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Abstract 
 

Osteoarthritis is a complex joint disease, caused by interplay between environmental and 

genetic factors, that affects more than 300 million people worldwide. Its impact on public 

health systems is estimated to increase further due to aging populations. Current treatment 

methods are limited to pain management and joint replacement, underlining the need to 

develop novel, personalised treatment strategies. Thus, it is important to extend our 

knowledge of the genomic basis of osteoarthritis.  

Here, we examined DNA methylation profiles of four primary tissue types, namely primary, 

macroscopically intact (low-grade) and degraded (high-grade) cartilage, synovium as well as 

infrapatellar fat pad tissue in 170 patients, who underwent total knee replacement due to 

late-stage osteoarthritis.  

We performed epigenome-wide association studies (EWAS) to compare the DNA methylation 

profiles between low-grade and high-grade osteoarthritis cartilage and revealed wide-spread 

epigenetic markers of cartilage degeneration (146,777 differentially methylated sites). We 

further built a prediction model that could distinguish low-grade and high-grade osteoarthritis 

cartilage samples with high accuracy (mean accuracy: 90.69%, standard deviation: 4.08), 

which we could validate in an external validation set (82.35% accuracy). 

By combining methylation profiles with matched genotype data from the same patients, we 

generated the first genome-wide cis methylation quantitative trait locus (mQTL) maps of low- 

and high-grade osteoarthritis cartilage, synovium, and infrapatellar fat pad tissue and 

identified QTL-targeted methylation sites (low-grade cartilage: 73,836, high-grade cartilage: 

52,819, synovium: 40,361, fat pad:  35,948, FDR < 0.05).  

We further integrated mQTL maps of the four osteoarthritis primary tissue types with large 

genome-wide association study (GWAS) results for osteoarthritis using colocalisation and 

causal inference analysis to investigate causal roles of methylation in osteoarthritis and 

resolve osteoarthritis GWAS signals.   

Together, this work presents the largest EWAS for cartilage degeneration and the first 

genome-wide mQTL maps in cartilage, synovium and fat pad. We reveal robust epigenetic 

markers of cartilage degeneration and propose a validated model that can distinguish cartilage 
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samples in different osteoarthritis stages. We further highlight the causal roles of epigenetic 

mechanisms across osteoarthritis tissues. Together, our results enhance insights into the 

epigenetics underlying osteoarthritis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 
 

Zusammenfassung 
 

Arthrose ist eine komplexe Gelenkskrankheit, welche durch das Zusammenspiel von Umwelt- 

und genetischen Faktoren verursacht wird und mehr als 300 Millionen Menschen weltweit 

betrifft. Es wird angenommen, dass seine Auswirkungen auf öffentliche Gesundheitssysteme 

aufgrund der alternden Bevölkerung weiter zunehmen wird. Aktuelle 

Behandlungsmöglichkeiten sind auf Schmerztherapie und Gelenksersatz begrenzt, welches 

die Notwendigkeit unterstreicht, neuartige und personalisierte Therapiestrategien zu 

entwickeln. Hierfür ist es wichtig, unser Wissen über die genomische Basis von Arthrose zu 

erweitern.  

Hier untersuchen wir DNA Methylierungsprofile von vier primären Gewebsarten, nämlich 

primäres, mikroskopisch intaktes (niedriger Arthrosegrad) und degradiertes (hoher 

Arthrosegrad) Knorpelgewebe, der Synovialmembran wie auch dem infrapatellaren 

Fettpolster in bis zu 170 Patienten, die sich aufgrund von Arthrose im Spätstadium einem 

totalen Knieersatz unterzogen haben. 

Wir haben epigenomweite Assoziationsstudien (EWAS) durchgeführt, um die DNA-

Methylierungsprofile von Knorpel mit geringgradiger und hochgradiger Arthrose zu 

vergleichen, und dabei weit verbreitete epigenetische Marker der Knorpeldegeneration 

(146.777 differentiell methylierte Stellen) festgestellt. Darüber hinaus erstellten wir ein 

Vorhersagemodell, das Knorpelproben mit geringgradiger und hochgradiger Arthrose mit 

hoher Genauigkeit unterscheiden konnte (mittlere Genauigkeit: 90,69 %, 

Standardabweichung: 4,08), was wir in einem externen Validierungsset replizieren konnten 

(82,35 % Genauigkeit). 

Durch die Kombination von Methylierungsprofilen mit Genotypdaten derselben Patienten 

erstellten wir die ersten genomweiten cis-Methylierungskarten (mQTL) von Knorpel mit 

niedrig und hochgradiger Arthrose, Synovium und infrapatellarem Fettpolstergewebe und 

identifizierten QTL-gerichtete Methylierungsstellen (niedriggradiger Knorpel: 73.836, 

hochgradiger Knorpel: 52.819, Synovium: 40.361, Fettpolster:  35.948, FDR < 0,05).  

Darüber hinaus haben wir mQTL-Karten der vier primären Gewebetypen für Arthrose mit den 

Ergebnissen großer genomweiter Assoziationsstudien (GWAS) für Arthrose integriert, indem 



 
 

wir Kolokalisierungs- und kausale Inferenzanalysen durchgeführt haben, um die kausale Rolle 

der Methylierung bei Arthrose zu untersuchen und GWAS-Signale für Arthrose aufzulösen.   

Zusammengenommen stellt diese Arbeit die größte EWAS für Knorpeldegeneration und die 

ersten genomweiten mQTL-Karten in Knorpel, Synovium und Fettpolster vor. Wir zeigen 

robuste epigenetische Marker für die Knorpeldegeneration auf und schlagen ein validiertes 

Modell vor, mit dem Knorpelproben in verschiedenen Arthrosestadien unterschieden werden 

können. Darüber hinaus heben wir die kausale Rolle epigenetischer Mechanismen in 

verschiedenen Arthrose-Geweben hervor. Zusammengenommen verbessern unsere 

Ergebnisse den Einblick in die Epigenetik, die der Arthrose zugrunde liegt. 
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2. Introduction 
 

Osteoarthritis is a complex and degenerative joint disorder that affects all tissues of 

diarthrodial joints. Osteoarthritis is highly prevalent, affecting more than 300 million people 

worldwide1. Epidemiological studies further observed a multitude of potential risk factors, 

including sex (women tend to develop osteoarthritis more frequently and with higher severity, 

such as more pain)2, age (osteoarthritis affects older people, e.g. 40 % of people over 70)3  and 

genetics4. 

Despite its high prevalence, no curative therapies are known, and treatment possibilities are 

limited to pain management and joint replacements. Osteoarthritis constitutes a challenge for 

public health systems, and its burden may increase further due to aging populations1.  

The high prevalence of osteoarthritis, combined with limited treatment possibilities, 

emphasise the urgent need for improved preventive measures as well as novel, personalised 

treatment possibilities for which an enhanced understanding of the genetic and genomic 

architecture of osteoarthritis is required. 

Joint tissue changes during osteoarthritis 

Osteoarthritis affects all tissues of diarthrodial joints, including the cartilage, synovium, and  

infrapatellar fat pad. In diarthrodial joints, the cartilage is located on the surface of adjacent 

bones5 and enables smooth joint movements as well as absorbing and distributing 

compressive load6. Healthy cartilage is avascular and aneural, with chondrocytes being the 

only cell type. During osteoarthritis, affected cartilage is traversed by nerves and blood 

vessels. Healthy cartilage has a smooth surface, but develops fissures during osteoarthritis, 

ultimately resulting in its degeneration, which is the most prominent feature of the disease.  
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The synovium is a connective tissue that lines the joint capsule and separates the synovial 

cavity from neighboring tissues7. Synovium of osteoarthritis-affected joints show increased 

inflammation levels, referred to as synovitis8. 

The infrapatellar fat pad is an adipocyte-rich tissue located inferior to the patella in the 

anterior part of the knee joint9. It protects and stabilises other knee components when the 

joint is exposed to mechanical forces during movement. Osteoarthritis-affected infrapatellar 

fat pad undergoes disease-related alterations, including fibrosis, inflammation, and 

vascularisation. The infrapatellar fat pad is highly innervated and therefore a major source for 

osteoarthritis-related pain, which emphasizes its clinical relevance. 

Together, osteoarthritis leads to a multitude of changes in joint tissues. Studying its genetics 

and genomics can reveal biological mechanisms that underlie these tissue changes. 

Genetic architecture of osteoarthritis 

Genome-wide association studies (GWAS) have provided valuable insights into the complex 

genetic architecture of osteoarthritis4. Boer et al. performed the largest GWAS meta-analysis 

to date, across 826,690 individuals (including 177,517 osteoarthritis cases) for 11 

osteoarthritis traits. They identified 100 independent risk variants, of which 52 are novel, and 

further highlighted different genetic effects between weight- and non-weight bearing joints 

as well as between sexes.  

Although GWAS revealed relevant parts of the polygenic architecture of osteoarthritis, its 

signals can be hard to interpret (such as to estimate the effector genes), because genetic risk 

variants mostly reside in non-coding regions10. Therefore, combining genetic results with 

molecular profiles of affected patient tissues can extend our knowledge beyond genetics, by 
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identifying the tissue- or context-specific molecular mechanisms of osteoarthritis, e.g. resolve 

the effector gene through which genetic risk loci exert osteoarthritis-promoting effects.  

Advancement in technologies enable the generation of molecular profiles of human tissues 

across several levels at the genome-wide scale. Large consortia such as GTEx11, Roadmap12, 

ENCODE13 and the Human Cell Atlas14 have made these publicly available, thus providing 

established resources for human tissue-specific molecular maps. However, these exclude 

osteoarthritis-affected joint tissues.  

Transcriptomics and proteomic profiles of osteoarthritis tissues 

A number of studies have generated transcriptomic and proteomic profiles of 

osteoarthritis15,16. Steinberg et al.17 combined genotype with transcriptomics and proteomics 

data of three joint tissue types from 115 patients that underwent total joint replacement (hip 

or knee) due to late-stage osteoarthritis: macroscopically intact (low-grade) and degraded 

(high-grade) osteoarthritis cartilage, as well as from synovial tissue. For each tissue, they 

associated genetic variants with expression levels of  genes and proteins in cis (i.e., within the 

vicinity of the genetic variant), thus resulting in the first genome-wide expression quantitative 

trait locus (eQTL) and protein quantitative trait locus (pQTL) maps in these tissues. Integrating 

these maps with GWAS results using colocalisation  revealed five genes (ALDH1A2, NPC1, 

SMAD3, FAM53A, and SLC44A) through which genetic loci might exert their osteoarthritis-

promoting effect, so called effector genes. Furthermore, the authors carried out differential 

analyses of molecular profiles between low- and high-grade osteoarthritis cartilage, thus 

identifying 409 genes17 that were differentially expressed on the transcriptomics and 

proteomics level. In a follow-up analysis, these 409 genes were integrated in a candidate 
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therapeutic compound analyses which revealed 19 compounds that could reverse 

osteoarthritis-progression related expression changes.  

Katsoula et al. generated enhanced, better-powered transcriptomic profiles of cartilage 

degeneration by comparing low- and high-grade osteoarthritis cartilage profiles of 124 

patients18. They reported 365 genes, of which 38 could be replicated in an external validation 

set, and further revealed 33 osteoarthritis-related long non-coding RNA genes, of which 25 

were linked to osteoarthritis for the first time. Furthermore, they studied the osteoarthritis-

related cartilage spliceosome by investigating differential transcript usage (identification of 89 

osteoarthritis-linked isoforms, corresponding to 82 genes) and performing the first genome-

wide differential splicing scan (209 differentially spliced genes between low- and high-grade 

osteoarthritis cartilage). 

Steinberg et al.19 used transcriptomics profiles from primary cartilage (low- and high-grade 

osteoarthritis cartilage) and synovium samples to investigate molecular subtypes among 113 

osteoarthritis patients. They identified two osteoarthritis patient subgroups in the synovium 

and related subgroup differences to inflammation, extracellular matrix and to cell adhesion. 

Similarly, they found two patient clusters in low-grade osteoarthritis cartilage with gene 

expression differences being linked with inflammation, extracellular matrix-related and cell 

adhesion pathways. The high-inflammation subgroup showed an overrepresentation of 

women. They further constructed a seven-gene based classifier that can distinguish between 

low-grade cartilage subgroups, which was replicated in an external data set.  

Coutinho de Almeida et al. investigated interactions between mRNA and miRNA in 63 

patients20. They reported widespread transcriptomic differences between low- and high-
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grade osteoarthritis patients and further combined mRNA and miRNA data to generate maps 

of the interactome between these transcriptome layers. 

Other studies have investigated transcriptomic and proteomic profiles at the single-cell level 

21–26. For example, Wang et al.22 generated single-cell transcriptomics data from 5 

osteoarthritis patients, 5 Kashin–Beck patients and 5 healthy controls and particularly 

highlighted a chondrocyte subpopulation, namely mitochondrial chondrocytes, which were 

found in diseased cartilage samples (osteoarthritis and Kashin–Beck affected cartilage), but 

not in healthy tissue, which suggest mitochondrial dysfunction in osteoarthritis and Kashin–

Beck disease. Grandi et al.24 profiled proteomics of cartilage samples from 20 osteoarthritis 

patients as well as five normal samples at the single cell level. They reported 20 cell 

subpopulations in cartilage and observed three patient clusters based on relative proportions 

of cell subpopulations. 

Epigenetic profiles of osteoarthritis tissues 

Gene and protein expression is, in part, regulated by epigenetic processes. Thus, investigating 

the epigenetic maps in relevant tissues can extend our understanding beyond genetics, 

transcriptomics and proteomics. A small number of studies have investigated epigenetic 

profiles in osteoarthritis-relevant tissues at the genome-wide scale. Liu et. al27 applied Assay 

for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) to 

generate a genome-wide open chromatin landscape in primary knee cartilage of osteoarthritis 

patients. They reported 109,215 accessible chromatin regions and, by integrating genotype, 

DNA methylation and gene expression data, highlighted osteoarthritis-relevant enhancer 

regions and enrichments in relevant pathways, such as ossification or mesenchymal stem cell 

differentiation. 
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Other efforts have performed whole genome chromosome conformation  (Hi-C) analyses to 

study the three-dimensional chromosome organization in chondrocytes28,29. Bittner et al.28 

studied affected cartilage samples to generate the first Hi-C map in primary chondrocytes 

from eight osteoarthritis patients. They reported 345 genetic variants in chromatin loop 

anchors to be linked with 77 osteoarthritis GWAS risk signals. These signals included active 

enhancer-promoter loops which pointed to two candidate effector genes for osteoarthritis 

(SPRY4 and PAPPA).  

DNA methylation in osteoarthritis tissues 

A highly relevant epigenetic mark is DNA methylation, which refers to the covalent binding of 

a methyl group to the DNA. In eukaryotes, this epigenetic modification primarily occurs at 

cytosine bases followed by a guanine (Cpgs sites) in the DNA strand30. The addition of a methyl 

group to the cytosine and its maintenance is performed by specialised enzymes, referred to 

as DNA methyltransferases31. The removal of this methyl group, DNA demethylation, is 

primarily regulated through TET methylcytosine dioxygenases, which oxidise cytosine-

attached methyl-groups32. This can lead to demethylation during DNA replication (passive 

demethylation: oxdised methyl group is not recognised by the DNA methylation maintenance 

complex) or through DNA replication independent processes (active demethylation: thymine 

DNA glycosylase involving process in which a cytosine with an oxidised methyl group is actively 

replaced by an unmethylated cytosine)32. 

Higher methylation levels at sites in promoter regions and particularly around the 

transcription start site are linked to downregulated gene expression, whereas methylation 

effects in gene bodies or other regulatory regions remain less predictable. Current array-based 

technologies measure up to ~ 900,000 methylation sites 33–35, thus enabling genome-wide 
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studies of DNA methylation profiles in a cost- and time-efficient manner. DNA methylation is 

tissue-specific and interacts with internal and external factors (such as genetics, environment, 

including lifestyle, etc.), highlighting its relevance to better understand the molecular basis of 

complex diseases36.  

DNA methylation profiles of primary, osteoarthritis-affected joint tissue types have not been 

included in large consortia (such as GTEx37, Roadmap12, ENCODE13), underlining the need for 

additional, joint tissue-specific molecular studies. 

A number of DNA methylation studies in osteoarthritis have focused on genomic regions 

around osteoarthritis risk variants to better understand associations between genetic variants 

and methylation sites38–40. Rice et al. 40 collected samples from osteoarthritis cartilage from 

patients that underwent total joint replacement due to knee osteoarthritis (n = 57), hip 

osteoarthritis (n = 14) or neck-of-femur (NOF) fracture (n = 16). By combining genotype and 

methylation data, they identified effects of genetic variants on methylation in 10 out of 42 

tested osteoarthritis risk loci. Follow-up analyses, such as integration of chromatin state and 

enhancer data, revealed putative target genes of the identified methylation-associated 

variants, including COLGALT2, COL11A2 and WWP2. 

Other studies have characterised genome-wide DNA methylation profiles of primary cartilage. 

A common approach is to compare methylation profiles between low- and high-grade 

osteoarthritis cartilage samples to identify methylation sites that are associated with cartilage 

degeneration, as epigenetic markers of osteoarthritis progression in the cartilage 41–45.  

Zhang et al.42 examined DNA methylation data from 12 knee osteoarthritis patients that 

underwent total joint replacement. They generated data for three different cartilage regions 
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with varying osteoarthritis-related degradation:  (1) Outer region of the lateral tibial 

plateau (oLT) with a visibly smooth cartilage surface (early osteoarthritis stage), (2) the inner 

region of lateral tibial plateau (iLT) with sufficient cartilage to detect visible fissures on tissue 

cross-section (intermediate osteoarthritis stage) and (3) the inner region of medial tibial 

plateau (iMT) with visible loss of articular cartilage (late osteoarthritis stage). The authors 

highlighted 519 differentially methylated sites when comparing iMT vs. oLT cartilage samples, 

thus suggesting methylation differences between early and late-stage osteoarthritis. 

Den Hollander et al.44 combined DNA methylation and gene expression data from 31 

osteoarthritis-affected individuals (17 knee and 14 hip osteoarthritis patients). They found 

5,282 cartilage-degeneration related methylation sites, 87 of which were significantly 

correlated with 70 cartilage degeneration-related gene, thus highlighting their link with 

cartilage degeneration across these two molecular levels. 

A few other studies have extended to non-cartilage joint tissues and investigated specific 

candidate genes or regions 46–50. For example, Kehayova et al.46 investigated the effect of the 

genetic variants rs11583641 and rs1046934 on COLGALT2 methylation and gene expression 

in synovium. They found associations of rs11583641 with COLGALT2 expression and 

methylation, with directions of effect opposite to those previously estimated in cartilage, 

highlighting the tissue specificity of rs11583641 effects on the molecular profile. 

Additional, comprehensive and better-powered studies that focus on the primary joint tissues 

of osteoarthritis patients are required. Some studies have generated DNA methylation profiles 

of osteoarthritis-affected tissues of patients but are limited regarding (1) sample sizes and (2) 

https://www.sciencedirect.com/topics/medicine-and-dentistry/lateral-tibial-plateau
https://www.sciencedirect.com/topics/medicine-and-dentistry/lateral-tibial-plateau
https://www.sciencedirect.com/topics/medicine-and-dentistry/medial-tibial-plateau
https://www.sciencedirect.com/topics/medicine-and-dentistry/medial-tibial-plateau
https://www.sciencedirect.com/topics/medicine-and-dentistry/articular-cartilage


 
17 
 

tissue types. Furthermore, (3) genome-wide methylation QTL maps that enable resolution of 

osteoarthritis GWAS signals have not been generated to date. 

Aims 

In this thesis, I present studies that (1) significantly increase sample sizes of osteoarthritis 

tissues, (2) extend epigenome-wide profiles to synovium as well as infrapatellar fat pad and 

(3) generate genome-wide methylation QTL maps in osteoarthritis joint tissues. This thesis 

includes the following publications: 

- Study 1: I present a large EWAS (90 patients) for cartilage degeneration (Publication 1 

in Appendix)7. Furthermore, we provide the first genome-wide mQTL maps in low- and 

high-grade osteoarthritis cartilage as well as in synovium.  

- Study 2: I describe the first epigenetic profile and mQTL map of osteoarthritis-affected 

infrapatellar fat pad (Publication 2 in Appendix)51. 

- Study 3: I further increase sample size for a cartilage degeneration EWAS, now 

including 170 patients (Publication 3 in Appendix)52. This large cohort further enable 

sex-specific epigenome-wide profiles of osteoarthritis progression in cartilage. 

3. Materials and methods 
 

Patient cohort and sample collection 

Samples from patients undergoing total knee replacement surgery due to late-stage 

osteoarthritis were collected. From weight-bearing areas of affected joints, two types of 

cartilage samples were collected: Low-grade osteoarthritis cartilage (Study 1: 97 patients7, 

Study 3: 170 patients), which refers to macroscopically intact cartilage, and high-grade 

osteoarthritis cartilage (Study 1: 90 patients7, Study 3: 170 patients), describing 
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macroscopically degraded cartilage samples. The cartilage degradation status was quantified 

by the OARSI53 and/or ICRS 54 grading systems. 

Samples from the synovial membrane (from the suprapatellar region from 78 patients)17 as 

well as adipose tissue from the infrapatellar fat pad (by sharp dissection of the fat tissue from 

the surface of the patellar ligament from 70 patients)55 were also collected. 

All patients provided written, informed consent prior to participation in the study. This work 

was approved by Oxford NHS REC C (10/H0606/20, SC/15/0132 and SC/20/0144) and samples 

were collected under Human Tissue Authority license 12182, South Yorkshire and North 

Derbyshire Musculoskeletal Biobank, University of Sheffield, UK. 

Cell isolation and DNA extraction 

We isolated the relevant cell type (chondrocytes, synoviocytes and adipocytes from cartilage, 

synovium and infrapatellar fat pad, respectively) from relevant joint tissues by applying 

published protocols17,41,51, and used Qiagen AllPrep DNA Min Kit for DNA extraction. 

DNA methylation measurement 

We applied two Illumina array-based platforms to measure DNA methylation. 

HumanMethylation450 Bead Chip (450K) measures methylation levels at 485,512 methylation 

sites56, prioritising sites in genes (covering 21,231 out of 21,474 of genes in The Reference 

Sequence database) or regulatory elements (26,658 regions with high CpG site frequencies, 

referred to as CpG islands).  

Methylation EPIC BeadChip (EPIC) extended to more than 850,000 methylation sites 34. It 

substantially overlaps with the older 450k array (450,161 CpG sites are shared), and also 
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contain 413,743 new CpG sites. These newly included methylation sites have higher 

proportions in gene bodies (32% of EPIC-only vs. 27% of shared EPIC/450k array in gene 

bodies), intergenic regions (20% of EPIC-only vs. 13% of shared EPIC/450k array in intergenic 

regions) or enhancer regions (21,070 EPIC-only sites vs. 7,763 sites shared EPIC/450k sites are 

in FANTOM5 enhancer regions), thus providing better insights into these genomic elements. 

To measure samples on these array technologies, we performed bisulfite conversion on 

isolated DNA by treating it with sodium bisulfite, which converts unmethylated cytosine to 

thymine, while methylated cytosine remains unchanged57. The bisulfite-converted genomic 

DNA is then subjected to the DNA methylation array, which includes two query probes per 

interrogated methylation site that hybridise with either the methylated or unmethylated 

version of the site. The intensities of each probe pair are related to each other by calculating 

the beta value (using R package meffil 58) to quantify the methylation level of a specific 

methylation site59:  

betai=
max⁡(𝑦𝑖,𝑢𝑛𝑚𝑒𝑡ℎ,0)

max(𝑦𝑖,𝑢𝑛𝑚𝑒𝑡ℎ,0)+max(𝑦𝑖,𝑚𝑒𝑡ℎ,0)+𝑎𝑙𝑝ℎ𝑎
 

with 𝑦𝑖,𝑚𝑒𝑡ℎ⁡and 𝑦𝑖,𝑢𝑛𝑚𝑒𝑡ℎ⁡denoting the intensities measured by the methylated and 

unmethylated probe for a methylation site i, respectively. Furthermore, alpha denotes a 

recommended constant (default: 100) to regularise very low intensities59. Beta values range 

from 0 (completely unmethylated) to 1 (completely methylated).  

Since Beta values may show heteroscedasticity, particularly for highly methylated or 

unmethylated sites, these are often converted to M-values for downstream analyses59:  

M-valuei= 𝑙𝑜𝑔2 (
max⁡(𝑦𝑖,𝑚𝑒𝑡ℎ,0)⁡+⁡𝑎𝑙𝑝ℎ𝑎

max ⁡(𝑦𝑖,𝑢𝑛⁡⁡𝑚𝑒𝑡ℎ,0)⁡+⁡𝑎𝑙𝑝ℎ𝑎
) 



 
20 
 

Positive and negative M-values denote methylation sites that are mostly methylated and 

unmethylated, respectively. 

Together, we applied array-based technologies to measure DNA methylation profiles on 

genome-wide scale. 

Epigenome-wide association study for cartilage degeneration 

We conducted epigenome-wide association studies (EWAS) to compared DNA methylation 

between low- and high-grade osteoarthritis cartilage samples matched from the same 

patients to identify methylation sites with different methylation levels, referred to as 

differentially methylated sites (DMS). More specifically, we performed a test per methylation 

site by building paired (to compare samples from the same patient) linear models. We 

constructed these models using the R package limma60, particularly by using lmFit (build 

models) and eBayes function. To account for technical variations (such as batch effects) and 

minimise the influence of potential confounding factors, we included surrogate variables (SV) 

from DNA methylation data as covariates in the model: 

M-value ~ cartilage_type + patient_id + SV 

Here, cartilage_type denotes whether a sample is of low- or high-grade ostearothrits cartilage. 

The variable patient_id denotes the individual, thus ensures paired modeling. Furthermore, 

M-value refers to the methylation levels (in M-value unit as described in the Methods section 

“DNA methylation measurement”). To correct for multiple testing, we conservatively applied 

Bonferroni correction (significance threshold: p < 0.05 / number_tests).  
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We further tested whether there are differentially methylated regions (DMR) between low- 

and high-grade osteoarthritis cartilage samples. We applied the R package dmrff (function 

dmrff with default parameter setting61; DMR are composed of more than one methylation site 

and achieve a Bonferroni-adjusted p < 0.05).  

Pathway enrichment analysis 

To biologically interpret DMS, we performed pathway enrichment analysis for genes that are 

annotated to differentially methylated sites. Here, we used publicly available annotation files 

(https://zwdzwd.github.io/InfiniumAnnotation/).  

We performed this analysis used the gometh function from the R package missMethyl62,63 

which accounts for biases that are introduced when mapping DNA methylation sites to genes. 

More specifically, bias can be introduced since a gene can contain several DNA methylation 

sites (“probe-number bias”62) as well as a DNA methylation site can be mapped to several 

genes (“multi-gene bias”62). Genes harbouring more methylation sites are more likely to be 

identified as differentially methylated62. Furthermore, genes can contain the same 

methylation sites, thus violating independence assumptions62. The gometh function from the 

R package missMethyl62,63 implements a statistical testing procedure (Wallenius’ noncentral 

hypergeometric distribution) which models probe-number and multi-gene bias as biased 

sampling problem.  

Technically, we used DMS as query (gometh parameter “sig.cpg”) and methylation sites that 

passed the QC (all methylation sites that could have potentially been identified as DMS in the 

EWAS) as background set (gometh parameter “all.cpg”). 
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Methylation QTL analysis 

We integrated matched methylation data and genotype data from the same patients to 

generate genome-wide mQTL maps in primary low- and high-grade osteoarthritis cartilage, 

synovium and fat pad. We sought to identify common genetic variants (minor allele frequency 

> 5%) that are associated with methylation levels of close methylation (within 1 Mb), referred 

to as cis mQTL. Here, we tested genetic variant-methylation site pairs by using linear models:  

M-value ~ genetic_variant + age + sex + technical_covs 

We included age and sex in these models to account for potential biological confounding. 

Furthermore, we account for technical confounders, here denoted by technical_cov. We 

either directly added known information (such as sequencing batch information per sample) 

or estimate these from data, for example by including PEER (probabilistic estimation of 

expression residuals) factors7,64.   

We performed cis-mQTL analysis by applying established software, such as Matrix eQTL65 or 

FastQTL66. When using R package Matrix eQTL (function Matrix_eQTL_main)65, we corrected 

for multiple testing by conservatively applying the Bonferroni correction or false discovery 

rate (FDR) correction.  

FastQTL66 enables more sophisticated multiple testing correction for cis-QTL mapping across 

genetic variants and methylation sites. Per methylation site, it corrects for tested genetic 

variants by applying an adaptive permutation scheme to generate empirical p values. It further 

corrects across tested methylation sites by applying the Storey-Tibshirani FDR procedure67 

(with FDR < 0.05 denoting QTL-targeted methylation sites). These FDR-corrected pvalues are 

in turn used to calculate methylation site-specific significance thresholds. For each 
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methylation sites, variants with a nominal pvalue below these thresholds are defined as 

mQTLs.  

Colocalisation analysis 

We integrated osteoarthritis GWAS results of large meta-analyses4,68 and mQTL maps on 

summary statistics level by performing colocalisation analysis to test whether a GWAS risk 

locus and a mQTL signals for mQTL targeted methylation sites statistically overlap 

(‘colocalise’), suggesting a shared causal variant for the respective methylation site and GWAS 

trait. We performed colocalisation analysis69 when the index variants of a GWAS risk signal 

was in proximity (e.g. within 100 kilobases) to a mQTL-targeted methylation site and 

considered all cis variants (within 1 Mb either side of a methylation site) for the actual 

colocalization test. We applied the coloc.fast function (default parameter settings; 

https://github.com/tobyjohnson/gtx/blob/526120435bb3e29c39fc71604eee03a371ec3753/

R/coloc.R)69 to estimate a posterior probability for having a shared causal variant. We used 

threshold of 80% denoting colocalisation (‘PP4 ≥ 0.8'). 

Mendelian randomisation analysis 

We supplemented these causal insights by applying causal inference analysis. More 

specifically, we applied two-sample Mendelian randomisation (MR) analysis by integrating 

GWAS 4,68 and mQTL summary statistics. For mQTL-targeted methylation sites, we used mQTL 

as instruments to estimate a causal effect of methylation (exposure) on osteoarthritis 

(outcome). We applied the R package TwoSampleMR70 to conduct MR analysis for every 

mQTL-tageted methylation site. We further performed clumping (r2 < 0.01) to filter for 

independent mQTLs per methylation site. For methylation sites with exactly 1 independent 

https://github.com/tobyjohnson/gtx/blob/526120435bb3e29c39fc71604eee03a371ec3753/R/coloc.R
https://github.com/tobyjohnson/gtx/blob/526120435bb3e29c39fc71604eee03a371ec3753/R/coloc.R
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mQTL, we applied the Wald-ratio, otherwise the inverse-variance-weighted (IVW) method. 

We corrected for multiple testing using Bonferroni correction. 

Study design 1: An epigenome-wide view of osteoarthritis in primary tissues 

We collected samples from primary chondrocytes from low- (macroscopically intact) and high-

grade (macroscopically degraded) osteoarthritis cartilage as well as synoviocytes from the 

synovium from 98 patients (Figure 1; Publication 1 in Appendix)52. We measured DNA 

methylation using Illumina 450k and EPIC array. We further genotyped patients using the 

Illumina CoreExome chip and performed imputation. We performed an EWAS by comparing 

low- and high-grade osteoarthritis cartilage in to find epigenetic markers for cartilage 

degeneration which we characterized in a follow-up pathway enrichment analysis. We further 

generated mQTL maps in low- and high-grade osteoarthritis cartilage and synovium by 

integrating genotype data from the same patients. We integrated these mQTL maps with 

osteoarthritis GWAS results by applying colocalisation and causal inference methods to 

examine the causal role of methylation in osteoarthritis in a disease-stage sand tissue-specific 

manner. 
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Figure 1: We use cartilage and synovium methylation profiles to perform EWAS for cartilage 

degeneration as well as generate mQTL maps to resolve osteoarthritis GWAS signals. This 

figure was created with BioRender.com. 

 

 

Study design 2: Epigenomic profiling of the infrapatellar fat pad in osteoarthritis 

We collected blood as well as infrapatellar fat pad samples from 70 patients (Figure 2; 

Publication 2 in Appendix)51. We profiled fat pad and blood methylation profiles using Illumina 

EPIC array and estimated patient genotypes with whole-genome sequencing. We compared 

blood and fat pad methylation profiles to investigate their distinctness. We combined fat pad 

methylation and genotype data matched from the same patient to generate a infrapatellar fat 

pad mQTL map. Furthermore, we combined this map with GWAS results and performed 

colocalisation and causal inference analysis to investigate the causal role of fat pad 

methylation in osteoarthritis. 

 

Figure 2: We compare infrapatellar fat pad with blood methylation and generate a fat pad 

mQTL map using methylation profiles of 70 patients. This figure was created with 

BioRender.com. 
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Study design 3: Epigenomic differences between osteoarthritis grades in primary 

cartilage  
 

We collected samples from primary chondrocytes from 170 patients across two degradation 

stages: low- (macroscopically intact) and high-grade (macroscopically degraded) osteoarthritis 

cartilage (Figure 3, Publication 3 in Appendix)52. These methylation profiles were measured 

using Illumina EPIC array. We performed an EWAS for cartilage degeneration by compared 

low- and high-grade osteoarthritis cartilage methylation We then conducted EWAS stratified 

by sex (in 96 women and 74 men) to generate sex-specific epigenetic profiles of cartilage 

degeneration. We further compared EWAS in men and women to find common and sex-

specific epigenetic markers for cartilage degeneration. 

 

 

 

Figure 3: We perform sex-combined and sex-specific EWAS for cartilage degeneration using 

cartilage methylation profiles of 170 patients. This figure was created with BioRender.com. 
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4. Results 

4.1. An epigenome-wide view of osteoarthritis in primary tissues 
 

We examined genotype and DNA methylation data of primary chondrocytes macroscopically 

intact (low-grade) and degraded (high-grade) cartilage and primary synoviocytes of 98 

patients who underwent total knee replacement due to late-stage osteoarthritis (Figure 1; 

Publication 1 in Appendix)7.  

We performed an epigenome-wide association study (EWAS) to compare DNA methylation 

profiles between low-grade and high-grade osteoarthritis cartilage and identified widespread 

epigenetic markers of cartilage degeneration (15,328 differentially methylated sites), of which 

we were able to replicate 46.5 % in a smaller, independent validation set (17 patients), thus 

highlighting the robustness of these signals. 

We built random forest-based classifiers that could distinguish low-grade and high-grade 

osteoarthritis cartilage samples. In our own patient cohort, these classifiers achieved high 

accuracies (mean accuracy: 90.69%, standard deviation: 4.08), which we were able to validate 

in an external validation set (82.35% accuracy). 

We estimated genome-wide cis methylation quantitative trait locus (mQTL) maps of low- and 

high-grade osteoarthritis cartilage, as well as synovium, and identified a multitude of QTL 

targeted methylation sites (low-grade cartilage: 73,836, high-grade cartilage: 52,819, 

synovium: 40,361, FDR < 0.05). By comparing the mQTL profiles between low- and high-grade 

osteoarthritis cartilage, we identified 18 genetic variants that exert an effect on a specific 

methylation site only in low-, but not in high-grade osteoarthritis cartilage or vice versa, 

suggesting genetic effects on methylation that are switched on/off during osteoarthritis-

related cartilage degeneration processes. 

We integrated mQTL maps of the three osteoarthritis primary tissues with GWAS results for 

three osteoarthritis traits, namely osteoarthritis at any site, knee osteoarthritis, and total knee 

replacement. Using Mendelian randomisation, we identified methylation sites with a putative 

causal effect on osteoarthritis (low-grade cartilage: six, high-grade cartilage: eight, synovium: 

eight). Furthermore, colocalisation resolved GWAS signals for osteoarthritis at any site (13 of 
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33 tested GWAS signals), knee osteoarthritis (six of 12 tested GWAS signals), and total knee 

replacement (one of five tested GWAS signals). 

In summary, we have performed the largest EWAS for cartilage degeneration, generated the 

first genome-wide mQTL maps in cartilage and synovium and suggest epigenetic mechanisms 

underlying osteoarthritis in cartilage and synovium. We identified robust epigenetic markers 

of cartilage degeneration, and propose a validated model than can distinguish cartilage 

samples in different osteoarthritis stages.  

 

Author contribution: 

- Data analysis (DNA methylation data preprocessing, differential analyses, classifier 

construction, mQTL analyses, Mendelian randomisation, colocalisation, replication 

analyses) 

- Interpretation of results (with Eleftheria Zeggini, Matthew Suderman, J Mark 

Wilkinson and Caroline L Relton) 

- Manuscript drafting (with Eleftheria Zeggini) 

- Manuscript reviewing and editing (with all other authors) 
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4.2. Epigenomic profiling of the infrapatellar fat pad in osteoarthritis 
 

We characterised the methylation profile of primary infrapatellar fat pad tissue at the 

epigenome-wide level in osteoarthritis-affected knees. We investigated genome-wide DNA 

methylation profiles of primary infrapatellar from 70 osteoarthritis patients undergoing total 

knee replacement surgery (Figure 2; Publication 2 in Appendix)51. From a subset of these 

patients, matching blood DNA methylation profiles (n = 58) and whole genome sequencing 

data (n = 68 patients) were available. 

We conducted an epigenome-wide association study (EWAS) to compare the DNA methylation 

profiles between the infrapatellar fat pad and blood and identified extensive differences 

(84,973 differentially methylated sites, p < 6.4x10^-08). We further generated a cis 

methylation quantitative trait locus (mQTL) map in fat pad tissue by integrating fat pad 

methylation and genotype data matched from the same patients, and identified 35,948 mQTL-

targeted methylation sites. This constitutes the first genome-wide mQTL map of fat pad which 

we make available to the wider community. Using two-sample Mendelian randomisation and 

colocalisation analyses, we resolve eleven osteoarthritis GWAS signals and provide insights 

into the molecular mechanisms underlying osteoarthritis aetiopathology.  

Our study generates the first epigenetic landscape of infrapatellar fat pad, highlights its 

distinctness from blood, and provides the first genome-wide mQTL map of primary 

infrapatellar fat pad tissues of osteoarthritis-affected knees. 

Author contribution: 

- Data analysis (DNA methylation data preprocessing, differential analyses, mQTL 

analyses, Mendelian randomisation, colocalisation) 

- Interpretation of results (with Eleftheria Zeggini) 

- Manuscript drafting (with Eleftheria Zeggini) 

- Manuscript reviewing and editing (with Eleftheria Zeggini, J Mark Wilkinson and Diane 

Swift) 
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4.3. Epigenomic differences between osteoarthritis grades in primary cartilage  
 

We investigated the genome-wide DNA methylation profiles of primary chondrocytes from 

macroscopically intact (low-grade) and degraded (high-grade) cartilage from osteoarthritis 

patients undergoing total knee replacement for osteoarthritis (Figure 3; Publication 3 in 

Appendix)52.  

We conducted an epigenome-wide association study (EWAS) for cartilage degeneration by 

comparing low- and high-grade osteoarthritis cartilage samples from within-individual 

matched samples across 170 patients and identified 146,777 DMS (p < 6.41x10 x 10^-8). 

Biological characterisation of these markers revealed enrichment of a wide biological 

spectrum, including apoptosis- and neuron-related terms. 

We further generated sex-specific epigenetic profiles of cartilage degeneration by performing 

separate EWAS in 96 women and 74 men, and identified widespread epigenetic osteoarthritis 

markers (women: 62,313 DMS, men: 61,513 DMS, p < 6.41 x 10^-8). 

Comparing these EWAS results identified substantial overlaps (43,152 DMS identified in 

women and men) as well as sex-specific markers (women: 361 DMS; men: 480 DMS; with p < 

6.41 x 10^-8 in one sex but p > 0.05 in the other). Furthermore, we identified pathways that 

may be osteoarthritis-related in a sex-specific manner (FDR < 0.05 in one sex, but p > 0.05 in 

the other)  (women: 19 GO terms, men: 51), including the immune system as well as nervous 

system-related terms. 

We provide the largest genome-wide methylation profile of primary osteoarthritis cartilage to 

date, which almost doubles the size of the next largest study, enabling enhanced and sex-

specific insights into epigenetic processes underlying osteoarthritis progression. 

Author contribution: 

- Data analysis (DNA methylation data preprocessing, differential analyses, sex-

specificity analyses) 

- Interpretation of results (with Eleftheria Zeggini) 

- Manuscript drafting (with Eleftheria Zeggini) 

- Manuscript reviewing and editing (with Eleftheria Zeggini and J Mark Wilkinson) 
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5. Discussion 
 

Osteoarthritis is a complex and prevalent joint disease. GWAS have generated insights into its 

polygenic architecture, but genome-wide DNA methylation profiles of affected joint tissues 

are excluded from large consortia (such as GTEx71, Roadmap12, ENCODE13). In this work, I have 

generated genome-wide DNA methylation profiles across four joint tissue types, detect and 

characterise epigenetic osteoarthritis markers, and generate genome-wide mQTL maps, 

which I have used to identify mechanistically relevant methylation sites and genes. 

Methylation profiles reveal extensive differences between tissues, for instance, global 

methylation differences between low- and high-grade cartilage and synovium7. To further 

refine epigenetic insights into osteoarthritis progression in cartilage, I conducted the largest 

EWAS for cartilage degeneration to date7,52 which revealed widespread differences on 

methylation site and region level. I found strong evidence for replication in an independent 

dataset7, despite its smaller sample size and lower power. Together, these results underline 

the cell-type and disease-grade specificity of methylation in primary tissues, and thus the need 

to profile all components of the affected joint to generate a full molecular picture of 

osteoarthritis. 

Comparing joint with blood methylation data emphasise the importance of examining joint 

primary tissues. Differences comprised distinct methylation profiles between fat pad and 

blood methylation in the same patient cohort52, mQTLs with opposite directions of effect 

when comparing joint and blood maps as well as colocalisation signals in joint, that were 

absent in blood7. The latter propose that at least a subset of the regulatory effects mediated 

by osteoarthritis-linked variants through close methylation sites are specific to osteoarthritis-

affected tissues. Together, these findings underline the value of studying disease-relevant 
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tissues rather than solely molecular data from peripheral tissue types. Biological 

characterisation of osteoarthritis-progression related epigenetic markers in cartilage, through 

pathway enrichment analysis,  suggests a multitude of osteoarthritis-associated processes, 

such as previously-reported external matrix organization, skeletal system development, 

and signaling pathways, reflecting a wide spectrum of involved biological mechanisms during 

osteoarthritis-related cartilage degeneration. Of note, I identified processes related to the 

epithelium (such as “positive regulation of epithelial cell migration”)7, nervous system (e.g. 

“dendrite morphogenesis”, “regulation of synaptic plasticity”) or neurotransmission related 

terms (e.g. “synaptic vesicle cycle”, “neurotransmitter secretion”), for the first time, which 

may be linked with angiogenesis or innervation in affected cartilage, and ultimately be 

associated with pain development in affected knees72. Other pathways are related to 

apoptosis (such as “regulation of extrinsic apoptotic signaling pathway”) which has been 

linked with cartilage breakdown previously73. Together, these results suggest that DNA 

methylation is involved in regulatory changes of these biological pathways during 

osteoarthritis. 

For the first time, I provided sex-specific epigenetic insights into osteoarthritis progression52. 

I performed EWAS for cartilage degeneration separately in women (n = 96) and men (n = 74) 

and found widespread epigenetic markers, respectively. Of note, I identified a number of sex-

specific markers (women: 413 markers, men: 539 markers), proposing a few sex-specific 

molecular mechanisms. I have also identified pathways that are enriched in epigenetic 

osteoarthritis markers in only one sex (women: 19 pathways, men: 51 pathways). Some were 

related to innervation and neurotransmission which may be linked with more pain in affected 

joints in women74. Other sex-specific pathways were immune system-related which is 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
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potentially associated with proinflammatory factor level differences between sexes in 

chondrocyte cell cultures (IL1A, IL6, and IL8 expression levels in cultured chondrocytes of low-

grade osteoarthritis cartilage are increase in women 75) or overrepresentation of women in a 

high inflammation-linked osteoarthritis patient cluster19. Together, these results suggest sex-

specific roles of some epigenetic markers or mechanisms which are potentially linked with 

higher osteoarthritis prevalence and severity in women. Our studies present the first genome-

wide mQTL maps of affected joint tissues, across disease-stages (low- and high-grade 

osteoarthritis cartilage) as well as joint tissues (cartilage, synovium and infrapatellar fat pad). 

These results are publicly available (https://msk.hugeamp.org/downloads.html), and thus 

constitute a highly relevant source for the osteoarthritis research community and beyond. 

These maps revealed 18 differential mQTLs between low- and high-grade osteoarthritis 

cartilage samples, proposing different regulatory effects of genetic variants on methylation 

sites at early and later disease stages. This suggests altering genetic effects on epigenetic 

profiles during osteoarthritis progression. 

Integrating these mQTL maps with osteoarthritis GWAS results, such as through colocalisation 

and MR analysis identified methylation sites with a putative causal role in low- (36 methylation 

sites) and high-grade (37 methylation sites) osteoarthritis cartilage, synovium (24 methylation 

sites) and infrapatellar fat pad (37 methylation sites). These signals comprised methylation 

sites located in genes which are involved in osteoarthritis-related pathways.  

For example, I found cartilage and synovium methylation in WWP2 to be causally involved in 

osteoarthritis. WWP2 encodes a ligase that contributes to protein ubiquitination. It is linked 

with micro-RNA140, a regulator in chondrocytes. Mouse models revealed a regulatory role of 

Wwp2 in cartilage homeostasis through Adamts576. In cartilage, I further estimated 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/homeostasis
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methylation in ALDH1A2 or LTBP1 with a causal role in osteoarthritis. ALDH1A2 is an enzyme 

that catalyses the synthesis of retinoic acid (activated form of vitamin A). It has been 

associated with bone collagen degeneration77 and is used to induce matrix degeneration in 

cartilage samples78. LTBP1 is involved in regulating transforming growth factor (TGF) betas, a 

cytokine class with a role in extracellular matrix synthesis and maintenance as well as 

inflammation and chondrocytes hypertrophy control79. Chondrocytes generate inactivated 

TGF betas which are bound by LTBP1 to the extracellular matrix in cartilage80. In synovium, I 

also found BSN, CRADD and MFHAS1 methylation to be putatively causally linked with 

osteoarthritis. The gene MFHAS1 is involved in the regulation of Toll-like receptors TLR2 and 

TLR481,82. These receptors, presented by cells in the synovium, interact with matrix molecules 

released from degraded cartilage, triggering the synthesis of chemokines and cytokines, and 

ultimately the inflammatory cell infiltration of the synovium. The adapter protein CRADD 

contributes to the synthesis of the apoptosis-related PIDDosome-complex, which in turn 

activates CASP283. This result proposes that apoptosis, which has been related to 

osteoarthritis in the synovium previously84, is regulated through DNA methylation in the  

synovium. BSN is a component of the presynaptic skeleton complex (a structure that assists in 

the vesicle fusion of synaptic vesicles and presynaptic membranes), thus is involved in 

neurotransmission85. Furthermore, genes with potential osteoarthritis relevant methylation 

sites in the infrapatellar fat pad comprised USP8, TSKU and FER1L4. USP8 encodes a protein 

that contributes to the regulation of epidermal growth factor receptor which has been linked 

to inflammation and angiogenesis86. The gene TSKU inhibits the osteoarthritis-linked Wnt 

signalling pathway87. Furthermore, FER1L4 modulates osteoarthritis-associated factors IL-688 

and VEGF89. Together, these mQTL maps reveal causal association of methylation with 

osteoarthritis. 
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My efforts enhance our understanding of the molecular profiles of osteoarthritis. Emerging 

sequencing technologies will increase resolution into the molecular profile of osteoarthritis-

relevant tissues, including at the single-cell and spatial omics levels. For example Perturb-seq90 

investigates genetic variations at the single-cell transcriptomics level, thus better elucidating 

the functional genomics of complex diseases. Long-read sequencing technologies profile less 

well-studied genomic regions, such as genomic structural variation or highly repetitive regions 

(including telomeres or centromeres)91. The most common DNA methylation profiling 

technology is currently Illumina’s methylation array set, which target 450,000 (450k) or 

900,000 (EPIC) methylation sites. Sequencing-based technologies, such as whole genome 

bisulfate sequencing92 may extend methylation profiling to roughly 28 million methylation 

sites in the human genome. Application of these novel technologies may improve molecular 

insights to osteoarthritis tissues. 

Genetic and molecular studies of osteoarthritis have primarily focused on individuals of 

European ancestry, which bias our understanding of the disease. Extending studies to non-

European populations can generate more comprehensive genetic and molecular profiles of 

osteoarthritis, ensuring that the results are both accessible and applicable to individuals 

worldwide. 

In summary, my work highlights the tissue as well as disease-grade specificity of the epigenetic 

profile in osteoarthritis-affected joint tissues. I identify a multitude of epigenetic osteoarthritis 

markers, reveal disease-associated biological pathways and identify likely effectors genes of 

osteoarthritis. My findings highlight the relevant role of DNA methylation in osteoarthritis 

aetiopathogenesis. 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/methylome
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Summary

Osteoarthritis is a complex degenerative joint disease. Here, we investigatematched genotype andmethylation profiles of primary chon-

drocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected

from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study

of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to

the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate

with 82% accuracy in independent data.We report a genome-widemethylation quantitative trait locus (mQTL)map of articular cartilage

and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through

causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease

risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.

Introduction

Osteoarthritis (MIM: 165720) is a complex degenerative

joint disease characterized by chronic pain and stiffness.

It affects more than 40% of people over the age of 70

and is a leading cause of disability worldwide.1 In spite of

its high prevalence, treatment methods are limited to

pain management and total joint replacement (TJR). To

drive the development of novel and personalized treat-

ments, it is necessary to understand the genetic and

genomic architecture underlying osteoarthritis. Genome-

wide association studies (GWASs) have determined around

150 independent osteoarthritis-linked single-nucleotide

variants.2 For the most part, it is unknown which variants

and genes at these loci are causal to disease development

and along which molecular pathways they exert their oste-

oarthritis-promoting effect. To identify these mechanisms,

studies using relevant tissues are necessary, and TJR sur-

geries provide an opportunity to molecularly profile rele-

vant tissues from osteoarthritis-affected individuals.3

DNA methylation in promoter regions and particularly

around the transcription start site is strongly associated

with gene downregulation,whereas its effect in gene bodies

or other regulatory regions remains less predictable. DNA

methylation is dynamic, with highly tissue-specific pat-

terns,4 and can interact with a multitude of factors such as

genotype, age, sex, or environment.5 Themethylation pro-

files of relevant tissues and cell types in complex diseases

can further our understanding of disease etiology, for

example by generating insights into perturbed regulatory

mechanisms and by revealing epigeneticmarkers of disease

development or progression. Given the importance of tis-

sue-specific molecular patterns, initiatives such as GTEx,6

ENCODE,7 ROADMAP,8 and BLUEPRINT9 have generated

large publicly available resources that havemademolecular

datasets broadly accessible. However, these datasets do not

include osteoarthritis-affected tissues.

Tofill this gap, a smallnumberof studieshave investigated

DNA methylation profiles of articular cartilage, typically

comparing methylation profiles between macroscopically

intact (low-grade) and degraded (high-grade) osteoarthritis

cartilage to identify epigenetic markers of cartilage degener-

ation.Previousepigenome-wideassociation studies (EWASs)

of this type have been limited in size,with amaximumof 17

knee osteoarthritis-affected individuals studied to date.10–14

There is a need forbetter powered studies to improveourun-

derstanding of the role ofDNAmethylation inosteoarthritis

(supplemental note S1).

Combining DNA methylation data with matched geno-

types enables the detection of genetic variants associated

with differential methylation levels at cytosine-guanine di-

nucleotides (CpGs), i.e., methylation quantitative trait loci

(mQTLs). Characterizing these associations can help eluci-

date effector genes through which disease-associated ge-

netic risk variants may exert their biological effect. To

date, studies seeking to investigate mQTL effects in joint
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tissues have mostly focused on a candidate gene15 or single

genetic variants previously linked to osteoarthritis.16–19

One study has investigated the association of genome-

wide methylation with gene expression in osteoarthritis-

affected cartilage in 31 osteoarthritis-affected individuals

(17 knee and 14 hip osteoarthritis patients).11 They re-

ported 87 methylation sites that were correlated with the

expression of 70 genes, where both gene and methylation

site were linked to cartilage degeneration. Of these, 36 were

targeted by cis-mQTLs. There remains a need to compre-

hensively map the mQTL landscape on a genome-wide

scale and, in better-powered sample sizes, to generate

comprehensive insights into the interplay between genetic

variation and epigenetic changes in osteoarthritis tissues,

and to provide a resource to help elucidate the mechanism

for novel genetic risk loci discovered in GWASs.

To date, molecular studies of osteoarthritis have mainly

focused on articular cartilage, the most prominent osteoar-

thritis-affected tissue. However, osteoarthritis is regarded as

a disease of thewhole joint, affectingmultiple tissueswithin

the synovial joint. Therefore, expanding genomic analyses

to includeother joint tissueshas thepotential to reveal novel

insights into disease progression. The synovium, a connec-

tive tissue that lines the joint capsule separating the synovial

cavity from neighboring tissues, undergoes pathological al-

terations during osteoarthritis. There is well-documented

evidence of synovial inflammation in osteoarthritis-affected

joints, referred to as synovitis.20 Several studies have

compared mQTL effects across tissues but have focused

only on specific, osteoarthritis-linked loci.16,19,21,22

In this study, we have analyzed genome-wide methyl-

ation profiles from up to 98 osteoarthritis-affected individ-

uals undergoing TJR due to knee osteoarthritis (matched

low-grade and high-grade cartilage and synovium). We

enhance our understanding of osteoarthritis aetiopatho-

genesis by (1) identifying methylation markers for cartilage

degeneration, (2) building machine-learning-based models

to distinguish between low-grade and high-grade osteoar-

thritis cartilage samples, (3) determining genome-wide

methylationquantitative trait loci (mQTLs) inosteoarthritis

tissues (cartilageandsynovium), and (4) resolvinghigh-con-

fidence effector genes for osteoarthritis GWAS signals.

Subjects and methods

For full details ofmethods, see supplemental subjects andmethods.

Osteoarthritis-affected individuals and study samples
Samples from osteoarthritis-affected knees were collected in 101

osteoarthritis-affected individuals that underwent total knee

replacement due to late-stage osteoarthritis. Cartilage samples

were graded with the OARSI cartilage classification system

(cohort1) or International Cartilage Repair Society (ICRS) scoring

system (cohort2 and cohort3). This work was approved by Oxford

NHS REC C (10/H0606/20 and 15/SC/0132), and samples were

collected under Human Tissue Authority license 12182, Sheffield

Musculoskeletal Biobank, University of Sheffield, UK. Before

participating in the study, all osteoarthritis-affected individuals

provided written, informed consent.

Sample extraction
Aprevious study3 reported the isolationof the chondrocytes (section

‘‘Isolation of chondrocytes’’), the isolation of synoviocytes (section

‘‘Isolation of synoviocytes’’), and DNA extraction (section ‘‘DNA,

RNA and protein extraction’’) in its methods part.

DNA methylation data
Genome-wide DNA methylation was measured with the Illumina

450k or EPIC array in three sequencing batches.We used the R pack-

age minfi to read idat files.23,24 We removed samples of three

ethnicity outliers, gender mismatches (two samples), X-Y ratio out-

liers, and samples with unbalanced ratios between methylated and

unmethylated signals (ten samples). To normalize methylation sig-

nals, we applied functional normalization,25We removed probes on

sex chromosomes, probes with detection p values of p > 0.01 in

more than 5%of the samples, andpreviously reported cross-reactive

probes.26–28 Furthermore, we excluded probes that had been re-

ported to overlap with common genetic variants, as the signal of

these probes might solely reflect genetic variation rather than true

methylation signal.26 The resulting data comprised 401,870

methylation loci and 266 samples from98 osteoarthritis-affected in-

dividuals (56 female and 42 male patients, age range: 38–88, age

mean: 69.6, age sd: 9.72, Table S1), including 98, 90, and 78 samples

from low-grade osteoarthritis cartilage, high-grade osteoarthritis

cartilage, and synovium, respectively. We conducted downstream

statistical analyses on M values as recommended.29

DNA methylation data (replication set)
We used published methylation data for low-grade and high-grade

osteoarthritis cartilage to replicate the findings of the EWAS and

the machine-learning-based classifiers.30

The data is publicly available in the Gene Expression Omnibus

database31 and accessible through the entry number GEO:

GSE63106. The replication data comprises methylation data of

matching low-grade and high-grade osteoarthritis cartilage sam-

ples from 31 patients who underwent total joint replacement to

treat primary osteoarthritis (knee: 17 osteoarthritis-affected indi-

viduals, hip: 14 osteoarthritis-affected individuals).

Genotype data
Genotypes were measured with the InfiniumCoreExome-12v1-

1_A array or the InfiniumCoreExome-24v1-1_A array (supple-

mental subjects and methods). Genotype data were preprocessed

as previously described.3

Sample stratification with multivariate modelling
To investigate differences between tissues on a global level, we

used DNA methylation data (including 98, 90, and 78 samples

from low-grade and high-grade osteoarthritis cartilage and syno-

vium, respectively) corrected for batch effects with the ComBat

function32 from the R package sva and considered these corrected

methylation. We applied (1) principal-component analysis

(R function prcomp) and (2) a follow-up hierarchical clustering

(R package FactoMineR).33

Differential methylation analysis (discovery)
To identify differentially methylated sites (DMSs) in pairs of low-

grade and high-grade osteoarthritis cartilage samples from 90

1256 The American Journal of Human Genetics 109, 1255–1271, July 7, 2022



osteoarthritis-affected individuals, we performed linear modeling

by using the function lmFit and eBayes function of limma.34 We

added the factor variable patient ID to ensure paired analysis

design and 18 surrogate variables (SVs) to account for technical

confounders as covariates. To assess genome-wide significance in

the EWAS, we applied Bonferroni correction considering the num-

ber of tested methylation sites: 0.05/401,870 ¼ 1.24 3 10�7. To

identify differentially methylated regions (DMRs), we applied

the R package dmrff.35 Regions were defined as differentially

methylated when composed of more than one methylation site

and achieving a Bonferroni-adjusted p < 0.05. To identify sex-spe-

cific markers of cartilage degeneration, we used a similar approach

as in the combined analysis (supplemental subjects andmethods).

Differential methylation analysis (replication)
We performed an EWAS on knee samples of the replication data

(17 low-grade and high-grade osteoarthritis cartilage samples,

respectively) to validate our findings. To determine DMSs between

low- and high-grade osteoarthritis cartilage, we applied amixed-ef-

fect model, which is similar to what has been applied to this data-

set previously11 (supplemental subjects and methods). Replicated

DMSs are defined as (1) showing the same direction of effect in the

replication set (2) at nominal significance (p < 0.05). We per-

formed the EWAS on a regional level in the replication dataset

with dmrff (default settings analog to the discovery analysis). We

defined DMRs as replicated when they are composed of exactly

the same methylation sites in the replication set and show the

same direction of effect on nominal significance.

Pathway enrichment analysis
We used the gometh and goregion functions (available through R

package missMethyl) to identify enrichments among DMSs and

DMRs.36,37 We considered pathways consisting of between 20

and 200 genes.

Distinguishing cartilage grades with machine learning
We constructed classifiers that distinguish cartilage grades. More

specifically, we trained and tested random forest (RF)-based classi-

fiers repeatedly in 5-fold cross validations (cv) in 25 iterations

(R package caret). In total, we trained and tested 125 RF models

(25 iterations 3 5-fold cv) (supplemental subjects and methods).

To validate our approach, we trained RF-, support-vector-ma-

chine-, and gradient-boosting-machine-based classifiers on our

entire dataset and tested the prediction quality of the resulting

classifiers on the validation dataset. We then applied the classifiers

and assessed their prediction quality separately in hip and knee

samples. Prediction accuracies and their 95% confidence intervals

were calculated with carets ConfusionMatrix-function.

Identification of methylation quantitative trait loci
We performed genome-wide cis-methylation quantitative trait lo-

cus (mQTL) analysis in low-grade (97 samples) and high-grade

osteoarthritis cartilage (89 samples) as well as in synovium (78

samples), thus including only samples for which complete covar-

iate information was available. We restricted our analyses to SNPs

with a minor allele frequency> 0.05. Furthermore, we defined the

cis-distance with 1 Mb.We conducted the mQTL analysis by using

the R package MatrixEQTL.38 We applied linear models and cor-

rected for age, sex, and batch effects (supplemental subjects and

methods). We defined two thresholds to identify genome-wide-

significant methylation QTL effects.

(1) Bonferroni threshold: genome-wide significance defined

by p < 0.05/number of tested SNP-methylation site pairs

(low-grade osteoarthritis cartilage: p < 3.05 3 10�11,

high-grade osteoarthritis cartilage: p < 3.03 3 10�11, syno-

vium: p < 3.03 3 10�11).

(2) False discovery rate (FDR): we estimated the FDR of mQTL

effects by using the MatrixEQTL package. It calculates the

FDRconsidering the totalnumberof tested cis-pairsper tissue.

To characterize mQTL architecture in osteoarthritis tissues, we

used methylation site annotations of Illumina’s annotation file

(version 1.2). For the enrichment approaches, we applied hyper-

geometric tests (R function phyper). To identify sex-specific cis-

mQTLs, we applied MatrixEQTL by using an interaction model

(supplemental subjects and methods).

Differential mQTL effects in low-grade and high-grade

osteoarthritis cartilage
To calculate differential mQTL effects between low-grade

and high-grade osteoarthritis cartilage, we used the software

MetaTissue v0.5 (see web resources).39 Analogously to our

genome-wide, tissue-specific approach to identify mQTLs, we

included sex, age, and sequencing batches as covariates in

these models. We used the MetaTissue software to calculate

posterior probabilities (m values) and focused on genetic variant-

methylation site pairs with a significant effect in one tissue

(m value > 0.9) but not in the other (m value < 0.1).

Comparing joint with whole blood methylation QTLs
We compared mQTL effects (Bonferroni correction) of joint tissues

(low-grade osteoarthritis cartilage, high-grade osteoarthritis carti-

lage, and synovium)with the corresponding effects (mQTLeffectbe-

tweenthesamevariant-methylationsitepairs) of amQTLmeta-anal-

ysis (Genetics of DNA Methylation Consortium, see web resources)

of 36 cohorts in whole blood.40 We considered results from the

fixed-effect models from the whole blood mQTLmeta-analysis.

Summary statistics of GWASs
For the MR approach and the colocalization analysis, we included

summary statistics from three osteoarthritis-related phenotypes:

(1) osteoarthritis at any site (all OA) and (2) knee osteoarthritis

(knee OA) and (3) total knee replacement (TKR). Summary statis-

tics for all OA and knee OAwere previously published41 and down-

loaded from the GWAS Catalog. We calculated summary statistics

for TKR by meta-analyzing the arcOGEN and UKBB data with the

METAL software.42

Two-sample Mendelian randomization
To estimate putative causal effects of methylation, we applied two-

sample Mendelian randomization (2SMR) by integrating mQTL

data of the three examined joint tissues and GWAS data from three

osteoarthritis traits (all OA, knee OA, and TKR). We performed

2SMR following the workflow implemented in the R package

TwoSampleMR (version 0.4.25).43 In low-grade osteoarthritis carti-

lage,we tested3,378methylationsites for theirputative causal effect

on osteoarthritis (all OA ¼ 3,378 methylation sites, knee OA ¼
3,378, and TKR ¼ 3,343). In high-grade osteoarthritis cartilage, we

considered 2,042 methylation sites (all OA ¼ 2,042, knee OA ¼
2,042, and TKR ¼ 2,026). In synovium, we investigated the effect

of 1,561 methylation sites (all OA ¼ 1,560, knee OA ¼ 1,560, and

TKR ¼ 1,542). In total, we tested 10,099, 6,110, and 4,662
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methylation site-osteoarthritis trait combinations in low-grade

and high-grade osteoarthritis cartilage and synovium, respectively.

Per tissue, we applied the Bonferroni method to correct for

the number of performed tests (low-grade osteoarthritis cartilage:

p < 4.95 3 10�6, high-grade osteoarthritis cartilage:

p < 8.183 10�6, synovium: p < 1.073 10�5).

We investigated the opposite direction of effect (osteoarthritis

causal for methylation changes) for every tested methylation site-

osteoarthritis trait combination (using R package TwoSampleMR).

We used 27, 10, and 4 SNPs as instrumental variable (IV) for all

OA, knee OA, and TKR, respectively. Here, we applied the inverse-

variance-weighted (IVW) method.

Colocalization analysis
We applied colocalization analysis to statistically estimate the

overlap of mQTL signals in the three osteoarthritis tissues and

GWAS signals.44 We examined genome-wide signals for osteoar-

thritis at any site (all OA, 33 risk loci), knee osteoarthritis (knee

OA, 12 risk loci), and total knee replacement (TKR, 5 risk loci).

We performed colocalization by applying coloc.fast function

(web resources). We conducted the colocalization analysis sepa-

rately for each GWAS osteoarthritis trait and each tissue (supple-

mental subjects and methods). We used a posterior probability

threshold for having a shared causal variant (‘‘PP4’’) of R80%

(thus indicating colocalization) as previously applied.3 Annotated

genes and locations of colocalized GWAS signals were extracted

from Ensembl Variant Effect Predictor (see web resources).

Combining colocalization results with eQTL and gene

expression data
We combined these colocalization results with previously esti-

mated eQTL data from the same patient cohort.3 More specifically,

we tested whether the lead SNP of colocalized GWAS OA signals

show an eQTL effect on local genes at nominal significance

(p < 0.05). We used previously published, matching expression

data (low-grade osteoarthritis cartilage: 75 osteoarthritis-affected

individuals, high-grade osteoarthritis cartilage: 76, synovium:

70)3 of the same osteoarthritis-affected individuals in the same tis-

sue types to test associations between osteoarthritis-linked

methylation sites and genes in the same region. We estimated as-

sociations between methylation and gene expression by using

linear models. We estimated putative causal effects of methylation

on gene expression by using one-sample MR with the R package

ivreg (supplemental subjects and methods).

Comparative analysis of colocalization in joint and blood
We tested whether osteoarthritis-risk variant-methylation site

pairs that colocalize using joint mQTL data also colocalize when

overlapping osteoarthritis GWASs with whole blood mQTL data.

For this colocalization approach, we applied the same colocaliza-

tion method as performed on joint mQTL data. We applied a

threshold of PP4 R 80% and PP4 < 20% indicating colocalization

and no colocalization, respectively.

Results

Methylation profiles differ between tissue types and

disease grades

To describe distinct methylation profiles in three tissue

types (low-grade and high-grade osteoarthritis cartilage

and synovium), we first assessed whether tissue and osteo-

arthritis grade have strong, systematic effects on global var-

iations in the epigenome. We used principal-component

analysis to examine variation in global methylation pro-

files and observed a clear separation between synovium

and cartilage samples along the first principal component

(PC) and partly overlapping clustering between low-grade

and high-grade osteoarthritis cartilage along the second

PC (Figure 1A). A linearmodel confirmed the significant as-

sociation between the second PC and cartilage grades (p ¼
1.51 3 10�16, beta ¼ 253.79, SE ¼ 27.93). Using a hierar-

chical clustering approach, we observed stratification by

tissue type and cartilage degradation state (Figure 1B).

EWAS reveals widespread, robustly replicating signals

To identify DNAmethylation markers of cartilage degener-

ation, we performed an EWAS on paired low-grade and

high-grade osteoarthritis cartilage samples from 90 osteoar-

thritis-affected individuals across 401,870 methylation

sites (supplemental note S2).We identified 15,328 differen-

tially methylated sites (DMSs) distributed across the whole

genome (Figures 2A [upper panel], 2B, and 2C and Table S2)

by using a significance threshold of p < 1.24 3 10�7 (sub-

jects andmethods). Furthermore,we identified2,477differ-

entially (Bonferroni-adjusted p < 0.05) methylated regions

(DMRs) (Figure 2A [bottom panel], Figure S1, and Table S3).

To biologically characterize the DMS, we performed

enrichment analyses and identified 29 and 4GeneOntology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) terms, respectively (Figure 2D, Figure S2, and

Table S4), including pathways linked to osteoarthritis, e.g.,

terms associated with external matrix organization45 and

skeletal system development,10,13,14,45 as well as the epithe-

lium-related term ‘‘positive regulation of epithelial cell

migration’’ in articular cartilage. This term showed limited

overlap with other enriched pathways on the constituent

gene level (e.g., extracellular matrix structural constituent:

two of 93 annotated, differentially methylated genes are

alsoannotatedto ‘‘positive regulationof epithelial cellmigra-

tion,’’ collagen fibril organization: one of 34, integrin-medi-

ated signaling pathway: 11 of 58, cartilage development:

sevenof104,chondrocytedifferentiation:fiveof62) suggest-

ing its distinctness, e.g., to pathways that are linked to the

extracellular matrix or cartilage development. This pathway

may point to an epithelium-related etiological mechanism.

We used an independent dataset from 17 knee osteoar-

thritis patients to replicate the epigenetic differences be-

tween low-grade and high-grade osteoarthritis carti-

lage.11,30 We replicated 7,192 DMSs and 105 DMRs

(Tables S2, S3, and S5). The effect sizes of replicated

DMSs (Pearson r ¼ 0.96, p < 2.2 3 10�16) and DMRs (Pear-

son r ¼ 0.95, p value < 2.2 3 10�16) in the discovery and

replication datasets were highly correlated (Figures 3A

and 3B). These results point to the robustness of the iden-

tified methylation changes.

We further performed EWAS separately on paired low-

grade and high-grade cartilage in female (n ¼ 52) and
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male (n ¼ 38) osteoarthritis-affected individuals and iden-

tified female- (n ¼ 1,338) and male- (n ¼ 3,316) specific

DMSs in cartilage, suggesting sex-specific markers (supple-

mental note S2).

Machine-learning models distinguish cartilage grades

with high accuracy

Next, we sought to test whether epigenetic changes

in different cartilage grades can be harnessed to develop

a model that robustly distinguishes low-grade from

high-grade osteoarthritis cartilage. First, we constructed

RF-based classifiers in the discovery knee osteoarthritis-

affected individual cohort in a repeated 5-fold cross-valida-

tion approach. Here, we achieved high prediction accu-

racies (mean accuracy: 90.69%; standard deviation: 4.08,

95% confidence interval [CI] 89.98–91.41). Furthermore,

the resulting receiver operating characteristic (ROC) curve

revealed an area under the curve of 0.97 (Figure S3), high-

lighting the high sensitivity and specificity of these

classifiers.

To validate these findings, we trained the final RF-based

classifier on our entire patient cohort (subjects and

methods) and evaluated its accuracy in an external dataset

composed of 17 knee and 14 hip osteoarthritis-affected in-

dividuals.30 In this replication cohort, we achieved an ac-

curacy of 82.35% (95% CI 65.47–93.24) for knee samples,

whereas in hip samples the achieved accuracy was lower

at 64.29% (95% CI 44.07–81.36). We also observed these

A

B

Figure 1. Multivariate analyses of
methylation profiles distinguish between
different tissues and disease grades
(A) In a principal-component analysis, the
first PC separates cartilage from synovium,
while the second PC is associated with
cartilage grades (with overlapping clusters
from low-grade and high-grade osteoar-
thritis cartilage samples).
(B) Hierarchical clustering shows a separa-
tion of global methylation profiles by tis-
sue type. ‘‘Height’’ on the y axis denotes
the distance between clusters. OA denotes
osteoarthritis.

differences when using support vec-

tor machines (knee: 85.29%, 95% CI

68.94–95.05; hip: 57.14%, 95% CI

37.18–75.54) and gradient-boosting

machines (knee: 76.47%, 95% CI

58.83–89.25; hip: 50.00%, 95% CI

30.65–69.35). The lower accuracy

achieved in hip samples supports

the effect of methylation joint speci-

ficity within osteoarthritis.30,45 GO

enrichment analysis of the 300 most

important methylation sites in the

final RF model did not identify any

significant enrichments. Of these

300 methylation sites, 99.3% (n ¼
298) and 77.7% (n ¼ 233) were among the DMS identified

in the discovery and replication analysis, respectively. This

suggests that epigenetic markers for cartilage degeneration

are prioritized predictors in the classifier. External valida-

tion of the classifier was somewhat limited by the small

sample size of the replication set, resulting in wide confi-

dence intervals. Hence, validation in larger datasets is

further warranted.

This model shows that epigenetic differences can be

used to distinguish disease stages in cartilage. Samples of

more accessible tissue types (such as blood and synovial

fluid) need to be included in themodel training and testing

to develop a clinically relevant tool.

Genome-wide mQTL maps in osteoarthritis-relevant

tissues

We combined DNAmethylation data withmatching geno-

type data from the same osteoarthritis-affected individuals

to identify genetic variants that are significantly associated

with methylation levels of proximal methylation sites

(<1 Mb; cis-mQTLs). We performed this analysis at the

genome-wide scale in low-grade (n ¼ 97) and high-grade

(n ¼ 89) osteoarthritis cartilage samples as well as in syno-

vium (n ¼ 78 samples), and identified widespread signal in

every tissue (Figure 4, Figure S4, and Table S6). Applying a

conservative Bonferroni threshold to correct for the num-

ber of tested genetic variant-methylation site pairs per tis-

sue (p < 13 10�11), we identified 10,639, 6,785, and 4,493
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Figure 2. Differential methylation between low-grade and high-grade osteoarthritis cartilage
(A) Genome-wide signals for differential methylation sites (top) and regions (bottom) between low-grade and high-grade osteoarthritis
cartilage. Red lines indicate genome-wide significance (top: nominal p < 1.24 3 10�7, bottom: Bonferroni-adjusted p < 0.05).
(B) Volcano plot showing hyper- and hypomethylated sites.

(legend continued on next page)
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methylation sites significantly associated with at least one

mQTL in low-grade osteoarthritis cartilage, high-grade

osteoarthritis cartilage, and synovium, respectively, and

also included genetic-epigenetic effects in loci of previ-

ously reported mQTLs in osteoarthritis-relevant tissue

(supplemental note S3). This represents a genome-wide

map of mQTLs in osteoarthritis tissues. These data are

made publicly available (see data and code availability).

Next, we further characterized the architecture of these

mQTL maps. In low-grade and high-grade osteoarthritis

cartilage, 66.93% (7,121 of 10,639) and 66.44% (4,508 of

6,785) methylation sites with at least one mQTL were an-

notated to a gene, respectively (Figures S5 and S6). In

both cartilage tissue types, we identified significant (Bon-

ferroni p< 0.05) over-representation of intergenic methyl-

ation sites or sites within gene bodies and under-represen-

tation of methylation sites close to transcription start sites

(‘‘TSS200,’’ ‘‘TSS1500’’), in untranslated regions (‘‘3’ UTR,’’

‘‘5’ UTR’’) and first exons (‘‘1st exon’’).

In synovium, 67.44% (n ¼ 3,030 of 4,493) methylation

sites with at least one mQTL were annotated to a gene

(Figure S7). Here, we found significant (Bonferroni

p < 0.05) over-representation of intergenic methylation

sites and under-representation of methylation sites that

are within 200 bp to a transcription start site or in untrans-

lated regions or first exons. These results suggest similar

mQTL architectures across osteoarthritis tissues.

Furthermore, we tested whether mQTL effects differ

between osteoarthritis-affected individuals of different

sexes and identified methylation sites targeted by sex-spe-

cific mQTLs (FDR < 0.05) in low-grade (n ¼ 282) and high-

grade (n ¼ 337) osteoarthritis cartilage as well as in syno-

vium (n ¼ 874) (Figure S8 and Tables S7, S8, and S9).

This suggests sex-specific genetic effects on methylation

in osteoarthritis tissues.

Comparing mQTLs in cartilage and synovium with

whole blood

Next, we asked whether the mQTL profiles of primary oste-

oarthritis tissues differ to those of more easily accessible,

peripheral tissue samples. We compared the cis-mQTL

effects of each of the three examined joint tissues with

those of whole blood, which is the most commonly exam-

ined tissue type for DNA methylation. To maximize

the number of identifiable osteoarthritis-tissue-specific

effects, we compared cis-mQTL effects in joint-tissue to

those of a publicly available, large-scale whole blood

meta-analysis including 36 studies (27,750 European

ancestry participants).40

Because a mQTL can be associated with more than one

methylation site (and vice versa), we use the term

‘‘mQTL-site pair’’ to indicate the association between a spe-

cific mQTL and a specific methylation site. Of the 482,751

mQTL-site pairs in low-grade osteoarthritis cartilage, infor-

mation of 365,411 were available in whole blood. Of these,

88.6% (n ¼ 323,863) were significant in blood (p < 10�11)

with a concordant direction of effect. Notably, 9.61% of

overlappingmQTL-site pairs (n¼ 35,117) were both signif-

icant and had an opposite direction of effect in blood.

Similarly, we compared 219,661 (of 286,558) mQTL-sites

pair identified in high-grade osteoarthritis cartilage and

found that 90.53% (n¼ 198,867) of these had a significant

(p < 10�11) effect in the same direction in blood. Notably,

7.87% (n ¼ 17,297) of present mQTL-site pair had a signif-

icant but opposing direction of effect in blood. In syno-

vium, 78.88% (n ¼ 156,931) of 198,958 mQTL-site

pair were available in whole blood, of which 96.87%

(n ¼ 152,023) had a significant mQTL effect in blood

(p < 10�11) in the same direction. 2.29% (n ¼ 3,594) of

overlapping mQTL-site pairs showed a significant effect

in the opposite direction in blood. In summary, we found

that the majority of mQTL effects identified in osteoar-

thritis-related tissues show the same direction in whole

blood but also observed effects in opposing directions in

all tested joint tissue types. The latter indicates non-negli-

gible differences in the mQTL profile between osteoar-

thritis-relevant joint tissues and whole blood.

Identification of grade-specific mQTLs in cartilage

We compared mQTL effects between the osteoarthritis

joint tissues. Comparing low-grade cartilage with syno-

vium, we found 143,258 mQTL-site pairs to be significant

in both. The effects showed high correlation (Pearson r ¼
0.97, p < 10�16) and 33 mQTL-site pairs showed an effect

in the opposite direction. The effects of the 122,378

mQTL-site pairs that were significant in both high-grade

cartilage and synovium also showed high correlation

(Pearson r ¼ 0.97, p < 2.2 3 10�16), and their effect direc-

tions were all concordant. In low-grade and high-grade

osteoarthritis cartilage, the effect sizes of mQTL-site pairs

were highly correlated (comparing 256,036 mQTL-

site pairs that were significant in both low-grade and

high-grade osteoarthritis cartilage: Pearson r ¼ 0.99,

p < 2.23 10�16) and showed only concordant effect direc-

tions. Overall, our findings point to broadly concordant

mQTL effects across osteoarthritis tissues.

We subsequently sought to identify differential mQTLs,

i.e., mQTLs that are present in either low-grade or high-

grade cartilage but not in both. This can help identify

mQTL effects that are potentially ‘‘switched on/off’’ with

increasing cartilage degeneration grade, i.e., with disease

stage. To this end, we applied a meta-analysis approach,39

which improves power in identifying differential mQTLs

by estimating a posterior probability of >0.9 and <0.1

(C) An example of hypomethylation in high-grade osteoarthritis cartilage at cg26247168 (beta:�2.32, p¼ 3.053 10�26, SE¼ 0.14). The
boxplots represent 25th, 50th, and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.
(D) Most significant Gene Ontology gene annotations enriched in 15,328 DMSs. Red dashed lines indicate the significance threshold
(Benjamini-Hochberg-adjusted p < 0.05).
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indicating the presence and absence of a mQTL effect,

respectively. In total, we identified 195 genetic variants

that show a differential mQTL effect on 18 methylation

sites (Table S10). Following clumping, one independent dif-

ferentialmQTLwas retained permethylation site (Figure 5).

Of the 18 targeted methylation sites, 14 and 4 were mQTLs

in low-grade and high-grade osteoarthritis cartilage only,

respectively. Genes annotated to these methylation sites

are linked to osteoarthritis-relevant terms in cartilage,

e.g., they encode a matrix metalloproteinase (MMEL1) or

are involved in cell adhesion (CDH23 and PARVA).

Assessing the causal role of methylation in osteoarthritis

To identify methylation sites that play a causal role in oste-

oarthritis progression, we applied two-sample Mendelian

randomization (MR) to the methylation sites associated

with cartilage degeneration (exposure) and the mQTLs

we identified in osteoarthritis-relevant tissues, together

with genetic associations from three GWASs: knee osteoar-

thritis (knee OA), osteoarthritis at any site (all OA), and to-

tal knee replacement (TKR). We used the mQTLs as instru-

mental variables (Figure S9) in the MR analysis.

We identified 6, 8, and 11 significant osteoarthritis trait-

methylation site combinations in low-grade and high-

grade osteoarthritis cartilage and synovium, respectively.

When performing an MR approach to examine causality

in the opposite direction, namely the effect of osteoar-

thritis on methylation (Figure S10), we could not

find any evidence for a significant effect for these osteoar-

thritis trait-methylation site combinations, thus providing

further evidence for the causal role of these methylation

sites on osteoarthritis (and not vice versa).

In total, we identified 19 methylation sites with a

putative causal effect on osteoarthritis (Figure 6 and

Table S11). In low-grade osteoarthritis cartilage, we identi-

fied six methylation sites with a potential causal effect

(Bonferroni correction, p < 4.95 3 10�6). Four of these

showed association with hypermethylation, and two

showed associations with hypomethylation and osteoar-

thritis development. Among the annotated genes is

WWP2 (cg26736200 in gene body), a key regulator in

chondrocytes (discussion).

In high-grade cartilage, eight methylation sites were

causally linked to osteoarthritis (Bonferroni correction,

p < 8.18 3 10�6). Of these, five sites showed association

of hypermethylation with a protective effect against osteo-

arthritis development, whereas the other three sites were

associated with higher risk. Annotated genes include COL-

GALT2 (cg18131582 in gene body), a transferase that cata-

lyzes the transfer of galactose to collagen during collagen

synthesis.46 A previous study suggests that the expression

of this gene in cartilage is influenced by an osteoarthritis-

risk variant.47

In synovium, we identified 11 significant methylation

site-trait combinations, involving eight unique methyl-

ation sites (p < 1.07 3 10�5). In five of these eight sites,

increased methylation levels showed a protective effect

against osteoarthritis development, whereas in three sites

hypermethylation was associated with higher risk. Anno-

tated genes include MFHAS1 (cg01784220 in the 1st

exon), a gene involved in Toll-like receptor signaling,48,49

which is thought to be centrally involved in the osteoar-

thritis-related immune response in synovial joints.50

We identified one methylation site (cg26736200) in low-

grade osteoarthritis cartilage and two methylation sites

(cg17551891 and cg00076555) in high-grade osteoarthritis

cartilage that were also identified as potentially causal for

osteoarthritis in the synovium. For these three methyl-

ation sites, the direction of effect was concordant across

tissues. Cg26736200 is annotated to the gene body of

WWP2. Cg1755189 is located in the gene body of

MAD1L1, a gene involved in cell-cycle regulation, which

may point to cell senescence of chondrocytes in osteoar-

thritis articular cartilage.51 Cg00076555 is located in the

30 UTR of BSN (discussion).

Resolution of GWAS signals

We performed a colocalization analysis to determine

whether osteoarthritis-linked genetic risk variants exert

their effect through the regulation of nearby methylation

sites. For all OA, 13 of 33 tested GWAS signals colocalized

Figure 3. Replication of EWAS results in an independent dataset
(A and B) Effects of (A) methylation sites (n ¼ 346,288) and
(B) methylation regions (n ¼ 271) present in both of the discovery
and replication datasets. Black dots refer to DMSs/DMRs of the dis-
covery set, red dots to DMSs/DMRs that additionally show an ef-
fect at nominal significance (nominal p < 0.05) in concordant di-
rection in the replication set.
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with mQTLs (ten in low-grade osteoarthritis cartilage,

seven in high-grade osteoarthritis cartilage, and six in

synovium; example in Figure 7B). For knee OA, six of 12

tested GWAS signals colocalized with mQTL signals (five

in low-grade osteoarthritis cartilage, four in high-grade

osteoarthritis cartilage, and four in synovium; example in

Figure 7A). For TKR, one of five tested GWAS signals colo-

calized with mQTL signals (in low-grade osteoarthritis

cartilage). Overall, osteoarthritis-related GWAS signals co-

localized with mQTL signals of 32 unique methylation

sites in low-grade osteoarthritis cartilage, 29 in high-grade

osteoarthritis cartilage, and 17 in synovium. In total, we

colocalized mQTL signals of 56 unique methylation sites

with osteoarthritis-risk variants across the three affected

individual tissues (Table S12).

By comparing the findings from colocalization and

causal inference analysis (in the previous section), we iden-

tified two methylation sites in low-grade osteoarthritis

Figure 4. The mQTL landscape in cartilage and synovium
(A–F)Manhattan plots depicting the negative log of the p value of themost significant association permethylation site across all variants
within 1 Mb in (A) low-grade osteoarthritis cartilage, (C) high-grade osteoarthritis cartilage, and (E) synovium. Red lines indicate
genome-wide significance (Bonferroni correction). The boxplots describe the effect of rs62063281 on methylation site cg17117718 in
(B) low-grade osteoarthritis cartilage (beta ¼ 1.65, p ¼ 1.19 3 10�48, SE ¼ 0.06), (D) high-grade osteoarthritis cartilage (beta ¼ 1.60,
p ¼ 3.55 3 10�37, SE ¼ 0.07), and (F) synovium (beta ¼ 1.95, p ¼ 2.39 3 10�44, SE ¼ 0.06), as an example. The boxplots represent
25th, 50th, and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.
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cartilage (cg17125990 and cg26736200) and one methyl-

ation site in synovium (cg26736200) across both ap-

proaches, providing further evidence that these methyl-

ation sites play a causal role in osteoarthritis in the

respective joint tissue.

Next, we combined these findings with results from

eQTL data3 generated in the same patient cohort. When

osteoarthritis GWAS signals colocalized with mQTL data,

we tested whether the GWAS signal index variant exerted

an effect on the expression levels of any gene close to the

relevant methylation site. We found such an eQTL effect

below nominal significance levels for five genes in low-

grade osteoarthritis cartilage (ALDH1A2, CHMP1A,

FAM53A, RPP25, and TGFA), two genes in high-grade
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Figure 5. Differential mQTLs
(A–C) Each row refers to a variant with a differential mQTL effect. The table reports the genetic variant and the targeted methylation site
as well as annotated genes, effect sizes with corresponding standard errors, and posterior probabilities (>0.9 indicate an effect,<0.1 indi-
cate no effect) for the effects in low-grade or high-grade osteoarthritis cartilage. The reported effects were estimated by a meta-analysis
approach (subjects and methods). Boxplots (B) and (C) exemplify a differential mQTL: rs79031158 is associated with methylation of
cg21389723 in low-grade (B) but not in high-grade osteoarthritis cartilage (C). The boxplots represent 25th, 50th, and 75th percentiles,
and whiskers extend to 1.5 times the interquartile range. Msite, methylation site; L-G, low-grade osteoarthritis cartilage; H-G, high-grade
osteoarthritis cartilage; Posterior Prob, posterior probability.
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osteoarthritis cartilage (FAM53A and LTBP1), and one gene

in synovium (CRADD) (Figure 7C). In total, we identified

seven genes linked to an osteoarthritis-risk locus. Given

their link to osteoarthritis-risk variants across two molecu-

lar layers, these genes are high-confidence effector genes at

these osteoarthritis GWAS loci in the respective tissue.

We compared these results with findings from a recent

differential expression analysis.3 Two high-confidence

effector genes were shown to be differentially expressed

in high-grade compared to low-grade osteoarthritis carti-

lage (in high-grade osteoarthritis cartilage, ALDH1A2 is

overexpressed with FDR ¼ 0.0017 and logFC ¼ 0.38 and

CRADD is underexpressed with FDR ¼ 0.00067 and

logFC ¼ �0.24), thus providing additional supportive evi-

dence for a role in osteoarthritis.

Next, we tested whether high-confidence effector genes

correlate with nearby methylation sites, which in turn pu-

tatively mediate the effect of osteoarthritis-risk variants.

Using expression and methylation data of the same osteo-

arthritis-affected individuals in the same tissue, we identi-

fied such expression quantitative trait methylation

(eQTM) effects at nominal significance (p < 0.05) for three

genes (ALDH1A2, FAM53A, and RPP25) in low-grade carti-

lage and one gene (LTBP1) in high-grade cartilage

(Figure 7C). To assess whether these observed associations

are solely correlations, or whether methylation levels do

have a causal effect on gene expression (by mediating the

genetic effect on gene expression), we performed one-sam-

ple MR (supplemental subjects and methods). We found

evidence (MR p < 0.05) for a causal effect of methylation

on gene expression levels for two genes (ALDH1A2 and

RPP25) in low-grade osteoarthritis cartilage and one gene

(LTBP1) in high-grade osteoarthritis cartilage (Table S13).

These findings suggest that methylation mediates the ef-

fect of genetic variants on expression for these high-confi-

dence effector genes.

Comparing colocalization of osteoarthritis loci in joint

and whole blood mQTL data

To investigate the joint tissue specificity of colocalizing

joint mQTL and osteoarthritis GWAS data, we asked

whether these results could also be identified in whole

blood (supplemental note S4). This would allow us to bet-

ter understand whether the regulatory effects of osteoar-

thritis-risk loci mediated by proximal methylation sites

are exclusive to disease-affected joint tissues or also

observed in peripheral tissues. We tested whether the pairs

of risk variant-methylation sites that colocalize in at least
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Figure 6. Overview of putative causal effects of methylation on osteoarthritis-related traits
(A and B) Forest plot (A) describing the putative causal effect (with 95% confidence interval) of increasing methylation levels in the
respective sites on osteoarthritis-related traits. Only significant exposure-outcome associations exceeding tissue-specific Bonferroni
thresholds are reported (low-grade osteoarthritis cartilage: p < 4.95 3 10�6, high-grade osteoarthritis cartilage: p < 8.18 3 10�6, syno-
vium: p < 1.053 10�5). The table (B) reports the instrumental variable(s) (IV[s]) and annotated genes. We applied the Wald-ratio test in
cases of one IV; otherwise the inverse-variance-weighted method was applied.
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one joint tissue also colocalize in a large whole blood

mQTL meta-analysis.40

Considering all OA-risk variants, we found 15 risk

variant-methylation site pairs for which we estimated co-

localizing GWAS signals and mQTL in at least one joint tis-

sue (ten and five pairs in low-grade and high-grade osteoar-

thritis cartilage, respectively), but not in whole blood.

These pairs involved eight all OA-risk variants in total

(seven and three all OA signals in low-grade and high-

grade osteoarthritis cartilage, respectively).

For the knee OA-risk variants, we identified five risk

variant-methylation site pairs with colocalizing GWAS

Figure 7. Colocalization reveals overlapping signals in GWAS and mQTL data
(A–C) (A) and (B) exemplify colocalization events. In (A), we colocalized signals of cis-mQTL for the methylation site cg02900766 (A,
bottom) with the GWAS for knee OA in the same genomic region (A, top). Here, we observed a posterior probability (PP) for a shared
causal variant of 98.6%. Similarly, (B) visualizes the colocalization (PP¼ 86.5%) of cis-mQTL signals targeting cg26672287 in high-grade
osteoarthritis cartilage (bottom) with GWAS signals for all OA (top). The highlighted variant (black) refers to the GWAS index variant in
the respective genetic locus. (C) outlines osteoarthritis-linked genetic variants that colocalize with a methylation site and additionally
show an eQTL effect at nominal significance (nominal p < 0.05) on the gene annotated to the respective methylation site in the same
tissue. For four genes, we also identified an association (at nominal significance) with methylation sites for which cis-mQTLs, in turn,
colocalize with a GWAS signal. RA, risk allele; Msite, methylation site; Coloc PP, posterior probability for colocalization; exp, gene expres-
sion; meth, methylation; _tss (in columnMsite Location), methylation sites that are close to a transcript start site of the respective gene.
The preceding number refers to the distance in bp.

1266 The American Journal of Human Genetics 109, 1255–1271, July 7, 2022



signals andmQTL in at least one joint tissue (two, two, and

one pairs in low-grade and high-grade osteoarthritis carti-

lage and synovium, respectively) but not in whole blood.

These pairs involved two unique knee OA-risk variants

(rs9277552 in low-grade and high-grade osteoarthritis

cartilage and rs56116847 in synovium). For the TKR-risk

variants, we did not find evidence for joint-tissue-specific

colocalizations.

Discussion

Osteoarthritis is a common disease with a complex

polygenic architecture. In this study, we analyzed the

genome-wide methylation profile of low-grade osteoar-

thritis cartilage, high-grade osteoarthritis cartilage, and

synovium at unprecedented scale and depth. We identified

and biologically characterized DNAmethylationmarkers of

osteoarthritis grade and generated genome-wide maps of

mQTLs in threeunderstudiedosteoarthritis-relevant tissues,

which we used to identify mechanistically relevant genes.

Our data revealed global differences in the methylation

profile between tissue types (cartilage versus synovium)

and cartilage degeneration states (low-grade versus high-

grade osteoarthritis cartilage), with robust evidence for

replication in an independent dataset despite lower power

due to smaller replication sample size. This study repre-

sents a large EWAS for knee cartilage degeneration,

increasing the number of studied knee osteoarthritis-

affected individuals by almost 6-fold, thus providing sub-

stantially higher power compared to previous studies.

Together, our findings underline the cell type and osteoar-

thritis-grade specificity of DNAmethylation in primary tis-

sues, thus highlighting the importance of expanding mo-

lecular studies of complex diseases to multiple relevant

tissues and cell types.

Indeed, comparison of our findings with methylation

data available in peripheral blood further underlined the

value of analyzing primary tissues. Observed differences

included mQTLs with opposite directions of effect and ev-

idence for colocalization in joint tissue, but not in whole

blood, for genetic variants linked with osteoarthritis. These

findings suggest that at least a subset of the regulatory ef-

fects conferred by osteoarthritis-linked variants through

proximal methylation sites are specific to osteoarthritis-

affected tissue. More generally, they emphasize the value

of investigating disease-relevant tissues rather than solely

relying on molecular data in peripheral tissue types.

Characterization of knee cartilage degeneration methyl-

ation markers revealed the involvement of biological pro-

cesses such as external matrix organization, skeletal system

development, and signaling pathways, which mirror the

broad spectrum of physiological mechanisms observed

during cartilage degeneration.52 Our results indicate that

the aetiology of osteoarthritis is partly regulated through

aberrant DNA methylation. Notably, we report an enrich-

ment of the epithelium-related term ‘‘positive regulation

of epithelial cell migration.’’ Given the role of epithelial

cells in lining body cavities, in particular blood vessels,

this finding may suggest that methylation is involved in

the pathogenic release of pro-angiogenic factors. Our find-

ings provide evidence that epithelium-linked mechanisms

are relevant in osteoarthritic changes of the articular carti-

lage in affected joints.

Our study presents a genome-wide map of mQTLs in

low-grade and high-grade osteoarthritis cartilage as well

as in the synovium of osteoarthritis-affected knees. We

identified 18 differential mQTLs between low-grade and

high-grade osteoarthritis cartilage. This finding suggests

distinct regulatory effects of genetic variants on methyl-

ation early and late in the cartilage degeneration process,

thus proposing changing genetic influences on epigenetic

profiles during osteoarthritis progression.

We identified methylation sites that play a putative

causal role in osteoarthritis, for example for the WWP2,

BSN, and MFHAS1 genes. WWP2 codes for WW domain-

containing E3 ubiquitin protein ligase 2, which is involved

in protein ubiquitination.WWP2 is the host gene of micro

RNA 140, a key regulator in chondrocytes, which is tar-

geted by methylation in that region. Wwp2 has previously

been implicated in cartilage homeostasis through regula-

tion of Adamts5, a gene encoding an aggrecanase. In addi-

tion, WWP2 demonstrates decreased expression levels

in osteoarthritis-affected articular cartilage derived from

samples of affected individuals.53 Our findings indicate

that methylationmay be driving this aberrant mechanism.

Previously, a study identified anmQTL that targets methyl-

ation sites in WWP2.17 Another study found WWP2

expression to be significantly associated with proximal ge-

netic variants and methylation levels of close methylation

sites.11 Together, these results support a role for genetically

determined methylation for WWP2 regulation in osteoar-

thritis. BSN encodes a protein involved in neurotransmis-

sion. In the active zone of the synapse, BSN is part of the

scaffold of the presynaptic skeleton complex, a structure

that assists in the vesicle fusion of synaptic vesicles and

presynaptic membranes.54 This finding may point to

innervation in cartilage and synovium during osteoar-

thritis. MFHAS1 plays a role in controlling Toll-like recep-

tors TLR2 and TLR4,48,49 which in turn promote inflamma-

tion of the synovium. Toll-like receptors are exposed by

cells in the synovium. They bind releasedmatrixmolecules

of degraded cartilage, which leads to the formation of che-

mokines and cytokines, in turn leading to the inflamma-

tory cell infiltration of the synovium.55

We found evidence for 56 methylation sites mediating

the effects of proximal osteoarthritis-linked genetic vari-

ants in osteoarthritis-relevant tissue. For seven genes

(ALDH1A2, CHMP1A, CRADD, FAM53A, LTBP1, RPP25,

and TGFA), we found evidence that GWAS signals for oste-

oarthritis colocalize with mQTLs in these genes and are

additionally associated with gene expression levels in the

same tissue. Four of these genes (ALDH1A2, FAM53A,

LTBP1, and RPP25) showed an association between
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expression and methylation. Together, our results provide

support for a regulatory role of the associated genetic vari-

ants across two molecular layers, and altered gene expres-

sion is modulated through genetically determined DNA

methylation levels.

CRADD is an adapter protein involved in apoptosis and

plays a role in the formation of the PIDDosome-complex,

which in turn triggers CASP2.56 A role for dysregulated

apoptosis in osteoarthritis synovial tissue has been

previously suggested.57 Our findings indicate that the

apoptosis-contributing factor CRADD is regulated through

DNA methylation in synovium. ALDH1A2 codes for an

enzyme that catalyzes the reaction from retinaldehyde to

retinoic acid, an activated form of vitamin A. Retinoic

acid has been linked to the degeneration of collagen in

bone58 and is further used as an agent to induce matrix

degeneration in cartilage samples.59 LTBP1 plays an essen-

tial role in the regulation of transforming growth factor

(TGF) betas, a cytokine class that has been involved in

extracellular matrix synthesis and maintenance, but also

moderates the effects of inflammation and controls hyper-

trophy of chondrocytes.60 TGF betas are produced by chon-

drocytes in their inactivated form. LTBP1 binds these inac-

tive TGF-betas to the extracellular matrix in cartilage.61

Together, causal inference and colocalization analyses

point to methylation sites that putatively contribute to

osteoarthritis in synovium as well as in early (low-grade

osteoarthritis cartilage) and late disease stages (high-grade

cartilage).

In summary, our results highlight the cell type as well as

disease-grade specificity of the methylome in osteoar-

thritis-relevant tissue. We identify evidence for the

involvement of epithelium-related pathways and identify

likely effector genes for hitherto unresolved osteoarthritis

GWAS signals. In several cases, we are able to decipher

the molecular mechanism underpinning these associa-

tions and demonstrate an important role for DNA methyl-

ation in the aetiopathogenesis of this debilitating disease.

Data and code availability

Methylation QTL, Mendelian randomization, and differential

methylation results can be obtained online (hmgubox and the

Downloads page of the Musculoskeletal Knowledge Portal, see

web resources). All software used in this study is available from

free repositories or manufacturers as referenced in the web Re-

sources and supplemental subjects and methods.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.05.010.
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54. Südhof, T.C. (2012). The presynaptic active zone. Neuron 75,

11–25. https://doi.org/10.1016/j.neuron.2012.06.012.

55. Scanzello, C.R., and Goldring, S.R. (2012). The role of synovi-

tis in osteoarthritis pathogenesis. Bone 51, 249–257. https://

doi.org/10.1016/j.bone.2012.02.012.

56. Ahmad, M., Srinivasula, S.M., Wang, L., Talanian, R.V., Lit-

wack, G., Fernandes-Alnemri, T., and Alnemri, E.S. (1997).

CRADD, a novel human apoptotic adaptor molecule for

caspase-2, and FasL/tumor necrosis factor receptor-interacting

protein RIP. Cancer Res. 57, 615–619.

57. Huang, H., Zheng, J., Shen, N., Wang, G., Zhou, G., Fang, Y.,

Lin, J., and Zhao, J. (2018). Identification of pathways and

genes associated with synovitis in osteoarthritis using

1270 The American Journal of Human Genetics 109, 1255–1271, July 7, 2022

https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.1136/annrheumdis-2014-205980
https://doi.org/10.1136/annrheumdis-2014-205980
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1101/508556
https://doi.org/10.1186/s13059-021-02388-x
https://doi.org/10.1186/s13059-021-02388-x
https://doi.org/10.1093/bioinformatics/btv560
https://doi.org/10.1093/bioinformatics/bts163
https://doi.org/10.1371/journal.pgen.1003491
https://doi.org/10.1038/s41588-021-00923-x
https://doi.org/10.1038/s41588-018-0327-1
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.7554/eLife.34408
https://doi.org/10.1371/journal.pgen.1004383
https://doi.org/10.1002/art.38713
https://doi.org/10.1002/art.38713
https://doi.org/10.1128/MCB.02085-07
https://doi.org/10.1002/art.41738
https://doi.org/10.1002/art.41738
https://doi.org/10.1016/j.molimm.2017.06.017
https://doi.org/10.1016/j.molimm.2017.06.017
https://doi.org/10.1371/journal.pone.0143662
https://doi.org/10.1371/journal.pone.0143662
https://doi.org/10.1007/s11926-013-0323-5
https://doi.org/10.1046/j.1474-9728.2002.00008.x
https://doi.org/10.1046/j.1474-9728.2002.00008.x
https://doi.org/10.1038/nrrheum.2016.148
https://doi.org/10.1038/s41467-019-10177-1
https://doi.org/10.1016/j.neuron.2012.06.012
https://doi.org/10.1016/j.bone.2012.02.012
https://doi.org/10.1016/j.bone.2012.02.012
http://refhub.elsevier.com/S0002-9297(22)00216-6/sref55
http://refhub.elsevier.com/S0002-9297(22)00216-6/sref55
http://refhub.elsevier.com/S0002-9297(22)00216-6/sref55
http://refhub.elsevier.com/S0002-9297(22)00216-6/sref55
http://refhub.elsevier.com/S0002-9297(22)00216-6/sref55


bioinformatics analyses. Sci. Rep. 8, 10050. https://doi.org/10.

1038/s41598-018-28280-6.

58. Varghese, S., Rydziel, S., Jeffrey, J.J., and Canalis, E. (1994).

Regulation of interstitial collagenase expression and

collagen degradation by retinoic acid in bone cells. Endo-

crinology 134, 2438–2444. https://doi.org/10.1210/endo.

134.6.8194470.

59. Shlopov, B.V., Lie, W.R., Mainardi, C.L., Cole, A.A., Chubin-

skaya, S., and Hasty, K.A. (1997). Osteoarthritic lesions:

involvement of three different collagenases. Arthritis Rheum.

40, 2065–2074. https://doi.org/10.1002/art.1780401120.

60. Thielen, N.G.M., van der Kraan, P.M., and van Caam, A.P.M.

(2019). TGFb/BMP signaling pathway in cartilage homeosta-

sis. Cells 8, 969. https://doi.org/10.3390/cells8090969.

61. Saharinen, J., Taipale, J., and Keski-Oja, J. (1996). Association of

the small latent transforming growth factor-beta with an eight

cysteine repeat of its binding protein LTBP-1. EMBO J. https://

doi.org/10.1002/j.1460-2075.1996.tb00355.x.

The American Journal of Human Genetics 109, 1255–1271, July 7, 2022 1271

https://doi.org/10.1038/s41598-018-28280-6
https://doi.org/10.1038/s41598-018-28280-6
https://doi.org/10.1210/endo.134.6.8194470
https://doi.org/10.1210/endo.134.6.8194470
https://doi.org/10.1002/art.1780401120
https://doi.org/10.3390/cells8090969
https://doi.org/10.1002/j.1460-2075.1996.tb00355.x
https://doi.org/10.1002/j.1460-2075.1996.tb00355.x


 
 

Publication 2 
 

Kreitmaier P, Park YC, Swift D, Gilly A, Wilkinson JM*, Zeggini E*. Epigenomic profiling of the 

infrapatellar fat pad in osteoarthritis. Hum Mol Genet. 2024 Feb 28;33(6):501-509. doi: 

10.1093/hmg/ddad198. PMID: 37975894 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 



Received: July 19, 2023. Revised: October 13, 2023. Accepted: November 7, 2023
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Human Molecular Genetics, 2024, Vol. 33, 6, 501–509

https://doi.org/10.1093/hmg/ddad198
Advance access publication date 17 November 2023

Original Article

Epigenomic profiling of the infrapatellar fat pad in
osteoarthritis
Peter Kreitmaier1,2,3, Young-Chan Park3, Diane Swift4, Arthur Gilly3, J. Mark Wilkinson4,*,†, Eleftheria Zeggini 1,3,*,†

1Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, Munich 81675, Germany
2Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
3Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg
85764, Germany
4Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, United Kingdom

*Corresponding author. Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt,
Neuherberg 85764, Germany. E-mail: eleftheria.zeggini@helmholtz-munich.de and Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, S5 7AU
United Kingdom. E-mail: j.m.wilkinson@sheffield.ac.uk
†J. Mark Wilkinson and Eleftheria Zeggini joint corresponding author.

Abstract

Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. Here, we have examined
genome-wide DNA methylation profiles of primary infrapatellar fat pad and matched blood samples from 70 osteoarthritis patients
undergoing total knee replacement surgery. Comparing the DNA methylation profiles between these tissues reveal widespread
epigenetic differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of fat pad, and make
the resource available to the wider community. Using two-sample Mendelian randomization and colocalization analyses, we resolve
osteoarthritis GWAS signals and provide insights into the molecular mechanisms underpinning disease aetiopathology. Our findings
provide the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis.
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Introduction
Osteoarthritis is a complex joint disease that affects more than
300 million people [1]. In the face of aging populations, the impact
of osteoarthritis on public health systems is estimated to increase
further [1]. Current treatment methods are limited to pain man-
agement and total joint replacement, highlighting the need to
develop novel, personalised treatment strategies. Therefore, it
is important to enhance our understanding of the genetic and
genomic basis of osteoarthritis.

To date, genome-wide association analyses (GWAS) have iden-
tified more than 150 genetic risk loci [2] of osteoarthritis, thus
improving our understanding of its polygenic basis. Large-scale
molecular datasets of relevant, primary cell types of osteoarthritis
patients can reveal molecular mechanisms underlying disease
and provide insights beyond genetic studies. Combining results
from genetic and molecular studies can help pinpoint molecular
mechanisms of disease development and progression, specifically
the likely effector genes through which genetic risk variants exert
their effect on osteoarthritis development in affected tissues.

Whilst a number of studies have investigated genome-wide
molecular profiles of osteoarthritis-affected primary joint tissues
[3, 4] the majority have focused on cartilage [5]. Osteoarthritis
affects all joint tissues, and a small number of genome-wide
molecular studies have extended molecular profiling to other

primary joint tissues, such as the synovium [6, 7] or subchondral
bone [8].

The infrapatellar fat pad, an adipocyte-rich tissue located infe-
rior to the patella in the anterior part of the knee joint [9], has
not been deeply studied in osteoarthritis to date. The fat pad is
located among other joint tissues and protects knee components
(by stabilising the patella) when exposed to mechanical stress, e.g.
during exercise. In osteoarthritis-affected knees, the infrapatellar
fat pad undergoes disease-related alterations, including fibrosis,
inflammation and vascularization. Furthermore, it is traversed by
nerves and therefore constitutes a source of knee osteoarthritis-
related pain.

The fat pad may also interact with other joint tissues dur-
ing osteoarthritis development and progression [9]. For example,
it is proposed that the fat pad secretes pro-inflammatory and
catabolic factors that promote cartilage degeneration and inhibit
repair mechanisms [10]. Studies using chondrocyte cultures and
fat pad-derived fat-conditioned media have provided some first
insights into the potential cross-talk between the fat pad and
cartilage [9].

Furthermore, the fat pad lies adjacent to the synovium,
a connective tissue that lines the joint capsule. Both tissues
undergo similar osteoarthritis-related changes, e.g. develop a
similar immune cell profile [11]. Studies in vitro and in mouse
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models suggest interactions between these tissues [12–14]. For
example, Bastiaansen-Jenniskens et al. cultured fibroblast-like
synoviocytes in fat-conditioned medium from fat pad samples
of knee osteoarthritis patients, and suggest that fat pad induces
fibrotic changes in synoviocytes by stimulating collagen synthesis
as well as cell proliferation and migration [14].

Only a small number of studies have examined the profile
of infrapatellar fat pad in osteoarthritis patients. Gandhi et al.
characterised microarray-based gene expression profiles of the
infrapatellar fat pad in 34 (29 and five in late and early stage
knee osteoarthritis, respectively) individuals [15]. Other studies
have investigated the molecular characteristics of osteoarthritis
fat pad in genomic regions of osteoarthritis risk signals [16–18] or
focused on cytokines and extracellular matrix genes [19].

In this study, we focus on DNA methylation, an epigenetic mark
that refers to the covalent addition of a methyl-group to the DNA.
Methylation is dynamic, tissue-specific, and plays a regulatory
role in gene expression. In general, promoter methylation is neg-
atively correlated with gene expression, whereas methylation in
other parts of the genome, such as the gene body, remain less
understood.

We examine the genome-wide DNA methylation profile of
infrapatellar fat pad adipocytes of osteoarthritis-affected knees.
We (1) compare fat pad and blood methylation profiles matched
from the same patients, (2) generate a genome-wide methylation
quantitative trait loci (mQTL) map in fat pad and (3) resolve
osteoarthritis GWAS signals by integrating omics with genetic
association data.

Results
Distinct epigenetic profiles in blood and fat pad
adipocytes
We investigated global differences in the epigenetic profile
between fat pad and peripheral blood samples for the first time.
We performed PCA integrating infrapatellar fat pad samples
from knee osteoarthritis patients (n = 70) and matched blood
samples from a subset of these individuals (n = 58). We identified
a separation of fat pad and blood samples along the first principal
component, which was associated with tissue type (logistic
regression p value: 2.7×10∧−7, beta: −0.013, SE: 0.0026). This
underlines the tissue-specificity of the epigenetic profile on a
global level (Fig. 1A).

To characterise tissue-specificity on the methylation site level,
we performed an epigenome-wide association study (EWAS) of
matched fat pad and blood samples from the same patient (n = 58)
and identified 84 973 (of 780 177 tested sites, 10.89%) strongly
differentially methylated sites (DMS) between fat pad and whole
blood samples (P < 6.4×10∧−08, beta > 2, Table S1). Of these,
33 391 and 51 582 showed hyper- and hypomethylation in fat
pad tissue, respectively (Fig. 1B). Together, these results highlight
extensive differences in the epigenetic profile of fat pad and
peripheral blood.

Genome-wide mQTL map in fat pad adipocytes
We performed cis-mQTL analysis to estimate genetic variants that
are associated with methylation levels of nearby methylation sites
(<= 1 Mb). We identified 35 948 mQTL-targeted methylation sites
(Fig. 2A, Methods), including cg20673407 (Fig. 2B) and cg14016568
(Fig. 2C). Together, this constitutes the first genome-wide mQTL
map of infrapatellar fat pad adipocytes in knee osteoarthritis. The
full summary statistics are publicly available in the Musculoskele-
tal Knowledge Portal (http://mskkp.org).

Osteoarthritis GWAS signal resolution
Next, we integrated the newly-generated fat pad mQTL map
with GWAS results of two osteoarthritis traits, namely knee
osteoarthritis and total knee replacement [2], to determine
methylation sites with a putative causal role in osteoarthritis.

We applied colocalisation to estimate a probability for
methylation mediating the osteoarthritis-promoting effect of risk
variants. In total, we identified 16 methylation sites for which
mQTL signals colocalised with 11 (of 25 tested, 44%) GWAS
signals (Posterior probability for colocalisation > 80%) (Tables 1
and S2). For knee osteoarthritis, we resolved 9 (of 24 tested, 37.5%)
GWAS signals that colocalised with mQTL of 13 methylation sites
(Fig. 3A). Analogously, colocalising mQTL with GWAS results for
total knee replacement resolved 5 (of 10 tested, 50%) GWAS signals
and revealed 7 methylation sites with a potential causal role in
osteoarthritis (Fig. 3B).

Next, we performed causal inference analysis by applying two-
sample Mendelian randomization (MR) to estimate the putative
causal effect of methylation on osteoarthritis. In these MR mod-
els, we used mQTL as instruments as well as mQTL-targeted
methylation sites and osteoarthritis as exposure and outcome,
respectively (Method). Here, we detected 36 methylation sites
with a putative role (P < 7.70×10∧−07) in osteoarthritis (Fig. 3C),
in total (Fig. S1, Table S3). For knee osteoarthritis, we identified 32
methylation sites, of which 15 and 17 revealed a link of hyper- and
hypomethylation with osteoarthritis, respectively. For total knee
replacement, we identified 15 methylation sites with a putative
causal role (9 and 6 showing hyper- and hypomethylation in
osteoarthritis, respectively). Eleven methylation sites were identi-
fied in both osteoarthritis-relevant traits, for which the direction
of effect was concordant.

MR and colocalisation identified 37 putative causal methyla-
tion sites, in total. Of these, 15 were identified in both approaches,
thus providing two lines of evidence for their respective causal
involvement (Tables 1 and S4). Together, colocalisation and
MR results suggest that these methylation marks mediate
the regulation of genetic risk variants on effector genes in
fat pad.

Annotated genes of the identified 37 methylation sites have
been previously linked to osteoarthritis using causal approaches
on genome-wide mQTL maps of cartilage or synovium. This
includes WWP2 (annotated to fat pad relevant methylation site
cg04703221), a chondrocyte regulator [20] for which methylation
has been causally linked to osteoarthritis in low disease-grade
cartilage and synovium [7]. ALDH1A2 (cg12031962, cg12031962
and cg08668585) has also previously been linked to osteoarthritis
at the methylation [7] (in low-and high-grade osteoarthritis
cartilage as well as synovium) as well as expression [6] (low-
grade osteoarthritis cartilage) levels. Furthermore, we identified
osteoarthritis-linked methylation in the collagen type COL27A1
(cg21771125).

We also identified likely effector genes that were not previously
resolved in molecular QTL maps of primary osteoarthritis
cartilage and synovium [6, 7] including USP8 (cg01701297 and
cg05456662; involved in cell proliferation), TSKU (cg17107561;
encodes development-linked extracellular matrix protein) and
FER1L4 (cg14387502 cg05220160; involved in plasma mem-
brane organization) which can be linked to osteoarthritis-
relevant mechanisms (Discussion). Together, integrating the
fat pad mQTL profile with osteoarthritis GWAS results using
colocalisation and MR identified 37 methylation sites with
a potential causal involvement in osteoarthritis in fat pad
tissue.

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/33/6/501/7425440 by H
elm

holtz Zentrum
 M

uenchen user on 05 M
arch 2024

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddad198#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddad198#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddad198#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddad198#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddad198#supplementary-data


Epigenomic profiling of the infrapatellar fat pad in osteoarthritis | 503

Figure 1. Distinct methylation profiles in blood and fat pad adipocytes. We investigated differences in the methylation profile between fat pad and blood.
(A) On a global level, principal component analysis separates fat pad and blood samples along the first principal component. (B) On the methylation site
level, a volcano plot demonstrates the multitude of differentially methylated sites. Sites with strong, differential methylation levels (beta > 2) exceeding
the Bonferroni significance threshold (P < 6.41×10∧−08, dashed line) are shown in black, otherwise in grey.

Figure 2. The mQTL map in fat pad adipocytes (A) Manhattan plots depicting the negative log of the P value of the most significant association per
methylation site across all variants. QTL targeted methylation sites are shown in blue or dark grey, otherwise in light grey. As examples, the boxplots
illustrate the effect (B) of rs10826861 on cg20673407 (beta = −1.40, SE = 0.05, P = 4.15×10∧−33) and (C) of rs10850579 on cg14016568 (beta = −1.20, SE = 0.05,
P = 1.10×10∧−28). The boxplots represent 25th, 50th, and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.

Discussion
Osteoarthritis is a common joint disorder with a polygenic archi-
tecture. Genome-wide molecular profiles of affected primary tis-
sues remain understudied and excluded from large molecular
data resources, such as GTEx [21], ENCODE [22] and RoadMap

[23]. In this study, we characterised the first epigenome-wide
profile of osteoarthritis-affected infrapatellar fat pad. We identify
extensive differences from the epigenetic profile of peripheral
blood, generate the first genome-wide mQTL map in fat pad, and
identify methylation sites with a likely causal role in osteoarthritis
development and progression.
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Table 1. Overview of colocalisation signals. Overview of 16 methylation sites for which fat pad mQTL colocalise with an osteoarthritis
GWAS risk signal for koa and/or tkr (indicated by the column “Coloc GWAS trait”). For 15 of these methylation sites, we also identified a
putative causal effect (column “MR effect”: Positive and negative effects indicate links of hyper- and hypomethylation with
osteoarthritis, respectively) on osteoarthritis using MR (P < 7.70×10∧−07). Abbreviations: Chr, chromosome (hg38); Pos, position (hg 38);
Msite, methylation site; MR, Mendelian randomization; Coloc PP, posterior probability for colocalization; koa, knee osteoarthritis; tkr,
total knee replacement.

Msite Chr Pos (Msite) Gene (Msite) GWAS
lead snp

Coloc
GWAS trait

Coloc PP MR effect MR pval MR GWAS
trait

cg01030629 5 142 425 831 SPRY4-AS1 rs10038860 koa 0.98 −0.04 1.9×10∧−08 koa
cg01100316 4 1 744 409 TACC3 rs7680647 koa 0.96 0.06 1.5×10∧−08 koa

rs4865462 tkr 0.86 0.10 4.9×10∧−09 tkr
cg01150736 1 219 476 017 rs2791549 koa 0.81
cg01701297 15 50 462 696 RNA5SP395

USP8
rs4380013 koa 0.90 −0.05 3.3×10∧−09 koa

cg04703221 16 69 933 160 MIR140
WWP2

rs34195470 koa 0.94 −0.08 5.7×10∧−07 tkr
−0.06 1.0×10∧−11 koa

cg04878480 12 48 012 099 AC004801.4
AC004801.5

rs7967762 koa 0.92 0.04 5.8×10∧−09 koa
rs7967762 tkr 0.92 0.07 2.2×10∧−09 tkr

cg05456662 15 50 424 073 USP8 rs4380013 koa 0.93 0.06 3.9×10∧−09 koa
cg08668585 15 57 955 405 ALDH1A2 rs4144005 tkr 0.86 0.08 3.6×10∧−10 tkr
cg10169515 12 123 222 989 MPHOSPH9 rs753350451 koa 0.86 −0.03 2.2×10∧−08 koa
cg10239804 12 48 104 587 PFKM

SENP1
rs7967762 koa 0.92 −0.05 5.8×10∧−09 koa
rs7967762 tkr 0.92 −0.09 2.2×10∧−09 tkr

cg12031962 15 58 061 651 ALDH1A2 rs4144005 tkr 0.90 0.07 3.6×10∧−10 tkr
cg15373332 9 114 173 564 COL27A1 rs72760655 koa 0.99 0.06 4.4×10∧−10 koa

rs7023177 tkr 0.99 0.10 5.5×10∧−10 tkr
cg15672022 5 142 426 207 SPRY4-AS1 rs10038860 koa 0.98 −0.08 1.9×10∧−08 koa
cg16740022 5 142 426 441 SPRY4-AS1 rs10038860 koa 0.98 −0.04 1.9×10∧−08 koa
cg17669802 20 35 387 551 UQCC1 rs143384 tkr 0.90 −0.08 9.41×10∧−21 koa

−0.11 2.2×10∧−14 tkr
cg17729365 19 10 643 944 SLC44A2 rs2163832 koa 0.96 −0.06 1.0×10∧−08 koa

Comparing fat pad and blood methylation profiles reveals
abundant epigenetic differences underlining the epigenetic
tissue-specificity of blood and joint tissues, thus highlighting the
necessity to investigate disease-affected tissues.

We present the first genome-wide mQTL map for osteoarthritis-
affected infrapatellar fat pad. Colocalising this mQTL map with
osteoarthritis GWAS results resolved eleven genetic osteoarthritis
risk signals, thus providing evidence for methylation mediating
the genetic effect of these GWAS signals on osteoarthritis in
fat pad.

We supplemented these causal insights using MR and, together
with colocalisation, identified 37 methylation sites with a putative
causal role in osteoarthritis in fat pad. Some methylation sites
were close to genes (such as WWP2, ALDH1A2, and COL27A1)
that have been previously causally linked to osteoarthritis using
genome-wide molecular QTL maps of other primary joint tissues
[6, 7], suggesting a disease-relevant role across joint tissues.

We also identify genes that have not been previously resolved
in molecular QTL maps of primary osteoarthritis tissues [6, 7] such
as USP8, TSKU and FER1L4. USP8 is involved in epidermal growth
factor receptor regulation [24], a receptor linked to angiogenic and
inflammatory mechanisms. TSKU is an inhibitor of Wnt signaling,
a pathway which has been consistently linked to osteoarthritis
across tissues, e.g. in cartilage, synovium and subchondral bone
[25]. FER1L4 regulates inflammatory factor IL-6 in osteoarthritis-
affected cartilage [26] and is linked to VEGF, an osteoarthritis-
linked angiogenic factor [27].

These signals can be related to signalling pathways that may
contribute to osteoarthritis development in the infrapatellar fat
pad and its interaction with other joint tissues.

For example, methylation-mediated upregulation of cytokines
may be involved. Elevated levels of IL-6 and VEGF have been
previously observed in fat pad samples of osteoarthritis patients
[28]. Both factors are regarded to affect surrounding joint tissues.
IL-6 is linked to protective, but also inflammatory and catabolic
mechanisms in the cartilage [29]. Increased fat pad mRNA expres-
sion of VEGF has been associated with higher vascularisation of
the neighbouring synovium [28], suggesting interactions between
these tissues. The identification of a Wnt pathway regulator
(TSKU) may relate to the production of WISP2, a target of the
Wnt pathway, for which increased expression levels have been
identified in osteoarthritis-affected fat pad [30].

Together, we have identified genes linked to processes that are
observed in osteoarthritis-affected fat pad, such as inflamma-
tion or vascularization [28], and suggest an involvement of the
detected methylation sites in disease-related alterations.

In this work, we investigate blood and fat pad methylation
profiles of osteoarthritis patients, which reflect disease processes
that could be cause or effect. The integration of genetic data,
coupled to colocalisation and causal inference analyses, were
all used to deconvolute the role of methylation in osteoarthritis.
Obtaining healthy joint tissue as a control for the osteoarthritis-
affected joint presents a major challenge, as removal of healthy
structural human joint tissue is precluded on ethical and accept-
ability grounds. The fat pad mQTL map provides insights into
genetic effects on infrapatellar fat pad methylation for the first
time. Larger sample sizes will be required to achieve 80% power
to detect mQTLs across the allele frequency spectrum (Fig. S2).

Our findings highlight differences in the epigenetic profile of
fat pad tissue and blood and identify methylation sites that likely
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Figure 3. Osteoarthritis GWAS risk signals colocalise with mQTL two colocalisation events are exemplified in (A) and (B). In (A), we colocalised cis-mQTL
for cg15373332 with a knee osteoarthritis GWAS signal (Posterior probability = 98.8%). Similarly, (B) shows cis-mQTL for cg12031962 colocalising with a
total knee replacement GWAS signal (Posterior probability = 89.8%). (C) Manhattan plot depicting the Mendelian randomization P values to estimate the
putative causal effects of methylation sites in fat pad on knee osteoarthritis or total knee replacement. The line indicates genome-wide significance
applying the Bonferroni correction (P < 8.31×10∧−07).

exert the effect of GWAS risk signals in fat pad, shedding light
on the mechanistically relevant role of fat pad methylation in
osteoarthritis.

Materials and methods
Study participants
We have collected tissue samples from 210 patients undergoing
total joint replacement surgery (111 women, 99 men, age 48–
93 years, mean 71 years). All patients provided written, informed
consent prior to participation in the study. Adipose tissue was
collected from the infra-patellar fat pad by sharp dissection of
the fat tissue from the surface of the patellar ligament to yield

not less than 1cm3 of homogeneous adipose tissue. This work
was approved by Oxford NHS REC C (10/H0606/20, SC/15/0132 and
SC/20/0144), and samples were collected under Human Tissue
Authority license 12 182, South Yorkshire and North Derbyshire
Musculoskeletal Biobank, University of Sheffield, UK. We con-
firmed a joint replacement for osteoarthritis, with no history of
significant knee surgery (apart from meniscectomy), knee infec-
tion, or fracture, and no malignancy within the previous 5 years.
We further confirmed that no patient used glucocorticoid use
(systemic or intra-articular) within the previous 6 months, or
any other drug associated with immune modulation. We also
obtained a peripheral blood sample to extract DNA from all
patients.
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Adipocyte and peripheral blood collection and
processing
Adipose tissue samples were transported in Dulbecco’s modified
Eagle’s medium (DMEM)/F-12 (1:1) (Life Technologies) supple-
mented with 2 mM glutamine (LifeTechnologies), 100 U/ml
penicillin, 100 μg/ml streptomycin (Life Technologies), 2.5 μg/ml
amphotericin B (Sigma-Aldrich) and 50 μg/ml ascorbic acid
(Sigma-Aldrich) (serum free media). Next, the adipose tissue
samples were cut into small pieces (<2mm3) and digested in
3 mg/ml collagenase type I (Sigma-Aldrich) in serum free media
for 1 h at 37◦C on a flatbed shaker and resuspended in 2mls of PBS
and passed through a 100 μm cell strainer (Fisher Scientific). Next,
the eluent was made up to 10mls in PBS and centrifuged at 23 g for
5 min. Subsequently, the cell pellet was washed twice in PBS and
centrifuged at 323 g for a further 5 min. Cells were counted using
a haemocytometer and the viability checked using trypan blue
exclusion (Invitrogen). The resulting cell pellet was resuspended
in 650 μl of RLT buffer (Qiagen) and DTT Dithiothreitol (20ul
DTT per 1 ml of RLT). The optimal cell number for spin column
extraction from cells was between 4 × 106 and 1 × 107. Cells were
then pelleted and homogenised. DNA extraction was carried out
using Qiagen AllPrep DNA Mini Kit following the manufacturer’s
instructions. Samples were flash frozen in liquid nitrogen and
stored at −80◦C prior to assays. Peripheral blood was extracted
for DNA using a Qiagen QIAamp DNA Blood Maxi kit, according to
manufacturer’s instructions. The whole blood DNA samples were
frozen at −80◦C prior to extraction.

Methylation data preprocessing
Genome-wide DNA methylation was measured using the Illumina
EPIC array. We preprocessed methylation data using an R pack-
age meffil [31] based preprocessing pipeline (https://github.com/
perishky/meffil/wiki).

We read and preprocessed blood DNA methylation data using
the function meffil.qc, and removed ethnicity outliers, hip sam-
ples, samples with > 10% undetected (detection pvalue > 0.01)
methylation values, sex outliers (> 5 ∗ sd), methylated/unmethy-
lated signal outliers (> 3 ∗ sd) and control probe signal outlier (> 5
∗ sd). We then applied the same procedure (same R functions and
thresholds) on DNA methylation samples from fat pad samples.
Finally, we normalised methylation samples of all tissues together
by applying meffil function meffil.normalize.quantiles (using 16
principal components) and meffil.normalize.samples.

We removed methylation sites with more than 10% of samples
low bead number (< 3) or undetected methylation values (detec-
tion P < 0.01), non-autosomal methylation sites, methylation sites
of cross-reactive probes and in close proximity (within 10 base
pairs) to common SNPs (MAF > 0.05) in European population
[32–34].

We converted initially generated beta values to Mvalues
(beta2m function of R package lumi) [35] which we used for
downstream analyses [36]. Per tissue, we further replaced strong
outliers (> 10 ∗ sd from mean) with the methylation site-specific
mean value. Based on a principal component analysis, we
removed two outlier samples. The resulting fat pad methylation
data comprised 780 177 methylation sites for 70 patients (46
women, 24 men, age 48–93 years, mean 71 years). For 58 of 70
patients, also methylation blood samples were available.

We used publicly available annotations (https://zwdzwd.
github.io/InfiniumAnnotation/EPIC.hg38.manifest.tsv.gz and
EPIC.hg38.manifest.gencode.v36.tsv.gz) to map probe identifier
to the genomic location (hg38) and genes.

Whole-genome sequencing data generation and
preprocessing
Whole-genome sequencing (WGS) samples were available for 68
of 70 patients with matching fat pad methylation data. They were
measured in two sequencing batches. Of 68 WGS samples, 60
were measured in whole blood samples in the first sequencing
batch. Furthermore, eight of 68 WGS samples were measured
in cartilage samples in the second batch. In both batches, DNA
samples were subjected to standard Illumina paired-end DNA
library construction, amplified, and subjected to DNA sequencing
using the NovaSeq platform.

Generated CRAM files were input into samtools (samtools
conda version 1.14) to create bam files. Subsequently, “bedtools
bamtofastq” (bedtools conda version 2.30.0) was applied to
obtain data in the fastq format. Per sequencing batch, variant
calling was performed using the publicly available pipeline Sarek
from nf-core (version 2.7.1, https://nf-co.re/sarek/2.7.1) with the
additional options “– tools HaplotypeCaller –generate_gvcf”. This
uses the GATK Haplotypecaller (GATK v4.1.7.0) and generates
g.vcf files. For the genome “GRCh38” was used. For the joint variant
calling we adapted a publicly available pipeline (https://github.
com/IARCbioinfo/gatk4-GenotypeGVCFs-nf) and used it with
GATK (docker container broadinstitute/gatk:4.2.5.0). Reference
files for GRCh38 were used from GATK.

For QC on the variant level, we applied Variant Quality Score
Recalibration tool using a tranche threshold of 99.5% for SNPs
and the recommended 99% for INDELs. For SNPs, this produces an
expected false positive rate of 2.5% and an expected sensitivity of
97%.

For QC on the sample-level, we removed strong outlier het
rate (two samples), and non-reference allele concordance when
compared to directly typed genotype data using variants MAF
> 0.01 (one sample), and one sample being a moderate outlier in
sequencing depth as well as het rate. No additional sample was
excluded solely based on Ti/Tv or singletons.

Furthermore, we removed one sex mismatch and two samples
to avoid the inclusion of any sample pair with a relatedness
> 0.2. We further excluded two ethnicity outliers identified in an
ethnicity check-up using Ancestry and kinship toolkit (based on
1000G data from phase three; https://github.com/Illumina/akt/
tree/master) [37]. In total, we removed nine samples.

We excluded variants with MAF < 0.01, Hardy-Weinberg equi-
librium P < 10∧−5 and call rate < = 0.99. We then selected samples
of individuals with matching fat pad methylation data (n = 68) and
kept bi-allelic variants with MAF > 0.05. The resulting WGS data
set used for the fat pad mQTL analysis comprised 68 samples and
6 395 994 variants.

Comparing DNA methylation of blood and fat
pad tissue
We integrated 70 fat pad and 58 blood samples in a principal com-
ponent analysis (PCA) to investigate global epigenetic differences
between these tissue types. We regressed out known technical
batches (slide, row, clinical cohort) by applying Combat from the
R package sva [38] and performed PCA using prcomp function.

To compare methylation profiles on methylation site level,
we performed differential methylation analysis between fat pad
and blood samples paired from the same patients (n = 58). We
performed linear modelling using the functions lmFit and eBayes
from limma [39]. We added the patient ID to ensure paired analy-
sis design and included 19 surrogate variables (SVs) to account for
technical variants. These SVs were estimated using the num.sv
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function from the sva package (‘be’-method) by protecting the
tissue information. We highlighted methylation sites that exceed
genome-wide significance threshold (Bonferroni correction with
P < 6.41×10∧−08 which corresponds to 0.05/780 177 methylation
sites) with strong effect size (beta > 2).

Methylation quantitative trait locus analysis
For the methylation quantitative trait locus (mQTL) analysis, we
included whole-genome-sequencing data and fat pad methyla-
tion data matching from the same patients (n = 68). We included
6 395 994 bi-allelic genetic variants with a MAF > 0.05 among
these 68 patients. We further normalised methylation levels
using inverse-normal transformation per methylation site and
estimated PEER factors [40] (R package peer, default parameter
setting) to infer hidden factors which we included to correct for
technical variation. We performed cis-methylation QTL analysis
(cis distance: 1 Mb either side of the tested methylation site)
using FastQTL (https://github.com/francois-a/fastqtl/) [41]. We
first estimated nominal p values for every tested methylation
site-variant pair using linear regression with the following
model:

Methylation values ∼ genotype + age + sex + sequencing_batch

+ row + 10 PEER_factors

Here, row refers to the sample location on the Illumina EPIC
array chip. Since row can influence methylation levels [42], but
did not significantly (ANOVA Bonferroni P < 0.05) associate with
any of the ten PEER factors (Table S5), we conservatively added
it to the model. The variable sequencing_batch accounts for WGS
sequencing batches. Of 68 WGS samples, 60 and 8 were extracted
in the first and second WGS sequencing batch, respectively (meth-
ods section “Whole-genome sequencing data generation and pre-
processing”). To optimise the number of included PEER factors,
we performed mQTL analysis with five, ten and 15 PEER factors
and chose the number that maximises detected mQTL targeted
methylation site (5 PEER factors: 34956 mQTL targeted methyla-
tion sites, 10 PEER factors: 35948, 15 PEER factors: 35808). Secondly,
we applied an adaptive permutation scheme (implemented in
FastQTL, parameter –permute 1000 10 000) to estimate a q value
and nominal P-value threshold per methylation site. Methylation
sites with a q value < 5% Storey-Tibshirani FDR are regarded as
mQTL targeted. For each mQTL-targeted methylation site, signifi-
cant QTL were variants with a nominal P value below the nominal
P value threshold for that methylation site. Power analysis for
the methylation QTL analysis was performed using the R package
powerEQTL [43] (function powerEQTL.SLR) across MAF and sam-
ple sizes.

Colocalisation
We colocalised [44] fat pad methylation QTL with GWAS signals
for knee osteoarthritis and total knee replacement [2]. For this
analysis, we applied the coloc.fast function (https://github.
com/tobyjohnson/gtx/blob/526120435bb3e29c39fc71604eee03
a371ec3753/R/coloc.R) using default settings. We considered
mQTL-targeted methylation sites located in the region that
spans 100 kb either side of the GWAS signal index variant. For
the colocalisation analysis, we included all variants that were
included in the cis mQTL analysis for the tested methylation sites.
We considered posterior probabilities (“PP4”) > 80% as indicator
for colocalisation.

Mendelian randomization
To estimate putative causal effects of QTL-targeted methylation
sites in fat pad on osteoarthritis traits, we integrated the fat pad
mQTL map with GWAS results for knee osteoarthritis and total
knee replacement [2]. We applied two sample Mendelian random-
ization (MR) using the pipeline of the R package TwoSampleMR
[45]. We considered methylation sites targeted by at least one
mQTL. Per methylation site, we performed clumping (function
clump_data, using the European reference panel and setting the
R2 threshold to 0.01) to identify independent genetic variants
which we included as instruments in the MR models. For methyla-
tion sites with one independent instrument, we applied the Wald-
ratio, otherwise the inverse variance weighted method.

In total, we applied 64 898 MR models (32 448 and 32 450 for
knee osteoarthritis and total knee replacement, respectively) to
estimate the putative causal effect of 32 456 methylation sites.
We applied the Bonferroni method to correct for multiple testing
(P < 7.70×10∧−07).
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s u m m a r y

Objective: Osteoarthritis is a common and complex joint disorder that shows higher prevalence and greater 
disease severity in women. Here, we investigate genome-wide methylation profiles of primary chon
drocytes from osteoarthritis patients.
Design: We compare genome-wide methylation profiles of macroscopically intact (low-grade) and de
graded (high-grade) osteoarthritis cartilage samples matched from osteoarthritis patients undergoing knee 
replacement surgery. We perform an epigenome-wide association study for cartilage degeneration across 
170 patients and separately in 96 women and 74 men.
Results: We reveal widespread epigenetic differences with enrichments of nervous system and apoptosis- 
related processes. We further identify substantial similarities between sexes, but also sex-specific markers 
and pathways.
Conclusions: Together, we provide the largest genome-wide methylation profiles of primary cartilage to date with 
enhanced and sex-specific insights into epigenetic processes underlying osteoarthritis progression.
© 2024 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an 

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Osteoarthritis is a prevalent joint disorder, affecting more than 
300 million people worldwide.1 Existing treatment approaches are 
limited to pain management and replacement surgery of affected 
joints. Due to increasingly older populations, the impact of os
teoarthritis on public health systems will increase. Together, this 
highlights the need for novel, personalised treatment approaches 
that require an enhanced understanding of the genetic and genomic 
basis of osteoarthritis.

To date, genome-wide association studies have identified over 
150 genetic risk loci for osteoarthritis,2 shedding insights into its 
complex architecture. Integration of genetic data with molecular 
profiles of osteoarthritis-affected tissues accessible at the point of 
joint replacement surgery can help identify effector genes and their 
mechanisms of action. DNA methylation, an epigenetic mark that 

describes the covalent attachment of a methyl group to the DNA, is a 
useful molecular tool in this regard. DNA methylation is associated 
with gene expression regulation, for example elevated methylation 
levels close to the transcription start site (particularly in promotor 
regions) can be associated with reduced gene expression.

DNA methylation studies have generated valuable profiles of 
osteoarthritis tissues,3 such as cartilage, synovium 4 and sub
chondral bone.5 In cartilage, epigenome-wide association studies 
(EWAS) have been conducted to compare macroscopically intact 
(low-grade) and degraded (high-grade) osteoarthritis cartilage 
samples to study epigenetic markers of cartilage degeneration.4,6–10

However, these studies have included small numbers of patients and 
have thus been limited in power.

Furthermore, most methylation osteoarthritis studies combine 
samples of both sexes. However, osteoarthritis prevalence and in
cidence are higher among women 11 and female osteoarthritis pa
tients show more osteoarthritis-related pain and disability,12–14

suggesting potential sex-specific etiological mechanisms. A methy
lation study has identified a small number of sex-specific cartilage 
degeneration markers but was limited in sample size (52 women 
and 38 men).4
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Together, there is an urgent need for better-powered epigenetic 
studies of primary osteoarthritis tissues. In this study, we performed 
EWAS for cartilage degeneration in 170 patients (96 women and 74 
men) to characterise common and sex-specific epigenetic markers of 
osteoarthritis.

Methods

Osteoarthritis-affected individuals and study samples

In this study, we examine cartilage samples from osteoarthritis- 
affected knees that were collected in 170 osteoarthritis patients (age 
38–89 years, mean 70.86 years). These patients included 96 women 
(age 38–85 years, mean 70.68 years) and 74 men (age 50–89 years, 
mean 71.11 years) (Fig. S1). These individuals underwent total knee 
replacement due to late-stage osteoarthritis. Cartilage samples were 
graded agnostically to sex using the International Cartilage Repair 
Society (ICRS)15 macroscopic scoring system (low-grade osteoar
thritis cartilage: ICRS score 0 or 1, high-grade cartilage osteoar
thritis: ICRS score 3 or 4). This work was approved by Oxford NHS 
REC C (10/H0606/20 and 15/SC/0132), and samples were collected 
under Human Tissue Authority license 12182, Sheffield Muscu
loskeletal Biobank, University of Sheffield, UK. Before participating in 
the study, all osteoarthritis-affected individuals provided written, 
informed consent.

Sample extraction

Knee chondrocytes were isolated by following a protocol re
ported in a previous study (Methods, section “Isolation of chon
drocytes”).16

DNA methylation preprocessing

DNA methylation was measured using the Illumina EPICv1 array. 
We used a R package meffil-based preprocessing pipeline (https:// 
github.com/perishky/meffil/wiki).17 We further tested for ethnicity 
outliers using the Illumina ancestry and kinship toolkit18 (Fig. S2) 
and excluded samples with > 10% undetected (detection pvalue > 
0.01) methylation values, sex outliers (> 5 * sd), methylated/un
methylated signal outliers (> 3* sd) and control probe signal outlier 
(> 5 * sd). We normalised methylation samples with the meffil 
function meffil.normalize.quantiles (including 16 principal compo
nents) and meffil.normalize.samples.

We excluded methylation probes with more than 10% of samples 
low bead number (< 3) or undetected methylation values (detection 
p  <  0.01), probes of non-autosomal methylation sites, cross-reactive 
probes and probes of methylation sites that are close (within 10 base 
pairs) to common single nucleotide polymorphisms (minor allele 
frequency > 0.05) in European population.19–21

For downstream analysis, generated beta values were converted to 
Mvalues (negative M-value: more unmethylated DNA at a particular 
DNA methylation site; M-value is 0: equal amount of methylated and 
unmethylated DNA at a particular DNA methylation site; positive M- 
value: more methylated DNA at a particular DNA methylation site) using 
the beta2m function of R package lumi.22 The resulting methylation data 
comprised 780,181 methylation sites for 170 patients, including 96 
women and 74 men. For all 170 patients, matched low-grade and high- 
grade osteoarthritis samples were available.

We extracted the genomic location (hg38) and annotated genes 
from publicly available annotation files https://github.com/zhou-lab/ 
InfiniumAnnotationV1/raw/main/Anno/EPIC/EPIC.hg38.manifest.tsv. 
gz and https://github.com/zhou-lab/InfiniumAnnotationV1/raw/ 
main/Anno/EPIC/EPIC.hg38.manifest.gencode.v36.tsv.gz.

Differential methylation analysis

To compare epigenetic profiles between low- and high-grade 
osteoarthritis cartilage, we conducted principal component analysis 
(PCA) using the prcomp function. We then quantified association 
significances between cartilage types and principal components 1 
and 2 by performing ANOVA (R function aov).

Next, we performed three EWAS for cartilage degeneration: One 
combined (170 patients) as well as in two sex-specific analyses (96 
women, 74 men) to identify methylation sites associated with os
teoarthritis-related cartilage degeneration. More specifically, we 
compared high- with low-grade osteoarthritis cartilage samples 
matched from the same patient. We applied functions from the R 
package limma (lmFit and eBayes function) to generate paired linear 
models to enable matched comparisons between low- and high- 
grade osteoarthritis cartilage samples. We further added surrogate 
variables (SVs) to account for technical confounders (combined 
analysis: 31 SV, women: 23, men: 19; these numbers were estimated 
using the num.sv function with the ‘be’ procedure).23 These SVs also 
capture sequencing batches (Supplementary Note 1). This resulted in 
the following model:  

M-values ∼ cartilage_type + patient_id + SVs                                    

Here, patient ID refers to the patient identifier (ensures paired 
modelling) and cartilage_type denotes the cartilage degradation 
status (low- vs high-grade osteoarthritis). We applied Bonferroni 
correction per EWAS to correct for multiple testing (threshold: 0.05/ 
780,181 methylation sites = 6.41 × 10^(−08)). Methylation sites 
achieving significance below this threshold were regarded as dif
ferentially methylated sites (DMS). To identify differentially methy
lated regions (DMRs), we applied the R package dmrff using default 
parameter settings (maxgap = 500, p.cutoff = 0.05).24 Regions are 
DMRs when consisting of more than one methylation site and 
achieving a Bonferroni-adjusted p  <  0.05.

Replication analysis

To replicate our DMS results, we compared these findings with a 
previous EWAS (n = 90 patients) for cartilage degeneration.4 We 
regarded DMS as replicated when showing the same direction of 
effect at nominal significance (p  <  0.05) in the replication set.

Gene Ontology analysis

We performed Gene Ontology (GO) analysis to biologically 
characterise DMS of the combined as well as sex-specific EWAS. We 
applied the gometh function from the missMethyl package (version 
1.24.0; we used R package GO.db 3.12.1 to load GO information).25,26

We used gene annotations from the file EPIC.hg38.manifest.genco
de.v36.txt.gz (column “genesUniq”). We included 780,181 methyla
tion sites that passed the preprocessing procedure as background set 
(“all.cpg”) and lists of DMS as query (“sig.cpg”). We only considered 
GO terms composed of between 20 and 200 genes and applied a 
Benjamini-Hochberg correction to account for multiple testing.

Comparing combined and sex-specific EWAS

To estimate sex-specific epigenetic markers of cartilage degen
eration, we compared the results of sex-specific EWAS on a sum
mary statistics level. Sex-specific DMS were methylation sites that 
(1) exceed genome-wide significance (p  <  6.41 × 10^−08) in one sex, 
but (2) not nominal significance in the other (p  <  0.05). 
Furthermore, we compared GO analysis results of DMS identified in 
women and men on summary statistics level. Here, we defined sex- 
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specific cartilage degeneration-related GO terms as being sig
nificantly (false discovery rate (FDR) < 0.05) enriched in DMS in one 
sex, but not achieving nominal significance (p  <  0.05) in DMS of the 
other.

Results

Widespread epigenetic markers for cartilage degeneration

We performed principal component analysis for macro
scopically intact (low-grade) and degraded (high-grade) osteoar
thritis cartilage samples. We identified significant differences 
along the first (ANOVA p = 1.04 × 10^−13) and second principal 

component (ANOVA p  <  2 × 10^−16) (Fig. 1A), indicating pro
nounced global differences in the epigenetic profiles.

Next, we performed an EWAS for cartilage degeneration by com
paring paired low-grade and high-grade cartilage samples from 170 
patients. Of 780,181 tested methylation sites, 146,777(18.8%) were dif
ferentially methylated (Bonferroni correction, p  <  6.41 × 10^−08) (Fig. 1B, 
exemplified by the most significantly DMS cg20482832 in Fig. 1C and 
Fig. S3, Table S1). Of these, 56,726 and 90,051 showed hyper- and hy
pomethylation in high-grade cartilage, respectively. We further found 
4644 DMS with large methylation differences (Supplementary Note 2, 
Table S2 and S3). On the region level, we identified 18,661 regions to be 
differentially methylated between low- and high-grade osteoarthritis 
cartilage (Supplementary Note 3, Table S4).

Fig. 1                                                                                                         

Methylation differences between low-grade and high-grade osteoarthritis cartilage. (A) Principal component analysis reveals global differences 
between low-grade and high-grade osteoarthritis cartilage samples. (B) A volcano plot visualises 146,777 DMS (p  <  6.41 × 10^−08), of which 
56,726 and 90,051 are hyper- and hypomethylated, respectively. (C) The most significant DMS is cg20482832 (logfc: −1.22, p = 5.8 × 10^−54, 
SE = 0.049). Whiskers extend to 1.5 times the interquartile range. (D) The five most significantly GO terms from the ontology biological processes. 
The red line indicates statistical significance (FDR  <  0.05).
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Comparing the DMS with a previous EWAS (n = 90 patients)4

showed that 92% of comparable sites showed the same direction of 
effect at nominal significance p  <  0.05, suggesting that the identified 
markers are robust (Supplementary Note 4, Table S5).

To biologically characterise these 146,777 DMS, we performed GO 
analyses and identified 1660 GO terms (at FDR < 0.05) (Table S6, 
Fig. 1D). These included terms that were previously associated with 
cartilage degeneration, such as musculoskeletal tissue development 
(e.g. “bone development”, “cartilage development”, “muscle cell 
development”), cytoskeletal structure (e.g. “actomyosin structure 
organisation”, “actin filament bundle organisation”), extracellular 
matrix (e.g. “regulation of cell-matrix adhesion”) or the epithelium 
(e.g. “morphogenesis of a branching epithelium”, “branching mor
phogenesis of an epithelial tube”).

Notably, we also detected enrichment for nervous system 
(“dendrite morphogenesis”, “regulation of synaptic plasticity”, 
“neuron projection organisation”), neurotransmission (“synaptic 
vesicle cycle”, “neurotransmitter secretion”, “signal release from 
synapse”, “positive regulation of synaptic transmission”) and apop
tosis-related terms (e.g. “regulation of extrinsic apoptotic signalling 
pathway”).

Together, these results suggest methylation sites and biological 
pathways that are associated with osteoarthritis progression in 
cartilage.

Next, we generated epigenetic profiles of cartilage degeneration 
stratified by sex. We performed EWAS separately in women (n = 96) 
and men (n = 74), again by comparing matched low-grade and high- 
grade cartilage samples from the same patient.

In women, we identified 62,313 DMS (Bonferroni correction, 
p  <  6.41 × 10-8) (8.41% of tested methylation sites) (Fig. 2A, most 
significant DMS cg01931614 in Fig. 2B and Fig. S4, Table S7). Of these, 
20,345 and 41,968 showed hyper- and hypomethylation in high- 
grade cartilage, respectively. These differential methylated sites 
were overrepresented in 361 GO terms (Table S8). On the region 
level, we identified 19,734 DMR in women (Supplementary Note 3, 
Table S9).

In men, we detected 61,513 DMS (Bonferroni correction, 
p  <  6.41 × 10-8) (7.88% of tested methylation sites) (Fig. 2C, most 
significant DMS cg20482832 in Fig. 2D and Fig. S5, Table S10). Of 
these, 20,295 and 41,218 showed hyper- and hypomethylation in 
high-grade cartilage, respectively. These signals were enriched in 
480 GO terms (Table S11). On the region level, we found 24,064 DMR 
in men (Supplementary Note 3, Table S12).

Together, the sex-stratified analyses also reveal widespread me
thylation differences between low-grade and high-grade osteoar
thritis cartilage.

Sex-specific markers of cartilage degeneration

Next, we tested whether epigenetic markers for osteoarthritis are 
common across sexes or sex-specific (Fig. 3A). Of 62,313 and 61,513 
that were identified in women and men, respectively, 43,152 over
lapped (women: 69.2%, men: 70.1%). Effects of these were in con
cordant direction and highly correlating (Pearson r = 0.98, 
p  <  2.2 × 10-16). Together, this suggests that a substantial part of 
epigenetic osteoarthritis markers in cartilage are shared between 
men and women.

We further detected sex-specific DMS, which are methylation 
sites associated with cartilage degeneration in one sex but not in the 
other (Method). We identified 413 (142 hyper- and 271 hypo
methylated in high-grade osteoarthritis cartilage, Fig. 3B and Fig. S6, 
Table S13) and 539 (259 hyper- and 280 hypomethylated in high- 
grade osteoarthritis cartilage, Fig. 3C and Fig. S7, Table S14) DMS that 
are specific for women and men, respectively. Furthermore, we 
found DMS with larger effect sizes (> = 1.5 x |logfc|) in men (n = 2224 

methylation sites) and women (n = 74 methylation sites) when 
compared to the respective other sex, suggesting effect size magni
tude differences of DMS between sexes (Table S15).

A subset of these sex-specific methylation markers (167 of 413 
women specific DMS, 215 of 539 men specific DMS) do not achieve 
nominal significance in the combined analysis, suggesting that some 
markers are unidentifiable when samples of both sexes are analysed 
together.

On the biological pathway level, we compared 361 and 480 GO 
terms enriched (FDR < 0.05) among 62,313 and 61,513 DMS in 
women and men, respectively, and found 19 (of 361, 5.26%, Table 
S16) and 51 (of 480, 10.62%, Table S17) women- and men-specific GO 
terms which are enriched among DMS in one sex, but not in the 
other (Method). These sex-specific GO terms included terms related 
to the immune system (for example in men: ”positive regulation of 
lymphocyte differentiation“; women: ”phagocytic cup”), the nervous 
system (men: ”regulation of synaptic vesicle cycle”, “regulation of 
postsynaptic membrane neurotransmitter”, “neuron migration”; 
women: ”regulation of axon guidance”) and hormone regulation 
(men: “negative regulation of hormone secretion”), suggesting sex- 
specific methylation changes in these pathways during osteoarthritis 
degeneration in cartilage.

We found 258 overlapping GO terms (71.47% and 53.75% of 
identified GO terms in women and men, respectively). Furthermore, 
these terms also overlapped with the 1660 GO terms of the com
bined analysis (women: 354 of 361 GO terms, men: 447 of 480), 
indicating substantial overlap between sex-specific and combined 
analyses on the biological pathway level.

Discussion

Here, we have generated the largest genome-wide methylation 
profile of low-grade and high-grade osteoarthritis cartilage to date. 
We estimate common and sex-specific epigenome-wide profiles of 
cartilage degeneration and identify DNA methylation markers for 
osteoarthritis progression across sexes and in a sex-specific manner.

We conducted the largest sex-combined (170 patients) and sex- 
specific (96 women, 74 men) EWAS for cartilage degeneration which 
almost doubles the sample size of the next largest study.4 These 
analyses identify widespread epigenetic markers of cartilage de
generation, highlighting the distinctness of the methylation profile 
between early and late cartilage degeneration grades.

We compared sex-specific EWAS results and found osteoarthritis- 
related epigenetic markers and pathways to be largely overlapping 
between sexes. This suggests that the molecular processes con
tributing to osteoarthritis in cartilage are largely the same. We fur
ther identified a small number of epigenetic markers solely 
identified in men (n = 539 DMS) and women (n = 413 DMS), which 
suggests a few sex-specific epigenetic mechanisms.

GO analysis of combined EWAS results revealed biological pro
cesses previously associated with cartilage degeneration in genome- 
wide methylation studies,4,6–9 including musculoskeletal tissue de
velopment, cytoskeletal structure, or extracellular matrix.

Notably, we identified apoptosis-related GO terms (such as 
“regulation of extrinsic apoptotic signalling pathway”) which may 
point to chondrocyte apoptosis that has been associated with car
tilage matrix breakdown.27

The nervous system (e.g. “dendrite morphogenesis”, “regulation 
of synaptic plasticity”, “neuron projection organisation”) and neu
rotransmission-related (e.g. “synaptic vesicle cycle”, “neuro
transmitter secretion”, “signal release from synapse”, “positive 
regulation of synaptic transmission”) terms were strongly re
presented, thus confirming a small number of nervous system-re
lated signals in smaller osteoarthritis cartilage EWAS.7–9 These 
signals may point to the innervation in the diseased cartilage, 
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potentially contributing to pain sensation in affected joints.28 No
tably, some nervous system-related terms were identified in only 
one sex, suggesting sex differences in the innervation and neuro
transmission during osteoarthritis progression. This may be related 
with women being more likely to develop pain in osteoarthritis 
joints.13

Other sex-specific GO terms are related to the immune system, 
which may be linked with higher pro-inflammatory factor levels in 
chondrocyte cell cultures (IL1A, IL6, and IL8 expression levels in 
cultured chondrocytes of low-grade osteoarthritis cartilage are 
higher in women29) or an overrepresentation of female patients in a 
high inflammation cluster.30 Our results suggest a sex-specific reg
ulative role of cartilage DNA methylation on parts of the immune 
system during osteoarthritis.

A hormone-related term (“negative regulation of hormone se
cretion”) was only enriched in osteoarthritis markers in men, in
dicating sex differences in hormone regulation. Previous studies 
have observed associations between sex hormones and osteoar
thritis.31,32 Furthermore, cultured chondrogenic progenitor cells of 
osteoarthritis knees have been shown to demonstrate sex-depen
dent effects of sex hormones on gene expression.33 Together, this 
suggests a sex-dependent role of some hormones in osteoarthritis.

Altogether, we compare low-grade (early degeneration state) and 
high-grade (late degeneration state) osteoarthritis cartilage samples 
matched from the same patients. By using the largest cohort of its 
kind, we generate insights at unprecedented power, in turn enabling 
enhanced insights into the osteoarthritis-related epigenetic sig
nature in cartilage.

Fig. 2                                                                                                         

Methylation profiles of cartilage degeneration in women and men. (A) A volcano plot visualises 62,313 DMS (20,345 and 41,968 are hyper- and 
hypomethylated, respectively) in women. (B) Cg01931614 is the most significant DMS in women (logfc: −1.32, p = 4.63 × 10^(−35), SE = 0.06). (C) 
In Men, 61,513 DMS (20,295 and 41,218 are hyper- and hypomethylated, respectively) are detected. (D) Cg20482832 is the most significant DMS 
in men (logfc: −1.21, p = 6.17 × 10^(−24), SE = 0.073). Blue lines indicate genome-wide significance (p  <  6.41 × 10^−08).
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We identify a multitude of methylation sites across the genome 
that are differentially methylated between these two osteoarthritis 
stages. These sites are associated (‘markers’) with osteoarthritis-re
lated cartilage degeneration, thus are linked with osteoarthritis 
progression rather than disease onset.

In this work, we have studied the methylation profile of primary 
cartilage from osteoarthritis patients at the point of knee replace
ment surgery. Therefore, the identified DMS could be a consequence, 
rather than a cause, of osteoarthritis development. However, access 
to age-matched healthy cartilage tissue can be challenging. To reveal 
causal links between osteoarthritis and cartilage methylation, it is 
necessary to generate methylation quantitative trait locus maps and 
integrate these with osteoarthritis GWAS results using colocalisation 
or causal inference analyses.

Our study highlights widespread epigenetic markers for cartilage 
degeneration linked to a large spectrum of biological pathways, in
cluding apoptosis and neuronal development. We reveal large simila
rities in the epigenetic signature of osteoarthritis across sexes, but also 
find a number of sex-specific markers, thus providing enhanced in
sights into the osteoarthritis related epigenetic signature in cartilage.
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