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Learning-Based Optimal Control with Performance Guarantees for
Unknown Systems with Latent States

Robert Lefringhausen1, Supitsana Srithasan1, Armin Lederer2, and Sandra Hirche1

Abstract— As control engineering methods are applied to in-
creasingly complex systems, data-driven approaches for system
identification appear as a promising alternative to physics-
based modeling. While the Bayesian approaches prevalent
for safety-critical applications usually rely on the availability
of state measurements, the states of a complex system are
often not directly measurable. It may then be necessary to
jointly estimate the dynamics and the latent state, making the
quantification of uncertainties and the design of controllers with
formal performance guarantees considerably more challenging.
This paper proposes a novel method for the computation of
an optimal input trajectory for unknown nonlinear systems
with latent states based on a combination of particle Markov
chain Monte Carlo methods and scenario theory. Probabilistic
performance guarantees are derived for the resulting input
trajectory, and an approach to validate the performance of
arbitrary control laws is presented. The effectiveness of the
proposed method is demonstrated in a numerical simulation.

I. INTRODUCTION

An accurate mathematical model is fundamental for the
model-based control of complex dynamical systems. Since
it is often very time-consuming or even impossible to derive
physics-based models, e.g., for flexible robotic manipulators
or human-robot interaction, data-driven modeling approaches
are gaining attention. Accordingly, there are numerous ap-
plications in control, with a combination of state-space
models (SSMs) and Gaussian processes (GPs) [1] or sim-
ilar Bayesian approaches being prevalent for safety-critical
applications. Their ability to quantify model uncertainties
due to limited training data (epistemic uncertainty) and mea-
surement noise (aleatory uncertainty) enables the derivation
of probabilistic guarantees for the closed-loop system, even
in the presence of noise. Examples can be found, among
others, in [2] and [3], where GP-based tracking controllers
are proposed and probabilistic bounds on the tracking error
are derived.

A serious disadvantage of the aforementioned methods is
that full-state measurements are required. In many applica-
tions, however, it is unclear which variables represent the
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states of the system, or not all of these are measurable.
While some learning-based approaches avoid a state-space
representation by using past inputs and outputs to make a pre-
diction, e.g., NARX approaches [4], this comes with several
drawbacks. First of all, the resulting models cannot separate
between noise that permanently changes the trajectory of
the system (process noise) and noise that only influences
the measurements (measurement noise). They hence provide
systematically incorrect open-loop predictions for systems
where process and measurement noise differ [5]. Another
disadvantage is that it is unclear how prior knowledge can
be leveraged since it can be expressed almost exclusively
in state-space representation. In addition, the states cannot
be used for the control task, for example, to formulate
constraints. In many cases, it is thus necessary to overcome
the dependence of SSMs on state measurements by jointly
estimating the dynamics and the latent state. However, to the
best of our knowledge, there are no control approaches for
nonlinear systems that rigorously account for uncertainties
arising from the joint dynamics and state estimation, thus
allowing the derivation of performance guarantees in this
setting.

The main contribution of this paper is a novel method
for the optimal control of unknown systems based on input-
output measurements with probabilistic performance guaran-
tees. In order to quantify uncertainties, which is crucial for
deriving formal guarantees, we employ a Bayesian approach
and formulate a prior over the unknown dynamics and the
system trajectory in state-space representation. Since for
practical applicability, the prior must be updated based on
input-output measurements, but the corresponding posterior
distribution is analytically intractable, we utilize particle
Markov chain Monte Carlo (PMCMC) methods [6] to draw
samples from this distribution. While similar approaches are
proposed, among others, in [7], [8], and [9] for system iden-
tification, this fundamental idea has not yet been exploited
for control. By employing a scenario point of view [10],
the resulting samples from the posterior distribution over
future system trajectories allow us to analyze the closed-loop
performance under an arbitrary fixed control law. Based on
this idea, we propose a scenario optimal control problem
(OCP), whose solution we prove to exhibit performance
and constraint satisfaction guarantees. The straightforward
applicability and flexibility of the proposed method are
demonstrated through simulations.

The remainder of this paper is structured as follows. After
defining the problem in Sec. II, Sec. III briefly reviews
PMCMC methods. Sec. IV describes how the obtained
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samples can be used to provide formal guarantees for existing
control laws and presents a sample-based OCP formulation
and guarantees for its solution. The proposed method is nu-
merically evaluated in Sec. V, followed by some concluding
remarks in Sec. VI.

II. PROBLEM FORMULATION

Consider the general nonlinear discrete-time system of the
form1

xt+1 = f(xt,ut) + vt, (1a)
yt = g(xt,ut) +wt, (1b)

with state xt ∈ Rnx∈N, which is not observed explicitly,
input ut ∈ Rnu∈N, output yt ∈ Rny∈N, and t ∈ Z.
The system is perturbed by independent and identically
distributed (iid) process noise vt ∼ V and measurement
noise wt ∼ W , which are independent of the state and
the input. The transition and observation functions f(·) and
g(·) as well as the noise distributions V and W are assumed
to be unknown. We assume that at time t = 0 we have
access to the dataset D = {ut,yt}t=T∈Z<−1:−1 containing
the last |T | input-output measurements. In order to enable
the theoretically justified inference of a model and to provide
formal guarantees for its generalization, we further employ
the following assumption.

Assumption 1: The structure of the system (1) is known,
i.e., suitable parameterizations {fθ(·), gθ(·),Vθ,Wθ} with
a finite number of unknown parameters θ are available. In
addition, priors p(θ) and p(xT ) for the model parameters
and the initial state of the observed trajectory are available2.
The unknown system and the initial state are samples from
these priors.

Knowledge of a reasonable prior is a standard assumption
in Bayesian inference. In many cases, models for f(·) and
g(·) can be constructed based on physical principles, e.g., for
cooperative manipulation [11]. Moreover, if such knowledge
is unavailable, methods from Gaussian process regression
can be used to construct parametric models, which can
asymptotically represent all continuous functions with an
increasing number of basis functions, such as the approach
presented in [12]. Often, the type of noise is also known, and
only the parameters of the corresponding distribution must
be determined. Therefore, this assumption is not particularly
restrictive in practice.

Given a stage cost c(ut,xt,yt), the objective is to find an
input trajectory u0:H that minimizes the accumulated cost

1Notation: Lower/upper case bold symbols denote vectors/matrices,
respectively. R denotes the set of real numbers, Z the set of integers, N0

and N the set of natural numbers with and without zero, and subscripts <a

or ≤a the corresponding subsets whose elements satisfy < a or ≤ a. P(·)
denotes the probability of an event and p(·) the probability density function
(pdf). (Multivariate) Gaussian distributed random variables with mean µ and
variance Σ are denoted by N (µ,Σ). ab∈Z:c∈Z is the shorthand notation
for {ab, . . . ,ac}. In denotes the n × n identity matrix and 0 the zero
matrix of appropriate dimension. | · | denotes the absolute value of a scalar
and card(·) the cardinality of a set.

2Note that the prior for the model parameters θ and the initial state xT

also implies a prior for all subsequent states.

over the horizon H ∈ N

JH =

H∑
t=0

c (ut,xt,yt) (2)

while satisfying constraints of the form

h (u0:H ,x0:H ,y0:H) ≤ 0, (3)

where h(·) is an arbitrary deterministic function. Since the
unknown parameters and the process and measurement noise
may have infinite support, it is generally impossible to
guarantee the satisfaction of the constraints (3) in every
case, i.e., with probability 1. Moreover, input trajectories
with such guarantees tend to be overly conservative and
are thus undesirable due to poor performance. Instead, we
aim to find an input trajectory that is probabilistically ro-
bust, i.e., for which we can derive guarantees of the form
P(h(u0:H ,x0:H ,y0:H) ≤ 0) ≥ α when applied to the sys-
tem. In order to address this problem, we first consider how
probabilistic guarantees can be provided for the case that a
given control law ut = π(uT :t−1,yT :t−1, t) is applied to the
unknown system. Based on this analysis, we consider how
the search for an input trajectory u0:H can be formulated as
a tractable OCP for whose solution probabilistic performance
and constraint satisfaction guarantees can be inferred directly.

III. PARTICLE MARKOV CHAIN MONTE CARLO
METHODS

For practical applicability, the prior presented in the previ-
ous section must be updated based on the observations D, i.e.,
the posterior distribution over model parameters and latent
state trajectories3 p(θ,xT :−1 | D) must be inferred. Without
inferring the posterior distribution, the stochastic OCP is usu-
ally infeasible since the prior over system trajectories, which
implicitly follows from the repeated propagation of p(xT )
through the prior distribution over the dynamics, exhibits
an excessive variance. In general, inference of the posterior
distribution p(θ,xT :−1 | D) is analytically intractable, but
particle Markov chain Monte Carlo (PMCMC) methods,
introduced in [6] and briefly reviewed in this section, can
be used to draw samples from it.

PMCMC methods utilize sequential Monte Carlo (SMC)
algorithms [13], which numerically approximate the distribu-
tion over the latent state trajectory p(xT :−1 | θ,D) by a set of
N weighted particles, to generate proposals for Markov chain
Monte Carlo (MCMC) samplers, a broad class of algorithms
designed for sampling from posterior distributions.

An example is particle Gibbs (PG) sampling, which en-
ables particularly efficient sampling from p(θ,xT :−1 | D) in
case samples can be drawn from the conditional distribution
p(θ | xT :−1,D). In PG sampling, a state trajectory x

[k]
T :−1

is first drawn from the distribution p(x
[k]
T :−1 | θ[k],D) using

an SMC algorithm. Based on this state trajectory, new model
parameters θ[k+1] are then drawn from p(θ[k+1] | x[k]

T :−1,D).
These two steps are repeated until the desired number of
samples is reached.

3Note that throughout the work, the dependency on the prior is omitted
for notational simplicity.
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Remark 1: Note that the distribution p(θ | xT :−1,D),
required for PG sampling, depends on the prior p(θ). Various
combinations of parametric models and priors can be found
in the literature that provide a closed-form expression for
p(θ | xT :−1,D) and thus enable efficient PG sampling.

Remark 2: If the conditional distribution p(θ | xT :−1,D)
is not available, other PMCMC methods, e.g., particle
marginal Metropolis-Hastings sampling [6], can be applied.
The theory presented hereafter is not tied to a specific
PMCMC method.

It can be shown that the invariant distribution of PG sam-
pling and other suitable PMCMC methods is p(θ,xT :−1 | D)
and that they will asymptotically provide samples from this
distribution even for a finite number of particles [6]. Since the
first samples depend heavily on the initialization and may not
accurately represent the desired distribution, the first Kb sam-
ples must be discarded (so-called burn-in period). As for all
MCMC methods, no guarantees can be given regarding the
length of the burn-in period. The samples are also correlated
with samples generated immediately before and after. Since
independent samples are desired for the intended application,
additional measures must be taken to reduce the correlation.
Several approaches are presented in the literature; see, e.g.,
[14]. A straightforward and comparatively sample-efficient
approach is thinning, which reduces the correlation by using
only every kd-th sample. The parameter kd should be chosen
as small as possible so that few samples are discarded
but large enough so that the samples are approximately
independent. An indicator of an appropriate kd is a low auto-
correlation of successive samples.

Remark 3: How well a PMCMC algorithm can explore
the posterior distribution and how small kd can be chosen
also depends significantly on the prior and the parameters of
the algorithm. In order to reduce kd to an acceptable level,
scaling the model parameters or adjusting the prior may be
necessary.

With a burn-in period of appropriate length and a suitable
measure to reduce the correlation, PMCMC methods gener-
ate almost uncorrelated samples from the desired distribution,
justifying the following assumption.

Assumption 2: The employed PMCMC method provides
K independent samples {θ,xT :−1}[1:K] from the distribu-
tion p(θ,xT :−1 | D).

IV. CONTROL WITH GUARANTEES

In this section, we consider how input trajectories with
probabilistic performance guarantees can be derived based
on the prior over the system dynamics and the latent state
trajectory presented in Sec. II. This prior is very general
and can accurately represent a wide range of systems due
to the separation of process and measurement noise. In
addition, the state-space representation makes it very intuitive
to incorporate prior knowledge. In order to determine an
input trajectory, we propose to utilize PMCMC methods to
sample from the posterior distribution over future trajectories
of the unknown system, which depends on the control inputs
u0:H . Due to the representation as a parametric state-space

Algorithm 1 Scenario generation
Input: Dataset D, parametric model {fθ(·), gθ(·),Vθ,Wθ},

priors p(θ) and p(xT ), K, H
Output: Scenarios δ[1:K] = {θ,x0,v0:H ,w0:H}[1:K]

1: for k = 1 to K do
2: Sample {θ,xT :−1}[k] from p(θ,xT :−1 | D) using

a PMCMC method.
3: for t = −1 to H do
4: Sample v

[k]
t from Vθ[k] .

5: Sample w
[k]
t from Wθ[k] .

6: end for
7: Set x[k]

0 = fθ[k](x
[k]
−1,u−1) + v

[k]
−1.

8: end for

model, future state and output trajectories can be expressed
as a function of u0:H , which is uniquely characterized by the
model parameters θ, the initial state x0, and the realizations
of the process and measurement noise v0:H and w0:H ,
respectively. Samples δ from the corresponding posterior
distribution p(θ,x0,v0:H ,w0:H | D) represent possible
future system behavior depending on u0:H and we refer to
these samples as scenarios in the following. Algorithm 1
generates the scenarios based on the observations D. First,
K model parameters θ and state trajectories xT :−1 are
drawn from the corresponding posterior distribution using
a PMCMC method (line 2). Then, possible realizations of
the process and measurement noise are drawn from the
distributions parameterized by θ (lines 3-6), and the initial
state is determined via forward propagation (line 7).

The scenarios obtained by Algorithm 1 depict not only
the aleatory uncertainty but also the epistemic uncertainty.
As we will explain in the following, these scenarios are a
powerful tool for analyzing and synthesizing control laws. In
Sec. IV-A, we first outline how they can be used to provide
probabilistic guarantees for existing control laws. Then, in
Sec. IV-B, we present a scenario-based OCP formulation and
derive probabilistic guarantees for its solution.

A. Analysis of existing control laws

In the following, we show how the scenarios δ[1:K] can
be used to provide probabilistic performance and constraint
satisfaction guarantees for arbitrary control laws ut =
π(uT :t−1,yT :t−1, t). We thereby use a very natural idea
to analyze the closed-loop behavior: since the scenarios
represent samples from the distribution over possible future
system trajectories depending on the inputs, we can ob-
tain samples {u0:H ,x0:H ,y0:H , JH}[1:K] from the posterior
distribution over future inputs, states, outputs, and costs
by simulating the scenarios together with the control law
forward as outlined in Algorithm 2. In order to enable a
formal performance analysis based on these samples, the
following prerequisite must be fulfilled.

Assumption 3: The control law ut = π(·) is independent
of the scenarios δ[1:K], which are used to analyze it, i.e., it
is not designed based on these scenarios.

This assumption is not limiting since additional scenarios
can be generated for the analysis if scenario-dependent
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Algorithm 2 Forward simulation

Input: Scenarios δ[1:K], control law π(uT :t−1,yT :t−1, t),
K, H

Output: Samples {u0:H ,x0:H ,y0:H , JH}[1:K]

1: for k = 1 to K do
2: for t = 0 to H do
3: Set u[k]

t = π(u
[k]
T :t−1,y

[k]
T :t−1, t).

4: Set x[k]
t+1 = fθ[k](x

[k]
t ,u

[k]
t ) + v

[k]
t .

5: Set y[k]
t = gθ[k](x

[k]
t ,u

[k]
t ) +w

[k]
t .

6: end for
7: Set J [k]

H = JH(u
[k]
0:H ,x

[k]
0:H ,y

[k]
0:H).

8: end for

control laws are to be investigated.
In order to derive probabilistic guarantees for the cost

incurred when the control law is applied to the unknown
system, we consider the maximum of the K samples of the
accumulated cost (2) generated by Algorithm 2

JH = max
k∈N≤K

J
[k]
H . (4)

The following theorem provides a statement on the probabil-
ity that this worst-case cost JH , which is a random variable
itself, is an upper bound for the incurred cost.

Theorem 1: For a given confidence parameter β ∈ (0, 1),
under Assumptions 1, 2, and 3, it holds that

P
(
VJ ≤ 1− K

√
β
)
≥ 1− β, (5)

where VJ denotes the probability that the cost (2), incurred
when the control law π(·) is applied to the unknown system,
exceeds JH , i.e., VJ = P(JH > JH).

Proof: Due to Assumptions 1 and 2, the samples
{θ,xT :−1}[1:K] generated by the PMCMC method are inde-
pendent samples from the posterior distribution over system
dynamics and past state trajectories. Due to Assumption 3,
the samples {u0:H ,x0:H ,y0:H , JH}[1:K] generated with Al-
gorithms 1 and 2 are therefore also independent samples
from the respective posterior distributions. JH corresponds
to the solution of a sample-dependent optimization problem
with the single decision variable JH , the objective min JH ,
which is convex in the decision variable, and the constraint
maxk∈N≤K

J
[k]
H − JH ≤ 0, which is also convex in JH .

The result follows from [15, Theorem 1] by simple algebraic
manipulations.

If the constraints (3) are satisfied for all scenarios, the
same line of thought can be used to derive guarantees that
the constraints are satisfied when the control law π(·) is
applied to the unknown system.

Theorem 2: Assume that with a control law π(·) the
constraints (3) are satisfied for all scenarios, i.e.,

h
(
u
[k]
0:H ,x

[k]
0:H ,y

[k]
0:H

)
≤ 0 ∀k ∈ N≤K (6)

where {u0:H ,x0:H ,y0:H}[1:K] are obtained via Algorithm 2.
For a given confidence parameter β ∈ (0, 1), under Assump-
tions 1, 2, and 3, it holds that

P
(
Vh ≤ 1− K

√
β
)
≥ 1− β, (7)

where Vh denotes the probability that the constraints (3) are
violated when the control law π(·) is applied to the unknown
system.

Proof: This follows from the proof of Theorem 1, if
one considers maxk∈N≤K

h(u
[k]
0:H ,x

[k]
0:H ,y

[k]
0:H) ≤ 0 instead

of the maximum cost JH .
Theorems 1 and 2 thus provide probabilistic performance

and constraint satisfaction guarantees when arbitrary control
laws are applied to the unknown system. The strength of the
guarantees depends on the total number of samples K, and
more samples lead to stronger guarantees.

B. Scenario-based optimal control
In the previous section, we have shown that a finite number

of scenarios δ[1:K] can be used to provide probabilistic
guarantees for existing control laws. A natural question is
whether these scenarios can also be used directly to find
a control law or input trajectory that robustly minimizes
the cost (2) while satisfying the constraints (3) with high
probability. As we will show in the following, it is possible
to formulate the search for such an input trajectory4 u0:H as a
deterministic OCP for whose solution probabilistic constraint
satisfaction guarantees can be directly provided. For this
purpose, we make use of the ideas presented in Sec. IV-A
and formulate the following OCP:

min
u0:H , JH

JH (8a)

subject to: ∀k ∈ N≤K , ∀t ∈ N0
≤H

x
[k]
t+1 = fθ[k]

(
x
[k]
t ,ut

)
+ v

[k]
t , (8b)

y
[k]
t = gθ[k]

(
x
[k]
t ,ut

)
+w

[k]
t , (8c)

J
[k]
H = JH

(
u0:H ,x

[k]
0:H ,y

[k]
0:H

)
≤ JH , (8d)

h
(
u0:H ,x

[k]
0:H ,y

[k]
0:H

)
≤ 0. (8e)

In order to ensure the robust minimization of the cost (2),
the objective of the OCP is to minimize the worst-case cost
JH , i.e., similar to (4), the costs of all scenarios must be less
than or equal to JH resulting in (8d). The forward simulation
utilized in Sec. IV-A (Algorithm 2) is implicitly included in
the optimization problem via the constraints (8b-8c). Similar
to the previous section, we also require that the constraints
(3) are satisfied for all scenarios, resulting in (8e).

The optimization problem (8) is deterministic, more pre-
cisely, a nonlinear programming (NLP) problem in which
the uncertainty about the unknown system is incorporated
by considering multiple deterministic scenarios rather than
in terms of distributions. The problem can thus be solved
with well-known methods; see [16] for an overview. Since
the problem (8) is generally non-convex, convergence to
the global minimum cannot be guaranteed. However, locally
optimal solutions are also well-suited for many practical
applications.

In the following, we assume that a feasible and locally
optimal solution {u⋆

0:H , JH
⋆} to the problem (8) is available.

4Note that the considerations given here can be readily extended to finding
parameters of arbitrary parametric control laws π(·).
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Note that epistemic and aleatory uncertainties play a crucial
role here. In (8e), it is required that the constraints (3)
are satisfied for all scenarios. If the sampled scenarios are
very different from each other and the uncertainty is thus
high, finding a feasible input trajectory may be challenging.
However, it is also generally expected that if the uncertainty
about the system’s behavior is high, it may be difficult or
impossible to find an input that satisfies the constraints with
high probability - the proposed method is no exception.

Remark 4: In general, the uncertainty about the latent
states x0:H is much higher than about the observable output
y0:H or g(x0:H ,u0:H). Therefore, in case of high uncer-
tainty (e.g., many unknown parameters and a flat prior),
the constraints (3) should depend only on u0:H , y0:H ,
and g(x0:H ,u0:H). In practice, the constraints will usually
depend only on these variables since, without measurability,
it is difficult to formulate meaningful constraints for the
states.

Similar to Sec. IV-A, we are interested in deriving prob-
abilistic guarantees for the incurred cost and the satisfaction
of constraints when the input trajectory u⋆

0:H , obtained by
solving the OCP (8), is applied to the unknown system. In
(8), only a finite number of possible future system trajectories
are considered, rather than the corresponding analytically
intractable distribution. However, in a safety-critical context,
ensuring that the constraints (3) are satisfied for all possible
trajectories with high probability is necessary. Theorems 1
and 2 do not apply in this case since the control input
depends on the scenarios, and therefore Assumption 3 is
not fulfilled. In order to obtain a formal statement about the
worst-case cost and the probability of a constraint violation,
we instead consider variants of the optimization problem (8)
where the constraints (8b-8e) are in effect for only a subset
of the scenarios. In order to derive formal guarantees by
solving these problems, we need to ensure that the solver
used to solve the OCP (8) provides repeatable answers. This
is formalized in the following assumption [17].

Assumption 4: The OCP (8) and the employed solver
represent a mapping MK from the scenarios δ[1:K] to a
solution {u⋆

0:H , JH
⋆}. Let Hδ[i] denote the set that contains

all solutions that are suitable for a scenario δ[i], i.e., all
{u0:H , JH} that satisfy the constraints (8b-8e) for k = i.
Then, for every K ∈ N, every k ∈ N, and for every choice
of δ[1], . . . , δ[K] and δ[K+1], . . . , δ[K+k], the following three
properties hold:

(i) If δ[i1], . . . , δ[iK ] is a permutation of δ[1], . . . , δ[K],
then MK(δ[1], . . . , δ[K]) = MK(δ[i1], . . . , δ[iK ]).

(ii) If MK(δ[1], . . . , δ[K]) ∈ Hδ[K+i] for all i = 1, . . . , k,
then MK(δ[1], . . . , δ[K]) = MK+k(δ

[1], . . . , δ[K+k]).
(iii) If MK(δ[1], . . . , δ[K]) /∈ Hδ[K+i] for at least

one i = 1, . . . , k, then MK(δ[1], . . . , δ[K]) ̸=
MK+k(δ

[1], . . . , δ[K+k]).
This assumption is not restrictive, and it can be straightfor-

wardly shown to be satisfied for most deterministic gradient-
based solvers, provided that the same initialization is used
and the cost function has a unique local minimum, pos-
sibly after inserting a regularization term. However, it is

generally not fulfilled for random-based methods such as
genetic algorithms, which may provide different solutions
when considering the same scenarios due to their reliance
on randomness.

Now suppose a set S ⊂ N≤K with cardinality s :=
card(S) < K is known for which a solver satisfying
Assumption 4 yields the same solution as for the original
OCP (8) when only the scenarios belonging to this set are
considered. That is, the solution of the OCP (8), where
the constraints (8b-8e) are in place only for k ∈ S, is
{u⋆

0:H , JH
⋆}. In the following, we will refer to such a set

S as a support sub-sample. In that case, the following result
provides probabilistic guarantees for the maximum cost and
the satisfaction of the constraints (3) when u⋆

0:H is applied
to the unknown system.

Theorem 3: Assume a support sub-sample S with car-
dinality s is known. Let Vc denote the probability that
the incurred cost (2) exceeds JH

⋆
or that the constraints

(3) are violated when the input trajectory u⋆
0:H is applied

to the unknown system. For a given confidence parameter
β ∈ (0, 1), under Assumptions 1, 2 and 4 it holds that

P (Vc ≤ 1− ϵ(s)) > 1− β, (9)

where ϵ(s) is the unique solution over the interval (0, 1) of
the polynomial equation in the v variable(

K

s

)
(1− v)K−s − β

K

K−1∑
m=s

(
m

s

)
(1− v)m−s = 0. (10)

Proof: Due to Assumptions 1 and 2, the scenarios δ[1:K]

generated by Algorithm 1 are independent samples from
the respective distributions. Due to Assumption 4 and after
combining (8b-8e) to a single scalar-valued constraint, [17,
Theorem 1] is applicable. The result follows since, for a fixed
K, the implied function ϵ(k) monotonically decreases for an
increasing k.

Thus, we need to find a support sub-sample S to obtain
formal guarantees for the input trajectory u⋆

0:H . The strength
of the guarantees depends on the number of scenarios K and
the cardinality s of the support sub-sample. The guarantees
become stronger for a fixed K as s decreases. However,
determining the support sub-sample with the smallest pos-
sible cardinality and, thus, the strongest possible guarantees
is a complex combinatorial problem. Therefore, heuristics,
e.g., the greedy algorithm presented in [18], are usually
employed to determine a possibly suboptimal S. For a fixed
cardinality s, increasing the number of scenarios K leads
to stronger guarantees. Therefore, additional scenarios are
usually generated if the robustness level is insufficient for
the intended application. However, since the problem (8) is
generally non-convex due to the nonlinear dynamics, and
it is thus not guaranteed that additional scenarios will not
also increase s, it is impossible to determine the number of
scenarios required for a given robustness level a priori.

With Theorem 3 and a suitable strategy to find a support
sub-sample S, it is possible to provide formal performance
and constraint satisfaction guarantees. Due to the dedicated
scenario generation process, these guarantee robustness to
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aleatory and epistemic uncertainties. The scenario-based
formulation thus prevents the solution of the OCP from be-
coming overconfident in the face of uncertainty, allowing the
use of the proposed method for safety-critical applications.

V. SIMULATION

In this section, we demonstrate the effectiveness of the
proposed optimal control approach in a simulation5. The
simulation setup is outlined in Sec. V-A. The proposed
control approach is evaluated in Sec. V-B, assuming a known
parametric model for the unknown system. In Sec. V-C,
we demonstrate that it performs well even if no parametric
model for the state transition function is known, using
methods from Gaussian process regression.

A. Setup

Consider a system of the form (1) with the unknown state
transition function

f (x, u) =

[
0.8x1 − 0.5x2 + 0.1 cos(3x1)x2

0.4x1 + 0.5x2 + (1 + 0.3 sin(2x2))u

]
(11)

and unknown process noise distribution

vt ∼ N
(
0,

[
0.03 −0.004

−0.004 0.01

])
. (12)

In order to simplify the interpretation of the simulation
results, we assume that the observation function g(x, u) =
x1 and the distribution of the measurement noise wt ∼
N (0, 0.1) are known. Note that this assumption is without
loss of generality since an unknown observation model can
be absorbed into the state transition model when the number
of states is increased to nx + ny [19, Sec. 3.2.1].

For the evaluation of the proposed optimal control ap-
proach, we consider the cost function JH =

∑H
t=0 u

2
t

over the horizon H = 40. In order to investigate how the
control approach reacts to temporarily active constraints, we
consider the constraints 2 ≤ y20:25 and |u| ≤ 5. For the
scenario generation, |T | = 2000 input-output measurements
are obtained by simulating the system forward with a random
input trajectory ut ∼ N (0, 3) starting from a random initial
state with known distribution xT ∼ N ([2, 2]T, I2).

We employ the approach presented in [9] to infer the
model parameters and the latent state trajectory. In this
approach, it is assumed that the state transition function
f(·) is a linear combination of na basis functions φ(xt,ut)
and that the process noise is normally distributed with zero
mean. This yields the model xt+1 = Aφ(xt,ut)+vt, vt ∼
N (0,Q) with unknown parameters θ = {A ∈ Rnx×na ,Q ∈
Rnx×nx}. For Q, an inverse Wishart (IW) prior with ℓ
degrees of freedom and positive definite scale matrix Λ is
assumed. The IW distribution is a distribution over real-
valued, symmetric, positive definite matrices. For A a matrix
normal (MN) prior with mean matrix M ∈ Rnx×na =
0, right covariance matrix U ∈ Rnx×nx = Q, and left
covariance matrix V ∈ Rna×na , is assumed. This conjugate
prior results in a closed-form expression for p(θ | xT :−1,D)

5The code is available at https://github.com/TUM-ITR/PGopt
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PARAMETERS OF THE PRIOR AND THE PG SAMPLER.
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Fig. 1. Normalized auto-correlation function (ACF) between successive
samples of the PG sampler without thinning. The red lines represent the
ACF for the 10 different entries of the weight matrix A, the blue lines
represent the ACF for the 4 different entries of the process noise covariance
matrix Q, and the green lines represent the ACF for the 2 different entries
of the state x−1.

[9] and thus the efficient PG sampler presented in [20] can
be used to draw samples from p(θ,xT :−1 | D). The selected
parameters are given in Table I.

B. Optimal control with known basis functions

In order to show the applicability of the guarantees de-
rived in this paper, we first assume that the basis functions
φ(x, u) = [x1, x2, u, cos(3x1)x2, sin(2x2)u]

T are known
and that only the model parameters θ = {A,Q} must be
inferred. In order to facilitate the PG sampler’s exploration of
the posterior distribution, we scale the basis functions with
the factors [0.1, 0.1, 1, 0.01, 0.1]T. For the prior for the
corresponding weights, we choose V = 10I5.

First, we ensure the validity of Assumption 2. For this
purpose, we draw K = 10000 samples from the posterior
distribution over model parameters and latent state trajecto-
ries using a PG sampler without thinning. The normalized
auto-correlation functions (ACFs) of consecutive samples of
the model parameters θ and the state x−1 are shown in Fig-
ure 1. The ACF for all 16 parameters decays significantly for
a lag of 50. Therefore, a thinning procedure with kd = 50 is
used in the following to generate approximately independent
samples.

Afterward, K = 200 scenarios are generated using Al-
gorithm 1. These scenarios are used to formulate an OCP
as described in Sec. IV-B, which is then solved using the
trajectory optimizer ALTRO [21]. In order to find a support
sub-sample S, required for the application of Theorem 3,
we first sort the scenarios based on their minimum distance
to the constraint boundary. We then employ the greedy
algorithm presented in [18], which iterates over the scenarios
(starting with the scenarios with the largest distance to
the constraint boundary) and checks whether removing the
constraints associated with a scenario changes the solution.
The corresponding scenario is permanently removed from

https://doi.org/10.23919/ECC64448.2024.10590972
https://github.com/TUM-ITR/PGopt


This is the accepted version of a paper published in the proceedings of the 2024 European Control Conference (ECC).
The final published paper can be found at doi:10.23919/ECC64448.2024.10590972.

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

4

6

h > 0

t

y
y0:H

1
K

K∑
k=1

y
[k]
0:H

{y[1:K]
0:H }

Fig. 2. Example of the optimal control with known basis functions. The
red area shows the output constraints, the gray area encompasses the 200
scenarios that were used to determine the input trajectory, the green line
shows the mean prediction, and the blue line shows one realization of the
output of the actual system when the input trajectory u⋆

0:H is applied from
time t = 0.

the constraint set if the solution remains unchanged. Based
on the cardinality s of the obtained support sub-sample, we
compute the guarantees according to Theorem 3 with confi-
dence 1−β = 99%, whereby we use the algorithm presented
in [10] to solve the polynomial equation (10). Since, in this
case, there is no uncertainty about the incurred cost JH , as
it does not depend on the uncertain dynamics, 1− ϵ directly
corresponds to an upper bound on the probability that the
constraints are violated. After computing the guarantees, we
apply the obtained trajectory u⋆

0:H to the actual system for
validation.

In order to obtain meaningful results, the process of
computing the optimal input trajectory and guarantees is
repeated 100 times. Since our approach can also account for
epistemic uncertainties, a new training dataset D is generated
for each run as described in Sec. V-A. Of the 100 runs, in 19
cases, a locally optimal input trajectory u⋆

0:H is not found
within the specified maximum number of iterations of the
solver. Possible causes for the solver to fail are that the posed
problem is infeasible due to the randomly generated initial
state of the OCP or a high uncertainty in this run, or that the
solver converges to an infeasible local minimum. The latter
problem could be addressed by repeating the optimization
with a different initialization. If the optimization problem is
infeasible, a potential solution is to reduce the uncertainty
by adding more training data or choosing a more specific
prior. It may also help to reduce the number of scenarios and,
therefore, the strength of the achievable guarantees. Only the
81 runs with a successful optimization are considered in the
following.

Figure 2 shows the results of an exemplary run. Initially,
the control input is set to zero as this minimizes the stage
cost, and the sampled dynamics converge to the stable
equilibrium of the unforced system with output y = 0. The
system must then deviate from the equilibrium to satisfy the
constraints y20:25 ≥ 2. The input trajectory is chosen such
that some of the scenarios precisely reach the constraint
boundary and is thus not overly conservative. After the
constraints are no longer present, the control input is again
set to zero, and the sampled dynamics converge to the

max. constraint violation probability 1− ϵ 11.02% ± 2.53%

number of runs with constraint violations 4 (= 4.94%)

JH 26.61 ± 10.93

time to generate scenarios 900 s ± 56 s

time to compute u⋆
0:H 366 s ± 257 s

time to compute 1− ϵ 15 629 s ± 2118 s

TABLE II
RESULTS (MEAN ± STD) OF THE 81 SUCCESSFUL RUNS WITH KNOWN

BASIS FUNCTIONS.

equilibrium again. The greedy algorithm yields a support
sub-sample with cardinality s = 7 in this run. According to
Theorem 3, with confidence 1 − β = 99%, the probability
that the constraints are violated is thus less than 1 − ϵ =
10.22%. The constraints are satisfied when the computed
input trajectory is applied to the system.

The results of all 81 runs with a successful optimization
are summarized in Table II. The average upper bound for the
probability of constraint violation is 1− ϵ = 11.02%. In the
forward simulation, the constraints are violated in 4.94% of
the runs. Thus, the theoretical robustness levels presented in
this paper appear slightly weaker than the actual robustness.
Although the theoretical guarantees in this simulation may
not be sufficient for every application, the ability to compute
guarantees emphasizes the solid theoretical foundation of our
approach. To the best of our knowledge, no other approaches
allow the derivation of such guarantees under comparable
assumptions. If stronger guarantees are desired, additional
scenarios can be considered.

The specified runtimes are obtained on an 2.25GHz 64-
core AMD EPYC 7742 processor, on which the individual
runs are executed CPU-parallelized, i.e., they correspond to
a single core. As expected, the computational complexity
of the approach is comparatively high, especially for the
computation of the theoretical guarantees. This is partially
due to the fact that solving chance-constrained optimiza-
tion problems is, in general, computationally intensive. In
addition, it should be noted that a very general class of
nonlinear dynamical systems is considered and that the
approach provides theoretical guarantees even with little
prior knowledge and under mild assumptions.

C. Optimal control with generic basis functions

In the following, we show that the proposed optimal
control approach can yield good results even if no parametric
model is known, which might be the case in practice. Instead
of the actual basis functions, we use the reduced-rank GP
approximation proposed in [12] to systematically determine
the basis functions φ(x,u) and the parameter V of the prior.
We choose a GP with a squared exponential kernel and select
the hyperparameters of the GP and the approximation based
on the training data. These parameters are given in Table III.
Then, K = 100 scenarios are generated using a PG sampler
with the same parameters as in the previous example, and the
resulting OCP is solved as before. Again, the procedure is
repeated 100 times, of which the optimizer finds an optimal
solution in 77 cases.

Figure 3 shows the results of an exemplary run with

https://doi.org/10.23919/ECC64448.2024.10590972


This is the accepted version of a paper published in the proceedings of the 2024 European Control Conference (ECC).
The final published paper can be found at doi:10.23919/ECC64448.2024.10590972.

l sf mx1 ,mx2 ,mu Lx1 , Lx2 Lu

2 100 5 20 10

TABLE III
PARAMETERS OF THE REDUCED-RANK GP APPROXIMATION.
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Fig. 3. Example of the optimal control with generic basis functions. The
red area shows the output constraints, the gray area encompasses the 100
scenarios that were used to determine the input trajectory, the green line
shows the mean prediction, and the blue line shows one realization of the
output of the actual system when the input trajectory u⋆

0:H is applied from
time t = 0.

generic basis functions. The resulting trajectories are similar
to the case with known basis functions. Only the uncertainty
intervals are larger, which is expected as less specific prior
knowledge is brought in. Due to the higher uncertainty, a
more conservative input trajectory is chosen, and the distance
of the actual output signal to the constraint boundary is
larger.

The results of all 77 successful runs with generic basis
functions are summarized in Table IV. In this case, no formal
guarantees for the constraint satisfaction can be derived
since Assumption 1 is not satisfied as the employed basis
functions cannot represent the actual dynamics with arbitrary
precision. Nevertheless, the resulting input trajectories are
robust, and when applied to the actual system, the constraints
are violated only in two runs. The higher cost compared to
the case with known basis functions is due to the fact that
a more conservative input trajectory is chosen due to the
higher uncertainty.

As shown in this subsection, the proposed approach is thus
able to provide well-functioning and robust input trajectories
based on a prior that can be formulated using the well-known
GP framework, even without knowledge of a parametric
model of the dynamics.

VI. CONCLUSION

This paper presents a novel approach for the optimal
control of unknown dynamical systems with latent states.
Based on a prior for the dynamics and the latent state
trajectory, samples from the posterior distribution over future
trajectories of the unknown system are drawn using PMCMC
methods. These samples are then used to formulate an
optimal control problem that can be solved using well-
known methods. Probabilistic performance and constraint
satisfaction guarantees are derived for the obtained input
trajectory by employing a scenario perspective.

number of runs with constraint violations 2 (= 2.60%)

JH 81.81 ± 292.5

time to generate scenarios 14 138 s ± 200 s

time to compute u⋆
0:H 749 s ± 1108 s

TABLE IV
RESULTS (MEAN ± STD) OF THE 77 SUCCESSFUL RUNS WITH GENERIC

BASIS FUNCTIONS.
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