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Abstract—Autonomous racing creates challenging control
problems, but Model Predictive Control (MPC) has made promis-
ing steps toward solving both the minimum lap-time problem
and head-to-head racing. Yet, accurate models of the system are
necessary for model-based control, including models of vehicle
dynamics and opponent behavior. Both dynamics model error
and opponent behavior can be modeled with Gaussian Process
(GP) regression. GP models can be updated iteratively from
data collected using the controller, but the strength of the
GP model depends on the diversity of the training data. We
propose a novel active exploration mechanism for iterative GP
regression that purposefully collects additional data at regions
of higher uncertainty in the GP model. In the exploration, a
MPC collects diverse data by balancing the racing objectives
and the exploration criterion; then the GP is re-trained. The
process is repeated iteratively; in later iterations, the exploration
is deactivated, and only the racing objectives are optimized.
Thus, the MPC can achieve better performance by leveraging
the improved GP model. We validate our approach in the
highly realistic racing simulation platform Gran Turismo Sport
of Sony Interactive Entertainment Inc for a minimum lap time
challenge, and in numerical simulation of head-to-head. Our
active exploration mechanism yields a significant improvement
in the GP prediction accuracy compared to previous approaches
and, thus, an improved racing performance.

Index Terms—Autonomous racing, trajectory planning and
tracking, interaction, learning for control, active exploration,
Gaussian Processes

I. INTRODUCTION
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AMONG the many applications of autonomous driving,
autonomous racing has recently gained increased atten-

tion in research [1], also for real-world tests like Roborace
and the Indy Autonomous Challenge. Two scenarios are
considered: the minimum time trial and head-to-head racing
against an opponent. In the former, a single race car drives
around a constrained track trying to minimize the lap time. In
this scenario, the main control challenges arise from pushing
the vehicle to the handling limits, a task that expert humans
can do well, but is challenging for control algorithms. In
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particular, physics-only models typically used in urban or
highway environments are not well suited to represent the
vehicle dynamics close to the handling limits. Aerodynamics
forces, nonlinear deformations, nonlinear tire dynamics, and
weight transfer in the vehicle caused by accelerating, braking,
or steering are effects typically neglected when deriving a
simplified nominal vehicle dynamics model [2] for computa-
tionally efficient online control. Yet, they must not be ignored
if the goal is to push the vehicle to its handling limits and
minimize the lap time. Within model-based controllers, Model
Predictive Control (MPC) relies on a prediction model of the
vehicle, and the input is determined by iteratively solving
an optimal control problem over a finite horizon. Thus, the
large uncertainty introduced by the modeling errors when the
vehicle is driven near handling limits must be accounted for,
for example adding a learning component to the physics-based
model [3]–[5]. Other works have addressed the challenge
considering Bayesian approaches [6], [7]. Furthermore, it has
been shown that model-free reinforcement learning can out-
perform human performance [8]. However, a main challenge
with learning-based methods is to obtain data sufficiently
representative, while still avoiding dangerous situations.

In the scenario with an opponent, the controlled vehicle,
named Ego Vehicle (EV) in this work, must compete with
another agent and perform overtaking maneuvers. In this case,
the uncertainty about vehicle dynamics near the handling
limits is compounded by another major challenge: the in-
teraction with the other agent, which is a well-researched
problem for autonomous urban and highway driving [9], [10].
Both enforcing collision avoidance and planning a successful
overtaking maneuver require the EV to handle the uncertainty
around the unknown future position of the opponent. Initial
approaches considered passive prediction models, that is,
predicting the future trajectory of other agents given historical
data and the current traffic configuration. Such approaches
allow for a simplified planning framework, in which the future
trajectories of other agents are assumed to be independent of
the current decision of the EV. However, in highly interactive
scenarios, such as automated racing, where the other agent
is a competing opponent, the reaction of other agents to the
EV decision must be considered. Knowledge of the opponent’s
reaction to its own future trajectory is crucial to allow safe and
efficient overtaking maneuvers. To account for the reaction to
own decisions, the opponent can be represented as a rational
agent in a game-theoretic framework [11], which is, however,
computationally demanding. Alternatively, the policy of the
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opponent to the current and past configurations and the EV
own decision can be learned from data [12], [13]. In the latter
case, it is fundamental to retrieve a training dataset sufficiently
representative to allow for reliable learning of the policy.

In this work, we address both sources of uncertainty in
autonomous racing, i.e., modeling errors in the dynamics and
the representation of the unknown policy of the opponent
accounting for the reaction to the EV’s own decisions, using an
iterative Gaussian Process (GP) regression algorithm, follow-
ing the approach from [14]. GP regression is a non-parametric
machine learning framework that provides uncertainty mea-
sures over its prediction based on previously collected mea-
surements. Our main contribution is extending the iterative
GP framework by adding an active exploration mechanism
designed to retrieve representative data and improve learning
performance. Previous works in autonomous racing did not
consider the active exploration of the feature space to improve
the learning performance and relied on data collected while
maximizing the EV performance. Compared to other learning
tools, such as artificial neural networks, a major advantage of
GPs is that a measure of the model uncertainty is provided,
which we exploit in the exploration mechanism to yield an
enriched dataset and, ultimately, an improved prediction. In
our algorithm, the dataset of the GP is updated iteratively with
the measurements collected over several runs, re-training the
model when the dataset is updated. During the initial iterations,
the reference trajectory of the EV is designed to encourage
the exploration of the regions of the feature space with a high
posterior covariance of the prediction error. In doing so, the
dataset is rapidly replaced with properly selected data points
that refine the learning performance.

We find that enriching the dataset through the active ex-
ploration mechanism yields a significant improvement in the
learning performance and, eventually, in the EV performance.
We show that the GP exploration algorithm can be applied
successfully both when the GP model is used for error
compensation in the minimum lap time task and for the
opponent modeling in head-to-head racing. For the minimum
lap time, we test the algorithm in the highly realistic racing
simulation platform Gran Turismo Sport of Sony Interactive
Entertainment Inc [15], where high-fidelity dynamics models
are used to simulate the vehicle, and we offer a comparison
with the previous work [14]. For the task with the opponent,
we compare our algorithm with the previous work [13] in the
simulation environment therein provided.

The contributions of this work are as follows:
• We propose an iterative GP regression framework with

an active exploration mechanism which uses heuristics
to explore the most uncertain regions of the state space
as indicated by the GP posterior covariance matrix;

• We implement the active exploration mechanism in the
objective of the model predictive controllers for both a
time trial race and a head-to-head racing challenge;

• We show that our method, which combines uncertainty-
based exploration with training dataset selection of the
most diverse data, improves the GP prediction accuracy
and the EV racing performance in comparison simula-
tions with previous approaches from the literature.

In Section I-A, we review the relevant related work, whereas
Section II-A and II-B present preliminaries regarding the
vehicle model and GP regression, respectively. Our novel
iterative GP regression framework with active exploration is
presented in Section III-A for the time trial and Section III-B
for the opponent challenge. The validation simulations for both
autonomous racing scenarios are presented and analyzed in
Section IV. In Section V we discuss the limitations of the
current approach and possible improvements. The conclusion
with an outlook for future research is given in Section VI.

A. Related Work

In this section, we give a concise review of the relevant
related work concerning GP regression for the compensation
of vehicle dynamics and opponent modeling in autonomous
racing, as well as existing approaches for active exploration
presented in other fields. Further relevant works on automated
racing can be found in the recent survey [1].

Vehicle Dynamics and GP Compensation Models: Various
physics-based vehicle models have been proposed depending
on what assumptions are valid for the application [2], [16].
The dynamic bicycle model is common in control algorithms
and models the dynamics of a single-track vehicle with two
wheels [2]. The lateral tire forces may be assumed to be linear
with respect to the slip angle of the tires [2], which is valid for
the low slip angles encountered during autonomous urban and
highway driving. However, racing vehicles operate in the non-
linear, saturated regions of the tire dynamics, and phenomena
such as drifting and weight transfer have a significant effect
on planning and control [17]. While parameterized tire models
like Pacejka’s Magic Formula [18] are more descriptive, it
can be challenging to identify all of the parameters of the
Magic Formula. Furthermore, modeling errors may persist
due to weight transfer, suspension dynamics, or the lumped
tire dynamics of the bicycle model. Therefore, rather than
spending significant engineering efforts attempting to model
every detailed aspect of the vehicle dynamics, learning-based
approaches could leverage system data to improve model
accuracy and control performance in a more efficient way.

Recent efforts have explored how Gaussian Processes (GP)
can compensate for modeling errors in real-time control [19],
[20]. The GP adds to a nominal vehicle model and is trained to
improve the model’s accuracy on data collected from the actual
system [14]. GPs, unlike standard neural networks, provide an
estimate of the posterior covariance that can be used to predict
model uncertainty during control [3]. Retraining the GP after
collecting more data can increase model accuracy and ulti-
mately improve the performance of planning or control [14],
[20]. However, data collected during normal EV operation
might not be sufficiently representative of the EV dynamics in
all situations. Thus, the GP compensation model can be further
improved if trained on a more diverse dataset. For example, in
vehicle racing, acceleration limits can be progressively updated
from collected data to safely expand safe operation as the vehi-
cle improves [21]. Furthermore, active exploration specifically
targets underrepresented regions to collect additional data and
reduce the GP’s model uncertainty.
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Opponent Modeling: The autonomous racing scenario with
an opponent has been considered in [11] using a game-
theoretic framework, in which the policy of the EV is chosen
as a Nash equilibrium, following well-established approaches
for urban and highway autonomous driving [22]–[25]. How-
ever, the solution of a dynamic game is generally a com-
putationally expensive task. Moreover, accurate knowledge
of the opponent’s own reward function and constraints is
required to implement this approach, which is limiting in
practice. Alternatively, machine learning methods have been
used to directly learn the policy or the closed-loop trajectory
of the opponent from data. In [12], a GP is used to learn a
mapping from the current EV and opponent state to the future
opponent state and the posterior covariance of the GP is used
to tighten safety collision avoidance constraints. The approach
is interesting and relatively computationally inexpensive at run
time, however implements a passive interaction approach, in
which the reaction of the opponent to the current EV’s own
decisions is not considered. In [26], in the context of urban
autonomous driving, a neural network is used to approximate
the closed-loop behavior of other agents in a game-theoretic
fashion. Instead of solving an optimization problem to predict
the future trajectory of other agents, their reaction to the
EV’s own decision is predicted by a neural network that
takes as input the future state of the EV. However, a neural
network does not provide a measure of the uncertainty around
the prediction. In [13], a GP is trained in a similar fashion,
conditioning on the future plan of the EV as well. However, the
model is trained on a dataset of measurements collected during
normal operation in several previous runs. As a result, the
GP prediction of the opponent is not accurate for all possible
overtaking strategies that the EV can attempt. To improve
the prediction accuracy, an active exploration mechanism is
needed, explicitly targeting more regions of the feature space.

Active Exploration: For learning-based approaches, the
choice of the training set plays a major role in determining
the performance of the learned model and in the generalization
capability. In particular, in iterative approaches, in which the
data used are measurements collected during the previous
iterations while maximizing the performance of the EV, the
dataset might not be sufficiently expressive to significantly
improve the model in the whole feature space.

Active learning [27] has been widely investigated in many
fields, such as coverage control [28] and autonomous nav-
igation [29]. Recent work has dedicated attention to active
learning approaches based on Koopman operators [30] and
Bayesian Optimization [31], whose most recent advances are
discussed in a recent survey [32]. Further approaches to active
learning are also mentioned in the surveys on learning-based
MPC [33], active learning in robotics [34], and deep active
learning [35]. In particular, approaches for active exploration
in GP regression have been proposed for control of wind
farms [36], airborne wind energy system [37], [38], or UAV
delivery control [39]. In such applications, an accurate and
updated estimate of the wind field is fundamental, therefore the
referenced works proposed approaches to trade-off between
maximizing the performance of the system and controlling it
in a way to collect measurements to improve the wind field
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Fig. 1: Scheme of the Dynamic Bicycle model.

estimation. In autonomous racing, however, compromising the
performance objectives is only acceptable during the early
stages of the competition, whereas eventually, the focus must
be the maximization of the EV performance. Therefore, the
trade-off between exploration and performance objectives must
be tuned dynamically. Furthermore, the decision on the regions
to be explored must take place in real-time.

II. PRELIMINARIES

In this section, we detail preliminaries for our work. Section
II-A describes a dynamic bicycle model that will serve as
a nominal vehicle model. Section II-B describes Gaussian
Process (GP) models, which are used in later sections for error
compensation and opponent modeling.

A. Vehicle Dynamics

We model the racing vehicle dynamics using a dynamic
bicycle model [16] referred to the road-aligned Frenet coordi-
nates, as represented in Figure 1. The state of the vehicle is
ξ = [Vx, Vy, ψ̇, eψ, ey, s]

⊤, where Vx and Vy are the vehicle’s
longitudinal and lateral velocity, respectively, in the vehicle’s
body frame, ψ̇ is the yaw angular velocity, eψ and ey are the
yaw angle and lateral displacement of the center of gravity of
the vehicle with respect to the reference path, and s represents
the traveled distance along the reference path. The relative
yaw angle eψ and lateral distance ey in Frenet coordinates are
defined with respect to the closest point of the reference path.
The input u = [δ, ax]

⊤ consists of the front steering angle and
of the longitudinal acceleration resulting from the powertrain,
which is applied to the rear wheel. Although simplified, the
bicycle model represents a good trade-off between keeping
the number of parameters low, which is crucial for real-time
computations, and having sufficiently accurate dynamics, that
reflect the main characteristics of the motion. Moreover, since
a learning-based term is used to compensate for the nominal
dynamics, a more complex dynamics model, such as the four-
wheel model, might yield only marginal improvements [17].

The dynamics is derived from force-mass and inertia-
moment balance, for the first two components Vx and Vy , and
then from the kinematics for the other state quantities. The
dynamics is
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ξ̇ =



ax −
Fyf sin(δ) +Rx + Fxw

m
− g sin(φ) + ψ̇Vy

Fyf cos(δ) + Fyr

m
− ψ̇Vx

lfFyf cos(δ)− lrFyr

Izz

ψ̇ − Vx cos(eψ)− Vy sin(eψ)

1− κ(s)ey
κ(s)

Vx sin(eψ) + Vy cos(eψ)

Vx cos(eψ)− Vy sin(eψ)

1− κ(s)ey



,

(1)
where m is the mass of the vehicle, Izz is the moment of
inertia, and lf and lr represent the distance of the center of
gravity from the front and rear axle, respectively. Rx is the
tire rolling resistance, and Fxw is the wind drag force applied
on the vehicle body. Fyf and Fyr are the lateral tire forces
of the front and rear tires, which are nonlinear and vary as
the tire slips along the road surface. Furthermore, gravity
is acting on the vehicle with acceleration g and φ is the
inclination of the road. κ(s) is the curvature of the reference
path at position s. A more thorough discussion of the model
is reported in [17]. In the following, we assume to have access
to all state components.

In this work, we employ a discretized version of the model
obtained via forward Euler:

ξ+ = ξ + f(ξ,u)T, (2)

where T is the sampling time and f(ξ,u) is a compact
representation of (1). However, the bicycle model in (1) can be
insufficient to reliably describe the vehicle motion at its han-
dling limits, in particular, neglecting the influence of nonlinear
deformations, aerodynamics forces, and weight transfer in the
vehicle caused by accelerating, braking, or steering. In our
previous work [17], it was shown that modeling such effects
can improve racing performance. Yet, the racing performance
is still worse than the human-best performance. It indicates
that purely physics-based models are insufficient, and a data-
driven compensation term is necessary for achieving the fastest
lap time possible.

It is worth noting that we could potentially adopt a more
complicated dynamics model, such as a four-wheeled model,
as the nominal dynamics model. However, we found in our
previous work [17] that the four-wheeled model only brought a
marginal improvement in racing performance compared to the
bicycle model and thus introduced unnecessary computational
costs to the optimal control problem. Also, introducing a more
sophisticated nominal dynamics model, especially one with a
higher dimensional state space, results in a larger parameter
space for the GP compensation model, since a larger list of
features would be necessary to span the feature space. It would
then lead to increasing computation time and memory usage
to run the active exploration algorithm, which will be apparent
after we introduce the algorithm in Sec. III. Furthermore, more
data would be required as a result of the enlarged feature

space, which means a time-consuming exploration phase and
increased training complexity.

B. Gaussian Processes

GP regression is a machine learning method used to infer
the value of an unknown function given a dataset of M
measurements D = {zi,yi}Mi=1, with zi ∈ Rnz the input
features and yi ∈ Rny the output features. A GP is defined as a
collection of random variables, each subset of which is jointly
normally distributed, and is fully specified by the prior mean
and the kernel used as prior covariance [40]. It is assumed that
the underlying unknown function g(·) relates the input and the
output features as follows

yi = g(zi) +wi, (3)

where wi ∈ Rny ,wi ∼ N (0,Σw) is i.i.d. Gaussian noise
with diagonal covariance matrix Σw = diag(σ2

1 , . . . , σ
2
ny
). The

unknown function is specified through its mean, which we
assume zero without loss of generality, and a kernel function
ka(z, z′), where z, z′ ∈ Rnz are two input GP input feature
vectors. The scalar function ka(z, z′) is chosen to encode the
prior assumptions and the function properties. To approximate
the modeling error in the dynamics, we use the squared
exponential kernel [40]

ka(z, z′) = σ2
ka exp

(
−1

2
(z − z′)⊤L−2

ka (z − z′)

)
, (4)

with parameter Lka defining the characteristic length-scale and
σ2
ka the squared signal variance, whereas to infer the future

trajectory of the opponent, we employ the Matérn kernel with
parameter ν = 1.5 [40]

ka(z, z′) =

(
1 +

√
3∥z − z′∥2

lka

)
exp

(
−
√
3∥z − z′∥2

lka

)
,

(5)
where lka is a length scale parameter. Both kernels are widely
used and have been chosen consistently with [14] and [13],
respectively, to allow for a comparison in which the effect of
our active exploration mechanism can be thoroughly discussed.
The parameters of the kernels are optimized by maximizing
the marginal likelihood of the observations [40].

The posterior mean and covariance of d-th entry gd(z) of
the underlying unknown function g(z) ∼ N (µ(z),Σ(z)) at
the arbitrary point z∗ conditioned on the training set D are
obtained as

µd(z
∗) = (ka)⊤K−1γd (6a)

σd(z
∗) = ka∗ − (ka)⊤K−1ka, (6b)

where ka = [ka(z1, z
∗), . . . , ka(zM , z

∗)]⊤, the entries of
matrix K are Kij = ka(zi, zj), ka∗ = ka(z∗, z∗), and
γd = [y1,d, . . . , yM,d]

⊤ contains the training outputs corre-
sponding to the d-th entry.

III. METHOD

In this section, we introduce our active exploration frame-
work that can iteratively train GP models in autonomous racing
scenarios. The exploration mechanism is augmented into the
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objective function of a model predictive controller (MPC), and
it strategically explores locations of the state space where the
GP model has the highest uncertainty. We first detail the active
exploration framework for the time trial racing challenge, in
Section III-A, where a GP model is used to compensate for
EV modeling error in an offline optimal trajectory planner
and online trajectory-tracking MPC. Then, in Section III-B,
we consider head-to-head racing with an opponent, where the
GP model is used to predict the behavior of the opponent and
the EV employs an online MPC for trajectory planning and
control. We discuss the necessary changes we made to adapt
the proposed active exploration framework to this scenario.

A. Minimum Lap Time Application

In the minimum lap time task, our iterative exploration-
based controller is used to compensate for modeling errors
in the dynamics when the vehicle approaches handling limits.
To minimize the lap time, first, a time-optimal trajectory for
the EV is planned, then, the vehicle is driven around the
track by the MPC. Relying on the nominal model of the
vehicle dynamics does not suffice to minimize the lap time.
Therefore, we use a GP compensation model to improve the
prediction of the EV state. It is important to account for the
influence of unmodeled effects of the dynamics also on the
optimal path, therefore we use the GP compensation both in
the planning and in the MPC tracking phase, adopting the
double GP compensation scheme that was presented in [14].
At the end of the trial, the measurements collected are used to
retrain both GP models, and the trials are repeated iteratively.

Our method leverages the uncertainty in the GP prediction
as a heuristic to guide active data collection in regions of high
uncertainty, with the goal of improving the prediction accuracy
of the GP. In the first couple of trials, active exploration takes
place; namely, the EV control is determined as a trade-off
between the MPC performance objective and the exploration
objective. In doing so, the enriched data can be used iteratively
to re-train the GP; thus, the GP will be more accurate, particu-
larly in regions of high uncertainty in previous iterations. Our
goal is to improve the overall performance of the MPC after
exploration is complete, and the MPC may fully exploit the
more accurate GP model. In the following parts, we discuss
the components and main aspects of our proposal, which is
implemented in the online tracking phase for the time trial.
The details of the derivation of the time-optimal reference are
given in the Appendix for completeness.

GP Model: In general, the GP model predicts an unknown
value, y, as a function of the current state z according to
an unknown function (3). In the case of the time trial, we
employ a GP to compensate for the unmodeled dynamics of
the vehicle [14]. To reduce the dimensionality of the GP, rather
than conditioning the GP to be a function of the full state ξ
of the EV, we can condition on an input feature vector, z,
that is a deterministic, known linear function of the state and
of the input of the EV, i.e. z = G[ξ⊤,u⊤]⊤, where G is a
matrix selecting the relevant features from the EV state ξ and
input u. G must be designed so that, given z, it is possible
to reconstruct the original state and input components used in

the mapping. With abuse of notation, we denote this operation
with ξ,u = G−1z.

Here the predicted value is yMPC
k = ξk+1 − ξpred

k+1, where
ξk+1 is the next state and ξpred

k+1 = ξk + f(ξk,uk)T is the
next state predicted by the nominal vehicle model from the
current state (2). Specifically, if the GP compensation term
added to the nominal system dynamics is defined as

yMPC = gMPC(zMPC) ∼ N
(
µMPC(zMPC),ΣMPC(zMPC)

)
,
(7)

then the system dynamics can be modeled as

ξk+1 = Akξk +Bkuk + dk + µMPC(zMPC), (8)

where µMPC models the error of the linearized dynamic
bicycle model (2) with respect to the real dynamics at the
GP input feature zMPC. The mean and standard deviation of
the distribution, µMPC(zMPC), and ΣMPC(zMPC), are obtained
from (6) to predict the output yi from the input feature vector
zi. Once the GP model is trained, yMPC

k can be added to ξpred
k+1

to compensate for modeling errors. For the offline planning
problem, the discretized nonlinear dynamics (2) is used and
the GP compensation is analogously defined in terms of a
residual term.

Following [14], we use GP to compensate the states hav-
ing the greatest impact on the prediction error, Vy and ψ̇,
i.e., µMPC(zMPC) = [0, µMPC

Vy
(zMPC), µ

MPC
ψ̇

(zMPC), 0, 0, 0]
⊤.

In this application, the GP input feature vector is zMPC =
G[ξ⊤,u⊤]⊤ = [Vy, ψ̇, δ]

⊤. Furthermore, defining the zMPC

with respect to a nominal predicted trajectory rather than on
the actual predicted state ξk and predicted input uk allows
real-time computation of the MPC [14], [17]. Precisely, zMPC

is computed from the nominal state ξ̃k and ũk of the linearized
dynamics from the previous MPC iteration. We record the
values of (zMPC

k ,yMPC
k ) during real-time control to construct

the training dataset D.
Measurements collected while tracking the optimal path are

not necessarily diverse enough to train the GP models since
the states encountered will be concentrated in a small subset
around the reference path being tracked. It limits the learning
performance and, consequently, the improvement yielded by
the GP compensation both in the planning and MPC tracking.
Therefore, we propose our active exploration scheme aimed at
enriching the dataset of measurements.

MPC: The optimal control problem of tracking MPC is

min
{uk}N−1

k=0

N−1∑
k=0

∥ξk − ξref
k ∥Q + rδ∆δ

2
k (9a)

s.t. ξk+1 = Akξk +Bkuk + dk + µMPC(zMPC(ξ̃k, ũk)),

∀k = 0, . . . , N − 1 (9b)
wr,k + γk ≤ ey,k ≤ wl,k − γk, ∀k = 1, . . . , N (9c)

umin,k ≤ uk ≤ umax,k, ∀k = 0, . . . , N − 1, (9d)

where N is the MPC prediction horizon. The cost function (9a)
is designed to penalize rapid changes in the steering angle
according to weight rδ > 0, with ∆δk = δk − δk−1 and δ−1

is set equal to the last applied steering angle δt−1 at time
t− 1. Q ≥ 0 is the weight to penalize deviations of the state
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ξk from the reference ξref
k , which plays an important role in

encouraging the exploration of the feature space depending on
the value of α. Constraint (9b) relies on a linearized version
of the bicycle model dynamics, computed with respect to a
nominal trajectory ξ̃, ũ [17]. Since the GP model is not em-
bedded into the optimization [17], minimization problem (9)
is a quadratic problem that can be solved in real-time.

Our prior work [14] has shown that iteratively collecting
data with the MPC and retraining the GP model (7) can
improve the performance of the GP prediction and MPC. We
further propose a mechanism that will employ the knowledge
of the fact that yMPC is predicted by a GP to purposefully
explore regions of the state space where the prediction of yMPC

has larger uncertainty. Inspired by [41], we use large posterior
covariance of the GP to indicate regions of the state space that
need further exploration. Inspired by [39], we realize active
exploration by appropriately changing the state reference ξref

in the optimal control problem (9). By doing so, the MPC
cost function in (9a) is a function of the predicted states
and control actions and the posterior covariance of the GP
model. The cost function will trade-off between the MPC’s
original performance objective and the exploration objective
as described in the next paragraph.

Active Exploration: The goal of the active exploration
mechanism is to solve (9) such that it encourages the explo-
ration of the feature space and collects new measurements that
enrich the dataset D. For this purpose, we change the reference
ξref,uref

k , that would be obtained from the optimal planner, to
visit states where the uncertainty in the prediction is large.

We consider the feature vector z used for GP prediction
and determine its target value zref that the MPC should
explore to improve the prediction accuracy of the GP, while
considering the performance objectives at the same time. The
target GP input feature vector zref is chosen from a list of
nG candidate feature vectors, {z(i)}nG

i . The list is designed
to span the feature space: First, the candidate values of each
feature component are selected to cover its maximum range
estimated from collected data; Then, candidate feature vectors
are created combinatorially from the candidate values of all the
feature components. It is worth noting that by first determining
the exploration objective zref and following it in terms of
tracking a reference trajectory in the MPC cost function, the
computational complexity required to solve the optimal control
problem can be kept low, in contrast to directly incorporating
the feature uncertainty as an exploration intrinsic in the cost
function (9a), which will then embed the GP model into the
optimization problem and cause non-convexity [36].

Algorithm 1 details the procedure to set a new reference,
which takes as input the reference state and action trajectory
computed by the offline planner, ξref

k ,u
ref
k , and outputs the

updated reference ξref
k ,u

ref
k , selected so that the target GP input

feature vector zref is visited. First, z̃ = G[(ξref
k )⊤, (uref

k )⊤]⊤

is computed, that is, the feature vector that would be visited
following the trajectory of the optimal planner. Then, the can-
didate feature vectors z(i) are ranked based on two competing
criteria: 1) their proximity to z̃, the features of the optimal
reference state (lines 3-5). For each candidate feature vector
zi, i = 1, . . . , nG, its proximity is quantified by the rank of its

Algorithm 1 Active exploration via state selection for the
MPC reference

1: Input: ξref
k , uref

k , {z(i)}nG
i , Σξ(·) S, α

2: z̃ ← G[(ξref
k )⊤, (uref

k )⊤]⊤# GP feature from racing objectives
Sort candidate feature vectors by their distance to the reference
state’s feature vector:

3: di ← ∥z(i) − z̃∥ ∀i = 1, . . . , nG
4: d← sort(d1, . . . , dnG)
5: Di ← i : d[i] = di ∀i = 1, . . . , nG

Sort candidate features by their weighted posterior covariance:
6: vi ← ∥Σξ(z(i))∥2S ∀i = 1, . . . , nG
7: v ← sort(v1, . . . , vnG)
8: Vi ← i : v[i] = vi ∀i = 1, . . . , nG

Select reference features using trade-off parameter α:
9: zref = z(i∗), where i∗ ← argmaxi (αVi + (1− α)Di)

Update the reference with the states in zref:
10: ξref

k ,u
ref
k ← G−1zref

11: Output: Updated MPC reference, ξref
k , u

ref
k

distance to z̃ among all the candidates, denoted by Di, with
Di = 1 implying the farthest from z̃ and Di = nG implying
the closest; and 2) their posterior covariance (lines 6-8), which
are calculated using the GP model and weighted by the matrix
S. Analogous to Di, we introduce the ordering index Vi with
the covariance as the sorting criterion, with Vi = 1 implying
the lowest posterior covariance and Vi = nG implying the
highest posterior covariance. To trade-off between these objec-
tives, we select the target feature vector by maximizing their
convex combination with weight α ∈ [0, 1] (line 9). Once the
target feature vector is selected, we find its corresponding state
and action to update the reference state used for the tracking
MPC (line 10).

The covariance of GP has previously been used as a
mechanism for data selection [41], as well as for autonomous
racing [19]. By selecting zref to balance the distance from the
racing objectives and covariance criterion, the MPC balances
exploration while remaining near the original MPC reference.
Increasing α places more weight on the exploration of the
feature space, and when α = 0, the MPC defaults to use
its standard reference. The target value zref should not be
too far z̃ (small di) to prevent significant deterioration in
the performance of the controlled system, and to prevent
possibly dangerous behaviors and loss of stability during the
exploration. Conversely, zref should correspond to values with
large posterior covariance, vi, to explore uncertain regions of
the state space. We opt to weight the posterior covariance
Σξ(z(i)) by a positive semi-definite matrix S ≥ 0. The
weighing matrix S is a hyperparameter used to reflect the
relative importance of the uncertainty in different GP com-
ponents. We set S equal to the weights from the MPC cost
function (9a), with a view to giving priority to features whose
posterior covariance is larger for those components that are
more relevant for the MPC tracking. It is also worth observing
that the posterior covariance for each candidate feature in the
list can be computed immediately after the training of the GP
and stored prior to MPC run time, significantly reducing the
computational demand of Algorithm 1 at run time.

In the first few iterations, we set α to be large, so that the
focus is placed on the exploration of the feature space and
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the collection of data points that enrich the dataset. In later
iterations, α is decreased to zero; thus, the focus is entirely on
the performance objectives of the MPC, taking advantage of
the accurate GP prediction model obtained from training with
the dataset from the exploration.

Remark 1: We adapt Algorithm 1 from [39], but replace
the mutual information-based exploration metric used in [39]
with the weighted posterior covariance. Computing the mutual
information-based exploration metric requires selecting a set
of data points to quantify the information gain of a given fea-
ture vector candidate. The selection procedure itself introduces
additional computational costs. Moreover, computing mutual
information can also be time-consuming, since it involves
high-dimensional matrix inversion and multiplication. To this
end, we use the weighted posterior covariance, which can
be directly obtained from the GP model, to simplify the
computation. Meanwhile, as we will introduce later, we also
use the weighted posterior covariance as a heuristic to diversify
the selected training data. We intend to use the same metrics
to specify consistent data priority for the active exploration
and data selection phases.

Diverse Data Selection: During the repeated trials, a large
number of data points are collected. Using all such data
to train the GP model is impractical and unnecessary, as a
smaller dataset of appropriately selected data points suffices
to represent the input-output relation. However, creating a
smaller dataset by randomly sampling from the collected data
points, as in [14], does not guarantee that the diverse data
points collected during the exploration phase are appropriately
exploited. For this reason, at the end of each iteration, we train
the GP using a smaller dataset of points obtained with the data
selection approach described in [41], outlined in the following.

The goal is to select a (small) collection of points D =
{(zi,yi)}Mi=1 to represent the feature space and allow GP to
predict as accurate as possible. When adding a datum point
(zi,yi) to the dataset or replacing existing ones, our policy
leverages a similarity measure between the new datum point
and the present collection, namely, the posterior prediction
covariance (6b) at zi given all other data points in the dataset
D. The policy to update the dataset works as follows:

• If a datum point’s posterior covariance given the current
dataset is larger than the median of the posterior covari-
ance of all data points currently in the dataset, for at least
one of its output features, it is added to the dataset;

• If the dataset is full, the new datum point replaces the data
point in the dataset with the smallest posterior covariance.

• If the data points yielding the lowest posterior covari-
ance for different output dimensions are different, we
consider the dimension in which the ratio between the
new posterior covariance of the new point and the mini-
mum posterior covariance of points in the dataset is the
largest. Moreover, we use the outlier rejection mechanism
described in [19, Section V-B].

In contrast to [19], we do not consider a decay factor to en-
courage the removal of older data points first, with the goal of
prioritizing data points that contribute the most to maximizing
the data covariance, rather than the most recent points. Older
data points that have been collected during the exploration in

previous iterations are, in general, more significant than recent
points collected during the last iterations, in which the focus
is on the maximization of the performance.

Remark 2: Two GP models are used to compensate for the
errors in the dynamics, one during the planning phase and
one during the MPC tracking phase. The two GP models
differ since they compensate for different nominal dynamics,
namely the nonlinear dynamics used in the offline planning
problem and the linearized dynamics used in the MPC tracking
problem, respectively. Consequently, two different datasets are
extracted separately from the set of data collected during the
trials, with each dataset diversified considering the prediction
error and covariance with respect to the nominal dynamics
used in the planning and MPC tracking phase respectively.

Constraint Tightening: Constraints (9c) and (9d) ensure
that the lateral position of the vehicle and the input stay
within the track bounds and the actuation bounds, respectively.
Since the prediction of the lateral error in (9b) is influenced
by the GP compensation gMPC(zMPC), in contrast to [14],
we tighten the constraints to address the uncertainty in the
prediction. Taking uncertainty into account in the constraints is
crucially important to reduce the risk of dangerous movements
of the EV during the exploration phase. The modeling error
ϵy,k for ey at prediction step k is an affine transformation
of Gaussian variables, therefore, is also Gaussian distributed.
Thus, the support of the uncertainty ϵy,k is unbounded, and
a robust tightening, guaranteeing constraint satisfaction for all
realizations of the uncertainty ϵy,k, is not possible. Hence, we
implement a stochastic tightening requiring

Pr [ey,k + ϵy,k ≤ wl,k] ≥ β, (10)

where 0 ≤ β ≤ 1 is the risk parameter. Constraint (10)
yields a deterministic formulation for the tightening parameter
γk in (9c). The covariance matrix Σξ

k of the predicted state
ξk at step k = 1, . . . , N is obtained recursively from the
dynamics (9b) and from the covariance ΣMPC(zMPC) of the
GP compensation gMPC(zMPC) as

Σξ
k+1 = AkΣ

ξ
kA

⊤
k +ΣMPC(zMPC), (11)

where for all prediction steps k the state ξk and the GP
compensation gMPC(zMPC) are uncorrelated because the com-
pensation is computed from a nominal trajectory, ξ̃k, ũk.
From Σξ

k, the covariance σ2
ey,k

of the prediction error ϵy,k
at prediction step k is obtained and the tightening parameter
γk is computed as in [42]

γk =
√
2σey,kerf(2β − 1). (12)

Because of symmetry, the same tightening parameter is ap-
plied to the lower bound in (9c). In the presence of large
uncertainty and high probability β, parameter γk might grow
up to the point that the set of feasible positions for the EV
is prohibitively small or even empty. This is an inevitable
consequence of the unbounded support of the (Gaussian) un-
certainty distribution. To prevent this eventuality, a saturation
mechanism on γk can be further introduced.
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B. Head-to-Head Racing Application

In head-to-head racing, the EV needs to predict the oppo-
nent’s future trajectory in order to plan overtaking maneuvers.
The opponent’s future trajectory depends on the opponent’s
reaction to the EV’s own decision. It would be unrealistic
to assume that the opponent’s policy is known, and this fact
represents a source of uncertainty. Following the approach
from [13], we model the policy and dynamics of the opponent
as a GP model, which is included in the EV controller.

In the following, we present the active exploration mech-
anism for head-to-head racing, which is an adaptation of the
active exploration mechanism used in the time trial case. Here,
the aim is to retrieve informative data from the opponent’s
reaction to several overtaking attempts of the EV. Further,
we discuss specific limitations and challenges that pertain
to the active exploration in head-to-head racing, due to the
fact that the EV does not have full control over the feature
space, and we outline how the active exploration takes place
in the setting of a single competition with the opponent. In this
racing scenario, we consider the extended state of the system
ξE = [ξ, ξO]⊤, which contains both the state of the ego vehicle
ξ and of the opponent ξO. The opponent’s state is defined as:

ξO = [sO, eO
y , e

O
ψ, V

O
x ]⊤. (13)

Here sO and eO
y are the longitudinal and lateral position of the

opponent on the track, eO
ψ is the yaw angle with respect to the

reference of the track, and V O
x is the longitudinal velocity.

GP Model: The combined effect of the opponent’s dynam-
ics and its policy is modeled as a GP, namely, we consider

yO
k = ξO

k+1 = ξO
k + f(ξO

k ,πk(ξ
O
k , ξk))T, (14)

where f represents the real dynamics of the opponent and π
represents the one-step opponent policy, which depends on the
current opponent state ξO

k and on the current EV state ξk, in
order to incorporate the opponent reaction to the EV decisions
in the prediction steps [13]. We model the one-step closed-loop
dynamics of the opponent in (14) with the GP

gO(zO) ∼ N
(
µO(zO),Σ

O(zO)
)
, (15)

where zO is the GP input feature vector defined as:

zO = [sO − s, eO
y − ey, eψ, Vx, e

O
ψ, V

O
x , κ̄]

⊤. (16)

It contains the longitudinal and lateral distance between the
EV and the opponent, the yaw angle and longitudinal velocity
of both vehicles, and the vector κ̂ which contains the track cur-
vature at a few look-ahead points, with a view to considering
that humans typically choose their actions accounting for the
future evolution of the track [13]. The GP input features (16)
consist only of the relative configuration of the EV and of
the opponents and of their position in the curvilinear Frenet
coordinates rather than in the absolute coordinates, with a view
to boosting the generalization capability of the GP prediction.
Furthermore, the prediction of the opponent’s trajectory is
obtained by averaging over many samples from the GP model
as in [13, Algorithm 1].

Active Exploration and MPC: The EV trajectory is com-
puted iteratively by an MPC, based on the formulation in [13],
where the cost function consists of several performance-based
objectives. Unlike the time-trial case, the control objective in
head-to-head racing is not to track an offline planned optimal
trajectory over the track, which is infeasible to obtain in a
prior, since the dynamic reaction of the opponent at run time
must be considered. When adapting the active exploration
mechanism we developed for the time trial, we aim to make
minimal modifications to the baseline approach [13] for a close
comparison. To this end, we introduce an additional term in
the cost function that penalizes the deviation from a target
reference state set for exploration, just as we did in the time
trial. Specifically, the EV’s target reference state ξref is selected
to test the opponent’s reaction to EV’s overtaking attempts,
in order to collect informative data for accurate opponent
modeling. Since we no longer have access to an offline planned
reference trajectory, we make the following adjustments to
Algorithm 1 to determine the target reference states.

First, we determine the initial reference state ξref based on
certain nominal behavior of the two vehicles: we approximate
the one-step future relative configuration of the two vehicles,
assuming they follow their current linear velocities and yaw
angles. Then, such reference state ξref is modified using Algo-
rithm 1. On the one hand, the distance of a candidate feature
from the feature z̃ visited following the nominal behavior
is penalized, to prevent the EV from moving in a possibly
dangerous way; on the other hand, visiting regions of the
feature space with high posterior covariance is encouraged,
to test the reaction of the opponent to behaviors of the EV for
which the prediction of the reaction is more uncertain.

Given the target GP input feature vector zref from Algo-
rithm 1, the EV’ reference state ξref

k is obtained with the
following procedure: 1) The yaw angle eψ and the longitudinal
velocity Vx are obtained from the third and fourth entry of zref,
since zref is defined as in (16). 2) We use the current GP model
to predict the opponent’s trajectory over the prediction horizon.
Notably, the prediction is conditioned on a hypothetical future
trajectory of the EV, which is the open-loop solution of the
MPC problem at the last iteration. In doing so, we account for
the opponent’s reaction to the planned EV future movements
without coupling the GP model with the optimization problem
or the active exploration algorithm, as in [13]. 3) Then,
the (time-varying) target longitudinal and lateral positions of
the EV are obtained from the predicted trajectory of the
opponent, subtracting the first and second entry of vector zref,
respectively.

Note that the same target configuration associated with zref

is used to define the reference states for all the time steps
over the prediction horizon. Ideally, we may select a different
zref for each time step to further maximize the exploration
efficiency. However, estimating the posterior covariance of a
feature vector at future time steps beyond the next one requires
iteratively predicting the stochastic opponent reaction, which
is computationally expensive. Meanwhile, the benefit can be
marginal. In practice, the EV is less likely to reach the desired
target configuration in one step, considering the trade-off in
exploration and performance inherited in the MPC controller
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and the uncertainty in the opponent’s behavior. In light of
these considerations, we set the EV’s reference state ξref

k for
every prediction step based on the same zref to regularize the
EV to stay close to the target configuration over the entire
prediction horizon, aiming to make exploration more efficient
while saving computational efforts.

Eventually, the MPC optimal control problem solved at each
iteration is:

min
{uk}N−1

k=0

α

N∑
k=1

∥ξk − ξref
k ∥2Q + (1− α)

(N−1∑
k=0

qce
2
y,k

+ u⊤
kRuk +∆u⊤

kRd ∆uk − qss
2
N

)
(17a)

s.t. ξk+1 = ξk + f(ξk,uk)T ∀k = 0, . . . , N − 1 (17b)
s0 = s(ξt) (17c)

sk+1 = sk + Vx,kT ∀k = 0, . . . , N − 1 (17d)
wr,k ≤ ey,k ≤ wl,k ∀k = 1, . . . , N (17e)

umin,k ≤ uk ≤ umax,k ∀k = 0, . . . , N − 1 (17f)

0 ≥ h(ξk, ξ
O
k ) ∀k = 1, . . . , N. (17g)

Other than the penalty for deviations with respect to the refer-
ence state ξref, weighted by matrix Q ≥ 0, cost function (17a)
includes racing objectives from [13]: namely penalties for
lateral offset from the center line ey , and for large inputs
and large rates of change of the input, where qc > 0 and
R,Rd ≥ 0. Moreover, the last term is included to maximize
the progress of the EV along the track depending on qs > 0,
where s is the longitudinal position along the track, initialized
based on the current state ξt of the EV (17c) and predicted
based on the predicted longitudinal velocity Vx,k of the
EV (17d), as in the baseline [13]. Alternatively, s could be
handled as an independent optimization variable linked to the
state [43]. The cost function is a convex combination of the
reference tracking term and of the original racing term, ruled
by parameter α. If α = 0, the active exploration mechanism
is completely disregarded and the cost function coincides with
that from the baseline work [13], allowing a close comparison.

The EV dynamics (17b) is modeled as the dynamic bicycle
model without compensation, as in this scenario, we focus
exclusively on the uncertainty introduced by the unknown
policy of the opponent to allow a close comparison with [13].
Constraints (17e) and (17f) enforce track boundary and input
constraints, respectively. Constraint (17g) enforces collision
avoidance with the opponent, whose predicted state ξO

k at
step k is the GP prediction. The EV state reference ξref

k also
depends on the predicted opponent state ξO

k and on the selected
GP input feature reference zref through the procedure outlined
earlier in this subsection. Collision avoidance constraints also
take the uncertainty of the prediction into account, as explained
in the next subsection.

Probabilistic Collision Avoidance Constraints: Collision
avoidance constraints (17g) consist of ellipsoidal regions
around the predicted positions of the opponent that the EV
must not enter. At first, the minimum covering ellipse given
the physical dimensions of the opponent is considered; then,
the ellipse is expanded by considering the uncertainty around
the prediction of the opponent in longitudinal and lateral

directions. Observe that the posterior covariance provided by
the GP is fundamental to expanding the forbidden ellipsoidal
regions. Finally, the constraints are implemented as soft con-
straints [13, Section IV], to allow for small violations of
the expanded ellipsoidal regions if this yields a significant
advantage in terms of performance, although such violation is
disincentivized. More details on the collision-avoidance con-
straints are reported in [13, Section IV]. It is worth observing
that, although the quadratic collision avoidance constraints
make the optimal control problem non-convex, the solution
is obtained efficiently using the FORCESPRO software [44].

Challenges and Limitations in Head-to-Head Racing:
Relying on the target GP input feature selected via Algorithm 1
might not result in sufficiently diverse data. In fact, the oppo-
nent’s future moves are not controlled by the EV, therefore the
EV cannot arbitrarily enforce the future configuration of the
two racing vehicles. It is possible that, while the EV is attempt-
ing to reach a given traffic configuration, the opponent reacts
in a way to counterbalance the movement of the EV, and the
configuration of the two reaches an equilibrium. In this case,
although the absolute position of the two vehicles changes,
the relative position does not change. If such equilibrium is
reached and the change in the relative configuration is smaller
than a threshold for several consecutive steps, we heuristically
modify Algorithm 1 to encourage the exploration of GP input
features corresponding to configurations of the two agents that
are different from the current configuration by reversing vector
Di in Algorithm 1, with a view to breaking the stalemate.
Furthermore, the target GP input feature is not updated for a
few iterations to avoid reaching the same equilibrium.

Also, it is worth noting that, other than the GP input features
that depend on both the EV and the opponent, namely the
longitudinal distance, sO −s, and the lateral distance, eO

y −ey ,
there exist several GP input features over which the EV has no
control, i.e., the opponent’s yaw angle and lateral velocity and
the curvature of the look-ahead points. Exploration cannot be
encouraged for such features. Therefore, when generating the
list of candidate GP input features {z(i)

O }nG
i for Algorithm 1,

we consider features that differ only in the components over
which the EV has influence. Otherwise, the algorithm might
choose a target GP input feature zref

O because of the high
posterior covariance given by the curvature value, for example,
which the EV cannot impose, and possibly resulting in a
relative configuration for which the posterior covariance is
already small. Focusing only on the input features over which
the EV has influence is beneficial also to maintain the number
of candidate target GP input features nG limited.

Iterative Framework in Head-to-Head Racing: Finally, we
outline how our iterative scheme works for the scenario with
the opponent. At first, an initial GP model is used during the
exploration phase. At this stage, it is not required that the GP
model is accurate since it will improve in the training after
the exploration phase. Nevertheless, a GP model is needed,
as the regions of the feature space that must be explored
are chosen using the posterior covariance. Therefore, a coarse
model is trained at first, possibly from data collected with other
opponents, and therefore not tailored for the current opponent.

Then, the exploration phase takes place, which starts with
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a high value of α in the EV optimal control problem (17).
The goal of this phase is a trade-off between winning the race
and collecting a variety of informative data points about the
opponent’s policy in reaction to several attempts of the EV.
At the end of the exploration phase, which can last for a few
minutes, the GP is retrained on a remote platform, while the
EV continues the competition. As soon as the training of the
updated GP model has been completed, the updated GP model
is transferred to the EV, which now can leverage an accurate
prediction of the opponent’s behavior and focus on winning
the race, that is, setting parameter α = 0 in problem (17).

IV. SIMULATIONS

In this section, we describe the simulations that were
conducted to validate our iterative GP regression framework
with active exploration mechanisms in both autonomous racing
scenarios. In the time trial, Section IV-A, we compare perfor-
mance with previous work [14], where a double iterative GP
regression framework is used without active exploration. We
show that our approach yields an improvement in the minimum
lap time as a result of the more accurate learning performance
that the enriched dataset from the exploration allows. Then, in
the challenge with the opponent, Section IV-B, we compare
our approach with the approach from [13], in which a GP
predictor of the future trajectory of the opponent is trained
on a large dataset of shorter runs. Notably, our approach
results in an improvement in the average EV performance as
a consequence of the improved prediction of the opponent
for further prediction steps, although our approach relies on a
significantly smaller dataset of measurements collected during
a single phase of exploration.

A. Time Trial

We used the same simulation setup as in previous work [14]
for an accurate and fair comparison. The closed-loop simula-
tions were carried out in the highly realistic racing simulation
platform Gran Turismo Sport from Sony Interactive Enter-
tainment Inc [15], using as EV the Audi TT Cup running
on the Tokyo Expressway Central Outer Loop Track. The
desktop computer wired connected to the Play Station 5 is
an Alienware-R13, with CPU Intel i9-12900 and GPU Nvidia
3090. Our code is developed in Python. The QP MPC optimal
control problem (9) is solved using qpsolvers [45]. The
MPC frequency is 20 Hz and the prediction horizon N = 20.
The nonlinear optimal control problem for path planning (18)
is solved using CasADi [46], [47]. The vehicle parameters
are reported in Table I. The GP regression is implemented
using GPyTorch [48], which exploits the GPU and adopts
an efficient and general approximation of GPs based on black-
box matrix-matrix multiplication. Over 10,000 data points are
supported in the GP dataset while preserving almost the same
prediction accuracy and making the GP regression estimation
feasible in real-time.

In our implementation, the maximum size of the dataset
is M = 2000. The risk parameter in the tightened con-
straints (10) is β = 0.6. It is important to observe that since
the target GP input feature is changed at each iteration of

TABLE I: Parameters of Audi TT Cup in GTS

Parameter Value
Total mass m 1161.25 kg

Length from CoG to front wheel lf 1.0234 m

Length from CoG to rear wheel lr 1.4826 m

Width of chassis 1.983 m

Height of CoG hc 0.5136 m

Friction ratio µ 1.5
Wind drag coefficient Cxw 0.1412 kg/m

Moment of inertia Izz 2106.9543 Nm

the MPC algorithm, we collect data points also about sudden
changes in the features, which are relevant for the GP model
in the planning problem (18). To speed up the target GP input
feature selection online in Algorithm 1, we evaluate and store
the covariance of each point in the list of candidate features
{z(i)}nG

i before the start of each trial, after retraining the
GP. Inspired by the discussion on the value of α provided
in the previous work [39], during the first two iterations,
we encourage the exploration setting α0 = 6

7 = 0.857 and
α1 = 5

7 = 0.714. These values were chosen to linearly
decrease α to zero in 7 steps, to completely stop the explo-
ration mechanism in 7 rounds. However, the results suggested
that after just a few rounds of exploration, the dataset of
selected diverse measurements would not change significantly
because the collected measurements are sufficiently diverse,
making further exploration not helpful. Therefore, from the
third iteration, α is set to zero, instead of gradually decreasing
it to zero, that is, from iteration number 2, the focus is
exclusively on minimizing the lap time.

In the first run, the EV uses the nominal MPC, without
the GP compensation, to track a curvature-optimal path [17],
and the measurements are used to train the two GPs. In
the following iterations, the GPs are exploited and the time-
optimal path is re-planned and tracked. The planning problem
is warm-started with the planned trajectory from the previous
iteration to discourage large deviations from the previous
trajectory since this could result in planning infeasible tra-
jectories. Furthermore, we have heuristically observed that the
optimal planned trajectory does not improve significantly after
the first iteration of the optimization, therefore we only run
one iteration. The iterative framework has been repeated for 7
iterations. Because of small uncertainties in the timing of the
communication network between the computer implementing
our algorithm and the simulation environment in the Play Sta-
tion, slight variations are observed when the same simulation is
repeated. Thus, we have repeated each simulation three times,
considering the mean of the measured times and the standard
deviation between the three trials.

First, we evaluate the learning performance over the iter-
ations, both for the GP used in the planning and for the
GP used in the tracking phase. The evaluation, shown in
Figure 2, investigates the prediction error over a dataset of
diverse measurements, collected during a run in which the
EV repeatedly deviated from the center line of the track.
With respect to the previous work [14], the diverse dataset
collected during the active exploration allows a reduction of
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(a) GP for planning, feature V̇y . (b) GP for planning, feature ψ̈.

(c) GP for tracking, feature Vy . (d) GP for tracking, feature ψ̇.

Fig. 2: Prediction error between compensated model and
data of the dynamics, for each iteration in Time-Trial task.
Each simulation has been repeated for three trials: solid lines
indicate the mean, and the shaded areas represent the standard
deviation across the three trials.

(a) Data collected for Vy .

(b) Data collected for ψ̇.

Fig. 3: State analysis of Time Trial simulations in Gran
Turismo Sport. Data was collected in the first iteration, in
which the EV dynamics is tested by repeatedly deviating from
the trajectory of the planned path (α0 = 6/7).

the prediction error for both the GP used in the planning and
the GP used in the tracking phase.

Figure 3 presents the data collected in the first iteration.
Both from the signal of the longitudinal velocity Vy , Figure 3a,
and the signal of the derivative of the yaw angle ψ̇, Figure 3b,
we observe that during the run the EV dynamics is tested by
repeatedly deviating from the trajectory of the planned path.

In conclusion, we discuss the advantages of our method
evaluating the lap time of the optimal planned trajectory and
the recorded lap time during the experiments, since the GP
compensates the nominal dynamics both at run time and in the

planning phase. Figure 4 shows the lap times obtained with
the comparison with the Double GP method, the previous
approach [14], and our proposed Double GP+Exploration
which includes our active exploration method in Algorithm 1.
For convenience, iteration 0 is the first trial in which the GP
compensation is used, that is, neglecting the curvature-optimal
run. As shown in Figure 4a, in our approach, the time of the
optimal planned path increases over the iterations, although
the dispersion within repeated simulations decreases. This is
understood as a consequence of the improvement in learning
performance. In fact, the goal of the path planner is to derive
the optimal path that is feasible for the actual dynamics of the
EV, therefore it is reasonable that a more accurate dynamics
results in an optimal planned path with higher lap time.
Considering the actual lap time measured at each iteration,
reported in Figure 4b, we first observe a significant increase
in the lap time yielded by our algorithm, which is due to
the fact that in the first two iterations, the exploration takes
place, and therefore the performance objectives are partially
compromised to collect diverse measurements. However, from
iteration 2, the focus of the EV is on minimizing the lap
time and we observe a decrease in the minimum time as well
as in the deviation between repeated simulations compared
to the baseline [14]. Finally, the difference between the lap
time of the planned path and the actual lap time of the run,
Figure 4c, shows that the diverse dataset resulting from the
active exploration reduces the gap between the time of the
planned path and the actually achieved minimum time over
the iterations.

B. Head-to-head Racing

For the competition against the opponent, we use the simu-
lation setup from [13], which implements a racing environment
for miniature racing cars1 The control frequency is 10 Hz, and
the prediction horizon is N = 10. All simulations are run on
a laptop with an AMD Ryzen 5 3500U eight-core processor.

Vector κ in the GP input feature (16) consists of the cur-
vature at three look-ahead points, to facilitate the comparison
with [13]. In all simulations, the opponent is implemented as
an MPC-controlled agent with a blocking policy [12]. Other
than performance-based objectives, the cost function of the
opponent penalizes deviations from the current lateral position
on the track of the EV, so that the opponent “mirrors” the EV
lateral behavior and blocks overtaking attempts. To encourage
overtaking attempts of the EV, the parameter qs ruling the
progress maximization reward of the EV in (17a) is set higher
than for the TV. Further details are given in [13].

We compare two methods for modeling the opponent with
the GP. In Baseline [13], the GP model for the opponent is
trained using closed-loop trajectories from an offline dataset
of 500 runs in which the EV starts behind the opponent
on randomly generated tracks. In contrast, our proposed
Data Selection + Exploration method uses the iterative and
exploration-based approach presented in Section III-B. For the
initial GP model, we use a smaller initial offline dataset of

1https://github.com/MPC-Berkeley/gp-opponent-prediction-models. The
optimal control problem (17) is solved using the FORCESPRO software [44].

https://github.com/MPC-Berkeley/gp-opponent-prediction-models
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(a) Time of the planned path. (b) Time measured during closed-loop test. (c) Gap between planned and measured times.

Fig. 4: Lap times obtained in each iteration in Time Trial simulations in Gran Turismo Sport. Each simulation has been repeated
for three trials: solid lines indicate the mean over the three trials, and the shaded areas represent the standard deviation across
the three trials. At each iteration, Double GP+Exploration uses α0 = 6/7, α1 = 5/7, and α2+ = 0 to transition from high
exploration to no exploration.

20 runs, generated with the same mechanism as the Baseline
method. This allows us to test how well the GP model can be
improved during the exploration. The exploration phase lasts
10 minutes of simulation time and is run on the closed track
provided by [13]. During exploration, we set α = 0.9, so that
the EV focuses primarily on testing the opponent’s reaction
to several EV movements. We simulate only one exploration
and retrain phase, thus the GP model is retrained only at the
end of the exploration. Then, the parameter α is set to zero,
that is, the EV focuses exclusively on winning the race.

To test each method, we randomly generate a set of 100
scenarios. A track is randomly generated from straight, curved,
and chicane stretches, and the length and curvature of each
stretch are randomly selected. For each track, the initial
longitudinal position and velocity of the cars are randomly
generated, but the EV is always behind, to test the overtak-
ing ability. Each simulation is interrupted 1.5 seconds after
overtaking occurs, or when the EV reaches the track end.

We summarize the results in Table II. In 100 simulations,
no major collision is observed—the EV never leaves the track
or crashes during the trials. Nevertheless, the EV hits the track
border in 2 simulations when the GP predictor from [13]
is used, and 5 times when using our GP trained with the
exploration data. These minor collisions could be prevented
by adding safety margins to the constraints, at the price of
compromising the performance. For the average overtaking
time, we consider the simulations on the 93 tracks in which
the EV stays strictly inside the track boundaries with both
predictors. On average, the EV overtakes the opponent 0.33
seconds earlier when using the GP trained on the exploration
data compared to the baseline approach. It should be observed
that this improvement in the EV performance is achieved with
a significantly smaller training dataset, that is, roughly 600
data points collected during the exploration, as opposed to
the dataset of sample runs used to train the baseline GP [13],
consisting of roughly 5000 data points. The video available at
https://youtu.be/gaAuzsR2fII shows the exploration phase in
the challenge with the opponent and the transition to focusing
on winning the race after the training of the GP with the
enriched dataset.

Finally, we analyze the GP prediction accuracy to test how
well the data selection and exploration mechanisms reduce
model error. We compare the methods to a third GP, the Data

Selection method, which trains a GP on a small dataset of
the most diverse measurements within the dataset used for
the Baseline GP, therefore without exploration. The dataset
is selected using the procedure outlined in Section III. We
evaluate the impact of employing only the most diverse data
points collected within several runs, without employing the
active exploration mechanism in the data collection. We assess
model accuracy by comparing the prediction error of the lateral
position of the opponent, which is of primary concern for
overtaking maneuvers. We perform the analysis offline using
the 200 closed-loop trajectories of the opponent collected from
the simulations on the 100 tracks in which the EV first uses
the Baseline GP and then our GP with Data Selection and
Exploration. Since the trajectory of the opponent depends on
the EV’s own behavior, we repeat the prediction offline using
data from all 200 trajectories for all three GP predictors, for
a fair comparison.

The analysis of the accuracy is shown in Figure 5, using
the data from one of the 200 closed-loop opponent trajectories.
Furthermore, on the right of Table II we report the average re-
sults over all 200 closed-loop trajectories. Each GP method has
a comparable accuracy in the 1-step-ahead prediction of the
lateral position of the opponent, shown in Figure 5a. However,
there are occasional spikes in prediction error, especially with
the GP only using Data Selection to improve dataset diversity.
This likely indicates that exploration is necessary to improve
the diversity of the dataset and, thus, the accuracy of the GP.

While 1-step prediction accuracy is important, accurately
predicting the opponent’s behavior over long time horizons
is also very important, given the fact that the EV’s behav-
ior is predicted using an N-step prediction horizon in the
MPC. Thus, we compare each method’s 9-step prediction
accuracy in Figure 5b. Our proposed GP with data selection
and exploration significantly outperforms the other methods,
resulting in a smaller 9-step prediction error compared to the
two other predictors. In fact, comparing the average t-step
prediction error in Figure 5c as a function of the number of
steps in the horizon t, we see that the exploration mechanism
decreases modeling error compared to the Baseline GP or Data
Selection alone. As expected, each method’s accuracy deteri-
orates for further prediction steps; however, our exploration-
based GP results in the slowest increase in the mean and
standard deviation of prediction error as the prediction horizon

https://youtu.be/gaAuzsR2fII
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TABLE II: Head-to-Head racing results over 100 tracks

Average overtaking Prediction error mean±std [m] over all simulations

GP Predictor type Hit track border time mean±std [s] 1-step-ahead 2-step-ahead 8-step-ahead 9-step-ahead

Baseline [13] 2 12.772±4.353 0.003±0.003 0.009±0.009 0.100±0.100 0.119±0.119

Data Selection
+

Exploration
5 12.442±5.041 0.004±0.004 0.007±0.007 0.046±0.046 0.055±0.055

Data Selection1 / / 0.005±0.005 0.011±0.011 0.108±0.105 0.131±0.127

1 The Data Selection GP predictor is only used for the offline analysis of the prediction accuracy. Therefore, we only report the
average prediction errors computed in the offline analysis with respect to the closed-loop opponent trajectories.

increases. Since the Baseline GP and GP with Data Selection
achieve similar modeling performance, this indicates that the
exploration mechanism can make a notable improvement in
the training dataset by purposefully opting to collect data
in regions with greater modeling uncertainty. Thus, with the
greater long-step prediction accuracy of the opponent’s model,
our GP with Data Selection and Exploration improves the
performance of the EV, since the strategic decisions especially
rely on the prediction for further steps.

V. DISCUSSION

An important aspect regarding active exploration, especially
in head-to-head racing, is the criterion to terminate the ex-
ploration phase. The decision should be grounded on the
improvement in GP’s prediction accuracy. However, assessing
the prediction accuracy requires retraining the GP with the
updated dataset, which is time-consuming and, although it
could be possible in principle between different runs for the
time trial, it is not feasible in real time for head-to-head
racing. We instead assess the diversity of collected measure-
ments. During operation, the dataset is incrementally extended
with new measurements following the procedure outlined in
Section III-A. In practice, the dataset reaches a steady state
after a few minutes of exploration, after which most new
measurements are discarded as they no longer enhance data
diversity. Thus, the data update frequency serves as a good
heuristic to determine when to conclude the exploration phase.
Meanwhile, the update rate is also used to guide the systematic
scheduling of the exploration weight, α, during exploration:
higher rates suggest that the dataset does not well represent the
feature space, thus exploration should be encouraged; instead,
lower rates suggest the dataset is sufficiently diverse, thus
exploration should be discouraged, and α should gradually
decay to zero to focus on winning the race.

Potentially, multiple rounds of exploration with more fine-
grained data update strategy and α scheduling can be investi-
gated to further optimize the exploration procedure. However,
it should be noted that the exploration and following training
phase must not take too long with respect to the duration of
the competition. Otherwise, too little time remains to focus on
taking advantage of the improved model to win the race. Our
simulation results show that a single phase of exploration with
the simple termination strategy described above already yields
a significant improvement, as we discuss in Section IV-B.

(a) 1-step-ahead prediction during the run.

(b) 9-step-ahead prediction error during the run.

(c) Average prediction error t-seconds-ahead. Solid
lines indicate the mean, the shaded areas the standard
deviation.

Fig. 5: Prediction error of the opponent lateral position ey
with respect to the same closed-loop trajectory from one of
the closed-loop trajectories opponent.

Furthermore, the framework proposed in this work implic-
itly assumes that the behavior of the opponent and its reaction
to the EV is stationary—which is a common assumption in
literature [13]—and thus can be accurately learned with data
collected in finite exploration time. If the opponent is similarly
featured with exploration capabilities of the EV behavior,
this might not be the case, since the opponent policy will
keep changing. One possibility to deal with a time-varying
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opponent policy is to run several phases of exploration, then
exploitation, and re-exploration when the prediction error
grows again. However, in the presence of an opponent with
symmetric exploration capabilities, this strategy might result
in a deadlock. A thorough discussion and a practical solution
to this problem are beyond the scope of this work, which we
leave as potential future extensions.

Finally, although we introduce a GP compensation term in
the hope of capturing the dynamic effects not modeled by the
nominal bicycle model, the feature space of the GP is still
defined from the state space of the bicycle model. As a result,
certain unmodeled phenomena are not able to be captured by
the GP model due to some missing states, for example, the roll
and pitch angles of the vehicle. Nevertheless, we still managed
to achieve significant improvement compared to pure physics-
based models, showing the promising potential of our GP-
based compensation model and active exploration scheme. To
further enhance the model’s accuracy, one potential solution
to account for the missing states is to add the history of the
observations to the GP’s inputs so that the model can learn
to implicitly infer the unobservable states, which we plan to
explore in our future work.

VI. CONCLUSION

In this work, we presented an iterative Gaussian Process
regression scheme for autonomous racing implementing an
active exploration mechanism. During the first iterations, the
EV trajectory is planned trying to collect measurements for
the states with high posterior covariance. Among the collected
measurements, a smaller dataset is obtained, selecting the
most diverse data points, and is used to retrain the Gaussian
Process model. Then, in further iterations of the algorithm, the
focus is exclusively on improving the performance of the EV,
leveraging on the improved prediction accuracy. We showed
that the GP exploration method can be applied both when the
GP model is used for error compensation and for opponent
modeling. We tested the framework to compensate for the
modeling errors in the EV dynamics near handling limits in
Gran Turismo Sport [15], and to model the opponent’s reaction
to the EV’s own decisions in a simulation environment. In
both scenarios, we obtained a significant improvement in the
prediction accuracy and, consequently, in the EV performance.

Future research will focus on validating the active explo-
ration approach for the opponent challenge in other simulation
environments, with a special focus on the generalizability
of the approach to different opponent policies. In addition,
theoretical guarantees that the iterative framework improves
the accuracy of the GP should be researched. Furthermore,
the framework will be tested in scenarios where both uncer-
tainties, namely modeling errors in the vehicle dynamics and
the opponent policy, are tackled simultaneously. Moreover,
strategies to address scenarios in which the opponent policy is
non-stationary and possibly also implementing an exploration
strategy should be investigated.

Another interesting direction for future research stems from
the fact that exploration mechanisms relying on the measure
of uncertainty provided by the GP tend to generate uniform

experiment designs. However, the ultimate goal of the control
is to drive the EV optimally, not purely minimize the model
uncertainty. In light of this, new exploration strategies not
based on heuristics should be developed and tested.
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APPENDIX

PLANNING OPTIMAL CONTROL PROBLEM

We transform the integral in time into an integral in the
spatial domain [49] and closely approximate the solution that
would be obtained by directly considering the lap time as
objective, as in [17], where a more complete discussion is
provided. The time-optimal trajectory is obtained by solving

min
{uk}

Np−1

k=0

Np−1∑
k=0

(1− κ(sk)ey,k)∆sk
Vx,k cos(eψ,k)− Vy,k sin(eψ),k

(18a)

s.t. ξk+1 = ξk + f(ξk,uk)T+µplan(zplan(ξ̂k, ûk)),

∀k = 0, . . . , Np − 1 (18b)
ξNp

= ξ0 (18c)
wr,k ≤ ey,k ≤ wl,k, ∀k = 1, . . . , Np (18d)
δmin,k ≤ δk ≤ δmax,k, ∀k = 0, . . . , Np − 1, (18e)

where Np is the length of the horizon for the planning
problem. Cost function (18a) results from the transformation
of the time-optimal objective into an integral in the spatial
domain, as in [17], and ∆sk is the incremental longitudinal
progress along the path. Constraint (18c) enforces that the path
starts and ends in the same point, whereas (18d) and (18e)
guarantee that the trajectory does not leave the right and left
track boundaries wr and wl and that the steering angle δ
remains in the actuation range [δmin, δmax]. Constraint (18b)
guarantees that the planned trajectory is feasible for the vehicle
dynamics, which is crucially important to ensure that the
vehicle can track the optimal trajectory. µplan(zplan(ξ̂k, ûk))
represents the modeling error compensation provided by the
GP model, correcting the inaccuracies of the physics-based
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model when the vehicle is driven at handling limits. We model
the dynamics compensation as a GP

gplan(zplan) ∼ N
(
µplan(zplan),Σ

plan(zplan)
)
. (19)

We compensate the two states with the greatest impact
on the prediction error, namely V̇y and ψ̈ [14], therefore
µplan(zplan) = [0, µplan

V̇y
(zplan), µ

plan
ψ̈

(zplan), 0, 0, 0]
⊤ [3]. As

in [14], we consider as input features of the planning GP gplan

vector zplan = [Vy, ψ̇, δ]
⊤, being the most correlated with the

output features. In order not to embed the GP model into the
optimization problem, the input feature zplan is defined with
respect to nominal state and input vector ξ̃k and ũk, that is,
the solution of the previous iteration of the optimization [17],
rather than on the actual state and input.
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