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Abstract: Parallax processing and structure preservation have long been important and challenging
tasks in image stitching. In this paper, an image stitching method based on sliding camera to
eliminate perspective deformation and asymmetric optical flow to solve parallax is proposed. By
maintaining the viewpoint of two input images in the mosaic non-overlapping area and creating
a virtual camera by interpolation in the overlapping area, the viewpoint is gradually transformed
from one to another so as to complete the smooth transition of the two image viewpoints and reduce
perspective deformation. Two coarsely aligned warped images are generated with the help of a
global projection plane. After that, the optical flow propagation and gradient descent method are
used to quickly calculate the bidirectional asymmetric optical flow between the two warped images,
and the optical-flow-based method is used to further align the two warped images to reduce parallax.
In the image blending, the softmax function and registration error are used to adjust the width of the
blending area, further eliminating ghosting and reducing parallax. Finally, by comparing our method
with APAP, AANAP, SPHP, SPW, TFT, and REW, it has been proven that our method can not only
effectively solve perspective deformation, but also gives more natural transitions between images.
At the same time, our method can robustly reduce local misalignment in various scenarios, with
higher structural similarity index. A scoring method combining subjective and objective evaluations
of perspective deformation, local alignment and runtime is defined and used to rate all methods,
where our method ranks first.

Keywords: image stitching; sliding cameras; asymmetric optical flow; image blending

1. Introduction

Image stitching is a technology that can align and blend multiple images to gen-
erate a high-resolution, wide field-of-view and artifact-free mosaic. It has broad and
promising applications in many fields such as virtual reality, remote sensing mapping,
and urban modeling. The calculation of the global homography, as an important step in
image stitching [1,2], directly determines the image alignment accuracy and the final user
experience. However, global homography only works for planar scenes or rotation-only
camera motions. For non-planar scenes or when the optical centers of cameras do not
coincide, homography tends to cause misalignment, resulting in blurring and ghosting in
the mosaic. It can also cause perspective deformation, making the final mosaic blurred and
severely stretched at the edges. Many solutions have been proposed to solve the problems
of parallax and perspective deformation in image stitching, so as to improve the quality of
stitched images. But most state-of-the-art mesh-based [3–5] and multi-plane [6–8] methods
are time-consuming and vulnerable to false matches.

In this work, an innovative image stitching method combining sliding camera (SC)
and asymmetric optical flow (AOF), referred to as the SC-AOF method, is proposed to
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reduce both perspective deformation and alignment error. In the non-overlapping area of
the mosaic, the SC-AOF method manages to keep the viewpoint of the mosaic the same as
or one rotation around the camera Z axis from those of the input images. In the overlapping
area of the mosaic, the viewpoint is changed from one input image viewpoint to another,
which can effectively solve the perspective deformation at the edge. A global projection
plane is estimated to project input images onto the mosaic. After that, an asymmetric
optical flow method is employed to further align the images. In the blending, the softmax
function and alignment error are used to dynamically adjust the width of the blending
area to further eliminate ghosting and improve the mosaic quality. This paper makes the
following contributions:

• The SC-AOF method innovatively uses an approach based on sliding camera to reduce
perspective deformation. Combined with either a global projection model or a local
projection model, this method can effectively reduce the perspective deformation.

• An optical-flow-based image alignment and blending method is adopted to further
mitigate misalignment and improve the stitching quality of the mosaic generated by a
global projection model.

• Each step in the SC-AOF method can be combined with other methods to improve the
stitching quality of those methods.

This article is organized as follows. Section 2 presents the related works. Section 3
first introduces the overall method of this article, then an edge stretching reduction method
based on sliding camera and a local misalignment reduction method based on asymmetric
optical flow are elaborated in detail. Section 4 presents our qualitative and quantita-
tive experimental results compared with other methods. Finally, Section 5 summarizes
our method.

2. Related Works

For the local alignment, APAP (as-projective-as-possible) [8,9] uses the weighted DLT
(direct linear transform) method to estimate the location-dependent homography and then
eliminate misalignment. However, if some key points match incorrectly, the image areas
near these key points may have incorrect homography, resulting in serious alignment
errors and distortion. APAP needs to estimate homography using DLT for each image
cell, and therefore APAP runs much slower than the global homography warping. REW
(robust elastic warping) [10,11] uses the TPS (thin-plate spline) interpolation method to
convert discrete matched feature points into a deformation field, which is used to warp
the image and achieve accurate local alignment. The estimation of TPS parameters and the
deformation field is fast, so REW has excellent running efficiency. TFT (triangular facet
approximation) [6] uses the Delaunay triangulation method and the matched feature points
to triangulate the mosaic canvas, and the warping inside each triangle is determined by the
homography calculated based on the three triangle vertices, so the false matches will lead
to serious misalignment. TFT estimates a plane for every triangle instead of a homography
for every cell, so TFT depends on the number of triangular facets in efficiency and runs
faster than APAP generally. The warping-residual-based image stitching method [7] first
estimates multiple homography matrices, and calculates warping residuals of each matched
feature point using the multiple homography matrices. The homography of each region is
estimated using moving DLT with the difference of the warping residuals as weight, which
means the method can handle larger parallax than APAP, but is less robust to the incorrectly
estimated homography and runs slower than APAP. The NIS (natural image stitching) [12]
method estimates a pixel-to-pixel transformation based on feature matches and the depth
map to achieve accurate local alignment. In [13], by increasing feature correspondences
and optimizing hybrid terms, sufficient correct feature correspondences are obtained in the
low-texture areas to eliminate misalignment. The two methods require additional runtime
to enhance robustness, but also are susceptible to the uneven distribution and false matches
of feature points.
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For perspective deformation, SPHP (shape preserving half projective) [14,15] spatially
combines perspective transformation and similarity transformation to reduce deformation.
Perspective transformation can better align pixels in overlapping areas, and similarity
transformation preserves the viewpoint of the original image in non-overlapping areas.
AANAP (adaptive as-natural-as-possible) [16] derives the appropriate similarity transform
directly based on matched feature points, and uses weights to gradually transit from
perspective transform to similarity transform. The transitions from the homography of the
overlapping area to the similarity matrix of the non-overlapping area adopted by SPHP
and AANAP are artificial and unnatural, and can generate some “strange” homography
matrices, causing significant distortion in the overlapping area. Both SPHP and AANAP
require the estimation of homography or similarity matrices for each cell, and thus have the
same efficiency issue as APAP. GSP (global similarity prior) [17,18] adds a global similarity
prior to constrain the warping of each image so that it resembles a similarity transformation
as a whole and avoids large perspective distortion. In SPW (single-projective warp) [19],
the quasi-homography warp [20] is adopted to mitigate projective distortion and preserve
the single perspective. SPSO (Structure Preservation and Seam Optimization) [4] uses
a hybrid warping model based on multi-homography and mesh-based warp to obtain
precise alignment of areas at different depths while preserving local and global image
structures. GES-GSP (geometric structure preserving-global similarity prior) [21] employs
deep learning-based edge detection to extract various types of large-scale edges, and further
introduces large-scale geometric structure preservation to GSP to preserve the curves in
images and protect them from distortion. GSP, SPW, SPSO and GES-GSP are based on
content preserving warping and require constructing and solving a linear equation with m
variables and n equations to acquire the corresponding coordinates after mesh warping,
in which m is the number of cell vertices multiplied by 2, n is the number of alignment
constraints, structural preservation constraints, and other constraints. Both m and n are
generally larger, therefore more runtime is required.

Based on the above analysis, generating a natural mosaic quickly and robustly remains
a challenging task.

3. Methodology

The flow chart of the SC-AOF algorithm is illustrated in Figure 1. The details on each
of its steps are described below.
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Figure 1. Flow chart of SC-AOF method. After the detection and matching of feature points, the
camera parameters are obtained in advance or estimated. Then the two warped images are calculated
using SC method, and the mosaic that is coarsely aligned can be obtained. Finally, the AOF method is
used to further align the two warped images to generate a blended mosaic with higher alignment
accuracy.
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Step 1: Feature point detection and matching. SIFT (scale-invariant feature transform)
and SURF (speed-up robust feature) methods are generally used to detect and describe key
points from two input images. Using the KNN (k-nearest neighbor) method, a group of
matched points is extracted from the key points and used for camera parameter estimation
in step 2 and global projection plane calculation in step 3.

Step 2: Camera parameter estimation. The intrinsic and extrinsic camera parameters
are the basis of the SC method, and can be obtained in advance or estimated. When camera
parameters are known, we can skip step 1 and directly start from step 3. When camera
parameters are unknown, they can be estimated by minimizing the epipolar and planar
errors, as described in Section 3.3.

Step 3: Sliding camera-based image projection. In this step, we estimate the global
projection plane first, then adjust the camera projection matrix and generate a virtual
camera in the overlapping area by interpolation, and obtain the warped images by global
planar projection, as detailed in Section 3.1. Misalignment can be found in the two warped
images obtained in the current step. Therefore, we need to use the AOF method in step 4 to
further improve the alignment accuracy.

Step 4: Flow-based image blending. In this step, we first calculate the bidirectional
asymmetric optical flow between the two warped images, then further align and blend the
two warped images to generate a mosaic using the optical flow (see Section 3.2 for more
details).

3.1. SC: Viewpoint Preservation Based on Sliding Camera

The sliding camera (SC) method is proposed for the first time to solve perspective
deformation, and is the first step in the SC-AOF method. For this reason, this section will
first introduce the stitching process of this method, and then detail how to calculate the
global projection plane and the sliding projection matrix required by this method.

3.1.1. SC Stitching Process

In order to ensure that the mosaic can maintain the perspective of the two input
images, the SC method is used. That is, in the non-overlapping area, the viewpoints of the
two input images are preserved. In the overlapping area, the viewpoint of the camera is
gradually transformed from I1 to I2.

As shown in Figure 2, the image I1 and I2 are back-projected onto the projection
surface n, so that the corresponding non-overlapping areas Ω1, Ω2 and overlapping area
Ωo are obtained. Assume that the pixels in the mosaic I are u1, u2, . . . , u8, which correspond
to the sampling points S1, S2, . . . , S8 on the projection surface n. When the sampling points
are within the projection area Ω1 of image I1, the mosaic is generated from the viewpoint
of I1.S1, S2, S3 are the intersection points of the backprojection lines of u1, u2, u3 in I1 and
the projection surface n. Therefore, ui = P1Si(i = 1, 2, 3), where P1 is the projection matrix
of I1. When the sampling points are within the projection area Ω2 of image I2, the mosaic is
generated from the camera viewpoint of I2. Similarly, we obtain Si and ui = P2Si, where
i = 6, 7, 8. In the overlapping area Ωo of I1 and I2, the SC method is used to generate a
virtual camera, whose viewpoint gradually transitions from the viewpoint of I1 to that of
I2. S4 and S5 are the intersection points of the back-projection lines of u4, u5 in the visual
camera and projection plane n, respectively. The virtual camera’s image is generated from
images I1 and I2 using perspective transformation. For example, pixel u4 of the virtual
camera corresponds to pixel u4

1 in I1 and pixel u4
2 in I2, and are generated by blending the

latter two pixels.
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Figure 2. Image stitching based on sliding cameras. n is the projection surface, which is fitted by scene
points p1, p2, . . . , p6. Stitched image I can be generated by projection of sampling points S1, S2, . . . , S8.
The points S1, S2, S3 in the area Ω1 are generated by back-projection of pixels in I1. Similarly, the
points S6, S7, S8 in the area Ω2 are generated by back-projection of pixels in I2. The points S4, S5 in
the area Ωo are generated by back-projection of pixels in virtual cameras. The pixel values of S4, S5

correspond to the fused pixel values of projection in I1 and I2. P1 and P2 are the camera projection
matrices of images I1 and I2. To unify the pixel coordinates of I1 and I2, P2 is adjusted to P′

2 using the
method in Section 3.1.3.

Global projection surface calculation. In order to match the corresponding pixels u4
1

of I1 and u4
2 of I2, the projection surface n needs to be as close as possible to the real scene

point; we can use the moving plane method [7–9] or the triangulation method [6] to obtain
a more accurate scene surface. Since the SC-AOF method will use the optical flow to further
align the images, for the stitching speed and stability, only the global plane is calculated
as the projection surface. Section 3.1.2 will calculate the optimal global projection surface
using the matched points.

Sliding camera generation. Generally, since the pixel coordinates of I1 and I2 are
not uniform, in the mosaic I, when I

(∼
u
)

= I1(P1S) in the non-overlapping area of I1,

I
(∼

u
)
= I2(P2S) is false in the non-overlapping area of I2, where S is the sampling point

on the projection surface. It is necessary to adjust the projection matrix of I2 to P′
2, so

that I
(∼

u
)
= I2(P′

2S). The red camera is shown in Figure 2. Section 3.1.3 will deduce the
adjustment method of the camera projection matrix, and interpolate in the overlapping
area to generate a sliding camera, and obtain the warped images of I1 and I2.

3.1.2. Global Projection Surface Calculation

The projection matrices of cameras C1 and C2 corresponding to images I1 and I2 are:

P1 = K1[I3×3|0] P2 = K2R[I3×3|−t] (1)

where K1 and K2 are the intrinsic parameter matrices of C1 and C2 respectively; R is the
inter-camera rotation matrix; and t is location of the optical center of C2 in the coordinate
system C1.
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The relationship between the projection u1 in I1 and the projection u2 in I2 of a 3D
point p on plane n is:

∼
u2 ∼ K2R

(
I3×3 + tnT

)
K−1

1
∼
u1 = H

∼
u1 (2)

where
∼
u1 and

∼
u2 are the homogeneous coordinates of u1 and u2, respectively. The intersec-

tion point p satisfies nT p + 1 = 0. ∼ means that
∼
u2 is parallel to H

∼
u1.

If camera parameters K1, K2, R and t are known, then we can deduce the following
Equation (3) from Equation (2)

nT∼
y1 = −

(
RT∼

y2 × t)T
(

RT∼
y2 ×

∼
y1

)
(

RT∼
y2 × t)T

(
RT∼

y2 × t
) = b (3)

where
∼
y1 = K−1

1
∼
u1 and

∼
y2 = K−1

2
∼
u2 are the normalized coordinates of

∼
u1 and

∼
u2, respec-

tively.
We use Equation (3) of all matched points to construct an overdetermined equation

and obtain the fitted global plane n by solving this equation. Since the optical-flow-based
stitching method will be used to further align the images, the RANSAC method is not used
here to calculate the plane with the most inliers. Instead, the global plane that fits all feature
points as closely as possible is selected, misalignment caused by global plane projection
will be better solved during optical flow blending.

3.1.3. Projection Matrix Adjustment and Sliding Camera Generation

To preserve the viewpoint in the non-blending area of I2, it is only required to satisfy
I
(∼

u
)

= I2

(
N

∼
u
)

= I2

(∼
u2

)
, where

∼
u is the homogeneous coordinate of a pixel in the

mosaic,
∼
u2 is the homogeneous coordinate of a pixel in I2, N is a similarity transformation

between I2 and I, and can be obtained by fitting the matched feature points:

N∗ = min
S

n

∑
j=1

||N∼
u

j
1 −

∼
u

j
2||

2 (4)

where
∼
u

j
1 and

∼
u

j
2 are the homogeneous coordinates of pixels in I1 and I2 respectively.

Therefore, in the non-overlapping area of I2,
∼
u = N−1

∗
∼
u2 = N−1

∗ K2R2(S − t), where
S is the corresponding 3D point of

∼
u2 on plane n. So we get the projection matrix

P′
2=N−1

∗ K2R2.
By RQ decomposition, the internal parameter matrix K′

2 and rotation R′
2 are extracted

from P′
2:

N−1
∗ K2R2 = K2

(
K−1

2 N−1
∗ K2

)
R2 = K2(K∗R∗)R2 = K′

2R′
2 (5)

where K′
2 and R′

2 are upper triangular matrix and rotation matrix respectively; and the
third line of both matrices is

(
0 0 1

)
.

Compared with P2, P′
2 has a different intrinsic parameter matrix, and its rotation matrix

only differs by one rotation around Z axis, and its optical center t is not changed.

tm = (1 − m)03×1 + mt (6)

Km = (1 − m)K1 + mK′
2 (7)

qm =
sin((1 − m) θ)

sin(θ)
q1 +

sin(mθ)

sin(θ)
q2 (8)

where q1, q2, qm represent the quaternions corresponding to I3×3, R′
2 and Rm, θ is the angle

between q1 and q2, and m is the weighting coefficient.
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As depicted by Figure 3, the weighting coefficient m can be calculated by the method
in AANAP [16]:

m =

〈 →
kmP∗,

→
kmKM

〉
/|

→
kmKM|2 (9)
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of the quadrilateral vertices, respectively. P* indicates the pixel coordinates within the overlapping
area that need to calculate weighted parameter m.

In the overlapping area, if u corresponds to sliding camera (Km, Rm, tm), then the
relation between u and ui in Ii(i = 1, 2) can be expressed as:

∼
u = KmRm

(
I + tmnT/d

)
K−1

1
∼
u1 = H1

m
∼
u1 (10)

∼
u = H1

m H−1∼u2 = H2
m
∼
u2 (11)

Equations (10) and (11) are also applicable to the non-overlapping area. Projecting I1
and I2 through H1

m and H2
m onto the mosaic, respectively, to get warped images I′1 and I′2.

Obviously:
I′i
(∼

u
)
= Ii

((
Hi

m)
−1∼u

)
(i = 1, 2) (12)

Figure 4 shows the experiment result on two school images used in [10]. Due to the
parallax between I1 and I2, blending I′1 and I′2 will cause ghosting. Therefore, the next
section will use an optical-flow-based blending method (AOF) to further align the images.
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Figure 4. Image stitching based on sliding cameras and global projection plane. (a,b) show the
warped images I′1 and I′2 of the input images of a school; (c) shows the average blending images of I′1
and I′2. That is, in the overlapping area, the blended value is

(
I′1 + I′2

)
/2.

3.2. AOF: Image Alignment Based on Asymmetric Optical Flow

The mosaic generated by the SC method will inevitably have misalignment in most
cases. So, the optical-flow-based method is further employed to achieve more accurate
alignment. This section firstly introduces the image alignment process based on asymmetric
optical flow (AOF), and then details the calculation method of AOF.

3.2.1. Image Blending Process of AOF

I1 and I2 are projected onto the custom projection surface to obtain warped images I′1
and I′2, which are then blended to generate the mosaic I. As the 3D points of the scene are
not always on the projection plane, ghosting artifacts can be seen in the mosaic, as shown
in Figure 4 in the previous section. Direct multi-band image blending will lead to artifacts
and blurring. As shown in Figure 5, point P is projected to two points p1 and p2 in the
mosaic, resulting in duplication of content. To solve the ghosting problem in the mosaic,
the optical-flow-based blending method in [22] is adopted.
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Figure 5. Image blending based on optical flow. B1E2 is the projection surface of the mosaic. In the
overlapping areas (denoted by B2E1) of I1 and I2, we need to blend I′1 and I′2. The 3D point P is
outside the projection surface. When P is projected onto the projection surface, ghosting points p1

and p2 appear. Through the weighted blending of asymmetric optical flow, p1 and p2 are merged
into point

∼
p, which solves the ghosting problem of stitching.

Suppose F2→1(p2) represents the optical flow value of p2 in I′2 and F1→2(p1) represents
the optical flow value of p1 in I′1. If the blending weight of pixel

∼
p in the overlapping area

is λ (from the non-overlapping area of I′1 to the non-overlapping area of I′2), λ gradually
transitions from 0 to 1, as shown in Figure 5, then after blending, the pixel value of image I
at

∼
p is:

I
(∼

p
)
= (1 − λ)I′1

(∼
p1

)
+ λI′2

(∼
p2

)
(13)

where
∼
p1 =

∼
p + λF2→1

(∼
p
)

represents the corresponding value of
∼
p in I′1, and

∼
p2 =

∼
p + (1 − λ)F1→2

(∼
p
)

represents the corresponding value of
∼
p in I′2. That is, for any pixel

∼
p

in the overlapping area of the mosaic, its final pixel value can be obtained by a weighted
combination of its corresponding values in the two warped images using optical flow.

To achieve get a better blending effect, following the method presented by Meng and
Liu [23], a softmax function is used to facilitate the mosaic transition quickly from I′1 to I′2,
narrowing the blending area. Furthermore, if the optical flow value of a warped image
is larger, the salience is higher, and the blending weight of the warped image should be
increased accordingly. Therefore, the following blending weight β can be employed:

β =
exp(αsλ(1 + αm M2))

exp(αs(1 − λ)(1 + αm M1)) + exp(αsλ(1 + αm M2))
(14)

where M1 = ||F2→1

(∼
p
)
|| and M2 = ||F1→2

(∼
p
)
|| represents the optical flow magnitude;

αs is the shape coefficient of the softmax function; and αm denotes the enhancement coeffi-
cient of the optical flow. The larger αs and αm are, the closer β is to 0 or 1, and the smaller
the image transition area becomes.

Also, similar to multi-band blending, a wider blending area is used in smooth and
color-consistent areas, and a narrower blending area is used in color-inconsistent areas.
And the pixel consistency is measured using Dc:

Dc = ||I1

(∼
p1

)
− I2

(∼
p2

)
|| (15)
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The final blending parameter α is obtained:

λd = tanh (cdDc) (16)

α = (1 − λd)λ + λdβ (17)

β corresponds to a fast transition from I′1 to I′2, λ corresponds to a linear transition
from I′1 to I′2. When the color differs slightly, the transition from I′1 to I′2 is linear, and when
the color difference is large, we tend to have a fast transition from I′1 to I′2.

Then the pixel value of the mosaic is:

I
(∼

p
)
= (1 − α)I1

(∼
p1

)
+ αI2

(∼
p2

)
(18)

The curve in the left panel of Figure 6 shows the curve of β with respect to λ under
different optical flow intensities. β can be used to achieve quick transition of the mosaic
from I′1 to I′2, narrowing the transition area. In the case of a large optical flow, the blending
weight of the corresponding image can be increased to reduce the transition area. The curve
in the right panel of Figure 6 shows the influence of λd on the curve of α as a function of
λ. When λd is small, a wider fusion area tends to be used; otherwise, a narrower fusion
area is used, which is similar to the blending of different frequency bands in a multi-band
blending method.
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3.2.2. Calculation of Asymmetric Optical Flow

The general pipeline of the optical flow calculation is to construct an image pyramid,
calculate the optical flow of each layer from coarse to fine, and use the estimated current-
layer optical flow divided by the scaling factor as the initial optical flow of the finer
layer until the optical flow of the finest layer is obtained [23–26]. Different methods
are proposed to achieve better solutions that satisfy brightness constancy assumptions,
solve large displacements and appearance variation [27,28], and address edge blur and
improve temporal consistency [29–31]. Recently, some deep learning methods have been
proposed. For example, RAFT (recurrent all-pairs field transforms for optical flow) [32]
extracts per-pixel features, builds multi-scale 4D correlation volumes for all pairs of pixels,
and iteratively updates a flow field through a recurrent unit. FlowFormer (optical flow
Transformer) [33] is based on a transformer neural network architecture with a novel
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encoder which effectively aggregates cost information of correlation volume into compact
latent cost tokens, and a recurrent cost decoder which recurrently decodes cost features to
iteratively refine the estimated optical flows.

In order to improve the optical flow calculation speed, we use the method based on
optical flow propagation and gradient descent adopted in Facebook surround360 [34] to
calculate the optical flow. When calculating the optical flow of each layer, first calculate
the optical flow of each pixel from top to bottom and from left to right. From the optical
flow values of the current-layer left and top pixels and upper-layer same-position pixel,
the value with minimum error represented by Equation (19) is selected as the initial value
of the current pixel. Then a gradient descent method is performed to update the optical
flow value of the current pixel, and is then spread to the right and bottom pixels, as a
candidate for the initial optical flow of the right and bottom pixels. After completing the
forward optical flow propagation from top to bottom and from left to right, perform a
reverse optical flow propagation and gradient descent from bottom to top and from right
to left to obtain the final optical flow value.

When calculating the optical flow value F(u) of pixel u, the error function E(F(u))
used is:

E(F(u)) = EI + αSES + αTET (19)

EI(F(u)) =||∇I1(u)−∇I2(u + F(u)) || (20)

ES(F(u)) =||F(u)− G(u; σ) ∗ F(u) || (21)

ET(F(u)) =||F(u) ∗ D(1/W, 1/H) || (22)

where EI denotes the optical flow alignment error of the edge image (which is Gaussian
filtered to improve the robustness); ES denotes the consistency error of the optical flow;
G(u; σ) ∗ F(u) denotes the Gaussian-filtered optical flow of pixel u; ET denotes the mag-
nitude error after normalization of optical flow, with excessively large optical flow being
penalized; W and H are the width and height of the current-layer image, respectively,
D(1/W, 1/H) denotes the diagonal matrix with diagonal elements 1/W and 1/H.

3.3. Estimation of Image Intrinsic and Extrinsic Parameters

The SC-AOF method requires known camera parameters of images I1 and I2. When
only the intrinsic parameters K1 and K2 of an image are known, the essential matrix [t]×R
between two images can be obtained by feature point matching, and the rotation matrix
R and translation vector t between images can be obtained by decomposing the essential
matrix. When both intrinsic and extrinsic parameters are unknown, the intrinsic parameters
can be estimated by calibration [35,36] firstly, and then the extrinsic parameters of the image
can be estimated accordingly. In these cases, both intrinsic and extrinsic parameters of
image I1 and I2 can be estimated robustly.

When none of the above methods is feasible, it is necessary to calculate the fundamen-
tal matrix from the matched feature points and restore the camera internal and external
parameters.

When the camera has zero skew, the known principal point and aspect ratio, then each
intrinsic parameter matrix has only one degree of freedom (focal length of the camera). The
total degree of freedom of the camera parameters is 7 (where t has 2 degrees of freedom
due to the inability to recover scale, R has 3 degrees of freedom, and each camera has 1
degree of freedom), which is equal to the fundamental matrix F’s degree of freedom. The
internal and external parameters of the image can be recovered using a self-calibration
method [37]. But even if these constraints are met, the camera parameters by solved [37]
suffer from large errors when the scene is approximately planar and the matching error is
large. Therefore, we use the method of optimizing the objective function in [6] to solve the
internal and external parameters of the camera.

To obtain an accurate fundamental matrix, firstly, the feature points need to be dis-
tributed more evenly in the image. As shown in Figure 7, a uniform and sparse distribution
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of feature points can both reduce the computation time and obtain more robust intrinsic
and extrinsic camera parameters and global projection planes, which will lead to improved
stitching results.
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Figure 7. The impact of feature point distribution on stitching results. The feature points are marked
by small color circles, and the blue boxes indicate the regions where the enlarged images are located
in the mosaics. The feature points in (a) are concentrated in the grandstand. The corresponding
mosaic (c) is misaligned in the playground area. The feature points in (b) are evenly distributed
within a 2 × 2 grid. Although the total number of feature points is smaller, the mosaic (d) has better
quality. (e,f) show the detail of mosaics.

Secondly, it is necessary to filter the matched feature points to exclude the influence of
outliers. Use the similarity transformation to normalize the matched feature points. After
normalization, the mean value of the feature points is 0, and the average distance to the
origin is

√
2.

Thirdly, multiple homographies are estimated to exclude outlier points. Let Fcond and n
denote all matched feature points and the total number of matched feature points. In Fcond,
the RANSAC method with threshold η = 0.01 is applied to compute homography H1 and
its inlier set F1

inlier, and the matches of isolated feature points which have no neighboring
points within a 50 pixel distance are removed from F1

inlier. A new candidate set is generated
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by removing F1
inlier from Fcond. Repeat the above steps to calculate m homography matrices

Hm and corresponding inlier set Fm
inlier until

∣∣∣∣Fm
inlier

∣∣∣∣<20 or
∣∣Fm

inlier

∣∣∣∣< 0.05n . The final
inlier set is Finlier = ∪m

i=1Fi
inlier. If m = 1, then there is only one valid plane. In this case,

apply the RANSAC method with threshold η = 0.1 to recalculate homography H1 and the
corresponding inlier set F1

inlier.
After excluding the outliers, for any matched points {x1, x2} in the inlier set Finlier, the

cost function is:
E(x1, x2) = (1 − λ)h(re, σe) + λh

(
rp, σp

)
(23)

where λ balanced epipolar constraint and the infinite homography constraint, and generally
take λ = 0.01. h is a robust kernel function, which can mitigate the effect of mis-matched
points on the optimization of camera internal and external parameters. re and rp denote
the projection errors of the epipolar constraint and of the infinite homography constraint,
respectively:

re =
1
ρ

xT
2 K−T

2 [t]×RK−1
1 x1 =

1
ρ

xT
2 Fx1 (24)

rp = x2 −
1
ω

K2RK−1
1 x1 (25)

where ρ denotes the length of the vector composed of the first two components of Fx1. That
is, assuming Fx1 =

(
a, b, c)T , then ρ =

√
a2 + b2. w represents the third component value

of the vector K2RK−1
1 x1.

4. Experiment

To verify the effectiveness of the SC-AOF method, the mosaics generated by our
method and the existing APAP [4], AANAP [16], SPHP [14], TFT [7], REW [10] and SPW [18]
methods are compared on some typical datasets used by others to verify the feasibility and
advantages of the SC-AOF method in solving deformation and improving alignment. Next,
the SC-AOF method is used together with other methods to demonstrate its compatibility.
The image pairs used in the comparison experiment are shown in Figure 8.

4.1. Effectiveness Analysis of SC-AOF Method

In this section, various methods of image stitching are compared and analyzed based
on three indicators: perspective deformation, local alignment and running speed. The
experimental setup is as follows.

• The first two experiments compare typical methods for solving perspective deforma-
tion and local alignment, respectively, and all the methods in the first two experiments
are included in the third experiment to show the superiority of the SC-AOF method in
all aspects.

• Since the averaging methods generally underperform compared to linear blending
ones, all methods to be compared adopt linear blending to achieve the best perfor-
mance.

• All methods other than ours use the parameters recommended by their proposers. Our
SC-AOF method has the following parameter settings in optical-flow-based image
blending: αs = 10, αm = 100, and cd = 10.
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Figure 8. The image dataset for comparative experiments. The image pairs are initially used by
stitching methods such as APAP, AANAP, and REW.

4.1.1. Perspective Deformation Reduction

Figure 9 shows the results of the SC-AOF method versus the SPHP, APAP, AANAP
and SPW methods for perspective deformation reduction in image stitching. School,
building and park square datasets were used in this experiment. We can see from Figure 9
that, compared with the other methods, our SC-AOF method changes the viewpoint of the
stitched image in a more natural manner and effectively eliminates perspective deformation.
As explained below, all other methods underperform compared to our SC-AOF method.

The image stitched using the APAP method has its edges stretched to a large extent.
This is because it does not process perspective deformation. This method only serves as a
reference to verify the effectiveness of perspective-deformation-reducing algorithms.

The AANAP algorithm can achieve a smooth transition between the two viewpoints,
but results in severely “curved edges”. And there is even more severe edge stretching
for the park square dataset than that of the APAP method. This is because, when the
AANAP method extrapolates from homographies, it linearizes the homography in addition
to similarity transformation, causing affine deformation in the final transformation.

Compared with the APAP method, the SPW method makes no significant improve-
ment in perspective deformation, except for the image in the first row. SPW preserves
perspective consistency, so a multiple-viewpoint method excels in solving perspective
deformation compared to single-viewpoint method.
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Figure 9. Comparison of perspective deformation processing. From the first row to the last row, the
mosaics generated by our method, AANAP, SPHP, SPW and APAP on the datasets are presented,
respectively. The red elliptical boxes indicate the unnatural transitions in the mosaics.

The SPHP algorithm performs well overall. However, it causes severe distortions in
some areas (red circles in Figure 8c) due to the rapid change of viewpoints. This is because
the SPHP method estimates the similarity transformation and interpolated homographies
from global homography. As a result, the similarity transformation cannot reflect the real
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scene information and the interpolated homographies may deviate from a reasonable image
projection.

4.1.2. Local Alignment

Figures 10 and 11 show the results of the SC-AOF method versus APAP, TFT and REW
methods for local alignment in image stitching. It can be seen that SC-AOF performs well
in all scenes, showing the effectiveness of our method in local alignment.
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Figure 10. Qualitative comparison on the garden image pairs. From the first row to the last row, the
mosaics and detail views generated by our method, APAP, TFT, REW are presented, respectively. The
red boxes indicate the regions where the enlarged images are located in the mosaics. The red circles
highlight errors and distortions.
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Figure 11. Comparison of image alignment on the wall and cabinet image pairs. From the first row to
the last row, the mosaics and detail views generated by our method, APAP, TFT, REW are presented,
respectively. The blue boxes indicate the region where the enlarged images are located. The red
circles highlight errors and distortions.

• The APAP method performs fairly well in most images, though with some alignment
errors. This is because the moving DLT method smooths the mosaics to some extent.

• The TFT-generated stitched image is of excellent quality in planar areas. But when
there is a sudden depth change in the scene, there are serious distortions. This is
because large errors appear when calculating planes using three vertices of a triangle
in the area with sudden depth changes.

• The REW method has large alignment errors in the planar area and aligns the images
better than the APAP and TFT method in all other scenes. This is because the fewer
feature points in the planar area might be filtered out as mismatched points by the
REW method.

The SSIM (structural similarity) [38] is employed to objectively describe the alignment
accuracy of different methods. SSIM measures the similarity between two images J1 and
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J2 to be blended in the overlapping area. For our two-step alignment method, J1(u) =
I′1(u + λF2→1(u)), J2(u) = I′2(u + (1 − λ)F1→2(u)). The structural similarity is defined as:

SSIM(J1, J2) =
(2µ1µ2 + C1)(2σ12 + C2)

(µ 2
1 + µ2

2 + C1

)(
σ2

1 + σ2
2 + C2

) (26)

where µ1 and σ1 represent the mean and standard deviation of pixel values within the
overlapping area O of J1, respectively. µ2 and σ2 are the corresponding mean and standard
deviation of J2, respectively. σ12 is the covariance of pixel values in the overlapping area
of J1 and J2. C1 = (k1L)2 and C2 = (k2L)2 are constants used to maintain stability, where
k1 = 0.01, k1 = 0.03, and L is the dynamic range of pixel values (for 8-bit grayscale images,
L = 255).

The scores of all methods on the datasets building1, building2, garden, building,
school, park-square, wall, cabinet, campus-square and racetracks are listed in Table 1. The
best SSIM value is highlighted in bold.

Table 1. Comparison of SSIM.

APAP AANAP SPHP TFT REW SPW Ours

building1 0.88 0.87 0.75 0.88 0.89 0.86 0.90

building2 0.82 0.82 0.75 0.92 0.76 0.81 0.93

garden 0.90 0.92 0.81 0.82 0.95 0.92 0.93

building3 0.93 0.94 0.89 0.70 0.96 0.90 0.96

school 0.89 0.91 0.67 0.90 0.91 0.87 0.93

wall 0.83 0.91 0.68 0.90 0.82 0.81 0.92

park-square 0.95 0.96 0.80 0.97 0.97 0.95 0.97

cabinet 0.91 0.91 0.87 0.89 0.98 0.92 0.96

campus-square 0.92 0.94 0.84 0.95 0.98 0.93 0.97

racetracks 0.74 0.79 0.68 0.86 0.83 0.70 0.85

• APAP and AANAP have high scores on all image pairs, but the scores are lower than
our method and REW, proving that APAP and AANAP blur mosaics to some extent.

• When SPHP is not combined with APAP, only the global homography is used to align
the images, resulting in lower scores compared to other methods.

• TFT has higher scores on the datasets except for the building dataset. TFT can improve
alignment accuracy but also bring instability.

• SPW combines quasi-homography and content-preserving warping to align images,
which add other constraints while also reducing the accuracy of alignment, resulting
in lower scores compared to REW and our method.

• Both REW and our method use a global homography matrix to coarsely align the
images. Afterwards, in REW and our method, a deformation field and optical flow are
applied to further align the images, respectively. Therefore, both methods have higher
scores and robustness than other methods.

4.1.3. Stitching Speed Comparison

The running speed is a direct reflection of the efficiency of each stitching method.
Figure 12 shows the speed of the SC-AOF method versus the APAP, AANAP, SPHP, TFT,
REW and SPW methods. The same image pairs as in the SSIM comparison are used in this
experiment. It can be seen that the REW algorithm has the fastest stitching speed. The
reason is that it only needs to calculate TPS parameters based on feature point matching
and then compute the transformations of grid points quickly. Our SC-AOF method ranks
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second in terms of stitching speed, and the AANAP algorithm requires the longest running
time. Both the APAP and AANAP methods calculate the local homographies based on
moving DLT, and the AANAP method also needs to calculate the Taylor expansion of
anchor points.
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to other methods.

4.1.4. Overall Scoring for All the Methods

In order to comprehensively and quantitatively evaluate our method and other meth-
ods in improving local alignment and reducing perspective deformation, we define a
scoring method that assigns an integer score ranging from 0 to 10 to estimate the effec-
tiveness and efficiency of stitching each image pair using each method. The total score is
obtained by adding up the scores from four aspects:

1. The subjective scoring of perspective deformation reduction. The scores from 0 to
2, respectively, indicate severe deformation, slight relief of deformation, and less
deformation.

2. The subjective scoring of local alignment. The score ranges from 0 to 2, where 0
indicates obvious ghosting in many regions, 1 indicates few or mild mismatches, and
2 indicates no apparent alignment errors.

3. The objective scoring of local alignment. The score ranges from 0 to 3. We define the
mean and standard deviation of the SSIM values of different methods on the same
image pair as µ and σ, the SSIM of current method is x, the score of the method is 0, 1,
2 and 3, respectively, when x satisfies x − µ < −σ, x − µ ∈ (−σ, 0), x − µ ∈ (0,−σ)
and x − µ > σ.

4. The scoring of running time. Like the objective scoring for local alignment, we score 0
when the running time of the method is greater than the mean plus standard deviation.
When the time is less than the mean plus standard deviation and greater than the
mean, the score is 1. The score is 2 when the time is less than the mean and greater
than the mean minus standard deviation. Otherwise, the score is 3.
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The scoring results of these methods on the image pairs are shown in Table 2. The
image pairs in Table 2 include those used in SSIM and runtime comparison, as well as
the test image pairs in the Appendix B (specific comparison of the mosaics generated by
different methods are shown in the Appendix B). Every scoring is displayed in the format
as “the score of perspective deformation reduction + the subjective score of local alignment
+ the objective score of local alignment + the score of running time = the overall score”.
The highest score is bolded and highlighted. Our SC-AOF method has the highest scores
in all the image pairs except the worktable image pair. Given that our method and REW
all scored highly and have the same scores on some image pairs, in order to prove that
our method is indeed ahead of REW, rather than due to statistical bias, we performed a
Wilcoxon test using MATLAB 2018b on all scores of our method and REW. The resultant
p-values of 0.0106 and h = 1 prove that the scores of REW and our method come from
different distributions, our method has the better overall performance, and our method can
maintain a desirable operation efficiency while guaranteeing the final image quality. Our
method can have broad applications and promotion significance.

4.2. Compatibility of SC-AOF Method

The SC-AOF method can not only be used independently to generate stitched image
with reduced perspective deformation and low alignment error, but also be decomposed
(into SC method and image blending method) and combined with other methods to
improve the quality of the mosaic.

4.2.1. SC Module Compatibility Analysis

The sliding camera (SC) module in the SC-AOF method can not only be used in the
global alignment model, but also be combined with other local alignment models (e.g.,
APAP and TFT) to solve perspective deformation while maintaining the alignment accuracy.
The implementation steps are as follows.

1. Use the global similarity transformation to project I2 onto the I1 coordinate system to
calculate the size and mesh vertices of the mosaic;

2. Use Equations (6)–(9) to calculate the weights of mesh vertices and the projection ma-
trix, replace the homography H in (2) with the homography matrix in local alignment
model, and bring them into (12) to compute the warped images and blend them.

Figure 13 presents the stitched images when using the TFT algorithm alone vs. using
the TFT algorithm combined with the SC method. The combined method is more effective
in mitigating edge stretching, and it generates more natural images. This shows that the
SC method can effectively solve perspective deformation suffered by the local alignment
method.

4.2.2. Blending Module Compatibility Analysis

The asymmetric optical-flow-based blending in the SC-AOF method can also be used
in other methods to enhance the final stitching effect. The implementation steps are as
follows.

1. Generate two projected images using one of the other algorithms and calculate the
blending parameters based on the overlapping areas;

2. Set the optical flow value to be 0, replace linear blending parameter λ with α in
Equation (17) to blend warped images, preserve the blending band width in the
low-frequency area and narrow the blending width in the high-frequency area to
obtain a better image stitching effect.
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Table 2. The soring results on the image pairs.

APAP AANAP SPHP TFT REW SPW Ours

building1 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 0 = 6 2 + 2 + 0 + 2 = 6 1 + 2 + 2 + 1 = 6 1 + 2 + 2 + 3 = 8 1 + 2 + 1 + 2 = 6 2 + 2 + 2 + 2 = 8

building2 0 + 1 + 1 + 2 = 4 1 + 2 + 1 + 0 = 4 2 + 0 + 0 + 2 = 4 1 + 0 + 3 + 0 = 4 1 + 2 + 0 + 3 = 6 1 + 1 + 1 + 2 = 5 2 + 2 + 3 + 2 = 9

garden 1 + 2 + 2 + 1 = 6 2 + 2 + 2 + 0 = 6 2 + 1 + 0 + 1 = 4 1 + 1 + 0 + 2 = 4 1 + 2 + 3 + 3 = 9 2 + 2 + 2 + 1 = 7 2 + 2 + 3 + 2 = 9

building3 1 + 1 + 2 + 2 = 6 2 + 1 + 2 + 0 = 5 2 + 2 + 1 + 2 = 7 0 + 0 + 0 + 0 = 0 1 + 2 + 2 + 3 = 8 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 2 = 8

school 0 + 2 + 2 + 2 = 6 2 + 2 + 2 + 0 = 6 2 + 2 + 0 + 2 = 6 0 + 2 + 2 + 2 = 6 0 + 2 + 2 + 2 = 6 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 2 = 8

wall 0 + 1 + 1 + 2 = 4 2 + 2 + 2 + 0 = 6 2 + 0 + 0 + 2 = 4 1 + 2 + 2 + 1 = 6 1 + 1 + 1 + 2 = 5 0 + 1 + 1 + 2 = 4 2 + 2 + 3 + 2 = 9

park-square 1 + 2 + 2 + 2 = 7 1 + 2 + 2 + 0 = 5 2 + 0 + 0 + 1 = 3 1 + 2 + 2 + 2 = 7 1 + 2 + 2 + 3 = 8 1 + 2 + 2 + 0 = 5 2 + 2 + 2 + 2 = 8

cabinet 1 + 1 + 1 + 2 = 5 2 + 1 + 1 + 0 = 4 2 + 2 + 0 + 2 = 6 2 + 0 + 1 + 2 = 5 2 + 2 + 3 + 2 = 9 1 + 2 + 2 + 2 = 7 2 + 2 + 3 + 2 = 9

campus-square 0 + 2 + 1 + 2 = 5 1 + 2 + 2 + 0 = 5 2 + 2 + 0 + 2 = 6 0 + 2 + 2 + 2 = 6 0 + 2 + 3 + 3 = 8 0 + 2 + 1 + 2 = 5 2 + 2 + 2 + 2 = 8

racetracks 2 + 1 + 1 + 2 = 6 2 + 1 + 2 + 0 = 5 2 + 0 + 0 + 1 = 3 2 + 2 + 3 + 2 = 9 2 + 2 + 2 + 3 = 9 1 + 1 + 0 + 1 = 3 2 + 2 + 3 + 2 = 9

roundabout 2 + 2 + 2 + 2 = 8 2 + 2 + 2 + 0 = 6 2 + 2 + 0 + 1 = 5 2 + 1 + 2 + 1 = 6 2 + 2 + 2 + 2 = 8 2 + 2 + 0 + 2 = 6 2 + 2 + 2 + 2 = 8

fence 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 0 = 6 2 + 1 + 0 + 2 = 5 1 + 1 + 2 + 1 = 5 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 2 = 8 2 + 2 + 2 + 2 = 8

railtracks 2 + 1 + 1 + 2 = 6 2 + 2 + 2 + 0 = 6 2 + 0 + 0 + 2 = 4 2 + 2 + 2 + 2 = 8 2 + 2 + 2 + 2 = 8 2 + 1 + 1 + 0 = 4 2 + 2 + 3 + 2 = 9

temple 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 0 = 6 2 + 2 + 0 + 2 = 6 1 + 1 + 2 + 2 = 4 1 + 2 + 2 + 2 = 7 1 + 1 + 1 + 2 = 5 2 + 2 + 2 + 2 = 8

corner 2 + 2 + 2 + 1 = 7 2 + 1 + 2 + 0 = 5 2 + 1 + 1 + 2 = 6 2 + 0 + 0 + 2 = 4 2 + 2 + 2 + 2 = 8 2 + 1 + 2 + 2 = 7 2 + 2 + 2 + 2 = 8

shelf 2 + 2 + 2 + 1 = 7 2 + 2 + 2 + 0 = 6 2 + 2 + 0 + 2 = 6 2 + 1 + 2 + 2 = 7 2 + 2 + 2 + 3 = 9 2 + 2 + 2 + 1 = 7 2 + 2 + 2 + 2 = 8

standing-he 1 + 1 + 2 + 2 = 6 2 + 1 + 1 + 1 = 5 2 + 1 + 1 + 2 = 6 0 + 0 + 1 + 2 = 3 1 + 1 + 2 + 2 = 6 1 + 1 + 2 + 0 = 4 2 + 1 + 3 + 2 = 8

foundation 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 0 = 6 2 + 2 + 0 + 2 = 6 1 + 1 + 3 + 2 = 7 2 + 2 + 2 + 2 = 8 1 + 2 + 1 + 0 = 4 2 + 2 + 2 + 2 = 8

guardbar 1 + 1 + 2 + 1 = 5 2 + 1 + 2 + 0 = 5 2 + 1 + 0 + 2 = 5 1 + 1 + 3 + 2 = 7 1 + 1 + 2 + 2 = 6 1 + 1 + 1 + 1 = 4 2 + 1 + 2 + 2 = 7

office 1 + 1 + 2 + 2 = 6 2 + 1 + 2 + 0 = 5 2 + 1 + 0 + 2 = 5 0 + 1 + 2 + 1 = 4 1 + 1 + 1 + 3 = 6 0 + 1 + 2 + 1 = 4 2 + 2 + 3 + 2 = 9

plantain 1 + 2 + 2 + 2 = 7 1 + 2 + 2 + 0 = 5 2 + 2 + 1 + 2 = 7 0 + 0 + 0 + 1 = 1 2 + 1 + 2 + 3 = 8 1 + 2 + 2 + 2 = 7 2 + 2 + 2 + 2 = 8

building4 1 + 1 + 2 + 1 = 5 2 + 1 + 2 + 0 = 5 2 + 1 + 0 + 2 = 5 1 + 1 + 2 + 2 = 6 1 + 2 + 2 + 2 = 7 1 + 2 + 1 + 2 = 6 2 + 2 + 3 + 2 = 9

potberry 2 + 2 + 2 + 2 = 8 2 + 2 + 2 + 2 = 8 2 + 2 + 0 + 2 = 6 2 + 2 + 2 + 1 = 7 2 + 1 + 2 + 3 = 8 1 + 1 + 1 + 0 = 3 2 + 2 + 2 + 2 = 8

lawn 1 + 2 + 2 + 2 = 7 1 + 2 + 2 + 2 = 7 2 + 2 + 0 + 0 = 4 1 + 2 + 2 + 1 = 6 1 + 2 + 2 + 3 = 8 1 + 2 + 2 + 1 = 6 2 + 2 + 2 + 2 = 8

worktable 2 + 1 + 2 + 2 = 7 2 + 1 + 1 + 0 = 4 1 + 1 + 0 + 2 = 4 2 + 0 + 2 + 2 = 6 2 + 2 + 2 + 2 = 8 2 + 1 + 2 + 0 = 5 2 + 2 + 2 + 2 = 8
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Figure 13. The combination of TFT and moving cameras method. (a) The mosaics created using TFT.
(b) The mosaics obtained by adding the moving camera method to TFT.

Figure 14 shows the image stitching effect of the APAP algorithm when using linear
blending vs. when using our blending method. It can be seen that the blurring and ghosting
in the stitched image are effectively mitigated when using our blending method. This
shows that our blending algorithm can blend the aligned images better.
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Figure 14. The combination of APAP and our blending method. (a) The mosaic and detail view
generated by the APAP using linear blending. (b) The results of APAP combined with our blending
method. The red elliptical boxes indicate the regions where the enlarged images are located.

5. Conclusions

In this paper, to solve the perspective deformation and misalignment in image stitching
using homographies, a SC-AOF method is proposed. In image warping, a new virtual cam-
era and a projection matrix are generated as the observation perspective in the overlapping
area by interpolating between two projection matrices. The overlapping area transitions
gradually from one viewpoint to another to achieve preservation of the viewpoint and
the smooth transition of the stitched image, and thus solve the perspective deformation
problem. In image blending, the optical-flow-based blending algorithm is proposed to fur-
ther improve alignment accuracy. The width of the blending area is automatically adjusted
according to the softmax function and alignment accuracy. Finally, extensive comparison
experiments are conducted to demonstrate the effectiveness of our algorithm in reducing
perspective deformation and improving alignment accuracy. In addition, our algorithm
had broad applicability, as its component modules can be used with other algorithms to
mitigate edge stretching and improve alignment accuracy.

However, the proposed local alignment method may fail if the input images contain
large parallax, which cause severe occlusion to prevent us from obtaining the correct optical
flow. The problem of local alignment failure caused by large parallax also exists in other
local alignment methods. Exploring more robust optical flow calculation and occlusion
processing methods to reduce misalignment in a large parallax scene is an interesting
research direction for future work.
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Appendix A

Given that the abundance of symbols and abbreviations in this paper can lead to
reading confusion, the symbols and abbreviations are listed and explained in Tables A1
and A2.

Table A1. The symbols and their explanations.

Symbols Description

I1, I2,I the source image pair and the final mosaic
n the global projection plane

Ω1, Ω2 the non-overlapping area of I1, I2
Ω0 the overlapping area of I1 and I2

P1, P2 the camera projection matrix of I1, I2
Pim, Pm the projection matrix of virtual sliding camera

P′
2 the adjusted projection matrix of I2 to unify the pixel coordinates of I1 and I2

ui, u the non-homogeneous coordinate of the pixel in I
∼
u

i
,
∼
u the homogeneous coordinate of the pixel in I

ui
1, u1, ui

2, u2 the non-homogeneous coordinate of the pixel in I1, I2
∼
u

i
1,

∼
u1,

∼
u

i
2,

∼
u2 the homogeneous coordinate of the pixel in I1, I2

S, Si the sampling points on the plane n which are projected onto u and ui in I
p, pi the 3D scene points

C1, C2 the cameras corresponding to I1 and I2
K1, K2 the internal parameter matrices of C1 and C2
I3×3 the 3 by 3 identity matrix
R, t the rotation matrix and the location of the optical center of C2 in C1′s coordinate system

∼
y1,

∼
y2 normalized coordinates of

∼
u1 and

∼
u2

N* the similarity matrix between I1 and I2
K′

2, R′
2 the rotation matrix and translation vector corresponding to P′

2
Km, Rm, tm the internal parameter matrix, the rotation matrix and the translation vector corresponding to Pm
q1, q2, qm the quaternions corresponding to I3×3, R′

2 and Rm
Hi

m(i = 1, 2) the homography between Ii and I
I′i (i = 1, 2) the warped image of Ii using Hi

m
Fi→j(pi) the optical flow of pi in I′i which makes I′i (pi) = I′j

(
pi + Fi→j(pi)

)
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Table A1. Cont.

Symbols Description
∼
p,

∼
p1,

∼
p2 the pixel in I and corresponding pixel in I′1, I′2

M1, M2 the optical flow magnitude of F2→1

(∼
p
)

and F1→2

(∼
p
)

αs, αm the softmax function’s shape coefficien and the optical flow’s enhancement coefficient
λ the weight which makes I transition from I′1 to I′2 linearly
β the softmax weight to transition I from I′1 to I′2 fastly
α the linear combinationof λ and β which makes the transition of I from I′1 to I′2 depends on the color difference

Dc, λd the color difference and the hyperbolic tangent function of the color difference
F(u) the optical flow of u

E(F(u)) the error function of F(u) used for solving the optimal optical flow
EI , ES, ET the optical flow’s alignment error, consistency error and penalty for large value
Fi

inlier, Hi the i-th homography transforming I1 to I2 and the corresponding inlier set
Fcond, Finlier the initial set and the final inlier set of matched feature points

re, rp the projection errors of the epipolar constraint and of the infinite homography constraint
h(r, σ) the robust kernel function to reduce the impact of false matches to optimization

Table A2. The abbreviations and their explanations.

Abbreviation Meaning

SC sliding camera, proposed by us to solve the perspective deformation
AOF asymmetric optical flow, proposed by us to slove the local alignment

APAP as-projective-as-possible, used to solve the local alignment by location-dependent homography warping
DLT direct linear transform, used for estimating the parameters of the homography
REW robust elastic warping, used to improve the local alignment using deformation fields
TPS thin-plate spline, used to compute deformation fields corresponding to matched feature points
TFT triangular facet approximation, using scene triangular facet estimating to improve the local alignment
NIS natural image stitching, a local alignment method using the depth map

SPHP shape preserving half projective, solving perspective deformation by gradually changing the resultant warp
from projective to similarity

AANAP adaptive as-natural-as-possible, a method to solve perspective deformation
GSP global similarity prior, used to align images and reduce deformation

SPW single-projective warp, which adopts the quasi-homography warp to mitigate projective distortion and preserve
single perspective

SPSO structure preservation and seam optimization, a method can obtain precise alignment while preserving local and
global image structures.

GES-GSP geometric structure preserving-global similarity prior, based on GSP to futher protect the large-scale geometric
structure from distortion

SIFT scale-invariant feature transform, a feature detection and description method
SURF speed-up robust feature, a feature detection and description method, faster than SIFT
KNN k-nearest neighbor, a feature matching method
RAFT recurrent all-pairs field transforms, estimating optical flow based on deep learning

RANSAC random sample consensus, used to filter outliers and estimate model parameters

Appendix B

In this section, some supplementary experiments about perspective deformation
reduction and local alignment are added. The image pairs used in the supplementary
experiments are shown in Figure A1.
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Figure A1. The image dataset for supplementary comparative experiments. The image pairs are
initially used by stitching methods such as APAP, AANAP, REW. Four yellow Chinese artistic
characters are shown on the temple’s wall in the upper image of (d).

Figures A2–A4 show the comparisons of perspective deformation reduction of our
method, AANAP, SPHP, SPW and APAP.

The comparisons of local alignment of our method, APAP, TFT and REW are shown
in Figures A5–A12. The detail images inside the red rects are the image regions with
misalignment and shown directly right the mosaics.
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Figure A2. Qualitative comparisons of perspective deformation reduction on the building1, fence
and building4 image pairs.
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Figure A3. Qualitative comparisons of perspective deformation reduction on the foundation and
office image pairs.
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Figure A4. Qualitative comparisons of perspective deformation reduction on the standing-he and
lawn image pairs.
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Figure A5. Qualitative comparisons of local alignment on the railtracks image pair. The red boxes
indicate the regions where the enlarged images are located in the mosaics.
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Figure A7. Qualitative comparisons of local alignment on the temple image pair. The red boxes 
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Figure A6. Qualitative comparisons of local alignment on the worktable image pair. The red boxes
indicate the regions where the enlarged images are located in the mosaics.
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Figure A7. Qualitative comparisons of local alignment on the temple image pair. The red boxes
indicate the regions where the enlarged images are located in the mosaics.
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Figure A8. Qualitative comparisons of local alignment on the guardbar image pair. The red boxes
indicate the regions where the enlarged images are located in the mosaics.
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Figure A10. Qualitative comparisons of local alignment on the potberry image pair. The red boxes 
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Figure A9. Qualitative comparisons of local alignment on the roundabout image pair. The red boxes
indicate the regions where the enlarged images are located in the mosaics.
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Figure A10. Qualitative comparisons of local alignment on the potberry image pair. The red boxes
indicate the regions where the enlarged images are located in the mosaics.
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Figure A11. Qualitative comparisons of local alignment on the plantain image pair. TFT failed to
stitch this image pair. The red boxes indicate the regions where the enlarged images are located in the
mosaics.
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Figure A12. Qualitative comparisons of local alignment on the shelf and corner image pairs. TFT 

failed to stitch the corner image pair. The Red circles highlight errors and distortions. 
Figure A12. Qualitative comparisons of local alignment on the shelf and corner image pairs. TFT
failed to stitch the corner image pair. The Red circles highlight errors and distortions.

The scores of all methods on the image pairs roundabout, fence, railtracks, temple,
corner, shelf, standing-he, foundation, guardbar, office, plantain, building4, potberry, lawn
and worktable are listed in Table A3. The best SSIM value is highlighted in bold.
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Table A3. Comparison on SSIM.

APAP AANAP SPHP TFT REW SPW Ours

roundabout 0.85 0.86 0.77 0.86 0.86 0.76 0.87

fence 0.93 0.95 0.81 0.95 0.95 0.93 0.95

railtracks 0.77 0.90 0.62 0.92 0.85 0.77 0.94

temple 0.90 0.91 0.73 0.95 0.94 0.85 0.96

corner 0.98 0.97 0.91 0.73 0.98 0.97 0.96

shelf 0.98 0.98 0.84 0.95 0.97 0.96 0.97

standing-he 0.72 0.77 0.64 0.35 0.78 0.71 0.84

foundation 0.75 0.78 0.58 0.83 0.76 0.71 0.80

guardbar 0.74 0.74 0.58 0.79 0.77 0.65 0.76

office 0.79 0.78 0.55 0.84 0.65 0.75 0.88

plantain 0.85 0.85 0.67 0.31 0.82 0.85 0.90

building4 0.71 0.72 0.58 0.73 0.74 0.70 0.78

potberry 0.89 0.89 0.68 0.93 0.87 0.82 0.91

lawn 0.92 0.95 0.79 0.95 0.95 0.93 0.95

worktable 0.87 0.84 0.59 0.86 0.97 0.85 0.97

Figure A13 shows the speed of the SC-AOF method versus the APAP, AANAP, SPHP,
TFT, REW and SPW methods. The same image pairs as in the SSIM comparison are used in
this experiment.
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