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A B S T R A C T   

Microcirculatory dysfunction has been observed in the dermal white adipose tissue (dWAT) and subcutaneous 
white adipose tissue (scWAT) of obese humans and has been proposed as an early prediction marker for cardio- 
metabolic disease progression. In-vivo visualization and longitudinal monitoring of microvascular remodeling in 
these tissues remains challenging. We compare the performance of two optoacoustic imaging methods, i.e. multi- 
spectral optoacoustic tomography (MSOT) and raster-scanning optoacoustic mesoscopy (RSOM) in visualizing 
lipid and hemoglobin contrast in scWAT and dWAT in a mouse model of diet-induced obesity (DIO) undergoing 
voluntary wheel running intervention for 32 weeks. MSOT visualized lipid and hemoglobin contrast in murine fat 
depots in a quantitative manner even at early stages of DIO. We show for the first time to our knowledge that 
RSOM allows precise visualization of the dWAT microvasculature and provides quantitative readouts of skin 
layer thickness and vascular density in dWAT and dermis. Combination of MSOT and RSOM resolved exercise- 
induced morphological changes in microvasculature density, tissue oxygen saturation, lipid and blood volume 
content in dWAT and scWAT. The combination of MSOT and RSOM may allow precise monitoring of micro-
circulatory dysfunction and intervention response in dWAT and scWAT in a mouse model for DIO. Our findings 
have laid out the foundation for future clinical studies using optoacoustic-derived vascular readouts from adipose 
tissues as a biomarker for monitoring microcirculatory function in metabolic disease.   

1. Introduction 

Vascularization regulates adipose tissue function [1–3]. Vascular 
function in adipose tissue is a key factor in metabolic diseases and thus 
blood vessels are a promising target for overcoming metabolic pertur-
bations associated with obesity [3–7]. As a result, the study of the 
interplay between vascularization and adipose tissue has attracted 
increasing attention [8,9]. Non-invasive examination of vascular func-
tion in vivo in adipose tissues may be suitable as a biomarker for disease 

monitoring or for examining treatment efficacy in obesity and related 
metabolic diseases. 

Immunostaining of isolated tissue samples is currently used for ex 
vivo studies of vascularization in adipose tissues in both humans and 
mice [10–16]. However, this approach is not suitable for longitudinal 
observations as it requires multiple tissue biopsies or sacrifice. Thus, a 
non-invasive imaging tool that can visualize and quantify lipids and 
blood constituents simultaneously or allow repeated assessments of 
vascular function in a pathological or therapeutic context would be 
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essential for longitudinal monitoring of disease progression and treat-
ment response. Even though non-invasive imaging methods such as 
Magnetic Resonance Imaging (MRI) [17,18], Computed Tomography 
(CT) [19–21], and ultrasonograpy [22,23] can visualize the change in 
adipose tissue volume under physiological, pathological and therapeutic 
conditions, they require contrast agents for measuring microvasculature 
or blood volume parameters in adipose tissue, challenging in vivo and 
disseminated applications. 

The multi-faceted functions of dermal white adipose tissue (dWAT) 
have recently drawn much research attention and may also serve as 
prediction markers for metabolic disease progression [24–28]. It has 
been observed that vessel density in adipose tissues decreases under 
obese conditions in mice and humans[5,6]. This phenotype can be 
rescued by exercising mice [11,12,24,29,30]. Studies that used rodent 
obesity models to demonstrate the vasculature dysfunction in adipose 
tissues in obesity[30–32], or its potential as a therapeutic target[3, 
33–36], employed end-point assays such as staining or in vitro assays to 
analyze vessel functions. However, such invasive tissue interrogation is 
not suitable for monitoring vascular changes in vivo and longitudinally. 
Therefore, the effects of obesity-induced vascular dysfunction and the 
potential for exercise to rescue this phenotype have not been demon-
strated in live animals. 

In-vivo and longitudinal observations could be enabled by opto-
acoustic imaging. Optoacoustic visualization can interrogate tissues at 
the microscopic (~1 mm depth), mesoscopic (<1 cm depth) or macro-
scopic level (>1 cm depth) and simultaneous deliver anatomical, func-
tional and molecular contrast [37–39]. Within the family of 
optoacoustic imaging implementations, Multispectral Optoacoustic 
Mesoscopy (MSOT) operates at the macroscopic regime and can separate 
spectral contributions of tissue chromophores such as lipids or oxygen-
ated and deoxygenated hemoglobin by multi-wavelength illumination 
[40,41]. MSOT has been further employed to visualize brown adipose 
tissue (BAT) and white adipose tissue (WAT) in vivo and record BAT 
activation under cold exposure or drugs in animals and humans [42,43] 
or the distribution of lipoma and its vascularization [44]. At the meso-
scopic regime, Raster-scanning optoacoustic mesoscopy (RSOM) reaches 
depths of several mm in tissue with resolutions in the 10–30 µm reso-
lution [39,45], much higher than that of MSOT, which is in the range of 
no less than 100 µm [46]. RSOM has been used to study microvascula-
ture in epidermis and dermis in human skin or assess skin microvascu-
lature changes in patients with diabetics [47]. 

Herein, we explore for the first time the suitability of optoacoustic 
methods in the study of adipose tissue and its vascularization and 
investigate the relative performance of MSOT and RSOM in dWAT im-
aging. We demonstrate that MSOT can non-invasively image and 
quantify lipids and blood content in adipose tissues in obese and non- 
obese mice and as a function of exercise. We recapitulate findings of 
vascular dysfunction in interscapular BAT (iBAT) and scWAT in diet- 
induced obesity (DIO) in vivo and observe a previously undisclosed 
decrease in vessel density associated with dWAT in obesity, which can 
be rescued by exercise. The MSOT findings are confirmed by histology 
and RSOM and suggest a new role of dWAT vessel density as a possible 
biomarker for metabolic disease monitoring. In contrast to scWAT that is 
located deeper in tissue, dWAT sits below the dermis and can be reached 
by RSOM at a higher resolution than MSOT. Overall, our findings sug-
gest optoacoustic imaging as a suitable method for assessing tissue 
lipids, vasculature and blood content without contrast agents or 
endogenous labels. Therefore, the optoacoustic method may facilitate 
longitudinal and in-vivo animal research and drug development and has 
the potential to be clinically applied for in vivo monitoring of metabolic 
biomarkers. 

2. Methods 

Multi-spectral Optoacoustic Tomography and image analysis. 
MSOT measurements were performed using a 256-channel real-time 

imaging system (inVision 256, iThera Medical, Germany). The 
detailed information of the system has been reported in our previous 
work[40,48]. For the mice measurements, 27 optical wavelengths in the 
range of 700–960 nm with step of 10 nm were applied to collect 
multi-spectral optoacoustic signals by using an optical parametric 
oscillator laser with a 50 Hz repetition rate. The optoacoustic signals 
were averaged 10 times at each wavelength during data acquisition. For 
in vivo mice measurements, animals were anaesthetized by continuous 
inhalation of 2 % isoflurane (vaporized in 100 % oxygen at 0.8 l/min) 
and subsequently placed within an animal holder in a supine position 
relative to the transducer array. The animals were kept into a thin, clear, 
polyethylene membrane and positioned in the water bath maintained at 
34 degrees, which provided acoustic coupling and maintained animal 
temperature while imaging. The detailed procedure of handing mice in 
the MSOT imaging system was clearly described in our previous work 
[40,48]. MSOT data were analysed by ViewMSOT software (v3.8, iThera 
Medical, Munich, Germany). MSOT images were reconstructed using the 
model linear method. For unmixing of Hb, HbO2, Lipid, H2O, and ICG, a 
linear regression method was used to fit the acquired data and estimate 
the constituent spectra and their proportion distribution[48]. Each 
unmixing data point for statistics was averaged from three ROIs in the 
same subject. 

Histopathology. Adipose tissue specimen were sampled according 
to established organ sampling and trimming guidelines for rodent ani-
mal models [49]. The samples were fixed in neutrally-buffered 4 % 
formaldehyde solution for 24 hours and subsequently routinely 
embedded in paraffin. 3 µm thick sections were stained with haema-
toxylin and eosin (HE), using a HistoCore SPECTRA ST automated slide 
stainer (Leica, Germany) with prefabricated staining reagents (Histo-
Core Spectra H&E Stain System S1, Leica, Germany), according to the 
manufacturer’s instructions. Histopathological examination was per-
formed by a pathologist in a blinded fashion (i.e., without knowledge of 
the treatment-group affiliations of the examined slides). 

RSOM imaging and data analysis. The present study used an in- 
house portable RSOM imaging system featuring a transducer with cen-
tral frequency of 50 MHz, which has been described in detail elsewhere 
[50,51]. An Onda laser (Bright Solutions, Italy) with dimensions of 
19×10×9 cm3 was used to provide light with wavelength of 532 nm. 
The repetition rate of the laser was 1 kHz, yielding an optical fluence of 
3.75 µJ/mm2 under the safety limit. The anaesthetized mouse was 
placed onto a bed and into a warmed water bath, with the scanned re-
gion under the water level and the head above the water level. An 
optically and acoustically transparent plastic membrane was affixed 
using surgical tape on the mouse skin at the scanned region. The scan-
ning head containing the laser output and transducer was brought close 
to the membrane to position the focal point of the ultrasound detector 
slightly above the skin surface and thereby maximize detection sensi-
tivity. The scanning head contained water as coupling medium. Two 
mechanical stages (PI, Germany) were used to scan the RSOM head. The 
laser and controller of the mechanical stages were both stored inside a 
plastic case, which ensured laser safety. The scanning field of view is 
4×2 mm2 with step size 7.5 µm in the fast axis and 15 µm in the slow 
axis. The total scanning time of one measurement took about 70 s. For 
image reconstruction, optoacoustic signals were separated into lower 
(10–40 MHz, red) and higher (40–120 MHz, green) frequencies to 
distinguish larger (diameter of 50 to more than 100 µm) and smaller 
(diameter of 10–40 µm) vessels, respectively. This bandwidth separation 
was performed for all RSOM dataset using the same method by using the 
same frequency ranges, meaning that larger (red encoded) and smaller 
(green encoded) vessels represent the same size range throughout all 
mice measurements. The two reconstructed images Rlow and Rhigh cor-
responded to the low- and high frequency bands. A composite image was 
constructed by fusing Rlow into the red channel and Rhigh into the green 
channel of a same RGB image. The detail process has been introduced in 
our previous work [50]. 
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To compute dWAT thickness, RSOM images were first flatted based 
on our surface detection approach [52]. The reconstructed volume of 
selected frequency band (10–40 MHz) was split into four stacks with 
0.5 mm thickness along the slow scanning axis. Then, the dermis layer in 
the MIP image of each stack were automatically segmented by graph 
theory and dynamic programming-based approach [53]. The thickness 
of the dermis layer was calculated as the average width of the four 
segmented boundaries. The dermis layer was segmented as starting from 
the bottom boundary of the dermis layer and further extending 1 mm 
depth. In the 4×2 mm scanning region, the vessel density in the 
segmented dermis layer was calculated as N× dV, where N represents 
the number of voxels with intensity above 20 % of the maximum voxel 
intensity, and dV is the voxel volume. 

Mouse studies. Age-matched male mice (Jackson laboratory; strain 
# B6(Cg)-Tyrc− 2 J/J) were divided into chow Altromin 1310; 14 kcal% 
fat, 59 kcal% carbohydrates) and high fat-diet (HFD); D12331; 58 kcal% 
fat and 25.5 kcal% sucrose, Research Diet, New Brunswick, NJ, USA) 
groups. Each SD and HFD groups were further divided into either 
sedentary control group or exercise group. The exercise group had free 
access to voluntary wheels within their home cage. The wheel running 
profile (Figure S7) which includes time, duration, and speed was 
monitored using a commercially available wifi wheel running system 

(Low-Profile Wireless Running Wheel, Med associates inc, St. Albans, VT 
05478, US). To avoid social stress, two mice per cage were housed 
throughout the duration of the study). At the end of the study, mice were 
euthanized with over dose of ketamine and xylazine and blood and or-
gans were collected. The animal studies were approved and conducted 
in accordance with the Animal Ethics Committee of the government of 
Upper Bavaria, Germany. 

Statistics. Data were analyzed using GraphPad Prism (v. 8.4.2; 
GraphPad Software, La Jolla, CA). All data presented as mean ± SEM 
unless otherwise stated. Group size (n) is indicated for each experiment 
in figure legends. Student’s t-test was used for comparisons of two in-
dependent groups. One-way ANOVA followed by Tukey’s post hoc test 
was used for comparing more than two independent groups. A p-value of 
< 0.05 was considered as statistically significant. Significant digit: *P<
0.05, **P< 0.01, *** P< 0.001. 

3. Results 

3.1. MSOT of lipid, total blood volume and tissue oxygenation of scWAT 
and iBAT in lean male mice 

MSOT (Fig. 1A) identified three distinct fat depots, iBAT, scWAT and 

Fig. 1. MSOT imaging of brown adipose tissue (BAT) and white adipose tissue (WAT) in vivo. A. Reconstructed MSOT image (800 nm) with linear unmixing data in 
neck, upper, middle and lower abdominal area. Higher magnitude images are showing neck region with anatomical reference from cryo section image. Unmixing 
result: blue for Hb (deoxy-haemoglobin), red for HbO2 (oxy-haemoglobin), yellow for lipid. The color bar shows the color coding of MSOT a.u. from minimum to 
maximum (bottom to top). B. For visualization purposes spectra are normalized to maxima. Spectra of interscapular brown adipose tissue (iBAT) and subcutaneous 
white adipose tissue (scWAT). n = 5. C. Unmixing result of lipid from iBAT and scWAT, n = 5. D. Total blood volume (TBV) results from iBAT and scWAT, n = 5. E. 
Tissue oxygenation (sO2) results from iBAT and scWAT, n = 5. dWAT: dermal white adipose tissue. 
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dWAT in the neck region of mice (Fig. 1A, lower panel). To verify that 
MSOT can distinguish BAT from WAT, we acquired spectral data in the 
700 nm to 960 nm range from regions of expected iBAT and scWAT 
(Fig. 1B) and then unmixed the signals determining the lipid, oxygen-
ated hemoglobin and deoxygenated hemoglobin content. Already from a 
qualitative inspection of the mean spectra (mean over area and N=5 
mice) between 700 nm and 880 nm, the lipid peak at 930 nm is rela-
tively more prominent in the case of scWAT suggesting higher lipid 
content. In contrast relative signals of the spectral region corresponding 
to hemoglobin absorption was more pronounced for iBAT suggesting 
higher vascularization relative to lipid. Using the spectral data, we un-
mixed the lipid and blood contents in scWAT and iBAT. As suggested by 
the spectra shown in Fig. 1C, scWAT contained significantly more lipid 
than iBAT, while iBAT exhibited a higher total blood volume (TBV) than 
scWAT (Fig. 1D). Tissue oxygenation (sO2) readout measured by MSOT 
revealed that sO2 rates between iBAT and scWAT were similar (Fig. 1E). 

3.2. MSOT of lipid and blood content in murine fat depots at the onset of 
DIO 

Following the MSOT assessment of adipose tissue in male mice fed 
with standard diet (SD), we studied whether MSOT could monitor 
obesity-mediated pathological changes in adipose tissues in a DIO 
mouse model. Male mice were fed high fat diet (HFD) or chow for 3 
months. The body weight of HFD-fed mice was significantly higher than 
SD-fed mice (Figure S1A). The weight of gonadal fat (gWAT), a visceral 
fat depot, inguinal fat (ingWAT) and a scWAT depot were all increased 
in HFD fed-mice, confirming a DIO phenotype (Figure S1 B-D). Consis-
tently, MSOT measurements revealed an increase in lipid content in both 
iBAT and scWAT upon HFD feeding compared to chow feeding (Fig. 2A). 
To enhance the visualization and relative comparison of spectral fea-
tures, we normalized all tissue spectra to the highest OA signal acquired 
in the 700–960 nm range (Figs. 2B and 2C). Qualitative inspection of the 
spectra, especially the relative contributions of regions from lipid ab-
sorption (930 nm) and hemoglobin (680–900 nm), of iBAT from HFD- 
fed mice showed a much more prominent lipid peak at 930 nm 
compared to chow-fed mice, indicating a higher lipid content (Fig. 2B). 
In contrast, the change in scWAT spectra caused by DIO was less obvious 
(Fig. 2C). After spectral unmixing, the lipid content readout from iBAT 
showed significant increase in DIO mice compared to lean mice, indi-
cating an ectopic accumulation of lipid in the tissue (Fig. 2D, E). This 
observation was consistent with our histology findings showing larger 
fat vacuoles in iBAT from DIO mice, as compared to lean mice 
(Figure S2A). By quantifying the coverage of fat area from histological 
images, we found that iBAT from DIO mice has higher fat coverage than 
that from lean mice (Figure S2B). Compared to iBAT, we observed a less 
obvious change in the spectral composition in scWAT upon HFD feeding 
(Fig. 2F). The total blood volume in both iBAT and scWAT were all 
decreased in DIO mice (Fig. 2G, H, I). These findings were consistent 
with findings from other studies using end point ex vivo methods[5,6]. 
Even with one month of HFD feeding, similar results were obtained 
using MSOT in the same cohort, which indicates that vessel function was 
already altered, albeit to a lesser extent (Figure S3). 

3.3. Combination of MSOT and RSOM visualizes and quantifies 
accurately exercise-induced morphological changes in vessel density, tissue 
oxygen saturation, lipid and blood content of dWAT and scWAT 

After showing that MSOT accurately detects morphological changes 
in iBAT and scWAT of DIO mice, we determined whether exercise- 
induced modulation in adipose tissue mass and function can be moni-
tored by MSOT. As expected HFD fed male and female mice under 
sedentary conditions exhibited significantly higher body weights 
compared to sedentary chow diet fed mice. Exercise reduced body 
weights exclusively in HFD-fed male mice to that of chow-fed male mice, 
indicating a rescue of a DIO phenotype (Figure S4). In addition to iBAT 

and scWAT, we also analysed dWAT in these cohorts. The absorption 
spectrum of dWAT was similar to scWAT (Fig. 1B, S4). To analyse dWAT 
in the mouse body, we calculated the percentage of dWAT in the skin, 
which consists of the epidermis, dermis and hypodermis (dWAT) by 
MSOT and compared it to the percentage of dWAT in the skin calculated 
by 2D histology in order to validate our MSOT findings. Using MSOT, we 
also performed tissue content analysis for TBV to determine blood 
perfusion in the tissue. In parallel, we performed RSOM imaging to 
measure dWAT thickness and to visualize the vasculature in the different 
layers of the skin including dWAT. To validate our vascular readouts 
from MSOT and RSOM, we performed immunohistochemical staining 
for CD31 on skin tissue slices, a marker commonly used to demonstrate 
the presence of endothelial cells in histological tissue sections [54], and 
quantified the CD31 positive area (Fig. 3A). Our MSOT measurements 
revealed a significant increase of dWAT percentage in the skin of HFD 
fed male and female mice compared to chow fed mice (Fig. 3A-C; S1D). 
This finding was consistent with results obtained by an independent MRI 
measurement study [55]. Voluntary wheel running exercise restored 
dWAT volume in HFD-fed male mice to normal levels (Fig. 3A, B) in 
contrast to female mice where no significant changes in dWAT volume 
were detected after exercise (Fig. S4). Our MSOT findings were consis-
tent with the skin histology of HFD and chow fed mice (Fig. 3A, C). 
RSOM was also able to detect HFD-induced thickening of dWAT as well 
as the exercise-induced reduction in dWAT thickness in male mice only. 
In female HDF-fed mice exercise did not change the thickness of dWAT 
(Fig. 3A, D; S4). We then measured TBV by optoacoustic methods and 
validated our findings by analysing the CD31+ area coverage by 
immunohistochemical staining in the dermis and dWAT (hypodermis) 
layer of the skin (Fig. 3E-G, S6). We found that in dWAT, TBV measured 
by MSOT was significantly decreased in sedentary HFD-fed mice and this 
phenotype was rescued by voluntary exercise in male mice only 
(Fig. 3E). This increase in exercise-induced vascular density in HFD-fed 
male mice was confirmed by our histological staining. However, our 
histological CD31 based analysis did not confirm the significant 
decrease in vascular density in HFD-fed mice compared to chow fed 
mice that we observed by MSOT (Fig. 3F). We assume that this incon-
sistence is a result of comparing a two-dimensional output (area by 
CD31+staining) with the three-dimensional output (blood volume by 
MSOT). RSOM measurements detected a DIO-induced decrease of vessel 
density and the restoration of the latter by exercise in male mice 
(Fig. 3G). Exercise did not affect vessel density in the dermis of female 
mice (Fig S4). In contrast to dWAT, dermis had no change in CD31+ area 
coverage measured by histology and vessel density measured by RSOM, 
indicating an unaltered vascular function in dermis in DIO mice no 
matter whether they underwent voluntary running or not (Figure S6). 
MSOT was not employed for dermis analysis because of the limitation of 
resolution. 

4. Discussion 

In this study, we verified that MSOT can visualize and quantify lipid 
and blood contents in various adipose tissues, including iBAT, scWAT 
and dWAT of mice. For the first time to our knowledge, we observed in 
vivo that scWAT and iBAT exhibit a decrease in vascularization when 
DIO occurs [5,6]. Our non-invasive in vivo measurements replicate 
earlier findings by others using invasive ex-vivo and end-point ex vivo 
methods. Our approach allows repetitive and longitudinal non-invasive 
monitoring of vascular function in adipose tissues undergoing patho-
physiological processes in vivo, including, but not limited to, DIO asso-
ciated microvascular disease. In this study, we applied a preclinical 
version of MSOT modality. Although the clinical MSOT device shares the 
same principles with the preclinical MSOT device we used herein, the 
measurement and the quantification procedure need to be adjusted for 
human subjects, in which the depth of targeted tissue is different from 
mice. 

Here we found that MSOT can provide a quantitative readout for 
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Fig. 2. Comparison of blood and lipid content of BAT and scWAT between healthy and DIO mice using MSOT imaging. A. Reconstructed MSOT image (800 nm) with 
linear unmixing data of Hb, HbO2, and lipid from chow and high fat diet (HFD)-fed mice. The color bar shows the color coding of MSOT a.u. from minimum to 
maximum (bottom to top). B-C. For visualization purposes spectra are normalized to maxima. Spectra of BAT (B) and scWAT (C) from chow and HFD-fed mice. 
Healthy: n = 4, obese: n = 5. D. MSOT image of lipid unmixing from chow and HFD-fed mice. The color bar shows the color coding of MSOT a.u. from minimum to 
maximum (bottom to top). E-F. Unmixing result of lipid from BAT (E) and scWAT (F). G. MSOT image of TBV unmixing from chowand HFD-fed mice. The color bar 
shows the color coding of MSOT a.u. from minimum to maximum (bottom to top). H-I. Unmixing result of TBV from BAT (H) and scWAT (I). 
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blood volume in the tissue, but at the same time it does not allow 
visualization of small vessels due to insufficient resolution. To study the 
morphological changes in tissue vasculature, RSOM is a better choice of 
optoacoustic method compared to MSOT. It is important to note that 
RSOM can only reach about 5 mm depth in mouse tissue. Thus, RSOM is 

more suitable than MSOT for the study of dWAT, but not of iBAT or 
scWAT. Besides the visualization of morphological changes in the 
vasculature of the skin, which cannot be achieved by MSOT, RSOM can 
also provide quantitative readout of skin layer thickness, vascular den-
sity of different skin layers including dWAT (hypodermis) and dermis. 

Fig. 3. Comparison of dermal adipose tissue (dWAT) characteristic in chow and HFD-fed mice with or without exercise. A. MSOT, RSOM, HE and CD31 staining 
images from chow and HFD-fed mice with or without exercise. Scale bar: MSOT 2 mm, RSOM 500 μm, HE 500 μm, CD31 200 μm. The RSOM images are color-coded 
to represent the two reconstructed frequency bands (red: larger structures in the bandwidth of 10–40 MHz; green: smaller structures in the bandwidth of 
40–120 MHz). B-C, Percentage of dWAT in skin calculated from MSOT (B) and histology (C). D. dWAT thickness measured by RSOM. E. TBV in dWAT results 
measured by MSOT. F. CD31+ area coverage index in whole dWAT. G. TBV in dWAT results measured by RSOM. For data in B, C, E, F, Chow sedentary: n = 5, chow 
exercised: n = 6, HFD sedentary: n = 4, HFD exercised: n = 4. For data in D and G, each group n = 5. 
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The latter may be of critical importance for the accurate assessment of 
treatment success in diabetic patients suffering from skin frailty and 
impaired wound healing. In this study, we only employed one wave-
length for RSOM imaging allowing the visualization of blood. Since this 
wavelength does not allow lipid visualization, the identification of 
dWAT was based on vessel density, which is much lower in dWAT as 
compared to the attached dermal layer. However, a multi-spectra 
method has been recently developed for RSOM technology that will 
allow visualization of multiple contrasts in the tissue including lipid in 
future studies[56]. By using this multi-wavelength RSOM approach, 
measurements of dWAT will facilitate a precise skin layer analysis. 

Monitoring dWAT vascular function in physiological and patholog-
ical conditions, such as hair growth and wound healing, will provide 
valuable information on morphological changes in these processes, and 
most importantly provide tools to assess treatment response to 
vasculature-targeting drugs. For example, there is recent evidence that 
after depilation, HFD fed mice have a delayed entry into anagen phase in 
hair growth, in which hair follicles are in contact with dWAT to gain 
nourishment from dWAT’s blood supply [27]. Our observations on 
dWAT vascular dysfunction under DIO conditions may contribute to 
further understand as how obesity may affect hair growth. 

Clinical applications of optoacoustic imaging are rapidly emerging. 
Studies using clinical MSOT and RSOM indicated a great potential of 
these optoacoustic modalities for diagnosing skin diseases, vascular 
diseases, inflammatory diseases, and cancer [57]. However, these ap-
plications are mainly taking the advantage of optoacoustic imaging in 
visualization and quantification of blood content in the tissue and tissue 
metabolism since the dominant endogenous contrast in most of the tis-
sues is from haemoglobin. In this study, we applied optoacoustic im-
aging to visualize and quantify lipid and blood content simultaneously 
to monitor pathological changes in adipose tissues under DIO condi-
tions. Furthermore, we found that voluntary running exercise rescues 
vascular dysfunction caused by DIO in male mice in contrast to female 
mice. Our findings set up a base for future clinical studies using 
optoacoustic-derived vascular readouts from adipose tissues as a 
biomarker for the personalized monitoring of vascular function in 
response to stimuli or therapy. 
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