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Abstract

In this thesis, we present our next-to-next-to-leading order (NNLO) QCD predictions for
the bottom-quark pair production process at the Large Hadron Collider (LHC), matched
with the parton shower (PS). Calculations have been carried out using the MiNNLOPS
method within the Powheg MC event generator, as it was presented in its recent extension
to the heavy-quark pair production in hadronic collisions. The bottom quarks have been
considered massive, while all lighter quarks have been treated in the massless approximation,
according to the four-flavour scheme (4FS).

The employed tools, as well as their underlying theoretical framework, are reviewed in the
first part of this work. In the second part, we detail our numerical implementation of the
process in Powheg, and we perform its validation against fixed-order NNLO predictions
obtained within the Matrix program. We then interface the NNLO+PS event generator
with the Monte-Carlo parton shower Pythia8, to study the inclusive B-hadron produc-
tion at the LHC. Our predictions are extensively compared with fiducial cross-sections and
differential distributions measured by the ATLAS, CMS, and LHCb experimental collabo-
rations at

√
s = 7TeV and

√
s = 13TeV centre-of-mass energy, as well as with 13TeV/7TeV

cross-section ratios. The MiNNLOPS results, which achieve a new level of accuracy for the
observables above, showcase a good agreement with data.

A phenomenological study on the bottom-flavoured jet production in bb̄ LHC events is also
presented. In this case, bottom-pair production events in MiNNLOPS have been provided
as an input to Pythia8, to carry out their parton showering and hadronization. In the
analysis, the FastJet package is employed to cluster events into hadronic jets, using the
anti-kT sequential recombination algorithm. The main idea of the study was to compare
the impact of different jet flavour definitions on various observables. In particular, four jet
flavour definitions have been examined. In the first case, the anti-kT jets have been assigned
bottom-flavour when containing at least one B-hadron, and in the second case only jets
carrying an odd number of B-hadrons have been tagged as b-jets. The third and fourth
case corresponds to the flavour assignment prescribed by two of the algorithms recently
advanced to address the problem of jet flavour: the flavour dressing and the interleaved
flavour neutralisation algorithms. We remark that the former two jet flavour assignments
are infrared-unsafe, while the latter two methods have been designed for the exact purpose
of giving infrared-safe results at any order in perturbation theory. We compare the four
different predictions both for hardest b-jet and for di-b-jet observables. The most remarkable
effect that we witness is due to the different treatment of the quasi-collinear bb̄ emissions
within the different jet-flavour assignments. However, other minor effects are documented
and explained.

Finally, we present predictions for several b-jet cross-sections and differential distributions
measured by the LHC collaborations. A remarkable agreement between our calculations
and data from ATLAS and CMS is observed for various inclusive b-jet distributions at√
s = 7TeV. ATLAS measurements of di-b-jet observables at

√
s = 7TeV are also considered

in a rather exclusive setup, yielding a good agreement with our predictions but highlighting
some shape discrepancies. As for LHCb, the results of a recent b-jet analysis at

√
s = 13TeV

are examined, and quite large tensions with our calculations are observed.

i



We conclude by discussing some possible research outlooks, especially in view of the up-
coming MiNNLOPS implementation of the charm-pair production in hadronic collisions.
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Zusammenfassung

In dieser Arbeit präsentieren wir unsere Vorhersagen zur Quark-Paar-Produktion zu nächst-
zu-nächst-zu führender Ordnung (NNLO) QCD am LHC, die mit dem Parton Shower (PS)
kombiniert wurden. Die Berechnungen wurden mit der MiNNLOPS Methode innerhalb
des Powheg MC Event-Generators durchgeführt, wie sie in der jüngsten Erweiterung für
die Produktion von schweren Quark-Paaren in hadronischen Kollisionen vorgestellt wurde.
Die Bottom-Quarks wurden als massiv angenommen, während alle leichteren Quarks in der
masselosen Näherung gemäß dem Four-Flavour-Scheme (4FS) behandelt wurden.

Die verwendeten Werkzeuge sowie deren theoretische Grundlagen werden im ersten Teil
dieser Arbeit beschrieben. Im zweiten Teil erläutern wir unsere numerische Implemen-
tierung des Prozesses in Powheg und validieren sie gegen Vorhersagen der festen Ord-
nung zu NNLO, die mit dem Matrix Programm erhalten wurden. Anschließend koppeln
wir den NNLO+PS Event-Generator mit dem Monte-Carlo Parton Shower Pythia8, um
die inklusive B-Hadronenproduktion am LHC zu untersuchen. Unsere Vorhersagen wer-
den ausführlich mit Wirkungsquerschnitten und differentiellen Verteilungen verglichen, die
von den experimentellen Kollaborationen ATLAS, CMS und LHCb bei

√
s = 7TeV und√

s = 13TeV sowie mit den Wirkungsquerschnittsverhältnissen 13TeV/7TeV gemessen wur-
den. Die MiNNLOPS Ergebnisse, die ein neues Maß an Genauigkeit für die oben genannten
Observablen erreichen, zeigen eine gute Übereinstimmung mit den Daten.

Eine phänomenologische Studie zur Produktion von bottom-flavoured Jets in bb̄ LHC
Ereignissen wird ebenfalls vorgestellt. In diesem Fall wurden Bottom-Paar-Produktions-
Ereignisse in MiNNLOPS als Eingabe für Pythia8 verwendet, um deren Parton Showering
und Hadronisierung durchzuführen. In der Analyse wird das FastJet Paket verwendet, um
Ereignisse in hadronische Jets zu gruppieren, wobei der sequentielle anti-kT Rekombination-
salgorithmus verwendet wird. Die Hauptidee der Studie war es, den Einfluss verschiedener
Jet-Flavour-Definitionen auf verschiedene Observablen zu vergleichen. Insbesondere wurden
vier Jet-Flavour-Definitionen untersucht. Im ersten Fall wurde den anti-kT Jets Bottom-
Flavour zugewiesen, wenn sie mindestens ein B-Hadron enthalten, und im zweiten Fall wur-
den nur Jets, die eine ungerade Anzahl von B-Hadrons tragen, als b-Jets markiert. Der dritte
beziehungsweise vierte Fall entspricht der Flavour-Zuweisung, die von zwei der kürzlich en-
twickelten Algorithmen zur Lösung des Jet-Flavour-Problems vorgeschrieben wurde: dem
Flavour-Dressing und dem Interleaved-Flavour-Neutralisation Algorithmus. Wir merken an,
dass die ersten beiden Jet-Flavour-Zuweisungen infrarot-unsicher sind, während die letzten
beiden Methoden genau für den Zweck entwickelt wurden, infrarot-sichere Ergebnisse in
jeder Ordnung der Störungstheorie zu liefern. Wir vergleichen die vier verschiedenen Vorher-
sagen sowohl für die härtesten b-Jet- als auch für die di-b-Jet-Beobachtungsgrößen. Der be-
merkenswerteste Effekt, den wir beobachten, resultiert aus der unterschiedlichen Behandlung
der quasi-kollinearen bb̄-Emissionen innerhalb der verschiedenen Jet-Flavour-Zuweisungen.
Andere untergeordnete Effekte werden jedoch dokumentiert und erklärt.

Abschließend präsentieren wir Vorhersagen für mehrere b-Jet-Wirkungsquerschnitte und
differentielle Verteilungen, die von den LHC Kollaborationen gemessen wurden. Eine be-
merkenswerte Übereinstimmung zwischen unseren Berechnungen und den Daten von ATLAS
und CMS wird für verschiedene inklusive b-Jet-Verteilungen bei

√
s = 7TeV beobachtet. AT-

LAS Messungen von di-b-Jet Beobachtungsgrößen bei
√
s = 7TeV werden ebenfalls in einem
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exklusiven Setup betrachtet und zeigen eine gute Übereinstimmung mit unseren Vorher-
sagen, aber auch einige Formabweichungen. Bei LHCb werden die Ergebnisse einer b-Jet-
Analyse bei

√
s = 13TeV untersucht, wobei recht große Spannungen mit unseren Berechnun-

gen beobachtet werden.
Wir schließen mit einer Diskussion möglicher Forschungsperspektiven, insbesondere im

Hinblick auf die kommende MiNNLOPS Implementierung der Charm-Paar-Produktion in
hadronischen Kollisionen.
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Chapter 1

Introduction

Among the most important achievements of contemporary science, a central role is played
by the Standard Model of particle physics (SM). Nowadays, the SM is regarded as the most
advanced physics theory of the phenomena that govern the elementary particle world. Its
current understanding required several decades of efforts from both the experimental and
theoretical communities of particle physicists.

In the SM framework, three of the four fundamental interactions known in physics are
consistently incorporated into a unified description: the electromagnetic, the weak, and the
strong nuclear forces. The way these different interactions manifest and coexist is explained
by the gauge symmetries underlying the SM, which is a Yang-Mills quantum field theory
based on a U(1)× SU(2)× SU(3) symmetry group. The elementary fields of the theory are
divided into fermion fields, which have semi-integer spin values, and boson fields, which have
integer spins.

Fermions are the building blocks of ordinary matter and can be further divided into three
families of leptons and three families of quarks. Leptons include the electron e−, muon µ−,
tau τ−, and their corresponding neutrinos νe, νµ, ντ , and their dynamics are governed by
the electroweak (EW) interactions. Quarks come in six different flavours: down (d), up (u),
strange (s), charm (c), bottom (b), and top (t). Their dynamics are governed by both the
electroweak interactions and the strong interactions. The latter are described by Quantum
Chromodynamics (QCD), which acts on quarks according to the colour charges associated
with them (red, green, blue). For all the aforementioned leptons and quarks, the respective
antiparticles are included in the SM.

On the other hand, bosons are mediators of the fundamental forces, and their existence is
necessary to realize the gauge symmetries of the theory. In particular, from the SU(3) colour
gauge symmetry in QCD follows the presence of eight massless gluons, while the SU(2) ×
U(1) weak isospin + weak hypercharge symmetry relates to the presence of four massless
bosons mediating the electroweak interactions. However, as experimental evidence suggests,
the SU(2) × U(1) symmetry appears to be spontaneously broken to the electromagnetic
U(1)em gauge group. This phenomenon, independently theorized in 1964 by R. Brout and
F. Englert[1], by P. Higgs [2], and by G. Guralnik, C. R. Hagen, and T. Kibble [3], predicts
the existence of the massless photon and three weak bosons Z0, W+, and W−, which acquire
mass through interactions with a new bosonic field: the Higgs field. In general, the Higgs
boson allows all fermions of the SM to be massive, thanks to the Yukawa couplings.

Although the picture we have just outlined is corroborated by an impressive amount of ex-
perimental evidence, some serious issues prevent us from considering the SM as the definitive
theory of particle physics. For instance, the theory lacks the inclusion of the gravitational
interaction, is based on 19 free parameters not derived from first principles, does not explain
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Chapter 1 Introduction

Dark Matter and Dark Energy, and not even the recently discovered fact that neutrinos have
mass. How can we then approach the SM? A possible way to look at it is as an effective
theory of elementary particles that can provide an accurate description of phenomena in a
certain range of physical scales. Eventually, the SM will fail at describing experimental phe-
nomena at high energies, but the possibility of observing discrepancies between theoretical
predictions and measurements is strongly linked to our ability to achieve high precision both
in theory and experiments.

Nowadays, a prominent role in particle physics searches at high energies is played by the
Large Hadron Collider (LHC), located at CERN, near Geneva (Switzerland). Here, proton
beams are accelerated and then made to collide in four different detectors: ALICE, ATLAS,
CMS, and LHCb. Since its first measured collisions in 2009, the LHC has significantly
advanced our understanding of fundamental physics. The discovery of the Higgs boson in
July 2012, carried out by ATLAS and CMS, is regarded as a milestone in contemporary
physics. Moreover, the LHC has allowed for the observation of rare particle decays and some
of the most precise measurements of the SM couplings and masses.

From a theoretical perspective, a proton-proton inelastic scattering at high centre-of-mass
energy can be quantified via the following factorisation formula [4]

σ(pp→ X) =
∑
i,j

∫
dx⊕dx⊖ fi/P1(x⊕) fj/P2(x⊖) σ̂ij→X(ŝ) + O

(ΛQCD
Q

)
, (1.1)

where σ(pp → X) is the total cross section for the production of a certain final state X.
What eq. (1.1) tells us is that, up to some power corrections O(ΛQCD/Q), σ is the sum of
elementary cross sections σ̂ given by the interactions of free-moving primary partons (i.e.
quarks and gluons), coming from the composite structure of the protons. We will then have
one parton i from the left-coming proton P1 and one parton j coming from the right-coming
P2. Parton i will undergo the scattering carrying a fraction 0 ≤ x⊕ ≤ 1 of the left-coming
proton momentum Pµ

1 , with a probability encoded in the parton distribution function (PDF)
fi/P1(x⊕), and analogously for parton j. The elementary cross section σ̂ij→X(ŝ) will then
depend on the flavours of the i, j pair and on a flux factor depending on the invariant mass of
the partonic system ŝ = (x⊕P1 +x⊖P2)2. To get the total cross section σ(pp→ X), this will
be summed over all possible flavour configurations of i, j and integrated over 0 ≤ x⊕, x⊖ ≤ 1.
The great advantage of eq. (1.1) is that it reduces the problem of calculating hadronic cross
sections to the problem of calculating cross sections of elementary particles (quarks, leptons,
bosons). In particular, the SM couplings appear to be much smaller than 1 at the hard
scattering (ij → X) energy scales, allowing for the computation of σ̂ij→X(ŝ) as a perturbative
series of the couplings themselves. This involves, for instance, the computation of scattering
amplitudes through the popular Feynman diagrams.

Generally, the most relevant contributions to the hard scatterings will come from QCD,
as its strong coupling constant αs ∼ 0.1 is around one order of magnitude larger than the
EW couplings. Specifically, QCD can enter the computation of a hard scattering cross sec-
tion both at the lowest order, the so-called Leading Order (LO), and at the following orders,
namely the Next-to-Leading Order (NLO), the Next-to-Next-to-Leading Order (NNLO), and
so on. These are the building blocks of the so-called fixed order computations, which nowa-
days represent one of the most powerful tools in precision physics. One of the consequences
of considering corrections to eq. (1.1) beyond the leading order is the appearance of two
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Chapter 1 Introduction

new scales: the factorization scale µF in PDFs, and the renormalisation scale µR in loop
amplitudes. Their origins and treatment will be discussed thoroughly in the first part of this
thesis.

Unfortunately, fixed order calculations are limited by some serious constraints. The most
obvious one is the complexity of scattering amplitudes, which increases exponentially with
the multiplicity of external particles and internal loops. As a consequence, exact results
can be obtained only when considering final states X with a small number of particles, and
fully inclusive (i.e. agnostic) over additional emissions. Moreover, realistic calculations often
include some large logarithmic terms depending on ratios of some relevant physical scales,
which appear at all orders and can endanger the convergence of the perturbative series.
To overcome these problems, several approaches based on all-order resummation techniques
have been proposed. Parton Showers provide an effective way to perform a numerical resum-
mation through the application of Monte Carlo techniques. Indeed, these programs generate
additional QCD (and EW) radiation starting from a fixed order configuration, simulating
fully exclusive events similar to the ones observed at the LHC. Numerical techniques to
reproduce non-perturbative effects, like the hadronization of showered partons at low energy
scales and the decay of unstable hadrons, have also been studied and are nowadays incor-
porated with the Parton Shower within the so-called General Purpose Monte Carlo event
generators (GPMC). On the other hand, interfacing fixed order predictions with GPMC is
a non-trivial problem, and some methods have been developed to perform this matching. We
also mention that GPMC manages to reproduce a peculiarity of QCD events, namely the
fact that partons tend to be emitted in sprays of collimated radiation, forming hadronic jets.
Ultimately, we will see that there is a leitmotif connecting this and all the aforementioned
features of QCD, which is the infrared structure of the theory.

In the first part of this thesis, we will review the main features of fixed order calculations
in chapter 2, as well as the general principles of Parton Showers and the strategies to perform
their fixed order matching in chapter 3. We will mainly focus on the Powheg method, which
allows for the matching at NLO, and on its NNLO extension provided by the MiNNLOPS
method. In chapter 4, we will summarize the basic concepts of hadronic jet physics in QCD.

The second part of the thesis will be devoted to presenting new phenomenological results
related to a specific process that we examined: the inclusive bottom-pair hadroproduction
(pp → bb̄ + X). Given the large theoretical uncertainties related to this process, as we will
discuss, high accuracy is fundamental for allowing a meaningful comparison with the huge
amount of experimental measurements linked to it. In chapter 5, we will present the setup of
our MiNNLOPS bottom-pair production generator in Powheg, which represents the first
NNLO+PS implementation available in literature. The main phenomenological applications
of the event generator will be explored in chapter 6 and chapter 7. In particular, we will carry
out an extensive comparison with LHC data on B-hadron production in chapter 6, while
chapter 7 will be devoted to a study on the b-flavoured jet phenomenology in bottom-pair
production events, along with a comparison with the LHC measurements.

In chapter 8, we will sum up the conclusions of our research and discuss possible future
directions of research.
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In this thesis, results reported in chapter 5 and 6 were originally presented in the following
publication by the author:

• Javier Mazzitelli, Alessandro Ratti, Marius Wiesemann, and Giulia Zanderighi. B-
hadron production at the LHC from bottom-quark pair production at NNLO+PS.
Phys. Lett. B, 843:137991, 2023. doi: 10.1016/j.physletb.2023.137991

while results reported in chapter 7 will be the object of upcoming publications.
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Chapter 2

Perturbative Calculations in QCD

2.1 The QCD Lagrangian
The Quantum Chromodynamics (QCD) lagrangian describes the strong interactions in terms
of couplings involving quark and gluon fields. It is a Yang-Mills theory based on the gauge
group SU(3), acting on the colour algebra of the quark and gluon fields. Formally, it reads
[6]

LQCD = −1
4F

(a)
µν F

µν(a) +
∑

f

q̄i
f (iγµ(Dµ)ij −mfδij) qj

f . (2.1)

Here, quarks figure both with a flavour index f (f = u, d, s, c, t, b) and with a colour index i
(i = r, b, g). F (a)

µν (x) is the gluon field strength, defined as

F (a)
µν = ∂µG

(a)
ν − ∂νG

(a)
µ + gsf

abcG(b)
µ G(c)

ν , (2.2)

where G
(a)
µ (x) is the gluon field, with colour index a = 1, . . . , 8, while gs represents the

coupling constants associated to interactions between colour quanta. We have also introduced
the covariant derivative

(Dµ)ij = δij∂µ − igs(ta)ijG
(a)
µ . (2.3)

where t(a) (a = 1, . . . , 8) are the generators of the su(3) Lie algebra. The group elements of
SU(3) are obtained via exponentiation of su(3), as

U(x) = exp[−igsξat
a] , (2.4)

where ξa are the parameters of the local SU(3) transformation. Quark fields live in the
fundamental representation of SU(3), thus transforming as

q′if (x) = [U(x)]ij q
j
f (x)

q̄′if (x) = q̄j
f (x)

[
U †(x)

]
ji
,

while gluon fields live in the adjoint representation, and transform as

[Gµ(x)]′ij =
[
U(x) ·Gµ(x)U−1(x)

]
ij

+ i

gs

[
∂µU(x)U−1(x)

]
ij
, (2.5)

9



Chapter 2 Perturbative Calculations in QCD

where we introduced the matrix field

[Gµ(x)]ij =
8∑

a=1
Gµ

a(x)taij . (2.6)

QCD can be quantized by using the standard path integral formalism. To deal with the
gauge redundancy of the theory, it is standard to apply the Faddeev-Popov procedure. In
this framework, some new grassmann-odd ghost fields ca appear, although being actually
scalar fields. They obey a wrong statistics, which makes them unphysical degrees of freedom.
The QCD lagrangian is then enriched by the presence of a new term

LF P = c̄a
(
∂µDac

µ

)
cc, (2.7)

where
Dac

µ = δac∂µ − gsf
abcGa

µ , (2.8)

together with another gauge-fixing term, depending on a specific gauge choice. In the co-
variant gauge, for example, we will have

LGF = − 1
2ξ (∂µG

µ
a)2 . (2.9)

Whithin the assumption of gs to be small, it is possible to carry out QCD calculation of
physical observables in perturbation theory.

2.2 Ultraviolet Divergences in QCD
When computing loop integrals in QCD, it turns out that most of them give divergent
contributions, whose interpretation might (and it effectively was in the past) puzzling. Today,
we know that these infinities are due to an uncorrect interpretation of the parameters entering
the lagrangian in eq. (2.1). These are indeed bare parameters and in fact cannot be measured.
What can be measured, is the set of renormalised parameters of the theory, which relates
to the bare parameters through the renormalisation contants. Before introducing them, it
is convenient to rewrite eq. (2.1) in a form where all the coupling terms are explicit. After
arranging the different flavoured quark fields qf in a single vector Ψ, we can write

LQCD =− 1
4F

(a)
0µνF

0µν (a) + Ψ̄0(i ̸ D +m0)Ψ0 − c̄a
0∂

2ca
0 + g0Ψ̄0γ

µtaΨ0A
a
0µ

− g0fabc(∂µA
a
0ν)Abµ

0 A
cν
0 −

g2
0
4 fabcfdecA

a
0µA

bµ
0 A

cν
0 A

dν
0 − g0fabcc̄

a
0(∂µcb

0)Ac
0µ, (2.10)

where the subscript 0 means bare quantitity. Now we express every bare term ∆L0 of the
lagrangian in terms of renormalised parameters by mean of a renormalisation constant Z

∆L0 = Z ∆L , (2.11)

10



Chapter 2 Perturbative Calculations in QCD

so that the full QCD lagrangian will be

LQCD =− 1
4Z3F

(a)
µν F

µν (a) + Z2Ψ̄(i ̸ D +m)Ψ− Zcc̄
a∂2ca + Z1gΨ̄γµtaΨAa

µ

− Z3
1gfabc(∂µA

a
ν)AbµAcν − Z4

1g
2fabcfdecA

a
µA

bµAc
νA

dν − Zc
1gfabcc̄

a(∂µcb)Ac
µ, (2.12)

or, rewriting every renormalisation constant as Z = 1 + δZ’:

LQCD =− 1
4F

(a)
µν F

µν (a) + Ψ̄(i ̸ D +m)Ψ− c̄a∂2ca + gΨ̄γµtaΨAa
µ

− gfabc(∂µA
a
ν)AbµAcν − g2fabcfdecA

a
µA

bµAc
νA

dν − gfabcc̄
a(∂µcb)Ac

µ + Lcounter.

(2.13)

From this definitions of the renormalisation constants, it is possible to derive the relation
between the physical parameters and the bare ones. In this case, the field normalisations
obey the following relations

Ψ0 =
√
Z2Ψ, Aaµ

0 =
√
Z3A

aµ, ca
0 =

√
Zcc

a , (2.14)

while for the coupling constant it holds, among the others, the following relation

Z1g = Z2
√
Z3g0 . (2.15)

By computing systematically the 1-loop divergent amplitudes of the theory, it is possible
to extract all the UV singularities that will enter the definition of the counterterms (thus
inside the δZ ′s). Being QCD a renormalisable theory, a finite number of counterterms will
be sufficient to make the theory free of UV divergences and predictive at any order.
Nevertheless, computing the UV divergent loop amplitudes requires the adoption of a reg-
ularisation technique, namely a way to parametrize the divergence. Several examples have
been proposed in literature to do this, but the most widely used in QCD calculations is the
dimensional regularisation, which preserves the gauge invariance of the integrals. In this
context, the QCD lagrangian is modified in a way that loop integrals turn out to be eval-
uated in d = 4 − 2ϵ, where ϵ is a small positive parameter. By doing this, an additional
mass scale µR must be introduced in eq. (2.12). Such scale, called renormalisation scale, has
arbitrary value and a deep physical impact on the theory. Indeed, the requisite that physical
observables must be independent on the choice of µR leads to the Callan-Symanzik equa-
tions, predicting the parameters of the theory evolve with the energy scale Q of the process
in exam. In this sense, relevant phenomenological predictions are linked to the evolution of
the strong coupling constant αs = g2

s/4π. Defining t = log(Q2/µ2
R), one finds

∂αs(Q2)
∂t

= β(αs(Q2)) , (2.16)

where the β-function can be evaluated in renormalised perturbation theory. At 1-loop order,
it reads

β(α2
s) = −α

2
s

4π

{11
3 CA −

2
3nf

}
, (2.17)

11
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where nf represents the number of quark flavours and CA = 3 (number of colours) is the
Casimir of SU(3) in the adjoint representation. By solving Eq. (2.26) we find that αs

actually decreases with the increasing of Q, obeying the equation

αs(Q2) = αs(µ2
R)

1 + αs(µ2
R) · b · log(Q2/µ2

R) , (2.18)

with b = (33− 2nf )/12π (> 0 for nf = 6).
A meaningful consequence of eq. (2.18) is represented by the concept of asymptotic free-

dom. When quarks and gluons approach high energies, αs becomes low enough to let them
behave as approximately free particles. In this context, processes can be analyzed using
perturbation theory. This is the case of the parton composing hadrons which collide in
deep inelastic scatterings. In the configuration space, this means that the nearer quarks are
between each other, the more they behave as free particles. However, eq. (2.18) describes
the sole αs evolution with energy, but not its physical value, which has to be determined
in experiments. Experiments show, for instance, that αs(Q = 1GeV) ≈ 0.4: conventionally,
this is the lowest energy scale where the perturbative approach is considered valid.

Another crucial phenomenon which we have to consider is the colour confinement, deeply
related to the asymptotic freedom we have just discussed. Given the its evolution, it is natural
wondering about what happens when αs(Q2) becomes too big to be used in a perturbative
context. In this sense, a couple observations can be done. Indeed, we can try to get rid of
the µ dependence in eq. (2.16). Firstly we separate variables as follows

dαs

β(αs) = dt, (2.19)

and then we integrate both sides∫ ∞
αs(Q2)

dαs

β(αs) =
∫ Λ2

Q2
dt, (2.20)

where we have introduced a Λ fixed energy scale where we expect that αs diverges. Eventu-
ally, such parameter can be determined in experiments (its measured value is Λ ∼ 200 MeV).
Now, performing the integrations, we get∫ ∞

αs(Q2)

dαs

β(αs) = − log
(
Q2

Λ2

)
, (2.21)

where the dependence on µ has been eliminated. Again, eq. (2.16) can be solved in pertur-
bation theory, and we obtain at 1-loop order

αs(Q2) = 1
b log(Q2/Λ2) . (2.22)

This result explains the phenomenon of colour confinement. Λ is interpreted as a delimita-
tion of the energy region where quarks appear to be strongly bounded. In the configuration
space, this implies that quarks can’t figure as separate entities and they are always confined

12
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into hadrons. Indeed, hadrons bound states figure as colour singlets

q̄iqi, ϵijkqiqjql, ϵijkq̄iq̄j q̄l,

respectively for mesons, baryons and antibaryons.
In closing, confinement is also responsible for the hadronisation process: in scatterings,

final state partons cannot be directly detected, because other quarks are produced in the
void around them in order to create colour singlets.

2.3 Electron-Positron Collisions and QCD corrections
Having introduced the QCD lagrangian and quickly highlighted some important aspects of
renormalisation in QCD, we have now all the necessary ingredients to start making some
physically interesting computations.
A really simple, albeit significative, process that we can study is the quark-antiquark pro-
duction in electron-positron collisions mediated by a virtual photon γ∗ [7], namely

e−e+ → γ∗ → qq̄ , (2.23)

in the massless quark approximation1 What we aim to do now is to compute the total cross
section of the process, therefore we start writing down the relevant feynman amplitudes
contributing at the LO

Aqq̄ = A(0)
qq̄ + O(αs) . (2.24)

In this case, the only tree-level Feynman diagram we can consider corresponds to the s-
channel in fig. 2.1, whose amplitude reads

A(0)
qq̄ = Mµ

0 ū(p)(−ieγµ)v(p′) , (2.25)

where we usedMµ
0 to denote the e+e− → γ∗ subamplitude, which remains fixed when going

at higher QCD orders. By taking the squared of eq. (2.24) and performing the final-state
phase space integration2, one finally gets the LO cross section, summed over the quark
flavours f

σLO ≡ σ(e+e− → qq̄) = σ0N
∑

f

Q2
f , (2.26)

where N = 3 is the number of colours, σ0 ≡ 4πα2
s

3E2
cm

is the cross section of the leptonic scattering
e+e− → µ+µ−, and Qf is the charge of the outgoing quark qf in units of the positron charge,
and depends on the flavour f .

If we want now to compute increase the perturbative accuracy of the result in eq. (2.26), we

1In the context of high energy collisions carried out in modern experiments, this is still considered a valid
approximation for all quarks except from the top. Howevere, there are some subtelties that we will not
focus on here. For now, we just imagine qq̄ in eq. (2.23) to be a pair of light quarks, whatever the definition
of light quark may signify in this context.

2And accounting for the sums/averages over colours and spin helicities

13
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e−

e+

q

q̄

p⃗e−

p⃗e+

γ∗

p⃗

p⃗′

Figure 2.1: Feynman diagram for e+e− → γ → qq̄

would naturally thing about including the 1-loop corrections to the amplitude in eq. (2.24)

Aqq̄ = A(0)
qq̄ + A(1)

qq̄︸︷︷︸
1-loop

+ O(αs) , (2.27)

where A(1)
qq̄ includes the 1-loop quark self energy corrections (in fig. 2.2b) and the 1-loop

vertex correction to γ∗ → qq̄ (in fig. 2.2a). Once we work out the calculations within the
renormalised theory, the loop intrgrals will not produce UV ϵ poles. However, two new
classes of singularities will arise, which can be parametrized in dimensional regularisation by
using d = 4 + 2ϵ (ϵ > 0):

• Soft singularities, occuring when the loop momentum vanishes.

• Collinear singularities, occurring in the loop integration regions where the loop
momentum becomes parallel to an external (on-shell) momentum.

Then, squaring eq. (2.28), we get∣∣Aqq̄

∣∣2 =
∣∣A(0)

qq̄ |2 + 2 ℜ
(
A(0)∗

qq̄ A
(1)
qq̄

)︸ ︷︷ ︸
1-loop

+ O(αs) , (2.28)

and integrating over the qq̄ final state phase space, we end up with3

σNLO = σBorn + σVirt (2.29)

σVirt = σBornCF
αs

2πH(ϵ)
(
− 4
ϵ2
− 3
ϵ
− 8 + π2 +O(ϵ)

)
, (2.30)

H(ϵ) representing a regular function in ϵ.
The question now is how to give a sense to the results in eq. (2.29) and eq. (2.30). Thinking

about the point we started from, namely calculating the NLO cross section for the process
in eq. (2.23), we try to see what happens if we relax the requirement to have just a qq̄ pair

3Here we also introduced a rather general notation: Born refers to the leading-order contribution to the
cross section (coming from the squared tree level amplitude, in this case). Virtual represents the 1-loop
contribution, that here appears as the interference between the tree-level and the 1-loop diagrams.
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q

q̄

p⃗e− + p⃗e+

p⃗

p⃗′

(a) Gluon vertex correction to
γ∗ → qq̄ splitting.

q

q̄

p⃗e− + p⃗e+

p⃗′

(b) Self-energy correction to
outgoing quark line.

Figure 2.2: QCD loop corrections to qq̄ production in e−e+ collisions.

in the final state. This corresponds to considering a process

e−e+ → γ∗ → qq̄ + X , (2.31)

where X represents additional QCD radiation, without specifying any further. This im-
plies, in particular, that now the NLO cross section will also receive contributions from the
amplitude4

Aqq̄g = gsA(0)
qq̄g + O(g3

s) , (2.32)

so that the NLO cross section will be computed as

σNLO =
∫
dΦqq̄

[
|A(0)

qq̄ |2︸ ︷︷ ︸
Born

+ 2ℜ(A(0)∗
qq̄ A

(1)
qq̄ )︸ ︷︷ ︸

Virtual

]
+
∫
dΦqq̄g |A(0)

qq̄g|2︸ ︷︷ ︸
Real

+ +O(α2
s) . (2.33)

Where we defined the real matrix element. To evaluate it, we start as usual by computing
the amplitude using the Feynman rules. In this case, we can have a gluon emission coming
from either the outgoing quark or antiquark (as represented in fig. 2.3). Using a similar
notation to the one introduced in eq. (2.25), we define

A(0)
qq̄g = M0 µ︸ ︷︷ ︸

e+e−→γ∗

Mµ
rad , (2.34)

and Mµ
rad will read

Mµ
rad = ū(p)(−igst

a ̸ ϵ(k)) i(̸ p+ ̸ k)
(p+ k)2 (−ieγµ)v(p′) + ū(p)(−ieγµ) i( ̸ p

′− ̸ k)
(p′ − k)2 (−igst

a ̸ ϵ(k))v(p′).

(2.35)
We proceed by squaring the whole amplitude A(0)

qq̄g. Using the colour algebra, and sum-

4Notice that A(0)
qq̄g has a gs ∼ α

1
2
s constant coming from the vertex of the real gluon emission in fig. 2.3. We

factorized it out in eq. (2.32)
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q

q̄

g
p⃗e− + p⃗e+

p⃗

p⃗′

k⃗

q

q̄

g
p⃗e− + p⃗e+

p⃗

p⃗′

k⃗

Figure 2.3: Radiative corrections to e−e+ → qq̄.

ming/averaging over final/initial state spins and colours we get

|A(0)
qq̄g|2 =

4e2Q2
qf

2
g g

2
sNc

s
CF

(p · pe−)2 + (p · pe+)2 + (p′ · pe−)2 + (p′ · pe+)2

(p · k)(p′ · k) . (2.36)

Finally, we integrate |A(0)
qq̄g|2 over the final state phase space. More specifically, dΦqq̄g is given

by the standard 3-body massless phase space

dΦ3(pe− + pe− ; p, p′, k) = δ4(pe− + pe+ − p− p′ − k) d3p

(2π)32E
d3p′

(2π)32E′
d3k

(2π)32Ek
. (2.37)

If we perform the explicit calculations in the CM reference frame, a couple of simplifications
occur. Indeed, we can exploit the Dirac delta over the three-momenta δ3(p⃗ + p⃗′ + k⃗) to get
rid of the integration over d3k

dΦ3(pe− + pe+ ; p, p′, k) = δ4(pe− + pe+ − p− p′ − k) d3p

(2π)32E
d3p′

(2π)32E′
d3k

(2π)32Ek
(2.38)

= 1
2(2π)3k

dp d cos θ dϕ
2(2π)3

dp′ d cosβ dα
2(2π)3 δ(

√
s− p− p′ − k) , (2.39)

where we have defined the z axis along the initial-state beam. We have also parametrized p⃗
and p⃗′ in polar coordinates as

pµ = (p, p sin θ cosϕ, p sin θ sinϕ, p cos θ)
p′µ = (p′, p′ sin β cosα, p′ sin β sinα, p′ cosβ) ,

(2.40)

denoting p = |p⃗|, p′ = |p⃗′|, k = |⃗k|. Furthermore, integrating the last δ over dβ, one can get
an even simpler form for the three-particle phase space

dΦ3(pe− + pe+ ; p, p′, k) = 1
8(2π)9dp d cos θ dϕ dp′ dα (2.41)

= s

16(2π)7dx1 dx2
d cos θ dϕ dα

2(2π)2 . (2.42)

where in the last step we have adopted the new variables x1 = 2p/
√
s and x2 = 2p′/

√
s
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(with 0 < xi < 1). Given the above, we can finally write the contribution of the real gluon
emissions to the total cross section as

σreal = 1
2s

s

16(2π)7

∫
dx1dx2

d cos θ dϕ dα
2(2π)2 |A(0)

qq̄g|2 , (2.43)

and replacing Mrad expressed in the new variables, some easy simplifications lead to

σreal = σBornCF
αs

2π

∫
dx1dx2

x2
1 + x2

2
(1− x1)(1− x2) . (2.44)

where the integration above d cos θ, dϕ, dα has been carried out, and the Born level cross
section results factorized. In eq. (2.43), we encounter some singularities that are really
reminiscent of what we found in the virtual correction in eq. (2.30). Indeed, divergences
appear now in two situations:

• Collinear divergences: when either x1 or x2 is fixed, and meanwhile x2/x1 → 1.
Physically, this happens in the phase space regions with the outgoing q and q̄ has
parallel momenta.

• Soft divergences: when the ratio (1−x1)/(1−x2) is fixed, and meanwhile x1, x2 → 1.
Physically, this is linked to the gluon momentum approaching zero.

To understand better these divergences, we can arrange in a different way the same calcula-
tions seen above. Taking, for instance, kµ parallel to p′µ, we can write them as

k′ = (1− z)q, k = zq , (2.45)

with 0 < z < 1 and q2 = 0. It is possible to calculate that, in this approximation (collinear
approximation), the squared matrix amplitude |Mrad|2 factorizes as

|A(0)
qq̄g|2 → |A

(0)
qq̄ |2

g2
s

p′ · k
CF

1 + (1− z)2

z
, (2.46)

and the phase space factorizes as well, because

dx1d cos θ dϕ dx2 dα→ d cos θ 1
4z(1− z) dz dθ

2
23 dϕ, (2.47)

where we have used the angle θ2
23 between p⃗′ and k⃗. Putting these results together, the cross

section in the collinear limit reads

σreal = σBorn

∫
dθ2

23
θ2

23
dz
αs

2π
1 + (1− z)2

z
, (2.48)

which diverges for θ23 → 0 (or π).
A similar reasoning can be done for the soft divergences. Under the approximation that the
gluon momentum approaches zero, Mrad factorizes as

A(0)
qq̄g → A

(0)
qq̄g gst

a
ij

(
pµ

p · k
− p′µ

p′ · k

)
ϵa(k) , (2.49)
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where the term in parenthesis is the eikonal current Jµ. Squaring Aqq̄g in the soft-gluon
approximation, we get

|A(0)
qq̄g|2 → |A

(0)
qq̄ |2g2

sCF
2p · p′

(p · k)(p′ · k) , (2.50)

and in the phase space we have that dx1dx2 → (2/s)Ek dEk d cos θ, so that we eventually
find

σreal = σBornCF
αs

2π

∫
dEk

Ek
d cos θ 2(1− cos θqq̄)

(1− cos θqg)(1− cos θq̄g) , (2.51)

which diverges when the gluon energy Ek approaches zero.
Now that we have a clearer picture of how real IR singularities emerge in phase space in-
tegrations, we can go back to eq. (2.44) and use dimensional regularisation to evaluate the
phase space integral. By doing this, we get

σreal = σBornCF
αs

2πH(ϵ)
( 4
ϵ2

+ 3
ϵ

+ 19
2 − π

2 +O(ϵ)
)
. (2.52)

Surprisingly enough, the ϵ poles contained in the expression above are exactly the same
the we reported in eq. (2.30)5, but this time with opposite signs! This implies the exact
cancelation of the IR virtual singularities with the ones of real origins in eq. (2.33). The final
result will be

σ(e+e− → qq̄ +X) = σ0

3
∑

f

Q2
f

[1 + αs

π
+O(α2

s)
]
. (2.53)

How could it happen that IR singularities canceled and that we ended up with a finite result?
Is it something purely accidental, or is there something deeper behind? The answer is that
we just studied a specific case of a broader result holding for generic Yang-Mills theories.
Here, the celebrated KLN Theorem [8, 9] states that the infrared divergences coming from
loop integrals are cancelled by IR divergences in phase space integrals, and that this occurs
at every perturbative order. This makes QCD infrared safe and predictive, as far as one
considers observables inclusive enough over extra QCD radiation at higher orders (as for
eq. (2.33)).
Formally, we can express the infrared safety of a generic observable O through the following
condition:

On+1(k1, . . . , ki, . . . , kj , . . . , kn+1) k⃗i∥k⃗j−−−→ On(k1, . . . , ki + kj , . . . , kn) (2.54)

On+1(k1, . . . , ks, . . . , kn+1) k⃗s→0−−−→ On(k1, . . . , ks−1, ks+1, . . . , kn) , (2.55)

where On is the observable computed at the lowest order on a final n-body phase space, and
On+1 is the same observable computed on phase space with an additional real radiation. The
conditions in eq. (2.54) and eq. (2.55) essentially tell us that any infrared safe observable
must be insensitive from soft and collinear extra emissions. This is a quite general property
and will turn useful when reviewing some basic concepts of jet physics in chapter 4.

5The regular function H(ϵ) in eq. (2.30) is also the same as the one in eq. (2.52).
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2.4 Infrared Singular Behaviour of QCD amplitudes
In the previous section, we studied the quark pair production in electron-positron collisions to
have a simple framework where to introduce IR singularities and their cancelation. The aim
of this section is to generalize we saw in eq. (2.46) and eq. (2.50), showing that these formulas
just represents specific cases of the universal factorisation of QCD squared matrix elements
in the infrared limits. In general, these limits can be studied for different configurations
[10, 11], including mixes of soft and collinear limits, possibly involving large sets of external
partons. Loop corrections to these limits can also be analyzed in a systematic way 6.
As this chapter will especially focus on next-to-leading-order computations in QCD, we will
restrict our attention on the singular limits effectively contributing at this perturbative order,
namely:

• The two-parton collinear limit of tree-level amplitudes.

• The single soft parton limit of tree-level amplitudes.

In both cases, we will follow the calculations presented in [11], to which we refer the interested
reader for more details.

2.4.1 The Collinear Limit
Considering a process with a generic number of QCD partons7 in the final state and possibly
other non-QCD partons (like colour singlets), we can write its tree-level amplitude as

Ac1,c2,...;s1,s2,...
a1,a2,... (p1, p2, . . .), (2.56)

where {c1, c2, . . .}, {s1, s2, . . .} and {a1, a2, . . .} are respectively colour, spin and flavour in-
dices. We are interested at analysing the behaviour of the squared amplitudes, that are
usually summed over final-state colours and spins. Therefore, we generically introduce the
notation

|Aa1,a2,...(p1, p2, . . .)|2 , (2.57)

to refer to squared amplitudes where the sum over colours and spin is understood, while we
introduce a spin-polarisation tensor

T s1s′1
a1,... (p1, . . .) ≡

∑
spins ̸=s1,s′1

∑
colours

Mc1,c2,...;s1,s2,...
a1,a2,... (p1, p2, . . .)

[
Mc1,c2,...;s′1,s2,...

a1,a2,... (p1, p2, . . .)
]†
,

(2.58)
to explicitely refer to squared amplitudes where the sum over colours/spins of the parton
a1 has not been performed. Given these definitions, we want to show the singular limits
of eq. (2.57). However, since we are talking about singularities, it is essential to adopt
a regularisation scheme. Following what done in Ref. [11], we choose the conventional
dimensional regularisation (CDR)8 for handling both UV and IR divergences. To parametrize

6See, for instance, Ref. [12]
7Namely gluons and massless quarks.
8This is quite standard and implies working out in d = 4 − 2ϵ dimensions, as usual, and considering two

helicity states for massless quarks and d− 2 helicity states for gluons.
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the collinear limit for the momenta of two partons, like p1 and p2, we use the following
decomposition

pµ
1 = zpµ + kµ

⊥ −
k2
⊥
z

nµ

2p · n (2.59)

pµ
2 = (1− z)pµ − kµ

⊥ −
k2
⊥

1− z
nµ

2p · nn
µ, (2.60)

where s12 = 2p1 ·p2 = − k2
⊥

z(1−z) for k⊥ → 0. The vector pµ represents the collinear direction,
while k⊥ is a space-like vector related to the trasverse component. The light-like vector nµ

is an auxiliary vector, necessary to define k⊥, since k⊥ · p = k⊥ · n = 0.
The collinear limit of the squared amplitude in eq. (2.57) will finally read

|Ma1,a2,...(p1, p2, . . .)|2
p⃗1∥p⃗2−−−−−→ 2

s12
4π2µ2ϵαsT ss′

a,...(p, . . .)P̂ ss′
a1a2(z, k⊥; ϵ) . (2.61)

In the spin-polarisation tensor T ss′
a,...(p, . . .), the index a represents a the mother parton of a1

and a2: its momentum is pµ and its flavour and colour are determined by conservation prop-
erties9. P̂ ss′

a1a2 is the d-dimensional unregularized Altarelli-Parisi splitting functions [13–15].
It is a universal kernel, encoding the singular collinear behaviour of the squared amplitude
and only depending on the kinematics and colour numbers of the collinear partons. It retains
a spin-correlation factor, so we can think about it as the action of a general matrix P̂a1a2 on
the spin indices s, s′ of the mother parton a. The explicit expressions of P̂ ss′

a1a2 are given b10:

P̂ ss′
qg (z, k⊥; ϵ) = P̂ ss′

q̄g (z, k⊥; ϵ) = δss′CF

[
1 + z2

1− z − ϵ(1− z)
]
, (2.62)

P̂ ss′
gq (z, k⊥; ϵ) = P̂ ss′

gq̄ (z, k⊥; ϵ) = δss′CF

[
1 + (1− z)2

z
− ϵz

]
, (2.63)

P̂ ss′
qq̄ (z, k⊥; ϵ) = P̂ ss′

q̄q (z, k⊥; ϵ) = 1
2

[
−gµν + 4z(1− z)k

µ
⊥k

ν
⊥

k2
⊥

]
, (2.64)

P̂ ss′
gg (z, k⊥; ϵ) = 2CA

[
−gµν

(
z

1− z + 1− z
z

)
− 2(1− ϵ)z(1− z)k

µ
⊥k

ν
⊥

k2
⊥

]
, (2.65)

It is interesting to notice that the spin-correlations manifest a non-trivial structures only
in eq. (2.65) and section 2.4.1, so for gluon collinear splittings. This translates into the
presence of an azimuthal dependence with respect to the directions of the other momenta in
the factorized matrix element. On the other hand, when averaging over the polarisations of
the parent parton a, one gets the standard expressions

⟨P̂qg(z; ϵ)⟩ = ⟨P̂q̄g(z; ϵ)⟩ = CF

[
1 + z2

1− z − ϵ(1− z)
]
, (2.66)

9Where the quantum number conservation is imposed on the splitting vertex a → a1a2.
10Where CF = (N2

c − 1)/2Nc is the Casimir of SU(Nc) in the fundamental representation, and CA = Nc is
the Casimir in the adjoint representation (Nc is the number of colours).
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⟨P̂gq(z; ϵ)⟩ = ⟨P̂gq̄(z; ϵ)⟩ = CF

[
1 + (1− z)2

z
− ϵz

]
, (2.67)

⟨P̂qq̄(z; ϵ)⟩ = ⟨P̂q̄q(z; ϵ)⟩ = 1
2 [1− 2z(1− z)(1− ϵ)] , (2.68)

⟨P̂gg(z; ϵ)⟩ = 2CA

[
z

1− z + 1− z
z

+ z(1− z)
]
. (2.69)

2.4.2 The Soft Limit
Considering now the behaviour of the generic n-parton amplitude in eq. (2.56) in the soft
limit, it is helpful to introduce a new formalism to deal with its colour and spin dependence.
Following what exposed in Ref. [11], a basis {|c1, . . . , cn⟩ ⊗ |s1, . . . , sn⟩} in colour + helicity
space is defined, so that eq. (2.56) can be seen as the component of a colour + spin vector
|Ma1,...,an(p1, . . . , pn)⟩, related to a specific basis vector. In formulas:

Mc1,...,cn;s1,...,sn
a1,...,an

(p1, . . . , pn) ≡
(
⟨c1, . . . , cn| ⊗ ⟨s1, . . . , sn|

)
|Ma1,...,an(p1, . . . , pn)⟩ . (2.70)

Notice that |Ma1,...,an(p1, . . . , pn)⟩ is, by definition, a colour-singlet state. The squared ma-
trix element, summed over final-state colours and spins, will then read

|Ma1,...,an(p1, . . . , pn)|2 = ⟨Ma1,...,an(p1, . . . , pn)|Ma1,...,an(p1, . . . , pn)⟩ . (2.71)

A colour charge operator Ti is also introduced, to acount for the colour contribution of a
gluon emission from a parton i. It is defined as

Ti ≡ ⟨c|T c
i , (2.72)

and it acts on the colour structure of QCD amplitudes according to

⟨c1, . . . , ci, . . . , cm, c|Ti|b1, . . . , bi, . . . , bm⟩ = δc1b1 . . . T
c
cibi

. . . δcmbm . (2.73)

Explicitely, we have that T c
ab ≡ ifcab when the emitting parton i is a gluon, T a

αβ ≡ taαβ if i is
a quark, and T a

αβ ≡ t̄aαβ = −taβα if i is an antiquark11. The colour charge operator satisfies
some important properties, in particular

• Ti ·Tj = Tj ·Ti = T c
i T

c
j if i ̸= j.

• T2
i = Ci, where Ci = CA if i is a gluon and Ci = CF for i being (anti)quark.

• Colour conservation requires that
n∑

i=1
Ti|Ma1,...,an(p1, . . . , pn)⟩ = 0 . (2.74)

11Notice that the Latin letters are used for indices in the adjoint representation of SU(Nc), while Greek
letters are used for fundamental representation indices.
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Let us consider now a tree-level process with n generic partons and a gluon of momentum
q, colour c and spin index µ. According to the formalism introduced above, the process is
described by a vector |Mg,a1,...,an(q, p1, . . . , pn)⟩. When the gluon momentum vanishes, it
can be shown that

⟨c;µ|Mg,a1,...,an(q, p1, . . . , pn)⟩ → gsµ
ϵJc;µ(q)|Ma1,...,an(p1, . . . , pn)⟩, (2.75)

which means that an amplitude with a soft gluon becomes proportional to the same amplitude
without the gluon, multiplied by a universal kernel Jc;µ(q) containing the soft divergence. The
factor Jµ(q) = ⟨c|Jc;µ(q) corresponds to the eikonal current already introduced in eq. (2.49),
and reads

Jµ(q) =
n∑

i=1
Ti

pµ
i

pi · q
. (2.76)

The eikonal current is a conserved current. Indeed, since qµJµ(q) becomes exactly ∑n
i=1 Ti,

colour conservation in eq. (2.74) will just imply

qµJµ(q)|Ma1,...,an(p1, . . . , pn)⟩ = 0 . (2.77)

Owing to the fact we just observed, eq. (2.75) implies the squared amplitude to behave in
the following way under the soft gluon limit

|Mg,a1,...,an(q, p1, . . . , pn)|2 → −4παsµ
2ϵ

n∑
i,j=1

Sij(q)|M(i,j)
a1,...,an

(p1, . . . , pn)|2, (2.78)

where a scalar eikonal function has been defined

Sij(q) = pi · pj

(pi · q)(pj · q)
= 2sij

siqsjq
, (2.79)

and where |M(i,j)
a1,...,an(p1, . . . , pn)|2 are colour-correlated squared amplitudes, according to

|M(i,j)
a1,...,an

(p1, . . . , pn)|2 ≡⟨Ma1,...,an(p1, . . . , pn)|Ti ·Tj |Ma1,...,an(p1, . . . , pn)⟩ (2.80)

=
[
Mc1,...bi...bj ...cn

a1,...,an (p1, . . . , pn)
]∗
T c

bidi
T c

bjdj
Mc1...di...dj ...cn

a1,...,an (p1, . . . , pn) .

The squared matrix elements appears (summed over final-state colours and spins) appears
therefore almost fully factorized in the soft limit, but colour conservation acts by introducing
colour correlation terms, making it impossible to extract |Ma1,...,an(p1, . . . , pn)|2 from the
sum in eq. (2.78).

2.5 Factorisation of Parton Distribution Functions
The considerations and results we have presented in the previous sections finally allow us to
study hadronic collisions, which will be the object of the phenomenological analyses we will
detail in the second part od this thesis. We remind that the cross section for two hadrons
h1,h2 scattering into a generic final state X can be effectively described by the following
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master formula

σ(h1h2 → X) =
∑
i,j

∫
dx⊕dx⊖fi/h1(x⊕, µ2

F )fj/h2(x⊖, µ2
F )σ̂ij,X(ŝ, µ2

R, µ
2
F ) +O

(ΛQCD
Q

)
,

(2.81)
which expresses the factorisation theorem [4] for hadronic processes at high energies. In the
introduction, we already presented the main ingredients entering eq. (2.81). What we aim to
do, now, is to explain the physical origin of the factorisation scale that makes its appearance
inside the parton distribution functions and the partonic cross section. Pratical details about
the calculation of the same eq. (2.81) will be shown in the next section.
When we argumented the cancelation of infrared divergences due to the KLN theorem in
section 2.3, we restricted our attention to an high nergy process involving a lepton pair
e−e+ in the initial state. This allowed us to get a clear picture of what was going on, but
on the other hand forbid us to appreciate a really genuine phenomenon that occurs when
partons are present in the initial state. In this case, the emission of collinear radiation
alters the momenta of initial-state partons before entering the hard scatterings, leading to
an incomplete cancelation of the initial-state collinear singularities between real and virtual
NLO corrections (and beyond). This is depicted in fig. 2.4.

q1

q2

X

p⃗

z p⃗

(1− z) p⃗

(a)

q1

q2

X

p⃗1

p⃗

p⃗

(b)

Figure 2.4: Initial-state radiative (a) and virtual (b) corrections to a generic process two
incoming quarks q1, q2 that interact to generate a final state X. In (a), the
momentum of q2 is modified by the emission of a gluon with (1 − z) p⃗ before
undergoing the hard scattering (grey circle). In (b), the virtual correction does
not affect the momentum p⃗ of q2. As a result, the exact cancelation of singularities
arising from the collinear gluon configuration in (a) and (b) only holds for z → 1
(soft limit).

The way to handle these left over singularities is looking at the problem with the same
philosophy upon which the renormalisation procedure is bases. The divergences are a
sympthoms that we are using of bare PDFs. Where divergences are reabsorbed, giving
finite physical PDFs, a new unphysical scale emerges, which is exactly the factorisation scale
µF . It can be shown that the evolution of parton distribution functions with µF is dictated
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [13–15]. They compose a sys-
tem of 2nf + 1 equations, where in particular: nf predict the evolution of quark PDFs, nf
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the one of antiquark PDFs, and a last one dictates the gluon PDF evolution. By allowing
the subscript i to run over all the possible light quark and antiquark falvours, the DGLAP
equations can be arranged in the following form

∂

∂ lnµ2

(
fqi/h(x, µ2)
fg/h(x, µ2)

)
= αs(µ2)

2π
∑
qj ,qk

∫ 1

x

dz

z

(
Pqiqj

(
x
z , αs(µ2)

)
Pqig

(
x
z , αs(µ2)

)
Pgqj

(
x
z , αs(µ2)

)
Pgg

(
x
z , αs(µ2)

))(fqj/h(z, µ2)
fg/h(z, µ2)

)
,

(2.82)
where Pij are the regularized Altarelli-Parisi splitting functions, admitting a strong coupling
expansion

Pij(z, αs(µ2)) = P
(0)
ij (z) + αs

2πP
(1)
ij (z) +

(
αs

2π

)2
P

(2)
ij (z) +O(α3

s) , (2.83)

where at the leading-order we have

P (0)
qiqj

(z) = δijCF

(
1 + z2

[1− z]+
+ 3

2δ(1− z)
)
, (2.84)

P (0)
qig (z) = CF

(
1 + (1− z)2

z

)
, (2.85)

P (0)
gqi

(z) = 1
2
(
z2 + (1− z)2

)
, (2.86)

P (0)
gg (z) = 2CA

(
z

[1− z]+
+ (1− z)z + 1

z

)
+ (11CA − 2nf ) δ(1− z)6 . (2.87)

Notice the similarities with the unregolarized Altarelli-Parisi splitting functions presented
in eqs. (2.66) to (2.69), except from the presence of the plus prescription in eq. (2.84) and
eq. (2.87), that reads ∫ 1

0
dz

f(z)
[1− z]+

=
∫ 1

0
dz
f(z)− f(1)

1− z . (2.88)

2.6 Fixed-order Calculations at Next-to-Leading-Order in QCD
Given all the considerations in the above, we have now all the ingredients to deal with fixed
order calculations beyond the leading-order in QCD. For the scope of this thesis, we will
focus on next-to-leading-order computations in hadron-hadron collisons. In what follows, we
will adopt the notation presented in [16–18], as it will turn useful in the formal developments
presented in the next chapters.
The leading-order contribution of eq. (2.81) can be written for a 2→ n process as

σLO =
∫
dΦn LB(Φn) , (2.89)

where the phase space Φn is defined as

Φn = {x⊕, x⊖, k1, . . . , kn} , (2.90)
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and thus also including the final state parton momenta {k1, . . . , kn}, as well as the partonic
momentum fraction variables x⊕, x⊖, which relates to the initial state interacting parton
momenta k⊕, k⊖ as

k⊕ = x⊕K⊕, k⊖ = x⊖K⊖ , (2.91)

where K⊕, K⊖ are the incoming proton momenta. The phase space measure will then read

dΦn = dx⊕dx⊖dΦn(k⊕ + k⊖; k1, . . . , kn) , (2.92)

with dΦn the n-body stands for the final state phase space measure

dΦn(q; k1, . . . , kn) = (2π)4δ4
(
q −

n∑
i=1

ki

)
n∏

i=1

d3ki

(2π)32k0
i

. (2.93)

The factor L represents the parton luminosity

L = L(x⊕, x⊖) = f⊕(x⊕)f⊖(x⊖) , (2.94)

whose flavour dependence has been omitted for ease of notation. Finally, the leading-order
squared matrix element |A(0)(Φn)|2 is encoded in B(Φn). Possible sums and averages over
spins and colours are also understood in B(Φn), as well as the presence of a flux factor.
Going to to the next-to-leading-order, we have to include virtual Vb and real R contribu-
tions to the Born level. Indeed, when taking the perturbative expansions of the relevant
renormalised amplitudes

An(Φn) = A(0)
n (Φn) +A(1)

n (Φn) +O(g4
s) (2.95)

An+1(Φn+1) = A(0)
n+1(Φn+1) +O(g3

s) , (2.96)

where A(1)
n is the one-loop amplitude the 2→ n process, and A(0)

n+1 the tree level amplitude
for 2→ n+ 1 and squaring them, we get∣∣An(Φn)

∣∣2 =
∣∣A(0)

n (Φn)
∣∣2︸ ︷︷ ︸

B

+ 2ℜ
(
A(0)∗

n (Φn)A(1)
n (Φn)

)︸ ︷︷ ︸
Vb

+O(α2
s) (2.97)

An+1(Φn+1) = A(0)
n+1(Φn+1)︸ ︷︷ ︸

R

+O(α2
s) , (2.98)

where Vb and R are introduced, again omitting spin/colour sums and averages for the ease
of notation. The subscript b in Vb means bare, reminding that there are still infrared poles in
it. When working out the loop integration in dimensional regual for d = 4− 2ϵ, this implies
the presence of single and double ϵ poles in Vb. When performing the phase space integration
of the Born, real and virtual terms, we get∫

dΦnL [B(Φn) + Vb(Φn)] +
∫
dΦn+1LR(Φn+1) , (2.99)

where the n+ 1 body phase space reads

dΦn+1 = dx⊕dx⊖dΦn+1(k⊕ + k⊖; k1, . . . , kn+1). (2.100)
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Although the cancelation of IRC divergences take place as described in the previous sections,
eq. (2.99) still features left-over ISR collinear singularities. We can therefore include two
factorisation counterterms, so to get the following finite NLO cross section

σNLO =
∫
dΦn L [B(Φn) + Vb(Φn)] +

∫
dΦn+1 LR(Φn+1)

+
∫
dΦn,⊕ LG⊕,b(Φn,⊕) +

∫
dΦn,⊖ LG⊖,b(Φn,⊖). (2.101)

Notice that the bare counterterms G⊕,b and G⊖,b are divergent in four dimension and are
defined on the phase spaces Φn,⊕ and Φn,⊖, that also includes a new variable 0 < z < 1,
representing the fraction of momentum of the incoming parton after radiation. These phase
spaces are constrained by momentum conservation, so that

Φn,⊕ = {x⊕, x⊖, z, k1, . . . , kn}, where zx⊕K⊕ + x⊖K⊖ =
n∑

i=1
ki (2.102)

Φn,⊖ = {x⊕, x⊖, z, k1, . . . , kn}, where x⊕K⊕ + zx⊖K⊖ =
n∑

i=1
ki , (2.103)

and

dΦn,⊕ = dx⊕ dx⊖ dz dΦn(zk⊕ + k⊖; k1, . . . , kn), (2.104)
dΦn,⊖ = dx⊕ dx⊖ dz dΦn(k⊕ + zk⊖; k1, . . . , kn). (2.105)

It may be also convenient to absorb the z dependence of eq. (2.102) and eq. (2.103) into an
underlying n-body phase space Φn defined as

Φn = {x⊕, x⊖, k1, . . . , kn}, x± = zx± , x∓ = x∓ , (2.106)

which we are going to use in the next section.

2.7 Subtraction Schemes at NLO
Putting things together, we can now express the expectation value of a certain observable
O12 as

⟨O⟩ =
∫
dΦnLOn(Φn) [B(Φn) + Vb(Φn)] (2.107)

+
∫
dΦn+1LOn+1(Φn+1)R(Φn+1)

+
∫
dΦn,⊕LOn(Φn)G⊕,b(Φn,⊕)

+
∫
dΦn,⊖LOn(Φn)G⊖,b(Φn,⊖) ,

12We require O to be infrared safe (i.e. finite) at the Born level. In this way, the leading-order computation
of ⟨O⟩ will be naturally finite, while higher orders will still provide finite corrections thanks to the KLN
theorem.
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which is formally correct, but not suitable for a numerical implementations. Indeed, the
phase space integration of R, G± ,b is only meaningful when regularized in d = 4− 2ϵ, which
is not possible though standard numerical techniques. We recall that the real integration
gives rise to singularities in three particular kinematics configurations:

1. In the soft regions (S): when one of the n + 1 final state partons has vanishing four
momentum.

2. In the final state collinear regions (FSC): when two massless final state momenta
become parallel.

3. In the initial state collinear regions (ISC): when a final partom becomes collinear to
an initial state parton.

However we can rearrange eq. (2.107) in a way to properly extract the phase space singu-
larities in in dΦn+1R and dΦn,±G± ,b and let them cancel against the virtual IRC singularities
before performing any integration. In this way, we would be left with some terms that can
be integrated in d = 4 dimensions. This is the simple idea behind the subtraction schemes.
More specifically, we can proceed by defining some functions C(a)(Φn+1) (the infrared coun-
terterms), that mimic the singular behaviour of the real matrix elements in the IRC regions
of real radiation, labeled with α ∈ {S,FSC, ISC}. We also require the C(a) to be analytically
integrable in the factorized radiation phase space, but we will elaborate more on this point
later. By construction, we will have that

R(Φn+1)On+1(Φn+1)−
∑

α

C(α)(Φn+1)On+1 (Φn+1) (2.108)

has at most integrable singularities in the 4-dimensional radiation phase space. However, the
cancelation of singularities is guaranteed also if we relax the condition that the observable
On+1(Φn+1) multiplying the counterterms C(a) is computed on Φn+1. There, we can also
deform the Φn+1 into different phase spaces Φ̃(α)

n+1 for every α, so that

R(Φn+1)On+1(Φn+1)−
∑

α

C(α)(Φn+1)On+1
(
Φ̃(α)

n+1

)
, (2.109)

provided that Φ̃(α)
n+1 smoothly identifies with Φn+1 in the α singular region

Φ̃(α)
n+1

α singular region−−−−−−−−−−→ Φn+1 . (2.110)

For what will become clear later, it is also useful to introduce an underlying n-body config-
uration

Φ(α)
n =

[{
x⊕, x⊖, k1, . . . , kn

}]
α
, (2.111)

that projects each Φ̃(α)
n+1 onto a n-particle Φ(α)

n phase point in a way that

• If α ∈ S, then the null momentum parton is dropped.

• If α ∈ FSC, then the two parallel momenta are merged in one single momentum
corresponding to their sum.
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• If α ∈ ISC, then the initial state collinear radiative parton is removed and the mo-
mentum of the initial state emitter is replaced with its momentum after the collinear
radiation.

It is not difficult to check that such procedure preserves the total four-momentum conserva-
tion.
We can now rewrite the real contribution in eq. (2.107) by subtracting and adding back the
counterterms introduced in eq. (2.108), thus getting∫

dΦn+1LOn+1(Φn+1)R(Φn+1) =
∑

α

∫
dΦn+1

[
L̃On(Φ̄n)C(Φn+1)

]
α

(2.112)

+
∫

dΦn+1

{
LOn+1(Φn+1)R(Φn+1)−

∑
α

[
L̃On(Φ̄n)C(Φn+1)

]
α

}
,

where L̃ = L(x̃⊕, x̃⊖). Notice that in eq. (2.112) we performed the replacement

On+1(Φ̃n)C(Φn+1) → On(Φ̄n)C(Φn+1) . (2.113)

This is a direct consequence of the infrared safety conditions on the observables, that we
defined through eqs. (2.54) and (2.55). And here it comes the key point of the subtraction
procedure. We factorize the radiation phase space from Φn+1 in each region α, by using

dΦn+1 = dΦ(α)
n dΦ(α)

rad , (2.114)

where dΦ(α)
rad encodes three variables that parametrize the radiation, and whose ranges can de-

pend on the underlying Φ̄(α)
n . Then, if every counterterm is defined properly, its dependence

on Φrad can be integrated analytically in d = 4−2ϵ (thus extracting the ϵ poles). What is left
will a counterterm C̄(α) just depending on the underlying n-parton configuration, according
to [

C(Φn) =
∫
dΦradC(Φn+1)

]
α∈{FSC,S}

, (2.115)

and [
C(Φn, z) =

∫
dΦradC(Φn+1) zδ

(
z −

x±

x̃±

)]
α∈{ISC± }

. (2.116)

Regarding the functions G± ,b(Φn,± ), it turns out that it is always possible to write

G± ,b(Φn,± ) +
∑

α∈{ISC± }
C

(α)(Φn,± ) = G± (Φn,± )︸ ︷︷ ︸
finite

+δ(1− z)Gdiv
± (Φn) , (2.117)

and that the ϵ poles in Gdiv
± cancel against the virtual, giving a term V(Φn) defined as

V(Φn) = Vb(Φn) +

 ∑
α∈{FSC,S}

C
(α)(Φn) + Gdiv

⊕ (Φn) + Gdiv
⊖ (Φn)


Φn=Φn

, (2.118)
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so that we can finally write the following expression for ⟨O⟩

⟨O⟩ =
∫
dΦnOn(Φn) [B(Φn) + V (Φn)]

+
∫
dΦn+1

{
On+1(Φn+1)R(Φn+1)−

∑
α

[
On(Φn)C(Φn+1)

]
α

}

+
∫
dΦn,⊕On(Φn)G⊕(Φn,⊕) +

∫
dΦn,⊖On(Φn)G⊖(Φn,⊖), (2.119)

where the parton luminosity dependence has been reabsorbed by redefining the matrix ele-
ments and counterterms as

R = LR, C(α) = L̃(α)C(α), G⊕ = L̃G± , B = LB, V = LV . (2.120)

Now, every integral in eq. (2.119) is finite and can evaluated numerically in 4 dimensions.
In literature, there are several examples of analytical subtraction method essentially based

on different implementations of eq. (2.119), namely on different ways to define the countert-
erms and factorize the radiation phase space. At NLO, various schemes have been proposed
[19–25], and two of them have become particularly popular: the Catani-Seymour (CS) scheme
[22] and the Frixione-Kunst-Signer (FKS) scheme [21]. It must be also pointed out that other
schemes, not based on the analytical subtraction of IRC divergences but rather on phase-
space slicing techniques, have emerged over the years. In this case, the singular phase-space
regions of the real radiation corrections are isolated and their matrix elements replaced by
approximated expressions suitable for analytical integration. The integration is then per-
formed up to an unphysical slicing parameter, whose residual dependence can be mitigated
in different ways. A popular framework based on phase-space slicing is Matrix [26], which
has been succesfully implemented in several NLO and NNLO computations.
Anyways, analytical subtraction schemes appear to be the best candidates to be applied in
Monte Carlo event generators, as analytical factorisation of the phase space allows is the
key to generate well-defined underlying Born events at NLO accuracy. This fact will turn
out to be crucial when we will discuss about the Powheg method, in the next chapter. In
particoular, Powheg itself is based on an implementation of the FKS subtraction.
Beyond NLO, implementing analytical subtractions become significantly more involved, as
the quantity of overlapping real singularities increases dramatically, and virtual poles are also
mixed with phase space singularities (e.g. in real-virtual corrections at NNLO). However,
several solutions have been investigated over the last few years [26–47]. On top of the already
mentioned Matrix method, Various local subtraction methods have also emerged, some of
the more numerical-oriented, as in the case of Loop-Tree Duality [26], and others foremost
analytical, as for the Nested Soft-Collinear Subtraction [36] and the Local Analytic Sector
Subtraction [45, 48–50]. The efforts carried out by the community in this sense prove that
subtraction schemes represent nowadays one of the most vibrant research areas in theoretical
collider phenomenology.

One last important point has to be addressed. As already discussed above, virtual cor-
rections entering eq. (2.119) will carry a dependence on the renormalisation scale µR, while
PDFs entering luminosity factors will come with a factorisation scale µF . Of course, a choice
must be made for these scales, bu no principle exists that contrains them uniquely. However,
the values selected for µR and µF have an impact on the convergence of the perturbative
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series, so that some choices are, in a sense, better than others. At a certain fixed-order, a
general procedure consists in setting µR and µF to some natural scale µ0 of the process un-
der examination, and then estimating errors due to missing higher-order corrections through
the so-called 7-point scale variation. This corresponds to calculating the observable for 7
different settings of (µR, µF ), according to the constraint µR/µF ∈ {1/2, 1, 2}. Defining
µR = KRµ0 and µF = KFµ0, the following values for KR and KF are considered

(KR,KF ) ∈
{(

1, 1
)
;
(1

2 , 1
)
;
(
1, 1

2
)
;
(1

2 ,
1
2
)
;
(
2, 1
)
;
(
1, 2
)
;
(
2, 2
)}

, (2.121)

and the envelope of the 7 different predictions is interpreted as the uncertainty range around
the central value corresponding to µR, µF = µ0.
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Monte Carlo Event Generators

In the last chapter, we introduced some general features about fixed-order (FO) calculations
in QCD, and then focused on the next-to-leading order (NLO) case. As of today, a huge
number of predictions in QCD have been carried out, and the next-to-next-to-leading order
(NNLO) accuracy is now the state of the art for a vast amount of processes. In fact, fixed-
order calculations appear to be the best way to compute inclusive observables, like the total
production rates of some final states, at well-defined perturbative accuracy. Unfortunately,
this approach is doomed by severe technical limitations, especially coming from the consid-
erable complexity of scattering amplitudes, which increases exponentially with the number
of loops and external legs. As a result, FO predictions can successfully address processes
with a really limited final state, which is not even close to the extremely abundant and rich
final state produced in high-energy hadronic collisions.
To get a more realistic description of the collider events, other tools have been introduced,
namely the Monte Carlo parton showers (SMC). Exploiting the universal factorization prop-
erties of matrix elements in the infrared limits 1, parton showers use Monte Carlo techniques
to rapidly increase the final state of the hard events they are given in input. In particular,
QCD showers recursively simulate a cascade of light parton emissions in the low energy (soft)
and parallel momentum (collinear) limits. Differently, from the FO case, parton showers do
not provide more than leading-order accurate results, as they are based on the approximated
behaviour of matrix elements in the aforementioned kinematical limits. However, they effec-
tively perform a numerical all-order resummation, in a sense that will become clear in the
next section, and thus a logarithmic accuracy can be associated with them.
Nowadays, parton showers are incorporated in the so-called General Purposed Monte Carlo
event generators (GPMC), where nonperturbative effects auch as the hadronization of par-
tons at the confinement scale and the decay of unstable hadrons are included. Some popular
GPMC events generators are, e.g., Pythia [51], Herwig [52], Sherpa [53]. Moreover,
various matching techniques have been studied to combine FO computations with GPMC
programs. In this sense, the most widespread methods are MC@NLO [54] and Powheg
[17].
In this chapter, we will highlight the main features of the GPMC event generators and we
will see how they can be effectively interfaced with NLO and NNLO fixed-order calculations
in QCD. In section 3.1, we will describe in more detail how parton showers work, with par-
ticular attention to Pythia8. In sections 3.2 and 3.3, we will review the main features of the
Powheg method, and in sections 3.4 to 3.8 we will focus on the MiNLO’ and MiNNLOPS
methods, recently incorporated into the Powheg framework. Indeed, the Powheg-Box,
supplemented by the MiNNLOPS prescriptions and matched to Pythia8, will be essen-

1See section 2.4
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tial to achieve NNLO+PS accuracy in the phenomenological studies we will present in the
upcoming chapters.

3.1 MC Parton Showers
When predicting the values of physical observables within the FO framework, it is common
to apply restrictions on the full phase-space domain of the process under exam. This might
happen, for example, when the goal is to carry out a comparison with measurements that
include some experimental cuts. The values of the cuts will then enter perturbative calcula-
tions as new scales Qi, giving rise to some logarithmic terms L ≡ log(Qi/Q). These terms
represent finite residuals of the partial cancellation of real emission terms and the virtual
contributions to the process and are related to the restricted real phase-space integration
bounds. It turns out that, if the logarithms L are large enough (such that, e.g., αsL

2 ∼ 1),
then the convergence of the series will be spoiled and loose predictivity. However, since these
terms obey universal properties related to the infrared structure of the theory, it is possible to
organize the perturbative series to account for the dominant logarithmically enhanced terms
to all orders in αs. In this way, any order n of the series will display leading logarithmic
(LL) terms (αsL

2)n, next-to-leading logarithmic (NLL) terms (αsL)n, and so on. Often, the
logarithmic terms can be rearranged in some overall exponential, that multiplies the rest of
the series. In many cases, resummation can be performed analytically 2. Otherwise, parton
showers algorithms embedded in the GPMC generators can be used to obtain LL-resummed
prediction3.
To illustrate the main ideas PS is based on, we can start by illustrating the time-like parton
shower, that generates final-state radiation. On the other hand, the initial-state radiation is
treated by the so-called space-like parton showers, where particular care must be taken on
the inclusion of the parton-distribution dependence carried out by the incoming partons. For
the sake of clarity, all flavour indices in the formulas that we will review are omitted. The
IRC factorization properties outlined in section 2.4 suggest that it is possible to introduce a
probability for a final-state parton i to undergo a collinear splitting i → jk, that is related
to the unregularized Altarelli-Parisi splitting kernel P̂ij as

dPi(z, t) = F (z, t) dz dt = αs(t)
2π

dt

t
dzP̂ji(z), (3.1)

depending on the z, the energy fraction of i carried by j, and on the hardness t, a generic scale
that orders emissions from a starting value tI down to a certain cutofft0, where the shower
stops. Different t choices can be adopted, and generally, they differ between the currently
available GPMC generators. In Pythia, t corresponds to the transverse momentum at
which the emission takes place. To avoid singularities stemming from eq. (3.1) in the exact
collinear emission limit, it is usually introduced a resolution scale under which no splitting
can be generated. This implies z to be defined over a restricted range [zmin, zmax], and we

2See, e.g., Ref. [55–57]
3We report that, over the past few years, great efforts have been devoted to increasing the logarithmic

accuracy of parton showers. In this sense, remarkable are the results obtained within the PanScales
framework [58–60], whose numerical implementation has been proven to achieve NLL accuracy, and re-
cently even NNLL accuracy [61], for a wide class of observables.
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can define the z-integrated splitting probability as

dPi(t) =
∫ zmax

zmin
F (z, t) dz dt = αs(t)

2π
dt

t

∫ zmax

zmin
dzP̂ji(z) , (3.2)

out of which it is not difficult to derive the probability that no splitting takes place in a
[t1, t2] range of hardness, namely

∆i(t1, t2) = exp
(
−
∫ t2

t1
dPi(t)

)
, (3.3)

which is known as the Sudakov form factor.
In a Monte Carlo parton shower algorithm, a certain final-state configuration of partons is
provided as an input and is linked to a starting value t = tI of the hardness scale. Then, a
new scale t = t′ is generated according to the no-emission probability in eq. (3.3). At t = t′,
the splitting probability in eq. (3.2) will dictate whether a parton i will or will not undergo
a splitting with a certain z = z′. The procedure is then recursively repeated on the updated
list of partons, therefore another t′′ < t′ is sorted out and another splitting will (or will not)
involve a parton i′ at z = z′′. The algorithm will stop when the cutoff of t is reached.
Regarding the space-like shower, this is carried out via backward evolution, namely proba-
bilistic sequence of initial state splittings is reconstructed starting from the partons entering
the hard scattering and moving backward in time. In this case, the probability associated
with the backward splitting i→ jk can be inferred from the DGLAP equations eq. (2.82) as

dPi(t) = dfi(x, t)
fi(x, t)

= αs(t)
2π

∣∣∣∣dtt
∫ zmax

zmin

dz

z
fj(z, t) 1

fi(x, t)
P̂ji

(
x

z

)∣∣∣∣ , (3.4)

and it can be used to define a backward Sudakov form factor of the same form of eq. (3.3).
To understand the action of parton showers from a more formal perspective, it is use-
ful to introduce the following notation used in Ref. [16]. Given a generic final-state ket
|k1,m1; . . . ; kl,ml⟩ of l particles with momentum k and quantum numbers m, that obeys the
normalization condition

⟨k1,m1; . . . ; kl,ml|k′1,m′1; . . . ; k′l,m′l⟩ = δl,l′

l∏
i=1

δ3(ki − k′i)δmi,m′i
, (3.5)

it is possible to define the action of the parton shower as an operator

S =
∞∑

l=1

∑
m1...ml

∫
d3k1 . . . d

3kl C(k1,m1; . . . ; kl,ml)⟨k1,m1; . . . ; kl,ml| . (3.6)

In this way, if we take an infinitesimal cell dΨ = |k′1,m′1; . . . ; k′l,m′l⟩ d3k′1 . . . d
3k′l, the product

S ·dΨ will be the probability that the shower generates a state in the cell dΨ. Parton showers
obey the unitarity, meaning that only one configuration is reached after applying eq. (3.6)
on a generic final-state observable expressed as

G =
∞∑

l=1

∑
m1...ml

∫
d3k1 . . . d

3kl g(k1,m1; . . . ; kl,ml)|k1,m1; k2,m2; . . . ; kl,ml⟩ , (3.7)
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which translates into the requirement that S ·G = 1.
In a SMC program, the algorithm will receive as an input a generci m-particle hard scatter-
ing event, associated with a phase-space configuration Φm. This will have been previously
generated according to the Born matrix element B(Φm). Now, if we plug into eq. (3.6)
the splitting probability and Sudakov form factor introduced above, we get to the following
expression of the parton shower operator:

S({tI}) = ∆R({tI}, t0) ⟨I| +
∑

i=1,m

∫ tI

t0
dtdz∆R({tI}, t)Fi(z, t)S(z2t)S((1− z)2t) , (3.8)

where {tI} = {t0I , . . . , tmI } is the set of initial hardness scales for all primary partons, and
∆R({tI}) = ∏

i=1,m ∆R(tiI). With this in mind, we can finally write the differential cross-
section dσPS of a Φm showered configuration with initial hardness {tI} in terms of the
following recursive expression

dσPS({tI},Φm) ≡ B(Φm) dΦm

[
∆R({tI}, t0)

+
∑

i=1,m

dΦrad,i(t, z)∆R({tI}, t)Fi(z, t) dσPS(z2t) dσPS((1− z)2t)
]
,

(3.9)
where dΦrad,i(z, t) ≡ θtiI − tdzdt

dϕ
2π is the phase space cell associated with a shower emission

at hardness t < tiT and branching energy fraction z, from a parton i ∈ {1, . . . ,m} (ϕ is the
azimuthal angle of the emission).
As we mentioned above, the parton shower algorithm will stop at a certain lower cutoff scale
t0, reaching a final state configuration of partons. Moreover, In Pythia8, the Lund String
Model [62, 63] has been implemented to simulate the hadronization of the showered partons.
To this extent, a set of phenomenological parameters tuned to experimental data must be
selected. The Pythia default choice is the Monash2013 tune [64], based on the the heavy-
quark fragmentation and strangeness production constraints imposed by LEP and SLD.
The subsequent decay of unstable hadrons is also simulated, by randomly selecting a decay
channel with a probability proportional to their branching fraction. The decay products are
then distributed on the phase space.

3.2 The Matching Problem
A question, at this point, might be asked: is it possible to interface fixed-order calculations
with parton showers? A positive answer to this question would allow us to design MC
simulations carrying the full fixed-order event generator accuracy for observables inclusive
over soft and collinear extra emissions, as well as performing resummation of large logarithms
and preserving the parton shower accuracy for a generic exclusive observable. Unfortunately,
the problem (often referred to as matching problem) is not trivial beyond the LO. At NLO,
one could naively imagine generating hard events according to NLO differential cross-section
derived in eq. (2.119), and then give them as an input to a SMC program. However, this
would lead to an incorrect result, because the first real radiation would be accounting both
in the NLO computation (exactly) and in the first parton shower emission (approximately).
Proper prescriptions must then be introduced to avoid this double-counting problem.
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We will try now to pave the way to a solution to the matching problem. To this extent, it can
be useful to look at the formal expressions for the fully differential cross-sections, as they are
computed by a parton shower and in an exact NLO calculation. In eq. (3.9), we presented
a general recursive formula for the differential cross-section of a showered m primary parton
configuration. Within that formula, the probability for the hardest emission reads

dσ = B(Φm)dΦm

[
∆R({tI}, t0) + ∆R({tI}, pT)

∑
i=1,m

Fi(z, t)θ(tiI − t) dz dt
dϕ

2π ,
]

(3.10)

where we can expand the Sudakov radiators, to get the following O(αs) accurate formula

dσ = B(Φm)dΦm

[
1 −

∑
i=1,m

∫ t

t0
dt′dz′ F ({t′}, z′) +

∑
i=1,m

Fi(z, t)θ(tiI − t) dz dt
dϕ

2π
]
,

(3.11)

also rearrangeable in terms of plus distributions as

dσ = B(Φm)dΦm

[
1 +

∑
i=1,m

Fi(z, t)+θ(tiI − t) dz dt
dϕ

2π
]

(3.12)

Put in this form, eq. (3.12) manifestly preserves unitarity at the perturbative level, since the
integration over t0 ≤ t ≤ tiI of the plus distribution Fi(z, t)+ is zero.
Let us now consider the O(αs) expansion of the differential cross-section associated with a
hard event, as it can be generated within a parton event generator. As discussed above, NLO
calculations in QCD can be explicitly carried out numerically only after proper treatment
of their IR divergent behaviour. In a NLO event generator context, this means that parton
events into real emission will be generated according to a real matrix element regulated by
a set of IR counterterms, one for each possible singular configuration. Practically speaking,
every event defined on the real phase space dΦm+1 will be associated with a negative weighted
counter-event, defined according to a chosen local subtraction scheme. The differential cross-
section will read

dσ = B(Φm)dΦm + V (Φm)dΦm (3.13)

+
[
R(Φm+1)dΦm+1 −

∑
i

Ci(Φm+1)dΦm+1Pi

]
. (3.14)

The operator P has the function of projecting the Φm+1 real kinematic configuration on an
underlying Φm phase space point. This has to be done in a way to ensure the IR safety of
the inclusive calculation, namely requiring that:

P {p1, . . . , pi, . . . , pm+1} = {p1, . . . , pi−1, pi+1, . . . , pm+1} for pi → 0 (3.15)
P {p1, . . . , pk, . . . , pl, . . . , pm+1} = {p1, . . . , pk + pl, . . . , pm+1} for pk ∥ pl . (3.16)

As a consequence, projections will be defined differently according to the particular singular
configuration of the real phase space, to which the label i is associated in (3.13). Note that
the countertems have to be defined so as to make the difference between R and ∑iCi to IR
finite over the entire real phase space.
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Having now in mind what a SMC and a parton event generators compute at O(αs),
we can approach solutions to the matching problem. In general, two different NLO+PS
matching schemes have become popular and have been corroborated by a vast literature: the
MC@NLO method [54] and the Powheg method [17]. As the latter will be the framework
in which the results of this thesis have been obtained, we will devote the following section to
describe it in detail.

3.3 A POstitive Weighted Hardest Emission Generator
As mentioned above, another method to perform the NLO+PS matching is commonly used
in modern phenomenological studies, namely the Powheg method. Firstly introduced in
a seminal paper by P. Nason [16], its numerical implementation has been developed in a
fully general framework [17, 18] and tested for a rather large amount of hard processes. As
the name itself suggests, Powheg has been introduced to avoid negative weighted events,
which feature a strong presence in the MC@NLO matching. Differently from MC@NLO,
Powheg is not SMC specific and, in this sense, does not require to compute the Monte
Carlo NLO approximation for different Parton Shower algorithms. The really general idea
behind Powheg is to generate the hardest QCD real emission to a certain process first,
retaining exact NLO accuracy, and let the SMC generate the subsequent softer emissions.
To understand how this is done, let us consider again equation (3.13) and manipulate it in
the following way

dσ = BdΦm + V dΦm +
[
RdΦmdϕr − C dΦmdϕrP

]
(3.17)

=
[
V +

(
R− C

)
dϕrP

]
dΦm + BdΦm

[
1 + R

B
(1−P)dϕr

]
, (3.18)

where we assumed the real radiation phase space could be written in a factorized form, as
dΦm+1 = dΦmdϕr. Such phase space factorisation is defined within the subtraction scheme
adopted when carrying out the NLO calculation, and it generally depends on the specific
singular configuration that is being subtracted by the single counterterms. Here, for the
sake of clarity, we didn’t specify this dependence. For the same reason, we also omitted the
dependence of B,V ,R,C on their respective phase spaces. We can now recast (3.17) as

dσ = B̄ dΦm
[
1 + R

B
(1−P)dϕr

]
, (3.19)

where we introduced a new function

B̄ = B + V +
∫
dϕr(R − C) , (3.20)

which captures the complete NLO correction to the process at hand. Note that (3.19)
coincides with eq. (3.17) up to terms which are of order O(α2

s) relative to the strong coupling
order of the Born matrix element. As presented in eq. (3.19), the NLO differential cross-
section is expressed in a form that reminds us of eq. (3.12). To make the analogy with the
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O(αs) parton shower formula, we can even define a new function

∆(NLO)
R (pT) ≡ e−

∫
dϕr

R
B

θ(kt(ϕr)−pT) , (3.21)

so that eq. (3.19) reads, up to O(α2
s)

dσ = B̄ dΦm
[
∆(NLO)

R (0) + ∆(NLO)
R (pT)R

B
dϕr

]
, (3.22)

which is precisely the master formula of the Powheg method. Since B̄ is forced to be pos-
itive by the consistency of perturbation theory, the master formula we just derived cannot
feature negative weighted events.
With eq. (3.22), one can generate the first hardest emission in a similar way to what is
done in SMC algorithms, and then interface the parton level output to a pT-ordered parton
shower4. A veto is applied to the shower, so to generate extra radiation softer than the hard
emission transverse momentum.
Several modifications to eq. (3.22) can be adopted when looking at a numerical implemen-
tation of the Powheg method. An example is the treatment of the real matrix element
figuring in eq. (3.21) and eq. (3.22). Instead of using R, one can replace it with a modified
R̃, and then add back the difference R−R̃ with standard Monte Carlo reweighting techniques
at the event generation level. Necessary to this scope is to avoid spurious singularities in
defining R̃, so one should make sure that the modified real matrix element reproduces the
same IR structure of the actual R. A common way to achieve this, is to define

R̃ = R × h(pT) , (3.23)

where h(pT) is a damping factor going to one when pT → 0 and smoothly vanishing at high
pT. Such a prescription can help the Monte Carlo generator avoid instabilities linked to the
exponentiation of large NLO corrections away from the singular regions.
Before moving on, it might be convenient to review the formulas we derived above in a slightly
more rigorous way. To start off with, we consider the B̄ function introduced in eq. (3.20).
Using the notation introduced in section 2.6, we can formally write

B̄(Φm) = B(Φm) + V (Φm)

+
[ ∫

dϕr
[
R(Φm+1 − C(Φm+1)

] ∫ dz

z

[
G⊕(Φm,⊕) +G⊖(Φm,⊖)

]]Φ̄m = Φm

,
(3.24)

where, we recall, G⊕ and G⊖ are counterterms introduced to cancel collinear singularities
arising from the initial state, which are not compensated by the virtual corrections. Note
that we also assumed the phase spaces Φm+1, Φm,⊕ and Φm,⊖ to be expressed in terms
of barred variables when integrating over the extra radiation phase space, and letting Φ̄m

coincide with Φm after the integration. The modified Sudakov form factor in eq. (3.21) reads

∆(Φm, pT) = exp
{
−
∫ [dϕr R(Φm+1)θ(kT (Φm+1)− pT)]Φ̄m=Φm

B(Φm)

}
. (3.25)

4As shown in [16], it is also possible to adapt the method to showers with different orderings, like angular
ordered showers, by introducing truncated showers and a proper veto procedure.
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Finally, the differential cross-section in eq. (3.22) can be written as

dσ = B̄(Φm) dΦm

{
∆(Φm, p

min
T ) + ∆(Φm, kT (Φm+1))R(Φm+1)

B(Φm) dϕr

}
Φ̄m=Φm

, (3.26)

where we also introduced a pmin
T to prevent the generation of extra radiation below the

hadronisation scale, similar to what is done in SMC programs. Although these formulas allow
us to study the method in a more precise way, it might be even more beneficial to go one step
further and understand how subtraction of IR singularities is carried out in eq. (3.26), within
a certain subtraction scheme. In the case of Powheg, the FKS subtraction was adopted to
this extent. According to the FKS prescriptions [21], sectors are introduced to separate and
organize in a systematic way all the different IR singular phase space regions of R. Labeling
the flavour structures contributing to the Born process with an index fb, we will have a set
of FKS sectors for each different fb. We denote with i the index running over these FKS
sectors, so that we can define B̄ in a specific flavour structure fb as

B̄fb(Φm) =
[
B(Φm) + V (Φm)

]
fb

+
∑

i∈{i|fb}

∫
dϕr

[
R(Φm+1 − C(Φm+1)

]Φ̄i
m = Φm

i
(3.27)

+
∑

i⊕∈{i⊕|fb}

∫
dz

z
Gi
⊕(Φm,⊕) +

∑
i⊖∈{i⊖|fb}

∫
dz

z
Gi
⊖(Φm,⊖)Φ̄m = Φm , (3.28)

and analogously, for the Powheg Sudakov radiator

∆fb(Φm, pT) = exp
{
−

∑
i∈{i|fb}

∫ [dϕr R(Φm+1)θ(kT (Φm+1)− pT)]Φ̄
i
m=Φm

i

Bfb(Φm)

}
. (3.29)

Putting pieces together, to differential cross-section will read

dσ =
∑
fb

B̄fb(Φm) dΦm

{
∆fb(Φm, p

min
T )

+
∑

i∈{i|fb}

[
∆fb(Φm, kT (Φm+1))R(Φm+1)dϕr

]Φ̄i
m=Φm

i

Bfb(Φm)

}
.

(3.30)

To persuade ourselves that eq. (3.30) effectively yields NLO accuracy for a generic infrared-
safe observables O, let us use it to carry out the explicit computation of O

⟨O⟩ =
∑
fb

∫
dΦm B̄fb(Φm)

{
∆fb(Φm, p

min
T )Om(Φm)

+
∑

i∈{i|fb}

[ ∫
dϕr ∆fb(Φm, kT (Φm+1))R(Φm+1)Om+1(Φm+1)

]Φ̄i
m=Φm

i

Bfb(Φm)

}
,

(3.31)
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and then, replacing Om+1 with Om + (Om+1 −Om)

⟨O⟩ =
∑
fb

∫
dΦm B̄fb(Φm)

×
{[

∆fb(Φm, p
min
T ) +

∑
i∈{i|fb}

[ ∫
dϕr ∆fb(Φm, kT (Φm+1))R(Φm+1)Om+1(Φm+1)

]Φ̄i
m=Φm

i

Bfb(Φm)

]
Om(Φm)

+
∑

i∈{i|fb}

[ ∫
dϕr ∆fb(Φm, kT (Φm+1))R(Φm+1) (Om+1(Φm+1)−Om(Φm))

]Φ̄i
m=Φm

i

Bfb(Φm)

}
.

(3.32)
It is possible to show now that the expression multiplying Om(Φm) in the second line of
eq. (3.32) is equal to one. Expanding then up to O(αs) the last term, one ends up with the
following formula

⟨O⟩ =
∑
fb

∫
dΦm

{
B̄fb(Φm)Om(Φm)

+
∑

i∈{i|fb}

[ ∫
dϕr R(Φm+1) (Om+1(Φm+1)−Om(Φm))

]Φ̄i
m=Φm

i

}
,

(3.33)

which explicitly proves the NLO accuracy of the Powheg master formula for inclusive ob-
servables, up to power terms of pmin

T which can be neglected.
Now we can finally discuss how to implement eq. (3.26) in an event generator framework,
as it is done in the Powheg-BOX [18]. Schematically, we can imagine the algorithm to be
organized in two steps, given a generic process:

1. A Born level event is generated on the Φm phase space with a certain Born flavour
structure fb, according to a probability equal to B̄fb(Φm)dΦm.

2. The hard radiation is generated with a certain ϕi
r on a real flavour configuration i ∈

{i|fb}, according to a probability defined by

[R(Φm+1)
B(Φm) ∆fb(Φm, kT (Φm+1))

]Φ̄i
m=Φm

i
dϕr . (3.34)

The first step is customary in MC event generators and there are well-known techniques to
approach it. To design rather optimized programs, usually, an importance sampling is per-
formed via the hit and miss procedure. The procedure works like this: instead of generating
a set of variables according to their actual distribution probability, this is generated accord-
ing to another distribution that is greater or equal to the original one in every point of its
domain. Such function, known as upper bound, is supposed to look simpler than the original
probability distribution. This allows, in turn, to generate points distributed along with the
upper bound function with significantly less computational power expenses. After a point
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is generated, it is accepted or rejected with a probability equal to the ratio of the original
probability and its upper bound. The more the upper bound approximates the probability
distribution, then more points will be accepted, drastically reducing the running time of the
program. Unfortunately, eq. (3.27) poses another problem that threatens the performances
of event generations. Every time the program is asked to accept or reject a certain event, an
integration over dϕr is required to compute the full B̄ Powheg function. To smart our way
out of this issue, we can parametrize the real radiation phase space ϕr using three variables in
the unit cube Xrad =

{
X(1), X(2), X(3)}, where 0 < X(i) < 1 for i = 1, 2, 3. A new function

can then be introduced based on eq. (3.27), which looks like

B̃fb(Φm, Xrad) =
[
B(Φm) + V (Φm)

]
fb

+
∑

i∈{i|fb}

[∣∣∣∣ ∂ϕr

∂Xrad

∣∣∣∣R(Φm+1 − C(Φm+1)
]Φ̄i

m = Φm

i

+
∑

i⊕∈{i⊕|fb}

1
z

∣∣∣∣ ∂z

∂X(1)

∣∣∣∣Gi
⊕(Φm,⊕) +

∑
i⊖∈{i⊖|fb}

1
z

∣∣∣∣ ∂z

∂X(1)

∣∣∣∣Gi
⊖(Φm,⊖) .

(3.35)
By construction, eq. (3.35) reduces to eq. (3.27) when integrating over the Xrad variables.
The full B̃ function will be defined as the sum over the flavour-dependent B̃fb , analogously
to how the full B̄ is defined. Generating Born phase space points can now be made way
easier by applying a simple trick. Instead of directly generating a Φfb

m configuration, a set of
variables

{
Φm, Xrad

}
is generated according to B̃(Φm, Xrad), and fb is chosen with a proba-

bility of B̃fb(Φm, Xrad)/B̃(Φm, Xrad). The Xrad variables are then discarded, ending up with
a Φfb

m point effectively generated according to eq. (3.27), but avoiding any integrations.
While the procedure just presented allows to generate unweighted events, some peculiar sit-
uations make it preferable to work with weighted events. The difference between the two
kinds of events is pretty simple, and we’ll try now to illustrate it using a couple of relevant
examples. Let us suppose that the process we are studying in Powheg features IR sin-
gularities already at the Born level. This naturally happens when the production of light
jets is considered, maybe in association with colour singlet particles5. In this case, B̃ will
become singular as the transverse momentum of the light jet vanishes, leading to the number
of events generated in this region to blow up, and leaving a much smaller number of events
to populate the harder regions. Such a scenario is pretty unfortunate when the user aims
to analyze fiducial distributions with standard LHC analyses, that always set a transverse
momentum selection cut on the clustered jets in each event (usually around 20GeV). To
overcome this issue, one can hard-code a generation cut of the Born phase space of the pro-
cess, reducing the domain of B̃ to the hard jet regions. A widely applied alternative consists
on introducing a suppression factor W (Φm), and generating events distributed according to
B̃(Φm)×W (Φm). The bias induced in the event generation is then corrected by reweighting
every event by W−1(Φm). A well-designed suppression factor is such, that in the IR singular

5Many processes like these are phenomenologically relevant at the LHC and have been studied within the
Powheg-BOX framework over the last few years. For example, release implementations are currently
available for pp → di-jet [65], pp → tri-jet [66], pp → W+W− + jet [67, 68], pp → W±Z + j [69],
pp → H + n-jets [70, 71]. Moreover, the colour singlet production processes in association with one jet
(like W+W−+ jet and H + jet) are also the starting point of the MiNNLOPS method implementation, as
it will be widely discussed in sections 3.5 and 3.6.
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regions of B̃(Φm) one has

B̃(Φm)×W (Φm) → finite , (3.36)

while no spurious singularities are introduced. With this procedure, the event spreading
will be pulled out of the singular phase space regions, but hard events will count less than
softer ones because of the reweighting. The statistical precision of fiducial cross-sections
and distributions will increase, without their accuracy being biased. Sometimes, suppression
factors can even be employed to just increase statistics in lower cross-section phase space
regions, without the necessity of avoiding singularities. As we will see, the application of this
technique will be central to successfully study the hard regime of some b− jet observables in
chapter 7.
Finally, let us consider the hardest radiation generation in Powheg. Now that we have a
point

(
Φm, fb

)
, we must generate a radiation phase space point

(
ϕαi

r , αi
)
, where αi represents

the real flavour structure associated with the sector i in eq. (3.35). In particular,
(
ϕαi

r , αi
)

has to be selected according to the probability defined in eq. (3.34). In Powheg, this task
is carried out by applying two well-established algorithms, that we are going to discuss. To
illustrate them, we formalize the problem as follows: given an integer number k and a set of
d real numbers xk associated to each k, how can we sample {k, xk} according to a probability

fk(xk)
∏

i

∆i(hk(xk))ddxk . (3.37)

We can start by applying the Highest bid procedure. This means that we consider all the
possible values of k, and we generate the variables xk according to the probability

fk(xk)∆k(hk(xk))ddxk , (3.38)

and then we pick the k value corresponding to the largest hk(xk) for the given sets of xk.
In fact, it is not difficult to show that the probability for a given {k, xk} to have the largest
hk(xk) is precisely the probability for the k configuration to produce one emission at hk(xk)
(which is eq. (3.38)), multiplied by the probability of the other configurations to not emit,
which is given by ∏

i ̸=k

∆i(hk(xk))ddxi , (3.39)

giving indeed eq. (3.37).
For what concerns the probability of generating a sample xk according to eq. (3.37), this is
done with the Veto technique, which we discuss now. Ignoring the label k for the sake of
clarity, we want to generate a set x ∈ Rd with probability f(x)∆(h(x))ddx, where

∆(h) ≡ exp
{
−
∫
ddx′f(x′)θ(h(x′)− h)

}
, (3.40)
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and6

∆(0) ≡ exp
{
−
∫
ddx′f(x′)

}
. (3.41)

With these ingredients, it is not difficult to show that the probability for the variable h to
fall within an infinitesimal range {h0, h0 + dh} is uniform in d∆(h), which is

d∆(h) = dh

∫
ddx′δ(h− h(x))f(x) exp

{
−
∫
ddx′f(x′)θ(h(x′)− h)

}
. (3.42)

In principle, one could then use a standard uniform sampling technique for ∆(h) to get a
certain δ(H) and then generate the set of x on the surface δ(H−h(x)) and with a distribution
function proportional to f(x)δ(H − h(x))7. Unfortunately, doing this analytically is really
hard in general, but here it comes the veto method. The key is to define a function F (x)
which will be the upper bounding function of f , namely F (x) ≥ f(x) for all x in the domain,
then introduce a new Sudakov radiator

∆F (h) = exp
[
−
∫
ddx′F (x′)θ(h(x′)− h)

]
. (3.43)

The upper bounding function should be chosen in a way to allow for a much simpler solution
to the sampling of h and x presented above. If an F is found with the properties required,
then the veto techniques are articulated in the following steps:

1. A real Hmax is found by solving ∆F (Hmax) = 1.

2. A random number 0 < r < 1 is generated.

3. A real H is found by solving ∆F (H)/∆(Hmax) = r.

4. The set of x is generated according to F (x)δ(h(x)−H).

5. A new random number r′ is generated.

6. It is checked whether r′ > f(x)/F (x). If true, the event is vetoed, Hmax is set to the
H above and the loop starts again from step 2. If false, the algorithm stops.

3.4 Multi-Scale Improved NLO
If in the previous sections, we broadly discussed how to preserve the fixed-order NLO accuracy
of event generators with parton showers, we pretended for a moment to ignore other problems
affecting realistic QCD predictions, potentially endangering results already at the leading
order. The first problem is about how to choose the renormalisation scale µR and the
factorisation scale µF for concrete processes. To be fair, this problem is a general matter
of debate transcending the technicalities of event generators. Even if these scales appear in
the renormalisation and factorisation procedures as completely arbitrary, the value they are
actually set to can have deep consequences on the convergence of perturbative series. Naively,

6Here we assumed the unrestricted integral of f to be divergent.
7The exponential factor in eq. (3.42) is just a number.
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we can imagine that µR and µF are properly chosen when the theoretical uncertainties
computed with the 7-point scale variation 8 decrease by increasing orders, and central values
come to converge. While this observation is coherent with good scale choices, elevating it to
a criterion to fine-tune µR and µF a posteriori can be highly misleading. Indeed, some other
genuine physical effects can produce large higher-order contributions, and hiding them by a
spurious scale compensation mechanism may lead to unreliable results.
Sometimes, the process under exam speaks for itself, and scales can be assigned in a natural
way. This happens when the physics of the problem is dictated by one single physical scale,
like the mass of the Higgs boson MH in Higgs boson hadroproduction via gluon fusion. Cross-
sections will carry logarithms of the ratio of MH and µR, µF , which can be canceled when
defining the scales. The situation becomes more convoluted though, when one considers the
exclusive Higgs boson production in association with a light jet. Now the process will be
characterised by two scales, the Higgs boson mass and the jet transverse momentum pT, and
their presence will reflect in some double logarithms potentially large at low pT (the Sudakov
region). The problem must then be approached at a deeper level.
Unbiased ways to perform scale choices have been the object of researches, starting from the
studies on the leading-order/parton shower matching. One advancement was represented
by the CKKW method [72], whose innovative prescriptions had an impact on the whole
formalism that we will develop in the next sections. The method applies to production
processes involving coloured partons in the final state, and works as follows

1. A N−parton production event in hadronic collisions is generated with leading order
precision, by using its squared tree-level amplitude |A(0)

N |2.

2. The kT−clustering algorithm is applied to reconstruct the event branching history.

3. For each vertex i (i = 1, . . . , n) of the branching history, a nodal scale qi = pi1i2
T is

assigned, where pi1i2
T corresponds to the relative transverse momentum of the parton

couple (i1, i2) clustered in i.

4. Jets are considered resolved above a certain resolution scale Q0, beneath which the
radiative phase space will be populated by the parton shower. The set of clustered jets
will compose the so-called primary system, to which the scale Q is assigned to be equal
to its invariant mass.

5. The αs strong couplings present in the tree-level matrix element used at (1) are
reweighted: n of them are evaluated at the nodal scales defined at (3), the remain-
ing m = N − n are evaluated at the primary system scale Q at (4). Schematically

αN
s −→ αs(q1)× . . . × αs(qn) × αm

s (Q) . (3.44)

6. Another reweighting factor is included, by assigning to each intermediate line between
nodes i and j in the branching history a factor

∆fij
(Q0, qi)

∆fij
(Q0, qj) , (3.45)

8See section 2.6.
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where ∆f is the f flavoured Sudakov form factor9

∆f (Q,Q′) = exp
{
−
∫ Q2

Q′2

dq2

q2

[
A
(
αs(q2)

)
log Q

2

q2 +B
(
αs(q2)

)]}
, (3.46)

with A(αs) and B(αs) admitting a universal αs expansion

A(αs) =
(
αs

2π

)
A(1) +

(
αs

2π

)2
A(2) + . . .

B(αs) =
(
αs

2π

)
B(1) +

(
αs

2π

)2
B(2) + . . . ,

(3.47)

and where fij is the flavour of the line connecting i and j. For the external lines, the
factor will be ∆f (Q0, qi) (i denoting the nodes connected to the external lines and f
the external line flavours).

7. The factorisation scale entering PDF’s is reweighted to the resolution scale Q0.

8. The reweighted event is finally interfaced to a parton shower program, properly vetoed
to prevent from generating radiation above the resolution scale Q0, which is effectively
the matching scale of the process.

As the method we just summarized represents an effective way to match exact leading-order
QCD matrix elements for multi-parton processes with MC parton showers, one can imagine if
its features can be applied in the NLO+PS matching context. Such a question has a positive
answer, and the Powheg framework turns out to be extremely versatile to be adapted for
this scope. We are now going to discuss the Multi-scale improved NLO [74], also known as
MiNLO.
When trying to adapt the CKKW scheme to an NLO calculation, it is fundamental that
the new reweighting factors that are introduced don’t spoil the formal NLO accuracy of the
calculation. In other words, all possible modifications to the NLO cross-section have to be
at most of order O(α2

s) relative to the Born of the process at hand. To understand how to
perform different scale choices without affecting the NLO cross accuracy of our calculations,
let us examine the µR dependence of a generic NLO cross-section

dσ

dΦ = αN
s (µR)B + αN+1

s (µR)
[
V +Nb0 log µ

2
r

Q2B
]

+ αN+1
s (µR)R . (3.48)

Where the explicit virtual dependence on µR is proportional to the Born matrix element10.
When changing the renormalisation scale of a strong coupling from µ′r to µ′′r , this effectively
behaves as αs(µ′r) = αs(µ′′) + O(α2

s) according to the renormalisation group equations.
Since the O(αN+1

s ) terms introduced by varying the Born strong coupling scales are exactly
9For the explicit flavour-dependent expressions of the A and B coefficients up NLL accuracy, we refer to eqs.

(2.5-2.6) of Ref. [73].
10b0 is the one-loop beta function coefficient

b0 = 33 − 2nf

12π . (3.49)
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compensated by the virtual contributions in eq. (3.48), different scale choice will affect the
cross-section only starting from O(αN+2

s ). If we are willing to evaluate couplings at different
scales, as the CKKW method prescribes, then what we just observed will still hold when
converting eq. (3.48) into

dσ

dΦ =
N∏

i=1
αN

s (µ(i)
r )B + αN+1

s (µ′R)
[
V + b0

N∑
i=1

log (µ(i)
r )2

Q2 B
]

+ αN+1
s (µ′′R)R , (3.50)

which is consistent with setting the central scale µ′r of virtual contribution to

µ′r =
( N∏

i=1
µ(i)

r

) 1
N

, (3.51)

namely the geometric average of the µ(i)
r .

Regarding the overall Sudakov form factors entering the CKKW reweighting prescription,
we notice that their αs expansions would introduce new O(αN+1

s ) terms in eq. (3.48). These
terms will be proportional to the Born, and must be properly subtracted from it to preserve
the NLO accuracy of the cross-section.
With all the above considerations in mind, we can now present how the MiNLO method was
designed and successfully implemented in Powheg. Schematically, every event is treated
according to the following prescriptions

1. A kT clustering is performed on the same footing of the CKKW scheme, and the
scales Q, q1, . . . , qn are sorted out. For real kinematics events, an additional q0 scale is
determined.

2. The resolution scale Q0 is set to be equal to q1.

3. Among the N powers of αs associated to the Born, n of them are evaluated at the
scales µ(i)

r = Krqi (i = 1, . . . ) and the m + N − n at µQ = KrQ. The factor Kr is
usually varied between 1/2 and 2 to perform the customary scale variation.

4. The same scale setting of the Born is adopted for N of the N + 1 αs powers of the real
and virtual contributions.

5. The remaining (N + 1)th αs multiplying R and V is set to the average of the other N
αs

α̃s = 1
N

( n∑
i=1

αs(µ(i)
r ) +mαs(µQ)

)
. (3.52)

6. For the Born and the virtual skeleton lines, Sudakov form factors are introduced simi-
larly to the CKKW procedure. For the real configurations, only the branching history
after the first clustering is considered. As for the coefficients entering the Sudakov form
factor, A(1), A(2) and B(1) are accounted 11.

11See eq. (3.47)
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7. A subtraction term is introduced at the Born level to compensate for the O(αN+1
s )

terms resulting from the perturbative expansion of the Sudakov form factors ∆ =
1 + αs

2π ∆(1) +O
((αs

2π

)2). Effectively, the Born undergoes the following replacement

B −→ B ×
(

1− α̃s

2π
∑

i,j (qi>qj)

[
∆(1)

fij
(Q0, qi)−∆(1)

fij
(Q0, qj)

]
− α̃s

2π
∑

l

∆(1)
fl

(Q0, qkl
)
)
.

(3.53)

The two terms in the square brackets will compensate for the internal leg Sudakov,
while the last sum will cancel the O(αs

2π ) term resulting from expanding the external
leg Sudakov. fij denotes the flavour of the intermediate line between the i and j nodes,
and fl the one of the external l lines. Notice that the strong coupling is set to eq. (3.52)
consistently with the real and virtual setting, but other prescriptions are possible.

Designed in the way we summarized, MiNLO’MiNLO improves the description of NLO
inclusive observables in Powheg by introducing a simple reweighting of the generated events.
All the discussed modifications are formally NNLO accurate. However, a big improvement
is observed in the description of the Sudakov regions, resulting in higher accuracy results.

3.5 The MiNLO’ Method
Along with the studies on the matching problem, another question was addressed by the
community working on MC event generators in the past decades. This question, which
we can name as the Merging problem, relates to how to combine different jet multiplicity
generators in the calculation of some classes of observables. An intuitive description of the
problem is presented in Ref. [73], which we will summarize here. Suppose that we are
interested in predicting the transverse momentum of the Higgs boson in gluon fusion. By
definition, such an observable requires additional QCD partons to recoil against the Higgs
boson for p(H)

T > 0. The Higgs boson Powheg generator H will give an LO accurate result
for this observable, since just the real kinematics events (involving one additional jet) will
populate its bins. On the other hand, the Higgs+jet generator HJ will produce NLO accurate
results by definition. However, the low-p(H)

T region of the distribution will be plagued by a
large Sudakov logarithmic enhancement, effectively screwing up the formal NLO accuracy
provided by the generator. Relatively to this example, a merging technique is supposed to
take the best of both generators and obtain a NLO accurate prediction throughout the whole
pH

T spectrum.
Some of the first solutions to the merging problem were based on the introduction of a
merging scale. The idea is quite simple, and we can explain it by sticking to the same
example of pH

T . If we define a scale pT,cut we can imagine filling the bins below it only with
H events, and the ones above it only with HJ events. The result will be NLO accurate at
high pH

T and insensitive to large logarithms at low pH
T . Unfortunately, the trickiest point is

tp choose the artificial merging scale without biasing the result with its spurious dependence
on it. Removing the bias is impossible, but some techniques have been proposed to mitigate
its presence. Is it possible, however, to merge different jet configurations with no merging
scale?
Connecting the dots of what we discussed so far, it appears that the MiNLO method was
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already doing something similar, in a way. As it was numerically checked in Ref. [73], the
MiNLO-improved HJ generator significantly improved the stability of the low p

(H)
T regions,

giving results close to the H Powheg prediction12. Nonetheless, MiNLO is still missing some
ingredients to achieve formal NLO accuracy for jet-inclusive observables. We will discuss now
these ingredients and understand how they can be implemented to achieve a fully merged
calculation. We will see that small variations will be applied to the MiNLO scheme, in the
case of a Higgs boson production (via gluon fusion) in association with a jet.
At this point, it is convenient to introduce some useful notation. We will refer to (0) accuracy
when considering the H generator, formally NLO for extra radiation inclusive observables.
As an example, LO(0) and NLO(0) will mean leading and next-to-leading order accuracy in
the Higgs boson inclusive distributions. The HJ generator accuracy will be referred to as
(1).
Including the MiNLO prescriptions in the B̄ definition of the HJ generator, this will read

B̄ = α2
s(M2

H)αs(q2
T )∆2

g(MH , qT )
[
B

(
1− α̃s

π
∆(1)

g (MH , qT )
)

+ V +
∫
dϕradR

]
, (3.54)

with α̃s calculated according to eq. (3.52). By construction, eq. (3.54) yields NLO(1) accuracy
and contains singular terms for qT approaching zero. The same singular parts are also
encoded in the following NNLL resummation formula for the H transverse momentum qT at
fixed rapidity y

dσ

dydq2
T

= σ0
d

dq2
T

{ ∏
i=a,b

[Cgi ⊗ fi/Pi
](xi, qT ) eS(Q,qT )

}
+ Rf , (3.55)

where the product runs over the incoming partons a from the proton Pa and b from the
proton Pb. The parton distribution functions f are convoluted with the universal coefficient
functions, emerging in the factorisation of the initial-state collinear radiation, thus reading

Cij(αs, z) = δijδ(1− z) +
∞∑

n=1
αn

sC
(n)
ij (z) , (3.56)

according to the standard convolution operation

(f ⊗ g)(x) ≡
∫ 1

x

dz

z
f(z)g

(
x

z

)
. (3.57)

The Sudakov exponent is defined as

eS(Q,qT ) ≡ ∆2
g(Q, qT ) = exp

{
−
∫ Q2

Q′2

dq2

q2

[
A
(
αs(q2)

)
log Q

2

q2 +B
(
αs(q2)

)]}
, (3.58)

and Rf denotes the non-singular terms of the cross-section. Notice that µR and µF in
eq. (3.55) are set to qT .
The idea now is to expand the NNLL formula in series and understand which terms must be
12Analogous comparisons have been performed for other observables. The MiNLO-improved HJJ calculation

has also been studied and compared to the standard HJ Powheg calculation.
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kept to guarantee the inclusive rapidity distributions are NLO accurate. In other words, the
expansion of eq. (3.55) should contain all the necessary ingredients that, after integration
over qT , characterise NLO(0) accuracy. After doing that, we will be able to compare the final
expression with eq. (3.54) and single out the missing pieces needed to provide MiNLO with
NLO(0) accuracy.
If we integrate eq. (3.55) over q2

T , we get the relatively simple expression

dσ

dy
= σ0 [Cga ⊗ fa/Pa

](xa, Q) × [Cgb ⊗ fb/Pb
](xb, Q) +

∫
dq2

TRf , (3.59)

which would naively push us to include all terms up to O(αs) accuracy relative to the
Born-level of the H production. That would end up in taking the O(αs) expansion of the
coefficient functions (including C(1)

ij ) and the LO(1) accurate terms in the finite reminder Rf .
No constraints would be imposed on the Sudakov form factors, as they are no longer present
after the integration13. However, the formal NLO(1) of the unintegrated formula forces us to
include the A1 and A2 terms, and the B1 and B2 terms.
A more detailed analysis, though, allows us to drop more higher-order terms and preserve
NLO(0) accuracy. Indeed, we can perform the qT derivative present in eq. (3.55) and get
(after defining L ≡ logQ2/q2

T )

• Terms proportional to αsL and α2
sL from the derivative of A1 and A2.

• Terms of order αs and α2
s from the derivative of B1 and B2.

• Terms of order αs from each derivative of C(1)
ij .

• Terms of order αs from the derivative of the PDFs.

To summarize, all terms will have the following terms

σ0
1
q2

T

[αs, α
2
s, α

3
s, α

4
s, αsL,α

2
sL,α

3
sL,α

4
sL] eS(Q,qT ) , (3.60)

where the terms contating αs, α
2
s, αsL,α

2
sL must be included to get NLO(1) accuracy. Then,

to understand which other terms are necessary to preserve NLO(0) after the qT integration,
we can size the αs power of each term in eq. (3.60) by the formula 14

∫ Q2

Λ2

dq2
T

q2
T

eS(Q,qT ) αn
s (q2

T ) logm
(
Q2

q2
T

)
≈ [αs(Q2)]n−

m+1
2 . (3.61)

With this, we easily see that only one more higher-order term in eq. (3.60) must be accounted
for, namely α3

sL. This will contribute at NLO(0) with a term of order [αs(Q2)]3− 2
2 = α2

s(Q2).
All the other terms are unnecessary to the present discussion and can be neglected
Comparing the result we ended up with the singular terms of eq. (3.54), it is possible to
check that their singular parts are identical, except for the absence of B2 in MiNLO. All
things considered, we will only need to modify eq. (3.54) by
13This happens because expS(Q, qt) in simply 1 on the upper integration extreme Q, and approaches zero in

the low qt limit.
14See eq. (2.18) of [73].
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1. Including B2 in the MiNLO Sudakov form factor.

2. Setting µF and the scales µR entering V , R and ∆(1) to qT .

The new set of prescriptions goes under the name of MiNLO’. Finally, the new MiNLO’
method can be easily embedded in the Powheg framework via a redefinition of the B̄
function in eq. (3.20) as

[
B̄(ΦFJ)

]MiNLO’

≡ e−S̃(pT)
{
αs(pT)

2π

[
dσFJ
dΦFJ

](1)(
1 + αs(pT)

2π S̃(1)(pT)
)

+
(
αs(pT)

2π

)2[
dσFJ
dΦFJ

](2)}
,

(3.62)

and despite the rigid constraints on the scale settings, a scale variation procedure has been
put into practice and tested thoroughly.

3.6 The MiNNLOPS Method
Merging of H and HJ at NLO was, all in all, a matter of power counting. A question might
come up now: can we generalize the reasoning just exposed to even merge the NLO(1) with
the NNLO(2) accuracy? the MiNNLOPS method [75] is the answer to this question, as we
are going to show in the following.
Before going through the formal extension of MiNLO’ into its NNLO empowered version,
MiNNLOPS, it is worth mentioning another technique was invented first to this precise
extent: this is the NNLO reweighting procedure [76]. Although the technique is based on a
rather simple idea, reweighting all events at NNLO accuracy is computationally demanding
and difficult to scale up. However, reweighting results at NNLO can always serve as a cross
check of the MiNNLOPS results, as successfully done in Ref. [77–80].
To derive the MiNNLOPS master formula, we start with a resummation formula as in the
previous section, but this time with N3LL logarithmic accuracy. For the sake of generality,
we consider a cross-section differential in the transverse momentum pT of the colour singlet
F and in the entire colour singlet phase space ΦF

15

dσ

dΦFdpT
= d

dpT

{
eS̃(pT)L(pT)

}
+ Rf (pT) , (3.63)

where the luminosity factor L is defined as

L(pT) =
∑
c,c′

d|MF |2cc′

dΦF

∑
i,j

{(
C̃

[a]
ci ⊗ f

[a]
i

)
H̃(pT)

(
C̃

[b]
c′i ⊗ f

[b]
j

)
(3.64)

+
(
G

[a]
ci ⊗ f

[a]
i

)
H̃(pT)

(
G

[b]
c′i ⊗ f

[b]
j

)}
. (3.65)

15to be more precise, ΦF stands for the phase space of F recoiling against a generic phase space Φ with extra
QCD emissions (Φ = ΦFJ,ΦFJJ, . . . ). Such phase space is formally defined through a projection of Φ onto
ΦF .
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We will now briefly comment on some of the ingredients figuring in eq. (3.63) and eq. (3.64)16.
Although we can recognize some similarities with eq. (3.55), a new element is represented by
the hard function H̃, encoding the virtual corrections to the F hadroproduction process as

H̃(pT) = 1 +
(
αs(pT)

2π

)
H(1)(pT) +

(
αs(pT)

2π

)2
H̃(2)(pT) + . . . , (3.66)

with

H(1) =
2 Re

{
A(0)∗A(1)}
|A(0)|2

(3.67)

H̃(2) =
|A(1)|2 + 2 Re

{
A(0)∗A(2)}

|A(0)|2
− 2ζ3A

(1)B(1) , (3.68)

where B(1) is defined in eq. (3.47). Notice that the IR poles in the |A(1)⟩ and |A(2)⟩ have
been properly subtracted by using a subtraction operator I, according to

|A⟩ = (1− I) |AIR-div.⟩ . (3.69)

The Sudakov form factor S̃(pT) is defined as in eq. (3.58) and eq. (3.46), except that this
time the A(αs) and B(αs) coefficients are expanded as follows

A(αs) =
(
αs

2π

)
A(1) +

(
αs

2π

)2
A(2) +

(
αs

2π

)3
A(3) (3.70)

B(αs) =
(
αs

2π

)
B(1) +

(
αs

2π

)2
B̃(2) , (3.71)

where A(3) and B̃(2) are accounted to reach N3LL accuracy. B̃(2) stands for a modified
version of the universal B(2) coefficient, namely

B̃2 = B(2) + 2ζ3
(
A(1))2 + 2πβ0H

(1) , (3.72)

where H(1) is proportional to the virtual correction to the F production process, and ζ3 and
β0 constants. Such modification is a byproduct of the formal derivation of eq. (3.63), car-
ried out in Ref. [75]. We will encounter an expression similar to eq. (3.72) when extending
MiNNLOPS to the heavy quark pair production case in chapter 5.
The coefficient functions C̃ij(z, αs) in eq. (3.64) encode constant contributions to the factori-
sation theorem, due to initial-state collinear radiation. They admit a universal expansion
reported in eq. (3.56), except that the strong couplings are bound to be evaluated at µF = pT
and the second order term undergoes the following modification

C(2)(z) → ˜C(2)(z) = C(2) − 2ζ3A
(1)P̂ (0)(z) , (3.73)

P̂ (0)(z) being the first order term of the regularized splitting function in eqs. (2.84) to (2.87).
The Gij functions, instead, contain the azimuthal correlations that have been isolated from
16For the derivation of the transverse-momentum resummation formula in momentum space, we refer the

reader to Ref. [81, 82], while for the consequent derivation of eq. (3.63) we refer to section 4 of [75].
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the coefficient functions. These terms are non-zero only for processes that are gg-initiated,
like the Higgs boson production via gluon fusion that we studied above.
Now that we have a clearer picture of all the elements coming to place, we can go back to
eq. (3.63) and massaging it to make it clear which terms in its expansion should be kept to
guarantee NNLO(0) accurate predictions. We first perform the pT derivative and factor out
the Sudakov exponential

dσ

dΦFdpT
= eS̃(pT)

[
dS̃(pT)
dpT

L(pT) + dL(pT)
dpT

+ Rf (pT)
eS̃(pT)

]
, (3.74)

and we define

D(pT) = dS̃(pT)
dpT

L(pT) + dL(pT)
dpT

, (3.75)

obtaining then

dσ

dΦFdpT
= eS̃(pT)

[
D(pT) + e−S̃(pT)Rf (pT)

]
. (3.76)

Now we observe that

• On the left-hand side of eq. (3.76), the full differential cross-section can expanded as
usual as17

dσ

dΦFdpT
= αs(pT)

2π

(
dσ

dΦFdpT

)(0)

+
(
αs(pT)

2π

)2(
dσ

dΦFdpT

)(1)

+ O(α2
s) (3.77)

where (
dσ

dΦFdpT

)(1)

= B(ΦFJ) (3.78)

(
dσ

dΦFdpT

)(2)

= V (ΦFJ) +
∫
dϕradR(ΦFJ, ϕrad) . (3.79)

• The D(pT) function can also be expanded in αs as

D(pT) = αs(pT)
2π D(0)(pT) +

(
αs(pT)

2π

)2

D(1)(pT) + O(α2
s) . (3.80)

• The finite reminder Rf can be expressed, according to the same eq. (3.76), as

Rf (pT) = dσ

dΦFdpT
− eS̃(pT)D(pT) , (3.81)

17Notice that we explicitly factored out the αs(pT) powers relatively to the underlying colour singlet produc-
tion Born. Since eq. (3.76) requires an additional radiation on top of the colour singlet, the expansions
correctly start from O(αs).
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which can also be expanded, giving

Rf (pT) = αs(pT)
2π

[(
dσ

dΦFdpT

)(0)

− eS̃(pT)D(0)(pT)
)]

+
(
αs(pT)

2π

)2[(
dσ

dΦFdpT

)
− eS̃(pT)D(1)(pT)

]
+ O(α2

s) .

(3.82)

The crucial point now is to plug the expansions eq. (3.77),eq. (3.80) and eq. (3.82) back into
eq. (3.76), but taking care of keeping all the necessary terms up to O(α2

s) after integration
over pT.
Being finite at vanishing pT, Rf (pT) will just contribute up to O(α2

s), thus exactly with terms
explicit in eq. (3.82). More attention should be paid to the D(pT) terms, which include pT
singular terms and their αs order after integration can be estimated again by eq. (3.61). We
can then write

dσ

dΦFdpT
= eS̃(pT)

[
e−S̃(pT)αs(pT)

2π

(
dσ

dΦFdpT

)(0)

+ e−S̃(pT)
(
αs(pT)

2π

)2(
dσ

dΦFdpT

)(1)

+
(
αs(pT)

2π

)3

D(3)(pT) + O(α4
s)
]
.

(3.83)

Finally, after expanding the exp(−S̃(pT)) factor inside the square brackets and using eq. (3.78)
and eq. (3.79), we get the MiNNLOPS master formula

[
dσ

dΦFdpT

]MiNNLOPS

= eS̃(pT)
[
αs(pT)

2π

(
1− αs(pT)

2π S̃(1)(pT)
)
B +

(
αs(pT)

2π

)2

V

+
(
αs(pT)

2π

)2 ∫
dϕradR +

(
αs(pT)

2π

)3

D(3)(pT)
]
,

(3.84)
where we refer to Appendix C of Ref. [75] for an explicit expression of the coefficients entering
D(3)(pT).
We finally observe that D(3)(pT) can be neglected if one just asks for NLO(0) accuracy, for
which we easily recover the MiNLO’ result[

dσ

dΦFdpT

]MiNLO’

= eS̃(pT)
[
αs(pT)

2π

(
1− αs(pT)

2π S̃(1)(pT)
)
B +

(
αs(pT)

2π

)2

V

+
(
αs(pT)

2π

)2 ∫
dϕradR

]
.

(3.85)

While incorporating the MiNLO prescriptions in the Powheg B̄ function does not present
major issues, the inclusion of D(3) in minnlo creates some issues that will be addressed in the
following section. However, we remark that manipulations to this formula are also allowed,
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provided they do not screw up the perturbative accuracy we achieved. Indeed, we will widely
exploit the arbitrariness left in eq. (3.85) and eq. (3.84) in the next section.

3.7 Numerical Implementation of MiNLO’ and MiNNLOPS

The Spreading of D(3)(ΦF, pT) on ΦFJ

As the D(3) term in eq. (3.75) depends on the ΦF phase space and on the recoiling system
transverse momentum pT, it is not suitable to be plugged into B̄(ΦFJ) just as it is. A
function must be introduced, in a way to supplement eq. (3.75) with the missing phase space
information. In other words, D(3)(ΦF, pT) must be spread onto ΦFJ in a consistent way, and
without spoiling the perturbative accuracy of the result. This also implies that projection
must behave smoothly for pT → 0.
A pretty general procedure consists of multiplying D(3) by a spreading function defined as

F corr
l (ΦFJ) = Jl(ΦFJ)∑

l′
∫
dΦ′FJJl′(Φ′FJ)δ(pT − p′T)δ(ΦF − Φ′F) , (3.86)

which doesn’t modify the values of colour singlet observables inclusive over extra radiation
(like the inclusive rapidity yF). Indeed, when integrating over ΦFJ a function G(ΦF, pT) we
obtain ∑

l

∫
dΦ′FJG(Φ′F, p′T)F corr

l (Φ′FJ) =
∫
dΦFdpTG(ΦF, pT) . (3.87)

On the other hand, the accuracy of observables defined on ΦFJ, F corr
l (ΦFJ)D(3)(ΦF, pT) is

not touched. As F corr
l (ΦFJ)D(3)(ΦF, pT) is still O(α3

s), this term contributes beyond NLO(1),
and the high pT behaviour of F corr

l (ΦFJ) is then arbitrary to the extents of the MiNNLOPS
method.
A trivial choice for Jl(ΦFJ) is just

Jl(ΦFJ) = 1 , (3.88)

which allows us to solve analytically the phase space integral in the denominator of eq. (3.86).
Unfortunately, such an option introduces spurious behaviours at large rapidities of the jet
[75].
Other options have been tested and provided better numerical results. A more physical strat-
egy consists of spreading D(3)(ΦF, pT) according to the actual fully differential distribution
of the F+J cross-section, namely

Jl(ΦFJ) = |AFJ
l (ΦFJ)|2(f [a]f [b])l , (3.89)

where (f [a]f [b])l is the product of the parton distribution functions for the initial states a
and b in a given l flavour structure. However, using eq. (3.89) is numerically expensive. A
faster, yet physically oriented option, is to consider the collinear limit of eq. (3.89)

|AFJ
l (ΦFJ)|2 −→ |AF

l (ΦF)|2Pl(ϕrad) , (3.90)
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which becomes, after simplifying with the denominator of eq. (3.86)

Jl(ΦFJ) = Pl(ϕrad)(f [a]f [b])l , (3.91)

which is now the default choice for most processes studied with MiNNLOPS.
Wrapping up the spreading procedure, we can finally define the MiNNLOPS B̄ function for
the colour singlet F hadroproduction as

[
B̄(ΦFJ)

]MiNNLOPS

≡ e−S̃(pT)
{
αs(pT)

2π

[
dσFJ
dΦFJ

](1)(
1 + αs(pT)

2π S̃(1)(pT)
)

+
(
αs(pT)

2π

)2[
dσFJ
dΦFJ

](2)

+
(
αs(pT)

2π

)3

D(3)(pT)F corr(ΦFJ)
}
.

(3.92)

Inclusion of Subleading Terms in MiNNLOPS

In [83], it has been noticed that the truncation of the full D(pT) expression in eq. (3.75) at
O(α3

s(pT )) drops out some subleading terms that might become relevant in specific phase
space regions18. These are O(α4

s(pT)) terms that can be accounted for in the MiNNLOPS
master formula by replacing(

αS(pT )
2π

)3
[D(pT )](3) → D(pT )− αS(pT )

2π [D(pT )](1) −
(
αS(pT )

2π

)2
[D(pT )](2) . (3.93)

Formally, this corresponds to keeping the total derivative in eq. (3.63), avoiding any approx-
imations. In Ref. [83], the full derivative is computed computed numerically for each event,
leading to NNLO inclusive predictions remarkably close to their fixed-order computation and
with comparable scale uncertainties.

MiNLO and MiNNLOPS at High-pT

As we discussed above, the introduction of the Sudakov form factor in the MiNLO’ master
formula relates to the goal of merging the NLO(1) accuracy of a Powheg FJ generator with
the NLO(0) accuracy in F-inclusive observables. Apart from higher order terms though,
S̃(pT) does not influence the NLO(1) accuracy for well-resolved FJ configurations, thus at
large pT values of the F system. We can then introduce some prescriptions to turn it off at
scales pT ≳ Q. A way to do that is to modify the pT-dependent logarithms of eq. (3.85)
figuring in S̃(pT) and S̃(pT) by the following replacement

ln Q

pT
→ L ≡ 1

p
ln
(

1 +
(
Q

pT

)p)
, (3.94)

where p is a free positive parameter. The larger is p, the quicker the modified logarithm L
will vanish at high pT.
18The case examined in Ref. [83] is the inclusive Z boson production. There, a sizeable difference was

witnessed in the yZ rapidity tails between the fixed-order inclusive NNLO prediction and the MiNNLOPS
result.
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The modified logarithms can also be plugged into the MiNNLOPS formula. In line with the
philosophy of the previous section though, we must preserve the total derivative in eq. (3.63).
In Ref. [83], this has been done by modifying the scale setting of D(pT) and D(3)(pT) as

µR = pT → KRQe
−L (3.95)

µF = pT → KFQe
−L , (3.96)

then changing the lower integration bound of the Sudakov as

pT → Qe−L , (3.97)

and finally, multiplying D(pT) and D(3)(pT) for an overall Jacobian factor defined as

JQ ≡

(
Q
pT

)p

1 +
(

Q
pT

)p . (3.98)

MiNLO and MiNNLOPS at low-pT

When going to very low values of pT, we might have to deal with scales close to the non-
perturbative regime. A way to deal with this issue is to regulate the scales in eq. (3.99)
as

µR = KR(Qe−L +Q0g(pT)) (3.99)
µF = KF (Qe−L +Q0g(pT)) , (3.100)

so that a positive value of Q0 will set a lower bound on µR and µF , thus avoiding the Landau
singularity. The damping function g(pT) can be defined with a certain freedom. However
the default choice is

g(pT) = 1
1 + Q

Q0
e−L

. (3.101)

Once again, the total derivative in eq. (3.63) will be preserved only by mean of an overall
Jacobian factor JQ multiplying D(3)(pT). With the introduction of the freezing scale Q0,
the expression provided in eq. (3.98) will modify as

JQD(pT )→ JQ

(
dS̃(pT )
dpT

L(pT ) + JQ0
dL(pT )
dpT

)
, (3.102)

where

JQ0 ≡ Qe−L 1− g2(pT )
Qe−L +Q0g(pT ) . (3.103)

Evolution of Parton Sistribution Functions with HOPPET
As a final step, we address the treatment of the PDFs at low factorisation scales in MiNNLOPS.
PDF sets are frozen or cut off at certain low scales ΛPDF, typically close to 1GeV or even
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larger. For certain processes in MiNNLOPS, the PDF freezing scale may be too high. This
is due to the fact that sometimes the peak of the pT distribution of the system is located
near ΛPDF, and setting PDFs to zero right below this threshold may produce artifacts in
results. Therefore, a consistent prescription for PDF evolution to lower scales is necessary.
In Ref. [83], it has been proposed to carry out the DGLAP evolution of PDFs below their
thresholds. In practice, this has been achieved by interfacing the calculation with the HOP-
PET package [84]. PDF sets from LHAPDF are thus converted into HOPPET grids, and
there evolved down to µF ∼ Λ.

3.8 Further Extensions of the MiNNLOPS Method
After being applied to deal with Higgs boson production and Drell-Yan production in hadronic
collisions [75], the MiNNLOPS method had quickly been extended and empowered to be
applied in different scenarios. At first, the method was adapted to the study of diboson pro-
duction processes like W+W− [78], ZZ [79], Zγ [77, 85], γγ [86] as well as the Higgstrahlung
processes H+W±, HZ [80, 87]. Shortly after, MiNNLOPS was succesfully extended to deal
with heavy-quark pair production at the LHC [88], finding its first application in the top-pair
production [89], and later in the bottom-pair production [5]. In the meanwhile, broad new
strategies have been investigated, as in the case of the jettiness formulation of MiNNLOPS
presented in Ref. [90]. More recently, the Higgs production via bottom-quark fusion has been
presented in Ref. [91], as well as the Higgs production in gluon-fusion with exact top-quark
mass dependence [92]. The method has also been extended to the associated heavy quark
and colour singlet production in Ref. [93], where a first application in the Zbb̄ production
was studied.

For all the processes mentioned above, MiNNLOPS has remarkably allowed to achieve
NNLO+PS accuracy for the first time, providing numerical implementations naturally em-
bedded in the open-source Powheg framework.
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Jet Physics

When particles collide at high energy, the detected outcome generally consists of a large
number of stable particles. These include leptons, hadrons, and some reconstructed miss-
ing energies identified as neutrinos, which together describe a typical final state. Moreover,
hadrons are typically observed to be emitted in collimated, wide-angle, and small invariant
mass sprays, which are called jets.
Historically, the first hints of wide-angle jets came from the early development of the Parton
Model, supported by deep-inelastic scattering (DIS) experiments starting in the late 1960s.
Protons were understood as composite particles with primary constituents called quarks,
which could interact at very short distances with the incoming lepton when collision energy
was high enough. This phenomenon was theoretically explained by Quantum Chromody-
namics (QCD), thanks to the studies on asymptotic freedom by D. Gross, F. Wilczek [94],
and D. Politzer [95] in 1973. However, a new question arose: if partons can interact and
produce other partons as a final state, how should we expect to observe them? Would colour
confinement prevent us from seeing bare partons?
SLAC answered these questions in 1975 by detecting dijet events in electron-positron colli-
sions. Later, the higher energy e+e− collider PETRA (DESY) showed the presence of trijet
events, proving the existence of gluons. Experimental research on high transverse momen-
tum jets advanced significantly with the creation of hadron-hadron colliders. These colliders
also allowed, for the first time, the study of collisions between asymptotically free sea gluons
in hadrons. From ISR and Fermilab in the 1980s, passing through HERA, Tevatron Run I,
and LEP I and II in the 1990s, and finally to Tevatron Run II and the LHC from the 2000s
onward, a vast range of jet production phenomena in high-energy hadron collisions has been
observed. At the typical TeV scales of the LHC, jet events emerge from collisions occurring at
distance scales around δx ∼ ℏc

1TeV ∼ 2× 10−19m, and they are observed by detector elements
up to about 10 meters away. This covers 20 orders of magnitude in a single experiment,
highlighting the extraordinary nature of jet physics.

From the theoretical perspective, the origin of jets in QCD is explained by the infrared
properties of the theory. As we widely discussed in chapter 2, matrix elements of processes
containing soft and collinear emissions are strongly enhanced by universal large logarithmic
terms, related to the factorization properties exposed in section 2.4. This picture can be
effectively modeled by dressing partons generated at high virtualities in hard scatterings
with a subsequent series of soft and collinear splittings. As we saw, this is precisely what
parton shower algorithms manage to simulate at leading-logarithmic accuracy, and possibly
beyond. The result will consist of jets of collimated partons. This represents, however, just
an approximated picture, since the same concept of primary partons is intrisically ill-defined.
In fact, fixed-order calculations unequivocally show that higher order splittings cannot be
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uniquely assigned to specific primary parton configurations, due to the interference effects
between different production channels [96]. This can be well illustrated by considering the
example of the dijet production in qq̄ → qq̄ events, in chapter 4. At the lowest order, the
final-state quark and anti-quark can be regarded as primary hard partons. However, when
looking at the real correction qq̄ → qq̄g, two new channels open up. In the first case, an
extra gluon is emitted from either q or q̄ (in qq̄ → qq̄ → qq̄g). In a second case, two glons
are produced first, and one of them splits into a qq̄ pair (in qq̄ → gg → qq̄g). When the real
emissions are soft or collinear, one would be led to identify the primary partons as qq̄ in the
first configuration, and as gg in the second configuration, as if they represented two different
and independent processes. This would give rise to an evident inconsistency, as the different
channels are not individually gauge-invariant and they interfere in the real squared matrix
element. On top of that, hadronization and decay of unstable particles introduce further
complications in the picture.

Nevertheless, we can still introduce rigorous procedures to define the properties and kine-
matics of hadronic jets. If such procedures lead to finite results in theoretical predictions
and are relatively easy to implement in experimental analyses, then proper comparisons can
be carried out and jets can provide a powerful tool in the high-precision program.
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Figure 4.1: Dijet production channels in qq̄ collisions. In the left figure, the qq̄ → qq̄ configu-
ration; in the middle figure, the qq̄ → qq̄ → qq̄g configuration; in the right figure,
the qq̄ → gg → qq̄g.

4.1 Consistent Definitions of Jets
In general, a jet definition consists of two building blocks:

• A clustering algorithm, namely a procedure that takes as an input the full ensemble
of n final state particles in an event (with momenta pµ

i , i = 1, . . . , n), and gives as an
output a number m of jets.

• A recombination scheme, namely a prescription to assign each jk (k = 1, . . . ,m) a
jet momentum pµ

jk
.

Over the years, several ways to clustering algorithms and recombination schemes have been
advanced and studied, both in experiments and in theoretical studies. We are going to
analyze some of the most popular clustering algorithms in the next section. However, we can
already make some general considerations about what can be seen as a good jet definition1. In

1For a thorough explanation on the basics of jet physics at colliders, we refer the reader to the seminal review
“Towards Jetography” by G. Salam [97], and to the textbook “Jet Physics at the LHC: The Strong Force
beyond the TeV Scale” by K. Rabbertz [98].

58



Chapter 4 Jet Physics

doing this, we should always consider both the theoretical and the experimental perspectives,
as the success of jetography ultimately relies on finding the best compromise between what
can be calculated consistently and with reasonable accuracy, and what can be measured and
analyzed with an acceptable amount of resources.
A systematic list of desiderata from a jet definition, known as the Snowmass accord [99], was
presented in 1990 by a group of influential theorists and experimenters. It articulates in five
properties so that an ideal jet definition should be:

1. Simple to use in experimental analysis.

2. Simple to use in theoretical calculations.

3. Defined at any order in QCD.

4. Providing finite results at any order in perturbation theory (IR-safety).

5. Relatively insensitive to hadronization and, in hadron colliders, to the underlying event
(UE).

Though considerable time has passed since the accord was established, its points remain
valid today. The first and second points are related to the ease of implementation. In experi-
ments, key points related to this issue are the computational efficiency and predictability, the
ease of calibration, and the minimization of resolution smearing and angular biasing. The
third point relates to the order-independence of the algorithms, meaning that they should be
equally appliable to partons, particles, or measured tracks and energy depositions. This is
essential when comparing parton-based theory predictions with experiments, and in general
when establishing a truth-level at which to perform comparisons.
The fourth point is mostly theory-driven and we will elaborate more on it, as it is maybe
the most important one to the extent of this work. As we already discussed in detail in
chapter 2, pQCD is plagued by infrared divergences stemming from soft and collinear config-
urations, both in real and virtual corrections to a given process. To ensure the computation
of observables to be infrared-safe, their definition should be inclusive enough to allow the
real divergences to naturally cancel against the virtual ones, according to the KLN theorem.
When an observable is not IR safe, measurements cannot be compared to perturbative fixed-
order calculation, thus introducing large limitations.
In the language of jets, this implies that the jet definition should be insensitive of soft and
collinear emissions, as we will show now with a simple example.
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(a) Tree level diagram (b) 1-loop QCD correction

Figure 4.2: Dijet production in e+e− collisions.

Let us consider the production of two wide-angle jets in an e+e− high-energy collision. In
perturbation theory, the leading-order contribution to this process is represented in fig. 4.2a,
where a pair of well-separated quark and anti-quark are emitted. In general, every clustering
procedure will identify them with two jets. What happens now when considering the next-to-
leading-order correction to this process, is that the 1-loop correction in fig. 4.2b will not touch
the final state kinematics, thus leading to the same jet configuration of the leading-order.
However, now observable computed on the dijet final state will have infrared ϵ−1 and ϵ−2

poles2, which must be subtracted for the result to be meaningful. Now, the real correction
will contribute with an additional gluon, that might eventually be soft (or collinear to the
emitter) and carry infrared singularities. These singularities will properly cancel the 1-loop
IR poles only and only if the soft/collinear regions of the qq̄g final state will be clustered in
the same exact LO dijet configuration, as it happens in fig. 4.3a.

However, some clustering procedures might spoil this picture. If the original quark splits
into a hard collinear qg pair, some algorithms may not be anymore able to cluster them both
in a jet, therefore identifying only the anti-quark jet in the event, as in fig. 4.3b. Conversely,
an emission of a soft wide-angle gluon in between q and q̄ may let some algorithms cluster
the three partons all together in a single jet, as in fig. 4.3c.

2We recall that ϵ parametrize the dimensional regularization procedure for integrals defined on d = 4 − 2ϵ
dimensions.
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(a) (b) (c)

Figure 4.3: Real soft/wide-angle gluon emission in the e+e− → qq̄ process, giving rise to
different jet configurations. In (a), two jets are identified; in (b), only the anti-
quark jet is identified; in (c), the gluon and quarks are clustered in one single jet.

Notice that this has both implications on the clustering procedure and on the recombina-
tion scheme, thus constraining the jet definition as a whole.

4.2 Jet Clustering Algorithm
After stressing the properties we look for in a jet-defining procedure, we can review some
concrete examples of clustering algorithms that have been advanced over the last few decades.
The recombination schemes will be discussed in the next section.
When talking about clustering algorithms, it must be said that almost all of them fall in two
broad categories3:

• The Cone algorithms, clustering particles into jets with a geometric approach.

• The Sequential recombination algorithms, clustering particles in iterative steps
and stop when all jets have been identified.

Historically, the cone algorithms have been the first ones to appear, probably because of
their really intuitive features. Unfortunately, most of the cone algorithms turned out to
be IR-unsafe, and several optimization strategies had been put into practice to mitigate the
issue [97]. The community also started to investigate alternatives, ultimately coming up with
sequential recombination algorithms. The first example of this new class of algorithms made
is the Jade algorithm [105, 106], which made its first appearance in the middle of the 1980’s.
Later, more and more sophisticated algorithms have been proposed, three of which had
remarkable success: The kT algorithm (or Durham algorithm) [107]; the Cambridge/Aachen
algorithm [108]; the anti-kT algorithm [109]. The last one, in particular, si nowadays widely
adopted by all the LHC experimental collaborations.

We will devote the rest of the section to describing how the quoted algorithms work.

3For the sake of completeness, we also mention that some alternative types of algorithms have also been
studied, although not having found remarkable application in phenomenological analyses. Some examples
of different algorithms, based on minimisation techniques, can be found in Ref. [100–104].
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4.2.1 The Cone Algorithms
Among the jet clustering algorithms, cone algorithms were the first ones to be designed and
implemented in experimental analyses. Nowadays, several cone algorithms are available in
the literature, but they all share the same underlying concepts. To introduce them, we can
consider the first-ever jet algorithm, developed by G. F. Sterman and S. Weinberg in the
1970s to study hadronic jets in e+e− collisions [110]. The idea main idea was that an event
would have a number n of jets if at least a fraction 1− ϵ of its total energy was included in
n cones of opening half-angle δ. The arbitrariness of such jet definition would then be all
contained in the parameters δ and ϵ, whose values could influence the number of clustered jets.
Although physically intuitive, the procedure could generate potential issues when applied in
the context of hadronic collisions, when the total energy of events is not directly related
to the total energy of the partonic system interacting in the hard scattering. Moreover, a
number of jets greater than two could be related to configurations with overlapping cones,
making it difficult to understand whose jet a certain final-state parton or hadron belongs to.
To address the problems above, as well as infrared-safety issues, cone algorithms have gone
through several changes and refinements over the last few decades. Nowadays, most of them
are based on iterative cones (IC) procedures [111, 112]. Broadly speaking, a seed particle i
is considered to set an initial direction, and any particle j within a distance ∆R2

ij , defined
as

∆R2
ij = (yi − yj)2 + (ϕi − ϕj)2 < R2 , (4.1)

are clustered into one single jet. In eq. (4.1), y is the rapidity and ϕ the azimuthal angle on
the given particles, and R is some arbitrary dimensionless parameter, which sets the size of
cones.
Once this step is carried out, the resulting jet direction4 is set as the new seed direction, and
the procedure iterates until the cone becomes stable. The remaining particles are clustered
by following the same steps just described, until all jets are identified.
The main difference between cone algorithms essentially lies in how seed directions are chosen
and how overlapping cones are treated. Several variants of the cone algorithms have been
widely used over the years by the CERN and Tevatron collaborations.

4.2.2 The Jade Algorithm
As mentioned above, the JADE algorithm was the first example of sequential recombination
algorithms to be out and it was conceived for e+e− colliders [105, 106]. It introduced a
notion of distance measure yij between final state partons i and j is introduced as

yij = 2EiEj(1− cos θij)
Q2 , (4.2)

where Q represents the total energy of the event, namely the energy of the initial state e+e−.
As it is designed, the Jade distance will generally be small in the presence of soft collinear
emissions. In fact, of yij → 0 when either of i, j is soft (so for small Ei,Ej) and/or when the
angle between them is small, so that cos θij ≈ 1. Notice that the numerator of yij in (4.2)
precisely coincides with the invariant mass of the (i, j) pair, when i, j are massless. The

4The direction of the jet four-momentum is related to the particular recombination scheme which is adopted.
We will discuss recombination schemes in section 4.3.
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algorithm is also required to provide a value for a threshold ycut, whose usage will be clear
in the next few lines.
The algorithm is articulated in the following iterative steps:

1. The distance is computed for every pair of particles in the final state A = {1, . . . , n}
and put in a list Y

Y = {y12, y13, . . . , y1n, . . . , yn−1 n} . (4.3)

2. The minimum of Y is found, corresponding to a certain couple ij

ymin = min(Y ) = yij . (4.4)

3. It is checked how ymin compares to ycut:
• If ymin < ycut, then particles i, j are removed from the list A, clustered in a

single particle called pseudo-jet J̃ij , whose kinematics will depend on the chosen
recombination scheme. J̃ij is added to A and the loop starts again from point 1.

• If ymin > ycut, then all that is left in the list A is declared to be a jet and the
iteration stops.

A few considerations can now be made. The value one assigns to ycut is to many extents
arbitrary. The smaller it is chosen, the higher the number of soft/collinear emissions turning
into resolved independent jets. Thus here the number of jets relates to a single parameter
(the distance) rather than the two parameters (energy and angle) of cone algorithms.
An essential feature of the Jade algorithm is its infrared safety. Indeed, soft and collinear
particles will be more likely to be clustered at the beginning of the procedure. On the other
hand, if we imagine having a set of fully resolved jets, adding to it additional soft or collinear
particles, and turning the algorithm on again, they will be naturally clustered with the jets
already found. A criticality of the Jade algorithm though, is that it can give rise to spurious
phenomena. The fact that Ei and Ej multiply in (4.2) can make two soft back-to-back
particles i, j cluster together in the first iterations, leading to a physically inaccurate picture
plagued by non-exponential double logarithms [113–116].

4.2.3 The kT Algorithm
A simple modification to the Jade algorithm, conceived to address issues pointed out above,
was proposed with the kT algorithm [107], which was also extended to the hadron collider
case [117–119]. As the main concerns about the Jade algorithm were related to its distance
definition, the kt algorithm redefined the yij for the e+e− case as follows

yij =
2 min(E2

i , E
2
j )(1− cos θij)
Q2 . (4.5)

In this definition relies the same origin of the name of the algorithm: in the collinear limit
θij , (4.5) just reduces to (min(Ei, Ej)θij)2, namely the transverse momentum kT of the softer
particle between i and j. With this choice, a soft particle will be more likely to be clustered
with a hard particle close to it in angle, rather than with another soft particle with large
angular separation. Moreover, (4.5) has an clear physical interpretation. It is essentially
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proportional to the squared inverse of the splitting probability of a mother parton into i, j
in the soft/collinear limit, that reads5

dPk→ij

dEidθij
∼ αs

min(Ei, Ej)θij
, (4.6)

thus allowing for a more physical reconstruction of the branching history of the event, from
a semiclassical viewpoint. This also corroborates the choice of the kT alogorithm within the
CKKW method [72], described in section 3.4.
In the context of the kT algorithm, extensions to deal with jet studies in pp collisions have
been developed. In this context, modifications must be implemented to address at least three
new features:

• The concept of total energy Q in (4.5) is not well defined in hadron scatterings, since
the beam total energy doesn’t reflect univoquely on the parton total energy of events.

• Divergent behaviours in the matrix elements are also caused by final state soft/collinear
emissions from the initial state particle-beams.

• It is prefereable to adopt a distance measure definition featuring Lorentz invariance
under longitudinal boosts.

Different versions of a kT for hadron colliders have been proposed, but we report here the
one which was widely adopted by the community, also known as inclusive kT algorithm [119].
Here, yij is (4.5) is replaced by

dij = min(p2p
t,i, p

2p
t,j)

∆R2
ij

R2 , ∆R2
ij = (yi − yj)2 + (ϕi − ϕj)2 , (4.7)

which is, in fact, longitudinally invariant. No threshold value for dij is introduced, although
a new arbitrary parameter R figures now in (4.7), which replaces Q and makes the distance
dimensionless. The impact of its choice will become clear below. Moreover, to account for
the initial state soft/collinear emissions, a notion of beam distance is introduced as

diB = p2p
t,i . (4.8)

With these new definitions in mind, the algorithm articulates as follows:

1. Given a set of n particles (in the final state), all the dij and diB are computed and put
in a list

D = {d12, d13, . . . , dn−1 n, . . . , d1B, . . . , dnB} . (4.9)

2. The minimum dmin = min(D) is found and two cases are possible:
• If dmin is of type dij , then i and j are clustered together and the algorithm restarts

from step 1.

5Strictly speakin, this is true only when the softer particle is a gluon, therefore for g → gg and q → qg (when
the gluon is softer). In case of a softer (anti)quark, there is no singular behaviour, as pointed out in Ref.
[96]: this point will be crucial in the development of the Flavour−kT algorithm, that we will review in
section 7.1.
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• If dmin is of type diB, then i is declared a final state jet and removed from D.
The algorithm restarts from step 1.

3. When D is empty, the algorithm stops.

We can now undertand the role of the radius parameter R: a particle will become a jet when
there are no more particles within a distance ∆R less then R from it. This can also occur
for soft particles emitted at small pt. However, these soft jets will be typically removed by
imposing some fiducial cuts on the jet’s minimum transverse momentum, which is standard
in LHC analyses.
The importance of the kT algorithm in the development of collider jet physics relates to the
fact that it’s relatively simple and, above all, infrared-safe. Unfortunately, it appeared not to
be optimal in numerical implementations6, especially in terms of speed issues and irregular
geometrical effects.

4.2.4 The Cambridge/Aachen Algorithm
Another rather simple algorithm which was advanced by the community was the Cam-
bridge/Aachen algorithm [108], called like this because developed in Aachen but recalling
some ideas behind the Cambridge algorithm7. It can be seen as a simplified version of the
kT algorithm. In this regard, it adopts the same definition of the angular distance ∆Rij ,
as well as difining a radius R, but no beam distance is used. It can be summarized in the
following steps:

1. For all pairs of particles, ∆R is computed and put in a list.

2. The minimum of the list is found for some pair (i, j), for which there are two options:
• If ∆Rij < R, i and j are clustered and the procedure restarts from point 1.
• If ∆Rij > R, then the algorithm stops and all particles are identified as jets.

The Cambridge/Aachen algorithm found large applications in DIS analyses [108]. Similarly
to the kT algorithm, it also showcases geometrical irregularities in the jet configurations it
provides.

4.2.5 The Anti-kT Algorithm
The last algorithm we are going to describe is the Anti-kT algorithm [109]. This is, by far,
the algorithm that had the most success among the experimental community, to the point
that is broadly used in current LHC analyses. It is based on the formal observation that
the kT and the C/A distance measurements can be seen as particular cases of a generalized
distances:

dij = min(p2p
ti , p

2p
tj )

∆R2
ij

R2 , ∆R2
ij = (yi − yj)2 + (ϕi − ϕj)2, (4.10)

diB = p2p
ti , (4.11)

where, in essence:
6See, e.g., Ref. [120]
7Another e+e− algorithm introduced in Ref. [121].
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• p = 1 for the kT algorithm.

• p = 0 for the C/A algorithm.

With p = −1, one then gets a new algorithm which is indeed the Anti-kT . Apart from that,
the procedure is the same as the one schematized above for the kT case. This special choice
of the pT power in (4.10) implies that hard partons will be the first ones to undergo the
clustering, collecting soft/collinear particles in their vicinity (corresponding to small values
of ∆R < R). This allows for a much more stable algorithm that still preserves infrared safety.
However, given the fact that anti-kT pseudo-jets expand from harder to softer particles while
the algorithm is running, it is not really appropriate to reconstruct the branching history of
a process.
Among all the ones described above, the anti-kT algorithm is the most popular among the
experimental community. In fact, it is really the presence of hard seeds clustering first which
prevents from the irregular behaviour observed in the kT and in the C/A algorithms.

4.3 Recombination Schemes
We can now finally discuss about the kinematics of jets, which is defined through the so called
recombination schemes. In the context of sequential recombination algorithms, different
recombination schemes can be used in two stages of the calculation:

• One is used when the algorithm is running to cluster particles (thus deinining the
pseudo-jet kinematics).

• Another one can be used after all particles have been associated to a jet, to define the
jet 4-momentum out of its particles.

However, the same scheme is generally chosen for both stages, and the most common and
somwehat natural one goes under the name of E-scheme (or 4-vector recombination scheme)
[122]. The E-scheme just prescribes to associate to a set of clustered particle a 4-momentum
corresponding to the sum of their 4-momenta. Notice that this allows for the creation of
massive jets out of massless particles. For example, when considering two massless particles
with energies E1, E2 and with a relative angle θ in their directions:

Pµ
1 =

(
E1, E1v⃗1

)
, Pµ

2 =
(
E2, E2v⃗2

)
, (4.12)

where |v⃗1|2 = |v⃗2|2 = 1 and v⃗1 · v⃗2 = cos(θ), it happens that the squared mass of their sum
is

M =
√

2E1E2(1− cos(θ)) ≥ 0 . (4.13)

The E-scheme is normally recommended because preserves the Lorentz invariance of the
procedure. Other prescriptions, like the Et weighted recombination scheme [99], were more
poluar in the past but look now outdated.
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Chapter 5

Bottom Pair Production in MiNNLOPS

The bottom-pair hadroproduction appears to be an extremely interesting process, as it yields
a remarkably vast amount of phenomenological applications in collider physics and beyond.
When studying this production channel, two different approaches can be usually adopted to
carry out perturbative calculations. Given the relatively light mass of the bottom quark, pre-
dictions can be obtained either within massless approximations, in the so-called five-flavour
scheme (5FS), or retaining the mb information as in the four-flavour scheme (4FS). In the
former case, the process can be initiated by channels involving bottom (anti)quarks in the
initial state, that will be accompainied by the respective bottom parton distribution func-
tions. Running couplings will the evolve according to the renormalization group equations
on a number nf = 5 of light flavours, and similarly the PDFs themselves will evolve through
the DGLAP equations eq. (2.82) with nf = 5. To ensure the cancelation of infrared diver-
gences arising from massless loop corrections beyond the leading-order, b quark emissions
will be included in the real corrections. On the other hand, a 4FS calculation will provide a
more accurate description of the final state bottom kinematics. In this framework, one single
massive bb̄ will be produced, and the IRC virtual divergences will be naturally regulated by
the finite bottom mass value.
When studying the bottom-pair production in the 4FS, including higher-order corrections is
mandatory to achieve level of accuracy comparable to the ecperimental results. This is due
to the relatively small natural scale of the process, close to the bottom mass, that implies
large values of the strong coupling contant and a slow convergence of the QCD series. Next-
to-leading order (NLO) corrections in QCD have been widely studied in the past few decades
[123–126], and recently the impact of the bottom-quark mass renormalization on theoretical
uncertainties has been analyzed [127]. To treat the large logarithms arising at high bottom
transverse momenta, resummed calculations have been presented in [128–134]. Eventually,
NLO+NLL predictions have also been made possible within the FONLL approach [135–138],
also in combination with non-perturbative fragmentation functions[139, 140], which has been
the reference prediction in experimental analyses for a long time. Regarding the matching of
fixed order calculations with parton showers, NLO+PS predictions in QCD have been stud-
ied within various schemes and employng different tools [141–143], enabling a fully realistic
NLO accurate description of B hadrons in hadronic collsions. However, next-to-next to the
leading order QCD predictions have been proven to be responsible for sizeable corrections,
both in the total inclusive rate[144, 145], as implemented in the numerical code Hathor
[146, 147], and in differential distributions [148], recently studied within the Matrix frame-
work [26].
In this chapter, we will present our novel NNLO+PS implementation of the bottom-pair
production process in MiNNLOPS. In section 5.1, we will review the extension of the
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MiNNLOPS method to heavy quark pair production processes, which was firstly applied in
the pp→ tt̄+X process [88, 89]. Details about the pp→ bb̄+J generator in Powheg, which
will be the starting point of our MiNNLOPS numerical implementation, will be discussed in
section 5.2. In section 5.3, we will report how the 4FS calculation has been implemented in
MiNNLOPS, and we will carry out a fixed order validation of our code against Matrix.

5.1 Extension of MiNNLOPS to Heavy-Quark Pair Production
As we already anticipated in chapter 3, the extension of the MiNNLOPS method to the study
of the heavy quark pair hadroproduction pp→ QQ has been recently presented [88, 89]. As
for the colour singlet case, also the derivation of the new master formula starts from a re-
summation formula. However, two are the most obvious difference between colour singlet
production processes and processes incolving QCD partons in their final states. The first
one is comes natural: the colour dependence of the final state. The second is related to the
presence of gluon exchanges between the initial and the final state in terms of virtual correc-
tions. Soft modes for such gluon exchanges will be effectively resummed in a resummation
For the time being, no exact N3LL resummation formula in momentum space exists for the
process pp → QQ, but a resummation formula in b-space has actually been presented in
[149–151] and reads:

dσ
d2p⃗T dΦQQ̄

=
∑

c=q,q̄,g

|M (0)
cc̄ |2

2m2
QQ̄

∫ d2⃗b

(2π)2 e
i⃗b·p⃗T e−Scc̄

(
b0
b

)∑
i,j

Tr(Hcc̄∆) ((Cci ⊗ fi)(Cc̄j ⊗ fj)) .

(5.1)
Although the reader might expect to find some similarities with the N3LL colour singlet
differential cross section reported in eq. (3.63), some new ingredients come to place and
it is worth discussing them in detail. Sticking to the notation used in [89], we begin by
observing that the formula is differential in the trasnverse momentum of the QQ̄ system
and on dΦQQ̄ ≡ dx̄1dx̄2[dΦ2], where x̄1,2 = mQQ̄/

√
se±yQQ̄ 1. Notice also that eq. (5.1) is

summed over all the possible initial state channels of the process, namely gg → QQ̄ and
qf q̄f → QQ̄ (the index f running over the light quark flavours). Regarding the amplitudes
figuring above, they will be treated as vectors in the colour basis2. They are renormalized
in the M̄S scheme their infrared poles have been properly subtracted by

|Mcc̄⟩ = (1− Icc̄) |M IR-div.
cc̄ ⟩ , (5.3)

1yQQ̄ is the rapidity of the QQ̄ system and mQQ̄ is its invariant mass, while [dΦ2] is the standard massive
two=body phase space at a fixed center of mass enery

√
s.

2We recall that an m-parton amplitude associated to a specific set of values for the colour and the spin
indices (c1, . . . cm; s1, . . . sm) can be expressed as:

Ac1,...,cm;s1,...,sm
m (p1, . . . , pm) ≡ (⟨c1, . . . , cm| ⊗ ⟨s1, . . . , sm|) |Am⟩ , (5.2)

where |Am⟩ is a vector in the colour+spin base of the process. For more details on this formalism, we
refer to Ref. [22].
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where the subtraction operator Icc̄ is defined in Ref. [152] and admits a perturbative expan-
sion

Icc̄ =
∑

i

(
αs(µ)

2π

)i

I(i)
cc̄ . (5.4)

Regarding the renormalization scale choice, we have that µR = mQQ̄ for the amplitudes
appearing inside the Fourier integral. The two additional overall αs powers of |M (0)

cc̄ | in
eq. (5.1) can be set with more arbitrarity. However, it will be always evaluated at dynamical
scale µ(0)

R ∼ mQQ̄. We will delve deeper into this point in the following sections.
Now, going point-by-point through the elements in the second-hand side of the formula, we
find:

• The Born matrix element of the process |M (0)
cc̄ |, for a given cc̄→ QQ̄ channel.

• The Fourier integral over the two-dimensional impact parameter b⃗, where the b = |⃗b|
and b0 ≡ 2e−γE .

• The Sudakov radiator

Scc̄

(
b0
b

)
≡
∫ m2

QQ̄

q2

b2
0

b2

dq2

q2

[
Acc̄(αs(q)) ln

m2
QQ̄

q2 +Bcc̄(αs(q))
]
, (5.5)

which is obtained via the resummation of the large logarithms due to initial-state
collinear and sof-collinear emissions. Although universal, Acc̄(αs(q) and Bcc̄(αs(q) de-
pend on the initial-state flavour. They admit, as usual, a perturbative expansion in
αs(q).

• The convolution of the parton distribution functions fi,fj with the universal coefficient
functions

Cij ≡ Cij(z, p1, p2, b⃗;αs(b0/b)) , (5.6)

emerging in the factorization of the initial-state collinear radiation. Although not
explicitely reported, it is understood that (Cci ⊗ fi)(Cc̄j ⊗ fj) also includes additional
azimuthal correlations for the gg-initiated channel.

• The trace Tr(Hcc̄∆) runs over the colour indices and it is tensorially contracted with
the convoluted PDFs as

Tr(Hcc̄∆)(Cci ⊗ fi)(Cc̄j ⊗ fj) ≡ ⟨Mcc̄|∆|Mcc̄⟩
|M (0)

cc̄ |2
(Cci ⊗ fi)(Cc̄j ⊗ fj) . (5.7)

Notice that the operator Hcc̄ is a genaralization of the colour singlet hard function3 to
QQ̄ amplitudes in the colour basis formalism. It formally reads

Hcc̄ = |Mcc̄⟩⟨Mcc̄|
|M (0)

cc̄ |2
. (5.8)

3See eq. (3.66)
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• The ∆ operator can be expressed as

∆ = V†DV , (5.9)

being V the exponentiation of the anomalous dimension for heavy-quark pair produc-
tion Γt(ΦQQ̄;αs(q)), thus reading

V = P exp
{
−
∫ m2

QQ̄

b2
0

b2

dq2

q2 Γt(ΦQQ̄;αs(q))
}
, (5.10)

where P represents the path ordering operator, with increasing scales from left to right.
The operator D ≡ D(ΦQQ̄, b⃗;αs(b0/b)) encodes the azimuthal correlations of the QQ̄
system at low transverse momentum, due to soft-wide angle emissions. For the time
being, the second order term (αs

2π )2D(2) of the D expansion has not been computed
analytically. However, it’s azimuth average is [D]ϕ = 1, and that will be enough in the
following.

Schematically, an intuitive picture of the interplay bewteen the different reummation ingre-
dients is depicted in fig. 5.1.

Figure 5.1: Heuristic representation of the main ingredients of the heavy-quark hadropro-
duction resummation. Going from left to right: Two primary partons a and b
from the incoming protons interact with a probability dictated by the PDFs fa

and fb, which are then convoluted with the coefficient functions Ca, Cb, resum-
ming initial-state collinear radiation and eventually changing the flavour of the
partons undergoing the hard scattering (a → c and b → c̄). Large logarithmic
contributions from the initial-state collinear and soft-collinear emissions are then
resummed by the Sudakov radiators S

1
2
c and S

1
2
c̄ . At last, the soft-wide angle

emissions are resummed by the ∆ operator, that introduces colour connection
between states entering the hard scattering.
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After introducing all elements entering eq. (5.1), the next step would be to convert it into
a resummation formula in direct space, analogous to the colour singlet production formula in
eq. (3.63). Unfortunately this task is quite involved, and no such formula has been derived
so far. However, the N3LL accuracy is not something really required when performing the
NNLO merging. What instead is really needed, is the NNLO accuracy after integratig
eq. (5.1) over pQQ̄

T . We are now going to apply a series of approximations which will allow as
to restate the heavy quark resummation formula as a total pQQ̄

T derivative, plus some finite
reminder. From there, getting to the MiNNLOPS master formula for QQ̄ will be relatively
easy.
As a first step, the anomalous dimension Γt(ΦQQ̄;αs(q)) inside V in eq. (5.10) is expanded
up to O(α2

s) using

Γt(ΦQQ̄;αs(q)) = αs(q)
2π Γ(1)

t + α2
s(q)

(2π)2 Γ(2)
t +O(α3

s) , (5.11)

and then the exponentiation of the Γ(2)
t contribution is factored out, expanded up to O(α2

s)
and takes out of the path-ordering symbol. In doing this, the N3LL accuracy has been lost,
but not the NNLO(0) one. Indeed one can alway use the scale evolution αs(µ) to switch
scales µ1 ↔ µ2 in a product αs(µ1)αs(µ2), only introducing higher order corrections O(α3

s).
As a result, we get

VN3LL → V = P
[
exp

{
−
∫ m2

QQ̄

b2
0

b2

dq2

q2
αs(q)

2π Γ(1)
t

}]
︸ ︷︷ ︸

VNLL

×
(

1−
∫ m2

QQ̄

b2
0

b2

dq2

q2
α2

s(q)
(2π)2 Γ(2)

t

)
+O(α3

s) .

(5.12)
Now, when the approximated eq. (5.12) is plugged back into the operator ∆ in eq. (5.9), it
contributes to the trace Tr(Hcc̄∆) with a term

−⟨M
(0)
cc̄ |Γ

(2)†
t + Γ(2)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

∫ m2
QQ̄

b2
0

b2

dq2

q2
α2

s(q)
(2π)2 ⊂ Tr(Hcc̄∆) , (5.13)

which formally has the same functional structure of the O(α2
s) term associated with the B(2)

cc̄

coefficient in eq. (5.5). Therefore, it is possible to reabsorb it into the Sudakov radiation the
following redefinition of B(2)

cc̄

B
(2)
cc̄ → B

(2)
cc̄ + ⟨M

(0)
cc̄ |Γ

(2)†
t + Γ(2)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

. (5.14)

What we are left with is now

∆ = V†NLLDVNLL +O(α3
s) . (5.15)

Although D contributes with an azimuthal correlation, we observed above that [D]ϕ = 1.
After averaging on ϕ, we then have that

Γ(1)
t D(1) ⊂ V†NLLDVNLL , (5.16)
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and this allows to approximate Tr(Hcc̄∆) in the following way

⟨Mcc̄|V†NLLDVNLL|Mcc̄⟩
|M (0)

cc̄ |2
= ⟨Mcc̄|V†NLLVNLL|Mcc̄⟩

|M (0)
cc̄ |2

Tr(Hcc̄D)+Ecc̄(ΦQQ̄, b⃗)︸ ︷︷ ︸
negligible

+O(α3
s) , (5.17)

where Ecc̄(ΦQQ̄, b⃗) encodes quoted O(α2
s) ln(mQQ̄b) terms which vanish upon azimuthal in-

tegration. In Ref. [89], their contribution is neglected.
Regarding now the expectation value of V†NLLVNLL (on the right-hand side of eq. (5.17)),
we can write, up to O(α3

s) accuracy

⟨Mcc̄|V†NLLVNLL|Mcc̄⟩
|M (0)

cc̄ |2
→⟨M

(0)
cc̄ |V

†
NLLVNLL|M

(0)
cc̄ ⟩

|M (0)
cc̄ |2

⟨Mcc̄|Mcc̄⟩
|M (0)

cc̄ |2

+ 2R
[
⟨M (1)

cc̄ |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

]
⟨M (0)

cc̄ |Γ
(1)†
t + Γ(1)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

αs(mQQ̄)
2π

∫ m2
QQ̄

b2
0

b2

dq2

q2
αs(q)

2π

− 2R
[
⟨M (1)

cc̄ |Γ
(1)†
t + Γ(1)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

]
αs(mQQ̄)

2π

∫ m2
QQ̄

b2
0

b2

dq2

q2
αs(q)

2π
+O(α3

s).
(5.18)

The idea behing this approximation is to factorize the loop corrections in ⟨Mcc̄|V†NLLVNLL|Mcc̄⟩
without spoling the NNLO perturbative accuracy. To this extent, the approximation in the
first line of eq. (5.18) is corrected up to O(α3

s) by:

1. Subtracting the 1-loop order expansion of the unaccurate approximation, giving a term
proportional to

2R
[
⟨M (1)

cc̄ |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

]
⟨M (0)

cc̄ |Γ
(1)†
t + Γ(1)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

. (5.19)

2. Adding back the correct 1-loop order expansion of the exact result on the left-hand
side of eq. (5.18), namely the term proportional to

2R
[
⟨M (1)

cc̄ |Γ
(1)†
t + Γ(1)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

]
. (5.20)

Above, the αs(mQQ̄) couplings can be brought inside the q integrals and their scale depen-
dence modified with αs(mQQ̄) = αs(q) +O(α2

s). Once again, this allows both terms on the
second and third line of eq. (5.18) to be reabsorbed in the Sudakov radiator via redefinition
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of B(2)
cc̄ . The result reads

B
(2)
cc̄ → B̂

(2)
cc̄ = B

(2)
cc̄ + ⟨M

(0)
cc̄ |Γ

(2)†
t + Γ(2)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

− 2R
[
⟨M (1)

cc̄ |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

⟨M (0)
cc̄ |Γ

(1)†
t + Γ(1)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

]

+ 2R
[
⟨M (1)

cc̄ |Γ
(1)†
t + Γ(1)

t |M
(0)
cc̄ ⟩

|M (0)
cc̄ |2

]
.

(5.21)

After this passage, what is left in the right-hand side of eq. (5.17) is just Tr(Hcc̄D), which is
eventually tensorially contracted with the convoluted PDFs in eq. (5.7). More specifically, the
vanishing behaviour of D upon azimuthal average can be used to get the following compact
expression

[
Tr(Hcc̄D)(Cci ⊗ fi)(Cc̄j ⊗ fj)

]
ϕ
≡
[
Hcc̄(Cci ⊗ fi)(Cc̄j ⊗ fj)

]
ϕ

+
(
αs(b0/b)

2π

)2 [(⟨M (0)
cc̄ |D(1)|M (0)

cc̄ ⟩
|M (0)

cc̄ |2

)(
(C(1)

ci
⊗ fi)(fc̄) + (fc)(C(1)

c̄j
⊗ fj)

)]
ϕ

+O(α3
s) ,

(5.22)
where the quantity Hcc̄ is reminiscent of the hard function in the colour-singlet production,

even if defined with a different IR-subtraction operator, and reads

Hcc̄ ≡
|Mcc̄|2

|M (0)
cc̄ |2

= 1 + αs

2πH
(1)
cc̄ + α2

s

(2π)2H
(2)
cc̄ +O(α3

s) . (5.23)

Notice that eq. (5.22) retains a O(α2
s) dependence on D(1), due to its interference with the

polarization-dependent coefficient functions Gij .
Finally, we can insert back in the resummation formula eq. (5.1) the replacements derived in
eq. (5.18), eq. (5.22), and perform the Fourier integration. After some calculation, one gets
to the following expression

dσ
dpT dΦQQ̄

= d
dpT

{∑
c

e−S̃cc̄(pT )

2m2
QQ̄

⟨M (0)
cc̄ |(VNLL)†VNLL|M

(0)
cc̄ ⟩

×
∑
i,j

[
Tr(H̃cc̄D)(C̃ci ⊗ fi)(C̃c̄j ⊗ fj)

]
ϕ

}
+Rfinite(pT ) +O(α5

s) ,
(5.24)

which can be further simplified by diagonalizing the soft anomalous dimension VNLL, accor-
ing to

e−S̃cc̄(pT )⟨M (0)
cc̄ |(VNLL)†VNLL|M

(0)
cc̄ ⟩ = |M (0)

cc̄ |2
nc∑

i=1
C[γi]

cc̄ (ΦQQ̄)e−S̃
[γi]
cc̄ (pT ) , (5.25)

76



Chapter 5 Bottom Pair Production in MiNNLOPS

where the phase-space dependent coefficients C[γi]
cc̄ obey the constraint

nc∑
i=1
C[γi]

cc̄ (ΦQQ̄) = 1 . (5.26)

More specifically, the number nc depends on the SU(3) representation of a given initial state
flavour structure, being nc = 4 for the qq̄ channel and nc = 9 for the gg channel. We can
therefore come to an expression which is closely reminiscent of the pT resummation formula
employed in the colour-singlet case4

dσ
dpT dΦQQ̄

= d
dpT

{∑
c

[
nc∑

i=1
C

[γi]
cc̄ (ΦQQ̄)e−S̃

[γi]
cc̄ (pT )

]
Lcc̄(ΦF , pT )

}
+Rfinite(pT ) +O(α5

s) ,

(5.27)
where S̃cc̄, Hcc̄ and C̃ij are now evaluated at the scale pT , and where the following replace-
ments have been made

B
(1)
cc̄ → B̃

(1)
cc̄ ≡ B

(1)
cc̄ + γi(ΦQQ̄)

B̂
(2)
cc̄ → B̃

(2)
cc̄ ≡ B̂

(2)
cc̄ + 2ζ3(A(1)

cc̄ )2 + 2πβ0H
(1)
cc̄ ,

H
(2)
cc̄ → H̃

(2)
cc̄ ≡ H

(2)
cc̄ − 2ζ3A

(1)
cc̄ B

(1)
cc̄ ,

C
(2)
ci (z)→ C̃

(2)
ci (z) ≡ C(2)

ci (z)− 2ζ3A
(1)
cc̄ P̂

(0)
ci

(z) ,

(5.28)

where the functions γi ≡ γcc̄,i can be derived from the eigenvalues of Γ(1)
t , and P̂ (0)(z) is the

tree-level regularized AP splitting function. Moreover, the luminosity factor Lcc̄ has been
introduced as

Lcc̄(ΦF , pT ) ≡ |M
(0)
cc̄ |2

2m2
QQ̄

∑
i,j

[
Tr(H̃cc̄D)(C̃ci ⊗ fi)(C̃c̄j ⊗ fj)

]
ϕ
. (5.29)

One can now use eq. (5.27) to derive the MiNNLOPS B̄QQ̄ function, following the same
steps we reviewed in the colour singlet production case. This will result in

B̃QQ̄(ΦFJ,Φrad) ≡
∑
cFJ

{ ncF←cFJ∑
i=1

C[γi]
cF←cFJ(ΦF) exp

[
−S̃[γi]

cF←cFJ(ΦF, pT )
]

×
[
BcFJ(ΦFJ)

(
1 + αs(pT )

2π [S̃[γi]
cF←cFJ(ΦF, pT )](1)

)
+ VcFJ(ΦFJ)

]

+
∑
cFJJ

{ ncF←cFJJ∑
i=1

C[γi]
cF←cFJJ(ΦF) exp

[
−S̃[γi]

cF←cFJJ(ΦF, pT )
]}

RcFJJ(ΦFJ,Φrad)

+
∑
cFJ

{∑
cF

ncF∑
i=1
C[γi]

cF (ΦF) exp
[
−S̃[γi]

cF (ΦF, pT )
]
D[γi],(≥3)

cF (ΦF, pT )
}
F corr

cFJ (ΦFJ)
}
,

(5.30)

4See eq. (3.63)
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where the D[γi],(≥3)
cF term is defined as

D[γi],(≥3)
cF (ΦF, pT ) = D[γi]

cF (ΦF, pT )− αs(pT )
2π

[
D[γi]

cF (ΦF, pT )
](1)
−
(
αs(pT )

2π

)2 [
D[γi]

cF (ΦF, pT )
](2)

,

D[γi]
cF (ΦF, pT ) = −dS̃[γi]

cF (ΦF, pT )
dpT

LcF(ΦF, pT ) + dLcF(ΦF, pT )
dpT

.

(5.31)
We conclude now with a few comments on the B̃QQ̄ so obtained. Since the coefficient C[γ1]

cc̄

depend on the phase space ΦF, a projection must be introduced to map ΦFJ onto ΦF. We
refer to Ref. [89] for more details on the procedure that has been implemented. Regarding
the pT dependence entering the Sudakov radiators, this is evaluated either on ΦFJ or on
ΦFJJ, according to the matrix element which accompanies it. In the sums, cFJ = {gg, gq, qq̄}
represents set of all possible initial-state flavour compositions related to the FJ process.
cF ← cFJ refers to the flavour configurations of the final state F corresponding to the flavour
projection of the FJ final state, and similarly cF ← cFJJ relates the FJJ flavour structures
to the F ones.
To suppress the resummation effects in eq. (5.30) at large pT values, some prescriptions have
been introduced on the same footing of what we discussed in section 3.7. However, we remark
that a different version of the modified logarithms has been introduced, namely

L ≡


ln Q

pT
if pT ≤ Q

2 ,

ln
(
a0 + a1

pT
Q + a2

(
pT
Q

)2
)

if Q
2 < pT ≤ Q,

0 if pT > Q,

(5.32)

where Q ∼ mQQ̄ is the resummation scale5 where the coefficients a0 = 5, a1 = −8, a2 = 4
have been tuned in a way to make L and its pT -derivative continuous at Q/2 and vanishing
at Q.

5.2 The bbJ Powheg Generator
Now that we have reviewed the derivation of eq. (5.30) and commented on the main dif-
ferences from the colour-singlet MiNNLOPS master formula in eq. (3.92), we can present
our numerical implementation. Our first step was to set up the pp → bb̄ + jet process in
Powheg-Box-Res, which is based on the following B̄ expression

B̄(Φbb̄j) = B(Φbb̄j) + V (Φbb̄j) +
∫
dϕradR(Φbb̄jj) , (5.33)

where the sum over the Born-level flavour structures is understood, as well as the FKS
subtraction of the real IRC singularities in the second jet emission against the virtual poles
of V (Φbb̄j). The calculations have been carried out in the four-flavour scheme (4FS). More
specifically:

• Bottom quarks have been treated as massive, and their pole mass is set to mb =
5Both in the top- and bottom-pair production MiNNLOPS implementations Q is set by default to mQQ̄/2.

However, the value can be modified by tuning the parameter KQ ≡ Q/mQQ̄.
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4.92GeV.

• Denoting by q the light quarks in the 4FS (q = d, u, s, c), The Born-level flavour
structures {fb} entering eq. (5.33) are

gg → bb̄ g

qq̄ → bb̄ g

qg → bb̄ q .

(5.34)

along with their conjugated configurations. The tree-level and the one-loop amplitudes
entering the Born [B(Φbb̄j)]fb

matrix elements and the subtracted virtual corrections
[V (Φbb̄j)]fb

in eq. (5.33) have been obtained through the Powheg interface with Open-
Loops [153–155], developed in [156].

• Analogously, the tree-level amplitudes have been obtained from the OpenLoops in-
terface, and correspond to the following flavour structures

gg → bb̄ gg gg → bb̄ qq̄

qq̄ → bb̄ gg qq̄ → bb̄ qq̄

qg → bb̄ qg qq′ → bb̄ qq′
(5.35)

along with their respective conjugated configurations.

• The renormalization scales µR entering the strong coupling constants and the matrix
elements in eq. (5.33) are consistently set to the same value. In particoular, the value of
αs(µR) is obtained from the Powheg interface with internal strong coupling evolution
routines of LHAPDF [157]. The evolution is performed with Nf = 4 light flavours.

• For the PDFs, we chose the NNLO set of NNPDF3.1 [158] consistent with Nf = 4
number of light quark flavours6.

Finally, we performed a numerical validation of the code against the fixed order results
from Matrix. Notice that any fully inclusive observable would turn out to be divergent in
this context, because of the presece of a light radiation at the Born level, carrying an IRC
divergent behaviour in the soft/collinear phase-space regions. Therefore, to be able to access
well defined distributions, fiducial cut has been introduced on the leading light-jet transverse
momentum. More precisely, the anti-kT algorithm7 with R = 0.4 was used to define light jets
on the Born and Real kinematics of pp→ bb̄+jet, and an analysis cut on the leading light jet
pT, J ≥ 20GeV was imposed. In fig. 5.2, we present the comparison between the Powheg
and the Matrix results for the transverse momentum and the rapidity distributions of the
light jet8 at the leading-order. The corresponding next-to-leading order results are shown in
fig. 5.3.

6Specifically, we used NNPDF31 nnlo as 0118 nf 4.
7See section 4.2.5.
8Notice that, in this case, the leading light jet corresponds to the final-state gluon of the Born flavour

structures reported in eq. (5.34).
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Figure 5.2: Validation plots for the pp → bb̄ + jet Powheg implementation at the leading
order. On the left figure, The transverse momentum of the leading light jet.
On the right figure, the rapidity of the leading light jet. The reported bands
correspond to the MC statistical uncertainties of the results.
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Figure 5.3: Validation plots for the pp→ bb̄+ jet Powheg implementation at next-to-next
to the leading order. On the left figure, The transverse momentum of the leading
light jet. On the right hand figure, the rapidity of the leading light jet. The
reported bands correspond to the MC statistical uncertainties of the results.

5.3 MiNNLOPS Implementation and Validation of pp→ bb̄ + X

Upon the Powheg implementation of pp→ bb̄+ jet, we included the MiNNLOPS prescrip-
tions described in section 5.1, closely following the MiNNLOPS top-quark pair production
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simulation already realized in Powheg-Box-V2 [88, 89]. As our code was developed in
Powheg-Box-Res, we first adapted and validated the V2 version of the MiNNLOPS tt̄
code in the Res package, which was then used as a starting point for the implementation of
the bb̄ process in MiNNLOPS. Then, the flavour-dependent ingredients in eq. (5.30) have
been consistently adapted according to the 4FS. For the sake of clarity, we now clarify a no-
tation that will be widely used in the rest of this thesis. Within our bottom-pair production
implementation:

• MiNNLOPS will be used to denote the predictions obtained withe full B̄QQ̄ function
reported in eq. (5.30).

• MiNLO’ will refer to the results obtained using eq. (5.30), but setting to zero9 the
terms in D(≥3).

q

q̄

b

b̄

(a) s-channel qq̄ diagram

g

g

b

b̄

(b) s-channel gg diagram

g

g

b

b̄

(c) t-channel gg diagram

Figure 5.4: Feynman diagrams for the process pp→ bb̄ at LO.

The matrix elements entering the hard function Hbb̄ include the Born level, the virtual and
the double virtual corrections of the pp→ bb̄ process. The tree-level Feynman diagrams con-
tributing to the calculation are represented in fig. 5.4, with the s-channel of the quark-initiated
configuration, and the s- and t-channel the gluon-initiated configuration. Schematically, the
one-loop and two-loop order coefficients of the hard function read

H
(1)
bb̄

=
2R
{
⟨M (0)

bb̄
|M (1)

bb̄
⟩
}

|M (0)
bb̄
|2

H
(2)
bb̄

=
|M (1)

bb̄
|2

|M (0)
bb̄
|2

+
2R
{
⟨M (0)

bb̄
|M (2)

bb̄
⟩
}

|M (0)
bb̄
|2

,

(5.36)

where the sum over the flavour structures is understood, as well as the colour and spin con-
figurations. In our implementation, 2R

{
⟨M (0)

bb̄
|M (1)

bb̄
⟩ and |M (1)

bb̄
|2 were included by calling the

OpenLoops interface routines forementioned, while the two-loop contribution 2R
{
⟨M (0)

bb̄
|M (2)

bb̄
⟩
}

was obtained by interpolating numerical grids computed within the framework of Ref. [159].
For the PDFs we sticked with the same set used in the Powheg bb̄ + jet code, namely

NNPDF31 nnlo as 0118 nf 4, with the strong coupling running corresponding to that set. As
done within all the MiNNLOPS implementations, PDFs were read via the LHAPDF interface

9Notice that the MiNLO’ B̄ definition in heavy-quark pair production differs from the one presented in
colour-singlet production (as in (3.54)), since in the former case the same Sudakov radiator expression
both in MiNNLOPS and in MiNLO’ is used.
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[157], and then interfaced with the HOPPET code [84] to carry out their internal evolution and
the relevant convolutions. The renormalization (µR) and factorization (µF ) scales have been
set according to the MiNNLOPS prescriptions, with the only exception of the scale entering
the two powers of αs already present at Born level of pp → bb̄. For it, we explored three
different options, namely:

• µ
(0)
R = KR mbb̄/2, which was used for validation purposes.

• µ
(0)
R = KR H

bb̄
T /2 (with Hbb̄

T =
√
m2

b + p2
T,b +

√
m2

b + p2
T,b̄

), which was used in our B
hadron production analysis10.

• µ
(0)
R = KR (Hbb̄

T +∑
jets p

jet
T )/2, that was used in our b-jet analysis11.

We also employed the definition of the modified logarithm L reported ineq. (5.32), to switch
off the resummation effects at large transverse momenta with the standard scale choice ofQ =
mbb̄/2. For the central scale choices, we used KR = KF = 1, and the theoretical uncertainties
due to missing higher order contributions have been estimated within the standard 7-point
scale variation, thus varying KR and KF by a factor of two in each direction with the
constraint 1/2 ≤ KR/KF ≤ 2. All the other technical settings have been kept as in Ref.
[89]12.

We finally presents the results of our MiNLO’ and MiNNLOPS validation against the
NNLO fixed order results from Matrix. Strictu sensu, such a validation cannot be per-
formed exactly, as the MiNNLOPS method prescribes constraints on the choice of the renor-
malization and factorization scales, while different settings are adopted for µ(0)

R , as detailed
above. On the other hand, the Matrix predictions have been calculated using the same
dynamical central scales µR = µF = mbb̄ in all their occurencies. However, having reached
the next-to-next to leading order accuracy, it is legit to expect the two different predictions
to be in good agreement.

First of all, we compare results for the fully inclusive cross section σ(pp → bb̄ + X). In
this case, MiNNLOPS predicts a value amounting to 428.7(6)+13%

−11% pb, while the fixed-order
NNLO QCD result is 435(2)+16%

−15% pb. The two predictions are therefore in perfect agree-
ment. To characterise the comparison thoughout the Φbb̄ phase space, we also generated
Les-Houches-Event (LHE) level without showering effects, and used them to compute dif-
ferential distributions numerically. In fig. 5.5, we report the differential cross section as a
function of the bb̄-average rapidity ybav = (yb +yb̄)/2, the pseurapidity ηbav and the transverse
momentum pT,bav . These observables feature genuine NNLO accuracy, as they feature a non
trivial dependence on the Born phase space Φbb̄. This can also be observed in the correction
that the MiNNLOPS distributions, formally NNLO accurate, bring to the MiNLO’ result,
which provides NLO accuracy in this inclusive setup. However, we remind that MiNLO’ also
includes the O(α4

s) double real correction to pp → bb̄, contributing beyond next-to-leading
order accuracy. In the rapidity and pseudorapidity distributions, this correction amounts of
O(+10%), and it looks quite flat throughout their full range. Moreover, the improvement in
the size of scale uncertainties is striking, as these turn from around ±25% in MiNLO’ into
around ±10 − 15$ in MiNNLOPS. Remarkably, the agreement between fixed order NNLO
10See chapter 6.
11See chapter 7.
12E.g. we set Q0 = 2, as we witnessed numerical instablities at lower values of Q0.
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and MiNNLOPS predictions is excellent. Regarding the transverse momentum distribution,
we also witness an improvement in the MiNNLOPS result compared to the MiNLO’ both
in terms of uncertainties and in the central values, apart from some small shape effects in
the tail. In particoular, the MiNNLOPS central values appear to be almost on top of the
NNLO result. At last, we also point out an overall agreement between the NNLO and the
MiNNLOPS uncertainty bands, with the latter ones being slightly smaller than the former
ones.
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Figure 5.5: Validation plots for MiNNLOPS (solid blue) and MiNLO’ (dashed black)
against the fixed order NNLO results from Matrix (solid red). All the reported
distributions are obtained by averaging the respective bottom and anti-bottom
distributions at the level of Les-Houches-events (LHE). See text for more details.
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B-hadron Production in bb̄ Events at
NNLO+PS

In this chapter, we will present the first phenomenological application that we investigated
through the MiNNLOPS bottom-pair production generator, whose implementation has been
documented in chapter 5. Indeed, by interfacing our Powheg code with Pythia8, we could
extract predictions for the inclusive B-hadron production at the LHC, and compare with
a wide set of experimental measurements. The setup of our analysis will be discussed in
section 6.2. In section 6.1, we review the role of B-hadron at the LHC, mentioning the state
of the art of the related theoretical predictions. In section 6.3, we present the comparison
of our NNLO+PS results with data from ATLAS [160]. In section 6.4, we compare with
fiducial cross-sections and differential distributions from CMS [161]. At last, three different
LHCb analyses [162–164] are considered in section 6.5.

6.1 The Role of B-hadron at the LHC
Although being regarded as a heavy quark like the top, the bottom quark has a relatively
long lifetime because of strong CKM suppression. As a consequence, bottoms hadronize
before decaying, and measuring the inclusive B-hadron production is the only possible way
to access the production of bottom-antibottom pairs produced in the hard scatterings. In
practice, the process that is measured is the following

pp → B + X , (6.1)

where B represents one (or more) species of hadron containing either a bottom or an anti-
bottom quark, but not both, and X denotes inclusivity over the rest of the final state. Several
experimental analyses have been conducted over the years, starting from the UA1 collabo-
ration at CERN Spp̄S, then followed by the CDF and D0 collaborations at the Fermilab
Tevatron. More recently, new measurements have been performed by the ATLAS, CMS
and LHCb collaborations, both at

√
s = 7TeV and

√
s = 13TeV center-of-mass energies, as

we will detail below.
From the theoretical point of view, the production of B-hadrons in bottom-pair events it

considered a classic test of perturbative QCD. Moreover, the study of ration B-hadron dif-
ferential distributions between different center-of-mass (CoM) energies has recently attracted
the attention of the collider phenomenology community. One compelling reason for analyzing
the ratio of heavy quark cross-sections is that it mitigates many significant theoretical and
experimental uncertainties, which are often highly correlated across different center-of-mass
energies, by effectively canceling them out in the ratio. Moreover, this ratio remains sensitive
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to the form of the gluon PDF at both low and high values of Björken-x [165]. As a result,
incorporating heavy quark data at the ratio level into global proton structure analyses can
enhance the accuracy of the gluon PDF description. For a long time, the state-of-the-art
calculations were based on fixed NLO QCD with NLL large transverse momentum resum-
mation, within the FONLL approach [135–138]. Thus, the FONLL method provided full
NLO accuracy at moderate pT values, and NLL accuracy at high pT. This could be achieved
by consistently merging resummed calculations in a massless approximation, accurate in the
hard regions, with a full massive NLO calculation, reliable at small pT. In Ref. [5], it was
effectively possible to get new results at NNLO accuracy over the full spectrum of inclusive
observables, thanks to the MiNNLOPS approach, supplemented by the leading-logarithmic
accuracy provided by the Pythia8 parton shower.

The experimental analyses that we considered in comparing our predictions are the fol-
lowing

1. ATLAS [166], for the measurement of the inclusive B± meson production at
√
s =

7TeV .

2. CMS [161], for the measurement of the inclusive B± meson production at
√
s =

13TeV .

3. LHCb [162], for the measurement of the inclusive B+,B0 and B0
s (and respective

charge-conjugated mesons) production at
√
s = 7TeV.

4. LHCb [163], for the measurement of the inclusiveB± meson production at both
√
s = 7

and 13TeV, along with CoM energy ratio measurements.

5. LHCb [164], for the measurement of the inclusive bottom pair production at both√
s = 7 and 13TeV, along with CoM energy ratio measurements. In this case, all

B-mesons and baryons with nonnegligible production rates have been accounted for.

6.2 Settings for Theoretical Predictions in MiNNLOPS

The predictions we are going to present in the following sections have been obtained by an-
alyzing events generated in Powheg and interfaced with PYTHIA8. As we already discussed
in the previous chapter, we have been able to obtain NNLO accurate Powheg events for
inclusive observables in the bb̄ phase space, through the implementation of the MiNNLOPS
method to simulate pp → bb̄ in the 4FS. Given the massive scheme choice, we set the bot-
tom mass to its pole value mb = 4.92GeV. For the PDFs, we used the NNLO set of the
NNPDF3.1 [158]1 with nf = 4 active light flavours for the running of the strong coupling
and αs(mZ) = 0.118. However, as discussed in section 3.7, the PDF evolution has been
effectively carried out through the HOPPET package [84].
The matching to PYTHIA8 effectively improves the accuracy of prediction via the leading-
logarithm (LL) resummation provided by the parton shower. Moreover, it also allows carry-
ing out the hadronization of showered parton events and models the multi-parton-interaction
(MPI) effects. As for the tuning of the parton shower parameters, we adopted the Monash
2013 tune, which is a quite standard choice for this kind of calculation. All unstable hadrons

1Specifically NNPDF31 nnlo as 0118 nf 4.
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generated by the parton shower have been let decay to stable particles, except from the rele-
vant B mesons and baryons that we considered in our phenomenological study. In this way,
it was possible to extract predictions directly comparable to the experimental measurements
of B-hadron observables.
The theoretical uncertainties we will report are estimated with the 7-point scale variation.
As for the central values of µR and µF , we remind that all of them are constrained by the
MiNNLOPS prescriptions reported in section 5.1, except for the renormalization scale µ(0)

R

entering the overall α2
s in the Born matrix elements of pp→ bb̄. For the latter one, we used

µ
(0)
R = Hbb̄

T

2 with Hbb̄
T =

√
m2

b + p2
T,b +

√
m2

b̄
+ p2

T,b̄
. (6.2)

6.3 Comparison with Data from the ATLAS Collaboration
We start our comparison to the experimental measurements by considering the results of an
analysis published by the ATLAS collaboration in 2013 [166]. Results are reported in terms of
a differential cross-section of B+ meson production in pp collisions, at center-of-mass energy
at
√
s = 7TeV and using data collected at an integrated luminosity of 2.4 fb−1 (and relative

1.8% uncertainty). However, both B+ and B− events have been accounted for, and then
B+ distributions derived by assuming charge symmetry in the B± production, relative to
the phase space accessible by the detector. The decay channel B+ → J/ψK+ → µ+µ−K+

has been considered to reconstruct the B+ events. The measured inclusive cross-section
σ(pp→ B+X) is differential in both yB+ and pT,B+ , and are measured using

d2σ(pp→ B+X)
dpT,B+dyB+

= B−1 NB+

L ·∆pT,B+ ·∆yB+
, (6.3)

where
B ≡ B(B+ → J/ψK+ → J/ψ → µ+µ−) = (6.03± 0.21)× 10−5 (6.4)

corresponds to the total branching ratio of the signal decay. The reported value is the
combination of the world-average values of the branching ratios for B+ → J/ψK+ and
J/ψ → µ+µ− [167]. NB+ is the number of measured signal decays B+ → J/ψK+, whose re-
constructed B+ have trasnverse momentum and rapidity within, respectively, a given ∆pT,B+

and ∆yB+ range. As usual, restrictions on the phase space covered by the ATLAS detector
reflect the imposition of some fiducial cuts in the analysis. In this case, B+ events have been
selected when falling within the kinematical cuts reported in table 6.1. In the denominator
of the right-hand side of eq. (6.3), L represents the integrated luminosity of the data sample.
In Ref. [166], a comparison of results with theoretical prediction has been realized, consider-
ing two different simulations. One of them was done by generating NLO accurate events with
the Heavy-Quark pair production implementation (HVQ) available in POWHEG-BOX 1.0
[168], and then interfacing them with PYTHIA8, analogously to the procedure followed to get
the MiNNLOPS results we are going to present. The other approach was to match MC@NLO
with the Herwig parton shower program. On top of the simulations described above, other
theoretical predictions obtained within the FONLL method, therefore at NLO+NLL ac-
curacy in the hard scattering pp → bb̄, has also been calculated for the comparison. In
this case, the B+ quark distributions have been obtained from the b+ quark ones using an
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hadronization fraction of value fb→B+ = 0.401 ± 0.008 [167]. We refer to Ref. [166] for
further details, but we just summarize the main conclusion of the mentioned comparison.
Both the POWHEG and the MC@NLO distributions appeared to be in good agreement with
data, although affected by quite large uncertainties, with scale variation bands ranging up to
O(±40%) in certain phase space regions. Regarding the FONLL result, the agreement was
still good and the theoretical bands turned out to be smaller, as expected by the increased
logarithmic accuracy of the calculation.

Fiducial cuts for pp→ B+ X at
√
s = 7GeV

9GeV ≤ pT B+ ≤ 120GeV

|yB+ | ≤ 2.25

Table 6.1: Fiducial cuts for pp→ B+ X production from Ref. [166].

Now, we can finally discuss about the MiNNLOPS predictions. In all the reported plots,
the MiNLO’ prediction is included as well, so to get an estimate of the improvement brought
by the inclusion of theD(3)(pT)bb̄ term of eq. (5.30). In fig. 6.1, the pT, B+ differential distribu-
tions integrated over different ranges of rapidity yB+ are showed, while the pT, B+ integrated
over the full ficucial range yB+ < |2.25| in reported in fig. 6.2 (left panel). Apart from
some isolated bins, our prediction looks in good agreement with the data. The difference
between the MiNLO’ and the MiNNLOPS central curves look rather small at low values of
pT, B+ , and increases up to ∼ 20% in the tails of the distributions. In these same regions,
we can also observe that MiNNLOPS predicts a softer behaviour compared to MiNLO’,
leading to a better description of the data. Regarding the theoretical uncertainties, these
appear compatible with the standard NLO uncertainties for bottom-pair hadroproduction in
MiNLO’, while MiNNLOPS represents a remarkable improvement, leading to uncertainty
bands of about ±10%. In general, the data and the MiNNLOPS uncertainties overlap and
no remarkable tensions are observed.
In fig. 6.1 (right panel), we reported the comparison between the yB+ single differential distri-
butions, integrated over 9GeV ≤ pT,B+ ≤ 120GeV. In this setup, MiNLO’ and MiNNLOPS
are essentially on top of each other, and again MiNNLOPS features a remarkable improve-
ment in terms of scale variation bands.
In table 6.2, we also report the predicted values for the fiducial cross-sections, comparing the
measured value, the FONLL prediction from Ref. [166] and the MiNNLOPS prediction.
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Fiducial cross-section σ(pp→ B+X) at
√
s = 7TeV

Measured by ATLAS 10.6± 0.3(stat) ± 0.7(syst) ± 0.2(lumi) ± 0.4(bf) µb

MiNNLOPS 10.17(5)+13.3%
−14.0% µb

FONLL 8.6+34.9%
−22.1% ± 0.6(mb) µb

Table 6.2: Comparison with ATLAS: Fiducial cross-section for pp→ B+X. The sources of
uncertainty associated to the measured value are reported in brackets (statistical,
systematical, luminosity, branching fraction). Results for MiNNLOPS, MiNLO’,
FONLL are reported with their upper and lower scale variation bands, and the
uncertainty associated with the mass of the bottom is also quoted in the FONLL
prediction.
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Figure 6.1: Comparison with ATLAS: Transverse momentum distributions of B+, integrated
over different ranges of |yB+ |. The rapidity ranges are reported in the lower left
corner of the upper panels. The lower panels show results normalized to the
MiNNLOPS predictions.
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Figure 6.2: Comparison with ATLAS. On the left: transverse momentum distribution of B+,
integrated over |yB+ | ≤ 2.25; on the right: rapidity distribution of B+, integrated
over 9GeV ≤ pT,B+ ≤ 120GeV.

6.4 Comparison with Data from the CMS Collaboration
We now turn to another set of measurements, published by the CMS collaboration in 2017
[161]. In this analysis, differential cross-sections B+ meson production in pp collisions at√
s = 13TeV were measured for the first time, with data at an integrated luminosity of

48.1 pb−1. The paper reports distributions in terms of the B+ transverse momentum pB
T ,

and rapidity yB. Analogously to what done by the ATLAS collaboration in Ref. [166],
B+ mesons have been reconstructed by tracking the decay channel B+ → J/ψK+ and
J/ψ → µ+µ−, according to the same formula in eq. (6.3)2. In this case, the value of the
total branching fraction B was obtained by combining the individual B(B+ → J/ψK+) =
(1.026 ± 0.031) × 10−3 and B(J/ψ → µ+µ−) = (5.961 ± 0.033) × 10−2 reported in [169].
Events have been selected for various sets of fiducial cuts, reported in table 6.3.

On top of the experimental results, the collaboration also provided a comparison to pre-
dictions from FONLL and PYTHIA-8.205, the former being NLO + NLL accurate in the
inclusive pp→ bb̄ production and the latter being essentially LL accurate and fully exclusive
in the final state. The agreement between predictions and data appeared to be acceptable in
terms of distribution shapes, although it was not optimal in terms of normalization, as the
experimental and the theoretical uncertainties did not overlap in several bins.
The MiNLO’ and MiNNLOPS predictions that we present showcase a similar scenario, even
if we can arguably claim an improvement in the overall description of data. In fig. 6.3, we
show the pT,B+ and the yB+ distributions, where in both cases we reported two sets of data,

2Here, again, measurements have been performed by assuming charge conjugation symmetry in B+ and B−
production.
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Fiducial cuts for pp→ B+ X at
√
s = 13GeV

CMS-setup 1 pT,B+ ∈ [17, 100]GeV and yB+ ∈ [1.45, 2.1]

CMS-setup 2 pT,B+ ∈ [10, 100]GeV and yB+ ∈ [0, 1.45]

CMS-setup 3 pT,B+ ∈ [0, 17]GeV and yB+ ∈ [0, 1.45]

CMS-setup 4 pT,B+ ∈ [17, 100]GeV and yB+ ∈ [0, 2.1]

Table 6.3: Fiducial cuts for pp→ B+ X production from Ref. [161].

labeled with different colours. In the transverse momentum of the B+ meson (left panel),
the MiNLO’ and the MiNNLOPS central curves have small deviations at low pT,B+ , then
increasing up to about 20% in the tail of the distribution. However, as the differential cross-
section sharply decreases at high pT,B+ , MiNLO’ and MiNNLOPS differ much less in the
rapidity distribution yB+ (right panel), which is integrated over pT,B+ as detailed in fig. 6.3.
For what concerns the theoretical uncertainties, we observe a remarkable improvement in
going from MiNLO’, with O(±20%) scale variation bundles, to MiNNLOPS, with a much
more contained O(±10%). Comparing our predictions to the CMS data, we can conclude
that the agreement is quite good, even though we observe data to be above the predictions
in all bins. This behaviour consistently reflects on the fiducial cross-sections, that we report
in table 6.7.

Fiducial cross-section σ(pp→ B+X) at
√
s = 13TeV

Measured by CMS 15.3± 0.4(stat) ± 2.1(syst) ± 0.4(lumi) µb

MiNNLOPS 11.47(6)+11.3%
−13.2% µb

MiNLO’ 11.87(5)+23.2%
−17.9% µb

Table 6.4: Comparison with CMS: Fiducial cross-section for pp → B+X. Values are ob-
tained by integrating the differential cross-section in yB+ ∈ [0, 2.1] and pT,B+ ∈
[10, 100]GeV.
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Figure 6.3: Comparison with CMS. On the left: transverse momentum distribution for the
B+ meson. The red dots correspond to data measured in the CMS-setup 3, while
the green dots are values measured in the CMS-setup 4; on the right: the rapidity
distribution of the B+ meson, where red dots correspond to measurements in the
CMS-setup 1, and green dots in the CMS-setup 2.

6.5 Comparison with Data from the LHCb Collaboration
6.5.1 B+,B0 and B0

s Production at
√

s = 7TeV
We can now consider some experimental results for B meson production at LHCb. We
start our study with an analysis published in 2013 [162]. In this analysis, the production
of different species of B mesons has been measured, specifically B+,B0, and B0

s , along with
their respective charge conjugated mesons. Results have been obtained by analysing events
produced at a center of mass energy of

√
s = 7TeV and integrated luminosity of 0.36 fb−1.

The exclusive decays employed to reconstruct the B mesons are

B+ → J/ψ K+ → µ+µ−K+

B0 → J/ψ K∗0 → µ+µ−K+π−

B0
s → J/ψ ϕ → µ+µ−K+K− .

As for the branching fraction values, B(B0 → J/ψK∗0) was set to the one measured by the
Belle collaboration in Ref. [170], B(B0

s → J/ψϕ) from Ref. [171], and all the others were
obtained from Ref. [167]. The results presented by LHCb have been presented in terms of
differential distributions and fiducial cross-section, integrated over the B meson transverse
momentum and rapidity ranges reported in table 6.5.

In our study, we only considered the measurements of the fiducial cross-sections, and
carried out our comparison with the values predicted by MiNLO’ and MiNNLOPS. The
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Fiducial cuts for B meson production at
√
s = 7GeV

0GeV ≤ pT,B ≤ 40GeV

2.0 ≤ yB ≤ 4.5

Table 6.5: Fiducial cuts for pp → B+ X production from Ref. [162]. We generically de-
noted with B the mesons B+,B0,B0

s and their charge conjugated particles. It is
important to notice that the cut on yB is one-directional, as a consequence of the
asymmetric detector design of LHCb, but allows for a significantly large upper
bound of it.

results are reported in table 6.5. the sum over the cross-section for the production of a B
meson species and their charge conjugated is understood, namely σ(pp→ B+X) corresponds
to [σ(pp→ B+X)+σ(pp→ B̄+X)], where B ∈ {B+, B0, B0

s}. It appears that the agreement
between our predictions and the data is quite remarkable.

Fiducial cross-section σ(pp→ B+X) at
√
s = 13TeV

Process Measured by LHCb (µb) MiNLO’ (µb) MiNNLOPS (µb)

pp→ B+ +X 38.9± 0.3(stat) ± 2.5(syst) ± 1.3(bf) 42.3(5)+24.7%
−18.2% 42.2(1)+13.9%

−11.4%

pp→ B0 +X 38.1± 0.6(stat) ± 3.7(syst) ± 4.7(bf) 42.7(2)+26.2%
−19.8% 42.3(1)+14.7%

−11.3%

pp→ B0
s +X 10.5± 0.2(stat) ± 0.8(syst) ± 1.0(bf) 9.39(1)+24.1%

−17.4% 9.32(6)+13.6%
−11.5%

Table 6.6: Comparison with CMS: Fiducial cross-section for pp → B+X. Values are ob-
tained by integrating the differential cross-section in yB+ ∈ [0, 2.1] and pT,B+ ∈
[10, 100]GeV.

6.5.2 B± Production at
√

s = 7 and 13TeV
We continue our study on the LHCb measurements with a more recent analysis, published
in 2017 [163]. In that paper, the production of B± mesons in pp was considered at

√
s =

7TeV and, for the first time at LHCb, also at
√
s = 13TeV. The 7TeV measurements

were obtained by analysing events at an integrated luminosity of 1.0fb−1, while the 13TeV
events corresponded to a an integrated luminosity of 0.3fb−1 and were collected in 2015.
Similarly to the results presented by the other collaborations, B± → J/ψK± was the decay
channel employed for the B± reconstruction. The fiducial cuts adopted are reported in
table 6.5. In terms of differential cross-sections, double differential distributions in rapidity
and transverse momentum of the B mesons were presented. In this case, results for the B+

and B− production were summed together, according to the following formula

d2σ

dydpT
= NB±

L × ϵtot × B(B± → J/ψK±)× B(J/ψ → µ+µ−)×∆y ×∆pT
, (6.5)
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where NB± is the number of reconstructed B± mesons and ϵtot the bin-dependent total
efficiency. Moreover, taking measurements for different values of the center-of-mass energy
allowed for the estimation of 13TeV/7TeV ratio observables, namely:

R13/7(pT ) =

(
dσ

dpT

)
13TeV(

dσ
dpT

)
7TeV

R13/7(y) =

(
dσ
dy

)
13TeV(

dσ
dy

)
7TeV

, (6.6)

where luminosity uncertainties were considered 50% correlated, systematics associated with
branching fractions, mass values completely correlated, and all other uncertainties uncorre-
lated. We will discuss these results at the end of the section. In Ref. [163], data have also
been compared to theoretical predictions based on FONLL calculations.
We present now the results obtained in the comparison between measurements, MiNLO’ and
MiNNLOPS predictions. Starting with the

√
s = 7TeV results, transverse momentum distri-

butions for pT,B± , integrated over different rapidity regions, are given in fig. 6.4. The pT,B±

integrated over the full fiducial range of yB± (see table 6.5), is shown in fig. 6.5 (left panel).
Analogously, the 13TeV results are reported in fig. 6.6 and fig. 6.7. Although the very fine
binning in pTB±

, that challenges our Monte Carlo calculations and exposes some statistical
fluctuations, the comparison between the data and MiNNLOPS looks quite impressive, as
data points fall within the MiNNLOPS uncertainty bands in most bins. This, combined with
the fact that the same MiNNLOPS uncertainties are consistently smaller than the MiNLO’,
is proof that MiNNLOPS improves the description of data at an unprecedented level of ac-
curacy and precision. The only exception to this picture is represented by the behaviour of
predictions for really small values of the B±, e.g. in the bins below 3 − 4GeV. Here, scale
variation bands observe an important increase, and uncertainties corresponding to MiNLO’
and MiNNLOPS become comparable.
The situation appears a bit different when looking at the B± rapidity distributions in the
right panels of fig. 6.5 and fig. 6.7. Even if data and predictions still agree within the respec-
tive uncertainties, we cannot avoid noticing a shape tension, especially in the

√
s = 7TeV

result. We will comment more on this discrepancy in the next section, where we will present
some pseudorapidity results obtained by LHCb in a different analysis.
We also report in table 6.7 the fiducial cross-sections obtained within the LHCb setup (see
table 6.5) at 7 and 13TeV.

Fiducial cross-section σ(pp→ B+X) at LHCb

Energy Measured by LHCb (µb) MiNLO’ (µb) MiNNLOPS (µb)

7TeV 43.0± 0.2(stat) ± 2.5(syst) ± 1.7(bf) 45.4(4)+25.2%
−19.1% 42.2(1)+13.9%

−11.4%

13TeV 86.6± 0.5(stat) ± 5.4(syst) ± 3.4(bf) 82.2(1)+19.4%
−17.3% 78.5(3)+9.0%

−9.3%

Table 6.7: Comparison with LHCb: Fiducial cross-sections for pp→ B± +X.
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Figure 6.4: Comparison with LHCb: transverse momentum distributions for pT,B± at
√
s =

7TeV, integrated over the rapidity ranges reported on the bottom-left corner of
the upper panels.
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Figure 6.5: Comparison with LHCb. On the left-hand side, the B± transverse momentum
at
√
s = 7TeV, integrated over yB± ∈ [2.0, 4.5]. On the right-hand side, the B±

rapidity, integrated over pT,B± ∈ [0, 40]GeV
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Figure 6.6: Comparison with LHCb: B± transverse momentum distributions at
√
s = 14TeV
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Figure 6.7: Comparison with LHCb: B± inclusive transverse momentum and rapiditiy at√
s = 13TeV

Finally, we can study the ratio distributions mentioned in eq. (6.6). The results for pT,B±

and for of yB± are shown in fig. 6.8. To obtain the MiNLO’ and MiNNLOPS uncertainty
bands, we correlated the scale choices in the different center of mass energy calculations.
More specifically, we adopted the following procedure:
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1. We separately obtained the 7-point scale predictions on the
√
s = 7TeV and the

√
s =

13TeV events.

2. For every fixed choice of (µR, µF ), we computed the ratio distributions R13/7(µR, µF ),
thus getting seven different distributions.

3. We then computed the scale variation bundle in the usual way, considering the seven
different R13/7(µR, µF ).

As argued in [165], this appears to be a safe procedure, since the scale dependence of the
process is mostly independent of the beam energy, being mainly a function of the process
transverse kinematics at the partonic level. This leads to a drastic reduction in the scale
variation dependence of the overall calculation, as now the logarithmic structure of the scale
dependence compensates when dividing out the numerators and denominators of eq. (6.6).
The effect of this mechanism is quite evident when considering pT,B± (left-hand side of
fig. 6.8). Although the theoretical uncertainties are still large in the low transverse momen-
tum region3, the MiNNLOPS bundles shrink down to sizes below ±10% around the central
value for pT,B± ≳ 5GeV. Overall, MiNNLOPS provides a surprisingly good description of
the experimental measurement. Regarding the rapidity ratio distribution (right-hand side
of fig. 6.8), the agreement between data and predictions is overall good, although it reflects
the shape tensions highlighted above for the different beam energy results.
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Figure 6.8: Comparison to LHCb: 13TeV/7TeV ratio distributions.

6.5.3 Bottom-Quark Pair Production at
√

s = 7TeV and
√

s = 13TeV
We finally discuss the results of one last analysis from LHCb [164]. In this case, the purpose
of the analysis was to determine the cross-section associated with the production of bottom-

3This effect is related to the peculiar behaviour of the transverse momentum distributions already observed
above.
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quark pairs in pp → bb̄ + X events, both at
√
s = 7TeV and

√
s = 13TeV. In fact, having

access to the σ(pp → bb̄ + X) would allow for a direct comparison with theoretical results
from fixed order calculations, as it has been done in Ref. [148]. Practically speaking, the
collaboration measured the differential cross-sections for the production of a vast amount B
hadrons in which the hard b quarks can fragmentate, and then combined the results according
to the following formula

σ(pp→ HbX) = 1
2
[
σ(B0) + σ(B̄0)

]
+ 1

2
[
σ(B+) + σ(B−)

]
(6.7)

+ 1
2
[
σ(B0

s ) + σ(B̄0
s )
]

+ 1 + δ

2
[
σ(Λ0

b) + σ(Λ̄0
b)
]
,

where Hb represent a generic B hadron Hb ∈ {B0, B̄0, B+, B−, B0
s , B̄

0
s ,Λ0

b , Λ̄0
b}. The param-

eter δ = (0.25 ± 0.10) represents a correction accounting for the production of Ξb and Ω−b
baryons. Its value is based on the consideration that [172]:

Γ(Ξ−b → Ξ−Xµ−ν̄) = Γ(Λ0
b → ΛXµ−ν̄) , (6.8)

and
σ(Ξ−b )
σ(Λ0

b) = 0.11± 0.03± 0.03 . (6.9)

Such value was then doubled, according to isospin invariance, to include the Ξ0
b hadrons. To

account for the Ω−b contribution, estimated as 15% of the Ξb, it was derived the final value
of δ reported above. Moreover, charmed Bc mesons were neglected, since their presence was
estimated to be around the 0.1% of total amounts of observed B hadrons in Ref. [173].
Differently from the procedure adopted by the analyses discussed above, here the B hadrons
were reconstructed by tracking their semileptonic decays4 B → DXµν (Xµν denoting the
leptonic component of the decay).
As a result, the following formula was applied to relate the detected signals to eq. (6.7):

σ(pp→ HbX) = 1
2L

{[
n(D0µ)
ϵD0 × BD0

+ n(D+µ)
ϵD+ × BD+

]
1

B(B → DXµν) (6.10)

+
[

n(D+
s µ)

ϵD+
s
× BD+

s

]
1

B(Bs → DsXµν) +
[
n(Λ+

c µ)
ϵΛ+

c
× BΛ+

c

]
1 + δ

B(Λ0
b → Λ+

c Xµν)

}
,

where L is the integrated luminosity corresponding to the collected events, namely 284.10±
4.86 pb−1 at

√
s = 7TeV, and 4.60±0.18 pb−1 at

√
s = 13TeV. n(Xcµ) (Xc = D0, D+, D+

s ,Λ+
c )

is the number of detected charm hadron in association with muons, and their charge-
conjugates. The efficiencies are labeled with ϵXc . The expression B(B → DXµν) stays
for the average branching fraction for B̄0 and B− semileptonic decays.
In the paper, the results were reported in terms of pseudorapidity distribution ηHb

=
4The reason behind this peculiar choice is that the semileptonic B0 and B− branching fractions are known

in literature with reasonable accuracy, and the equality of semileptonic widths for all b-hadrons has been
proved by several experimental evidences. On the other hand, the more standard procedure to reconstruct
B hadrons through J/ψ production assumes that the B hadrons are produced in the same proportions as
at LEP [169]. Considering just using one species of B hadron would instead require the knowledge of B
hadron fractions to extrapolate to the total B hadron production.
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− ln[tan(θ/2)]5, where θ is the angle of the Hb hadrons with respect to the beam direction,
and integrated over the full transverse momentum pT,Hb

range. The covered pseudorapidity
range was 2.0 < η < 5.0, corresponding to the acceptance of the LHCb experiment. Also in
this case, the 13TeV/7TeV was presented. The measured distributions were also compared
to the FONLL predictions for pp → bb̄ + X, showing a quite puzzling picture. Indeed, al-
though data and theoretical predictions appeared to be compatible within their respective
uncertainties, evident shape tensions were observed.
We present now the comparison of the MiNLO’ and MiNNLOPS predictions with data.
In fig. 6.9 we show the pseudorapidity distributions at 7TeV (left-hand side of the figure)
and 13TeV (right-hand side). The ratio distribution, calculated with the same methodology
exposed in the previous section, is reported in fig. 6.10. For the values of the fiducial cross-
sections, we refer to table 6.8. In our calculation, instead of considering the parton level
bb̄ production, we worked out the same B hadron cross-section formula in eq. (6.7). This
allowed for a more direct comparison with the data, including the effect of hadronization
and MPI modeled in PYTHIA8. As expected, the MiNNLOPS prediction is affected by
uncertainties much smaller than the FONLL ones in Ref. [173]: around ±10− 15% at fixed
beam energy and down to ±5−10% for the ratio result. Nevertheless, we have also observed
the presence of a shape tension between data and theory, analogously to the one emerging
in the comparison to FONLL. The tension appears dramatical in the central bins of ηB at√
s = 13TeV, where our predictions undershoot data beyond the uncertainties. Nevertheless,

these discrepancies seem to cancel out in the ratio of the pseudorapidities, where we observe
a quite good agreement between MiNLO’, MiNNLOPS and the data points.
As a final remark, we point out that this set of LHCb measurements has gone through a
long revision, and that understanding these results has been the object of research by the
community in the last few years6. More recently, a comparison with the fixed order NNLO
prediction obtained within the Matrix framework has also been advanced in Ref. [148].

Fiducial cross-section σ(pp→ HbX) at LHCb

Energy Measured by LHCb (µb) MiNNLOPS (µb)

7TeV 72.0± 0.3(stat) ± 6.8(syst) 65.3(1)+12.6%
−10.5%

13TeV 144± 1(stat) ± 21(syst) 116.2(3)+7.6%
−12.3%

13TeV/7TeV 2.00± 0.02(stat) ± 0.26(syst) 1.77(9)+2.6%
−9.3%

Table 6.8: Comparison with LHCb: Fiducial cross-sections for pp → Hb + X (see text for
more details).

5In the following, we will adopt the notation ηB when referring to ηHb
6See, e.g, Ref. [174].
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Figure 6.9: Comparison with LHCb: B hadron pseudorapidities at 7TeV and 13TeV
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Figure 6.10: Comparison with LHCb: ratio of B hadron pseudorapidities at 7TeV/13TeV
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Chapter 7

Jet Flavour Study on bb̄ Events

In this chapter, we will present the results of another interesting study that we performed,
namely the analysis of the bottom flavoured jets in the bottom-pair production events at the
LHC. We devoted chapter 4 to describe and define in a rigorous way the hadronic jets that are
observed in high energy collisions. One of the main reasons that motivated the community
to develop a better understanding of the topic, was that hadronic jets somewhat represent
the closest object we can think about when we mean to probe the physics of primary partons
produced in hard events at colliders. When it comes to study primary partons, however, a
question appears natural and legit: is it also possible to determine the flavour of hard quarks
(and antiquarks), by looking into the particle content of jets?
Addressing this question goes far beyond the purely academic interest, as identifying the
flavour content of hard scatterings plays a crucial role in several searches in an beyond the
Standard Model. Bottom- and charm-flavoured jets relate to the presence of long-lived B
and D mesons in the clustered hadronic jets. They can be obtained alone (in the pure QCD
pp→ bb̄+X and pp→ cc̄+X channels), in association with heavy particles like the Higgs
or the vector bosons, or in heavy particle decays like H → bb̄ and t → bW+. Several are
the phenomena that have been studied in the field, and we will now just mention a few
of them. In the context of the top physics, the accurate determination of b-jets allows for
accurate measurements of the top-pair production [175, 176]. In fact, on top of being one of
the most relevant processes at the LHC, the forward production of pp → tt̄ + X has deep
relations with PDFs at high Bjorken-x values, and implications on BSM physics [177–179].
The di-b-jet production in pp→ bb̄+X represents a background for the decay of the Higgs
boson[180, 181, 181, 181] and of new BSM heavy particles, and can be used to study charge
asymmetries. Finally, we also mention that the c-jet production associated with the Z boson
is relevant in the study of the intrinsic charm component of the proton, which is now a new
field of investigation in phenomenology.
On the theoretical side, defining the flavour of jets is definitely not trivial. Although one
would naively expect to associate the flavour of a jet by just looking at its flavour content,
coming up with IR-unsafe jet flavour definitions, or coming across a flavour misidentification,
appears relatively easy. For this reason, the problem of designing a consistent jet flavour def-
inition has been studied extensively in the literature. In the following sections, we will review
some of the most recent available algorithms advanced to solve these issues. We specify that
these algorithms represent a subset of all the algorithms that have been proposed in the last
few years [96, 182–184]. Afterward, we will exploit the pp → bb̄ + X events already consid-
ered in our B-hadron study to perform a systematic comparison of these new algorithms,
for different types of observables. Finally, we will present an exhaustive comparison of our
MiNNLOPS predictions with the inclusive b-jet and di-b-jet measurements carried out by
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the LHC collaborations.

7.1 Definition of Jet Flavour
When studying flavoured jets, two main ingredients are essential for uniquely identifying the
matter:

1. A jet definition, namely a clustering algorithm and a recombination scheme, which
are applied to get the number of jets in a given event, along with their respective
kinematics.

2. A flavour assignment procedure, which sorts out the flavoured jets among the whole
set of jets identified in the first step.

In general, three flavour-recombination schemes have been considered in literature to address
the second point. Sticking with the notation introduced in [184], they are the following:

• Any-flavour scheme, where any combination having at least one flavoured particle yields
a flavoured result.

• Net-flavour scheme, where the net flavour of the combination is considered, namely the
total number of quarks minus antiquarks for each quark flavour.

• Flavour modulo-2 scheme, where the combination is assigned a flavour f if it contains
an odd number of f -flavoured particles1.

The impact of the different schemes applied on simple parton configurations are shown in
table 7.1

Any-flavour Net-flavour Flavour modulo-2

{qf , q̄f} f -flavoured flavourless flavourless

{qf , qf} f -flavoured f -flavoured flavourless

{qf , g} f -flavoured f -flavoured f -flavoured

Table 7.1: Flavour recombination schemes on simple parton configuarions.

In experiments, some additional steps must be considered. At the LHC, it is nowadays
customary to cluster events through the anti-kt algorithm, already discussed in section 4.2.5,
and carry out the jet kinematics within the E-scheme described in section 4.3. To understand
how flavour is assigned to jets, we can take as an example the case of b-flavoured jets. As B
hadrons are more likely to decay before being detected, a Secondary vertex (SV) reconstruc-
tion must be put into practice to reconstruct their kinematics. The reconstructed B hadrons
are then associated with the anti-kT jets already defined, according to some kinematic cri-
teria going under the name of track-jet matching2. Once all identified B hadrons have been

1This scheme is particularly suited for the experimental analyses, where it is not possible to distinguish
flavour from anti-flavour, e.g. because of B0 − B̄0 oscillations.

2E.g. requirements on the angular distance between B hadrons and jet axes.
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associated with jets or discarded via kinematical cuts, the flavour of jets is evaluated within
the any-flavour recombination scheme. This represents, in other words, the core of the jet
b-tagging. As an example, a detailed explanation of the procedures adopted by ATLAS in
Run 2 of the LHC can be found in Ref. [185]. However, the procedures adopted generally
vary to many extents according to what appears to be more efficient and optimised, and
depend on the experiments. For instance, the tracks undergoing clustering are selected to
obey different cuts on their transverse momentum and on other parameters. the radius R
adopted within the anti-kt algorithm is also generally different, and so are the fiducial cuts
imposed on the jet kinematics.

Figure 7.1: Higher order corrections to flavoured jet productions from soft gluon emissions
splitting in a bb̄ pair. In both figures, two incoming gluons scatter into a bb̄g final
state (in red), originating two b-jets (Jet 1 and Jet 3), and a light jet (Jet 2). A
gluon splitting into a bb̄ (in blue), is then included. In the left figure, the bb̄ pair
has a relatively wide angle and pollutes the flavour content of Jet 1 and Jet 2. In
the right figure, the gluon splitting is quasi-collinear, and pollutes the light Jet
2.

Identifying b-jets with the Any-flavour scheme is, unfortunately, not the best option from
the theoretical perspective. In section 4.1, we stressed that a consistent jet definition should
produce jet configurations that are insensitive to extra soft or collinear emissions. For the
same reasons explained there, related to the IR safety of the calculations, this must be also
true for a consistent flavoured jet definition. However, it is not difficult to prove how the
current experimental way to approach flavoured jets violates that principle. If we take an
event and imagine modifying it with an extra emission of a soft gluon, then splitting into a
bb̄ (or cc̄) pair, two unfortunate scenarios are possible:

• The quarks in the pair could be generated with a wide relative angle, and they could
be clustered in different light jets, thus polluting their flavour content (see left figure
of fig. 7.1).

• The quark pair could be quasi-collinear and clustered with another light jet, that would
then be identified as flavoured (see the right figure of fig. 7.1).

Moreover, one could argue that such flavour assignment could be potentially misleading,
as none of the flavoured jets obtained in these scenarios would be really linked to heavy
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flavours produced in the hard scattering of the event. At this point, one might stick with the
anti-kT algorithm and define flavours via the Net-flavour or the Flavour modulo-2 schemes.
However, this would only solve the second problem we pointed out, and would not represent
a definitive strategy. In section 7.2, we will denote as Naive the b-jets defined in this way.

A first attempt to solve both issues exposed above and give an IR-safe definition of jet
flavoured was proposed in Ref. [96], within the Flavour-kT algorithm. The idea was to
modify the pre-existing kT -algorithm, according to two fundamental criteria:

1. The closeness between particles, induced by the clustering distance, should relate to
IR divergences from the factorization formulas.

2. No spurious closeness (i.e. not related to an IR divergent behaviour), should be intro-
duced by the distance adopted.

In this sense, the distance in eq. (4.5) was not really suitable, because it was tailored on
the g → gg splitting probability. Therefore, a pair of quarks qiq̄j would be assigned a small
distance if q̄j is soft (for example), while that configuration is not related to a soft divergence
in the g → giqj , since

[dkj ]
∣∣∣M2

g→gigj
(kj)

∣∣∣ ≃ αsCA

π

dEj

Ej

dθ2
ij

θ2
ij

, (Ej ≪ Ei, θij ≪ 1) , (7.1)

and an analogous situation arose for a quark-gluon pair with a soft quark.
The proposal was to modify the Flavout-kT prescriptions according to the flavour of the
particles considered. For hadronic collisions, the distance measure in eq. (4.5) now becomes

d
(F )
ij = (∆η2

ij + ∆ϕ2
ij)×

{
max(k2

T,i, k
2
T,j), softer of i, j is flavoured

min(k2
T,i, k

2
T,j), softer of i, j is flavourless

(7.2)

where softer corresponds to lower transverse momentum. Regarding the beam distance, the
situation is different. Looking at eq. (4.8), we see it involves only a scale, making it less
obvious how to introduce a maximum and a minimum. Moreover, as the flavour of each of
the incoming beams should play a role, it is also necessary to specify which of the two beams
the particles recombine with. This led to the definition of two new scale kT,B and kT,B̄

kT,B(y) =
∑

i

kT,i

(
Θ(y − yi) + Θ(y − yi)eyi−y) , (7.3)

kT,B̄(y) =
∑

i

kT,i

(
Θ(yi − y) + Θ(yi − y)ey−yi

)
, (7.4)

and to two rapidity-dependent beam distances, one for the right-moving beam B and one
for the left-moving beam B̄ according to

d
(F )
iB =

{
max(k2

T,i, k
2
T,B), i is flavoured

min(k2
T,i, k

2
T,B), i is flavourless

(7.5)

d
(F )
iB̄

=

max(k2
T,i, k

2
T,B̄

), i is flavoured
min(k2

T,i, k
2
T,B̄

), i is flavourless
(7.6)
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Apart from these different definitions, the algorithm essentially articulates in the same
steps already described for the standard kT algorithm. In particular, eq. (4.9) will be by
including the distances between the particles and the two beams in eq. (7.5), and a particle
i will be recombined with either of the incoming beams if d(F )

iB (or d(F )
iB̄

) happens to be the
smallest distance in the set. In case d(F )

iB = d
(F )
iB̄

, particle i will recombine with the beam
that has the smaller ktB(yi), ktB̄(yi).

Notice that the new flavour-dependent distance introduced in eq. (7.2) eliminates the
spurious closeness of the soft wide-angle qq̄ splitting (see the left figure of fig. 7.1) induced by
eq. (4.9). Indeed, if q and q̄ have similar energies E3 ∼ E4 ≪ Q, then y34 ∼ E2

3/Q
2 ≪ 1 and

y13 ∼ y14 ∼ y23 ∼ y24 ∼ 1. This will make q and q̄ recombine first into a flavourless gluon
pseudo-jet, which will eventually recombine with another jet only in the following steps. At
the same time, the flavour-kT algorithm preserves IR safety guaranteed by the standard kT ,
as it was extensively demostrated in Ref. [96]. For what concerns the flavour jets, this can
be assigned either via the Net-flavour or via the Flavour modulo-2 scheme. Flavourless Jets
will then be identified as gluon jets. In case a jet appears to have more than one flavour, no
defined flavour can be assigned to it3.

7.1.1 The Flavour Dressing Algorithm
The flavour-kT algorithm provides an infrared safe procedure to identify b-jets, and its phe-
nomenological impact has been discussed in Refs. [96, 186]. A more recent work [80] has
also studied its application in identifying b-jets originating from the H → bb̄ decay in the
Higgstrahlung processes pp→W+H → e+νebb̄ within MiNNLOPS, and compared it to the
kT and anti-kT algorithms.
Unfortunately, the necessity of equipping the kT distance measure with flavour information
makes the flavour-kT highly not trivial to be implemented in current experimental analyses.
Moreover, implementing drastic modifications to the currently used algorithm can be quite
involved for the experimental collaborations. In this sense, it appears more feasible to adopt
an infrared safe procedure that assigns flavours to jets already clustered with standard al-
gorithms, like the widely used anti-kT algorithm. This is the fundamental idea behind an
algorithm advanced in recent years, namely the Flavour dressing algorithm [182]. We will
now summarize its main features, while we refer the reader to section 7.2 for an analysis of
its impact on the b-jet hadroproduction in MiNNLOPS.
In a given event, the inputs of the flavour dressing algorithm are essentially the following:

• Flavour agnosic jets. The list of jets {j1, . . . , jm} already clustered with an infrared
safe algorithm.

• Flavoured particles The list of particles {p1, . . . , pn}, with flavours {f1, . . . , fn}4.

• Association criterion. A criterion that establishes whether a flavoured particle pi

3Tipically, one is interested in studying only one species of flavoured jets (e.g. b-jets or c-jets), so the flavour
recombination scheme is worked out with a single flavour f (f = b, c), and the other light-flavours are
neglected. In cases where the study is done on more heavy-flavoured jets, like the associated b-jet and
c-jet production, only jets with a well-defined b and c flavour are accounted.

4These can be partons, hadrons or proxy particles like the recontructed secondary vertices SV
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can be associated with a jet, and to which one5. To this extent, a distance measure is
introduced and its function will be detailed below. Given two final-state objects a and
b, it reads

dab = 2
[ 1
ω2 (cosh(ω∆yab)− 1)− (cos ∆ϕ− 1)

]
max(kα

T,a, k
α
T,b) min(k2−α

T,a , k
2−α
T,b ) ,

(7.7)
and the default choice of the parameters was: α = 1 and ω = 2. Distances between the
particle pi and the incoming beams B± are also introduced by applying minor mod-
ifications to the corresponding flavour-kT definitions6. Specifically, the α-dependent
generalized version [186] of eq. (7.5) is used

dpi,B± = max
(
kα

T,i, k
α
T,B±(yi)

)
min

(
k2−α

T,i , k
2−α
T,B±(yi)

)
, (7.8)

where the kT,B±(y) in defined in eq. (7.3).

• Flavour recombination scheme. Either the Net-flavour or the Flavour modulo-2
schemes can be adopted, according to the analysis one is performing.

With these inputs, the algorithm recursively applies the association criterion to assign
flavoured particles to pre-existing jets. Then, the jet flavours are defined by applying the
accumulation criterion to the set of particles assigned to the respective jets. In practice, the
algorithm works as follows:

1. The set of jets {j1, . . . , jm} in the event is found with standard IRC safe algorithms
(e.g. the anti-kT ).

2. A set D of distance measures is introduced, computed with eq. (7.7) on all the allowed
particle pairings according to

D = {dp1p2 , dp1p3 , . . . , dpijk
, . . . , dpiB± , . . . } . (7.9)

In particular, dpipj is included if either both pi and pj are flavoured, or if at least one of
them is unflavoured and they belong to the same jet. When a particle pi is associated
with a jet jk, also the distance dpijk

is included. At last, the beam distances dpiB± are
added if pi does not belong to any jet.

3. While D is not empty, the pairing with the smallest distance is singled out. If the
smallest distance pairing is composed of two particles pi and pj , these are merged
together and removed from the list. If dpikjk

is the smallest, then pi is assigned to jk,
and all entries involving pi are removed from D. In the third case, when dpiB± is the
smallest, the particle pi is just discarded and so are all entries of D involving it.

4. Finally, the flavour of any jet jk is defined according to the accumulated flavours of
particles assigned to it in the previous step.

5An obvious choice would be to assign a particle pi with flavour fi to the same jet it has been clustered in.
However, this might not be possible in case where the particle does not enter the jet algorithm as input.
For a more detailed discussion on this point, we refer to Ref. [182].

6Notice that eq. (7.7) correctly reproduces eq. (7.2) in the collinear limit.
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As a result, the algorithm so designed is IRC safe at all orders in perturbation theory, as
proved in Ref. [182]. Moreover, it is suitable to be applied both in theoretical MC calculations
and in experimental analyses, as the input particles can be partons, heavy-flavour hadrons,
and proxy particles reconstructed in an experimental environment. The flavour dressing
algorithm has also been tested in some phenomenological studies, such as the pp→ Z+ b-jet
[182] and the pp→ Z + c-jet process [187].

7.1.2 Interleaved Flavour Neutralisation
We now introduce the last algorithm that will be relevant to the extent of this thesis, namely
the Interleaved flavour neutralisation (IFN) algorithm [184]. The main goal behind the IFN
algorithm is similar to the one that motivated the flavour dressing procedure, namely to
find an infrared-safe procedure that assigns flavour to jets clustered with the widely used
sequential recombination algorithm (specifically the anti-kT and the Cambridge-Aachen al-
gorithms). In this sense, the strategy proposed by the IFN algorithm is to run a standard
clustering algorithm and carry out, before any clustering takes place, a flavour neutralisation
procedure that globally redefines the flavours of involved particles. The flavour neutralisa-
tion, as we will see, requires a neutralisation distance measure to be adopted. Similarly to the
flavour dressing algorithm7, the distance used is the one reported in eq. (7.7). We will now
summarize the main features of the algorithms, assuming to choose the anti-kT to perform
the clustering. For the sake of clarity, we will first review the neutralisation procedure, and
then see how it is interleaved at each step of the clustering.
The flavour neutralisation is always performed relative to a particle or pseudo-jet i, which
serves as the pivot of the procedure. We can denote by C the list of all potential neu-
tralisation candidates and with E the candidates which must be excluded because already
considered in previous steps. Along with them, a distance scale dmax is given as a threshold
above which to ignore neutralisation candidates. We can now imagine implementing the
procedure in a computer routine that will have the aforementioned ingredients as inputs,
namely N(i, dmax, C,E). Schematically, the routine will

N1: Populate a list L with distances dik, where k ∈ (C − E), and only if dik < dmax

L = {di1, di2, . . . } . (7.10)

N2: Find the k that gives the smallest dik in L: this will be the selected candidate for the
flavour neutralisation with i.

N3: Before going ahead with k, run the routineN(k, dik, C,E) to find any other particle/pseudo-
jet j that could be more naturally paired with k (such that djk < dik)8. If such a j
exists, it is used to neutralise flavour in k. E.g., if j has a net bottom flavour content of
three (fj = bbb) and k has a net anti-bottom flavour of two (fk = b̄b̄), the neutralisation

7To be precise, the distance reported in eq. (7.7) was first introduced in the IFN algorithm [184], while
the original formulation of the flavour dressing algorithm was based on the same generalized flavour−kT

distance reported in [186]. However, as pointed out in Ref. [184], such distance choice would cause
infrared-unsafety issues arising in high order corrections, and was therefore replaced by eq. (7.7).

8As detailed in Ref. [184], this passage is essential for the IRC safety of the algorithm.
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will annihilate two b from j with two b̄ from k, so that:

fj = bbb → f ′j = b , (7.11)
fk = b̄b̄ → f ′k = 0 . (7.12)

N4: Now, the left flavour content in k is used to neutralise the flavour of i, in the same way
described above. If k is flavourless, dik is removed from the list L and the loop starts
again from point 2. If L is empty, exit the routine.

N5: If i is flavourless, exit the routine.

A routine N such implemented can then be used in the IFN algorithm, which interleaves
N with the anti-kT clustering works as follow:

1. Before any pair of particles/pseudo-jets i and j (with pT,i < pT,j) is about to recombine
within the anti-kT algorithm, i+ j will have the same flavour of j if i is flavourless.

2. If i is flavoured, initialize a list C with all the flavoured pseudo-jets declared so far,
and a list E = {i, j}. Then run the routine N(i, dij , C,E).

By construction, the IFN algorithm will generate flavour jets with exact anti-kT kinematics.
This leaves open the possibility of running the flavour neutralisatias as an add-on, after all
jets have been identified. Moreover, the same definition of the neutralisation distance and
the recursive property of the procedure will guarantee the IRC of the algorithm at all orders
in perturbative calculations. Two more properties are worth being mentioned. One is the
multi-scale flavour resolution, meaning that the flavour of pseudo-jets is well defined at any
step of the anti-kT clustering, allowing for jet substructure analyses. The other one is the
single parton consistency, namely the fact that events containing only one parton per jet do
not have their flavour altered by the algorithm. In other words, leading order jet calculations
carried out with the IFN provide the same result of the plain anti-kT algorithm.
Although we focused on the b flavour, the procedure can be extended to deal with multiple
flavours, eventually including c. In general, two ways to do this are allowed, possibly leading
to different results. A way to do this is to first neutralise the b and then neutralise the c
flavour, for each interleaved step. Another option is to carry out a single flavour neutralisation
that considers both b and c at a time. As a consequence, flavour neutralisation triggered by
the bottom content of a pseudojet may affect the c flavour of other pseudojets.

7.2 A Comparative Study on the b-jet Clustering in bb̄ Events
Having introduced some of the infrared-safe algorithms currently available to define flavoured
jets, we can present the result of a study we performed on the MiNNLOPS pp → bb̄ + X
events, whose goal is to compare the impact of the different clustering techniques on several
b-jet observables.
Before going through the details of the calculation, it is worth making some general con-
siderations about the main production channel that contributes to the b-jet production. At
the leading order, we have the so-called flavour creation (FCR) channel, where two initial
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state gluons scatter into a bb̄ pair. This is described by the s-channel and a t-channel tree-
level diagrams in figs. 7.2a and 7.2b. In hard events where the bottom quarks are emitted
back-to-back, the FCR configuration brings the largest contribution. Going to the next or-
der, we have an additional gluon emission. This can feature as a radiative correction to the
(FCR) channel, or as part of two new channels: the gluon-splitting (GSP) in fig. 7.3a and
the flavour excitation (FEX) channel in fig. 7.3b. The GSP case can be understood as a
heavy-quark radiative correction to the tree-level of gg → gg, where one of the final state
gluons splits into a bb̄ pair. On the other hand, the FEX topology is given by an initial state
gluon splitting into bb̄, of which one b quark will be directly part of the final state and the
other will go through the hard scattering. Both the GSP and the FEX configurations are
affected by a logarithmic enhancement due to quasi-collinear bottom pair emission. This
goes like α2

sα
n
s ln2n−1(pT /mb) in the GSP configuration, and like α2

s(αs ln(pT /mb))n in the
FEX case (n ≥ 1 is the number of g → bb̄ splittings) [188–192]. In our 4FS calculation, we
have only one final state bb̄ pair, therefore both configurations will receive a α3

s ln(pT /mb)
enhancement, starting from the NLO.

g

g

b

b̄

(a) Flavour creation, s-channel

g

g

b

b̄

(b) Flavour creation, t-channel

g

g g

b

b̄

(a) Gluon-splitting channel

g

bb̄

(b) Flavour-excitation channel

In the following sections, we will take under exam different b-jet observables, as well as
di-b-jet observables computed on the kinematics of the hardest and second-hardest b-jet in
the event. The effect we will observe, by comparing the observables and the results obtained
within different clustering techniques, will be strictly related to the different production
channels just discussed, as their roles may be enhanced or suppressed according to the
situation.
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7.2.1 Setup of the Calculation
We will now describe the setup adopted for the study on the comparison of different clustering
algorithms. Schematically, the results of our simulations can be summarized in the following
three steps:

1. Event generation. Using our MiNNLOPS implementation of the pp → bb̄ + X
process, we generated samples of Powheg events at

√
s = 7TeV and

√
s = 13TeV. In

terms of bottom mass, PDFs, and other parameters of the calculation (e.g. the values
of KQ, Q0 etc.), we essentially adopted the same choices already detailed in section 5.3.
The only relevant difference from the setup presented in the previous chapters is related
to the Born µ

(0)
R central scale. For it, we looked for a dynamical scale that could be

more representative of a typical b-jet event kinematics. Given that light radiation
becomes important when considering clustered objects like the b-jets (we illustrate this
point in fig. 7.1, we finally opted for

µ
(0)
R = Hbb̄

T +∑
i pT,ji

2 , (7.13)

where Hbb̄
T =

√
m2

b + p2
T,b +

√
m2

b + p2
T,b is the usual sum of the transverse masses of b

and b̄. To include the kinematics of the additional light partons produced in the hard
scattering, the sum over their transverse masses (effectively their transverse momenta)
is also accounted9.
In order to increase the accuracy of our results in the hard regions of the b-jet produc-
tion, we exploited a suppression factor10 W (Φbb̄g) on the Born phase-space kinematics
of POWHEG bb̄ + J generator. Given the highly nontrivial correspondence between
Φbb̄g and the phase space of the final clustered b-jets, we tested different functional
form for W , and we finally opted for

W (Φbb̄g) =
( 1

Λ2
cut

1
Λ2

cut
+ 1

H2
T (Φbb̄g)

)2

, (7.14)

where Λcut is a hard scale that was set to 300GeV and

HT (Φbb̄g) = pT,b + pT,b̄ + pT,g . (7.15)

2. Interface with parton shower. The events so generated have been interfaced with
the MC parton shower program PYTHIA8, allowing to generate showered events both
at the parton level and at the hadron level (with and without the multi-parton inter-
action effects). In the generation of hadron final states, we turned off the decay of
B mesons (B0, B̄0, B+, B−, B0

s , B̄
0
s ) and baryons (Λ0

b , Λ̄0
b), that could then be directly

used for the flavour assignment of the identified jets. All the other unstable hadrons
have been let to decay.

9Working out with the pp → bb̄J Powheg generators empowered with the MiNNLOPS prescriptions, we can
have either one or two more light partons in the hard scattering configuration, being the event generated
either in the Born or in the real kinematics.

10See eq. (3.36).
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3. Jet analysis. At last, we performed an on-the-fly jet analysis on all the particles
generated in the final state, event per event, via an interface with the FastJet-3.4.2.
According to the clustering algorithm and to the b-tagging technique employed, we
obtained four different classes of predictions, which will be labeled in the following:

• EXP: where the anti-kT algorithm has been employed and b-jets have been defined
with the any-flavour scheme.

• Naive: where the anti-kT algorithm has been employed and b-jets defined with
the flavour modulo-2 scheme.

• FD: where the anti-kT + flavour dressing algorithm has been used and b-jets
defined with the flavour modulo-2 scheme.

• IFN: where the anti-kT + inteleaved flavour neutralisation algorithm has been
used and b-jets defined with the flavour modulo-2 scheme.

In all the listed cases, the anti-kT jet radius was set to R = 0.4.

In our analysis, we introduced a minimal set of fiducial cuts on the kinematics of the
identified b-jets, in a way to simulate a prototype of experimental analysis similar to the
ones carried out by the collaborations at the LHC. Specifically, the following cuts have been
imposed on the transverse momentum and rapidity of all the identified b-jets:

pb-jet
T > 30GeV, |ηb-jet| < 2.5 . (7.16)

7.2.2 Hardest b-jet Observables
We present now our MiNNLOPS results for observables computed on the hardest b-jet. We
start with the differential cross-section as a function of the transverse momentum p

(hard)
T,b , in

fig. 7.4. In this plot, what appears evident at first glance is the significant difference between
the EXP curve and the other predictions. The large discrepancy can be fully explained by
the flavour-recombination scheme that is adopted in the EXP calculation and that differs
from the Naive, FD, and IFN calculations. Indeed, while the any-flavour scheme implies
the presence of hardest b-jets containing bb̄ pairs in the EXP prediction, this is not possible
within the modulo-2 scheme used in the other cases. As a result, the EXP cross-section
will include the logarithmically enhanced contributions coming from the quasi-collinear bb̄
emissions in the GSP and FEX channels. The effect of these terms increases with the jet
transverse momentum, as can be observed. Moreover, the EXP hardest b-jet will be also
sensitive to all the quasi-collinear g → bb̄ splittings generated by the parton shower, leading
to an increase in the difference with the other b-jet definitions.
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Figure 7.4: Transverse momentum of the hardest b-jet in pp → bb̄ + X production at√
s = 7TeV, comparing the effect of the different b-jet definitions introduced

in section 7.2.1.

On the other hand, we observe small differences between the Naive, FD, and IFN curves.
These essentially overlap in the soft regions and differ by a ∼ 5% factor for phard

T,b ∼ 300GeV.
In this case, the Naive prediction receives contributions from the soft wide-angle bb̄ emissions
described in section 7.1, which are generally excluded in the FD and IFN clustering. However,
these emissions can only generated by the parton shower in a 4FS calculation, and their
impact appears quite modest. At last, differences between the FD and the IFN are essentially
due to technical aspects of the related to the respective flavour assignment procedures.
In terms of scale uncertainties, we do not observe a relevant improvement by comparing the
different predictions. Indeed, all of them are affected by around ±20% uncertainties at low
transverse momentum, increasing up to around ±35% in the hard regions.
To mitigate the effect of the bb̄ quasi-collinear production in the GSP and FEX channels,
one can compute the same hardest b-jet transverse momentum distribution but requiring the
presence of two well-separated b-jets in the events. This is done in fig. 7.5. In this case, the
increase in the EXP prediction will be mainly due to the g → bb̄ quasi-collinear splitting
generated by the parton shower. As a result, a sizeable difference is still present between the
EXP differential cross-section and the other ones, but appears much more contained than in
fig. 7.4.
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Figure 7.5: Transverse momentum of the hardest b-jet in events with two well-separated
b-jets, comparing different b-jet definitions.

We now present the pseudorapidity of the hardest b-jet in fig. 7.6. In this case, the
observable is integrated over the whole transverse momentum spectrum, resulting in a more
homogeneous behaviour than the one observed in p(hard)

T,b . Specifically, the difference bewteen
the EXP prediction and the other three turn into a uniform ∼ +20% offset over the full range
of pseudorapidities. The small differences between the Naive, FD, and INF predictions are
now completely absent, as they were visible only in the tail of p(hard)

T,b , corresponding to a
cross-section ∼ 4 − 5 magnitude order lower than the peak. The same uniform behaviour
characterises the scale uncertainties, which are around −20% + 25% throughout the whole
spectrum.
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Figure 7.6: Pseudorapidity of the hardest b-jet, comparing different b-jet definitions.

7.2.3 bb̄-Dijet Observables
We can now consider some observables defined on the di-b-jet system. To start off with, we
present the di-b-jet transverse momentum in fig. 7.7. In this case, we observe that all the
different predictions are essentially compatible, with the EXP calculation being only slightly
above the Naive and the FD ones, and the IFN curve slightly below them. In general, this
observable requires a bb̄ pair recoiling against at least one hard gluon. As this scenario
can occur only within the GSP and the FEX channels at the lowest order, so at O(α3

s),
MiNNLOPS will effectively provide NLO accuracy. This is confirmed by the relatively large
size of the uncertainty bands, which makes them compatible with the uncertainties of a
standard NLO calculation for the bb̄ hadroproduction. Moreover, the hard bb̄ pair has to be
separated enough to produce two hard b-jets, thus suppressing the logarithmic enhancement
that we observed in the EXP result of fig. 7.4. Within the EXP calculation, a hard b-jet
could also appear whenever the parton shower induces a g → bb̄ slitting on the Born-level
gluon of the bb̄g phase space. In this case, the gluon would originate a EXP b-jet, that can
eventually belong to the di-b-jet system and give a contribution to fig. 7.7.
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Figure 7.7: Di-b-jet transverse momentum, comparing different b-jet definitions.

At last, we consider the invariant mass of the di-b-jet system, in fig. 7.8. As this observable
can receiveO(α2

s) contributions from the FCR channel, the MiNNLOPS prediction effectively
yields NNLO accuracy. This can also be understood by looking at the size scale variation
bands, which is around ±10% for all the reported predictions, thus fully compatible with
a standard pp → bb̄ + X NNLO calculation. Again, we observe a deviation of the EXP
curve from the other predictions, mainly due to the different treatment of the GSP channel
discussed above. Indeed, as we already commented, a scenario that can have an impact on
the EXP calculation is a hard gluon originating a b-jet through the parton shower, recoiling
against a quasi-collinear bb̄ pair that is also identified with a b-jet. This effect, however, only
comes to place starting from the NLO correction to the process.
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Figure 7.8: Invariant mass of the Di-b-jet system, comparing different b-jet definitions.

7.3 Comparison with Data from the ATLAS Collaboration
We will now present a comparison of the MiNLO’ and MiNNLOPS b-jet productions pre-
dictions with experimental data from ATLAS, CMS and LHCb. For details about the setup
of the calculation, we refer the reader to section 7.2.1. To define the flavour of jets, we
adopted the EXP definition, where the any-flavour recombination scheme applied on anti-kT

jets allowed us to simulate the results of the experimental analyses.

7.3.1 Inclusive b-jet and Di-b-jet Production at
√

s = 7TeV
To start off with, we consider the measurements carried out by the ATLAS collaboration.
First, we examine a set of results for the inclusive b-jet and di-b-jet production at

√
s = 7TeV

[193]. Events from RUN-1 have been used in the analysis, corresponding to an integrated
luminosity 34 pb−1. B hadrons inside jets have been reconstructed by applying two different
and independent techniques:

• A lifetime-based method, where long-lived B hadrons are identified by looking at the
secondary vertices (SV) of their decay, which are generally significantly displaced from
the primary vertex (PV) of the hard interactions. The SV is obtained by studying
the invariant mass of the B hadron charged decay products, within the SV0 algorithm
[194].

• A muon-based method, where the presence of muons is linked to the semileptonic decays
of B hadrons.

We will not dive more into the details of the experimental techniques involved for the track
identification and the vertex reconstruction, as they do not play an important role in our
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analysis. For more information on the matter, we refer the reader to Ref. [193]. Regarding
the b-jet definition, we mention that identified tracks have been clustered with the anti-kT

algorithm, using a jet radius parameter R = 0.4. Reconstructed B hadron have been re-
quired to have pT > 5GeV, and to be found within ∆R =

√
∆ϕ2 + ∆η2 = 0.3 of the jet

axis they are assigned to. Two different measurements have been performed: one of the
inclusive b-jet transverse momentum distributions, and one on some di-b-jet observables. In
the inclusive b-jet analysis, all identified b-jets have been used to populate the bins of the
measured transverse momentum differential cross-section, while the di-b-jet observables have
been obtained by taking the hardest and the second-hardest b-jets in each event with at least
two identified b-jets. The fiducial cuts adopted in the two analyses are reported in table 7.2.
A comparison with theoretical predictions has also been performed. POWHEG+Pythia and
MC@NLO+Herwig have been used to get NLO+PS calculations, and a third prediction
was obtained within Pythia standalone, after a proper normalization. In general, a good
agreement was found between the predictions and the measurements, for all the studied ob-
servables. The only exception to this picture was noticed when looking at the MC@NLO
predictions for the inclusive b-jet analysis. We quote from the conclusions of Ref. [193]:
“MC@NLO + Herwig, however, predicts a significantly different behaviour of the double-
differential cross section that is not observed in the data”.

Setup of the ATLAS b-jet analysis at
√
s = 7TeV

Anti-kT clustering with R = 0.4,

B hadrons with pT > 5GeV and ∆R < 0.3

inclusive b-jets 20GeV ≤ pb-jet
T ≤ 200GeV

analysis |yb-jet| ≤ 2.1

di-b-jet pb-jet
T ≥ 40GeV

analysis |yb-jet| ≤ 2.1

110GeV ≤ mij ≤ 760GeV

Table 7.2: Setup of the ATLAS b-jet analysis at
√
s = 7TeV at ATLAS. In the upper panel,

the b-jet definition. In the middle panel, the fiducial cuts on the inclusive b-jet
analysis. In the lower panel, the fiducial cuts on the di-b-jet analysis.

We present now the results we obtained in MiNLO’ and MiNNLOPS. In fig. 7.9, we
compared with measurements of the inclusive b=jet transverse momentum, within different
rapidity regions. In this setup, the MiNLO’ and MiNNLOPS central predictions differ by
a factor ∼ 5− 10%, the difference becoming slightly in the PT tails. In terms of uncertainty
bundles, their size is O(±25%) in MiNLO’ and O(±20%) in MiNNLOPS. We observe a
really good agreement between our predictions and the experimental data. In fig. 7.10, we
show the results for the transverse momentum distribution integrated over the full fiducial
rapidity range yb-jet < 2.1. The considerations we can make here are fully analogous to
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the ones holding for the results in different rapidity bins. We just remark on how theoreti-
cal uncertainties are still much larger than data relative errors, the latter ones being about
±15% in fig. 7.10. A somewhat different picture emerges when looking at the invariant
mass of the di-b-jet system, in fig. 7.11. Here, MiNLO’ and MiNNLOPS present evident
differences. In terms of normalization, MiNNLOPS provides a ∼ 30% flat correction on the
MiNLO’ prediction, and we observe a reduction of the scale uncertainties from O(±20%)
(in MiNLO’) down to O(±10%) (in MiNNLOPS). On the other hand, data are affected by
quite large errors, and they are agree with theorectical predictions. In this sense, we remark
that MiNNLOPS improves the description of measurements, compared to MiNLO’.
The reason behind this peculiar behaviour might lie in the setup differences between the inclu-
sive b-jet and the di-b-jet calculations. Indeed, while hard events with a quasi-collinear emis-
sion of a bb̄ pair contribute to the transverse momentum distributions, high invariant mass
values of the di-b-jet system require two well distinguished b-jets and receive sizeable contri-
butions from the bb̄ back-to-back emission. In the former case, MiNLO’ and MiNNLOPS
provide the same accuracy, but in the latter case MiNNLOPS effectively achieves NNLO
accuracy.
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Figure 7.9: Comparison with ATLAS: Transverse momentum of inclusive b-jet, integrated
over different ranges of |yb-jet| (specified on the bottom-left corner of the upper
panels).
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Figure 7.10: Comparison with ATLAS: Inclusive b-jet transverse momentum, integrated over
the fiducial range of |yb-jet| (see table 7.2).
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Figure 7.11: Comparison with ATLAS: Invariant mass of the di-b-jet system. The fiducial
cuts are reported in table 7.2).
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7.3.2 Di-b-jet Production in High-pT Events at
√

s = 7TeV
We now consider the results of another interesting analysis carried out by the ATLAS collab-
oration [195]. In this case, the goal of the study was to measure a set of di-b-jet observables,
in a quite exclusive setup. Events at a center-of-mass energy of

√
s = 7TeV have been con-

sidered, corresponding to an integrated luminosity of 4.2 fb−1.
The setup used in this analysis appears quite peculiar and we are going to describe and
comment on its motivations. In every event, all the identified tracks (including muons and
neutrinos), as been clustered with the anti-kT algorithm using a radius parameter of R = 0.4,
which is standard at ATLAS. However, clustered events have been then selected by requiring
their hardest jet to have a transverse momentum pT > 270GeV. Notice that, at this point,
no assumption is made on the flavour of the hardest jet, which might either be a b-jet or
a light jet. Now a b-jet analysis is performed on the selected events. In particoular, b-jets
are defined as jets containing at least one B hadron with a pT > 5GeV and with a distance
from the jet axis ∆R < 0.3. Finally, b-jets must obey the following fiducial cuts. Each b-jet
must have pT > 20GeV and |η| < 2.5, and the relative distance between the hardest and
second-hardest b-jets must be ∆R < 0.4. Here we will not dive into the details of the B
hadron experimental reconstruction procedure, for which we refer the reader to Ref. [195].
We just mention that the analysis is based on the reconstruction of the secondary vertices
(SV) in B hadron decays, and employs a combination of the JetFitter and IP3D algorithms
[196].
For the sake of clarity, the setup features detailed in the above are summarized in table 7.3.
Given the fact that a really hard jet is required in the event selection, henceforth we will
refer to this specific ATLAS analysis as the High-pT b-jet analysis.

ATLAS b-jet definition and event selection

in the high-pT b-jet analysis at
√
s = 7TeV

Jet clustering anti-kT with R = 0.4

Event selection Leading jet having pT > 270GeV and |η| < 3.2;

b-jet definition B hadrons with pT > 5GeV and ∆R < 0.3;

b-jet cuts pT,b > 20GeV and |ηb| < 2.5

di-b-jet cuts ∆Rbb > 0.4

Table 7.3: Setup of the ATLAS High-pT b-jet analysis at
√
s = 7TeV.

If we want to understand what happens to di-b-jet observables, when we select events
having a high transverse momentum leading jet, we must figure out how the configurations
discussed in figs. 7.2a, 7.2b, 7.3a and 7.3b affect them. For most of the observables we
will examine, the bb̄ system will have to recoil against additional radiation, thus making
the observables defined on a three-jet configuration. In these cases, there will be effectively
no contribution from the FCR production channel at the leading order, and the formal ac-
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curacy of MiNLO’ and MiNNLOPS will coincide, essentially reproducing the NLO QCD
result. For other observables where the back-to-back production events will have an impact,
the MiNNLOPS results will provide NNLO accuracy. Moreover, the impact of the GSP
configuration in the quasi-collinear bb̄ emission will be also suppressed by the fiducial cuts
required on the separation of the two hardest b-jets (see table 7.3). However, given the possi-
ble different behaviour of the di-b-jet observables, it is convenient to look at each one of them
separately and see which of the considerations just discussed holds. We also mention that,
in Ref. [195], data have been compared to POWHEG+PYTHIA and MC@NLO+Herwig, as
well as the standalone Pythia and Herwig (after a proper normalization). Broadly speaking,
the theoretical predictions faced difficulties in describing regions of phase space that are not
dominated by two hard b-jets.
We present now the results of our comparison with the MiNLO’ and the MiNNLOPS results.
In fig. 7.12, we show the dijet invariant mass distribution, denoted by mbb. As we can see,
the differential cross-section decreases of one magnitude order when going from small values
of mbb to mbb ∼ 550GeV. At this point, we encounter a threshold due to the fiducial cut of
the leading jet transverse momentum. Indeed, this value corresponds to a local peak, located
approximately at twice the value of the pT = 270GeV cut. After these points, events that
contribute can have two hard back-to-back b-jets originating from the FCR channel, which
becomes the dominant one. To understand this point, we can write down the momenta of
the two back-to-back b-quarks in the center-of-mass reference frame

Pµ
b =

(√
m2

b + |p⃗|2, p⃗
)
≈
(
|p⃗|, p⃗

)
, (7.17)

Pµ

b̄
=
(√

m2
b + |p⃗|2,−p⃗

)
≈
(
|p⃗|,−p⃗

)
, (7.18)

and their invariant mass will be given by the square root of (Pb + Pb̄)2, namely

mbb̄ ≈ 2|p⃗| . (7.19)

In this case, the lowest value of |p⃗| admitted for FCR events passing the pT > 270GeV fiducial
cut is really the |p⃗| = pT = 270GeV, corresponding to a back-to-back bb̄ emission on a plane
orthogonal to the beam axis. We can image the extra soft and collinear emissions to have a
smearing effect on this picture, but still, we can explain the threshold effect at around twice
the value of 270GeV.
The MiNLO’ and MiNNLOPS correctly predict the described behaviour. In fact, the two
predictions essentially overlap at mbb ≲ 400GeV, while they consistently differ in the mbb tail.
In the low mbb regions, they both provide the NLO accuracy guaranteed by merging with the
bb̄+J Powheg generator, and are characterised by large scale uncertainties. In the tail of the
distribution, the MiNNLOPS uncertainties go down to O(±15%), and the central values of
the two predictions differ by ∼ 30− 40%. Data appear to be well described by MiNNLOPS
in the intermediate mbb region, while some tensions are observed in the first two and in the
last three bins of the distribution. However, we must observe that theoretical uncertainties
are really large at low mbb, while experimental uncertainties dramatically increase at high
mbb, making the quoted tensions not really conclusive in the present comparison.
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Figure 7.12: Comparison with ATLAS: invariant mass of the di-b-jet system in the high-pT

b-jet analysis.

We can now look at the differential cross-section as a function of the di-b-jet transverse
momentum pT, bb, reported in fig. 7.13. The distribution ranges from 0 to 400GeV and two
peaks can be observed, a first one around 50GeV and a second one around 270GeV. The
first peak can be interpreted as an effect of the fiducial cut on the transverse momentum
of each identified b-jet, which must be harder than 20GeV. The second peak has a value
corresponding to the cut on the hardest jet, and can be understood as follows. When it
comes to high values of pT, bb, the GSP channel is the dominant one, with a hard gluon
recoiling against the bb̄ pair. Indeed, the FCR channel can only have an impact at small
values of pT, bb, as the total momentum conservation imposes the system of two back-to-back
bottom quark to have zero transverse momentum. In the GSP channel, for pT,bb < 270GeV,
the recoiling gluon will be forced to have a transverse momentum corresponding to pT,bb, so
that the selected events will need either b or b̄ to be harder than 270GeV11. However, for
pT,bb > 270GeV, a threshold appears due to GSP events with a hard gluon that passes the
fiducial cut, and can be clearly observed in the trend of data.
Regarding our predictions, we find that the two peaks are correctly predicted. Given that
the GSP channel is the dominant one throughout almost the full range of the distribution,
MiNLO’ and MiNNLOPS overlap almost everywhere, and are affected by quite large scale
uncertainties compatible with an NLO calculation. Small differences can be observed at low
pT,bb , where the two predictions come to differ for ∼ 10% and the MiNNLOPS uncertainties
shrink down to O(±20%). In general, data are well described by our predictions, although
we observe a clear shape difference in the region 50GeV < pT,bb < 200GeV, where most of
data are actually collected.

11this is valid, of course, only when neglecting higher order corrections to the GSP channel.
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Figure 7.13: Comparison with ATLAS: tranverse momentum of the di-b-jet system in the
high-pT b-jet analysis.

We proceed by considering two observables related to the distance between the leading
and the sub-leading b-jets, namely their azimuthal angle difference ∆ϕ and their angular
distance ∆R =

√
(∆ϕ)2 + (∆η)2. Also in this set of data, the double peak pattern observed

above points to the transition from GSP to FCR-dominated regions. Indeed, small b-jet
angular separations receive their main contributions from primary events where two close
b quarks recoiled against a hard gluon, a configuration dominated by the GSP channel.
Nevertheless, the more the b-jet separation increases, the more likely it is that events in
the FCR channel give a contribution. This is proven by the presence of peaks at around
∆ϕ = π and ∆R = 3. Our theoretical predictions successfully reproduce the trend of data.
For small b-jet separation values, MiNLO’ and MiNNLOPS showcase the same behaviour,
as they retain NLO accuracy in the bb̄ + J configurations. This is also manifest in the
sizes of their scale uncertainty bands, that are here compatibles with the ones of an NLO
calculation for bottom-pair hadroproduction. Towards the tails of the distributions, the
perturbative accuracy of MiNNLOPS increases and its prediction deviates from the one
provided by MiNLO’. In general, we notice a good agreement between the measurements and
our predictions, apart from some consistent discrepancies at low values of ∆R. Remarkably,
MiNNLOPS seems to improve the description of data for large values of ∆ϕ and ∆R.
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Figure 7.14: Comparison with ATLAS: differential cross-sections as a function of the az-
imuthal angle ∆ϕ between the two hardest b-jets (left figure), and of their an-
gular distance ∆R (right figure).

In fig. 7.15, we finally consider the differential distributions of the rapidity variables12

yB = 1
2 |y1 + y2| and y∗ = 1

2 |y1 − y2|. Notice that the former observable is effectively related
to the boost of the di-b-jet system, and thus provides information on the kinematics of
the initial-state partons. In general, both observables are dominated by the GSP channel
contribution. As a consequence, no big differences can be spotted between the MiNLO’ and
the MiNNLOPS predictions. For the same reasons explained above, these are affected by
rather large theoretical uncertainties, making the comparison with data not really conclusive.
However, we observe a good agreement between predictions and data, apart from deviations
at high values of yB.

12Where y1 and y2 are the rapidities of, respectively, the hardest and the second-hardest b-jets.
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Figure 7.15: Comparison with ATLAS: differential cross-sections as a function of the rapidity
variables yB = 1

2 |y1 + y2| (left figure) and y∗ = 1
2 |y1 − y2| (right figure).

7.4 Comparison with Data from the CMS Collaboration
Another study that we considered was a measurement of the inclusive b-jet production at√
s = 7TeV, carried out by the CMS collaboration during Run-1 of the LHC [197]. The

results were expressed in terms of differential cross-sections for the transverse momentum
pb-jet

T . The distributions presented are inclusive in the b-flavoured jets, meaning that every
b-jet passing the fiducial cuts has been accounted for in the final result. No distinction has
been made between b- and b̄-jets.
Similarly to what wasdone by the ATLAS collaboration in [193], two independent analyses
have been considered when performing the measurements:

• A jet-analysis, selecting events with at least one identified b-jet, on a sample at inte-
grated luminosity of 34 pb−1.

• A muon-analysis, selecting events having a b-jet in association with a muon, at an
integrated luminosity of 3 pb−1.

Although the two analyses differed both in terms of trigger selection and b-jet identification,
they gave compatible results and were totally comparable in terms of the precisions of the
two measurements. We only considered the results of the jet-analysis in comparing data with
our theoretical predictions.
To reconstruct the jets in the events, a particle-flow algorithm [198] was employed, that
identifies a list of tracks in each event. Tracks are then clustered with the anti-kT algorithm,
setting a radius R = 0.5. B-hadrons have been identified by reconstructing their secondary
vertices (SV), where they decayed. Each b-jet was required to be associated with at least one
SV. To compute the double differential inclusive b-jet cross-section, the following formula
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was applied13

d2σ

dpT dy
∼ Ntagged

∆pT ∆yL , (7.20)

which populates every (pT , y) bin with the corresponding measured number of b- and b̄-tagged
jets Ntagged. Effectively, the cross-section is the sum of the b and b̄ flavoured jet production.
L is the integrated luminosity of the sample considered. Regarding the fiducial cuts, we
reported the ones adopted by the jet-analysis in table 7.4.

CMS setup of the jet analysis at
√
s = 7TeV

Anti-kT clustering with R = 0.5

At least one reconstructed B hadron (SV)

18GeV ≤ pb-jet
T ≤ 200GeV

|yb-jet| ≤ 2.2

Table 7.4: Setup of the inclusive b-jet production measurements at
√
s = 7TeV at CMS,

within the jet-analysis.

The double differential cross-section in rapidity and transverse momentum of the inclu-
sive b-jet was then integrated over different rapidity ranges and compared to theoretical
predictions obtained within the MC@NLO framework, and with PYTHIA. In fig. 7.16, we
report the results for these distributions and compare data with predictions from MiNLO’
and MiNNLOPS. In table 7.5, we report the comparison for the fiducial cross-sections,
integrated over |yb-jet| < 2.2 and over two different ranges of pb-jet

T .

Inclusive b-jet production cross-sections at CMS

pb-jet
T range Measured by CMS (µb) MiNLO’ (µb) MiNNLOPS (µb)

18GeV < pb-jet
T < 200GeV 9.75.0± 0.32(stat) ± 1.67(syst) ± 0.39(lumi) 9.3(7)+35.8%

−24.4% 10.1(7)+20.4%
−23.4%

32GeV < pb-jet
T < 200GeV 1.73± 0.07(stat) ± 0.20(syst) ± 0.07(lumi) 1.42(9)+31.6%

−22.9% 1.55(7)+19.2%
−23.4%

Table 7.5: Comparison with CMS: Fiducial cross-sections for the inclusive b-jet production
at
√
s = 7TeV, integrated over |yb-jet| < 2.2 and different ranges of pb-jet

T .

When considering the b-jet transverse momentum distributions, where we see how the
cross-section decreases by more than four magnitude orders from the low pb-jet

T to the high
pb-jet

T tails. This behaviour is correctly predicted by our calculations, which in general show-
case a good agreement with data. At values of pb-jet

T lower than ∼ 100 − 120GeV, the
measurements fall within the MiNLO’ and MiNNLOPS uncertainty bands. in the tails of
13For the sake of clarity, in eq. (7.20) we did not report some experimental ingredients like the b-tagging

purity, the unfolding correction, and the efficiency. For a detailed explanation, we refer the reader to Ref.
[197].
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pb-jet
T , it appears that the theory predicts a harder behaviour than the one experimentally ob-

served. In these regions, while data are still covered by the MiNLO’ bundles, they fall below
the MiNNLOPS minima. However, it must be noticed that there is still an overlap between
the upper experimental errors and the lower MiNNLOPS uncertainty bands, which are in
general big. Regarding MiNLO’ and the MiNNLOPS compare, we see they essentially differ
by a flat K-factor, being the MiNLO’ central values ∼ 10% lower than MiNNLOPS through-
out the whole pb-jet

T spectrum, in all rapidity ranges. In terms of uncertainties, MiNNLOPS
does not bring a dramatic improvement. In fact, we pass from MiNLO’ uncertainties of
O(±25%) to MiNNLOPS uncertainties of O(±20%).
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Figure 7.16: Comparison with CMS: inclusive b-jet transverse momentum distributions, in-
tegrated over different |yb-jet| regions.

128



Chapter 7 Jet Flavour Study on bb̄ Events

7.5 Comparison with Data from the LHCb Collaboration
The last experimental results that we will discuss are from a study carried out by the LHCb
collaboration [199], based on the analysis of events at

√
s = 13TeV and integrated luminosity

of 1.6 fb−1. Here, the inclusive di-b-jet and di-c-jet production in the forward region was
considered, and measurements were expressed as differential distributions of the transverse
momentum and of the pseudorapidity of the leading jet, of the rapidity difference between
the jets, and of the dijet invariant mass. As the focus of this thesis is on the bottom-pair
production phenomenology, we will show theoretical predictions for the di-b-jet observables,
and leave the understanding of di-c-jet observables to future studies.
In this experimental analysis, jets have been identified by clustering particle flow objects
with the anti-kT algorithm, setting a jet radius parameter of R = 0.5. After requiring the
jet components to obey some kinematical criteria14, conceived to optimize the rejection of
fake jets, a heavy-flavour jet-tagging algorithm (referred to as “SV-tagging”[201]) has been
employed to assign flavour to jets. To select events, a set of fiducial cuts of the single b-jet
transverse momentum and rapidity, and on the azimuthal opening of the dijet system have
been applied and are reported in table 7.6.

Setup of the LHCb b-jet analysis at
√
s = 13TeV

Jet clustering anti-kT with R = 0.5

b-jet cuts pT (j0), pT (j1) > 20GeV

2.2 < η(j0), η(j1) < 4.2

di-b-jet cuts |∆ϕj0j1 | > 1.5

Table 7.6: Setup of the LHCb b-jet analysis at
√
s = 13TeV. j0 labels the leading b-jet and

j1 the sub-leading one.

In Ref. [199], measurements have been compared to theoretical predictions obtained within
two different frameworks. In one case, NLO+PS calculations have been obtained by using
MC@NLO interfaced with PYTHIA, and in the other PYTHIA was run to get LO results.
It was observed that measurements were generally below the predictions, although the large
theoretical uncertainties prevented from driving to conclusions.
We now present the results of our comparison with MiNLO’ and MiNNLOPS. In fig. 7.17 we
report two differential distributions for the hardest b-jet, namely its transverse momentum
and pseudorapidity. In fig. 7.18, we report the invariant mass mij of the di-b-jet system and
the differential distribution for the observable ∆y∗ij = 1

2 |yi − yj |15.
When looking at these distributions, what appears evident is the large discrepancy in the
normalization of the MiNLO’ and MiNNLOPS central curves, compared to the data nor-
malization. While the MiNLO’ result is still compatible at its lower uncertainty band with
the data, the quite significant NNLO QCD corrections of +20–30% induced by MiNNLOPS

14See [200].
15yi and yj denote the rapidities of the leading and of the sub-leading b-jets.
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lead to a facor ∼ 2 difference between data and MiNNLOPS prediction. We remark that
the MiNLO’ calculation is fully comparable with the behaviour observed in the NLO+PS
prediction from MC@NLO reported in fig. 7.17, and that the MiNNLOPS result represents
the first NNLO+PS prediction ever compared to this set of data. For the time being, we did
not achieve a clear explanation for these discrepancies, which might lie in the experimental
analysis or in a statistical fluctuation downwards of the data. Otherwise, new-physics effects
might be responsible for it.
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Figure 7.17: Comparison with LHCb: Differential cross-sections as function of the hardest
b-jet transverse momentum (left figure), and of its pseudorapidity (right figure).
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Figure 7.18: Comparison with LHCb: Differential cross-sections as function of the di-b-jet
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2 |yi − yj | (right figure).
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Conclusions

In this thesis, we presented the results of our phenomenological studies on the bottom-pair
production process at the LHC. Our predictions have been obtained within the Powheg
framework, after implementing the MiNNLOPS prescriptions. This allowed us to consis-
tently match the generated events with the Pythia GPMC program, achieving for the first
time in literature NNLO+PS accuracy on the observables inclusive over extra QCD emis-
sions in the bb̄ phase-space.

To introduce the tools that we employed, we devoted the first part of the thesis to reviewing
their underlying theory. In chapter 2, we summarized the main features of the fixed order
computations in QCD, with particular emphasis on the next-to-leading order predictions.
In chapter 3, we presented the basics of parton showers, and the Powheg matching between
NLO QCD and parton showers was broadly reviewed. Finally, we discussed the derivation
of the MiNLO’ and MiNNLOPS method, as in their first application to the color-singlet
production in hadronic collisions. In chapter 4, we introduced the concept of hadronic
jets and summarized some of the most widespread clustering algorithms used to study jet
phenomenology in modern colliders.

Our novel implementation of the bottom-pair production in MiNNLOPS was detailed in
chapter 5, after recalling the recent extension of the MiNNLOPS method to the heavy quark
pair production at the LHC. Our starting point was the implementation of the pp→ bb̄+jet
process in Powheg-Box-Res. To validate our program, we performed a comparison at fixed
order against results obtained within the Matrix framework, considering exclusive observ-
ables over the leading light-jet emission. We then followed the MiNNLOPS implementation
of the top-pair production process originally realized in Powheg-Box-V2, to design our
MiNNLOPS bb̄ code in Powheg-Box-Res. The calculations were carried out in the four-
flavour scheme, setting the bottom quark mass to its pole value mb = 4.92GeV. Also in this
case, we compared our results to the NNLO predictions from Matrix, considering inclusive
observables over the bb̄ phase space. We witnessed a perfect agreement between MiNNLOPS
and the NNLO distributions, both in terms of central values and theoretical scale uncer-
tainties. Moreover, we observed a remarkable improvement from MiNLO’ to MiNNLOPS,
with a reduction of the scale uncertainties from about ±25% in the former case to about
±10− 15% in the latter.

In chapter 6, we exploited the bottom-pair production events generated at the center-of-
mass energies of

√
s = 7TeV and

√
s = 13TeV to obtain predictions for several B-hadron

production observables. We carried out an extensive comparison of our results with mea-
surements published by the ATLAS, CMS, and LHCb collaborations during Run-1 and
Run-2 of the LHC. The Powheg interface with Pythia8 was used to simulate both the
parton shower and hadronization effects, within the Lund string Model in the Monash2013
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tune. In this way, we obtained the first NNLO+PS calculations available in literature for
these kinds of observables. In general, we observed a remarkable agreement between the
MiNNLOPS results and the experimental data, apart from some tensions that we observed
in the inclusive pp→ bb̄+X measurements at LHCb.

In chapter 7, we focused on the phenomenology of b-jets originating from the pp→ bb̄+X
hard events. To this extent, we reviewed two of the most recent infrared-safe clustering
algorithms designed to deal with heavy flavoured jets, namely the Flavour dressing and the
Interleaved flavour neutralisation (IFN ). We then analyzed the impact of four different b-jet
definitions on a set of hardest b-jet and di-b-jet observables. Specifically, the predictions that
we compared were obtained by adopting the anti-kT jet clustering and defining the b flavour
according to: the any-flavour recombination scheme (for the predictions labeled EXP); the
flavour modulo-2 scheme (Naive); the flavour dressing equipped with the flavour modulo-2
prescriptions (FD); the IFN method in the flavour modulo-2 recombination scheme (IFN).
Also in this case, we interfaced Powheg with Pythia8 to obtain hadron-level events, and
we used the FastJet package routines to perform the anti-kT clustering on events.

In general, the hardest b-jet distributions displayed evident discrepancies between the
EXP predictions and the other three, increasing with b-jet transverse momentum. On the
other hand, small differences were observed between the Naive, FD, and IFN results.
The reason for this behavior can be consistently explained by considering the impact of
the logarithmic enhancement due to the quasi-collinear bb̄ emissions produced in the gluon-
splitting and flavour-excitation channels of the bb̄g production, and by the parton shower
g → bb̄ splittings. While these configurations contribute to the b-jet production in the
EXP scheme, they do not enter calculations involving the flavour modulo-2 recombination
scheme. All four schemes produced compatible results for the di-b-jet observables, requiring
two well-separated b-tagged jets.

Finally, we compared our MiNNLOPS b-jet predictions against experimental data from
the ATLAS, CMS, and LHCb collaborations. We observed very good agreement between
our calculations and the experimental results in the inclusive b-jet observables, as measured
by ATLAS and CMS. In the comparison with the ATLAS analysis with a large fiducial
cut on the transverse momentum of the leading-jet, we observed some tensions in specific
ranges of the phase-space. In this particular setup, however, we could not claim exact NNLO
accuracy, as we essentially achieved NLO accuracy for most observables. A large offset was
instead observed in the comparison with the LHCb differential cross-sections at

√
s = 13TeV,

whose origins will be the subject of future investigations.
Finally, we would like to discuss some recent developments and possible outlooks of our

work. The natural next step of our research is undoubtedly represented by the implemen-
tation of the charm-pair production process in MiNNLOPS. While this task might not be
conceptually more involved than the bottom-pair production case, The relatively low value
of the charm-quark pole mass (mc = 1.67GeV) implies low values of the scales entering cal-
culations, often giving rise to numerical instabilities. With a NNLO+PS event generator for
this process, it will be possible to carry out new interesting phenomenological analyses, ulti-
mately deepening our understanding of heavy quark production in high energy collisions. For
example, it will be possible to compare with new interesting inclusive D-meson production
measurements at the LHC1. Moreover, as pointed out in Ref. [165], ratio distributions at

1See, e.g., Ref. [202].
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different center-of-mass energies for the charm-pair production can be employed to constrain
the gluon PDF uncertainties at small x. Many relevant predictions can also be obtained
for the inclusive c-jet hadroproduction, and ratios of b-jet and c-jet observables also find
applications in BSM studies.

Finally, we would like to mention an important application of the bb̄ and cc̄ event gener-
ators beyond collider physics [203, 204]. When cosmic rays from deep space hit the earth’s
atmosphere, a vast number of collisions between the protons they carry and the atmospheric
nuclei occur. These events, which can be effectively modeled as proton-proton collisions at
high center-of-mass energies, are suitable to be simulated through the tools we explored in
our thesis. Eventually, the collisions will produce high energetic B and D mesons, then de-
caying leptonically and giving rise to neutrino fluxes. In fact, this phenomenon represents a
large background in cosmic neutrino searches carried out, e.g., by the IceCube experiment
in Antarctica. Together with our NNLO+PS bb̄ event generator, a MiNNLOPS implemen-
tation of the cc̄ production process will allow us to predict this prompt atmospheric neutrino
flux at an unprecedented perturbative accuracy, possibly increasing the precision of cosmic
neutrino measurements.
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