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Homological algebra MayerVietoris ein deRham

Def Let R be a ring A sequenteA of R modules A

Ai s A s Ait s and Rmodule

homomorphisms d A A is called a complex if d 0

and it is called an exact sequence if

Im d A Ai Ker d Ai Ait

remarks Clearly wehave ig a differentmap d A Ai forevery i andmainly
dropthe index i in d out of laziness

Ourmain interest lies in

i R K A abeliangroups and d a grouphomomorphism

ii R R A vertor spaces and d a linearmap

A collection of abeliangroups or vertorspaces indexedby an

integer is called graded and often viewed as direct sum A A

One somewhat artificially unnecessarily distinguishes between

cochain complexes and chain complexes depending on whether d

increases
or deiriasesdi.gr

c p

The quotient module
her d A Ain
Im d Ai Ai is then lulled the

i'th cohomology group written as H A or H A



Lemma i O M N is exact iff f is injective

ii M Is N 0 is exact if fis surjective

proof i Note that 0 M is a uniquely defined homomorphism thathas

image 0 in M This is the kernel of f if it is injetrue

ii The kernel of N 0 is N which equals the image of f if
I is surjective

Q What can be said about the case of an exactsequence
M PSN so

Def An wart sequence of the form O S A B C 0

is called short exactsequente

examples Forany Rmodule homomorphism Y B C the sequence

Kerti so
Imt 0 is exact

2 For any submodule A of an RmoduleB the sequence

0 Ac B B A 0 is exact
inclusion auflient

In fast up to isomorphisms everyshort exact sequente is of the forms 182



proof of the claimed equivalence In O S A B C 0

if it is exact 4has to be surjective set C Int Moreover

Ker4 Imf f A A wheretheLast isomorphism is due to

injectivity of f

Given a sequente as in 1 we can define A kert B and argue

that by the 1ˢᵗ isomorphism then Im t B kert B A

reiall The length of an Rmodule M is length of the longest chain of
submodules i e length M supfnenouin 0 Mo M E EMn M

If M is a verlorspace then lengthM dim M

The above equiralinie shows thefollowing relation between the lengths

of the modules of a short exactsequence O A B 0

length B length A length c

In general

Lemma If 0 A disA d's JA 0 is an exalt sequenceof
Rmodulesoffinitelengths then n length Ai 0

proof This follows from length Ai length herdi length
du

Consequently we can infer one of the lengths from the others



Lemma splittingandgluingexalt sequences

i If A s A A sA is an wait sequence of Rmodules

the two sequences A s A s B 0 0 B JA A

are also exact if B Im d Kerd

Iii If A s A das B 0 0 BIYA A are exact

where BE A is a submodule then And'sA A
d
A

is exact

proof it The 1ˢᵗ sequence is exact at Atsince im d Kerd and exactat

B as B Imda The 2ⁿ sdequence is exalt at B as the middlemap
is an inclusion land thusinjeitive and want at AS as B herds

ii Exaitness at A follows from im d Kerd Moreover exaitness ofthe
1ˢᵗ sequence at B and of the 2ⁿᵈ at A means that Imd B Kerds

implying exaitness at A



Def O If A B are complexes a cochainmap F A B is a

collection of homomorphisms F Ai B sit Food do F i e

the diagram A Ait s commutes

d II s

A short exact sequente of complexes consists of three

complexes A B C with sonhainmaps

O S A
F
B C 0

sit O A
F
B s C so is wait for every i

remarks Note that Ford do F implies that F induces

a homomorphism on cohomology F H A SH B

F w Fw This is welldefined since Flutdy

Flutdy Flut dir Flut

Stritt speaking there are three different typesof F

in this story whish we could but do not denotedifferently

In any short exalt sequente F is injective
and G surjective



Lemma Consider a commutative diagram of homomorphisms of finite
dimensional F vectorspaces of the followingtype

A s B SC 0

Ä so

If the horizontal sequences are wait then tr β trix trig

proof Let ja anddes bebases for A and C respeitively Surjectivityof 4
allows us to pink bgeBsit 4lb c Exactness at B thendemands

that Imf kert so that dimB dimkert dim tut dim Imf dimInt

Hence b bn flan f an is a basisofB
Commutativity ofthediagramleads to

β Pla f la span flail and

β b 41804 b with t c ab

So if we representβ in thisbasis the two diagonal blocks are representations

of α and gr resp Heute trip tra trip

remark from here one could prove the Hopf traceformula and then proceed to

the Lefschetz fixedpoint then Wewill however follow a different route



Lemma ZigzagLemma For any short kalt sequente of
complexes 0 SA Es B SC 0 andany corresponding i

there is a homomorphism S H c Hi A called

the connecting homomorphism sit the following sequence

is exalt SSH A EsHilB s Hill 5sHi A

proof idea The followingdiagram commutes and has exact rows

O A
F

B s i
so

3 ÄÄ F jill 4 Ä
w d d d

Äitz F jitz G itz
o

Let CE C represent a cohomology class i e de 0 Surjectivity

of G implies b E B Gb c Then Gab dfb di 0

Hence dbeker G 1mF sit at A Fa db Thenagain

Fda dFa db D By injectivity of F this means da O

sit a represents a lohomology class in Hit A S is then

defined as S H C C a E Hit A i e SEI FidoG c

t.b.pe welldefinedness linearity waitress



This means that every short exact sequence of loshain
complexes A I B C 0 induces a long wait sequente

in cohomology The latter is sometimes written iompaltly as an

exalt triangle HTA F HEB

HTC
5

Def Let M Uvv be a smooth manifold that is the union of two

open submanifold U V Given the commutative diagram of
inclusions in

ja
the

Un
ein

Mayer Vietoris short exalt sequence is defined as

O S R nur s hlu an V 5 RCunV 0

where i wl i w tlw and jlwn.ws jtlwn jztlwe

remark Here Rl is understood as deRhamcomplex i e equipped

with the exterior derivative So Htc is deRham cohomology

A useful convention is that 2 M 40 for all Ke x



Then is as the name suggests a shortexalt sequente of cochain complexes

It induces a longexalt sequente in cohomology the Mir Cong a seq

s H Kvv s H U H V1 S H anr 8sH nur s

remark exaitness of x is understood as exaitness of
s R Kvv R a R V1 s R UN SO KK

proof i is injective since every non zwo form on UVV has to be non zero

on either Uor V So the sequence is exalt at 2 Uvv Since

into it jet it we have Im i Kerl Conversely if unwa cKerl

then we
un

we un
and we can define a kform w ER Uvv via

on U
w II on so that wawa ihn and thus Im i Kerl

Finally to show that is is surjeitive considerany weh Usv and let

f f be a smoothpart ofunity on Vor subordinate to TU V
few on UnV u

Define wa o on Uhr

we
low on Usa

O on V14
suppe

Then j w w wa notwe an suppÖ

f f w w

So x is indeed a short kalt sequence of complexes
Exactness of the M V Longexaltsequence then follows from the ZigzagLemma



Prop For ns 1 H S f
proof We know that HOLS IR and H S IR

For n L set u s lilo 0 11 V 51110 0,11

Then S nur handV are diffeomorphic to R bystereogrproj and
UnV is homotopy equivalent to IR 110 and thus to 5

The beginningof the M V Long exactsequence is

EHE EYE In
IR

Asthe alternating sum ofdimensions has to vanish we conclude HIS 0

Nextconsider nik L and thepartof M v L.es

So H 5 H S whichprovestheclaim since it reducesthe rase

k u to Cat and the case Zehen to 2

As a second application we show that deRham cohomology groups are

often finitedimensional

Def An open cover YU of a smooth manifold M is called a

good cover if for every finitesubset SEA guy is either

empty or diffeomorphic to IR



remarks Equipping 17 with a Riemannian metric and using geodesically

convex neighborhoods one can show that any open cover admits
a refinement that is a goodcover

Every compact M admits a finitegood cover i e one with 111 0

unt
example S Definethe zu 2 open halfspaces

i R L ER 0

Then the 2 2 sets Ui 5 nRYE
i are a finitegood cover for S

Ihm If a smooth manifold M admits a finitegood cover then H M

is finite dimensional for every k

proof We use induction on the number n of opensets in a good cover

Suppose the theorem holds forany M with good lover ofsize 111 4 certainly

true for n Let
Gyu

be a goodcover Then UnV admits

a finitegoodcover UnnV UnnV Byinduction hypothesis the

cohomology groups of U and UnV are finitedimensional Now

consider 21 Un V
8 H Kvv is H U H V

Since dim Im i dim H U H V o and

dim Kerli dimImS dimH Unt so

we have dim H Uvv dim Im Ii dim Kerli so



Let M M x M be a produit of smooth manifolds
How can HELM be expressed in terms of HILMI and HELM

Consider the projections M M II wer M andgeh'M

Then x ̅ w n III 1 M is closed if both w and 7 are and

it is want if either w or I is and the other one is closed eg if

w da then i w n h di α HI Titan.IE aj.d.diilalniily

This shows that w y s i w n it17
after building equivalence classes gives a welldefined bilinear map

HEIM HELM HEIM Ma and thus a linearmap

Fproduitrow
HEIM HILM HEIM Ma e avec sparewhosebasis is Iv w

considering all degrees we obtain a linearmap3EWwebac.lkHEIM Hilmal HEIM Ma

using a MayerVictories argument and the FiveLemma one Ian proveby
induction on the numberof elements in a goodcover

Thin künnathformula If M andMe have finitegoodcovers then
K is an isomorphism Heute

HEIM_ M HEIM HEIM

and the Bettinumbers of MaMaand M M are relatedby

Am A Ma FfBaMalßmKMal



remark By recursion this can easily be extended to higher produits

Am Max Mn Bunt

example For the n torus T SIE we can use that B 5 p 5 1

to obtain MIT Eyp
in

This implies that ECT In 1 1 ß IT Es C 1 1 17
11 1 0

Another consequence is that every w Hh T can be represented

uniquely byawieR T wo in deine _ndein with const

coefficients

Cor Let M M be smooth manifolds with finite good covers then

IM_ M Z Mal ZIM

proof ECM Mit Ʃ 1 1 ß Max E 1 Bud IR M

Im411 BuntMalBu Mal ZIM ZIM



Leih cohomology

motivation
The Mayer Vietoris argument can be extended to lovers

Spoiler

byarbitrarilymany opensets

In case of a good cover the cohomology depends only on

the intersection properties of the opensets

Def Lit U f U be a lover of a topological spate by nonempty

opensets For every KEN define Ju flio in E I Uion sk

For every ie I reto k set i tio in ist in I and

C U R TE IR KIES Vie c lina innit sgulitalit

remarks u ie is called a ein Ksimplex CE U R a leih K tothain

Finiteness of the cover i e II oo implies that the vector spares

IU.IR are finitedimensional

examples COCK IR c a ein O sohain assigns a realnumber to

every element U EU

IU.IR C a Tech 1 tochain assigns a real number elli

to everyordered nonemptyintersection U nUs sit i.it clljiill



Lemma O s U R 8s IU R 5s C U R becomes

a contain complex calledCechiomplex withrealcoefficients when

equippedwith the soboundary operator S C U R U R

8 lil c 1 child

proof that S o For it Sun and CE U.IR wehave

Sosc i C 1 Isc in

Er di Es ali O

Def The ein cohomologygroups are defined as

H U R
Ker 8 MIRI s U R

ImS M R U R

remark notethegenerality this definitionworksforanyopen lover of anytop space

example HOCHR Ker S MIR CIU R is the space of all CE IRI

that satisfy Ifc iii chit c j 0 whenever U nu

That is forevery CEHIU.IR there is a locally constant function f
set flu chit Hence for a smooth manifold M tiCU.IR HILM

if the cover is sufficiently true e g for a goodcover



Lemma Let 2 44 c be an open over of a smooth manifold M and

If c a smooth partition ofunity subordinate to U The map

U R SIM c s wa Eycllio int fiodfinn ndfin

is a cochain map That is Wg du so that themap induces

a homomorphism on cohomology H U R HÖIMI

proof Wg Fg Sc it fiodfi.in ndfin

1 1 i fiodfinn.n.ndfiv.tl

l fiodfinn.i.ndfiv.tl here we define

Fi
y.EE

ti naq.dit 0iti 3

Ei
i iuaddli.n.indliu.tt

du

Ihm If U is a good cover of a smooth manifold M then the map

induied on cohomology in the Lemma is an isomorphism Thatis

H U R HELMI KK

consequences All good covers of M lead to the same tech cohomology

Cohomology onlydepends on intersection combinatorics of a goodcover

If Madmits a finitegood cover then HEIM art finitedimensional



proofidea One combines the deRhamcomplex and the Einhcomplex into

a double complex called the TechdeRham complex

0 TCM TCM si m s

CHUR s

iii R s s s s

Ü R s 12,1 spaceofall pforms
defined onsets vi n nuin

This is ionstruited sit

thefirst row is the deRhamcomplex

the first column is the ein complex

all other rowsand iolumns are exalt sequentes

Then a Mayer Vietoris type diagramchasing argument can be

carried out that shows that H U R HELMI

example For 12 R a a ER whereα ER is assigned to U

u u
ze R 8m823,8ns ER where gig toKind

S C S sgs.t.fi Soa α α

Then Kerls C f CanariasER α RUn Uns
Un sit HolzeR R As Ker S C 240 IR

and Inso Im IR we have HTU.IR IR



openproblem the minimal ur of elements of a good coverof a manifold

its so called coveringtype is only known forthesimplest

examples It is unknown for the kleinbottle Zor8 andfor
the twoholed torus surface ofgenus2 where it between Gand10

remarks As U R are finitedimensional for a finite lover 2 the

computation of Teils cohomology is linearalgebra fromthestart

in iontrast to deRham cohomology whet R M is infinite dimensional

Note that the Tech Ksimplex is indeed iombinatorially a simplex

In the case of 5

Anabstrait simplicial complex is a family of sets that is closed

under taking subsets

The simplicial complex corresponding to an open over of a top spare

is called the nerve or nervecomplex of the lover Leray's

nerve theorem states that the nerve of agood over of a top space

is a simplicial complex whose geometer realization is homotopy

equivalent to X and thus hasthesame 1 homology



Poiniari duality revisited

In order to formulate a more general version ofthe Poinsaredualitythen

thatdoesnot require themanifold to be iompait we need a variant

of deRham cohomology that considers only umpartly supported diff forms

Def For a smooth manifold M we define

RIM WERM supplant fpemlwp.to is iompait

H M
Ker dir D pithy
Im d p M sein the compactly supported deRham cohomology

remarks For iompast 17 clearly HI M HELM

1 M is a vertorspace sit dich M MitM so thedef makessense

However there is an issue with funitoriality

If fM N is smooth and weh N then supp ftw f supp w

maynot becompait So onehastorestrict theclassofmaps

Def A map f M N is called proper if preimagesof compostsets under f
are compost

Cor 1 If f M N is a propersmoothmap then the pullback under f is a

sohain map ft RIN RIM and thus induces a homomorphism

ft HÖLN H M

2 HI M is invariant underproper homotopies In partitular if Mand N

are homeomorphic then HI M HIN



The proofs follow the ons of VM HM exaltly The lastpoint is due to

the fait that homomorphisms are propermaps

Some differences between H M and HILM

i k O H M consistsof all fe TIM forwhich If 0 and

supplf is iompait This means that on any non impact

componentof M f has tobezwo So

dimHi M ofcompart connected components

ii H IM is not a homotopy invariant since forinstance by i weget

H 10 IR but H IR 40 for any new

iii Mayer Vietoris the pullbank by theincisionidea that considers

restrictions does no Longerwork ig However it can bereplaced by a

pushforwardbythe inclusion idea since everycompactly supported Kform

can be extended byzero Inthiswayone obtains a Mv exactsequence

that goes in the opposite direction withinthe K th level

H Uru HIIU HTLV HICKUV HIHIUnu s

This again enables a proofof the kunneth formula



liv LI IR R compared to HILIRI 403 To see this consider the

integration map RICKI IR was w This is linear surjeitive

Moreover if w is kalt i e there is a iompaity supported fe R

sit df w thenbythe fundam.thm.ofiali.tw 0 So

induces a surjective homomorphism HIER SIR

This is also injeitive if weRICK is sit dw Oand wiffaldt 0

then glt fis di is in Ri R and st dg w So w 0 in

H IR Consequently H R R is an isomorphism

Generalizingthis idea leads to the following

Def Let M be a smooth oriented n dim manifold withoutboundary

and Kola in We define the Poincarepairing

HEIM HI_ MI SIR W 7311 way

and the related Poincareduality operator

PI HEIM HEIM w 731s Iwan
example If M is conneited then PI maps TER H Ml to

y 17 HEIM



Then Poiniareduality Let M be a smooth oriented n dim manifold

withoutboundary and Keio n Thenthe Poincare duality operator

is a vertorspace isomorphism Consequently Hü M HILMI

remark This can beproven via a MayerVictors argument If IT hasa finite

good cover then this can be done byinduction on the number of elements

in a good over In fait underthisadditional assumption weget

Cor Let M be a smooth oriented n dim manifold withoutboundary

with finite goodcover and Keio in Then the Poincare pairing is

a nondegenerate bilinear map sit dim HEIM dim HI IM

remark This uses that Ii finite good lover implies that

dimHELMI dim Hi M and ii for any fruits dim

vertor spare U we have Vt V

examples MIR HELM so HELM In
D 5 HI M HELM

1K 19

M connected oriented n dim H M R HELM

and Hü M
R M compact

M non iompait H M



remark Orientability is crucialfor Poineareduality Eg for
the Möbius strip M 0,1 10,1 we have exercise

HEIM R HELM 0

H IMI R but HIM 0

HILM 0 H IM 0

More generally und an show that on any non orientable manifold

closed topforms are always exact That is if M is any non orientable

n dim smooth manifold then Hi M Hi M

Cor Def Let M be oriented smooth u dim and a S M

a oriented Kdim submanifold that is top closed in M

Then there is a unique w Hü M called the

Poinsaredual of Sin M sit NIE H M

12 tz new

proof As SEM is closed supplys is closed not only in S but

also in M Since supp 71 supply ns is a closed

subset of a compost set i alsohas iompaitsupport

on S so Sitz is well defined



By Stokes then it induces a linear functional

HEIM SIR i e an element of HEIM Using the

inverse of the Poineareduality operator Hü Ml Hilmi

gives a unique cohomology lass WIEHÄ IM sit

in f nw

examples I If M is compait and oriented we can take 5 7 So the

Poiniari dual of M in M is In HEIM

2 Let M be oriented and I be a orientable top Kosed

submanifoldof M with boundary JT S Then the Poinsaredualof

5 in M is 0 using Stokes them we get y EHE M

12 17 17 14 O

WsPoincari dualofS in M

The Poiniere dual behaves wiselyunder diffeomorphisms

Prop Let M be oriented smooth u div f M M an orientation

preserving diffeomorphism and ws HÜ M the Poinsaredual

of SEM Then Ws f Wflst



remark If f M M is orientation reversing then ws ftwfis

proof The characterizing property of the Poincari dual gives

geh M

7 Wfess 7 1ft7 f n ws
M

At the same time f.fi wfist 1f 7nf wfes
By uniqueness of the Poincare dual las lohomologyclass Ws ftwfis

Cor Let M be oriented smooth u div f M M an orientation

preserving diffeomorphism that is homotopie to the identity and

SEM a top closed oriented submanifold Then S and fis

have the same Poincari dual in M

proof By the previous prop we know that ws ftwfis
However sinne f id we have f id Hü n Hü m

So Ws Wfess



Def Let M be an oriented a dim smooth manifold with

finitegood cover and SEM ak dim.compart oriented

submanifold The compait Poiniaridual of Sin M is the

unique w EH IM for which y HELM

17 17 0

remarks
Compaitness of 5 is assumed so that 17 is welldefined

for all 7
Existence and uniqueness follow from the fast that the

Poincaripairing on the r.h.s.is non degenerate

If M is iompait then Poinlare dual romp Pointaridual

Thun Localization principle

Let M be an oriented a dim smooth manifold with

finitegood cover and SEM ak dim.compart oriented

submanifold For every open neighborhood U of 5 there

is a representative w h M of the compact Pointaridual

of 5 in M sit supp w U

remark the same holds for the Poincave dual of any top Ilosed
submanifold but this requires a different proof strategy



proof As a compart submanifold of U S has a compact Poincore dual

w̅ HI ul in U As in has compost support we can extend

it to WERE M sit w w̅ w 0 and Ew w̅

Then In HEIM für JE fürn
führen fhnw

Heute WIE HI M is the iompart

Poiniare dual of S in M

Examples aiming at fixedpoint theory

Let M be a compact oriented smooth n dim manifold

and Δ f K EM MM the diagonalsubmanifold

of Mxn What is the Poincari dual of Δ in MxM

We denote it by If and note that If HÖ MM as

dim M dim A Zu neu

Let x ̅ MxM M be the canonicalprojections onto the i'th factor

with ie41,2 If ftw ist β dimHEIM is a basis

of H M Poiniaripairing gives a dual basis

v 5 ist 1 Bang B sit wir un Sir



From the Künneth formula and its derivation we know that

t.tw n iTztwu represents a basis of HI MxM

So f ci.j.nl itwi nIiIwI for some eine R

By definition of the Poiniare dual we have

1,2 1 1 in particular for y it vs ItWE

RHS define c M Men ICH Then no go id

y

1 V

fürn wie an fwinus
un Sts

LHS inserting 7and f gives

2 9 F Tus E a li w In WE

esst 1

So esst 1 1
r t

St 1 1 Ja and thus

9 EuC11 Htw n Ewü



2 Let f M M be a smooth function on a compost oriented n dim M

and I fixt EM Man its graph

Following 7 we compute its Poincare dual ff HIMxM

Again let wie represent a basis of HELM s.t.fw.inun Sie

and t.tw n iTztwu represent a basisof HILMMI

We expand ft H MI HELM as ft w Fiwi sit

Fu Ftw nä and

if ii i lit w In wü

By Poincareduality

121ft 2 in particular for y TIVs ITWE

EIS
As before LHS Csrt 1 For RHS we use the orientpres

diffeomorphism 8 M Ff 1 fix forwhiihtnog id.iog f

Then in vs n TEE Titus JE WE
7 JIMI

für FIEL F.FI uTnwE
15 FI

So f C F In w In wär

1 TIFIWI n x ̅ WES



Def Let f M M be a smoothmap on a smooth ndimmanifold

M with finite dim HEIM eg with M admitting a finitegoodcover

The Lefschetz number of f is defined as

LH Ffc 1 tritt Hirn HEIM

remark From the definition we obtain two important properties

If f g are homotopie then Left Lg

2 If is a diffeomorphism then L d f 1 L f

Ihm If f M M is smooth on a compact orientedmanifoldM

Δ IX EM Man and ff EHIMM is the

Poincare dual of thegraph Ff in MxM then

ff LH

winw.isproof ft fühlt ft Fu FähigΔ

E
trift HIN HILMI



Excursion into Intersection theory

Def Let K L be submanifold of a smooth manifold M

K and I are transversal in M and we write KAL if

Tpk Tpl Tpm KpeknL

L

Prop If K L are transversal submanifolds of M then

Kmh is a submanifold of M with

sodim KAL codim K todim L

In particular if dim K dim L dim M and M is compact

then Koh is a finite set as a discrete subsetof a compactset

isfinite and Tpk Tph IM Kpekst

Transversality is generis and can be achieved by small perturbations

This is the content ofmany transversality theorems Eg

Prop Let K L be smooth submanifold of R Then

K A Ltx for a e ER



Thus Let Kil be compart oriented transversal submanifold

of an oriented smooth manifold M The Poiniari dual

wann HEIM of Kat in M can be expressed by the

Poincare duals of K and L as wann war we

remarks o Defining an orientation of Kst from KilandM requires an

ordering of Kand L In thisway wann wenn c 1
odin codein

Since degreewann codim Khl codim 4 sodium c deg wa degler

the wedge produit is the naturalguess for the Poiniaedual of

Kol in M We skip the proof that it reallydoes thejob

Def Let K L be two oriented compact submanifold of

an orientedmanifold M sit dim Kl dim L dim M

and KAL

For any peknL let A Ian an and B b bu

be positively oriented bases of TpkandTph respectively

With Elp I if AB is P oriented in Tpp
negatively

define the intersection number ICK L Fannelpt

alp is theorientation ofKnPatp



Corr Let Kil be compart oriented transversal submanifold of an

oriented compact smooth manifold M with Poiniare duals

wa and we and dim K dim L dim M Then

ICK L war we

proof As wann is the Poiniare dual of Kol and

H 1M we can write

IEEE
where Elp 1 is the orientation assigned to p

Now consider the case where k Δ and L Ff for a

Smooth map f M M Then AnTf corresponds to the set of

fixedpoints of f

Def A fixed point PEM of a smooth map f M M is

called non degenerate if dpf Tpm Tpm does not have

I as an eigenvalue i e det dpf 1 0

f is a Lefschetzmap if all its fixedpoints are non degenerate



Prop Let f M M be a smoothmap on a compait oriented M

1 f has only nowdeg fixed points iff AAF

2 If IAF then I Δ F Fypsgndetldpf 1

proof Let p ftp andes en a positively oriented basis of IM

determining positively oriented bases

enen lenient ofTippΔ

en dpfent endpfen of Tipp 7 and

en 01 en 0 10en 10 tut of TippMatt

The map from the latter to the former two

TippsAM TippΔ Tipp f is represented by a matrix f

1 A I if this is an isomorphism which in turn is equivalent

to 0 det I öff p det Ära det dpf 1 Itssigndecides

subtract upper rowsfromlowerones

wether the orientation of TippMM matchesthe one of TippΔ Tipp f

remark note that the choir of orientation on Tpm does notmatter

sinne a Lange would resultin cancelling signs



Lefschetz fixed point theorem

recall EM is a fixedpointof f M M if fixt which is

equivalent to x E 11

fix f

NE II
If IN 7 30 degeneratefixedpoint

Thun Lefsehetz fixedpointthen

Let f M M be smooth on a compact orientablemanifoldM

Then f has a fixedpoint if Lf 0

proof Suppose there is no fixedpoint i e FfnΔ Then U MMI Δ

is open and contains Ff According to the loializationprinciple

there is a representative f ER Mem of the compact Poincaridual

Iff EHE MM of the graph Ff in MxM st supp f U

In other words ff 0 Then Llf Iff 0



This theorem can be extended in severaldirections

One can exploit that Lift is invariant under homotopres off

and eg deform f sit all its fixedpoints beiome nondegenerate

in whishcase f is a Lefschetzmap

For Lefschetz f we can use that

LH Iff fnla III A Ippsguldet 1 dpf

So LH is a Lowerbound on the numberof fixed points

If f C C is holomorphic then dit dpf 1 so for

every fixedpoint s.t.LA becomes the ur of fixedpoints

In this way one can eg get Bezout's then as a corollary

Cases with boundary can be reduied to cases without by

it using a homotopy toensure that IM contains no friedpoint

Iii gluing together two copies of M along the boundary sit

Mum is without boundary

Nonorrentable cases can be reduced to orientable ones by

lil embedding M G R and thickening M in thenormal

direction The resulting M is then orientable sinne IR is and

with theprojeition x ̅ M M for and f have the samefixedpts



As a result one obtains

Thw Lefschetz Kopf fixed point them

Let f M M besmooth on a compact manifold M with boundary

i f is smoothly homotopic to a Lefschetzmap whishhas the

same Lefschetz number

Iii If f is Lefschetz then L f Ig syndet 1 dpf

remarks We emphasize again that LH Lig it fig humotopie

If f id then L f Z M as trfidtHilal Hilmi β m

So ZIM can beinterpreted as selfintersection number

M 0 if M can be displaced from itselfby a map

homotopic to theidentity

Example Let M Un f VEC VV 1 Then 21M 0

proof consider V ein UNITA for some Hit echt

and f Ulm Ucr Uns UV Then f has no

fixed point since flu u Uv a 1

Moreover f id via UnsU explitu te 0,1

So 0 L f LLidl M

Clearly this applies to every compact connected Liegroup



Cor Let M be a compaitsmooth manifold with boundaryand ZIM 0

Then everysmooth map f MM that is homotopie to the identity has

a fixed point

proof f id implies that L f LLid Theresult followsfrom Llid M 0

recall E g 215 2 Knew

Lemma If f M M is smooth on a converted compostmanifold

with boundary then trifftHEIM Hic 1

proof If we IM is sit WIEHilti then ERUpEM wlp c

Since ftw Ip w fci s we have ft w w so

ft id Hilal HILMI

Prop Let M be a smooth converted compostmanifold with boundary

that satisfies HELM 0 VK O Then every smooth f M M

has a fixed point

proof Alf tr ft Hin Hier 1

Cor Brouwer fixedpointthen Let M be a contractible rumpart smooth

manifold with boundary Then every continuous map f M M has a

fixedpoint



proof Suppose there was no fixedpoint Using compactness we can

approximate f by a smooth map F M M that also has no

freed point However ACF 1 sinne ß IM

For the real projeitive spare RP S where x t x one can

show that HI RP
R 1 This implies

HÄ 5 n odd

Cor For n even every iontinnous map f RP RP has a

fixed point

remark RP is not contraltible for any new So Brouwer's fixedpoint

theorem does not apply



Degreetheory

Them Def Let M N be smooth orientedmanifolds of the same

dimension n and with finitegood lovers If N is

converted and f M N a smooth propermap there is

a unique deglf ER called the degree of f sit

WEIN I ftw degift w

remarks Note that any continuousmap f M N is proper if M is iompart

deg f isalso known as Brouwerdegree topologicaldegree mappingdegree

proof Sinne f is proper the pullback induces a map ft HEIN H M

Poiniareduality together with ionneitedness of N implies that

HI N IR and Hi IM R where m convertedcomp ofM

Specifically we get that deglf via the com diagram

H HEIN f s HEIM

HELM 731 1,7 ER

with M VIIIda are ventspate
an E



Since any weh N and also any ftw er M is

a closed form as n dim N dimMl they are representatives

of cohomology classes and degl.tt w ftw ftw

Uniqueness follows by considering any w with fw 0

example If f M N is a diffeomorphism that preserves or

reverses orientation then dig f 1 or deglf 1 resp

since ftw IGE
Thun Let M Nik be oriented smooth n dim manifolds with finite

good lovers and Nand K tonnented If M N s k are

proper smoothmaps then properhomotopy

i Homotopy invariante f deg.lt deglg

ii Multiplicativity deglhog deglhl

deglglli.itIf you is any regularvalue of f then

iaTdeglflipF.yfgldetlapfllkpef.ly
detldpf 0

Ein.ES t otresuw in particular agitiert



remark note that if the manifolds are compait then proper and

finitegoodcover are guaranteedby compactness

proof i If there is a proper homotopy between f dg then

f g H N H MI Since the degree only depends

on this induced map we have deglf degly

ii For any WIEHÖ M bydef uniquenessof the degree

hog w g htw deglglfhtw deglgsdeg.ch w

iii By the regularvalue then f Ty is a smooth

submanifold of dimension dimM dim N 0 So it

is a discrete set whim is finite due to the fact that

f is proper So filly 4ps pa EM Since

detldp.it 0 there are open neighborhoods U ap st

flu is a diffeomorphism onto a neighborhood ofy

W.L.org we assume the U s disjoint and sit flu Ki

and f V YU Pick any we di U with

1 w w



w E Na
where each ftw has

compact support in U

So deght deglflfw

EEEEI.it
Ei ff n

f in is dito

Ii sgnldetldp.tl
remarks note that the proofof iii still works if f te in thiscase we

ran choose Ust f Iv which implies ftw O for weh V

degCH can be interpreted as the hr ofwindings of Maround Nbyf

example Regard S as ZE 61 121 1 f S S z z for some ne I

If w do is thestandardvolume form on 5 then ftw now

So deglf n

Prop Let M N be smooth n dim orientedmanifolds with finitegood

lovers and N connected If a smooth propermap f M N

is not surjeitive then deg f 0



proof Suppose ye Nlf MI Then y is a regularvalue with

f Ky So degift O

From here we can obtain a generalization of the fundamental

theorem of algebra

Thw Let f M N be a proper map between oriented non compact n dim

manifolds with finite good cover where N is connected If f is

orientation preserving and thus nonsingular outside a rampart setC

then f is surjective

proof Since fis proper f ff is lompait Heute there is a point
compostduetocont

MI f f C whish then satisfies y fix f C

Then y is a regular value sinne all critical points hin in C and

degltl E.iq detldit t fPECso detldpf so

Alcording to the previous Cor f must be surjeitive

remarks If MITcriticalpoints is converted we can replace orientation

preserving by non singular since MITcriticalpoints pls syndetldpf

is then constant 1 or 1



However in particular if dim M 7 this may not be converted

Eg for M N R f x feritiialpoints 40 and despite

this being rampart f is not surjective

Lemma Let F C s d be represented by f IR I IR when representing

IRKIR in termsof realand imaginarypart If F is holomorphic

then KpeIR dat Apt 0

proof Holomorphin means that the derivative at eachpoint is givenby a

complex linearmap At any given point let this be representedby

a complex Jacobian matrix Z if with X YE R The

Jacobian of f is then 3 F E E U where

U ff is a unitary Heute det 3 det z O

So for holomorphic maps we can replase orientation preserving

by non singular The fundamental then of algebra then

becomes a special case of theabove then due to the following

Lemma Every non constant polynomial f C C is a propermap



proof Since 1ft oo as tz the preimage of boundedsets has

to be bound Due to continuity of closed

to be closed Since for C we have compuit closed bounded

f is a propermap 17

remark note that this also implies that the set of critical points

C ZEE fitz 0 ofany non constant polynomial

is compost sind f is again a polynomial and if f is const

In some cases deglft has a close relation to the Lefschetz number

Prop Let M be a connected compact oriented n dim manifold

and f M M a smoothmap Then

tr ft Hilal HILMI deglf

If M S or if n is odd and M IRP then

Alf 1 1 11 deglf

proof Due to compaitness of M HILMI Hilal andby Poincariduality

dim HEIM 1 Bydefinition of deglf we have for any we HEIM

f w deglf w So trifft Hältst Hi M dig f

For Me Is RP we have Hü M TO for all m 10in

Moreover tr ft HEIDI Hi M 1 due to connectedness



The degree can alsoserve as an obstruction to extending a map

Prop Let F N M be smoothbetween compact sonnented orientedmanifolds

where dim M n dim N 1 and N has a boundary IN

Then f F
g
has deg f 0

proof Consider WER M with fw 1 Then

deg f ftw I d w Ftdw 0

Stokes

The degree of maps into S is particularlyimportant Partlydue to

Thw Hopfdegreetheorem Let M be a compact connected

oriented n dim manifold and f g M 5 two smoothmaps

f Ig deglf deglyl

nomotopic

Def Let M N R be two disjoint closed oriented submanifold

of dimensions dim M m and dim N u Their linking number

is defined as M N deg F Man s

where FCry



If min 1 thenusing

degree one can for instance show

that if M is contractible to a point

without intersecting N then M N O

However eg the Whitehead Link has MN 0 although it is not

isotopic tothe unlink

The winding number is a special caseof the linkingnumberwhere

N is a single point



Ventorfields flows

Recall A smooth vector field on asmooth manifold M can equivalently

be characterized as

a smoothmap a linearderivation

M TM or X COLM LM

p 1 Xp f 1 p Kpf

caution the same symbol is used forboth

The space M of all smooth vectorfields on M is a Lie algebra

That is a vertorspace with a bilinear alternating map

JE M x HIM KIMI called Lie bracket that satisfies

the Jacobiidentity KZ EY Z X Z Ex y 0

In this case X Y XY XX

Def Parkbank of a vectorfield Let f M N be a Local

diffeomorphism and YE It N The pullback of Y by f

is defined as the vertor field f Y EXCM that maps

Map s dpf Yap TPM

remark for a general smooth map f Y cannot be defined consistently



Def A curve gr ab M is called an integral curve of a vector

field ESELN if kt c ab felt Xp

or equivalently for any fe n for lt Xp f

is called complete if each of its integralcurves can be defined HER

If the image of g is in a chart 141 1

and Xp Evil ftp.xi xogets nin

H v galt L X alt ultl is a system of ODES for x.it

Given an initial value this will have a unique maximal solution

Note that a reparametrization of an integral larve is i g not

an integral curve anymore However for any pen we can choose

an integral curve denotedby Xp Ip M s.t.jp ol p

This leads to a map 44 III
sit

for delp tip we have

Go id and 404 0 5 forsuitable tis

This motivates the following



Def Let M be a smooth manifold U an open neighborhood of 10 M

in IR M A smooth map U M with Alt M M

is called a flow on M if

lit id

ii 4 04 des whenever defined

The infinitesimalgenerator of a flow is the vector field

IM M f s Map t.of.dkpl
A flow is called global if U IRxM

remarks is a linear derivation as a result of its definition via

a derivative If g H It pl then gplol p and

Xp jplol
The term localflow is sometimes used to emphasize that a flow

is not necessarily global A maximal flow is one forwhish U

cannot be extendedfurther

Results on existente d uniqueness ofODEsolutions lead to



Then For every smooth vertor field on a smoothmanifoldM

there is a unique maximal flow whose inf generator is

In particular complete weiterfield global flow

Deciding whether this is the last way not be easy but

there are useful insightful sufficient conditions

Prop Let be a smooth vertorfield on M

i supp X IpEM Xp 0 compait is complete

ii If y I M is an integral curve with max domain I then

fCI compact I IR

remark In particular if M is compait then every EX M is a

complete vertor field

Def On a smooth manifold M we define the diffeomorphism group

Diff MI F M M F is C diffeomorphism

or For any flow on M the map Rat i s Q EDiff M is a

group homomorphism from R I into DiffM with composition

So if M is compact every smooth vertorfield generates a

commutative one parameter subgroup of transformations



Then Poineari Hopf I On a compartconnectedsmoothmanifold M there

exists a nowhere vanishing vertorfield EH M if Z IM 0

proof of the only if part whichdoes not require connectedness

Suppose is nowhere vanishing and is the lorresponding

flow Than all are homotopic with homotopy Due

to compaitness and the fait that Xp 0 Up there is an 0 st

4 has no fixedpoint So

EIN

remark nonsompaitmanifolds always admit nowhere vanishing vertorfields

Cor Hairyball than On an even dimensional sphere 5 there is no

nowhere vanishing vertor field

remark and therefore no Lorentzianmetric

proof 5 2

An approach for proving the if part in the PoincariHopf

then is better understood when ionsidering a more quantitative

unrsion



Def Let M be a smooth manifold EX M and pah an isolated

zero of Let f B ER 111 1 M extend to a

Localdiffeomorphism sit fho p is theonly zero of in f B

Define the index index X p degllt where f S 5

fly
f X

HAITI
Zerosof a vertorfield and the torresponding index

IEE EIE i IL Ei4
1 7 1 1 0 2 2

ihm Poinlare Hopf I Let M be a compact smoothmanifold

and XE M with only a finite set of zeros

Z Ip EM Xp 0 Then

MI F.zindexlx.pl

remarks This still holds for manifolds with boundary if
is outwardpointing at the boundary

An alternative equivalent way of alsodefiningthe index and

proving the theorem as corollary of LefschetzHopf is

C Leid Lido Eu IIIÄassumingnondegeneracy



Def A triangulation of a topological spare M is a homeomorphism between

the geometric realizationof a simplicial complex and M

remark For smooth manifolds triangulations always exist and can be chosen

set the restriction to individual simplexes is smooth

One can construct a vertor field sit

Lil every simplex r is assignedto a

zero with index Xp fydimir

ii there are no other zeros

For instant

of s

The Poincore Hopf theorem then gives

Thm For any smooth n dim manifold M

M C1 K where k is the hr of

i dim simplices in atriangulationofM

remarks for n this gives the famous X V Etf

needless to say but the k s depend on the those of triangulation

while M doesn't



Def Let M IR be a compart ntt dim smooth manifold with

boundary JM The Gaussmap v 217 S is sit vlpl is

the unique outwardpointing unit vertor that is orthogonal to the

tangentplane of IM at p The Gauss curvature of IM at p is

Klp det diw

remarks Sinne we can identify Trip 5 v4 TpfM we can regard

dpv Tpm Tpdm sit dat Apu makes sense

For mit the curvature at p is Kip

where R is the radiusof a ball tangent to

the iwveatp.tn n dimensions there

are n principal curvatures which are the eigenvaluesof dpv

The standard volume formvolant IJM can be expressed in terms

of the Gauss map as uol.amplun vn det wlp un un

where we view us unVlp E R geometrically



With volga f lu detlx.fr ihn Vxes we obtain

w uol.sn pluni 1vn volsuuipy dpvvn dpuvn

det wlp dpuu Aprun

det Apr det vip un un

Klpl vulgo p un vn

So Krol folg

Thun Gauss Bonnet If IM is an evendim boundary of an ntt dim

compost smooth submanifold M R then

k volan Volls DM

where Volls volsung
im

4T 4 2

2 n 4

noth While the L.h.s.is geometrical the r.h.s.is purely topological

proof k volo n volga degli uol.sn

F
Sinn by Sand's thin regvalues are openanddense there is

a pair Ty y 5 of regularvalues of v Then

desto F.yy.ggdetldpul jEFzsgu
detldpu

Z v lty y



Now construct a vertor fieldXp on 217 by projeiting y onto

TIM Sinne Xp O y Tpdm PEZ PoiniariHopf leads to

OM index ip

A closer look reveals that index p
59 det dpv if replay

c11 a ifulpl y

So if u is even then degler Z DM

For odd dim compacthypersurfaces we have XCOM 0 and the

statement is nottrue Howes a slightly different strategy leads to

ihm Gauss Bonnet I If IM is the boundary of an ntt dim compost

smooth submanifold M R then

k uol.am Vol S M

Instead of proving this Iwhich can againbedone by exploiting
PoincareHopf to show that deglut ECM we show how the two

theorems imply earn other if u is even

Lemma Let M be a compact orientable manifold with boundary IM

If Mhas odd dimension then 22 M 212M



proof sketik we take two copies M and My of M and gluethem

together at the boundary Theresulting manifold Mir is then

an odddimensional orientable compact

manifold with an open sour
V E

Krull Maz sit U.FM and

YIIH.in EiFunnu 0M Hence

__ o



Fiber bundles a quickwalk through

Loosely speaking a fiber bundle is a topological spare E that

looks locally like a product Bx F

Def Let E B F be topological spaces and IT E B a continuous

surjeition E B T F is a fiberbundle with typical fiber F if

for everypEB there is an open neighborhood U EB and a

homeomorphism f F U Ux F sit the following commutes

tut 9 s UxF

Projs

A smooth fiber bundle is one for with E B F are smooth

manifolds and all involvedmaps are smooth

B base space

E total space

i bundle projection

MöbiusstripF pl Fp fiber over p
3 51

f 14,1 1 Localtrivialization F 0,1

A sectionof a fiberbundle is a sont map T B E sit Tor id



examples A produit spare E Bx F is a trivial fiberbundle

The tangent bundle TM of a smooth manifold is an instance

of a vertorbundle i d a fiberbundle where F is a vectorspace

The klein bottle with 3 5 F is an instance of a spherebundle

i e a fiber bundle where Fis a sphere

A covering spare is a fiberbundle forwhich it is a

localhomeomorphism and consequently Fa discretespare

E g O E S is a twofold lowering of B RP B

with t.su ppm sag waere e here F

E suit is a twofold covering of B 5013

Smooth sections on TM are exactly the vectorfields

Def Two smooth fiberbundles IT E B x ̅ B with typical fiber F are

isomorphic if there is a f eomorphism E E sit i x ̅

E SEA bundle is trivializable or just trivial if it is

yisomorphie to the trivial bundle E Bx F

Prop Every smooth fiber bundle with contractible B is trivialzable



Def A smooth vectorbundle is a smooth fiberbundlewherethe

typicalfiber and each Fi IT 43 is a vectorspace and where

the homomorphisms f can be chosen set f x F E

is a vectorspace isomorphism

The rank of a vertor bundle is the dimension of F

Two smooth vertor bundles over the same B are isomorphic if

there exists a smooth continuous map E E sit x ̅ Tod and

maps eachE as vertor space isomorphisally onto E

A vectorbundle EIB IIF is a subbundle of a vertorbundle

E B T F if E EE and earn fiber F is a vertor subspace of F

remarks Although not evident from the above characterization a smooth

vectorbundle isomorphism E E is sit is again

a smooth v b isomorphism

Analogous to Whitney's embedding thin every smooth vector bundle

over a smooth manifold B is a subbundle of a trivial vector bundle

Tomake this more preise we introduie the following



Def The Whitney sum of twovertorbundles E B T F ich1,2

is the vertor bundle En E B T F F with

E Er en.ee EEnxE i en Taleal and I es cal taten

Note that we can regard e g E as a subbundh of E E

via l E E Es c Ip v 1 Ip Ip01

Thun For every smooth vertor bundle E B T F there is

a smooth vertor bundle E B F F sit their Whitney

sum EHE is trivial

An important example of suits a pair of Whitney sum inverse

vertor bundles is the tangent bundle normal bundle

Def Let MEW be an embedded smooth submanifold The

normal bundle NM of M in W is defined as the vector

bundle NM M where NM Npd Tpw TPM

and IT Npm p

remark If Δ MxM is the diagonal submanifold then NA and TA

are isomorphic vector bundles

Thm If M is a smooth manifold embedded in some IR

then TMONM is trivial with typical fiber IR



A general criterion for a vertor bundle to be trivial is the following

Prop A rank K vertor bundle E B T F is trivializable iff thenexist

K continuous stations s B E sit for all pEB s pl SuIp are

linearly independent

proof If E is isomorphie to BxIR then we can set sLp pie

for any basis en enof IR

Conversely we define E BxIR sit for any Ip v EE

with v v s pl we set GLA p tun v1

remark So a tangent bundle TM is trivializable in whish case the

manifold M is called parallelizable iff there are dim M k

vertor fields X eKLM sit KpEM spanftp.t TPM

Note that a parallelizable manifold is automatically orientable

Cor Let G be a Liegroup i e a group that is also a smooth

manifold with smoothgroupoperations G is parallelizable

proof For any gebdefine Lg G G hi gh whish is smoothalso ing

and let us vn be a basis of TeG with e theidentityof G

Then for any PEG p delp forms a basis of TpG



Then Let E M be a smooth vertor bundle of rank r over an

a dim smooth manifold M

i HÜLE HELM KK

ii If E M are oriented and have finite good cover then

H E HI IMI KK Thomduality

proof Lil By considering the zeroseition so M E X s 01

we see that E is homotopy equivalent to M since

Toso idly and soot ide via the homotopy

H Rx E E It lp.nl i s p tu

ii Using Poincariduality twine together with Ii we get

HI E HI IE HI M HI IM

Def If M is a compact converted oriented smooth manifold and

E an oriented smooth vertor bundle over M of rank r we define

the Thom dass E E HI E as the compact Poiniare dual of

M in E embedded via the zerosections and the

Euter class elEl Hi M as s TIEL

In the definition of the Euter class we could have used any
smooth section



Lemma e E s T El for any smooth section s M E

proof Since s is homotopie to so via H Rx M E

It p tslp In tl soIp

Thun Let M be an oriented compact converted smoothmanifoldand

E M an oriented smoothvertor bundle If E admits

a nowhere vanishing smooth sention then e E 0

proof Let s M E be suits a smooth sention and let

E Ri E be such that T E HT IE is the Thomclass

Due to the compaitness of M and the supportof T we Ian

house a SEIR sit therange of 5 c s has empty intersection

with suppli Thus e E 5 i 5 5 0

remark If E TM is the tangent bundle then e TM M µ

where MER M is any volumeform of M with IM 1

Hence felim M sit the then generalizes

the resu.lt atZCM7 0 if there exists a n.w.ve vertorfield

Thisis the Gauss Bonnet Chern thin



The Euler class is an example of a Iharalteristis class

Informally a characteristic class is a mapping E B HLB

that associates toevery bundle a chomology lass of its base spare in a way

that is invariant under bundle isomorphisms


