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Abstract: This study investigates the impact of real-time emotional feedback on the quality of
teamwork conducted over videoconferencing. We developed a framework that provides real-time
feedback through a virtual mirror based on facial and voice emotion recognition. In an experiment
with 28 teams (84 participants), teams collaborated over Zoom (version 5.16.6) to set up a virtual Mars
station using custom simulation software (Mars Star City, version 4.0). Participants were divided
into 14 experimental teams, which were shown the virtual mirror, and 14 control teams without
it. Team performance was measured by the improvement in the Mars simulation output quality.
Our analysis using correlation, multi-level regression, and machine learning revealed that fewer
interruptions but an increasing number over time correlated with higher performance. Higher vocal
arousal and happiness also enhanced performance. We confirmed that female presence in teams
boosts performance. SHAP values indicated that high variability in happiness, head movement, and
positive facial valence—an “emotional rollercoaster”—positively predicted team performance. The
experimental group outperformed the control group, suggesting that virtual mirroring improves
virtual teamwork and that interrupting each other more while speaking less, leads to better results.

Keywords: virtual teamwork; real-time feedback; team performance; emotion recognition; videocon-
ferencing; machine learning

1. Introduction

In today’s rapidly digitizing work environment, effective team collaboration is crucial
for organizational success [1]. The shift towards virtual interactions, accelerated by the
COVID-19 pandemic, has transformed occasional virtual meetings into daily necessities [2].
This transition underscores the need for research into the complexities of team dynamics
and performance in virtual settings [3,4]. Identifying key drivers of productivity in these
environments is increasingly critical [5].

Historically, research on team collaboration and performance has relied on subjective
measures, such as surveys and questionnaires [6]. While valuable, these methods often
fail to capture the real-time complexities of team interactions and are susceptible to bi-
ases [7]. This highlights the need for objective, real-time measures of team collaboration and
performance [8], emphasizing data-driven approaches to understanding team dynamics.

Teamwork is critical in various settings, including schools, universities, and organi-
zations, where collective efforts often yield superior outcomes compared to individual
contributions [9,10]. Effective teamwork hinges on clear goals, trust, role allocation, and
conflict management [11]. Research has explored how teams form, develop, and achieve
their objectives [12]. Understanding teamwork processes is essential for grasping how
teams’ function and achieve goals. These processes convert inputs into outcomes through
cognitive, verbal, and behavioral activities [13]. Team processes are dynamic, adapting to
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task demands and environmental complexities, which influence team performance and
success [14].

The effectiveness of teams focuses on efficiency, adaptability, and productivity within
groups striving towards common goals [15]. Several models explain team effectiveness,
including McGrath’s Input-Process-Output (IPO) model, which systematizes teamwork
into sequential stages: inputs, processes, and outputs [16]. The Input-Mediator-Output-
Input (IMOI) model enhances the IPO model by recognizing the dynamic nature of teams
through continuous feedback [17]. The Multi-team Systems (MTS) framework explores
interactions among multiple teams within broader organizational structures, which is
crucial for large projects [18].

The real-time feedback provided to the treatment group consisted of three components
displayed on a dashboard: the Happiness Indicator (a gauge showing the average happiness
level of participants), the Peak Indicator (a gauge reflecting the variance of emotions over
time), and the Groupflow Indicator (a gauge measuring the synchronicity of the group’s
emotions). Future work will delve into which of these components are most impactful.
However, based on a decade of research on virtual mirroring, we anticipate that the
mere presence of feedback, regardless of its specific form, will likely lead to improved
performance due to the Hawthorne effect [19].

The remainder of this paper is structured as follows: Section 2 provides the back-
ground and motivation for this research, delving into the theoretical foundations of virtual
teamwork, the role of emotions and communication, and the significance of real-time
feedback. Section 3 details the materials and methods employed in our study, including
the experimental design, data collection procedures, and the measures used to assess team
performance and dynamics. Section 4 presents the results of our analysis, highlighting key
findings related to the impact of real-time emotional feedback on virtual team performance
and the predictive power of multi-modal data. Section 5 discusses the implications of our
findings, addressing the research questions and hypotheses, and exploring the broader
implications for virtual team collaboration and the development of effective collabora-
tion tools. Finally, Section 6 concludes the paper by summarizing the key takeaways and
outlining potential avenues for future research.

2. Background and Motivation

The rise of information and communication technology has transformed traditional
teamwork into virtual teamwork, especially post-COVID-19 [20]. Virtual teams collabo-
rate primarily through electronic means, introducing challenges such as the absence of
face-to-face interactions and managing cultural diversity [21,22]. Effective management
of non-verbal communication and technological disruptions is essential to maintaining
collaboration [23,24].

Traditional teamwork models also apply to virtual teams. The IPO model, used in
virtual team research, focuses on team dynamics and effectiveness in digital settings [25,26].
The Virtual Team Maturity Model (VTMM) assesses virtual team progression through
different maturity levels, identifying key competencies at each stage [27]. Media Richness
Theory (MRT) and Social Presence Theory (SPT) emphasize selecting communication
tools that effectively convey cues and enhance the sense of presence, essential for virtual
teams [28,29]. The Media Naturalness Theory (MNT) argues that deviations from face-to-
face communication increase cognitive effort, impacting communication effectiveness in
virtual environments [30].

Assessing teamwork effectiveness has evolved significantly. Historically, observational
and subjective measures, such as self-report questionnaires and direct observations were
most prominent. Tools like the Teamwork Perception Questionnaire (TPQ) and Team Cli-
mate Inventory (TCI) capture individual perceptions of teamwork quality [31,32]. Objective
performance metrics linked teamwork to tangible outcomes like deadlines, error rates, and
product quality [33].
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Technological advancements have introduced new methods for measuring teamwork
effectiveness. Simulation-based assessments present teams with predefined challenges to
evaluate performance, communication, and adaptability [34]. Digital analytics leverage
data from virtual platforms, analyzing communication patterns and interactions to gauge
teamwork dynamics [35]. Recently, the analysis of body signals through computer vision
and machine learning has emerged, offering real-time insights into team interactions, en-
gagement, and emotional states [36,37]. This leads us to explore the potential of predicting
virtual team performance through multi-modal data analysis, focusing on emotional states
and conversational dynamics. Consequently, we propose our first hypothesis:

Hypothesis 1. Through an analysis of multi-modal data, it is possible to accurately predict the
teamwork performance of virtual teams.

Effective team performance is influenced by several key factors. Team composition,
including a mix of skills, knowledge, and personalities, is critical, with diverse teams often
balancing complementary skills and shared values [38]. Communication frequency and
quality, along with robust feedback loops, are essential for effective collaboration [39].
Shared mental models among team members enhance coordination and reduce misunder-
standings, leading to better performance [40]. Trust and a sense of belonging significantly
contribute to a collaborative environment, enhancing overall team effectiveness [41]. Clear
and aligned goals guide team direction and performance [42].

Emotions play a crucial role in team dynamics, influencing communication patterns,
decision-making processes, and overall team cohesion [43]. Emotions, moods, and effects
are fundamental to understanding team interactions. Emotions are intense, short-lived
feelings triggered by specific events, directly impacting team dynamics [44]. Moods are less
intense but more enduring states that subtly influence team interactions and perceptions
over time [45]. Affect encompasses both emotions and moods, providing a spectrum for
analyzing emotional states in teams [46].

Positive emotional states, such as happiness, can improve performance, while balanced
conversation dynamics characterized by equitable turn-taking enhance collaboration [47,48].
This prompts us to explore the potential of predicting virtual team performance through
multi-modal data analysis, focusing on emotional states and conversational dynamics. This
research builds on existing studies that highlight the significance of emotions and commu-
nication styles as significant drivers of team outcomes [49]. Given the insightful nature of
emotions and conversational patterns in revealing team dynamics and effectiveness, we
propose the following hypothesis:

Hypothesis 2a. Teams with higher levels of positive emotional states, such as happiness, will
demonstrate improved performance [47,48].

Hypothesis 2b. Balanced conversation dynamics of teams characterized by equitable conversation
length and alternating turn-taking behavior among team members positively correlate with improved
team performance [15].

Feedback is essential for team dynamics, serving as a critical tool for evaluating and
improving performance [14]. Effective feedback in virtual teams can be categorized by its
content, source, and level [50]. Content refers to the focus of the feedback, whether it is on
team input, mediator processes, or output [51]. Feedback can be subjective, based on per-
ceptions and evaluations, or objective, derived from concrete actions and events [52]. The
level of feedback varies between individuals, teams, and team-plus-individuals, providing
insights into both collective and individual functioning [53].

Real-time feedback, with its immediacy, can significantly enhance learning and perfor-
mance by providing instant reinforcement or correction [54]. For virtual teams, it is espe-
cially beneficial as it integrates performance-related information with team processes and
psychological states, offering immediate insights and facilitating timely adjustments [50].
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This immediacy addresses the lack of physical cues and direct interactions, fostering align-
ment and collaboration [55].

Hypothesis 3. Teams receiving real-time feedback about their emotional state will show improved
performance, as evidenced by increased performance scores [56].

One application of real-time feedback is virtual mirroring, where individuals are made
aware of their emotions and communication behaviors in real-time [57]. This involves
analyzing team communication patterns and mirroring them back to encourage introspec-
tion and adaptation, aligning behaviors with team goals. This fosters self-awareness and
collective understanding of team emotions, optimizing team dynamics [58]. Use cases in
large organizations have shown significant improvements in performance through this
method [58], while respecting individual privacy by providing aggregated information.
Considering the potential of real-time feedback in emotional regulation and its implications
for team strategies, we ask: How does real-time feedback about team emotions affect the
emotional state of the team? In response to the research question and based on existing
findings in the literature, we have formulated the following hypotheses:

Hypothesis 4. Teams exposed to real-time emotional feedback will experience better emotional
regulation, evidenced by reduced emotional variance [50].

Hypothesis 5. Teams receiving real-time feedback on their emotional states are likely to exhibit a
broader emotional spectrum during collaboration, as indicated by higher variations of positive and
negative emotions other than the neutral state [59].

This research aims to investigate virtual team dynamics and un-cover the factors that
contribute to team success in digitally transformed work environments. We address the
overarching research question: “How can real-time emotional feedback, informed by multimodal
data analysis, enhance the performance and emotional dynamics of virtual teams, and what factors
most effectively predict successful team collaboration?” Utilizing advanced techniques such as
multi-modal data analysis and machine learning, this study seeks actionable insights to
optimize team performance with modern digital technology.

3. Materials and Methods

This section details the methodology employed in our research, including the experi-
mental design, participant characteristics, data collection procedures, the metrics used to
assess team performance and dynamics, and our data analysis approach.

Building on existing research, our study investigates the impact of real-time emotional
feedback on virtual team performance. We conducted a virtual field experiment with
84 participants from MIT (Cambridge, MA, USA), Living Lab from the Institute for the
Future of Education at Tecnológico de Monterrey (Monterrey, Mexico), and the University
of Applied Sciences of The Hague (The Hague, The Netherlands). Using a Post-test-Only
Control Group Design, participants were assigned to either a control group or a treatment
group, receiving real-time emotional feedback via custom software (Moody, version 2.0) [60].
This feedback, based on facial recognition technology, aimed to enhance team performance
by providing immediate insights into the team’s emotional state.

Over 29 experiments, with 28 yielding analyzable data, participants engaged in a
collaborative Mars colony simulation game. The collected data included video and au-
dio recordings, capturing a wide range of emotional and conversational dynamics. We
aimed to understand how real-time emotional feedback influences team performance
and dynamics during these interactions. By analyzing this multi-modal data with ma-
chine learning models, we aimed to predict team performance based on emotional and
conversational indicators.

Our research contributes to the field of virtual team dynamics and performance in three
significant ways. First, we demonstrate how real-time emotional feedback can enhance



Appl. Sci. 2024, 14, 5659 5 of 24

virtual team performance, providing a novel approach to team collaboration. Second, we
extend existing research on the role of emotions in organizational behavior by incorporating
multi-modal data analysis to capture the nuances of team interactions. Third, we highlight
the predictive power of machine learning models in analyzing multi-modal data to forecast
team performance, showcasing the potential of advanced analytical techniques to develop
more effective virtual collaboration tools.

By integrating quantitative analysis and model-based investigation, this study aims
to provide a solid foundation for our research questions. The insights gained contribute
to the academic understanding of virtual team dynamics and offer practical implications
for improving team performance in the digital workplace. Our findings underscore the
potential of real-time emotional feedback to optimize virtual team interactions, paving the
way for future research and innovation in this area.

3.1. Sample Characteristics

While designed and prepared at MIT, the execution of the experiment spanned multi-
ple universities to amass a larger dataset, enhancing the study’s validity and applicability.
The study sample consisted of students and faculty from three institutions: the Mas-
sachusetts Institute of Technology (MIT) in the USA, Tecnológico de Monterrey in Mexico,
and the University of Applied Sciences of The Hague in the Netherlands. This culturally di-
verse participant pool included 84 individuals with an average age of 23.8 years (SD = 6.77),
ranging from 18 to 64 years. Approximately two-thirds of the participants were male.
Teams were predominantly mixed-gender (n = 18), with male-only teams constituting a
smaller portion (n = 10); there were no female-only teams. Participants were required to
have a working knowledge of English for effective communication in international teams.

3.2. Sampling

The experiments were conducted between 1 November 2023 and 14 January 2024.
Participant recruitment was facilitated through various channels, including mailing lists,
classroom announcements, and direct contact, leveraging university networks such as the
SDM master’s program at MIT. The participants were informed about the general setup of
the experiment—remotely playing a game in a team—as part of the recruitment. Before
participating, the participants needed to sign an informed consent document pointing out
that their faces would be tracked, and the resulting videos would be used for analysis.
Participation was voluntary and un-compensated. Participants were assigned to either the
control or treatment groups using a randomized sequence based on their sign-up order.
To maintain logistical efficiency, participants were not mixed between sites. Experiments
were conducted on a rolling basis, allowing participants to choose time slots that suited
their availability, despite the significant coordination efforts required to assemble groups of
three for each session.

The study successfully conducted 29 experiments, with 28 being analyzable. The
experiments took place across three locations: 14 in Cambridge, USA; 13 in Monterrey,
Mexico; and 3 in The Hague, Netherlands. Despite minor technical issues in some experi-
ments, all were retained for analysis. Exclusion criteria included non-uniform team sizes,
leading to the removal of one group that consisted of only two participants. Technical issues
necessitated reassigning some groups between control and treatment conditions, but all
adjustments were carefully documented to ensure the integrity of the experimental design.

3.3. Procedure

The experiment, leveraging facial recognition software for emotion recognition, re-
ceived approval from MIT’s Committee on the Use of Humans as Experimental Subjects
(COUHES). The study employed a Posttest-Only Control Group Design, as outlined by
Campbell and Stanley [61], to evaluate the impact of real-time emotional feedback on
virtual team performance. Participants engaged in a collaborative problem-solving task,
the Mars Colony simulation game [62], which demands effective communication and coor-
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dination. The treatment group was provided with real-time feedback on their emotional
states using the Moody software (version 2.0). This system employs cameras to analyze par-
ticipants’ facial expressions [60], and delivers immediate feedback via a virtual mirroring
dashboard [63]. The control group did not receive any feedback.

We placed the research design in the context of the IPO model, which is a general
framework for research on teamwork, and adapted it to our setup with virtual teams.
Figure 1 integrates the IPO model with the variables relevant to our experiment and
provides a schematic representation that illustrates their interplay and importance in our
study and is adapted from McGrath (1964) [16].
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Figure 1. IPO Model for Virtual Teams.

For the initial setup, the Mars Colony game and a real-time emotional feedback
dashboard built into Moody [60,63] (for the treatment group) were arranged on the desktop
(see Figure 2). Participants were welcomed and instructed to keep their cameras and
microphones on throughout the experiment. The facilitator shared the game instructions
and allowed five minutes for participants to read them. This reading period was included
in the total game duration of 60 min. After the initial instructions, the facilitator gave a
quick tour of the Mars simulation game and, for the treatment group, explained the Moody
dashboard and its metrics.

Participants were given remote control over the desktop, and the facilitator started
the Moody and Zoom recordings. The facilitator then muted themselves and turned off
their camera to allow participants to focus on the game. The game session lasted for
approximately 50 min, with the facilitator monitoring progress and intervening only for
technical issues. Participants were reminded to finalize their Mars colony configuration
five minutes before the end of the session.

After the game, participants completed a post-experiment survey that collected demo-
graphic information, assessed emotional intelligence using the “Reading the Mind in the
Eyes” test, and gathered data on participants’ familiarity with other team members and
simulation games. This survey aimed to control for potential confounding variables that
could influence the study’s outcomes.

The data collected from the Zoom recordings, including video and audio, was used to
analyze team interactions, emotions, and communication patterns. The Moody software
provided real-time feedback based on facial expressions but was not used for final analysis
due to the availability of more advanced emotion analysis tools also developed at the
CCI [64,65]. The Mars simulation game data, including the history of configuration changes,
was used to determine team performance.
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3.4. Measures
3.4.1. Dependent Variable

The primary dependent variable in this study is team performance, as assessed through
the Mars simulation game. This game requires teams to design an optimal Mars colony
configuration, balancing “Energy Efficiency” and “Site Utilization”. Performance is quanti-
fied using the Pareto Score, a metric derived from multi-objective optimization principles
that ranks solutions based on their efficiency in achieving both objectives. The Pareto
Score evaluates team performance in multi-dimensional optimization problems [66,67].
It identifies non-dominated solutions that minimize energy use and maximize site uti-
lization, eliminating subjectivity in assessing team effectiveness. Mathematically, for two
solutions A and B, A is non-dominated if its energy use is less than or equal to that of B
(Energy(A) ≤ Energy(B)) and its site utilization is greater than or equal to that of B (Site
Utilization(A) ≥ Site Utilization(B)). Solutions that do not meet these conditions are deemed
to be dominated by those that do. Non-dominated solutions are assigned the highest rank
(Rank 0), and the process of exclusion and re-evaluation continues, assigning subsequent
ranks to new sets of non-dominated solutions.

Figure 3 presents a visualization that illustrates the hierarchy of Pareto ranks across
the tradespace of possible solutions, i.e., all the possible Mars colony configurations and
the resulting energy use and site utilization values. This graphical representation aids in
understanding the trade-offs and relative performance of different team site configurations
within the multi-dimensional optimization framework.

To provide a robust measure of team performance, several metrics were derived from
the Pareto ranks. One simple approach would be to just take the average of all Pareto
scores. However, this approach is susceptible to outliers. To mitigate this, performance
improvement was calculated as the difference in average ranks between the first and second
halves of the task, indicating whether teams improved over time. Another key metric,
the regression slope, is obtained by fitting a regression line to the Pareto ranks over time,
focusing on values between the 10th and 85th percentiles to minimize outlier effects. A
negative slope in this context indicates an improvement in performance. This regression
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value is further categorized into low, middle, and high values to explore whether such
binning of the slope variable offers a more effective approach for the subsequent analysis.
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3.4.2. Independent Variables

The independent variable in this analysis is whether a team received real-time feed-
back (treatment group) or not (control group). To measure the effect of feedback on team
performance, several mediating variables were collected. These include emotional expres-
sions and communication patterns within the team, derived from facial and audio analysis
software. For each metric, the mean, median, standard deviation, max/min value, slope,
and percentiles were calculated.

The Facial Analysis System (FAS) [68] analyzed video recordings to detect seven
discrete emotions (neutral, surprised, happy, fearful, disgusted, angry, and sad), along with
3D head poses and brightness levels. This system provided VAD-values (valence, arousal,
and dominance) and head motion patterns, contributing to a comprehensive understanding
of non-verbal cues and interpersonal dynamics within the team, see Table 1. The Audio
Analysis System (AAS) [65] evaluated voice data to derive emotional expressions and
communication patterns. This analysis included VAD-values, speaking duration, number
of utterances, and interruptions, offering a nuanced view of the communication dynamics
within the team, see Table 2. Both systems generated extensive datasets, encompassing key
emotional and behavioral statistics.

Table 1. Variables of the FAS.

Category Variable Description

Emotion Metrics

Discrete emotions Neutral, surprised, happy, fearful, disgusted, angry, sad

VAD-values Valence, arousal, and dominance.

Emotions Max Count Maximum number of times a particular emotion is expressed.

Frequency Emotion Changes Frequency of changes in emotional expressions.

Other Non-verbal Cues

Head Velocity Speed at which a person’s head moves.

Brightness Reflects the lighting conditions of the environment.

Presence Measures how much time an individual is visible on camera.
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Table 2. Variables of the AAS.

Category Variable Description

Emotional Features VAD-values Valence, arousal, and dominance.

Communication
Patterns

Speaking Duration Both absolute and relative speaking times are calculated.

Number of Utterances Quantifies how often a person speaks.

Number of Interruptions Calculates how often a speaker interrupts other people in the team.

3.4.3. Control Variable

To ensure the robustness of the analysis, several control variables were included to
account for potential confounding factors. Team composition was considered, categorizing
the gender composition of the teams as male-only or mixed-gender, with no female-only
teams. The level of acquaintance among team members was assessed through the post-
experiment survey, capturing whether participants knew each other prior to the experiment.
Emotional intelligence was measured using the “Reading the Mind in the Eyes” (RMET)
test [69], which evaluates participants’ ability to interpret emotions from eye expressions.
This inclusion aimed to determine whether the outcomes were influenced by participants’
inherent emotional intelligence or by the effectiveness of our intervention [69]. Additionally,
the time of day at which the experiment was conducted was recorded, as performance
could vary throughout the day due to factors like fatigue or circadian rhythms [70]. The
location of the experiment, whether conducted at MIT, Tecnológico de Monterrey, or the
University of Applied Sciences of The Hague, was also considered to account for any
site-specific effects.

3.5. Data Analysis Approach
3.5.1. Data Preparation

To ensure the robustness of the analysis, both datasets, which were susceptible to out-
liers due to their nature of collection, were initially prepared for further processing [68,71].
Gaussian-distributed features were standardized using scikit-learn to ensure they had a
mean of zero and a standard deviation of one [72]. Scikit-learn is a versatile library for
machine learning in Python for efficient implementations of a wide range of algorithms for
classification, regression, clustering, and general data preprocessing. Non-Gaussian fea-
tures underwent robust scaling, which scales the data based on percentiles rather than the
mean and standard deviation, making it less sensitive to outliers. Outliers, defined as values
with a z-score greater than 3, were replaced with the median value of the respective feature.

Additionally, to facilitate seamless integration of data from facial analysis and audio
analysis, a unique mapping was created to match the IDs between the two output files.
After this process, columns deemed irrelevant to the analysis, such as those relating to time
or IDs, were removed. For the regression of Pareto scores, only values between the 10th
and 85th percentile were considered, aiming to mitigate the influence of outliers in the
subsequent analysis, see Figure 4.

3.5.2. Descriptive Statistics

Before delving into the multi-level mixed-effects linear regression analysis, we first
examined the relationships between the predictor variables. We created a correlation matrix
to assess multi-collinearity, using both Pearson correlation coefficients and Variance Infla-
tion Factors (VIFs) [73]. Heteroscedasticity was also examined using the Breusch–Pagan
test [74,75]. To understand the most suitable variables for our analysis, Pearson’s correlation
was calculated between each predictor variable and the various performance metrics.

In addition, we utilized t-tests and Mann–Whitney U tests to identify statistically
significant differences between the control and treatment groups [76,77]. To quantify the
magnitude of these differences, we calculated effect sizes using Cohen’s d for normally
distributed data and the rank biserial correlation for non-normally distributed data [78,79].
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3.5.3. Multi-Level Mixed Effects Linear Regression

Recognizing the hierarchical structure of our data (individuals nested within teams and
teams nested within groups), we employed a mixed-effects model for our regression analysis [80].
This allowed us to account for both fixed effects (e.g., real-time emotional feedback) and random
effects, which capture the variations occurring within teams and groups [81].

A null model with only random intercepts was used as a baseline for assessing the
Intraclass Correlation Coefficient (ICC), providing insights into the proportion of variance
explained by the grouping structure. In our main models, we included several control
variables, such as team composition, prior acquaintance among team members, and time
slots, to account for potential confounding effects. The performance of the models was
evaluated using the Akaike Information Criterion (AIC), a measure of relative model
quality, as well as marginal and conditional R2, which quantify the variance explained by
the fixed effects and the entire model, respectively [82–84].

3.5.4. Feature Selection

Feature selection was performed to improve the model’s ability to generalize to new
data and prevent overfitting [85]. Subsets of features were generated based on the insights
gained from correlation analysis and VIF calculations, and then utilized for further model
development. For tree-based models such as Random Forests (scikit-learn, version 1.2.1)
and XGBoost (version 1.7.6), an inherent feature selection mechanism is embedded in the
training process. For the Support Vector Machine (SVM) (scikit-learn, version 1.2.1), a more
refined dataset, produced after the VIF calculation, was employed for model training.

3.5.5. Training of Machine Learning Models

The machine learning models, including Support Vector Machine (SVM), Random
Forests, XGBoost, and NGBoost (version 0.4.2), were trained to predict team performance
based on the various features extracted from the dataset [86–91]. XGBoost and NGBoost
are libraries for gradient boosting, a technique that builds predictive models by combining
multiple weak learners to improve accuracy and handle structured data efficiently. Random
Forest is another ensemble learning method that operates by constructing multiple deci-
sion trees during training and outputting the mean prediction of the individual trees for
regression tasks. On the other hand, SVM is a non-probabilistic binary linear classifier that
constructs a hyperplane in a high-dimensional space, which can be used for classification
or regression tasks. Additionally, K-Means clustering, an un-supervised machine learning
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algorithm that groups data points into a predetermined number of clusters based on simi-
larity, was employed to identify potential hidden patterns or groupings within the data [92].
Due to the continuous nature of our target variable, which represents team performance,
this was framed as a regression problem. Hyperparameter tuning for each model was
conducted using both randomized and grid search techniques. An 80/20 train-test split
strategy was employed to ensure robust model evaluation.

The models were evaluated based on several key performance metrics, including
mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE),
and R2. The MAE and RMSE provide measures of the average magnitude of prediction
errors, while the R2 represents the proportion of variance in the target variable explained
by the model [91].

3.5.6. SHAP-Values for Feature Interpretability

SHAP values were calculated to assess the importance of each feature in the model
and to understand their contributions to the final prediction [93–95]. SHAP values provide
a unified approach to explaining the output of any machine learning model. In our analysis,
SHAP values were used to rank features by their importance, allowing us to identify the
most influential factors in determining team performance.

4. Results

In this section, we present the results of our analysis, starting with the correlation
analysis and the process of feature elimination. We then examine the differences between
the control and treatment groups, followed by the results of mixed-effects regression at
multiple levels. Finally, we examine the predictive capabilities of machine learning models
and the insights gained from un-supervised learning and SHAP value analysis.

4.1. Correlation Analysis, Feature Elimination, and Heteroscedasticity

An initial correlation analysis was performed on 186 features derived from the facial
and audio analysis software. Given the limited sample size (n = 84), a correlation matrix
with a threshold of 0.7 was used to identify and remove highly correlated features, re-
ducing the feature set to 50. To address the potential issue of multi-collinearity among
the remaining features, the Variance Inflation Factor (VIF) analysis was employed, setting
a threshold of 10. Outliers, identified with z-scores of six or more, were replaced with
the median, further trimming the features to 31 [96]. This mitigated multi-collinearity
and refined the feature set for subsequent analyses. The Breusch–Pagan test revealed no
evidence of heteroscedasticity (Lagrange Multiplier p = 0.240, F-statistic p = 0.171).

4.2. Correlation Analysis with Dependent Variable

Correlation analysis, using Pearson coefficients with a significance threshold of p ≤ 0.10,
was conducted to explore relationships between the dependent variables (“Performance
Slope”, “Performance Slope Binned”, and “Pareto Rank Difference”) and the remaining
features. “Performance Slope” emerged as the most suitable dependent variable due to its
numerous and strong correlations with features like vocal arousal (Vocal Arousal (Slope),
r = 0.34, p = 0.0016), emotional expression (Neutral (Min), r = 0.31, p = 0.0039), and engagement
(Happy (Slope), r = 0.29, p = 0.0071). Therefore, we decided to focus exclusively on the
“Performance Slope” variable for subsequent analyses.

4.3. Differences between Control and Treatment Group

T-tests and their non-parametric equivalents were employed to evaluate differences
between our control and treatment groups, see Table 3. The tests revealed significant
differences in several key variables, suggesting the impact of our intervention. To quantify
the magnitude of these differences, effect sizes were calculated. For the t-tests, Cohen’s d
was used [78], and for the Mann–Whitney U tests, where the data were not normally
distributed, the rank biserial correlation (rrb) was utilized [79].
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Table 3. Differences Across Control and Treatment Groups.

Feature Test Used p-Value Effect Size

Brightness (Slope) Mann–Whitney U 0.0046 −0.17 ***
Happy (Std) Mann–Whitney U 0.0063 0.19 ***

Performance Slope Mann–Whitney U 0.0159 0.17 **
Abs. Utterances (Std) t-test 0.0165 −0.53 **

Happy (Median) Mann–Whitney U 0.0198 0.16 **
Facial Arousal (Max) Mann–Whitney U 0.0634 0.13 *

Surprise (Slope) Mann–Whitney U 0.0788 −0.10 *
Facial Valence (Max) Mann–Whitney U 0.0900 0.12 *

Abs. Interruptions (Min) Mann–Whitney U 0.0958 0.11 *
Table displays significant results with p ≤ 0.10. Positive effect size indicates that the treatment group has a higher
score on the measured outcome than the control group. * p < 0.1; ** p < 0.05; *** p < 0.01.

The variable “Performance Slope”, indicative of team performance, evidenced a signif-
icant difference between control and treatment groups, signifying a measurable though
small impact of our interventions (rrb = 0.17). Effect sizes varied for other variables. The
largest effect size was observed for Absolute Utterances (Std) (d = −0.53), suggesting more
uniform participation within the treatment group compared to the control group, indicating
that the treatment may have encouraged more equitable participation.

Emotionally, the treatment group exhibited higher variability in happiness (Happy
(Std); rrb = 0.19), suggesting that our intervention introduced a broader range of emotional
responses among team members. Additionally, the modest rise in median happiness
(rrb = 0.16) indicates a general uplift in mood among team members, suggesting that the
average emotional state was positively affected by the intervention.

The significant difference in brightness slope (rrb = −0.17) indicates that the treatment
group experienced environments with less variation in illumination. Lower illumination is
shown to affect mood and focus [97].

While variables like Facial Arousal (Max), Surprise (Slope), Facial Valence (Max), and
Absolute Interruptions (Min) did not achieve conventional statistical significance, their
effect sizes and p-values indicate relevant trends (rrb = 0.13, −0.10, 0.12, and 0.11, respec-
tively). These findings suggest that the intervention influenced performance, emotional,
and communicative dynamics within teams.

4.4. Multi-Level Mixed Effects Regression

A multi-level mixed effects regression model was employed to account for the nested
data structure (individuals within teams, teams within groups). With 84 data entries spread
across 28 teams, we opted to group our model by the variable group to categorize teams
into treatment and control groups. Simultaneously, we modeled the individual teams as a
random effect within our null model. This approach better reflects the nested structure of
the data while accounting for inherent variability at the team level.

The general structure of our approach involved creating a null model to establish a
baseline, adding control variables to account for confounding factors, and then constructing
a full model that integrates all relevant predictors, see Table 4. This approach aligns with
the general structure of hierarchical linear models [81].

The null model (AIC = 252.94) revealed negligible variance at the group level (ICC = 0.0086).
The Marginal R2 and Conditional R2 for the null model were 0.0099 and 0.0184, respectively,
showing the low variance explained by the group-level random effects alone. The null model
indicated that neither the baseline level of slope nor the variation across team numbers signif-
icantly contribute to the model’s predictions, as shown by the non-significant intercept and
the random effects of team numbers. There is a small variance component for the grouping
variable, suggesting minimal variability in performance due to differences between the control
and treatment groups.
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Table 4. Overview of Multi-Level Mixed Effects Regression.

Metrics/Features Null Model Control Model Full Model

AIC 252.94 251.65 341.31
Marginal R2 0.0099 0.1431 0.6483

Conditional R2 0.0184 0.1655 0.6604

Intercept 0.175 0.839 1.100
Team Random Effect −0.013 −0.014 0.003
Gender Composition 0.262 * 0.396 **

Experiment Time −0.189 −0.254
RMET Test −0.488 −1.365

Acquaintance −0.618 ** −0.283
Happy (Std) −0.172
Fear (Min) 0.006

Neutral (Std) 0.206
Neutral (Min) −0.296 *

Facial Valence (Max) 0.014
Facial Arousal (Max) 0.005
Facial Arousal (Min) 0.216

Facial Dominance (Min) −0.029
Brightness (Median) −0.316 *

Brightness (Std) −0.489 *
Brightness (Min) 0.328

Brightness (Slope) −0.081
Velocity (Median) −0.142

Velocity (Max) 0.090
Velocity (Min) 0.181

Velocity (Slope) −0.002
Fear Count (Max) −94.161 *

Vocal Arousal (Mean) 0.042
Vocal Arousal (Slope) 0.269
Vocal Arousal (Std) 0.050

Vocal Valence (Slope) 0.022
Abs. Interruptions (Mean) 0.337
Abs. Interruptions (Slope) −0.320 ***
Abs. Interruptions (Min) −0.105
Rel. Interruptions (Mean) −0.028
Rel. Interruptions (Slope) 0.306 **
Rel. Interruptions (Max) −0.025
Abs. Utterances (Slope) 0.213 *
Abs. Utterances (Std) −0.192
Rel. Utterances (Std) 0.060

Abs. Speak Duration (Std) 0.227
Note. * p < 0.1; ** p < 0.05; *** p < 0.01.

The inclusion of control variables (gender composition, experiment time, emotional
intelligence, and prior acquaintance) improved the model’s explanatory power (average
AIC = 251.65, marginal R2 = 0.1431, conditional R2 = 0.1655), highlighting the importance of
gender diversity (Gender Composition, p < 0.05) and pre-existing social ties (Acquaintance,
p < 0.05) for team performance.

The full model, incorporating all 31 features obtained after the VIF calculation, further
enhanced the model’s explanatory power (average marginal R2 = 0.6483, conditional R2

= 0.6604). The AIC also increased to 341.31, which, despite being higher than the con-
trol model, is not un-expected due to the introduction of a high number of parameters.
Notably, the model revealed a nuanced relationship between interruptions and perfor-
mance, where absolute interruptions negatively impacted performance (Abs. Interruptions
(Mean), p < 0.01), but a positive trend in relative interruptions over time was associated
with enhanced performance (Rel. Interruptions (Slope), p < 0.05). Additionally, increased
communication volume (slope of absolute utterances) correlated with better performance
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(Abs. Utterances (Slope), p < 0.1), while excessive brightness negatively affected perfor-
mance (Brightness (Median), Brightness (Std), p < 0.1). The model also highlighted the
detrimental effect of high fear expressions (Fear Count (Max), p < 0.1) and the positive
influence of gender diversity (Gender Composition, p < 0.05). Striking is the significant
negative coefficient for the Fear Count (Max) (β = −94.161, p = 0.053), which indicates
a strong negative influence of the maximum number of fear expressions on team perfor-
mance. This could suggest that high levels of fear or stress expressions within a team affect
its effectiveness, emphasizing the importance of the emotional climate in team interactions.

4.5. Prediction with Machine Learning Models
4.5.1. Model Evaluation

Hyperparameter optimization was conducted for Random Forest, XGBoost, NGBoost,
and SVM models. XGBoost outperformed other models, demonstrating the lowest MAE
(0.3522) and MSE (0.3123) and the highest R2 (0.6762), indicating superior predictive
accuracy. SVM performed the worst, with the highest RMSE (1.0055) and a negative R2

(−0.0483). The performance values can be found in Table 5.

Table 5. Performance of Machine Learning Models.

Model MSE MAE R2

Random Forest 0.6894 0.6289 0.2853
XGBoost 0.3123 0.3522 0.6762
NGBoost 0.4144 0.4888 0.5704

SVM 1.0111 0.5549 −0.0483

4.5.2. Un-Supervised Learning with K-Means Clustering

The data, already standardized, required no further processing before K-Means clus-
tering. Using the elbow method, the optimal number of clusters was determined to be four
(k = 4), as the graph of Within-Cluster-Sum-of-Squares (WCSS) flattened after this point.
Cluster centroids were computed to analyze average feature values and the distribution of
treatment and control group participants. Four distinct clusters emerged, each with unique
characteristics in emotional expressions and engagement metrics, see Table 6.

Table 6. Overview of K-Means Cluster and their Performance.

Cluster Count Count
Control

Count
Treatment

Mean
Performance

Median
Performance

0 29 14 15 0.0128 0.0942
1 21 6 15 0.4652 0.1445
2 19 13 6 −0.5169 −0.5585
3 15 9 6 −0.1256 −0.1201

Cluster 0 (“Reserved and Steady”) exhibited consistent emotional responses and mod-
erate engagement. Cluster 1 (“Expressive and Dynamic”) displayed greater emotional
variability and higher engagement. Cluster 2 (“Neutral and Bright”) showed neutral emo-
tional behavior and significant environmental brightness. Cluster 3 (“Low Engagement”)
was characterized by lower brightness and reduced emotional and interaction dynam-
ics. Cluster 1 had the highest mean (0.4652) and median (0.1445) “Performance Slope”,
suggesting a link between expressiveness and dynamic engagement with performance.

4.5.3. Feature Interpretation with SHAP Values

SHAP values were analyzed for NGBoost, Random Forest, and XGBoost models to
understand feature importance (see Figures 5–7, respectively). The SVM model was omitted
because of its low performance. NGBoost placed significant emphasis on Velocity (Min),
Happy (Std), and Facial Valence (Median), indicating that this model values both physical
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movement and emotional variability. This suggests NGBoost’s sensitivity to changes in
emotional expressions and their potential impact on outcomes.

Appl. Sci. 2024, 14, 5659 16 of 25 
 

 
Figure 5. SHAP Analysis—Beeswarm Plot for NGBoost model. 

 
Figure 6. SHAP Analysis—Beeswarm Plot for Random Forest model. 

Figure 5. SHAP Analysis—Beeswarm Plot for NGBoost model.

Appl. Sci. 2024, 14, 5659 16 of 25 
 

 
Figure 5. SHAP Analysis—Beeswarm Plot for NGBoost model. 

 
Figure 6. SHAP Analysis—Beeswarm Plot for Random Forest model. Figure 6. SHAP Analysis—Beeswarm Plot for Random Forest model.



Appl. Sci. 2024, 14, 5659 16 of 24Appl. Sci. 2024, 14, 5659 17 of 25 
 

 
Figure 7. SHAP Analysis—Beeswarm Plot for XGBoost model. 

5. Discussion 
This study aimed to investigate the influence of real-time emotional feedback on vir-

tual team performance. Data were collected over two months, with teams participating in 
a simulation game across various locations. Statistical analyses revealed marginally sig-
nificant differences in performance between the control and the group receiving real-time 
emotional feedback (treatment), alongside notable variations in emotional and conversa-
tional behaviors, suggesting an impact on social dynamics. Multi-modal analysis employ-
ing machine learning algorithms indicated the ability to capture substantial variance in 
team performance (Figure 8). 

 
Figure 8. Acceptance and rejection of proposed hypothesis. 

Hypothesis 1

Hypothesis 2a

Hypothesis 2b

Hypothesis 3

Hypothesis 4

Hypothesis 5

Hypothesis Accepted/Rejected Reason

High predictive accuracy with XGBoost (R² = 0.6762).

Positive emotional states correlated with better 
performance (r = 0.29, p = 0.0071).

More uniform participation observed in the treatment 
group (d = –0.53).

Significant difference in Performance Slope 
(p = 0.0159, rrb = 0.17).

Increased variability in happiness suggests feedback 
broadened emotional responses.

No significant increase in emotional spectrum 
metrics other than happiness.

Figure 7. SHAP Analysis—Beeswarm Plot for XGBoost model.

Random Forest and XGBoost, on the other hand, prioritized Vocal Arousal (Slope),
Velocity (Min), Neutral (Std), and Brightness (Slope), albeit with different weights. XGBoost
particularly emphasized Vocal Arousal (Slope), highlighting its sensitivity to changes in
vocal pitch over time, which could signal team enthusiasm, stress, or agreement. Random
Forest additionally emphasized Fear (Min), while XGBoost also considered Sad (Median)
and Happy (Slope), reflecting a broader approach to capturing emotional health.

A commonality across all models was the importance of Velocity (Min), underscoring
its overall relevance, likely capturing crucial aspects of physical activity or movement
pertinent to team performance. However, the models diverged in their prioritization
of other features. NGBoost’s focus on Happy (Std) contrasts with Random Forest and
XGBoost’s focus on Vocal Arousal (Slope), illustrating NGBoost’s focus on emotional
variability while the other models emphasize the temporal dynamics of vocal expressions.

5. Discussion

This study aimed to investigate the influence of real-time emotional feedback on virtual
team performance. Data were collected over two months, with teams participating in a sim-
ulation game across various locations. Statistical analyses revealed marginally significant
differences in performance between the control and the group receiving real-time emo-
tional feedback (treatment), alongside notable variations in emotional and conversational
behaviors, suggesting an impact on social dynamics. Multi-modal analysis employing
machine learning algorithms indicated the ability to capture substantial variance in team
performance (Figure 8).
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5.1. Predictability of Team Performance

The findings support the hypothesis that multi-modal data can accurately predict
virtual team performance, aligning with previous research [49,89,92]. However, the small
dataset and specific experimental setup necessitate further studies to generalize these
findings across different contexts and larger, more diverse samples.

Contrary to initial hypotheses, results reveal a nuanced impact of emotional states and
physical dynamics on team performance. While positive emotions play a role, the standard
deviation of happiness, changes in vocal arousal, and minimal movement emerged as
critical predictors. This underscores the complex role of emotional dynamics and physical
engagement in team effectiveness, suggesting that both positive states and arousal changes,
alongside active participation, contribute to team performance.

Conversational variables, while significant in regression analysis, were less prominent
in machine learning models, challenging the hypothesis that they are primary performance
predictors. This suggests that emotional and physical engagement may play a more
dominant role, diverging from the literature emphasizing equitable participation [15].
The low importance of conversational behavior in our models might be attributed to
the complex nature of group dynamics, where the impact of such behaviors can vary
significantly depending on the context [18]. While conversational dynamics are traditionally
valued, their predictive power may be overshadowed in environments where emotional
intelligence and physical engagement are more pivotal [24].

5.2. Effect of Treatment on Team Performance and Dynamics

Our third hypothesis stated that teams receiving the treatment would show improved
performance scores. The analysis found a significant, albeit marginal, impact on perfor-
mance, thus validating our hypothesis. However, regression analysis revealed negligible
variance between the control and treatment groups, challenging the robustness of this
hypothesis. Data collection inaccuracies further caution the generalizability of our findings.
This aligns with Tausczik and Pennebaker [96], who found real-time language feedback
effective only in well-coordinated teams.

For Hypothesis 4, which examined the effect of real-time emotional feedback on team
emotional regulation, the results were nuanced. Contrary to the hypothesis predicting
reduced variance, we observed increased variability in happiness, indicating that feedback
broadened emotional responses. This was accompanied by slight increases in positive
expressions and moderate surprise, suggesting a more positive emotional climate. These
findings challenge Hypothesis 4, showing that real-time feedback enriches emotional
dynamics rather than streamlining them [50].
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Hypothesis 5, suggesting a broader emotional spectrum in the treatment group, was
only partially supported. Higher levels of happiness and facial valence were observed,
but other emotions showed no significant differences. This indicates that the intervention
partially broadened the emotional range and elevated the team’s mood. The lack of a
pronounced emotional spectrum suggests further analysis is needed. Existing research
highlights the importance of feedback in enhancing group emotional intelligence but
often does not establish a clear link between feedback and a broader range of emotional
expressions [59].

In conversation patterns, significant differences were observed in communication
variability and fewer interruptions, highlighting feedback’s potential to balance speaking
turns and promote constructive interruptions. Real-time feedback modestly influenced the
emotional landscape, resulting in increased emotional variability and an uplifted mood.
This suggests the intervention facilitated more nuanced emotional engagement, contributed
to a richer and more positive team environment, and demonstrated the potential of real-time
feedback to enhance emotional adaptability and diversity in teams.

5.3. Behavioral Archetypes in Virtual Team Dynamics

Unsupervised clustering analysis revealed four distinct team behavioral archetypes,
each with different interaction and performance patterns. Teams with consistent emo-
tions and moderate engagement (“Reserved and Steady”) may prioritize efficiency, while
those with greater emotional variability and higher engagement (“Expressive and Dy-
namic”) may foster creativity. Conversely, teams with limited emotional expression and
engagement (“Low Engagement”) struggle with collaboration. This underscores the im-
portance of emotional and engagement metrics in virtual team performance and suggests
that tailoring interventions to specific team archetypes could be more effective than a
one-size-fits-all approach.

5.4. Limitations and Future Research

Our study acknowledges certain limitations, particularly the relatively small dataset
(n = 84), which may affect the robustness and generalizability of our conclusions due to
the high number of features compared to data points, known as the “curse of dimensional-
ity” [97]. While our dataset is sufficient for initial conclusions, expanding it would enhance
the depth and validity of our analysis, mitigate individual group variability, and improve
the generalizability of our findings. Future research should focus on increasing the dataset
size and refining the treatment approach. The general nature of the information provided
in our experiment suggests that more tailored and actionable feedback, possibly utilizing
advanced large language models (LLMs), could better prompt behavioral modifications
in participants.

Another factor of un-certainty is our metric for measuring team performance. Despite
efforts to create an objective assessment, the inherent variance in the simulation game
outputs diluted the performance evaluation. We attempted to counteract this by examining
performance trends over time and using a specific quantile range to reduce outlier impact.
However, this approach does not entirely eliminate potential biases and may overlook
instances of exceptional performance or significant failure. Additionally, regression analysis
assumes consistency across iterations, which might miss complex, non-linear interactions
influencing team performance.

The limitations of our facial and voice emotion recognition software could have
impacted the accuracy of our results. While we utilized established tools for this analysis
(FAS [68] and AAS [65]), the inherent limitations of such software, compounded by real-
world experimental conditions like partial facial visibility and suboptimal lighting, may
have introduced inaccuracies in emotion detection. Additionally, our reliance on slightly
outdated software versions could have further contributed to potential discrepancies in
emotion recognition. Future research could benefit from employing the latest advancements
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in emotion recognition technology to mitigate these limitations and enhance the precision
of emotional data analysis.

Although we accounted for several control variables, such as gender composition, time
of day, emotional intelligence, and prior acquaintance among team members, additional
factors, such as participants’ prior experience with virtual teamwork and familiarity with
the simulation software, could influence the results and enhance our understanding. Future
research should consider these factors to provide a more nuanced understanding of the
impact of emotional feedback on diverse virtual team settings.

Feature selection was another challenge, as examining a wide range of metrics required
working with many features relative to our dataset size. While this aimed to capture
different aspects of team dynamics, it was necessary to exclude some features to improve
interpretability, potentially losing explanatory power.

Our results showed significant differences between the experimental and control
groups, but the extent of these differences was small and un-certain, warranting cautious
interpretation. Our experimental design did not account for the potential impact of feedback
presence alone. Introducing a third group receiving non-specific randomized feedback in
future studies could help determine whether observed effects stem from targeted feedback
or the feedback mechanism itself. This approach would clarify the direct effects of emotional
feedback versus general monitoring effects and investigate long-term impacts on team
cohesion and trust.

This study’s design limits the examination of the sustained effects of real-time emo-
tional feedback on team dynamics and performance over an extended period. Further
research employing a longitudinal approach would provide more comprehensive insights
into how feedback influences collaboration and outcomes beyond a single task [98].

Future research should also explore how feedback is perceived, focusing on technology
acceptance to enhance the adoption of real-time feedback technologies. This involves
examining usability, perceived usefulness, and resistance to monitoring. By gathering user
feedback and applying user experience research methodologies, feedback mechanisms
can be refined to better meet team needs. Investigating different feedback content, timing,
and methods, and comparing feedback modalities (e.g., visual, auditory, and textual)
will be crucial for understanding their impact on virtual team dynamics. Additionally,
exploring cultural differences in feedback reception and effectiveness in global virtual teams
is essential to ensuring the universal applicability of these tools. Integrating biometric
data could add depth to team dynamics analysis, and developing automated algorithms
for early conflict detection and resolution could serve as proactive measures to maintain
team cohesion.

5.5. Implications

The observation of the different effects of real-time emotional feedback on team per-
formance adds empirical evidence to the discourse on emotional intelligence and team
dynamics. This aligns with Druskat and Wolff’s notion that a group’s emotional intelli-
gence is a catalyst for effective team interaction [59], as well as Handke et al.’s findings
on the positive impact of emotional awareness tools [50]. Notably, the identification of
physical engagement indicators, such as head movement speed, as key predictors of team
performance broadens our understanding of team dynamics beyond emotional states to
include non-verbal cues. This suggests a complex interplay of factors influencing virtual
team performance, highlighting the potential of real-time feedback mechanisms to enhance
both the emotional and physical aspects of virtual teamwork.

The practical implications of this research are significant for the development of virtual
collaboration tools. Integrating emotional insights could help teams regulate emotions
and foster positive environments, potentially boosting performance. However, ethical
considerations regarding privacy and consent are crucial. Future collaboration platforms
could incorporate emotional analysis and feedback while prioritizing user privacy and
ethical guidelines to balance useful monitoring with emotional surveillance.
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To enhance virtual teamwork, it is essential to design inclusive feedback mechanisms
that accommodate diverse emotional expressions and communication styles across cultures.
This approach enriches team dynamics and aligns with evidence supporting the positive
impacts of emotional intelligence and open communication in teamwork [14,15]. Inclusivity
can help leaders cultivate policies that leverage technology to strengthen team cohesion
and performance, through training programs focused on improving emotional intelligence,
communication strategies, and conversational dynamics management. These skills are
valuable for navigating virtual teamwork and face-to-face interactions.

Identifying emotional states, conversational patterns, and physical dynamics as im-
portant predictors highlights the complex structure of virtual team dynamics. This com-
plements theoretical frameworks by Barsade and Knight [47] and Meneghel et al. [48],
emphasizing the importance of emotional coherence and conversational balance in team
performance. These findings call for a deeper examination of the interplay of emotional
and conversational factors in different virtual team settings.

The effective application of machine learning models, such as XGBoost, to un-cover
insights into team performance reflects the growing relevance of computational analysis
in understanding team interactions. This aligns with the broader shift towards data-
driven approaches in the social sciences [49,88,89,92]. Future research should explore these
models in diverse team contexts and leverage the predictive power of multi-modal data to
develop intervention tools that offer nuanced feedback to teams, potentially identifying
and addressing emerging issues proactively.

6. Conclusions

In this exploration of virtual team dynamics in a digitally evolving work environment,
key factors that contribute to team success have been identified, emphasizing the nuanced
role of emotional and conversational dynamics. This experimental study showed that
the treatment—real-time emotional feedback on the team level—evidenced a marginal
yet statistically significant improvement in team performance. The subtleties of their
influence on emotional and conversational behavior underscore the complexity of social
dynamics in virtual teams. Teams characterized by emotional diversity, stability, and
positive valence, as well as more balanced conversational dynamics, are better positioned
for success, highlighting the importance of emotion management in optimizing team
performance. By integrating multi-modal data, a significant amount of variance in team
performance could be captured, highlighting the potential of computational approaches to
improve our understanding of team dynamics. Our results should be seen as a contribution
to a better understanding of complex team interactions in digital environments, requiring
further research to validate and extend these preliminary results. By understanding the
complex interplay of factors influencing virtual team dynamics, we can pave the way for
more effective collaboration and communication in the digital age.
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