The vectors γ
(n)
j = (Y

(1)
j , . . . , Y

(n)
j ) denote the columns of Y (n). As we will compute the

Spearman’s correlation coefficients, having a notation for the columns will be helpful.

Next, let us define Spearman’s ρ.

Definition 5.3.9 (Spearman’s ρ). Let X and Y be random variables with distribution
functions FX and FY . Then, their Spearman’s correlation coefficient ρX,Y is defined as

ρX,Y = Corr[FX(X), FY (Y )].

The estimation method relies on the following relationship of the Sperman’s correlation
and the entries of the correlation matrix:

Lemma 5.3.10 (Lemma 3.1 in (Liu et al., 2012)). Let Y = (Y1, . . . , Yd) ∼ NPNd(C, f)
with C = (cij) ∈ Rp×p and let ρi,j be the Spearman’s correlation coefficient of Yi and Yj.
That is,

ρi,j = Corr[Fi(Yi), Fj(Yj)],

where Fi and Fj are the distribution functions of Yi and Yj, respectively. Then, the
following relationship between the Spearman’s correlation coefficient and the correlation
matrix holds:

cij = 2 sin
(π
6
ρi,j

)
(5.2)

Hence, we can estimate the entries of C with Spearman’s ρ without having to know the
increasing functions f1, . . . , fp or the latent Z(i)’s which is very convenient. Before we
can present the algorithm we need to define the empirical version of Spearman’s ρ.

Definition 5.3.11 (Empirical Spearman’s ρ). LetX
(1)
1 , . . . , X

(n)
1

iid∼ µ1 andX
(1)
2 , . . . , X

(n)
2

iid∼
µ2 be two samples in R with empirical distribution functions F

(n)
1 and F

(n)
2 , respectively.

We use the notation

F
(n)

1 :=
1

n

n∑
i=1

F
(n)
1 (X

(i)
1 ) and F

(n)

2 :=
1

n

n∑
i=1

F
(n)
2 (X

(i)
2 ).

The empirical Spearman’s ρ of the samples is defined as

ρ̂
(n)
X1,X2

:=

n∑
i=1

(
F

(n)
1 (X

(i)
1 )− F

(n)

1

)(
F

(n)
2 (X

(i)
2 )− F

(n)

2

)
√

n∑
i=1

(
F

(n)
1 (X

(i)
1 )− F

(n)

1

)2
·

n∑
i=1

(
F

(n)
2 (X

(i)
2 )− F

(n)

2

)2
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Now, we can plug the empirical Spearman’s ρ of the marginals into (5.2) and estimate the
correlation matrix C. Then, we can apply the same steps as in classical CCA (Theorem
5.2.1). This yields the following straightforward algorithm:

Algorithm 2 GCCCA Estimation

Input: Data Matrix Y = (γ1| . . . |γp)
Output: GCCCA Parameters Ŵ and Λ̂

1: for i = 1, . . . , p do
2: for j = i, . . . , p do
3: Determine the Spearman’s correlation coefficient ρ̂i,j of γi and γj.
4: Set ĉij = ĉji = 2 sin

(
π
6
ρ̂i,j
)
.

5: Let Ĉ have block structure Ĉ =

(
Ĉ11 Ĉ12

Ĉ21 Ĉ22

)
.

6: Set Ŵ = Ĉ
−1/2
11 Ĉ12Ĉ

−1/2
22 .

7: Compute Λ̂ with the singular value decomposition of Ŵ = Q̂1Λ̂Q̂
T
2 .

We can show that Algorithm 2 is consistent for the estimation of the GCCCA parameters.
To do this we first show the consistency of the empirical Spearman’s ρ.

Theorem 5.3.12. Let X
(1)
1 , X

(2)
1 , . . .

iid∼ F1 and X
(1)
2 , X

(2)
2 , . . .

iid∼ F2 be i.i.d samples in R.
Let ρ̂

(n)
X1,X2

be the empirical Spearman’s correlation coefficient of the first n samples, i.e.

ρ̂
(n)
X1,X2

=

n∑
i=1

(
F

(n)
1 (X

(i)
1 )− F

(n)

1

)(
F

(n)
2 (X

(i)
2 )− F

(n)

2

)
√

n∑
i=1

(
F

(n)
1 (X

(i)
1 )− F

(n)

1

)2
·

n∑
i=1

(
F

(n)
2 (X

(i)
2 )− F

(n)

2

)2 ,
where F

(n)
1 and F

(n)
2 are the empirical distribution functions. Further, let

ρX1,X2 = Corr[F1(X
(1)
1 ), F2(X

(1)
2 )]

denote the true Spearman’s correlation of the two distributions. Then, ρ̂
(n)
X1,X2

is consistent
for ρX1,X2, i.e. we have

ρ̂
(n)
X1,X2

a.s.−−−→ ρX1,X2 .

Note that this is a general result, not specific to the Gaussian Copula. I.e. Spearman’s
ρ is always consistent for i.i.d. samples.

Proof. We show the convergence for the numerator and the two factors of the denominator
separately. For indices k, l = 1, 2, define

mk = E[Fk(X
(1)
k )] F k =

1

n

n∑
i=1

Fk(X
(i)
k )
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and consider the statistic

1

n

n∑
i=1

(
Fk(X

(i)
k )− F k

)(
Fl(X

(i)
l )− F l

)
=
1

n

n∑
i=1

(
Fk(X

(i)
k )−mk

)(
Fl(X

(i)
l )−ml

)
+
(
F k −mk

) (
F l −ml

)
.

By the Strong Law of Large Numbers, the first term and second term converge almost
surely to Cov[Fk(X

(1)
k ), Fl(X

(1)
l )] and 0, respectively. Further, we have∣∣∣∣∣ 1n

n∑
i=1

(
F

(n)
k (X

(i)
k )− F

(n)

k

)(
F

(n)
l (X

(i)
l )− F

(n)

l

)
−
(
Fk(X

(i)
k )− F k

)(
Fl(X

(i)
l )− F l

)∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

(
F

(n)
k (X

(i)
k )F

(n)
l (X

(i)
l )− F

(n)

k F
(n)

l

)
−
(
Fk(X

(i)
k )Fl(X

(i)
l )− F kF l

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

F
(n)
k (X

(i)
k )F

(n)
l (X

(i)
l )− Fk(X

(i)
k )Fl(X

(i)
l )

∣∣∣∣∣+ ∣∣∣F (n)

k F
(n)

l − F kF l

∣∣∣
≤ 1

n

n∑
i=1

∣∣∣F (n)
k (X

(i)
k )F

(n)
l (X

(i)
l )− F

(n)
k (X

(i)
k )Fl(X

(i)
l )
∣∣∣+

+
1

n

n∑
i=1

∣∣∣F (n)
k (X

(i)
k )Fl(X

(i)
l )− Fk(X

(i)
k )Fl(X

(i)
l )
∣∣∣+ ∣∣∣F (n)

k F
(n)

l − F
(n)

k F l

∣∣∣+ ∣∣∣F (n)

k F l − F kF l

∣∣∣
≤ 1

n

n∑
i=1

∣∣∣F (n)
k (X

(i)
k )
∣∣∣ ∣∣∣F (n)

l (X
(i)
l )− Fl(X

(i)
l )
∣∣∣+ 1

n

n∑
i=1

∣∣∣Fl(X
(i)
l )
∣∣∣ ∣∣∣F (n)

k (X
(i)
k )− Fk(X

(i)
k )
∣∣∣

+
∣∣∣F (n)

k

∣∣∣ ∣∣∣∣∣ 1n
n∑

i=1

F
(n)
l (X

(i)
l )− Fl(X

(i)
l )

∣∣∣∣∣+ ∣∣F l

∣∣ ∣∣∣∣∣ 1n
n∑

i=1

F
(n)
k (X

(i)
k )− Fk(X

(i)
k )

∣∣∣∣∣
≤ 2 ·

∥∥∥F (n)
k − Fk

∥∥∥
∞
+ 2 ·

∥∥∥F (n)
l − Fl

∥∥∥
∞

a.s.−−−→ 0,

where we applied the Glivenko-Cantelli-Theorem (Theorem 3.2.7) in the last step. Com-
bining these two statements yields that

1

n

n∑
i=1

(
F

(n)
k (X

(i)
k )− F

(n)

k

)(
F

(n)
l (X

(i)
l )− F

(n)

l

)
a.s.−−−→ Cov[Fk(X

(1)
k ), Fl(X

(1)
l )].

Since the numerator and the factors of the denominator converge as desired, we have by
the Continuous Mapping Theorem

ρ̂
(n)
X1,X2

a.s.−−−→ Cov[F1(X
(1)
1 ), F2(X

(1)
2 )]√

Var[F1(X
(1)
1 )]Var[F2(X

(1)
2 )]

= Corr[F1(X
(1)
1 ), F2(X

(1)
2 )] = ρX1,X2

and the assertion is proven.

Finally, we have that Algorithm 2 is consistent for the estimation of the GCCCA param-
eters.
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Corollary 5.3.13. Let Y (1), Y (2), . . . ,
iid∼ NPNp(C, f) be as in (GCCCA). Then, Algo-

rithm 2 is consistent for the estimation of W and Λ = diag(λ1, . . . , λp1). That is, when

Ŵ (n) and Λ̂(n) = diag(λ
(n)
1 , . . . , λ

(n)
p1 ) are obtained from Algorithm 2 based on the first n

samples, we have
Ŵ (n) a.s.−−−→ W

and for all k
λ
(n)
k

a.s.−−−→ λk.

Proof. By Theorem 5.3.12, we have that

ρ̂
(n)
i,j

a.s.−−−→ ρi,j,

where ρ̂
(n)
i,j is the Spearman’s correlation of γ

(n)
i and γ

(n)
j as in line 3 of Algorithm 2.

Hence, we have by (5.2) and the Continuous Mapping Theorem

ĉ
(n)
ij

a.s.−−−→ cij.

Now that one has the consistency for the correlation matrix C, one can proceed with the
same steps as in the proof of the consistency of classical CCA (Theorem 5.2.8) and show
the consistency for W and Λ.

This finalizes our discussion of the Gaussian Copula CCA model. We continue with the
cyclically monotone CCA.

5.4 Cyclically Monotone CCA

In this section we introduce our model for Canonical Correlation Analysis based on op-
timal transport. We begin with some intuition for the model, define it, discuss the
assumptions and the parametrization, explain how it generalizes the previous methods
and then, suggest an estimation method. The proof of its consistency is long and pre-
sented in Section 5.5. For further reading about this model we refer to (Bryan et al.,
2024).

5.4.1 The Cyclically Monotone CCA Model

The motivation behind the cyclically monotone CCA is as follows. Suppose one observes
a partitioned random vector Y =

(
Y1 Y2

)
and aims to examine the dependency of Y1

and Y2 with Canonical Correlation Analysis. Then, one could use the classical CCA to
do so, but what if the normality assumption of Y is not appropriate? One could also try
the Gaussian Copula CCA, but this assumes that the univariate marginals of the data
are increasing functions of a multivariate normal. Hence, the GCCCA does not consider
joint transformations of multiple margins which may be the case. How can we include
more complicated transformations in our model?

At this point our main optimal transport result, Proposition 4.1.2, can help: For any two
absolutely continuous distributions µ and ν, there exist unique transport maps S and T ,
so that S#µ = ν and T#ν = µ. Hence, if we observe Y1 ∼ µ1 and Y2 ∼ µ2 with for
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now absolutely continuous distributions, we know that there exist Z1 ∼ Np1(0, Ip1) and
Z2 ∼ Np2(0, Ip2), so that G1(Z1) = Y1 and G2(Z2) = Y2 for cyclically monotone functions
G1 and G2. Equivalently formulated, we can transport the observed Y1 and Y2 to the
multivariate normal Z1 and Z2 and then apply the classical CCA. The only assumption
we need is that Z1 and Z2 are jointly normal.

We summarize this idea in the following definition.

Definition 5.4.1 (Cyclically Monotone CCA). Let Y =
(
Y1 Y2

)
be a partitioned ran-

dom vector, where Y1 and Y2 take values in Rp1 and Rp2 , respectively, with p1 ≤ p2.
Then, Y satisfies the Cyclically Monotone CCA model if there exists a multivariate nor-
mal random vector Z =

(
Z1 Z2

)
and cyclically monotone functions G1 and G2, so that

Z1 ∼ Np1(0, Ip1)

Z2 ∼ Np2(0, Ip2)

Y1 = G1(Z1) (CMCCA)

Y2 = G2(Z2)

Z =
(
Z1 Z2

)
∼ Np

(
0, C :=

(
Ip1 W
W T Ip2

))
.

Thereby, we require C to be positive definite. Then, the CMCCA parameters of Y are
defined as the CCA parameters of Z.

Remark 5.4.2. Note that we again change our index notation from the previous section.
This time we primarily work with the joint marginals, so that we will write Y =

(
Y1 Y2

)
instead of emphasizing the univariate marginals with Y = (Y1, . . . , Yp) as in Section 5.3.

The definition of the cyclically monotone CCA model raises multiple questions which we
examine next. We begin with discussing the model assumptions.

What do the model assumptions imply? To answer this question we present the
following Proposition first.

Proposition 5.4.3 (Proposition 2.1 in (Bryan et al., 2024)). Let µ ∈ Pd and let ν =
Nd(0, Id). Then, there exists a unique cyclically monotone function G, so that G#ν = µ.

This Proposition is an extension to Proposition 4.1.2. So far we knew of the existence
of unique pairs of invertible transport maps for two absolutely continuous distributions.
Here, one distribution can be arbitrary and we still have the existence of a unique optimal
transport map in one direction. However, it does not have to be invertible. We conclude:

Corollary 5.4.4. Let µ1 ∈ Pp1 and µ2 ∈ Pp2 be two arbitrary distributions. Then, there
exists Y =

(
Y1 Y2

)
satisfying the cyclically monotone CCA model with Y1 ∼ µ1 and

Y2 ∼ µ2. Equivalently, the two joint marginals of the cyclically monotone CCA model
can have arbitrary distributions.

This shows that the cyclically monotone CCA allows more flexibility in the distributions
of the marginals than the Gaussian Copula model. There, the univariate marginals
could follow continuous distributions, but their dependency must have been described
by a Gaussian Copula. Here, we can have arbitrary joint distributions as marginals
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which makes many more scenarios admissible. This particularly includes cases where the
univariate marginals have some complicated joint distribution which can not be described
by a Gaussian Copula.

Next, we discuss the parametrization of the CMCCA model.

Why this parametrization? We observe that Z is parametrized with mean 0 and a
specific block correlation matrix C. This assumption is more convenient for estimation
as will compute square roots of inverses of an empirical covariance matrix later. These
matrices will then be “closer” to the identity matrix. Further, this parametrization is not
a restriction which we show next.

Theorem 5.4.5. The parametrization of (CMCCA) with 0 mean and block correlation
matrix C is not a restriction. That is, if Y ′ =

(
Y ′
1 Y ′

2

)
satisfies the more general CMCCA

model assumptions with

Z ′
1 ∼ Np1(m1,Σ11)

Z ′
2 ∼ Np2(m2,Σ22)

Y ′
1 = H1(Z

′
1)

Y ′
2 = H2(Z

′
2)

Z ′ =
(
Z ′

1 Z ′
2

)
∼ Np

(
m :=

(
m1

m2

)
,Σ :=

(
Σ11 Σ12

Σ21 Σ22

))
,

where Σ is positive definite, then Y ′ satisfies (CMCCA).

Proof. We denote the distributions of Y ′
1 and Y ′

2 by µ1 and µ2. Now, let us define the

random vectors Z1 := Σ
−1/2
11 (Z ′

1−m1) and Z2 := Σ
−1/2
22 (Z ′

2−m2). Then, Z =
(
Z1 Z2

)
∼

Np(0, C) is jointly normal, where C satisfies the block structure from (CMCCA). Now,
by Proposition 5.4.3, there exist unique cyclically monotone functions G1 and G2, so
that Y1 := G1(Z1) ∼ µ1 and Y2 := G2(Z2) ∼ µ2 are equal in distribution to Y ′

1 and Y ′
2 ,

respectively. We can now assume that we observed Y as its CMCCA parameters are
equal to the CMCCA parameters of Y ′. This is, because the CCA parameters of Z and
Z ′ are the same.

Finally, we discuss how the CMCCA generalizes the two previous models.

Which models are covered? The cyclically monotone CCA model has very strong
implications as we argued before. Intuitively, it should contain the Gaussian Copula CCA
and therefore, the classical CCA. This is in fact the case. We capture this result in the
following theorem.

Theorem 5.4.6. If Y ∼ NPNp(C, f) follows the Gaussian Copula Model, then it satisfies
the cyclically monotone CCA assumptions. In summary, the cyclially monotone CCA
contains the Gaussian Copula CCA which contains the classical CCA.

Proof. The fact that the GCCCA contains the classical CCA was already shown in Corol-
lary 5.3.7. We show that the CMCCA generalizes the GCCCA. Let Y = (Y1, . . . , Yp) ∼
NPNp(C, f) follow the GCCCA model. As an exception to the notation in the rest of
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the section, the index of Yk represents the univariate marginals. Further, let Fk be the
distribution function of Yk. By assumption, there exists Z = (Z1, . . . , Zp) ∼ Np(0, C), so
that

Yk = F−1
k (Φ(Zk)),

where we use the representation from (5.1). Now, let us the define the functions

G1 : Rp1 → Rp1 , G1(z1, . . . , zp1) = (F−1
1 (Φ(z1)), . . . , F

−1
p1

(Φ(zp1)))

G2 : Rp2 → Rp2 , G2(zp1+1, . . . , zp) = (F−1
p1+1(Φ(zp1+1)), . . . , F

−1
p (Φ(zp))).

These functions are cyclically monotone by Example 4.1.1 (ii). Further, we have

(Y1, . . . , Yp1) = G1(Z1, . . . , Zp1), and (Yp1+1, . . . , Yp) = G1(Zp1+1, . . . , Zp).

Hence, Y satisfies the more general CMCCA assumptions, where the correlation matrix
does not necessarily satisfy the block structure from (CMCCA). However, we know
that by Theorem 5.4.5 that this parametrization is not a restriction, so that Y satisfies
(CMCCA).

This finalizes our theoretical discussion of the cyclically monotone CCA. The next ques-
tion we address is: How can the CMCCA parameters be estimated in practice?

5.4.2 Estimation of the CMCCA parameters

In this section we present a plug-in estimation method in the case that the joint marginals
Y1 and Y2 are absolutely continuous. Before we discuss its intuition, let us address the
notation and setup in this section.

Notation 5.4.7. Suppose we observe Y (1), . . . , Y (n) i.i.d. satisfying the cyclically mono-
tone CCA model. We summarize these in the data matrix Y (n), where we enter the
samples as row vectors and use the partitioned notation:

Y (n) =

Y
(1)

...
Y (n)

 =

Y
(1)
1 Y

(1)
2

...
...

Y
(n)
1 Y

(n)
2

 ∈ Rn×p

Further, denote the distributions of Y
(1)
1 and Y

(1)
2 by µ1 and µ2, respectively. As men-

tioned before, we additionally require that µ1 and µ2 are absolutely continuous
throughout the remainder of the chapter. By the CMCCA model assumptions there

exist Z(1), . . . , Z(n) iid∼ Np(0, C) and cyclically monotone functions G1 and G2, so thatY
(1)
1 Y

(1)
2

...
...

Y
(n)
1 Y

(n)
2

 =

G1(Z
(1)
1 ) G2(Z

(1)
2 )

...
...

G1(Z
(n)
1 ) G2(Z

(n)
2 )

 .

Further, we have that

C =

(
Ip1 W
W T Ip2

)
is positive definite. We also use the notations ν1 := Np1(0, Ip1) and ν2 := Np(0, Ip2) in the
following.
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Now, our goal is to determine the CCA parameters which eventually means inferring
W . Then, we can make the singular value decomposition of W which yields the canon-
ical correlations. The problem is that we only observe Y (1), . . . , Y (n) and the normal
Z(1), . . . , Z(n), and the cyclically monotone transformations G1 and G2 are unknown. If
we knew the Z(i)’s, then we could easily estimate the block of its covariance matrix with
the estimator from Section 5.2.

Let us try to estimate the two parts Z
(i)
1 and Z

(i)
2 , separately. The information about

the Z
(i)
j ’s that we have is that they have been optimally transported to the Y

(i)
j ’s with

a cyclically monotone function. Now, we would like to “transport the Y
(i)
j ’s back” to

the Z
(i)
j ’s. We learned in chapter 4 that the Z

(i)
j ’s are rank statistics with respect to the

distribution µj, i.e.

Z
(i)
j = Rµj

νj
(Y

(i)
j )

for all i = 1, . . . , n and j = 1, 2. Hence, we can estimate them with the empirical ranks
by defining a grid of νj. We use the canonical choice for a grid from Lemma 4.1.4 and
sample

X
(1)
j , . . . , X

(n)
j

iid∼ Npj(0, Ipj).

Now, we have grid points where we can transport the Y
(1)
j , . . . , Y

(n)
j to. In chapter 4, we

learned that we do this by solving an optimal assignment problem. Thus, we need to find
a permutation σ∗ minimizing

n∑
i=1

∥∥∥Y (i)
j −X

(i)
σ(j)

∥∥∥2 .
Then, we can define our estimators by the empirical rank statistics with respect to this
grid by

Ẑ
(i)
j := R̂n

νj
(Y

(i)
j ) = X

(i)
σ∗(j).

Now that we have the estimators for the Z(i)’s, the remaining steps are straightforward
as we can apply the classical CCA to estimate W . We summarize our estimators in the
matrix

Ẑj :=

Ẑ
(1)
j
...

Ẑ
(n)
j

 ∈ Rn×pj

and define
ˆ̃Zj = Ẑj −

1

n
1n1

T
n Ẑj.

Then, we can define Ŵ by

Ŵ =
(
ˆ̃ZT

1
ˆ̃Z1

)−1/2 ˆ̃ZT
1
ˆ̃Z2

(
ˆ̃ZT

2
ˆ̃Z2

)−1/2

and calculate the singular value decomposition. Note that these expressions are well-
defined for n ≥ p2 + 1, which follows from applying Lemma 5.2.5. The whole procedure
is summarized in the following algorithm which uses the preceding notation.
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Algorithm 3 Cyclically Monotone CCA Estimation

Input: Data Matrix Y (n) with n ≥ p2 + 1
Output: CMCCA Parameters Ŵ and Λ̂

1: for j = 1, 2 do

2: Sample grid points X
(1)
j , . . . , X

(n)
j

iid∼ Npj(0, Ipj).

3: Define Ẑ
(i)
j = R̂n

νj
(Y

(i)
j ) as the empirical rank w.r.t. the grid for all i = 1, . . . , n.

4: Set Ŵ =
(
ˆ̃ZT

1
ˆ̃Z1

)−1/2 ˆ̃ZT
1
ˆ̃Z2

(
ˆ̃ZT

2
ˆ̃Z2

)−1/2

.

5: Compute the singular value decomposition Ŵ = Q̂1Λ̂Q̂
T
2 .

This concludes our presentation of the CMCCA estimation method. We will prove its
consistency in the next section.

5.5 Consistency of CMCCA

In order to prove the consistency of our method we need some more theorems on optimal
transport. The central result we require is a convergence theorem of empirical rank
statistics to true rank statistics. In order to present it we will begin the section with
some lemmas which help us with the proof of this theorem. Thereafter, we state the
general rank statistic convergence theorem and prove it. At that point we will have all
the results we need in order to show the consistency of our method. However, there will
be an estimator for every sample size n which makes the notation more difficult. Thus,
we will precisely define the notation and setup and finally, prove the consistency.

Recall that for distributions µ ∈ Pd1 and ν ∈ Pd2 , the set Γ(µ, ν) is defined as the
set of all probability measures in Pd1+d2 with marginals µ and ν on the first d1 and
last d2, respectively. The following lemmas are tailored to the steps in the proof of the
convergence theorem.

Lemma 5.5.1 (Theorem 6 and Corollary 14 in (McCann, 1995)). Let µ, ν ∈ Pd
ac. Then,

there exists a unique γ ∈ Γ(µ, ν) with cyclically monotone support. This means that there
exists a cyclically monotone set S ∈ B(Rd × Rd) such that γ(S) = 1.

Lemma 5.5.2 (Lemma 9 in (McCann, 1995)). Let (γn)n∈N be a sequence of probability
measures in P2d such that4

γn
w−−−→ γ,

where γ ∈ P2d. Then,

(i) If γn has cyclically monotone support for all n ∈ N, then so does γ.

(ii) If the left and right marginals of γn ∈ Γ(µn, νn) converge weakly to limits µ, ν ∈ Pd,
respectively, then, γ ∈ Γ(µ, ν).

4This version of the lemma is a bit weaker as the version in (McCann, 1995). We require weak
convergence to a limit in P2d, while the original version only requires weak*-convergence as in functional
analysis (which effectively means that (3.3) needs to hold for a smaller set of test functions f). Also, the
limit may lie outside of P2d in the original version.
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With Lemma 5.5.1 and Lemma 5.5.2, we can show the following lemma.

Lemma 5.5.3. Let µ, ν ∈ Pd
ac be absolutely continuous. Further, let Y1, Y2, . . .

iid∼ µ be a

sample and let (X
(n)
k )n≥k≥1 be a grid of ν. Let R̂n

ν (Y1), . . . , R̂
n
ν (Yn) be the empirical ranks

of Y1, . . . , Yn with respect to the random grid points X
(n)
1 , . . . , X

(n)
n . Additionally, define

the distribution γ :∼ (Y1, R
µ
ν (Y1)). Then, we have

1

n

n∑
i=1

δ(Yi,R̂n
ν (Yi))

=: γn
w−−−→ γ a.s.

The weak convergence almost surely is due to the fact that γn is a random probability
measure.

Proof. Assume that all the random variables are defined on the same probability space
(Ω,F ,P). Let us break down the proof in multiple steps.

Step 1: The left and right marginals of (γn)n∈N, which we denote by (µn)n∈N and (νn)n∈N
converge weakly against µ and ν almost surely, respectively.

For (µn)n∈N this fact is immediate from Lemma 4.1.4. It implies that there exists Ω̃ ∈ F
such that P(Ω̃) = 1 and for all ω ∈ Ω̃

1

n

n∑
i=1

δYi(ω) = µn(ω)
w−−−→ µ. (5.3)

For (νn)n∈N, note that the empirical distribution on the set {R̂n
ν (Yj)}j∈[n] equals the

empirical distribution on the grid {X(n)
j }j∈[n]. Hence, the convergence follows from the

definition of a grid. That is, there exists Ω̂ ∈ F such that P(Ω̂) = 1 and for all ω ∈ Ω̂

1

n

n∑
i=1

δR̂n
ν (Yi(ω))

=
1

n

n∑
k=1

δ
X

(n)
k (ω)

= νn(ω)
w−−−→ ν. (5.4)

Now, fix ω ∈ Ω̃ ∩ Ω̂.

Step 2: The sequence (γn(ω))n∈N is tight.

By (5.3), (5.4) and Corollary 3.3.8, both (µn(ω))n∈N and (νn(ω))n∈N are tight. Hence,
(γn(ω))n∈N is tight by Lemma 3.3.11.

Step 3: For any subsequence x := (nk)k∈N, so that γnk
(ω)

w−−−→ γx(ω) converges to some
γx(ω) ∈ P2d, we have γx(ω) = γ.

Suppose x := (nk)k∈N is such a subsequence and we have

γnk
(ω)

w−−−→ γx(ω). (5.5)

By (5.3) and (5.4) and Lemma 5.5.2 (ii), we must have γx(ω) ∈ Γ(µ, ν). Now, note that
for all k ∈ N,

γnk
(ω) =

1

nk

nk∑
i=1

δ(Yi(ω),R̂
nk
ν (Yi(ω)))
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has cyclically monotone support by the definition of empirical ranks. By (5.5) and Lemma
5.5.2 (i), we conclude that γx(ω) has cyclically monotone support. Since µ and ν are ab-
solutely continuous, Γ(µ, ν) contains only one measure with cyclically monotone support
by Lemma 5.5.1. Since γ ∈ Γ(µ, ν) has cyclically monotone support, we deduce that
γx(ω) = γ.

Finally, we obtain from Corollary 3.3.9 that for all ω ∈ Ω̃ ∩ Ω̂,

γn(ω)
w−−−→ γ.

Since P(Ω̃ ∩ Ω̂) = 1, we have
γn

w−−−→ γ a.s.

and the assertion is proven.

Now, we can present the convergence theorem. It states that under certain integrability
conditions the empirical ranks converge against the true rank statistics, where the mode
of convergence is the average powered deviation. The claim is derived from Theorem 2.1
in (Deb et al., 2023). There the theorem is more general involving continuous joint trans-
formations of the ranks and allowing a pooled sample from two different distributions.
We tailored the statement to our proof of the consistency later. This also involved adding
the power parameter α which is not included in the original, but useful for us later.

Theorem 5.5.4. Let µ, ν ∈ Pd
ac be absolutely continuous. Further, let Y1, Y2, . . .

iid∼ µ be a

sample and let (X
(n)
k )n≥k≥1 be a grid of ν. Let R̂n

ν (Y1), . . . , R̂
n
ν (Yn) be the empirical ranks

of Y1, . . . , Yn with respect to the random grid points X
(n)
1 , . . . , X

(n)
n . If for some α′ > 0

sup
n∈N

1

n

n∑
i=1

E
[∥∥∥X(n)

i

∥∥∥1+α′]
<∞ and E

[
∥Rµ

ν (Y1)∥
1+α′

]
<∞,

then for all 0 ≤ α < α′

1

n

n∑
i=1

∥∥∥R̂n
ν (Yi)−Rµ

ν (Yi)
∥∥∥1+α P−−−→ 0.

For the proof we will need Alexandroff’s Theorem:

Theorem 5.5.5 ((Alexandroff, 1939)). Let f : U → R be a convex function where U ⊆ Rd

open. Then f has a second derivative Lebesgue-a.e. in U .

Proof. For this proof we may assume that all random variables are on the same probability
space (Ω,F ,P). We begin by defining the function

g : Rd × Rd → R, g(y, z) = ∥Rµ
ν (y)− z∥1+α .
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Note that Rµ
ν is the gradient of a convex function. Therefore, by Theorem 5.5.5, g

is continuous almost everywhere. Now, let γ be the distribution of (Y1, R
µ
ν (Y1)). By

Lemma 5.5.3 we have

1

n

n∑
i=1

δ(Yi,R̂n
ν (Yi))

=: γn
w−−−→ γ a.s.

For n ∈ N, let (Cn, Dn) ∼ γn. Now, we would like to apply the Continuous Mapping
Theorem for weak convergence (Theorem 3.3.4) on g. We denote the set of discontinuities
of g and Rµ

ν , by Dg and DRµ
ν
, respectively. Then, we have

γ(Dg) = P((Y1, Rµ
ν (Y1)) ∈ Dg) ≤ P(Y1 ∈ DRµ

ν
) = 0

Thereby, we used the fact that any discontinuity of g must come from a discontinuity of
Rµ

ν since the other functions are all continuous. As g is continuous Lebesgue-a.e. and
µ is absolutely continuous by assumption, we could conclude that g is continuous γ-a.e.
Hence, the assumptions of Theorem 3.3.4 are satisfied and we have

g(Cn, Dn)
w−−−→ g(Y1, R

µ
ν (Y1)) = 0 a.s.

Since weak convergence to a constant implies convergence in probability (Theorem 3.3.3),
we have

g(Cn, Dn)
P−−−→ g(Y1, R

µ
ν (Y1)) = 0 a.s.

Equivalently, for all ε > 0

P
(
g(Cn, Dn) > ε

∣∣∣Y1, . . . , Yn, X(n)
1 , . . . , X(n)

n

)
−−−→ 0 a.s.

Next, we apply the bounded convergence theorem for conditional expectation (Theorem
3.2.13) and we obtain

0 = lim
n→∞

P
(
g(Cn, Dn) > ε

∣∣∣Y1, . . . , Yn, X(n)
1 , . . . , X(n)

n

)
= lim

n→∞
P
(
g(Cn, Dn) > ε

∣∣∣(Yi)i∈N, (X(j)
i )j≥i≥1

)
= lim

n→∞
E
[
1{g(Cn,Dn)>ε}

∣∣∣(Yi)i∈N, (X(j)
i )j≥i≥1

]
= E

[
lim
n→∞

1{g(Cn,Dn)>ε}

∣∣∣(Yi)i∈N, (X(j)
i )j≥i≥1

]
,

where the equalities hold almost surely. Applying expectations on both sides yields

0 = E
[
E
[
lim
n→∞

1{g(Cn,Dn)>ε}

∣∣∣(Yi)i∈N, (X(j)
i )j≥i≥1

]]
= E

[
lim
n→∞

1{g(Cn,Dn)>ε}

]
= lim

n→∞
E
[
1{g(Cn,Dn)>ε}

]
= lim

n→∞
P (g(Cn, Dn) > ε) ,

58



5 Canonical Correlation Analysis

where we used the dominated convergence theorem (Theorem 3.2.10) in the third equality.

Hence, we have shown g(Cn, Dn)
P−−−→ 0. Next, define

Vn =
1

n

n∑
i=1

∥∥∥Rµ
ν (Yi)− R̂n

ν (Yi)
∥∥∥1+α

= E
[
g(Cn, Dn)

∣∣∣Y1, . . . , Yn, X(n)
1 , . . . , X(n)

n

]
for n ∈ N. To finish the proof, we need to show Vn

P−−−→ 0. We have

P(Vn > ε) = P
(
E
[
g(Cn, Dn)

∣∣∣Y1, . . . , Yn, X(n)
1 , . . . , X(n)

n

]
> ε
)

≤ ε−1E
[
E
[
g(Cn, Dn)

∣∣∣Y1, . . . , Yn, X(n)
1 , . . . , X(n)

n

]]
= ε−1E[g(Cn, Dn)]

for ε > 0 by Markov’s inequality (Theorem 3.1.25). Next, we show that

(g(Cn, Dn))n∈N is uniformly integrable. (5.6)

This will prove that E[g(Cn, Dn)] −−−→ 0 by Theorem 3.2.10, since we have already shown

that g(Cn, Dn)
P−−−→ 0. To show (5.6), let us rewrite g(Cn, Dn):

g(Cn, Dn) = ∥Rµ
ν (Cn)−Dn∥1+α

≤ 2 ∥Rµ
ν (Cn)∥1+α + 2 ∥Dn∥1+α

=: 2Gn + 2Hn.

Therefore, it is sufficient to show that (Gn)n∈N and (Hn)n∈N are uniformly integrable. We
use the criterion from Theorem 3.2.9. Let p := 1+α′

1+α
> 1. We have

sup
n∈N

E[Gp
n] = sup

n∈N
E [E [Gp

n|Y1, . . . , Yn]]

= sup
n∈N

E

[
1

n

n∑
i=1

∥Rµ
ν (Yi)∥

1+α′

]
= E

[
∥Rµ

ν (Y1)∥
1+α′

]
<∞

by assumption. Similarly, we have

sup
n∈N

E[Hp
n] = sup

n∈N
E
[
E
[
Hp

n

∣∣∣Y1, . . . , Yn, X(n)
1 , . . . , X(n)

n

]]
= sup

n∈N
E

[
1

n

n∑
i=1

∥∥∥F (R̂n
ν (Yi))

∥∥∥1+α′
]
<∞

= sup
n∈N

E

[
1

n

n∑
i=1

∥∥∥F (X(n)
i )
∥∥∥1+α′

]
<∞

by assumption. Hence, both, (Gn)n∈N and (Hn)n∈N are uniformly integrable by Theorem
3.2.9. Therefore, (g(Cn, Dn))n∈N is uniformly integrable and the assertion is proven.
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Now, we have the convergence theorem for rank statistics that we needed in order to prove
the consistency. As we will have an estimator for every sample size n for the consistency
proof, the notation will be slightly more complicated. In order to be precise we define the
notation and the setup of this section next. This will be similar to Notation 5.4.7, but
more rigorous with entries of the matrices and additional indices referring to the sample
size. Also we apply Algorithm 3 and define notations for the estimators resulting from
it.

Notation 5.5.6. Let Y (1), Y (2), . . . i.i.d. satisfying the CMCCA model be observed,
where we summarize the first n samples in the data matrix

Y (n) =

Y
(1)

...
Y (n)

 =

Y
(1)
1 Y

(1)
2

...
...

Y
(n)
1 Y

(n)
2

 ∈ Rn×p

We denote the distributions of Y
(1)
1 and Y

(1)
2 by µ1 and µ2, respectively. Again, we assume

µ1 and µ2 to be absolutely continuous. Further, let Z(1), Z(2), . . .
iid∼ Np(0, C) be given,

where

C =

(
Ip1 W
W T Ip2

)
is positive definite. By the CMCCA assumptions we have Gj(Z

(i)
j ) = Y

(i)
j for cyclically

monotone functions G1 and G2. We summarize the first n of the Z(i)’s in the data matrix

Z(n) =
(
Z

(n)
1 Z

(n)
2

)
=Z

(1)

...
Z(n)

 =

Z
(1)
1 Z

(1)
2

...
...

Z
(n)
1 Z

(n)
2

 =

Z
(1)
1,1 · · · Z

(1)
1,p1

Z
(1)
2,1 · · · Z

(1)
2,p2

...
...

...
...

Z
(n)
1,1 · · · Z

(n)
1,p1

Z
(n)
2,1 · · · Z

(n)
2,p2

 ∈ Rn×p.

We will later show a componentwise convergence, so that we need this notation for the
entries of the matrix. Further, we will need the following terms later:

Z̄
(n)
j =

1

n
1T
nZ

(n)
j =

1

n

n∑
i=1

Z
(i)
j =

(
Z̄

(n)
j,1 · · · Z̄

(n)
j,pj

)
∈ R1×pj

Z̃
(n)

j = Z
(n)
j − 1

n
1n1

T
nZ

(n)
j =

Z̃
(1)
j
...

Z̃
(n)
j

 =

Z
(1)
j,1 − Z̄

(n)
j,1 · · · Z

(1)
j,pj

− Z̄
(n)
j,pj

...
...

Z
(n)
j,1 − Z̄

(n)
j,1 · · · Z

(n)
j,pj

− Z̄
(n)
j,pj

 ∈ Rn×pj

Next, we proceed as in Algorithm 3 and sample two gridsX
(1)
j , X

(2)
j , . . .

iid∼ Npj(0, Ipj) = νj
for j = 1, 2, independent from each other. Then, for n ∈ N, i ∈ [n] and j = 1, 2, we
define

Ẑ
(i,n)
j = R̂n

νj
(Y

(i)
j ),

where the empirical ranks are with respect to the corresponding grid pointsX
(1)
j , . . . , X

(n)
j .

These will be summarized in the matrix

Ẑ
(n)

=
(
Ẑ

(n)

1 Ẑ
(n)

2

)
=
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Ẑ
(1,n)

...

Ẑ(n,n)

 =

Ẑ
(1,n)
1 Ẑ

(1,n)
2

...
...

Ẑ
(n,n)
1 Ẑ

(n,n)
2

 =

Ẑ
(1,n)
1,1 · · · Ẑ

(1,n)
1,p1

Ẑ
(1,n)
2,1 · · · Ẑ

(1,n)
2,p2

...
...

...
...

Ẑ
(n,n)
1,1 · · · Ẑ

(n,n)
1,p1

Ẑ
(n,n)
2,1 · · · Ẑ

(n,n)
2,p2

 ∈ Rn×p.

Further, we set

ˆ̄Z
(n)
j =

1

n

n∑
i=1

Ẑ
(i)
j =

(
ˆ̄Z
(n)
j,1 · · · ˆ̄Z

(n)
j,pj

)
∈ R1×pj

ˆ̃Z
(n)
j = Ẑ

(n)

j − 1

n
1n1

T
n Ẑ

(n)

j =


ˆ̃Z
(1,n)
j
...

ˆ̃Z
(n,n)
j

 =


Ẑ

(1,n)
j,1 − ˆ̄Z

(n)
j,1 · · · Ẑ

(1,n)
j,pj

− ˆ̄Z
(n)
j,pj

...
...

Ẑ
(n,n)
j,1 − ˆ̄Z

(n)
j,1 · · · Ẑ

(n,n)
j,pj

− ˆ̄Z
(n)
j,pj

 ∈ Rn×pj .

Finally, we define

Ŵ (n) =
(
ˆ̃Z

(n)T

1
ˆ̃Z

(n)
1

)−1/2 ˆ̃Z
(n)T

1
ˆ̃Z

(n)
2

(
ˆ̃Z

(n)T

2
ˆ̃Z

(n)
2

)−1/2

with singular value decomposition Ŵ (n) = Q̂
(n)
1 Λ̂(n)Q̂

(n)T

2 , whereby Λ̂(n) = diag(λ
(n)
1 , . . . , λ̂

(n)
p1 ).

Now, Theorem 5.5.4 yields the intermediate step:

Corollary 5.5.7. In the setting of Notation 5.5.6 we have

1

n

n∑
i=1

∥∥∥Ẑ(i,n)
k − Z

(i)
k

∥∥∥2 = 1

n

n∑
i=1

∥∥∥R̂n
νk
(Y

(i)
k )−Rµk

νk
(Y

(i)
k )
∥∥∥2 P−−−→ 0

for k = 1, 2.

Proof. The claim follows from Theorem 5.5.4 when checking the integrability conditions
with α′ = 2 and α = 1. We have for k = 1, 2

sup
n∈N

1

n
E

[
n∑

i=1

∥∥∥X(i)
k

∥∥∥3] = E
[∥∥∥X(i)

k

∥∥∥3] <∞

and

E
[∥∥∥Rµk

νk
(Y

(i)
k )
∥∥∥3] = E

[∥∥∥Z(1)
k

∥∥∥3] <∞.

This holds since all moments of the normal distribution exist (Theorem 5.1.3).

Finally, we can show the consistency of our method:

Theorem 5.5.8. In the setting of Notation 5.5.6, Algorithm 3 is consistent for the esti-
mation of W . That is, we have(

ˆ̃Z
(n)T

1
ˆ̃Z

(n)
1

)−1/2 ˆ̃Z
(n)T

1
ˆ̃Z

(n)
2

(
ˆ̃Z

(n)T

2
ˆ̃Z

(n)
2

)−1/2

= Ŵ (n) P−−−→ W

and for all k ∈ [p1],

λ̂
(n)
k

P−−−→ λk.
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Proof. The first step of the proof is to prove that for k, l = 1, 2, we have

1

n

∥∥∥∥ ˆ̃Z(n)T

k
ˆ̃Z

(n)
l − Z̃

(n)T

k Z̃
(n)

l

∥∥∥∥ P−−−→ 0, (5.7)

where ∥ · ∥ is any norm. We show this componentwise. It holds for i ∈ [pk] and j ∈ [pl]

1

n

∣∣∣∣∣( ˆ̃Z(n)T

k
ˆ̃Z

(n)
l

)
ij
−
(
Z̃

(n)T

k Z̃
(n)

l

)
ij

∣∣∣∣∣
=
1

n

∣∣∣∣∣
(

n∑
m=1

(
Ẑ

(m,n)
k,i − ˆ̄Z

(n)
k,i

)(
Ẑ

(m,n)
l,j − ˆ̄Z

(n)
l,j

))
−

n∑
m=1

((
Z

(m)
k,i − Z̄

(n)
k,i

)(
Z

(m)
l,j − Z̄

(n)
l,j

))∣∣∣∣∣
=

∣∣∣∣∣
(
1

n

n∑
m=1

(
Ẑ

(m,n)
k,i Ẑ

(m,n)
l,j

))
− ˆ̄Z

(n)
k,i

ˆ̄Z
(n)
l,j −

(
1

n

n∑
m=1

(
Z

(m)
k,i Z

(m)
l,j

))
− Z̄

(n)
k,i Z̄

(n)
l,j

∣∣∣∣∣
≤

(
1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i Ẑ

(m,n)
l,j − Z

(m)
k,i Z

(m)
l,j

∣∣∣)+
∣∣∣ ˆ̄Z(n)

k,i
ˆ̄Z
(n)
l,j

∣∣∣+ ∣∣∣Z̄(n)
k,i Z̄

(n)
l,j

∣∣∣
To show that the last two summands converge to 0, note that we have by the SLLN

Z̄
(n)
k =

1

n

n∑
m=1

Z
(m)
k

a.s.−−−→ 0

and ˆ̄Z
(n)
k =

1

n

n∑
m=1

Ẑ
(m)
k =

1

n

n∑
m=1

X
(m)
k

a.s.−−−→ 0,

where the index k can be interchanged with l. Now, let us consider the first summand.
We have

1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i Ẑ

(m,n)
l,j − Z

(m)
k,i Z

(m)
l,j

∣∣∣
=
1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i Ẑ

(m,n)
l,j − Ẑ

(m,n)
k,i Z

(m)
l,j + Ẑ

(m,n)
k,i Z

(m)
l,j − Z

(m)
k,i Z

(m)
l,j

∣∣∣
≤ 1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i

∣∣∣ ∣∣∣Ẑ(m,n)
l,j − Z

(m)
l,j

∣∣∣+ 1

n

n∑
m=1

∣∣∣Z(m)
l,j

∣∣∣ ∣∣∣Ẑ(m,n)
k,i − Z

(m)
k,i

∣∣∣
≤

√√√√ 1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i

∣∣∣2 · 1
n

n∑
m=1

∣∣∣Ẑ(m,n)
l,j − Z

(m)
l,j

∣∣∣2 +
√√√√ 1

n

n∑
m=1

∣∣∣Z(m)
l,j

∣∣∣2 · 1
n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i − Z

(m)
k,i

∣∣∣2
by applying the Cauchy-Schwarz inequality. At this point we can apply Lemma 3.3.13 in
order to show convergence to 0. That is, we show that in each square root one factor is
oP (1) and the other is OP (1), so that their product is oP (1) and hence, converges to 0.
Firstly, note that by the Strong Law of Large Numbers, we have

1

n

n∑
m=1

∣∣∣Z(m)
l,j

∣∣∣2 a.s.−−−→ 1
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and
1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i

∣∣∣2 = 1

n

n∑
m=1

∣∣∣X(m)
k,i

∣∣∣2 a.s.−−−→ 1.

As almost sure convergence implies weak convergence by Theorem 3.2.3 and Theorem
3.3.3, we can conclude that both sequences are tight by Corollary 3.3.8. Hence, we have

1

n

n∑
m=1

∣∣∣Z(m)
l,j

∣∣∣2 ∈ Op(1) and
1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i

∣∣∣2 ∈ Op(1).

For the other factors, note that we have by Corollary 5.5.7

1

n

n∑
m=1

∣∣∣Ẑ(m,n)
l,j − Z

(m)
l,j

∣∣∣2 ∈ op(1) and
1

n

n∑
m=1

∣∣∣Ẑ(m,n)
j,i − Z

(k)
j,i

∣∣∣2 ∈ oP (1).

Thus, we have shown that√√√√ 1

n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i

∣∣∣2 · 1
n

n∑
m=1

∣∣∣Ẑ(m,n)
l,j − Z

(m)
l,j

∣∣∣2 +
√√√√ 1

n

n∑
m=1

∣∣∣Z(m)
l,j

∣∣∣2 · 1
n

n∑
m=1

∣∣∣Ẑ(m,n)
k,i − Z

(m)
k,i

∣∣∣2
converges to 0 in probability, where we also applied the Continuous Mapping Theorem
(Theorem 3.2.4). Hence, (5.7) follows. Intuitively, this means that the CMCCA estimator
based on the empirical ranks is asymptotically equivalent, to the CCA estimator if we
knew the latent Z(m)’s. An application of the triangle inequality yields

1

n

∥∥∥ ˆ̃Z(n)T

k
ˆ̃Z

(n)
l − Ckl

∥∥∥ ≤ 1

n

∥∥∥∥ ˆ̃Z(n)T

k
ˆ̃Z

(n)
l − Z̃

(n)T

k Z̃
(n)

l

∥∥∥∥+ 1

n

∥∥∥∥Z̃(n)T

k Z̃
(n)

l − Ckl

∥∥∥∥ P−−−→ 0,

where C11 = Ip1 , C22 = Ip2 and C12 = W . Thereby, the convergence of the second
summand follows from Theorem 5.2.4 as in classical CCA. Hence, we have shown

1

n
ˆ̃Z

(n)T

1
ˆ̃Z

(n)
1

P−−−→ Ip1 ,
1

n
ˆ̃Z

(n)T

2
ˆ̃Z

(n)
2

P−−−→ Ip2 ,
1

n
ˆ̃Z

(n)T

1
ˆ̃Z

(n)
2

P−−−→ W.

Now, Lemma 5.2.6 implies

Ŵ (n) =
(
ˆ̃Z

(n)T

1
ˆ̃Z

(n)
1

)−1/2 ˆ̃Z
(n)T

1
ˆ̃Z

(n)
2

(
ˆ̃Z

(n)T

2
ˆ̃Z

(n)
2

)−1/2
P−−−→ W.

By the same reasoning as in the proof of Theorem 5.2.8, the estimated canonical corre-
lations λ̂

(n)
1 , . . . , λ̂

(n)
p1 continuously depend on W (n), so that by the Continuous Mapping

Theorem (Theorem 3.2.4),

λ̂
(n)
k

P−−−→ λk

for all k ∈ [p1].

This finalizes our discussions of different CCA models. In the next chapter we will
introduce another type of estimation method for the GCCCA and CMCCA, respectively.
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6 Bayesian Methods for CCA

In this chapter we will present two more estimation methods for Canonical Correlation
Analysis. These go in a different direction and are both Bayesian methods which use a
Markov Chain Monte Carlo algorithm. In the first section of this chapter we will present
a short introduction into Bayesian models and explain how they motivate the use of
Markov Chains. Further, we will introduce the Gibbs Sampling algorithm, a classical
Markov Chain Monte Carlo method. Then, we will present the two Bayesian Methods
for the GCCCA and the CMCCA in Section 6.2 and 6.3, respectively.

For more detailed information on Bayesian Models and MCMC methods we refer to
(Gelman et al., 2014).

6.1 Bayesian Models and Markov Chain Monte Carlo

When working with Bayesian models, one usually specifies prior and posterior distribu-
tions which have densities or probability mass functions. Further, one will also encounter
conditional distributions and densities. Therefore, the notation can easily become con-
fusing. In order to be precise, the following definition defines not only Bayesian Models,
but also the notation for this chapter.

Definition 6.1.1 (Bayesian Model Formulation). Suppose θ is a parameter (possibly a
vector or a matrix). In Bayesian Models we assume that θ is random and we have some
prior knowledge on it in form of a distribution. We will write

θ ∼ π(θ),

where π(θ) is called the prior distribution of θ. Thereby, we will often assume that π(θ)
has a density or probability mass function which we also denote by π(θ).

Now suppose we observe a sample x = (x1, . . . , xn) which has a joint density or probability
mass function depending on the parameter θ. We denote it by π(x|θ). Sometimes we will
refer to the function π(x|θ) for a fixed a x depending on θ, as the likelihood function and
write l(θ) = π(x|θ).

Finally, we would like to make inference on θ using the information obtained from the
sample x. As θ is random we can do this by the distribution of θ given x which we denote
by π(θ|x). It can be expressed by Bayes Theorem

π(θ|x) = π(θ, x)

π(x)
=
π(x|θ)π(θ)

π(x)
,

where π(θ, x) denotes the joint density of θ and x, and π(x) the density of x. Then,
π(θ|x) is called the posterior distribution of θ. Sometimes we will write

π(θ|x) ∝ π(x|θ)π(θ),

to indicate proportionality as the normalization constant is not relevant in order to iden-
tify the posterior distribution.
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One important case of Bayesian Models is when the prior distribution of θ and the
distribution of x given θ are such that the posterior is from the same family as the prior.
Such prior distributions will be called conjugate.

Definition 6.1.2 (Conjugate Prior Distributions). Suppose P denotes a family of prior
distributions and F denotes a family of distributions for the sample x. Then, we call
P conjugate to F , if for every prior π(θ) ∈ P and every x ∼ π(x|θ) ∈ F , we have
π(θ|x) ∈ P.

Let us provide an example for a Bayesian Model and conjugacy.

Example 6.1.3. Suppose we are interested in inferring a mean parameter θ of a normal
distribution N (θ, 1). Thereby, we have prior knowledge about θ, which is also a normal
distribution, given by π(θ) ∼ N (m,σ2), where m ∈ R and σ > 0. Now, we observe a

sample x = (x1, . . . , xn)
iid∼ N (θ, 1), so that we can determine the posterior distribution

of θ. In the following let x̄ = 1
n

n∑
i=1

xi denote the sample mean.

π(θ|x) ∝ π(x|θ)π(θ)

=

(
n∏

i=1

1√
2π

exp

(
−1

2
(xi − θ)2

))
· 1√

2π
exp

(
− 1

2σ2
(θ −m)2

)

∝ exp

(
−1

2

(
n∑

i=1

(θ − xi)
2

)
− 1

2σ2
(θ −m)2

)

∝ exp

(
−1

2

(
nθ2 − 2θ · nx̄+ θ2

σ2
− 2θ

m

σ2

))
= exp

(
−1

2

(
nσ2 + 1

σ2
θ2 − 2θ ·

(
nx̄+

m

σ2

)))
= exp

(
− 1

2 · σ2/n
σ2+1/n

(
θ2 − 2θ ·

(
x̄

σ2

σ2 + 1/n
+m

1/n

σ2 + 1/n

)))

∝ exp

(
− 1

2 · σ2/n
σ2+1/n

(
θ −

(
x̄

σ2

σ2 + 1/n
+m

1/n

σ2 + 1/n

))2
)

Note that we were interested in identifying the posterior distribution and thus could
rewrite the density up to proportionality without considering normalization constants.
We conclude that the posterior distribution of θ is given by

π(θ|x) ∼ N
(
x̄

σ2

σ2 + 1/n
+m

1/n

σ2 + 1/n
,

σ2/n

σ2 + 1/n

)
One can also observe that the posterior distribution is normal like the prior. Hence, we
have shown that the family of priors P = {N (m,σ2) : m ∈ R, σ > 0} is conjugate to the
family F = {N (θ, 1) : θ ∈ R}.

For readers who are new to the topic a valid question might be: How are Bayesian models
related to Markov Chains? The answer is that Markov Chains can help us to sample from
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a complicated posterior distribution. Let us provide a short introduction into Markov
Chains. For more detailed information we refer to (Feller, 1971) and (Meyn and Tweedie,
2009).

Definition 6.1.4 (Markov Chain). Suppose S ∈ B(Rd) is a state space. Then, we call a
sequence of random vectors (θ(n))n∈N with values in S a stochastic process.

A stochastic process is calledMarkov Chain if the future states are independent of the past
states given the present state. That is, for all n, x ∈ S and all A1, . . . , An−1, An+1 ∈ B(S),
we have

P(θ(n+1) ∈ An+1|θ(n) = x, θ(n−1) ∈ An−1, . . . , θ
(1) ∈ A1) = P(θ(n+1) ∈ An+1|θ(n) = x).

If the probability on the right-hand side is independent of n for all A = An+1 ∈ B(S) and
all x ∈ S, then (θ(n))n∈N is called a homogeneous Markov Chain.

For a stochastic process on a finite state space S, the following condition is sufficient to
show that it is a Markov Chain: It holds for all x1, . . . , xn+1 ∈ S,

P(θ(n+1) = xn+1|θ(n) = xn, θ
(n−1) = xn−1, . . . , θ

(1) = x1) = P(θ(n+1) = xn+1|θ(n) = xn)

The probabilities on the right-hand side are then called transition probabilities.

The most important definition for the algorithms later is the stationary distribution.

Definition 6.1.5 (Stationary Distribution). Let (θ(n))n∈N be a homogeneous Markov
Chain on the state space S ∈ B(Rd). A probability measure π on (S,B(S)) is called
stationary distribution of the Markov Chain (θ(n))n∈N if for all A ∈ B(S)

π(A) =

∫
S

P(θ(n+1) ∈ A|θ(n) = x)dπ(x). (6.1)

Condition (6.1) can be interpreted as follows. If the distribution of the Markov Chain
at time n is π, it also at time n + 1. Hence, if a Markov Chain reaches a stationary
distribution it is in an equilibrium.

For Markov Chain on a finite state space condition (6.1) is equivalent to the following:
If for all y ∈ S it holds

π(y) =
∑
x∈S

P(θ(n+1) = y|θ(n) = x)π(x), (6.2)

then π is the stationary distribution of (θ(n))n∈N. If π = (π(x))x∈S is written as a row
vector and Π = (Π(x, y))x,y∈S is matrix containing the transition probabilities Π(x, y) =
P(θ(n+1) = y|θ(n) = x), condition (6.2), can be written as

π = πΠ.

Why is the stationary distribution important for us? As we mentioned Markov Chains
shall help us to sample from a complicated posterior distribution π(θ|x). The idea behind
Markov Chain Monte Carlo algorithms is to construct a Markov Chain which has π(θ|x)
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as stationary distribution. Then, under certain conditions the distribution of the Markov
Chain at time n converges against the stationary distribution. Hence, we can sample
from a distribution close to π(θ|x) if we run the Markov Chain long enough provided it
converges.

There is theory on the general convergence of Markov Chains, e.g. see (Meyn and
Tweedie, 2009), particularly for countable or finite state spaces. As we will consider
Rd as a state space, we will not state the theory here. Instead, we provide a simple
example of a convergence to a stationary distribution in order to give some intuition.

Example 6.1.6. Suppose a frog is jumping back and forth between two leafs. Thereby,
it stays on its current leaf with probability 3

4
and jumps to the other with probability 1

2
.

Then, this Markov Chain has transition matrix

Π =

(
3
4

1
4

1
4

3
4

)
.

It is easy to show that the stationary distribution of this Markov Chain is given by the
probability measure µ =

(
1
2

1
2

)
. However, suppose the Markov Chain starts with an

arbitrary initial distribution µ0. Also, let us denote the state space by S = {1, 2}. We
then have for x ∈ S

P(θ(n+1) = x)

=
∑

x1,...,xn∈S

P(θ(n+1) = x, θ(n) = xn, . . . , θ
(1) = x1)

=
∑

x1,...,xn∈S

P(θ(n+1) = x|θ(n) = xn, . . . , θ
(1) = x1)

·P(θ(n) = xn|θ(n−1) = xn−1, . . . , θ
(1) = x1) · · ·P(θ(1) = x1)

=
∑

x1,...,xn∈S

P(θ(n+1) = x|θ(n) = xn)P(θ(n) = xn|θ(n−1) = xn−1) · · ·P(θ(1) = x1)

=
∑

x1,...,xn∈S

Π(xn, x)Π(xn−1, xn) · · ·Π(x1, x2)µ0(x1) = µ0Π
n−1Π(·, x),

where Π(·, x) is the column of Π corresponding to x. Hence, the distribution of the
Markov Chain at time n, denoted by µn, is given by

µn = µ0Π
n = µ0

(
3
4

1
4

1
4

3
4

)n

=

(
1 1
1 −1

)(
1 0
0 1

2n

)(
1
2

1
2

1
2

−1
2

)
=

1

2

(
µ0(1) µ0(2)

)(1 + 1
2n

1− 1
2n

1− 1
2n

1 + 1
2n

)
=
(
1
2
+ 1

2n
(µ0(1)− 1

2
) 1

2
+ 1

2n
(µ0(2)− 1

2
)
)
.

Thereby, we used the fact that µ0(1) + µ0(2) = 1. In fact, we have that µn converges
against the stationary distribution:

lim
n→∞

µn = lim
n→∞

(
1
2
+ 1

2n
(µ0(1)− 1

2
) 1

2
+ 1

2n
(µ0(2)− 1

2
)
)
=
(
1
2

1
2

)
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In this example we observed that although the Markov Chain can be initialized with any
distribution, after a sufficiently long time its distribution becomes close to the stationary
one. Now with this intuition, the motivation and procedure behind the algorithms we
will present can be summarized as follows.

1. Suppose one observes a sample x = (x1, . . . , xn) whose distribution depends on a
unknown parameter θ, and is interested in a statistic t(θ).

2. Choose a suitable prior π(θ) and identify the posterior distribution π(θ|x).

3. Construct a Markov Chain whose stationary distribution is the posterior π(θ|x).

4. Sample m independent trials θ̂1, . . . , θ̂m from the Markov Chain after a sufficiently
long running time and compute the posterior mean

t̂(θ) =
m∑
k=1

t(θ̂k).

We finish this section by introducing Gibbs Sampling which is the type of Markov Chain
Monte Carlo algorithm we will encounter later. Beside the Metropolis algorithm it is one
of the most commonly used MCMC methods. For more detailed information we refer to
(Gelman et al., 2014).

Gibbs sampling is mostly used when there are multiple parameters involved, so that it is
difficult to draw from the joint distribution, but possible from conditional distributions.
Particularly, Bayesian Models with conjugate priors are suitable for Gibbs Sampling as
the conditional distribution before and after resampling will be of the same type. When
we introduce the algorithm, we will use the notation θ = (θ1, . . . , θd) for the parameters.
These can denote anything, e.g. numbers, vectors, matrices, etc.

Algorithm 4 Gibbs Sampling

Input: number of iterations m, data x, initial values θ0
Output: sample θ = θ(m)

1: Set initial values θ(0) = (θ
(0)
1 , . . . , θ

(0)
d ).

2: for i = 1, . . . ,m do
3: for j = 1, . . . , d do
4: Sample θ

(i)
j ∼ π(θj|θ(i)1 , . . . , θ

(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
d , x)

5: Return θ(m).

Before we finish this section, let us provide a simple example for a Gibbs sampling algo-
rithm from (Gelman et al., 2014, p.277).

Example 6.1.7 (Gibbs Sampling). Suppose we observe one single sample from a bivariate
normal distribution (

x1
x2

)
∼ N2

((
θ1
θ2

)
,

(
1 ρ
ρ 1

))
,

where ρ ∈ (−1, 1) is known and we would like to infer θ. The next step is to choose a
suitable prior distribution for θ. We will do this by picking a improper prior distribution
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by setting π(θ) ∼ 1. This prior is called improper as it integrates to ∞ and there-
fore, is no probability distribution. However, improper priors can yield proper posterior
distributions, as we will observe next. We have

π(θ|x) ∝ l(θ)π(θ) ∝ exp

(
−1

2

(
x1 − θ1 x2 − θ2

)(1 ρ
ρ 1

)−1(
x1 − θ1
x2 − θ2

))
.

Hence, the posterior distribution is proper and given by

π(θ|x) ∼ N2

((
x1
x2

)
,

(
1 ρ
ρ 1

))
.

Of course this is an easy distribution to sample from, so that one usually would not apply
Gibbs Sampling. But for understanding the algorithm, this example can be helpful. We
need conditional distributions which can be determined from Proposition 5.1.6. Hence,
we have

π(θ1|θ2, x) ∼ N (x1 + ρ(θ2 − x2), 1− ρ2)

π(θ2|θ1, x) ∼ N (x2 + ρ(θ1 − x1), 1− ρ2).

Therefore, we have the following Gibbs Sampling algorithm:

Algorithm 5 Gibbs Sampling Example

Input: number of iterations m, data x, initial values θ0
Output: sample θ = θ(m)

1: Set initial values θ(0) = (θ
(0)
1 , θ

(0)
2 ).

2: for i = 1, . . . ,m do
3: Resample θ1: θ

(i)
1 ∼ N (x1 + ρ(θ2 − x2), 1− ρ2).

4: Resample θ2: θ
(i)
2 ∼ N (x2 + ρ(θ1 − x1), 1− ρ2).

5: Return θ(m).

This concludes our introduction to Bayesian Models and Markov Chain Monte Carlo
algorithms. In the next chapter, we will learn how these yield new estimation methods
for CCA.

6.2 The Extended Rank Likelihood for GCCCA

In this section we introduce a Bayesian method for the Gaussian Copula CCA. We begin
by defining the notation and the setup throughout the section. Then, we continue by
defining the likelihood in this model which is a nontrivial question. Further, we address
the choice of priors and finally, present the Gibbs Sampling Algorithm which is based on
(Hoff, 2007b).

Notation 6.2.1. Suppose we observe Y (1), . . . , Y (n) iid∼ NPNp(C, f), so that Z
(1), . . . , Z(n) iid∼

Np(0, C) are joint normal and we have

Y
(i)
k = F−1

k (Φ(Z
(i)
k ))
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for all i ∈ [n] and k ∈ [p], where we used the representation from (5.1). Thereby, C is a
correlation matrix and F1, . . . , Fp are continuous distribution functions. We summarize
the Y (i)’s and Z(i)’s in the data matrices

Z =

Z
(1)

...
Z(n)

 =

Z
(1)
1 . . . Z

(1)
p

...
. . .

...

Z
(n)
1 . . . Z

(n)
p

 Y =

Y
(1)

...
Y (n)

 =

Y
(1)
1 . . . Y

(1)
p

...
. . .

...

Y
(n)
1 . . . Y

(n)
p

 .

Our goal is to estimate the correlation matrix C. As in Section 5.3, the problem is that
the normal Z(i)’s are unobserved. There, we were able to tackle this issue by estimating
the entries of C with Spearman’s ρ. This time we will go in a different direction and infer
C with a Bayesian Method which has been presented in Hoff (2007b). The procedure
can generally be applied for estimating correlation matrices of Gaussian Copulas and is
therefore, not specific to our application in CCA estimation.

Now, when setting up a Bayesian model as in Definition 6.1.1, we have the data Y and
unknown parameters C,F1, . . . , Fp. Hence, our “likelihood” would look somewhat like
this

l(C) = π(Y |C,F1, . . . , Fp),

which is obviously inconvenient to work with. The idea from Hoff (2007b) is to replace the
data Y by some event which yields information about Z, so that the resulting likelihood
is independent of the nuisance parameters F1, . . . , Fp.

Due to the model assumptions we have some information on Z when observing Y , namely
that the univariate marginals of the Y (i)’s are increasing transformations of the Z(i)’s.
Hence, if we observe Y

(i1)
j ≤ Y

(i2)
j , we must have Z

(i1)
j ≤ Z

(i2)
j . More generally, observing

Y means that Z must lie in the set

D :=
{
Z ∈ Rn×p|max

{
Z

(k)
j : Y

(k)
j ≤ Y

(i)
j

}
≤ Z

(i)
j ≤ min

{
Z

(k)
j : Y

(k)
j ≤ Y

(k)
j

}}
.

Now, we can replace our data Y by the occurrence of this event. Then, the likelihood,
also called “extended rank likelihood”, is given by

l(C) = π(Z ∈ D|C,F1, . . . , Fp) = P(Z ∈ D|C).

We observe that the last equality holds since the distribution of the Z(i)’s is independent
of F1, . . . , Fp. Hence, our likelihood does not depend on the nuisance parameters which
is very convenient. As we work with a Bayesian model, the full posterior distribution is
given by

π(C|Z ∈ D) ∝ P(Z ∈ D|C)π(C),

where π(C) is a prior distribution of Z. We address the choice of priors next.

Later we will resample C and Z with a Gibbs Sampling algorithm for which we need a
suitable prior for C. We learned in the previous section that suitable choices of prior dis-
tributions for Gibbs Sampling are conjugate priors. One such distribution is the Inverse-
Wishart which is conjugate to the multivariate normal distribution. In order to present
it we need to define Wishart distribution first.
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Definition 6.2.2 (Wishart Distribution). LetX1, . . . , Xn
iid∼ Nd(0,Σ), where Σ is positive

definite. Then,
n∑

i=1

XiX
T
i ∼ Wd(n,Σ)

follows aWishart Distribution with n degrees of freedom and covariance matrix Σ. Hence,
Wd(n,Σ) is a distribution on the set of symmetric and positive semidefinite matrices in
Rd×d.

Proposition 6.2.3 (Corollary 7.2 in (Bilodeau and Brenner, 1999)). Let Σ ∈ Rd×d be
symmetric and positive definite and let n ∈ N. Further, let W ∼ Wd(n,Σ). If n > d− 1,
then P(W is invertible) = 1.

The preceding proposition justifies the following definition:

Definition 6.2.4 (Inverse Wishart Distribution). Let W ∼ Wd(n,Σ) follow a Wishart
Distribution with symmetric and positive definite covariance matrix Σ with n degrees of
freedom where n > d−1. Then, its inverse W−1 follows an Inverse Wishart Distribution.
With Ψ = Σ−1 we write

W−1 ∼ IWd(n,Ψ).

Some important properties of the Inverse-Wishart distribution are the following:

Proposition 6.2.5. Let W ∼ Wd(n,Σ) with n > d+ 1 and Ψ = Σ−1. We have

1. E[W ] = nΣ

2. E[W−1] =
Ψ

n− d− 1
.

Proof. For 1. see page 66 of (Mardia et al., 1979). For 2. we refer to Theorem 3.1 in
(von Rosen, 1988).

Theorem 6.2.6. Let Ψ ∈ Rd×d be symmetric and positive definite and let Σ ∼ IWd(n,Ψ).

Further, let X1, . . . , Xm
iid∼ Nd(0,Σ) and summarize the samples into the matrix X =

(X1| . . . |Xm) ∈ Rd×m. Then, we have for the posterior distribution of Σ

Σ|X ∼ IWd(n+m,Ψ+XXT ).

Proof. We refer to (Zhang, 2021).

Hence, the Inverse-Wishart distribution is conjugate to the multivariate normal distribu-
tion, and therefore perfectly suitable for our Gibbs Sampling algorithm later. However,
there is one drawback: The theorem is for sampling from normals with general covariance
matrices while the GCCCA is parametrized with a correlation matrix. Therefore, we will
resample over a covariance matrix V instead of C and C will be equal to its corresponding
correlation matrix.

For the prior distribution of V , we let V = (vij) ∼ IWp(n0, n0V0) have inverse Wishart
Distribution, so that E[V −1] = V −1

0 , where V0 is the initial positive definite covariance
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matrix and n0 ≥ p is some prior weight. Thereby, the initial V0 will be chosen to be the
covariance matrix of the initial Z0 which will be based on the observed Y . We state
the algorithm first and then explain how starting values can be chosen and the intuition
behind all the steps. The Gibbs Sampling scheme is given as follows:

Algorithm 6 Gaussian Copula: Correlation Matrix Estimation

Input: Data Matrix Y , prior weight n0, iterations m
Output: Posterior Sample of Correlation Matrix C = (cij) ∼ π(C|Z ∈ D)

1: Set starting values Z = Z0 and V0 as described after.
2: Generate V = (vij) ∼ IWp(n0, n0V0)
3: for k = 1, . . . ,m do
4: Resample Z:
5: for j = 1, . . . , p do
6: for each unique Y ∈ {Y (n)

j , . . . , Y
(n)
j } do

7: Set Zl = max{Z(i)
j : Y

(i)
j ≤ Y, i ∈ [n]}, Zu = min{Z(i)

j : Y ≤ Y
(i)
j , i ∈ [n]}

8: for each i such that Y
(i)
j = Y do

9: Set σ2
j = vjj − V[j,−j]V

−1
[−j,−j]V[−j,j].

10: Compute µi,j = Z [i,−j](V[j,−j]V
−1
[−j,−j])

T

11: Sample ui,j ∼ Unif

(
Φ

(
Zl − µi,j

σj

)
,Φ

(
Zu − µi,j

σj

))
12: Set Z

(i)
j = µi,j + σj · Φ−1(ui,j).

13: Resample V ∼ IWp(n0 + n, n0V0 +ZTZ)

14: Compute C: For all i, j, set cij = vij/
√
viivjj

Thereby, Z [i,−j] denotes the i-th row of the matrix Z where the j-th column is removed.
Further, V[−j,−j] is the matrix V with its j-th column and j-th row removed, and V −1

[−j,−j]

is its inverse. Finally, V[j,−j] denotes the j-th row of V where the j-th entry is removed.

Before addressing the choice of initial values let us explain the steps of this algorithm.
As we mentioned before, the Inverse-Wishart distribution is supported over the space of
general covariance matrices, so that we resample over Z and V instead of Z and C. This
is done in the lines 5-13 of the algorithm Thereby, we sample from the distributions

(i) Z
(i)
j ∼ p(Z

(i)
j |Z ∈ D,Z \ {Z(i)

j }, V )

(ii) V ∼ IWp(n0 + n, n0V0 +ZTZ)

As the sampling of V is clear, let us explain how we do it for the Z
(i)
j ’s. When de-

termining a new value for Z
(i)
j , we need to make sure that the new Z remains in D.

Hence, we calculate and admissible interval [Zu, Zl] in line 7 based on the structure of

Y
(1)
j , . . . , Y

(n)
j . Then, we determine the conditional normal distribution parameters of Z

(i)
j

given Z
(i)
1 , . . . , Z

(i)
j−1, Z

(i)
j+1, . . . , Z

(i)
p in line 9-10. This is done with the formula from Propo-

sition 5.1.6. As this distribution is truncated to the set [Zu, Zl] we apply the generalized
inverse transform method to sample from this conditional distribution.
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After the resampling is run long enough, we terminate with a covariance matrix V and
calculate its corresponding correlation matrix in line 14.

Finally, let us address the question of starting values. As V is the covariance matrix of
Z in the algorithm, we chose the initial V0 as the covariance matrix of Z0, i.e. V0 =
1

n−1
(Z̃

T

0 Z̃0), where Z̃0 = Z0 − 1
n
1n1

T
nZ0. So how do we choose Z0? As we need to make

sure that Z0 ∈ D, we need to keep the ordering of the columns of Y while transforming
the data to a normal distribution. We do this the following way.

Let the columns of Y be denoted by Y = (γ1| · · · |γp). Then, we set Z0 = (ζ̃1| · · · |ζ̃p),
where the ζ̃j’s are transformations of the γj’s which we explain next. For j ∈ [p], γj is

the vector of j-th marginals of the sample, i.e. γj =
(
Y

(1)
j · · · Y

(n)
j

)T
. Now, let F

(n)
j

be the empirical distribution function of this sample. Then, define

ζj =
(
Φ−1

(
n

n+1
F

(n)
j (Y

(1)
j )
)

· · · Φ−1
(

n
n+1

F
(n)
j (Y

(n)
j )

))T
, (6.3)

and its mean and variance

mj :=
1

n

n∑
i=1

Φ−1

(
n

n+ 1
F

(n)
j (Y

(i)
j )

)
s2j :=

1

n− 1

n∑
i=1

(
Φ−1

(
n

n+ 1
F

(n)
j (Y

(i)
j )

)
−mj

)2

Now, define the standardized ζ̃j = (ζj − mj1n)/sj and Z0 = (ζ̃1| · · · |ζ̃p). In summary,
we “transport” the γj’s to normal variables in (6.3) while maintaining. Thereby, the
n

n+1
factor is the to ensure that finite values are generated. Finally, we standardize the

columns. During the whole process the ordering of the γj was maintained so that we have
Z0 ∈ D.

Finally, one can compute C which is the corresponding correlation matrix to V . Then, the
generated Markov Chain has the stationary distribution π(C|Z ∈ D) by (Hoff, 2007b).
Now, the remaining part is to estimate the GCCCA parameters of Y which can be done
with the posterior mean.

Algorithm 7 GCCCA Estimation

Input: As Algorithm 6
Output: GCCCA Parameters Ŵ and Λ̂

1: Generate k posterior samples Ĉ(1), . . . , Ĉ(k) ∼ π(C|Z ∈ D) with Algorithm 6.
2: for j = 1, . . . , k do

3: Let Ĉ(j) have block structure Ĉ(j) =

(
Ĉ

(j)
11 Ĉ

(j)
12

Ĉ
(j)
21 Ĉ

(j)
22

)
.

4: Set Ŵ
(j)

= Ĉ
(j)−1/2

11 Ĉ
(j)
12 Ĉ

(j)−1/2

22 .

5: Compute the posterior mean Ŵ =
1

k

k∑
j=1

Ŵ (j).

6: Compute Λ̂ with the singular value decomposition of Ŵ = Q̂1Λ̂Q̂
T
2 .

73



6 Bayesian Methods for CCA

This concludes our subsection presenting this Bayesian GCCCA method. In the next
section we present a similar procedure for the CMCCA model.

6.3 Outlook: The Multirank Likelihood for CMCCA

In this final section we will briefly discuss a Bayesian method for the CMCCA model
which is also presented in (Bryan et al., 2024). We begin by the defining the notation
and setup and then present the so-called multirank likelihood on which this method is
based on.

Notation 6.3.1. In this section we assume the same setup as in Notation 5.4.7. Hence,
we observe Y (1), . . . , Y (n) i.i.d. satisfying the cyclically monotone CCA, so that we have

Y =

Y
(1)
1 Y

(1)
2

...
...

Y
(n)
1 Y

(n)
2

 =

G1(Z
(1)
1 ) G2(Z

(1)
2 )

...
...

G1(Z
(n)
1 ) G2(Z

(n)
2 )

 , Z =

Z
(1)
1 Z

(1)
2

...
...

Z
(n)
1 Z

(n)
2


for cyclically monotone transformations G1 and G2. Further, we have Z(1), . . . , Z(n) iid∼
Np(0, C), so that

C =

(
Ip1 W
W T Ip2

)
is positive definite and W has singular value decomposition W = Q1ΛQ

T
2 .

As in Section 5.4, our goal is to estimate the CMCCA parameter W or equivalently Q1,
Q2 and Λ. In particular, we do not need to know the cyclically monotone functions G1

and G2. Like in the previous section the estimation would be straightforward if we knew
the latent Z(i)’s, but we do not. In Section 5.4 we took on the problem by sampling from
a grid and then use optimal transport, but this time we follow a Bayesian approach.

For stating the likelihood function, note that we have data Y and unknown parameters
Q1, Q2,Λ, G1, G2, so that our likelihood would be given by

l(Q1, Q2,Λ) = π(Y |Q1, Q2,Λ, G1, G2),

which is difficult to work with. Hence, we follow a similar approach as in the previous
section by replacing the data Y by the occurrence of an event making the resulting
likelihood independent of the nuisance parameters G1 and G2.

Again when we observe data Y we can learn some information on the structure of the
Z(i)’s. The starting point is the following: As Y (1), . . . , Y (n) is a sample from the CM-
CCA model, we must have Y

(i)
j = Gj(Z

(i)
j ), where Gj is cyclically monotone. By the

characterizations in Definition 4.1.6 we have

n∑
i=1

∥∥∥Z(i)
j − Y

(i)
j

∥∥∥2 = min
π∈Sn

∥∥∥Z(i)
j − Y

(i)
π(j)

∥∥∥2 j = 1, 2.

More generally, Z must lie in the subset of Rn×p,

D :=
{
Z : {(Z(1)

j , Y
(1)
j ), (Z

(2)
j , Y

(2)
j ), . . . , (Z

(n)
j , Y

(n)
j )} is cyclically monotone for j = 1, 2

}
.
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Now, we can take the occurrence of the event {Z ∈ D} as our data and obtain the
so-called multirank likelihood

l(Q1, Q2,Λ) = P(Z ∈ D|Q1, Q2,Λ, G1, G2) = P(Z ∈ D|Q1, Q2,Λ).

We observe that the last equality holds since the distribution of Z is independent of G1

and G2. Hence, our likelihood function is independent of the nuisance parameters G1 and
G2, as desired. Finally, one can specify a prior distribution for Q1, Q2 and Λ and obtain
the posterior distribution

π(Q1, Q2,Λ|Z ∈ D) ∝ P(Z ∈ D|Q1, Q2,Λ)π(Q1, Q2,Λ).

We end the section at this point, as the next steps go beyond the scope of this thesis. The
choice of priors on Q1, Q2 and Λ involves highly complex domains. Further, the resulting
Gibbs Sampling scheme involves distributions which it is difficult to sample from, e.g. a
matrix normal distribution truncated to a set with a cyclically monotone constraint. For
interested readers we refer to (Bryan et al., 2024) for more information.

This finalizes the chapter on Bayesian methods for Canonical Correlation Analysis. In
the next chapter we will conduct simulations to compare all five introduced methods.
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7 Simulation

7.1 Setup

In chapter 5 we have introduced three different models for Canonical Correlation Analysis
and presented one method for each model. The classical CCA method directly estimates
the CCA parameter W by multiplying blocks of the empirical covariance matrix. In
comparison, the Gaussian Copula CCA method calculates the Spearman’s correlation
coefficients of the sample which determine the entries of a correlation matrix in a first
step. Finally, the Cyclically Monotone CCA method samples from a multivariate normal
grid and transports the sample to it before estimatingW . All three models are consistent
provided their respective model assumptions hold.

Furthermore, we have provided two Bayesian estimation methods for the Gaussian Copula
Model and the CMCCA Model, respectively, in chapter 6. In those one can sample from
a Markov Chain which has the desired posterior distribution as stationary distribution if
the corresponding model assumptions are satisfied. In summary, this makes five methods
which have strong asymptotic results. But how do they perform in practice?

In this chapter we will make a simulation to answer this question. The main goal is to
assess the performance of all methods in different scenarios which includes varying sample
sizes, dimensions, and distribution of the samples. As the cyclically monotone CCA is
our largest model containing both, the classical CCA and Gaussian Copula CCA, our
samples will be distributed according to this model. Therefore, we will simulate an i.i.d.
sample from

Y =

(
Y1
Y2

)
=

(
G1(Z1)
G2(Z2)

)
Z =

(
Z1

Z2

)
∼ Np

(
0,

(
Ip1 W
W T Ip2

))
,

where p1 ≤ p2, p = p1+p2,W has singular value decomposition Q1ΛQ
T
2 , and G1 & G2 are

cyclically monotone transformations. These functions will be chosen based on Example
4.1.1. We will pick one transformation from each type, (i)-(v). Then, we will run all
five presented methods for sample sizes increasing from 100 to 1000. This procedure
will be repeated for the dimensions p1 = p2 = 2, 3, 4. Thereby, when we increase the
dimension, we will try to change the cyclically monotone transformations as little as
possible. The purpose behind this is to analyze the effect of sample size and dimension
on the performance of each model.

In the simulations, we will estimate the CMCCA parameters W and Λ. Doing so we will
use the loss functions

LW (Ŵ ) =
∥Ŵ −W∥2F

p1p2
, and LΛ(Λ̂) =

∥Λ̂− Λ∥2F
p1

,

where ∥ · ∥F is the Frobenius-norm of a matrix. I.e. for a matrix A = (aij) ∈ Rm×n, it
holds

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2ij.

Our methods will have the following abbreviations in throughout this section:
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� CCA: The classical CCA method from Section 5.2.

� GCCCA: The Gaussian Copula CCA method with Spearman’s ρ from Section 5.3.

� GCCCA-Bay: The MCMC method for the GCCCA from Section 6.2.

� CMCCA: The plug-in method for the CMCCA model from Section 5.4

� CMCCA-Bay: The MCMC method for the CMCCA from Section 6.3.

As we did not present the estimation method for the CMCCA-Bay method, we refer to
the cmcca package at https://github.com/j-g-b/cmcca. There, one can use the cmcca-
mcmc() function to sample from a Markov Chain with the desired stationary distribution.

7.2 Models and Performance

7.2.1 Dimension 2

For the two dimensional case, we set

Z =

(
Z1

Z2

)
∼ N4(0,Σ), Σ =

(
I2 W
W T I2

)
, W = Q1ΛQ

T
2 ,

Λ =

(
1
2

0
0 1

4

)
, Q1 =

(
1√
2

− 1√
2

1√
2

1√
2

)
, Q2 =

(√
3
2

−1
2

1
2

√
3
2

)
,

and apply five different cyclically monotone transformations. As explained before, these
will be based on Example 4.1.1. For each model we will calculate the loss for W and Λ
in 100 replications for each sample size n = 100, 250, 500, 1000.

Model 1. The first model is a linear transformation as in Example 4.1.1 (i). Define

T : R2 → R2, T (z) =

(
1 0.25

0.25 1

)(
z1
z2

)
and set

Y =

(
Y1
Y2

)
=

(
T (Z1)
T (Z2)

)
.

Model 2. The second transformation applies univariate increasing functions to each
marginal as in Example 4.1.1 (ii). Let

f : R → R, f(x) = F−1
V (Φ(x)), G : R2 → R2, G(z) =

(
f(z1)
f(z2)

)
where Φ is the distribution of a standard normal random variable, V ∼ Exp(1) is expo-
nentially distributed, and F−1

V the inverse of V ’s distribution function. Then, set

Y =

(
Y1
Y2

)
=

(
G(Z1)
G(Z2)

)
.
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Model 3. The next transformation is a combination of Example 4.1.1 (ii) and (v). Let
G be as in Model 2. Define

G̃ : R2 → R2, G̃(z) = UTG(Uz), U =

(
3 1
1 3

)
,

and set

Y =

(
Y1
Y2

)
=

(
G̃(Z1)

G̃(Z2)

)
.

Model 4. In this model we transform the Zj’s by scaling them with increasing and
non-negative functions of their norms as in Example 4.1.1 (iii). Let H be defined as

H : R2 → R2, H(z) =
exp(0.1∥z∥)

1 + exp(0.1∥z∥)
z

∥z∥

and set

Y =

(
Y1
Y2

)
=

(
H(Z1)
H(Z2)

)
.

Model 5. The last transformation is as in Example 4.1.1 (iv). Define

J : R2 → R2, J(x, y) =

(
x3/3 + x+ y
y3/3 + y + x

)
and set

Y =

(
Y1
Y2

)
=

(
J(Z1)
J(Z2)

)
.

Performance. The following boxplots show the performance of 100 trials of each method
in all models with sample sizes increasing from n = 100 to 1000.

Figure 7.1: Performance in Model 1
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Figure 7.2: Performance in Model 2

Figure 7.3: Performance in Model 3

Figure 7.4: Performance in Model 4
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Figure 7.5: Performance in Model 5

Before we comment on the boxplots, let us address which model assumptions are satisfied
in which model. As the first transformation is linear, Model 1 satisfies the CCA assump-
tions, and therefore, also the ones for the GCCCA. In Model 2, we do not have normally
distributed data anymore, so that the classical CCA assumptions are violated. However,
the type of transformation still lies in the GCCCA setup. Finally, one can check that
Model 3-5 neither fulfill the classical CCA nor the GCCCA model assumptions. However,
by our setup the CMCCA assumptions are satisfied in every model.

These observations are reflected in the boxplots. In figure 7.1, we see that all methods
perform similarly in Model 1 with some minor fluctuations. In particular, the accuracy
of each model improves with the sample size.

In figure 7.2 we observe a different result. While the other methods become more accurate
with a higher sample size, the classical CCA fails to do so. This makes sense as its model
assumptions are not satisfied and its consistency does not hold.

In Model 3, only the CMCCA assumptions are satisfied, so that the two corresponding
methods perform best as seen in Figure 7.3. The classical CCA demonstrates the worst
performance, while the GCCCAmethods perform mediocrely. The distinction in accuracy
of the five methods arises particularly with higher sample sizes.

In Model 4, the dominance of the CMCCA methods is clear. While the three other
methods perform similar with no improvement in accuracy, the CMCCAmethods perform
significantly better.

Finally, Figure 7.5 is similar to Figure 7.3, with the CMCCA methods performing best,
the GCCCA being mediocre and the classical CCA being the least accurate method.

In summary, the classical CCA method only performed well when its model assumptions
were satisfied. The GCCCA methods were accurate in their models, but also moderate
if their model assumptions were violated. Overall, the CMCCA methods performed best
as they were accurate in every scenario. In particular, they beat the established methods
in Model 3-5, and performed similarly in the other two.
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Next, we consider the case p1 = p2 = 3.

7.2.2 Dimension 3

For the three-dimensional case, we set

Z =

(
Z1

Z2

)
∼ N6(0,Σ), Σ =

(
I2 W
W T I2

)
, W = Q1ΛQ

T
2 ,

Λ =

1
2

0 0
0 1

3
0

0 0 1
6

 , Q1 =

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

, Q2 =

0 0 1
1 0 0
0 1 0

 ,

and again apply five different cyclically monotone transformations. The functions will
be the same or similar to the previous section, so that we can analyze the effect of
the dimension on the performance. We will examine the accuracy for the sample sizes
n = 100, 250, 500, 1000.

Model 1. We define

T : R3 → R3, T (z) =

 1 0.25 0
0.25 1 0.25
0 0.25 1

z1z2
z3


and set

Y =

(
Y1
Y2

)
=

(
T (Z1)
T (Z2)

)
.

Model 2. Let

f : R → R, f(x) = F−1
V (Φ(x)), G : R3 → R3, G(z) =

f(z1)f(z2)
f(z3)


where Φ is the distribution of a standard normal random variable, V ∼ Exp(1) is expo-
nentially distributed, and F−1

V the inverse of V ’s distribution function. Then, set

Y =

(
Y1
Y2

)
=

(
G(Z1)
G(Z2)

)
.

Model 3. Define

G̃ : R3 → R3, G̃(z) = UTG(Uz), U =

4 1 1
1 4 1
1 1 4

 ,

and set

Y =

(
Y1
Y2

)
=

(
G̃(Z1)

G̃(Z2)

)
.
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Model 4. Let H be defined as

H : R3 → R3, H(z) =
exp(0.1∥z∥)

1 + exp(0.1∥z∥)
z

∥z∥
and set

Y =

(
Y1
Y2

)
=

(
H(Z1)
H(Z2)

)
.

Model 5. Define

J : R3 → R3, J(x, y, z) =

x3/3 + 2x+ y + z
y3/3 + 2y + x+ z
z3/3 + 2z + x+ y


and set

Y =

(
Y1
Y2

)
=

(
J(Z1)
J(Z2)

)
.

Performance. The following boxplots show the performance of 100 trials of each method
in all models with sample sizes increasing from n = 100 to 1000.

Figure 7.6: Performance in Model 1

Figure 7.7: Performance in Model 2
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Figure 7.8: Performance in Model 3

Figure 7.9: Performance in Model 4

Figure 7.10: Performance in Model 5

As in the two-dimensional case, the classical CCA assumptions are satisfied only in Model
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1. Further, the GCCCA assumptions are met in Model 1 and 2. Finally, the CMCCA
setup is always satisfied.

In Model 1, we again observe that the accuracy for all methods improves with the sample
size. In Figure 7.6 we can also see that the CMCCA estimators perform slightly worse
for lower sample sizes, but are equally accurate in comparison to the others for a high n.

Figure 7.7 shows a similar result as Figure 7.2. All methods become more accurate
asymptotically except the classical CCA. As in Model 1, the CMCCA methods perform
slightly worse for lower sample sizes, but improve significantly asymptotically.

In Model 3, we observe that the classical CCA method performs worst while the GC-
CCA methods are more accurate although their model assumptions are violated, as well.
Particularly, the GCCCA method using Spearman’s ρ performs well in all sample sizes.
However, asymptotically the CMCCA methods are slightly more accurate, particularly
the plug-in method.

In Model 4, the classical CCA and GCCCA methods are misspecified, and they perform
similarly. Although they become slightly more accurate for higher sample size they are
not consistent asymptotically. In comparison, the CMCCA methods improve significantly
for higher n and are consistent beating the other methods clearly.

Finally, Figure 7.10 shows that all methods perform similarly and become more accurate
for higher sample sizes. Thereby, the GCCCA-Bay and CMCCA methods are slightly
better than the other two.

Overall, the two CMCCA methods were dominant in this three-dimensional case. Al-
though the difference in accuracy is not as big as in the two-dimensional case, the CM-
CCA methods performed best on average. In particular, they beat the other methods in
Model 3-5. An exception is the GCCCA-Bay method in Model 5 which performed best
there, but was less accurate in Model 3-4. In Model 1-2 the CMCCA methods were still
able to reach a comparable performance in comparison to the correctly specified GCCCA
methods. The classical CCA method performed worst as in the two-dimensional case.
This is non-surprising as its assumptions were mostly misspecified.

Next, we consider the case p1 = p2 = 4.

7.2.3 Dimension 4

For the four-dimensional case, we set

Z =

(
Z1

Z2

)
∼ N8(0,Σ), Σ =

(
I2 W
W T I2

)
, W = Q1ΛQ

T
2 ,

Λ =


1
2

0 0 0
0 3

8
0 0

0 0 1
4

0
0 0 0 1

8

 , Q1 =


1
2

1
2

−1
2

−1
2

1
2

−1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

−1
2

−1
2

−1
2

−1
2

, Q2 =


√
3
2

−1
2

0 0
1
2

√
3
2

0 0

0 0
√
3
2

−1
2

0 0 1
2

√
3
2

 ,

and again apply five different cyclically monotone transformations. The functions will be
the same or similar to the previous section. We will then examine the performance for
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sample sizes n = 100, 250, 500, 1000, 2000. Due to the higher dimension, we include the
case n = 2000 this time.

Model 1. We define

T : R4 → R4, T (z) =


1 0.25 0 0

0.25 1 0.25 0
0 0.25 1 0.25
0 0 0.25 1



z1
z2
z3
z4


and set

Y =

(
Y1
Y2

)
=

(
T (Z1)
T (Z2)

)
.

Model 2. Let

f : R → R, f(x) = F−1
V (Φ(x)), G : R3 → R3, G(z) =


f(z1)
f(z2)
f(z3)
f(z4)


where Φ is the distribution of a standard normal random variable, V ∼ Exp(1) is expo-
nentially distributed, and F−1

V the inverse of V ’s distribution function. Then, set

Y =

(
Y1
Y2

)
=

(
G(Z1)
G(Z2)

)
.

Model 3. Define

G̃ : R3 → R3, G̃(z) = UTG(Uz), U =


5 1 1 1
1 5 1 1
1 1 5 1
1 1 1 5

 ,

and set

Y =

(
Y1
Y2

)
=

(
G̃(Z1)

G̃(Z2)

)
.

Model 4. Let H be defined as

H : R4 → R4, H(z) =
exp(0.1∥z∥)

1 + exp(0.1∥z∥)
z

∥z∥

and set

Y =

(
Y1
Y2

)
=

(
H(Z1)
H(Z2)

)
.

Model 5. Define

J : R4 → R4, J(x, y, z, w) =


x3/3 + 3x+ y + z + w
y3/3 + 3y + x+ z + w
z3/3 + 3z + x+ y + w
w3/3 + 3w + x+ y + z
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and set

Y =

(
Y1
Y2

)
=

(
J(Z1)
J(Z2)

)
.

Performance. The following boxplots show the performance of 100 trials of each method
in all models with sample sizes increasing from n = 100 to 2000.

Figure 7.11: Performance in Model 1

Figure 7.12: Performance in Model 2

Figure 7.13: Performance in Model 3
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Figure 7.14: Performance in Model 4

Figure 7.15: Performance in Model 5

As in the two-dimensional and three-dimensional case, the classical CCA setup is satisfied
only in Model 1. Further, the GCCCA assumptions are met in Model 1 and 2. Finally,
the CMCCA setup is always satisfied.

We observe in Model 1 that all methods are accurate and are consistent asymptotically.
The CMCCA “take slightly longer” to converge, but still improve significantly for higher
sample sizes.

In Model 2, the misspecified classical CCA estimator fails to improve asymptotically.
However, the other methods are consistent with a slight edge for the GCCCA methods.
The GCCCA methods outperform the CMCCA particularly for lower sample sizes while
the CMCCA methods are almost as accurate as the GCCCA methods for n = 2000.

In Figure 7.13 we observe that the methods perform similarly asymptotically, whereby
the GCCCA methods are slightly better. However, the CMCCA methods improve in
accuracy for higher sample sizes as we have shown in the theory section. Hence, a
n > 2000 simulation would be needed to observe their consistency.

Figure 7.14 and 7.15 are rather similar. In those the CMCCA methods are a bit less
accurate than the other methods for lower sample sizes, but improve significantly asymp-
totically, so that all methods perform equally well for n = 2000.
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7.3 Key Findings

Let us summarize the results of the simulation. As described in the setup our goal was
to assess the performance of all five methods in different scenarios and analyze the effect
of the sample size on the accuracy.

Classical CCA: Our simulations showed that the classical CCA method is inaccurate in
many scenarios. Some examples include Figure 7.3, 7.5, 7.8 and 7.12 and other previous
figures. These particularly show that the CCA may not perform well in different dimen-
sions and sample sizes. It almost only displays accuracy if its assumptions are satisfies
as in Figure 7.6 and 7.11.

GCCCA: The GCCCA method with Spearman’s ρ performs significantly better. If its
model setup is true, then it can outperform the other methods as in Figure 7.2 and 7.12.
However, if it is misspecified it may still perform moderately which is an advantage that
the CCA lacks. Examples are Figure 7.3, 7.8, 7.14 and 7.15. However, there are still
scenarios, where it is inaccurate, e.g. in Figure 7.4 and 7.9.

GCCCA-Bay: The Bayesian GCCCA method performs similarly as the method with
Spearman’s ρ. It is particularly accurate when its model assumptions are satisfied as in
Figure 7.6, 7.7. and 7.12. As the Spearman method it can also perform well when it is
misspecified as in Figure 7.10, 7.13 and 7.15. However, it can also be inaccurate as in
Figure 7.3. 7.4 and 7.9. Another of its disadvantages is a long runtime.

We also observe that the dimensions do not influence the performance of both GCCCA
models that much. Higher sample sizes improve their accuracy, but the difference in
improvement is not as high as for the CMCCA models.

CMCCA: The plug-in method for CMCCA has the strongest theoretical results and
also performed very well in the simulations. It was particularly dominant in dimensions
2 and 3, where it often was the most accurate as in Figure 7.3-7.5 and 7.8-7-10. Hence,
it could beat the other methods in many cases. We also observed that the higher the
dimension gets the higher sample size is necessary in order to improve accuracy (e.g.
compare Figure 7.4 and 7.9). In dimension 4, the CMCCA method could still keep up
with the other methods for high sample sizes.

CMCCA-Bay: Its performance is very similar to the CMCCA plug-in method, partic-
ularly asymptotically. However, one disadvantage is its long running time.
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8 Conclusion

Let us quickly summarize the most important aspects of the thesis. In chapter 4, we
learned about optimal transport and rank statistics. These allow us to transport samples
to a more convenient distribution to work with and use its theory. We particularly
explored this in Section 4.2 and 5.4, where we applied them for defining the center-
outward distribution function and the CMCCA model, respectively. The concept of rank
statistics is promising and will remain a focal research topic in the next years.

Further, we got to know three different models for Canonical Correlation Analysis, one
requiring normality, one assuming a Gaussian copula dependency structure and one al-
lowing arbitrary joint marginals, but requiring their true rank statistics to be jointly
normal. For all three models we have presented a consistent estimation method and two
additional Bayesian methods. In the simulations we could compare their performance
and observed the the CMCCA estimation methods which are rather new, were highly
accurate particularly in lower dimensions and high sample sizes.
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Thomas P. Wihler. On the Hölder continuity of matrix functions for normal matrices.
JIPAM. J. Inequal. Pure Appl. Math., 10(4):Article 91, 5, 2009. ISSN 1443-5756.

92

https://doi.org/10.1017/CBO9780511626630
http://projecteuclid.org/euclid.pjm/1102994514
http://projecteuclid.org/euclid.pjm/1102994514
https://doi.org/10.1080/01621459.2020.1782223
https://doi.org/10.1080/01621459.2020.1782223
https://arxiv.org/abs/2111.15567
https://doi.org/10.1007/978-3-319-52207-4
https://doi.org/10.1007/978-1-4613-9655-0
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1007/978-3-540-71050-9
http://www.jstor.org/stable/4616090
http://www.jstor.org/stable/4616090


References

Alex Williams. A short introduction to optimal transport and wasserstein distance, 2020.
URL http://alexhwilliams.info/itsneuronalblog/. Accessed: 2024-05-31.

David Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cam-
bridge University Press, Cambridge, 1991. ISBN 0-521-40455-X; 0-521-40605-6. doi:
10.1017/CBO9780511813658. URL https://doi.org/10.1017/CBO9780511813658.

Grace Yoon, Raymond J. Carroll, and Irina Gaynanova. Sparse semiparametric canonical
correlation analysis for data of mixed types. Biometrika, 107(3):609–625, 2020. ISSN
0006-3444. doi: 10.1093/biomet/asaa007. URL https://doi.org/10.1093/biomet/

asaa007.

Zhiyong Zhang. A note on wishart and inverse wishart priors for covariance matrix.
Journal of Behavioral Data Science, 1, 01 2021. doi: 10.35566/jbds/v1n2/p2.

Roger S. Zoh, Bani Mallick, Ivan Ivanov, Veera Baladandayuthapani, Ganiraju Manyam,
Robert S. Chapkin, Johanna W. Lampe, and Raymond J. Carroll. PCAN: probabilistic
correlation analysis of two non-normal data sets. Biometrics, 72(4):1358–1368, 2016.
ISSN 0006-341X. doi: 10.1111/biom.12516. URL https://doi.org/10.1111/biom.

12516.

93

http://alexhwilliams.info/itsneuronalblog/
https://doi.org/10.1017/CBO9780511813658
https://doi.org/10.1093/biomet/asaa007
https://doi.org/10.1093/biomet/asaa007
https://doi.org/10.1111/biom.12516
https://doi.org/10.1111/biom.12516

	Introduction
	Notation
	Fundamentals of Measure-Theoretic Probability
	Preliminaries
	Convergence of Random Vectors
	Weak Convergence, Tightness and Prokhorov's Theorem

	Optimal Transport
	Cyclical Monotonicity
	Example: Quantiles and Ranks in Rd

	Canonical Correlation Analysis
	Recap: Multivariate Normal Distribution
	Classical CCA
	History and Motivation
	The Classical CCA Model
	Estimation of the CCA Parameters

	Gaussian Copula CCA
	The Gaussian Copula CCA Model
	Estimation of the GCCCA parameters

	Cyclically Monotone CCA
	The Cyclically Monotone CCA Model
	Estimation of the CMCCA parameters

	Consistency of CMCCA

	Bayesian Methods for CCA
	Bayesian Models and Markov Chain Monte Carlo
	The Extended Rank Likelihood for GCCCA
	Outlook: The Multirank Likelihood for CMCCA

	Simulation
	Setup
	Models and Performance
	Dimension 2
	Dimension 3
	Dimension 4

	Key Findings

	Conclusion

