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Abstract

The discovery of topological order has revised the understanding of quantum matter and
provided the theoretical foundation for many quantum error–correcting codes. Finding
physical realizations of topologically ordered states in experimental settings, from con-
densed matter to synthetic quantum systems, has been the main challenge en route to
utilizing their unconventional properties. In this thesis, we explore the realization and
characterization of topological order on synthetic quantum systems. We present a theo-
retical proposal based on unitary quantum circuits to realize a large class of topologically
ordered states and simulate their quasiparticle excitations on a digital (gate-based) quan-
tum computer. To achieve this we design a set of linear-depth quantum circuits to generate
ground states of general string-net models together with efficient unitary string-like opera-
tors for creation and manipulation of abelian and non-abelian anyons. Our scheme allows us
to directly probe characteristic topological properties, including topological entanglement
entropy, braiding statistics, and fusion channels of anyons. We demonstrate the efficacy of
the scheme by a successful realization of a 31-qubit ground state with Z2 topological order
on the Google Sycamore quantum processor. Following the state preparation, in the next
part of the thesis, we propose a method to detect the quantum phases of matter from the
wavefunction via a model-independent training of quantum convolutional neural networks,
allowing for efficient characterization of quantum phases of matter on the prepared state.
At the end, we also briefly explain another possible approach for detecting topological
quantum phase transition based on the framework of quantum error correction. In the last
part of the thesis, we show how tensor-network states provide simple solutions to ground
states across symmetry-enriched topological (SET) phase transitions. Inspired by this, we
further show how to realize quantum phase transitions between states with distinct SET
order by using the new class of isometric tensor-network states (isoTNS). Using the pro-
posed scheme, we proposed two experimental protocols for realization and detection of an
SET phase transition on near-term digital quantum processors. One is based on the lattice
realization of the isoTNS with efficient quantum circuits, the other approach is based on
the holographic realization of the isoTNS.





Kurzfassung

Die Entdeckung der topologischen Ordnung hat das Verständnis der Quantenmaterie verän-
dert und die theoretische Grundlage für viele Quantenfehlerkorrekturcodes geschaffen. Die
größte Herausforderung auf dem Weg zur Nutzung ihrer unkonventionellen Eigenschaften
war es, im Experiment physikalische Realisierungen topologisch geordneter Zustände zu
finden, von kondensierter Materie bis hin zu synthetischen Quantensystemen. In dieser
Arbeit untersuchen wir die Realisierung und Charakterisierung der topologischen Ord-
nung in synthetischen Quantensystemen. Wir präsentieren einen theoretischen Vorschlag,
der auf unitären Quantenschaltkreisen basiert, um eine große Klasse topologisch geordneter
Zustände zu realisieren und ihre Quasiteilchenanregungen auf einem digitalen (quanten-
gatterbasierten) Quantencomputer zu simulieren. Um dies zu erreichen, entwerfen wir eine
Reihe von Quantenschaltungen mit linearer Tiefe, um Grundzustände allgemeiner String-
Net-Modelle zusammen mit effizienten unitären stringähnlichen Operatoren zur Erzeugung
und Manipulation von abelschen und nichtabelschen Anyonen zu erzeugen. Unser Schema
ermöglicht es uns, charakteristische topologische Eigenschaften, einschließlich topologis-
cher Verschränkungsentropie, Vertauschungsstatistiken und Fusionskanälen von Anyonen,
direkt zu untersuchen. Wir veranschaulichen die Wirksamkeit des Schemas durch die er-
folgreiche Realisierung eines 31-Qubit-Grundzustands mit der topologischen Ordnung Z2

auf dem Quantenprozessor Google Sycamore. Nach der Zustandsvorbereitung schlagen wir
im nächsten Teil der Arbeit eine Methode zur Erkennung von Quantenphasen von Materie
aus der Wellenfunktion über ein modellunabhängiges Training von Quantum Convolu-
tional Neural Networks vor, die eine effiziente Charakterisierung der Quantenphasen der
Materie im präparierten Zustand ermöglicht. Abschließend erläutern wir einen weiteren
möglichen Ansatz zur Erkennung topologischer Quantenphasenübergänge basierend auf
dem Rahmenkonzept der Quantenfehlerkorrektur. Im letzten Teil der Arbeit zeigen wir, wie
Tensor-Netzwerkzustände einfache Lösungen für Grundzustände über symmetrieangere-
icherte topologische (SET) Phasenübergänge hinweg bereitstellen. Davon inspiriert zeigen
wir außerdem, wie Quantenphasenübergänge zwischen Zuständen mit unterschiedlicher
SET-Ordnung mithilfe der neuen Klasse isometrischer Tensor-Netzwerk-Zustände (isoTNS)
realisiert werden können. Unter Verwendung des vorgeschlagenen Schemas haben wir zwei
experimentelle Protokolle zur Realisierung und Erkennung eines SET-Phasenübergangs
auf zeitnah verfügbaren digitalen Quantenprozessoren vorgeschlagen. Eines basiert auf
der Gitterrealisierung des isoTNS mit effizienten Quantenschaltkreisen, das andere auf der
holographischen Umsetzung des isoTNS.
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1. Introduction

It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with
experiment, it’s wrong.

Richard P. Feynman

Matter in nature exists in different phases, such as liquid and solid, resulting from the in-
teraction of many microscopic constituent particles. The many-body phenomena, ranging
from spontaneous symmetry breaking and topological phases of matter, to the universality
of phase transitions and non-equilibrium dynamics, have been a central focus of condensed
matter physics. The quantum phases of matter, i.e. the phases of matter at zero tempera-
ture, exhibit rich and fascinating phenomena due to the many-body interaction and strong
quantum fluctuation. Various exotic quantum phases of matter have been predicted or dis-
covered to exist, including the symmetry-breaking phases [10, 11], the symmetry-protected
topological (SPT) phases [12–18], intrinsically topological phases [19–21] and more gen-
erally the symmetry-enriched topological (SET) phases [22–30]. Unfortunately, quantum
phases of matter are challenging to understand—they are described by exponentially grow-
ing Hilbert space as the system size increases. While powerful classical computational
methods exist, e.g. Density Matrix Renormalization Group (DMRG) [31, 32] and Quan-
tum Monte Carlo (QMC) [33], they are applicable to quantum systems in low dimensions
or to a very restricted class of problems. The simulation of general quantum many-body
systems remains a major challenge.

The advent of programmable quantum hardware provides an unprecedented access to
novel quantum states and represents a new avenue for probing the exotic quantum phases
of matter beyond classical computing power. On the other hand, quantum simulation
has become a language that bridges the theorists and experimentalists—the models that
are theoretically predicted to exist but are hardly seen in nature can find realizations via
synthetic quantum systems. A central goal of the thesis is to study the use of synthetic
quantum systems in realizing and characterizing exotic topological quantum phases of mat-
ter, by providing both the theoretical framework and the experimental demonstration.

The quest for quantum simulation began with a simple question: is it possible to simu-
late a quantum system with another quantum system? A quantum system naturally serves
as a machine capable of storing exponentially large Hilbert space without exponentially
many physical resources! The notion of a “quantum computer” was envisaged by Yuri
Manin and Richard Feynman in early 1980s. This theoretical idea sparked further interest
when quantum algorithms were subsequently discovered that outperformed all classical
algorithms, e.g. Deutsch’s algorithm [34] and Simon’s algorithm [35] (which later inspired
the famous Shor’s algorithm [36] for the problem of factoring). Enormous efforts have
therein been devoted to building a functioning quantum computer. In 2018, the quan-
tum team at Google announced the realization of a carefully designed sampling task on
a 54-qubit superconducting quantum processor that is beyond the reach of any classical
computing power at that time [37]—achieving the so-called quantum supremacy 1. Lim-
ited by the sizes and the noise, these noisy intermediate-scale quantum (NISQ) computers

1Due to the low fidelity of the experimental signals, it is still debated whether Google has convincingly
demonstrated a task that cannot be simulated classically on a short timescale, see e.g. Refs. [38–40].
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Chapter 1. Introduction

are still far from practical use. However, with rapid advances in hardware, the control
of the quantum devices has matured enough to allow for proof-of-principle demonstra-
tion of quantum simulation of quantum many-body systems. Among the first quantum
simulations, the seminal work by Greiner et al in 2002 demonstrated the realization of a
quantum phase transition from a superfluid to a Mott insulator using cold atoms confined
on optical lattices [41]. Since then, a plethora of experimental demonstrations have been
made, and new physical phenomena have also been discovered from quantum simulations,
e.g. the many-body quantum scars were discovered on the 51-atom Rydberg quantum
simulator [42]. Nowadays, various controlled quantum platforms have become available,
such as the superconducting qubits, the Rydberg atom array, the trapped ions, ultracold
atoms and so on. A pressing question is therefore how we can already make use of these
NISQ platforms to start studying interesting quantum many-body systems.

Topologically ordered phases of matter are among the most exotic quantum phases of
matter. Despite tremendous progress in their theoretical understanding, the experimental
realization remains a significant challenge. Topologically ordered systems exhibit general
robustness against any zero-temperature perturbation to the system. Moreover, they have
energetically gapped ground states with degeneracies that depend on their boundary con-
ditions. The non-local nature of these states makes them particularly attractive platforms
for fault-tolerant quantum computation, since quantum information encoded in locally
indistinguishable ground states is robust to local perturbations [43, 44]. This is the under-
lying principle of topological quantum error-correcting codes, where the logical codespace
corresponds to the degenerate ground state subspace of a lattice model [45–47]. Before
the advent of quantum simulation, the only unambiguous solid-state system with topo-
logical order is where this phenomenon was originally discovered—the fractional quantum
Hall effect (FQHE) [48]. Although there are many candidate materials with topological
order, it has been notoriously hard to provide conclusive evidence for their nature. On
the other hand, the use of model wavefunction has played a key role in the development
of the theory of topological order. They do not capture all the microscopic physical de-
tails of the system, yet they capture the essential features of the quantum phases and are
easy to analyze and understand. Early examples include the valence-bond solid state [49]
and later the Laughlin state [50]. Other examples are found later, such as the Rokhsar-
Kivelson wavefunction [51], the toric code state [43] and its generalization to the string-net
states [52]. Because of their simplicity, simple model wavefunctions have become the fo-
cus for early proof-of-principle demonstrations of quantum simulations of topologically
ordered systems. Small-scale experimental realizations of the toric code state [53–63] and
the Laughlin state [64] on synthetic quantum systems have been extensively investigated.

Despite these efforts, the experimental realization of topologically ordered states on syn-
thetic quantum systems remains a major challenge, requiring the generation of long-range
entanglement. Probing the non-local topological properties of such a state on an array of
qubits requires high-fidelity gates and a sufficiently large two-dimensional lattice. An im-
portant question is therefore how to achieve quantum simulation of topologically ordered
systems with high quality and convincing evidence of their topological nature. Currently,
the methods for the realization of topologically ordered systems can be roughly categorized
into three classes: (1) Hamiltonian engineering (analog approach). The realization
is achieved by engineering the background many-body Hamiltonian of the system and the
ground states are prepared by an adiabatic protocol. This method is general and is impor-
tant for the future application of quantum computers in quantum many-body physics, but
it is currently very challenging to achieve experimentally except for some limited class of
models. Experiments in, e.g. Refs [58, 64–66] are based on this method. (2) Ground-state
realization by unitary quantum circuits (gate-based approach). The method uses
explicit unitary quantum circuits to generate the ground states of the system without a
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background Hamiltonian 2. This circuit could be obtained either variationally or analyt-
ically for specific models. The method has the advantage of being feasible on near-term
quantum devices and serves as an important subroutine for general quantum simulation
of many-body systems. Experiments in, e.g. Refs [5, 67–69] are based on this method.
(3) Ground-state realization by measurements and feedback. The method is sim-
ilar to 2 in that it relies on gate-based quantum platforms and it also only realizes the
ground states without a background Hamiltonian. But the preparation of the states in-
volves mid-circuit measurements and feedback control, which in some cases can speed up
the preparation procedure and reduce the resource required. The extent to which this
method helps in the preparation of general ground states is an open question that is being
actively investigated. For example, the experiment in Ref [70] is based on this method.
While each of the three schemes has its own merits, the future quantum simulation of
topologically ordered systems is likely to utilize a highly optimized hybrid method.

In this thesis, we will focus on the Method 2 using gate-based quantum computers for
physical realization and will aim to address three important questions:

(i) How do we realize a topologically ordered system on currently available quantum
computers?

(ii) Once we have realized a topologically ordered system, how do we experimentally
detect the quantum phases of matter it belongs to?

(iii) Can we go beyond the realization of specific topologically ordered systems, and realize
quantum phase transitions between topologically ordered systems?

The three questions cover a broad and active area of research. We will present our find-
ings as we address each of the questions. Centering around the three questions, the thesis
consists of three parts. Part I is about the realization of topologically ordered states using
digital quantum computers. We review the concept of topological order and present our
proposal of an efficient theoretical protocol for simulating topologically ordered ground
states on digital quantum computers. We conclude the part with an experimental demon-
stration of the protocol, where we achieved the realization of Z2 topologically ordered
states. Part II explores the question of how to characterize the quantum phases of matter
generated on a quantum computer. We make use of the stability of perturbed quantum
phases of matter and present a method based on efficient data generation for quantum
machine learning. We also briefly mention another idea of quantum phase detection based
on active quantum error correction. Finally, in Part III, we show that how we can go
beyond the realization scheme for specific topologically ordered states presented in Part I,
i.e. to achieve a quantum phase transition between distinct topologically ordered phases
of matter on a quantum computer. We first briefly review the concept of tensor networks,
which is a major ingredient for the proposed scheme. We motivate the scheme by studying
tensor-network representation of a symmetry-enriched topological phase transition. Later,
we restrict the tensor networks to the subclass of isometric tensor networks, which leads to
efficient experimental protocols for physical realization: one is the lattice realization based
on the efficient quantum circuits of the states, the other one is the holographic realization
based on the causal structure of the states.

2Quantum phases of matter are generally defined with respect to some Hamiltonian. However, topo-
logically ordered systems are characterized by long-range entanglement, which is a ground-state property.
While the ground-state realizations are certainly important, whether a realization without the Hamiltonian
is considered to be a realization of the topological order depends on how one defines the topological order.
Indeed, whether a single ground state contains all the data necessary to define a topological phase is an
interesting open question.
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Part I.

Realizing topologically ordered
states on digital quantum

computers
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Overview of Part I

In this opening part of the thesis, we present methods for quantum simulation of gapped
topological phases of matter. Using the proposed method, we achieve one of the first
direct experimental realizations of topologically ordered ground states supported by mea-
surements of topological entanglement entropy on an actual digital quantum hardware. In
particular, we focus on the fixed points of gapped topologically ordered phases of matter
under the real-space renormalization group [12, 71–74]. These states are representative
ground states of topological phases with zero correlation length. The realization of them
marks an important first step towards the quantum simulation of generic topologically
ordered systems.

In Chapter 2, we briefly review the concept of intrinsic topological order with an em-
phasis on their relation to long-range entanglement. We also discuss the direct approaches
for characterizing the topological order from the ground states and review the exactly
solvable model of the toric code and string-net models. In Chapter 3, we present general
methods for efficiently engineering topologically ordered ground states and their exotic
quasiparticle excitations on a gate-based quantum computer. This chapter is based on
the work [4]. The proposed method leads to the successful experimental demonstration
of the realization of topological states in the next chapter. In Chapter 4, we present the
experimental results for the realization of a 31-qubit Z2 topologically ordered ground state
on the Google Sycamore quantum processor. We further demonstrate various aspects of
the topological nature of the prepared states, including the measurement of a non-trivial
topological entanglement entropy, the simulation of anyonic braiding and active quantum
error correction as a surface code. This chapter is based on the publication [5].
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2. A short review of topologically ordered
quantum phases of matter and their
characterization

There are two ways of doing calculations in theoretical
physics. One way, and this is the way I prefer, is to have
a clear physical picture of the process you are calculating.
The other way is to have a precise and self-consistent
mathematical formalism.

Enrico Fermi

Starting with the discovery of the fractional quantum Hall effect ((FQHE) [48], a rich
zoo of topologically ordered phases of matter has been discovered. The conventional Lan-
dau paradigm of symmetry breaking [10, 11] provides a systematic way to understand
phases and phase transitions where distinct phases of matter are characterized by local or-
der parameters. Nonetheless, topologically ordered phases of matter are zero-temperature
quantum phases of matter without any local order parameters, and therefore do not fall
into the conventional Landau paradigm. The development of the theory for topological
phases of matter dated back to late 1980s, when the notion of chiral spin liquids was
introduced in an attempt to explain the phenomena of high-temperature superconductiv-
ity [51, 75–78]. These constructions turned out later to be incorrect for high-temperature
superconductivity but they can be used as a theory for FQHE [78, 79], or more generally
the topological order [19–21]. Around the same time, several authors also started to ex-
plore the abstract theory of anyons—point-like particles living in (2+1)D systems which
have more general spin statistics than bosons and fermions. Beginning with Leinaas and
Myrheim [80], and later Goldin et al [81] and Wilczek [82, 83], the general theory of anyons
was further explored and developed [84–91] under different contexts. The anyon theory
(i.e. the topological quantum field theory (TQFT)) provides a general low-energy effective
theory for (2+1)D topologically ordered systems [92].

Topologically ordered phases of matter are characterized by their long-range entangle-
ment in the ground state 1, which can be seen from the consideration of the adiabatic
theorem [93]. Formally speaking, the Hamiltonians H0 and H1 belong to the same gapped
quantum phase of matter if there exists a smooth path H(s) connecting the two Hamil-
tonians such that H(s) remains gapped along the entire path 2. The adiabatic theorem
implies that the ground states |ψ9⟩ and |ψ1⟩ within the same phase of matter are related
via an adiabatic time evolution. From this definition, it immediately follows that if two
ground states cannot be mapped to each other by an adiabatic time evolution, they must
belong to distinct quantum phases of matter! Therefore, distinct quantum phases of matter
can be understood as different equivalence classes under the adiabatic evolution [93]. For
instance, if we additionally impose symmetries on the adiabatic paths, we obtain phases

1The systems are said to have intrinsic topological order.This is to be differentiated from topological
phases based on symmetry protection, i.e. the symmetry-protected topological (SPT) phases, whose ground
states are short-range entangled.

2Note that the parameter s ∈ R can be chosen to lie within [0, 1]. The adiabatic path corresponds to
slowly varying s to sweep through this interval.
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that are separated by quantum phase transitions due to the presence of symmetries, e.g.
the symmetry-breaking phases and the phases with unbroken symmetries.

Are there distinct quantum phases of matter without any symmetry? In other words, is
there a ground state of some Hamiltonian H that cannot be deformed to the product state,
e.g. |00 · · · 0⟩ by any adiabatic evolution? The answer is yes. This class of ground states
are said to possess long-range entanglement and ground states with topological order lie
precisely in this class 3. The adiabatic evolution can be well approximated by a finite-
depth local unitary quantum circuit [93, 95], which provides a conceptually clearer picture
for the causal structure and the entanglement pattern of the states. Within this picture,
a topologically ordered state cannot be mapped to a product state by any finite-depth
local quantum circuits, i.e. it is the fundamentally different entanglement pattern that
distinguishes the topological ground states from the simple product state. For this reason,
they are sometimes said to have intrinsic topological order. Unlike symmetry-breaking
phases, topological phases are stable without the presence of any symmetries.

The long-range entanglement manifests in a few defining features of the low-energy
physics of topologically ordered systems

1. Robust topology-dependent ground-state degeneracy: If the system is defined
on a closed manifold, the ground-state degeneracy of the system depends only on the
topology of the manifold and is robust against arbitrary small local perturbation to
the Hamiltonian. No local operators can cause tunnelling between the degenerate
ground states, i.e. ⟨ψi| Ô |ψj⟩ = Cδij , where Ô is a local operator 4 and i, j label the
orthogonal ground states. The constant C is independent of i and j.

2. Non-local excitations: On a closed manifold, no local operators can create or an-
nihilate a single excitation above the ground state. In (2+1)D topologically ordered
systems, these excitations are point-like particles called anyons. Unlike bosons and
fermions with exchange statistics ±1, anyons are emergent quasiparticles with frac-
tional exchange statistics and non-trivial mutual statistics. These exotic statistics
are key data in the classification of topological order.

In this thesis, we focus on (2+1)D bosonic topologically ordered systems. Similar to
the classification of symmetry-breaking phases of matter based on group theory, the clas-
sification of topologically ordered phases of matter relies on a branch of mathematics,
i.e. the tensor category theory. In particular, it is strongly believed that distinct (2+1)D
bosonic topological order is classified by the braiding of the anyons, i.e. distinct sets of self
and mutual statistics of anyons which are solutions to some consistency equations. These
data are encoded in the modular S and T matrices in the unitary modular tensor cate-
gory. The mathematical details behind the classification of topological order are beyond
the scope of this thesis. Thorough discussions of the relevant topics can be found in e.g.
Refs. [92, 97, 98].

An interesting and important question is how to characterize topological order in a
physical quantum many-body ground state. Below we describe two direct approaches
involving probing the long-range entanglement and the braiding statistics of the anyons

3A simple quantum state with a long-range entanglement is the Greenberger–Horne–Zeilinger (GHZ)
state (|00 · · · 0⟩ + |11 · · · 1⟩)

√
2. However, the GHZ state is not topological. It corresponds to the ground

state that spontaneously breaks the Z2 symmetry. The long-range entanglement of symmetry-breaking
and topological phases can be further distinguished by the stability under local imaginary-time evolution
(or sometimes called stochastic local transformation [94]). The long-range entanglement in topological
phases is stable under such perturbation and it is unstable in the symmetry-breaking phases.

4Here we are considering a thermodynamic system. For a finite system, locality means that Ô is
geometrically local and the support of Ô is small compared to the total system size. This condition is
called the Knill-Laflamme condition in the quantum error correction community [96]. This is closely related
to the fact that topological ground states can be interpreted as quantum error correcting codes.
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of the system; these quantities constitute the fundamental data for the topological order.
Then we will review some exactly solvable lattice models with non-trivial topological order.

2.1. Topological entanglement entropy

Topologically ordered states in 2D systems exhibit long-range quantum entanglement. A
smoking gun for topological order is a direct measurement of such long-range entanglement.
The entanglement entropy of subsystem A is defined as the von Neumann entropy SA =
−tr(ρA ln ρA), where ρA is the reduced density matrix of the subsystem A. If we consider a
disk with boundary length L and compute the entanglement entropy for the region enclosed
by the disk, it is expected to follow S = αL− γ + · · · , where α and γ are constants. The
rest of the terms vanish as L→ ∞. This so-called area law has been proven for 1D gapped
local Hamiltonian [99] and conjectured to hold for higher dimensions.

The constant α is non-universal and depends on the details of the Hamiltonian, but
γ(≥ 0) is a universal quantity that cannot be changed unless a quantum phase transition
occurs. The negativity of −γ and the positivity of von Neumann entropy prevent one
from smoothly connecting the state to a product state without changing γ (via a quantum
phase transition), indicating an intrinsic long-range entanglement. This universal quantity
Stopo = −γ is dubbed the topological entanglement entropy (TEE) [100, 101] and can be
determined in a model-independent way via a subtraction procedure

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC , (2.1)

where A,B and C are simply connected domains (Fig. 2.1a) and they are assumed to be
large compared to the correlation length. The TEE is an invariant in the sense that it does
not change when A,B,C are smoothly deformed. For sufficiently large A,B and C, it is
easy to see that any finite-depth local quantum circuit leaves TEE invariant, consistent with
the stability of topological phases. The TEE, as an invariant of the phases, is determined
by the underlying anyon theory that describes the topological order, i.e. Stopo = − lnD,
where D is the total quantum dimension of the anyon theory [102, 103]. It therefore serves
as a useful probe to characterize a topological order in the ground state of the system, i.e.
the measurement of Stopo ̸= 0 provides strong evidence for the topological nature of the
ground state.

On a programmable quantum platform, we can extract the TEE from the system by
performing a full quantum state tomography (QST). This is generally impractical for large
system size as it involves reconstructing the reduced density matrices by measuring a
complete set of observables. A nice feature of the string-net states is that their TEE
remains unchanged if the von Neumann entropy is replaced by the Rényi entropy of arbi-
trary order [104]. This provides an alternative approach to accessing TEE via randomized
measurements [105, 106]. The protocol allows for a direct access to the entropy without
reconstructing the state, which significantly reduces the necessary measurements needed
for statistical averaging. When operating on NISQ devices, the randomized measurements
can be performed together with the state-of-art error-mitigation technique to produce an
unbiased estimator for the TEE, as successfully demonstrated for subsystems up to nine
qubits in Ref. [5].
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Figure 2.1.: Probing the TEE on a quantum computer. (a) The simply connected domains
A,B and C are used in the subtraction procedure given in Eq. (2.1); the
exterior is the rest of the system. (b) An example for extracting TEE from
a connected domain on a honeycomb lattice with degrees of freedom on the
links. The domain includes the sites on the external links, while the sites on
the boundary of two domains are shared by both sides.

2.2. Anyonic braiding and fusion channel

Anyons emerge as the non-local excitations of topologically ordered phase. They are quasi-
particles that obey fractionalized statistics. Two key quantities of the underlying anyonic
theories are the twist factors θa and modular S-matrix. They can be used to classify
the theory down to finitely many possibilities [107] (up to gauge equivalence). The mea-
surement of these data serves as another useful tool to characterize the topological order
experimentally [108].

The anyonic twist factor θa is defined to be the phase accumulated when a particle is
rotated by 2π about itself. For abelian anyons (including bosons and fermions), the twist
factor determines their braiding statistics, i.e. the phase resulting from exchanging two
identical particles. Whereas θa = ±1 for bosons and fermions, it can take other rational
phases for generic anyons. To obtain the twist factor, we first create a pair of anyons, a
and ā (particle and anti-particle), from the ground state and then move particle a to the
final position with unitary Ûa along a twisted path as shown in Fig. 2.2b. The twist factor
is the phase relative to the state with the particle moved to the same location along a
path without a twist. We denote the unitary that drags particle a along this alternative
(untwisted) path as V̂a.

The modular S-matrix captures the mutual statistics between the anyons. In the abelian
case, the matrix elements encode the phase accumulated when one anyon winds around
another. In the non-abelian case, the winding induces a non-trivial transformation in the
subspace formed by these anyonic particles 5. To measure the S-matrix, we first create
two pairs of anyons a, ā, b, b̄ from the ground state (the vacuum for the quasiparticles) and
then intertwine a and b with unitary Ûab (see Fig. 2.2a). Next we consider another path
corresponding to moving these anyons to the same location without crossing each other
along the way; we denote the unitary for this path as V̂ab. Matrix element Sab is obtained
by measuring the overlap between the final states in the two scenarios above. The twist
factor θa and the S-matrix are expressed in terms of expectation of unitaries V̂a, Ûa and
Ûab, V̂ab as follows:

θa = ⟨ψaā| V̂ †
a Ûa |ψaā⟩ ,

Mab = ⟨ψaābb̄| V̂
†
abÛab |ψaābb̄⟩ . (2.2)

Here Mab is the monodromy matrix [109] and it is related to the S-matrix via Sab =
(dadb/D)Mab, where da,b is the quantum dimension of anyons a, b and D =

√∑
a d

2
a is the

5More precisely, the braiding statistics for non-abelian anyons are described by some multi-dimensional
irreducible representations of the braid group.

12



2.2. Anyonic braiding and fusion channel

A

?

Figure 2.2.: Probing braiding statistics by interferometry. The unitary paths V̂ and Û for
obtaining (a) Sab and (b) the twist factor θa. (c) A simple circuit for measuring
the expectation ⟨ψ|Â|ψ⟩, where Â is a unitary operator acting on |ψ⟩ and the
ancilla qubit is initially prepared in |0⟩. At the end of the circuit, the ancillary
qubit is measured to obtain ⟨Z − iY ⟩. The expectation of Â follows from
⟨ψ| Â |ψ⟩ = ⟨Z − iY ⟩. (d) An alternative path to measure the S-matrix. The
path can be used to measure an unknown anyon (blue) at a fixed position by
braiding with anyons of known species (black).

total quantum dimension. |ψaā⟩ is the wavefunction with a pair of anyons a, ā and |ψaābb̄⟩
is the wavefunction with two anyon pairs a, ā, b, b̄. Once we know how to implement Û and
V̂ , the expectation value can be efficiently measured by a simple Hadamard-test quantum
circuit with one ancilla qubit as shown in Fig. 2.2c. The number of local gates needed to
perform the measurement will scale linearly with the number of qudits supported by the
unitary being measured. The costs come from the long-range controlled gates from the
ancilla qubit to the support of the unitary. The procedure is a typical example of Mach-
Zehnder or Ramsey type interferometry for measuring the braiding statistics [109, 110]
where the anyonic statistics results from the interference of paths V̂ and Û .

Notice that the details of the paths in Fig. 2.2a-b are not important, any paths that can
be continuously deformed to them are considered equivalent. Some non-universal phases
can emerge locally along the paths (e.g. geometric phases). Nevertheless, the braiding
phase can still be determined by splitting a single path into multiple segments. These
segments of paths can be implemented in different order to create trajectories with and
without the particle braiding, the interference of which determines the statistics [111]. If
the exact creation and annihilation operators for the anyons are known (e.g. using the
approach described in Section 3.4), we do not encounter these non-universal phases.

A measurement of the monodromy matrix alone is sufficient for determining the modular
S-matrix for the anyon theory (i.e. a unitary modular tensor category). This is because the
modular S-matrix is required to satisfy certain constraints, e.g. the modular S-matrix is
symmetric and unitary, and satisfies the Verlinde formula [112]. These stringent constraints
do not only allow us to directly infer the modular S-matrix from the monodromy matrix
measured from the experiments,

Sab =

√
(M−1)∗ba
Mab

Mab, (2.3)

where M−1 is the inverse of M . Due to the structure of the S-matrix, the monodromy
Mab should satisfy a set of constraints in order to yield a physical S-matrix. For example,
by definition we have Sab = Sba, this suggests Mab = Mba. The list of constraints is not
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exhausted. Other constraints can come from, e.g. the Verlinde formula [112] or being (to-
gether with the twist factors) the generator for the modular group [109]. In practice, these
stringent constraints are helpful in benchmarking the experimental data and identifying
the correct S-matrix for the underlying modular tensor category from the noisy data.

Measurement of these interfered paths also provides access to the fusion channel. If we
bring two abelian anyons together, they can be regarded as a single particle of a unique
type. Abelian anyons have a unique fusion channel whereas non-abelian anyons have mul-
tiple fusion channels by definition. For non-abelian anyons, combining them can result in a
particle of multiple types. Suppose that we have an unknown anyonic state |ψ⟩ =

∑
i pi |i⟩

at a fixed position, where i labels all the possible anyons and pi are some complex ampli-
tudes. We can prepare a known anyon a and braid it around the unknown anyon (Fig. 2.2d);
interfering this winding path with the path without winding gives the same quantity as
the S-matrix element in (2.2), i.e. ⟨ψa| V̂ †Û |ψa⟩ = D

∑
i |pi|2Sai/dadi, where |ψa⟩ is |ψ⟩

with a pair of a, ā created and Û , V̂ are the unitaries for the two paths. The probability
amplitudes |pi|2 are determined by inverting the matrix Sai/dadi. Measurement of the
fusion results allows us to directly access the fundamental algebraic relation underlying
the topological quantum field theory (TQFT) [113].

2.3. Exactly solvable model: The toric code

We conclude the review section by discussing some exactly solvable lattice models realiz-
ing topological order. The simplest topologically ordered lattice model is the toric code
model [43] (see also [114]) with a Z2 topological order. The simplicity of the model makes
it one of the most widely studied toy models for topologically ordered systems. The model
can be defined on a square lattice with each spin-1/2 (or qubit) degree of freedom on the
links. The Hamiltonian reads

H = −
∑
p

Bp −
∑
s

As, (2.4)

where Bp =
∏
i∈pXi is the product of Pauli X operators around each plaquette p and

As =
∏
i∈s is the product of Pauli Z operators around each star (vertex) s. One can check

that the plaquette and star operators all commute with each other, the ground state |GS⟩
therefore satisfies As |GS⟩ = Bp |GS⟩ = |GS⟩ for all p and s. To understand the ground
state, it is convenient to regard the link state |0⟩ as empty and link state |1⟩ as occupied.
Within this picture, the star operators As constraint the ground state to contain only
closed loop configurations. On the other hand, the plaquette operators Bp provide some
“kinematics” for the loop configuration and prefer a state with randomly fluctuating loops.
Together, the ground state |GS⟩ is simply an equal-weight superposition of all the closed
loop configurations.

Quasiparticle excitations. The elementary excitations of the toric code are generated
by Pauli strings. For example, if we apply a Pauli string of X, the plaquette and star
operators along the bulk of the Pauli string are preserved, while the star operators at the
endpoints of the Pauli string are flipped, i.e. ⟨As⟩ = −1. This excitation is called the
electric charge e in connection to lattice gauge theory. Analogously, if we apply a Pauli
string of Z, only the plaquette operators at the endpoints of the string are flipped, i.e.
⟨Bp⟩ = −1, this excitation is called the magnetic charge m. We can also compose an e and
an m particle together by bringing the endpoints of a Pauli X string and Pauli Z string
close to each other, they form a composite particle denoted by ψ. Together with the trivial
particle 1, the set {1, e,m, ψ} describes the full set of anyons emerging as excitations of
the toric code. Since all the non-trivial anyons appear at the endpoints of string-like Pauli
operators, on a closed manifold the anyons always come in pairs and no local operators
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Figure 2.3.: The toric code model on a square lattice. (a) The star operators As and
the plaquette operators Bp. The excitations generated by Pauli strings of X
(black) or Pauli strings of Z (purple). The endpoints of the Pauli strings either
violate the star constraint or the plaquette constraint on the ground state.
They correspond to the e and m excitation, respectively. (b) On the torus,
there are two types of non-contractible loops. (c) The topological entanglement
entropy of the toric code ground state can be obtained by computing the
subsystem (shaded qubits) entanglement entropy. The dashed line marks the
boundary of the subsystem.

can generate a single anyon 6. Note that the two anyons in the toric code fuse uniquely to
another anyon and the two identical anyons fuse to the vacuum. The toric code therefore
has an abelian Z2 topological order.

Braiding statistics. By knowing the explicit string operators for the anyons, the
braiding statistics for the anyons can be explicitly worked out as described in Section 2.2.
We get

θ1 = 1, θe = 1, θm = 1, θψ = −1. (2.5)

While three of the particles are bosonic, the composite anyon ψ has fermionic self-statistics!
This explicitly illustrates the surprising fact that a fermionic excitation can emerge from a
system of completely bosonic degrees of freedom (qubits). The mutual statistics (S-matrix)
can also be easily obtained

Sem = Sme = Seψ = Sψe = Smψ = Sψm = −1

2
, (2.6)

and the rest of the elements in the S-matrix are all 1/2 7. The S-matrix reveals the exotic
anyonic nature of these quasiparticles— unlike conventional bosons and fermions, braiding
one anyon over the another anyon can lead to a non-trivial phase of -1.

Topology-dependent ground-state degeneracy. The toric code has a ground-state
degeneracy that depends only on the topology of the system. Consider the toric code on
a torus, i.e. with periodic boundary condition. It is easy to verify that the Hamiltonian
commutes with the global loop operators

Xhor =
∏
i∈Ch

Xi, Xver =
∏
i∈Cv

Xi, Zhor =
∏
i∈Lh

Zi, Zver =
∏
i∈Lv

Zi, (2.7)

where Ch (Cv) denotes a horizontal (vertical) non-contractible loop 8 on the torus along
which a Pauli X string is applied (see Fig. 2.3b. Similarly, Lh (Lv) denotes a horizontal

6This is possible with a non-local operator. E.g. an infinitely long Pauli string such that one endpoint
(anyon) stays in the bulk, but the other endpoint extends to the infinity.

7As shown in Section 2.2, we need to account for the quantum dimension d for each anyon. For abelian
anyon, they have unique fusion channel and therefore d = 1 for all the anyons.

8This means that there is no continuous way to shrink the loop to a point.
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(vertical) non-contractible loop along which a Pauli Z string is applied (note that the Pauli
X string and Z string are applied along paths as in Fig. 2.3a). Or equivalently, these string
operators are formed by creating a pair of anyons locally, then dragging them away and
annihilating them on the other end of the torus. Since there are no endpoints of the string
operators, they commute with all the terms in the Hamiltonian H. This means that we
can always choose a ground state such that

Zhor |GS⟩ = Zver |GS⟩ = |GS⟩ . (2.8)

Since {Xhor, Zver} = {Xver, Zhor} = 0, we see that the ground states are in fact four-fold
degenerate! The four ground states are generated as Xn

horX
m
ver |GS⟩ for n,m ∈ {0, 1} and

they are labelled by the eigenvalues under Zver and Zhor. The ground-state degeneracy
is counted by drawing different non-contractible loops on the surface where we define
the system. More generally, the toric code has 22g degenerate ground states on a closed
surface with genus g. The topology-dependent ground-state degeneracy is not a fine-tuned
property of the toric code model, they are proven to be robust under arbitrary small local
perturbation at the thermodynamic limit [43, 115].

Topological entanglement entropy. The entanglement of the toric code ground state
was first investigated by Hamma, Ionicioiu and Zanardi [116]. The subleading correction
to the entanglement entropy of a subsystem is later understood to be the topological
entanglement entropy Stopo [100, 101], providing a topological invariant for topologically
ordered ground states. Consider a disk-like subsystem in the toric code ground state (see
Fig. 2.3c). The reduced density matrix of the subsystem takes a very simple form

ρ ∝
∑
{ib}

|{ib}⟩⟨{ib}| , (2.9)

where the state |{ib}⟩ is the toric code ground state with any possible boundary qubit con-
figuration {ib}. More precisely, the state |{ib}⟩ satisfies all the terms in H which lie entirely
within the boundary formed by the boundary qubits (see Fig. 2.3c). The entanglement be-
tween the subsystem and rest of the system entirely concentrates on the boundary between
the two regions. This is the so-called area-law entanglement as mentioned in Section 2.1.
Next, we note that due to the closed loop constraint on the ground state, only boundary
qubit configurations {ib} with an even number of states |1⟩ are allowed. It follows that the
entanglement entropy of ρ gives

S = −Tr(ρ ln ρ) = L ln 2− ln 2, (2.10)

where L is the number of boundary qubits for the subsystem. The first term growing with
L corresponds to the area-law contribution. From the second term we have Stopo = ln 2.
Recall that Stopo = lnD, where D is the total quantum dimension of the anyon theory.
For abelian anyons, we simply have D =

√
#anyons. Since the toric code has four different

anyons, we indeed arrive at Stopo = ln 2.

2.4. The string-net model

String-net models are a class of exactly solvable models generalizing the toric code model
and they realize a large class of topologically ordered phases with low-energy theories
described by doubled TQFT [52]. A string-net model is specified by a set of branching
rules and self-consistent local constraints. The branching rules are all the triplets of string
types {a, b, c} that are allowed to meet at each trivalent vertex while open-ended strings
are prohibited. For example, in the toric code model, the branching rules only allow qubits
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Figure 2.4.: (a) Inverting a string s is the same as changing to the dual string s∗. (b) The
orientation convention for branching at a vertex.

that add up to 0 (mod 2) to meet at the vertex. On the other hand, the local constraints
ensure that any string configurations that can be smoothly deformed to each other have
the same weight in the ground state. As a result, the system describes a fixed point of the
real-space renormalization group flow [117, 118].

We review the string-net model introduced in Ref. [52]. There exist generalizations
beyond the original construction [119–121]. In this chapter we focus on the original con-
struction in (2+1)D with rotational invariance.

The string-net models are defined on a 2D trivalent graph where each edge is associated
with a string. We label the strings by s = 0, 1, 2, ..., N where N is the total number
of nontrivial string types in the model, with s = 0 labeling the absence of any strings.
The strings are generally oriented, each string s has a dual string s∗ which points to the
opposite direction (see Fig. 2.4a). As a result, the unoriented string satisfies s = s∗. The
branching rule is the set of triplets of strings {a, b, c} allowed to meet at the vertex, with
the orientation convention shown in Fig. 2.4b. We define the branching delta δabs = 1 if
the branching {a, b, c} is allowed, and zero otherwise. The null string s = 0 is associated
with the branching rule δ0ss∗ = 1 for any string type s. In the abelian string-net model
(the excitations are abelian anyons), if two strings a, b meet (branch) at a vertex, then the
third string c at the same vertex is uniquely determined [121], we denote this by c∗ = a×b.
For a continuous string {0, s, s∗} we have s = s × 0. For general non-abelian string-net
models, the third string c is not uniquely determined.

The string-net ground state is the state that satisfies a set of local rules. More precisely,
let us consider a configuration X in the ground state wavefunction, its amplitude is denoted
by Φ(X). The ground state is the weighted superpositions of string configurations |ψ⟩ =∑

X Φ(X) |X⟩, The set of local rules relate the weights of the configurations that only differ
locally

(2.11)

where vs =
√
±ds with ds > 0 being the quantum dimension of string s, they also satisfy

v0 = 1 and vs = vs∗ . The rank-six tensor F is called the F -symbol. For convenience we
usually define F ijmkln to be zero if the corresponding diagram has forbidden branching. By
setting i = j = 0, we see that a type-s loop carries a weight of bs = v2s ∈ R. These rules
completely determine the ground state wavefunction in the sense that the amplitude of any
configuration can be reduced to the amplitude of trivial configuration |00...0⟩ by applying
these rules (neglecting the boundary conditions).

Because one configuration can be related to the same configuration by applying the local
rules in different order, they therefore satisfy the so-called pentagon equation:∑

n

Fmlqkp∗nF
jip
mns∗F

js∗n
lkr∗ = F jipq∗kr∗F

riq∗

mls∗ . (2.12)

In addition, it can be shown that in order for the string-net model to be physical and
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self-consistent, F -symbol should satisfy

F i
∗j∗m∗

k∗l∗n∗ =
(
F ijkkln

)∗
,

F ijmj∗i∗0 =
vm
vivj

δijm,

F ijmkln = F lkm
∗

jin = F jimlkn∗ = F imjk∗nl

vmvn
vjvl

, (2.13)

where the star ∗ on the scalar denotes the complex conjugate of that number. The algebraic
object (F ijkkln , bs) that satisfies the constraints above is what defines a string-net model.
Using the equations from above, we can derive one of the most useful properties of the
F -symbol that underlines the unitarity of our construction∑

n

F ijmkln

(
F ijm

′

kln

)∗
= δmm′δijmδklm∗ . (2.14)

Another useful identity that can be derived from Eqs. (2.12) and (2.13) is∑
s

δabc∗dc = dadb, (2.15)

where ds = |vs|2 > 0 turns out to be the quantum dimension of the anyon realized by the
type-s simple string operator.

The Hamiltonian of the general string-net model generalizes the form of the one for the
toric code, consisting of commuting projectors

Ĥ = −
∑
v

Q̂v −
∑
p

B̂p, (2.16)

where Q̂v projects the triplet of strings at each vertex v onto the allowed branching,
B̂p =

∑
s asB̂

s
p is the plaquette projector with as being some real coefficients determined

by specific string-net models. B̂s
p is a plaquette operator for each string type s, it acts

on the plaquette p and its six external legs. By construction all the terms commute
with each other. For the topological phase to have a continuum limit, as is chosen to
be as = bs/

∑
s b

2
s. With this choice of as, B̂p becomes a projector. Each B̂s

p physically
corresponds to adding a type-s loop to a plaquette and fusing it into the lattice based on
the local rules Eq. (2.11). With this graphical picture, one can work out the general matrix
element for B̂s

p in terms of the F -symbol

. (2.17)

Note that the spins on the six external legs are not changed upon the application of B̂s
p.

The operators of any string types and on any plaquettes commute, i.e. [B̂s1
p1 , B̂

s2
p2 ] = 0 for

any s1, s2 and p1, p2.
Each quasiparticle excitation of the Hamiltonian (3.4) corresponds to a closed string

operator. The string should not be observable, only the endpoints of the string (quasipar-
ticles) are. For this reason, the closed string operator should commute with the Hamilto-
nian. A type-s string operator that fulfills the requirements has the matrix element from
i to i′

W
i′1i

′
2...

i1i2...
(e) =

(∏
k

F
ek−1i

∗
kik−1

s∗i′k−1i
′∗
k

)(∏
k

ωk

)
, (2.18)

18



2.4. The string-net model

where i1, i2, ... are the spins along the closed string, e is the set of external legs along the
path of the string operator (e.g. see Fig. 3.4a). The closed string operator W only changes
the spins along the path but not the ones on external legs. The quantity ω is defined as

ωk =


vikvs
vi′

k

ω
i′k
ik
, if before/after ik, it turns right/left,

vikvs
vi′

k

ω
i′k
ik
, if before/after ik, it turns left/right,

1, otherwise.

(2.19)

where ωij and ωij are phase factors satisfying Eq. (2.20). Notice that when W acts on
a plaquette p, it should correspond to adding a type-s string loop and fusing it into the
plaquette, i.e. it is equivalent to applying B̂s

p.
The solutions of ω are solved from a set of consistency equations by imposing the com-

mutativity of the string operators with the Hamiltonian

ωji =
∑
n

ωki∗F
is∗k
i∗sj∗ ,

vsvj
vm

ωmj F
sl∗i
kjm∗ωlj =

∑
n

F ji
∗k

s∗nl∗ω
n
kF

jl∗n
ksm∗ . (2.20)

The string operator of this form is called the simple string operator. The product of two
simple string operators W1W2 results in another string operator for the composite quasi-
particle. The simple string operators form a large subclass of the general string operators,
they describe many interesting anyonic quasiparticles that are relevant for physical real-
izations, such as the anyons in the toric code model and the non-abelian double Fibonacci
model (see Section 3.5.3).
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3. Theoretical proposals for realizations
of abelian and non-abelian
topologically ordered states with
gate-based quantum computers

While the search for physical systems hosting topological order and methods of its detection
remains an active area of research, another route toward realizing topological states is
through their simulation in suitable quantum systems. To this end, exactly solvable models
play a special role; they can serve as a test bed for calibrating the system in order to realize
the established properties before venturing into the unknown. A quintessential example of
soluble models of topological order is provided by string-net models [52]. These are lattice
models, the low-energy physics of which is described by a non-chiral doubled topological
quantum field theory (TQFT) [122, 123]. String-nets also have an intimate connection to
quantum computation: Abelian string-net models can be regarded as a family of quantum
error-correcting codes and certain non-abelian string-net models can be used for universal
quantum computation in relation to Turaev-Viro codes [124].

In this chapter, we show that generic string-net (ground) states can be efficiently real-
ized and manipulated on a digital quantum computer with shallow unitary circuits. Our
protocol allows a preparation of topologically ordered states with O(l)-depth quantum cir-
cuits of local gates, where l is the smaller of the width and the height of the system. The
algorithm thus saturates the circuit complexity lower bound for preparing topologically
ordered ground state [125]. Moreover, it is possible to characterize the topological order of
the prepared states by entanglement and braiding statistics measurements. The creation
and manipulation of the localized anyonic quasiparticles in the abelian and non-abelian
phases rely on string-like quantum circuits. The depth of the required circuits is constant
for abelian anyons and scales linearly with the separation of the non-abelian anyons. Based
on the anyonic braiding, the fusion of anyons can be determined by efficient interferom-
etry measurements. This completes a toolkit for simulating the underlying TQFT of the
string-net model. As a result, the scheme can be viewed as an efficient mapping from the
gate-based computation to an anyon-based computation [126]. Due to the inherent noise
of NISQ devices, efficient algorithms become particularly important for obtaining reliable
results. A special case of our protocol has already been used to realize Z2 topological order
on the 31-qubit Sycamore quantum processor [5] (see also Chapter 4).

It is worth mentioning that other explicit unitary constructions for string-net states are
known. Letting L be the perimeter of the system, a depth-O(L logL) quantum circuit can
be derived from entanglement renormalization [117, 127]. The isometric tensor network
representation [128] of the string-net states can be regarded as a local quantum circuit
of depth O(L) [129–131]. A subclass of the string-net model, the quantum double model
and its anyonic excitations [43] can be simulated without the presence of a background
Hamiltonian by involving measurement operations [132, 133]. Additionally, there are al-
ternative protocols for extracting anyon statistics based on wavefunction overlaps [134], or
using defects and lattice deformation such as in [124].
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3.1. Preparation of the toric code ground state

We begin by presenting the preparation algorithm for the toric code (TC) ground state (see
Section 2.3). For the convenience of later generalization, we consider the toric code on a
honeycomb lattice. But the algorithm can be easily adapted to arbitrary lattice structure.
The model consists of spin-1/2 degrees of freedom on the links of a honeycomb lattice with
Hamiltonian

ĤTC = −
∑
s

Q̂(TC)
s −

∑
p

B̂(TC)
p . (3.1)

The commuting projectors Q̂(TC)
s = 1

2(1 +
∏
j∈s Zj) contain a product of Pauli matrices Z

around each vertex s and B̂(TC)
p = 1

2(1+
∏
j∈pXj) contains a product of Pauli matrices X

around each plaquette p, as shown in Fig. 3.1a. Throughout this chapter we consider open
boundary conditions, as in Fig. 3.1a, which are most relevant for experimental realization
of the states on NISQ devices.

In the Pauli-z basis, we regard the qubit state |1⟩ as being occupied and state |0⟩ as
unoccupied. Similar to the TC on a square lattice, the vertex and the plaquette projectors,
Q̂s and B̂p, constrain the ground state to be an equal-weight superposition of all the closed
loop configurations. A ground state can be compactly written as a product of the plaquette
projectors over the product state, neglecting the normalization:

|GS⟩TC ∝
∏
p

1 +
∏
j∈p

Xj

 |000 · · · 0⟩ . (3.2)

With the choice of open boundary conditions, Eq. (3.2) is the unique ground state of the
Hamiltonian (3.1) 1. A similar idea can be adapted to periodic boundary conditions, where
the ground state of the Hamiltonian becomes fourfold degenerate.

The compact form of Eq. (3.2) motivates an efficient quantum circuit construction for
the ground state, which is as follows:

1. Prepare an initial product state. We associate a representative qubit with each
plaquette and they are initialized as |+⟩ = (|0⟩ + |1⟩)/

√
2 (blue in Fig. 3.1c). The

rest of the qubits are initialized as |0⟩ (red in Fig. 3.1c).

2. Perform C-B̂p over all the plaquettes in parallel on each row and iterate this from
the bottom row to the top row. Where the controlled-B̂p operation (C-B̂p for short)
applies CNOT gates controlled by the representative qubit to the rest of the qubits
in the same plaquette, shown in Fig. 3.1b.

The depth of the quantum circuit built from this algorithm is linear in the number of
plaquette rows in the system. Graphical illustrations of the steps are shown in Fig. 3.1b-c.
The C-B̂p operator plays a central role in our construction of the quantum circuit. It flips
all the rest of the qubits in the plaquette if the representative qubit is |1⟩, otherwise it
acts trivially. The algorithm therefore has a nice interpretation that, each operation C-B̂p,
together with the initialization of the representative qubit for plaquette p, splits the state
into an equal-weight superposition of being acted on by the identity or

∏
j∈pXj . Iterating

this set of operations over all the plaquettes yields the ground state of the form given in
Eq. (3.2). If we follow this row-wise construction in Fig. 3.1c and step 2, the circuit can be
designed to have a depth that scales proportional to the smallest linear dimension of the

1To be more precise, under this open boundary condition, some vertices on the boundary are only
connected to two spins. The vertex operators Q̂ on these vertices thus consist of Pauli matrices on two
spins instead of three as in the bulk.
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Figure 3.1.: The construction of the toric code ground state. (a) The honeycomb lattice
with qubits on the edges that contains a plaquette (black) and a vertex (pur-
ple); The vertices on the boundary only have two incoming legs. (b) The
quantum gate C-B̂p that is controlled by the representative qubit and targets
the rest. The green marks the control qubits (unchanged upon C-B̂p), the yel-
low marks the target qubits (changed); (c) A graphical illustration of the algo-
rithm. Prepare the red qubits in |0⟩ and the blue qubits in |+⟩ = (|0⟩+|1⟩)/

√
2.

Then apply C-B̂p on each plaquette in parallel for each row.

system. A concrete experimental implementation of this algorithm can be found in Ref. [5]
and Chapter 4.

The algorithm can be extended beyond the row-wise construction to other geometries,
e.g. to periodic boundary conditions. However, the order must be such that each represen-
tative qubit is used as a control qubit before it is part of the targets of the C-B̂p gate. That
is, before applying the C-B̂p gate, we require the representative qubit for that plaquette
not to be entangled with the rest of the system. If the choice of representative qubits and
the order in which the C-B̂p gates are applied satisfy this constraint, then we say that the
order is permissible. The row operation in step 2 of the algorithm can be replaced with
other protocols following any permissible order. In general, the algorithm yields a parallel
quantum circuit of depth that is at most linear in the perimeter of the system. We will see
that this statement holds true for all the string-net models.

3.2. Preparation of the double semion ground state

Before moving on to general string-net models, let us consider another spin-1/2 example—
the double semion model (DS). This model can support semions and their chiral partners
as excitations with an exchange phase of ±i [123]. The Hamiltonian of the DS takes a form
similar to Eq. (3.1), with Q̂(TC)

s replaced by Q̂(DS)
s and B̂(TC)

p by B̂(DS)
p . The vertex projector

Q̂(DS)
s projects onto the space where an even number of strings meet on each vertex s (i.e.

the same as the TC). The plaquette projector takes the form B̂(DS)
p = 1

2(1− B̂
1
p), where B̂1

p

flips all the qubits in the plaquette p and associates a phase +1(−1) to the configuration
if the total number of loops in that configuration is changed (unchanged) after the flip.
Note that in the literature, the factor of −1 in the DS model is typically associated with a
change in the number of loops, but here we have an additional minus sign in front of B̂1

p ,
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Figure 3.2.: Construction of the double semion ground state. We implement the algorithm
as in analogy to Fig. 3.1c: the representative qubits (blue) are initialized in
|−⟩ = (|0⟩ − |1⟩)/

√
2, and the rest of the qubits (red) are |0⟩. (a) The con-

struction consists of parallel application of C-B̂p on each row. (b) The circuit
diagram for C-B̂p is shown. The two-qubit gate symbolised by two solid dots
connected by a line is a controlled-Z gate. The three-qubit gate applies Pauli
Z to the third qubit if the solid and hollow control qubits are 1 and 0, re-
spectively, otherwise it does nothing. The dashed box in the circuit diagram
contains the unitary that gives a phase +1(-1) if the number of loops changes
(unchanged) when a TC plaquette operator is applied (as shown in (c)).

corresponding to the choice of |−⟩ = (|0⟩ − |1⟩)/
√
2 for the representative qubits. This is

only a matter of convention; we keep the minus sign here for later generalizations.
Similarly to the TC, the resulting DS ground state can be obtained by applying a product

of plaquette projectors B̂(DS)
p :

|GS⟩DS ∝
∏
p

B̂(DS)
p |000 · · · 0⟩ . (3.3)

The DS ground state is a superposition of all the closed loop configurations with weights
(−1)C , where C is the total number of closed loops in that configuration.

To construct the wavefunction given in Eq. (3.3), we translate the same procedure from
the TC construction:

1. We assign a representative qubit to each plaquette and initialize them in |−⟩ =
(|0⟩ − |1⟩)/

√
2, the rest of the qubits are initialized in |0⟩.

2. Then apply the C-B̂p operator over the plaquettes row by row in parallel as in
Fig. 3.1c.

Notice the difference with the TC case: we initialize the representative qubits in the |−⟩
state instead of |+⟩. We also employ a different C-B̂p, which applies B̂1

p to the other qubits
in the plaquette if the representative qubit is |1⟩ and acts trivially otherwise. An explicit
circuit for the C-B̂p is shown in Fig. 3.2. Again during the construction, the order in which
we apply C-B̂p is important. We can choose the same row iteration as in the TC case, and
then the depth of the circuits constructed row-wise scales linearly with the smallest linear
dimension of the system. More generally we can follow any permissible order, as defined
in Section 3.1.

3.3. Preparation of general string-net ground states

A general string-net model can be defined on a honeycomb (or any trivalent) lattice with
local spins located on the edges (see Section 2.4 for a review). These spin degrees of freedom
correspond to different string types at that edge. The strings are oriented in general, we
use i∗ to denote the string i with inverted orientation, with i∗ ̸= i for oriented strings.
String-net models describe a large class of topologically ordered phases the low-energy
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...

...

...

Qudit changed
Qudit unchanged

Figure 3.3.: The construction for general string-net models. (a) During the construction, C-
B̂s
p only acts on the subspace shown on the left, here i1, i2, i3, e1, e2, e3, e4 labels

all the allowed strings under branching rules. s is the state of the representative
qudit. The arrows indicate the convention for the string orientation. One can
prepare general string-net states on the honeycomb lattice by applying C-B̂p
row by row. Despite the overlap of the gates, they can be decomposed for
parallel implementation on each row. The C-B̂p gate is controlled by the
green qudits and alters the yellow ones. The representative qudits (blue) are
initialized in D

∑
i ai |i⟩. (b) The gate structure of C-B̂p; If the representative

qudit is in state |s⟩, it applies B̂′s
p to the rest of the spins within the plaquette.

This gate satisfies Eq. (3.6). We provide an explicit circuit for the gate in
Section 3.5.2

physics of which gives rise to a doubled TQFT [52]. On a quantum computing platform,
the spins (or strings of different types) are encoded as qudits, a generalization of qubits
with more than two levels, which in practice could correspond to multiple physical qubits.

For a model with N nontrivial string types, we can define an orthonormal basis {|s⟩},
i.e. (N +1)-level qudit states, for string s = 0, 1 . . . N where each qudit state |s⟩ labels an
edge occupied by a string s. The label s = 0 is reserved for the vacuum or null string. The
Hamiltonian of the general string-net model generalizes the form of TC and DS, consisting
of commuting projectors

Ĥ = −
∑
v

Q̂v −
∑
p

B̂p, (3.4)

where Q̂v projects the triplet of strings at each vertex v onto the allowed branching,
B̂p =

∑
s asB̂

s
p is the plaquette projector with as being some real coefficients determined

by specific string-net models. B̂s
p is a plaquette operator for each string type s, it acts

on the plaquette p and its six external legs (see Section 2.4 for a detailed definition). By
construction all the terms commute with each other.

Notice that the TC and DS in the previous sections are special cases of Eq. (3.4) with
a0 = a1 = 1/2 and a0 = −a1 = 1/2 respectively. The plaquette operators are B̂0

p = 1 and
the non-trivial plaquette operator B̂1

p in each case. The coefficients as are related to the
total quantum dimension D of the underlying anyonic theory through D = 1/

∑
i a

2
s.

A ground state of the general string-net model can be conveniently written as a product
of projectors over the zero product state

|GS⟩ ∝
∏
p

B̂p |000 · · · 0⟩ =
∏
p

(∑
s

asB̂
s
p

)
|000 · · · 0⟩ . (3.5)

The state preparation is a direct generalization of the case for the DS, with the C-B̂p (DS)

25



Chapter 3. Theoretical proposals for realizations of abelian and non-abelian
topologically ordered states with gate-based quantum computers

operator acting on qubits replaced by the new C-B̂p operator acting on qudits. Similar to
controlled operations on qubits, this controlled operation applies a unitary to the target
qudits if the control qudit is in a particular state s, as shown in Fig. 3.3.

For simplicity, we focus on the same row-wise construction as in the previous sections.
A generalization to any permissible order is straightforward. When C-B̂p operations are
performed from the bottom to the top row during the row-wise construction, the qudit
subspace on which the qudit gates act is shown in Fig. 3.3a. The shape of general C-B̂p
generalizes those for the TC and DS; there are four additional qudits covered by the gates
and the states of these qudits are unchanged upon the application of the gate. Despite the
shared bond between the neighbouring operations, similar to the CNOT decomposition
for the TC construction in Fig. 3.1c, the C-B̂p gate can be decomposed into a sequence of
smaller controlled qudit gates around a plaquette. This allows for parallel implementation
of the gates to all the plaquettes along each row (see details in Section 3.5.2).

We can therefore adopt the following steps to construct a general string-net ground state:

1. We assign a representative spin for each plaquette and initialize them in a state√
D
∑

s ai |s⟩. The rest of the spins are initialized to be |0⟩.

2. We then iteratively apply the C-B̂p on each row of plaquettes.

Here operators C-B̂p for the row construction satisfy

. (3.6)

Thin unlabeled edges stand for the vacuum |0⟩, while the set of labels {i} and {e} are
arbitrary qudit configurations satisfying the branching rules of the string-net ground state.
Edges with arrows indicate a convention that we use to label an oriented string with the
qudit state. Operator B̂′s

p is implicitly defined by Eq. 3.6 and takes into account that the
representative qubit starts in the state s, such that its action corresponds to applying pla-
quette operator B̂s

p to that plaquette. We indicate the strings with a particular convention
for the orientation. However, for models with only unoriented strings, no convention needs
to be chosen. This includes all the spin-1/2 string-net models, the TC, the DS, and the
double Fibonacci model discussed in Section 3.5.3. The C-B̂p operation is controlled by
the representative qudit: if the qudit is |s⟩, B̂′s

p is applied to the rest of the qudits in the
same plaquette p (see Fig. 3.3b), which is the same as acting with B̂s

p on the state with
a trivial representative qudit. It is also possible to implement the C-B̂p operations in a
different permissible order other than the row-wise construction above. To do this, a more
generic definition of C-B̂p is needed whereby the subspace of the initial qudit configurations
is more general than that shown in Fig. 3.3a and Eq. (3.6). In Appendix A.1, we give a
more general subspace of qudit configurations for defining C-B̂p that can be used for any
permissible order. The operator C-B̂p is well defined due to the isometry condition of B̂s

p

restricting to the subspace where at least one of the qudit states on the plaquette edge is
trivial |0⟩. A proof of the isometry property is given in Appendix A.1.

The construction prepares any given string-net ground states from O(l) layers of parallel
local quantum gates, where l is the smallest linear dimension of the system. The circuit
depth shows explicitly that the lower bound of the circuit scaling provided in Ref. [125] is
optimal for string-net states.
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Non-abelianAbelian
Abelian

Non-abelian

Figure 3.4.: Prepare and move anyons with unitary string operators. (a) Open string op-
erators for abelian (left) and non-abelian (right) anyons. The operators act
on the set of labeled qudits {i} along the path and {e} of the legs. Only
the states of the qudits {i} along the path are changed by the operator. Each
quasiparticle has an associated vertex (red) and plaquette (yellow). Before the
string operators are applied, the ancillary qudits in the non-abelian case are
initialized to align with the other qudits on the same edge. (b) The endpoint
quasiparticles can be moved by extending the string operator sequentially with
unitary gates. The dark gray marks the existing string, The enclosed qudits
on the left are acted on by the endpoint-moving unitary gates, which corre-
spond to an exact (modified) form of the unitary string operators for abelian
(non-abelian) case. The plaquette-vertex labels are used to locate the quasi-
particle. When extending the string operator, they trace the motion of the
quasiparticle. Note that the ancillary qudit in the non-abelian case can be
moved without physically displacing the qudits. See Sections 3.5.1 and 3.5.2
for more details.

3.4. Creating and moving anyons in the string-net model

In this section, we describe how abelian anyons can be created and braided using quantum
circuits of a constant depth, whereas braiding of non-abelian anyons requires linear-depth
(in anyon–anyon separation) quantum circuits due to their non-unique fusion.

The quasiparticles in the string-net model are identified with closed string (Wilson loop)
operators that commute with the string-net Hamiltonian. When a closed string operator
is broken to have open ends, the quasiparticle and the corresponding anti-quasiparticle
emerge as defects localized at the endpoints of the open string operator applied to the
string-net states [52]. The string operators connecting the two endpoints can be thought
of as a trajectory traced by the quasiparticle at one end while the other is at rest. As a
result, the braiding events can be simulated by realizing the open string operators with a
sequence of unitary gates.

The precise details of how the closed string operators are broken into open strings are not
essential for our purpose. Braiding is described by the relative motion between different
quasiparticles. In other words, the braidings are captured by how the open string operators
cross each other away from their endpoints (see Fig. 2.2). We require the open string
operators to have the exact same bulk form as the closed string operators given in Ref. [52],
but at the same time to be unitary. These string operators are generally isometries, but
can be promoted to a unitary form. Such unitary string operators allow the manipulation
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Figure 3.5.: The string operators for toric code. The endpoints can be labeled by a pla-
quette or vertex that corresponds to exactly the microscopic excitation in
Eq. (3.1). The dashed line indicates the path that the plaquette excitation
takes as the Wilson string is generated.

of anyons by decomposition into a sequence of smaller gates.

To simplify the discussion, we focus on the string-net models where quasiparticles cor-
respond to either a simple string operator or a product of simple string operators. This
is not a very restrictive condition and, for instance, includes all of the spin-1/2 string-net
models originally considered in Ref. [52] and non-abelian anyons beyond spin-1/2 lattice
such as the Ising anyon. A string operator being simple means that it can be assigned a
unique basis string label s ∈ {0, 1, ..., N} and it characterizes an irreducible quasiparticle
in the model (see Section 2.4 for details). We give a definition of the open simple string
operators that can be promoted to a unitary in Section 3.5.1. The shapes of the operators
are depicted in Fig. 3.4a for general abelian and non-abelian cases. The string operator
changes the qudit states {i} along its path and leaves the states {e} on the legs unchanged.
The orientation of the path along the string is indicated with arrows. The quasiparticles at
the endpoints of the open string can be moved by deforming the string operator with some
local unitary gates (see Fig. 3.4b). The product of simple strings can be implemented by
multiple simple strings with non-overlapping endpoints.

3.4.1. Locating the quasiparticles

The braiding interferometry in Section 2.2 assumes the quasiparticle configurations at the
end of the interfered paths to be identical. To unambiguously locate a quasiparticle at the
endpoint of a string operator, we label each endpoint with a vertex and a plaquette. If
the string operator turns left (right) before the spin at the endpoint, then the associated
plaquette is on the left (right) of the endpoint. The associated vertex is the vertex away
from the endpoint of the string operator. The plaquette-vertex pair labels the location
and orientation of the quasiparticle (see Fig. 3.4a). The motion of the quasiparticle can be
visualized as moving the pair of labels as shown in Fig. 3.4b. Note that the plaquette/vertex
label does not necessarily coincide with the actual plaquette-vertex violation that appears
as excitation in the microscopic string-net Hamiltonian. In some cases, they can be chosen
to coincide. An example is the TC excitations which are created by a string of Pauli X
along the vertex labels and a string of Pauli Z along the plaquette labels (Fig. 3.5). Each
string operator thus only needs one of the plaquette or vertex labels and the other one
becomes irrelevant.
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Figure 3.6.: The manipulation of abelian and non-abelian anyons. (a) Two separate abelian
anyons a, ā can be created by a sequence of multiple local anyon-antianyon
pairs. The intermediate quasiparticles fuse to the vacuum. (b) If a, ā are non-
abelian anyons, the transport of the anyon is no longer equivalent to local pair
creation and pair annihilation of a and ā. The fusion yields a superposition of
the vacuum and some other non-trivial anyon species b, with amplitudes pb.

3.4.2. Unitary string operators for the abelian anyons

If the quasiparticle describes an abelian anyon, the trajectory represented by the string
operator can be interpreted as a chain of anyon–antianyon pair creations. Since the abelian
anyon and its antianyon are guaranteed to fuse into the vacuum, the result will be the same
as having one quasiparticle at each end of this chain, as depicted in Fig. 3.6a.

This shows that a long unitary string operator for the abelian anyons is a product of
disjoint short unitary string operators. As seen in the circuit decomposition of the string
operator as shown in Fig. 3.4b, an abelian open string operator can be extended by one
more site, with a two-qudit quantum gate that does not overlap with the existing string
operator. In this case, this two-qudit gate corresponds to a unitary open string operator
in Fig. 3.4a with one endpoint slightly modified. To create a long string operator of the
form in Fig. 3.4a, we can apply a short string operator (a three-qudit quantum gate) and
extend it to a longer string as schematically illustrated in Fig 3.7a. Since none of the gates
overlap with each other, the circuit can be implemented with a constant depth. Further
details of the two- and three-qudit gates are given in Section 3.5.1.

3.4.3. The difficulty of manipulating non-abelian anyons

The argument given for the abelian anyons no longer holds when we consider the non-
abelian case. The fusion of two non-abelian anyons along the chain does not give only the
vacuum, but in general a superposition of fusion channels (see Section 2.2 and Fig. 3.6b).
To create two separated non-abelian anyons from the local pairs, additional projections
are needed around the anyon-antianyon pair to ensure that they fuse to the vacuum.

Therefore, a unitary (and hence reversible) movement of non-abelian anyons can only be
achieved sequentially, requiring at least a number of time steps that scales with the separa-
tion between the anyons. In the language of field theories, this amounts to the necessity of
path-ordering in the Wilson loop operator for non-abelian anyons. This intuition implies
that at least a linear-depth quantum circuit is needed to implement a unitary string oper-
ator that describes the movement of non-abelian anyons. A recent work [135] has proved
this lower bound in the context of the quantum double model.

29



Chapter 3. Theoretical proposals for realizations of abelian and non-abelian
topologically ordered states with gate-based quantum computers

Figure 3.7.: The decomposed string operators using the movements from Fig. 3.4b. (a) For
the abelian string operators, an initial short string (dark gray) can be extended
to a long string operator (light gray) by a constant-depth local quantum circuit.
(b) A sequentially applied quantum circuit is required for extending a short
non-abelian string, resulting in a linear-depth quantum circuit. We show the
details of the circuits, including the short string initialization in Section 3.5.1.

3.4.4. Unitary string operators for non-abelian anyons

To define a unitary string operator for the non-abelian anyons, we introduce an additional
qudit at each endpoint of the string as shown in Fig. 3.4a. This additional degree of
freedom at the string endpoints is motivated by the diagrammatic calculus of the string
operators in the Appendix D of Ref. [52]. In the diagrammatic approach, an endpoint of a
string operator will carry a simple string label and split the edge it touches (represented by
a physical qudit) into two edges; One of the edges still retains the original qudit state, and
the other edge now stores the new qudit state obtained from applying the string operator.
In our protocol, we introduce the additional qudit to take into account this additional split
edge so that we can keep the full information about the open string endpoint, making the
unitary construction of the operator possible.

As depicted in Fig. 3.4b, a non-abelian open string operator can be extended by one
site with a four-qudit quantum gate. In contrast with the abelian case, the gate that
extends the string operator needs to involve the qudits at the endpoint of the existing string
operator, and the gate itself cannot be regarded as a short unitary open string operator.
To create a long string operator, we first implement a short unitary string operator of the
form in Fig. 3.4a (in the non-abelian case, this is achieved by a four-qudit quantum gate as
explained in Section 3.5.1), the short string is extended using a sequence of four-qudit gates
in Fig. 3.4b. An explicit procedure is depicted in Fig. 3.7b, which is a quantum circuit the
depth of which grows linearly with the separation of the string endpoints. Note that the
resulting unitary string operators satisfy the optimal scaling of the circuit depth argued
above. The existence of the efficient string operator decomposition allows for manipulation
of non-abelian anyons without the need of any projection.

When simulating the non-abelian strings, the additional ancillary qudits should always
be placed at the endpoints of the current string operators. This can be achieved by
swapping the ancilla states through the lattice without physically displacing the qudits. We
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provide full details of the protocol together with explicit quantum circuits in Sections 3.5.1
and 3.5.2. Alternatively, we can simply place two qudits on each edge instead of only one.
Despite doubling the number of qudits, the alternative approach retains the translational
and rotational invariance of the lattice.

3.5. Explicit quantum circuits for the string-net states and
their anyons

In this section, we provide the explicit quantum circuits for the preparation algorithm and
for the quasiparticle braiding above the string-net states. The readers who wish to skip
the technical details can directly jump to Section 3.6 for the discussion and conclusion.

3.5.1. Quasiparticle string operators

The anyonic excitations in the string-net models are localized at the endpoints of the
open string operators. There is no unique way to define the endpoints (excitations) of
these open string operators. However, the topological properties of these quasiparticles
are independent of such details. Here we give a definition of the open string operator
(corresponding to a type-s string of length L) in the string-net model, its matrix element
from initial spins i1, i2, ... to i′1, i′2, ... can be written as

W
i′1i

′
2...i

′
L

i1i2...iL
(e) =

vi′1
vi1vs

(
L∏
k=2

F
ek−1i

∗
kik−1

s∗i′k−1i
′∗
k

)(
L−1∏
k=2

ωk

)
, (3.7)

where e = {e1, e2, ...eL−1} is the set of external legs along the string (see Fig. 3.4a). The
complex numbers vi and rank-six tensor F are the data that define the given string-net
model (see Section 2.4). ω is defined in Eq. (2.19).

This open string operator has the property that creating a type-s string along {i1, i2, ..., iL}
is the same as creating a type-s∗ string along {iL, ..., i2, i1}. In addition, the open string
operator satisfies an isometry condition that underlies the unitary decomposition of the
operator as discussed below.

Abelian quasiparticle strings: In the abelian theory, we can move the abelian anyon
by applying the open string operator that connects between the anyons at the initial and
final position. That is, we change the position of the endpoint by joining two open strings
together to form a new open string. This is possible because abelian anyons have a unique
fusion channel. When two endpoints (anyons) join, the anyon and its anti-partner combine
(fuse) to vacuum.

Since we can move the anyon using a sequence of local unitary, it is convenient to
initialize a short open string operator and move the anyons (endpoints) apart from each
other later. We can prepare a pair of abelian anyons (that corresponds to an type-s string)
by a three-qudit unitary having the matrix elements in (3.7) for L = 2

, (3.8)

where q′1,2 = s × q1,2 and {e, q1, q∗2} is an allowed branching. The dark path on the right
hand side indicates the path created by the string operator. We use an arrow along the
string to indicate the orientation convention following Fig. 3.4a. In abelian theory, the non-
trivial values in F -symbol become phase factors (see Section 2.4). This operator initializes
a string of length two on the lattice. Note that we could have set the phase vq′1/vq1vs to
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Figure 3.8.: A local change of registered connectivity—to make sure the endpoint of the
string can land at an edge with two qudits. No physical gates are needed here.

1 by local unitary in this abelian case, but in non-abelian theory this factor is no longer
a phase and it becomes important for preserving the isometry property of the open string
operator.

The abelian anyon at the end of the string can be moved using a two-qudit unitary that
satisfies

, (3.9)

again here p = e∗ × q, p′ = s × p and q′ = s × q. We also define ωp′,p to be the same as
ωk in Eq. (2.20) by replacing i′k = p′ and ik = p. A schematic diagram of the unitary is
shown in Fig. 3.9. We give an example of the circuit realization for Eq. (3.8) and Eq. (3.9)
in Section 3.5.2.

Non-abelian quasiparticle strings: By placing one additional qudit at each end of
the string operator, we can prepare a length-two non-abelian open string (corresponds to
type-s string) similar to the abelian case

. (3.10)

This four-qudit unitary uses two ancillary qudits to create a non-abelian string with two
qudits along the path. The orange color highlights the qudits that store the ancillary qudit
states.

We can further define local unitary to move an existing non-abelian anyon at the end-
points of an open string. A key difference between the non-abelian and the abelian cases
is that unitarily encoding non-abelian anyons with open string operators requires an ad-
ditional ancillary qudit at the endpoint. In order to implement non-abelian strings, we
need to ensure the endpoint of the string operator always lands on an edge that has an
ancillary qudit. This can be achieved by placing one additional qudit on each edge. Alter-
natively, we can adapt the following strategy that only requires two additional qudits for
implementing one open string operator.

For a given configuration, we first perform a local lattice distortion as shown in Fig. 3.8.
Such distortion does not require any physical quantum operation, one can simply register
such change, e.g. on a classical computer. This step makes sure the endpoint of the string
will land at an edge with two qudits. Following this virtual lattice distortion, we implement
a four-qudit unitary that satisfies

. (3.11)

The operators for creating and moving the anyons are schematically shown in Fig. 3.10.
with a circuit in terms of qudit quantum gates. Notice that a long abelian string costs a
constant depth quantum circuit while a linear-depth is required for the non-abelian strings.
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s
s

s

Figure 3.9.: The quantum circuits for abelian open string operators. (a) A circuit realiza-
tion for preparing abelian anyons. The shaded box shows the F -move defined
by the F -symbol in the abelian model, together with the labeling convention
for the F -symbol. We define the shaded circuit element to associate the qudit
state with an F -symbol phase. This phase is computed based on the F -symbol
labels assigned in the circuit diagram (see also the discussion in Section 3.5.2).
(b) A circuit realization for moving the abelian anyons by extending the string
operator (dark grey).

3.5.2. Quantum circuits for string operators and C-B̂p

In this section, we provide some examples of quantum circuits for the string operators,
which also lead to a quantum circuit for the C-B̂p. Since all the open string operators
satisfy isometry condition, there are certain degrees of freedom in defining the unitary to
realize them. What we show here is one realization of such unitary.

We encode the spin state on each site in a qudit. As a result, the quantum gates
become qudit gates in general. For example, we can generalize the two-qubit CNOT gate
to two-qudit CNOT by modular arithmetic, i.e. for (N+1)-level qudit, CNOTqudit |a, b⟩ =
|a, b+ a⟩ in mod N + 1. Another example is the qudit SWAP gate that swaps the two
states of two qudits, SWAPqudit |a, b⟩ = |b, a⟩. We will use the same circuit symbol for
qudit CNOT and SWAP as for qubit CNOT and SWAP. For clarification, let us consider
the case for abelian and non-abelian strings separately.

The abelian open string operators (i.e. each non-trivial value in the F -symbol is a phase),
such as for the toric code, take a particularly simple form due to the fusion constraints (see
Section 2.4). A quantum circuit implementation of a type-s string in terms of qudit gates
are shown in Fig. 3.9, where we define the colored circuit element in Fig. 3.9 as a two-qudit
gate that associates each state with an F -symbol phase. Explicitly, they map |eq1⟩ →
F ejq1kln |eq1⟩ or |eq⟩ → F eq

∗m
kln |eq⟩ depending on which of two the labels i, j, k,m, n, l in F ijmkln

are assigned to the input qudits according to the circuit diagram. The rest of the four
unknown labels in the F -symbol are uniquely determined by fusion in the abelian model.
The other qudit gates we used can be found in Table. 3.11. In the string preparation stage,
we simplify the circuits by removing the phase in Eq. (3.8) as discussed in Section 3.5.1.
The string preparation gate thus satisfies Û sprep |eq1q2⟩ = F

eq∗2q1
s∗q′1q

′∗
2
|eq′1q′2⟩, which is equivalent

to Eq. (3.8) up to an overall phase.
The non-abelian string circuits are shown in Fig. 3.10, where we have used the qudit
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Figure 3.10.: The quantum circuits for the non-abelian open string operators. The orange
color highlights the qudits that store the ancillary qudit states. (a) A circuit
realization for preparing non-abelian anyons. The shaded box shows the F -
move defined by the F -symbol in the non-abelian model, together with the
labeling convention for the F -symbol. The shaded circuit elements are qudit
quantum gates that perform the F -move. The gates are controlled single-
qudit rotations that change the state of the green qudit labeled with m. The
gates are controlled by the states of the other input qudits, each of which is
assigned with a label in the F -symbol according to the circuit diagram. (b) A
circuit realization for moving the non-abelian anyons by extending the open
string operator (dark grey).

CNOT introduced above. The colored gate in this case implements the F -move to the
state according to the assigned labels in the circuit diagram. Unlike the abelian case, the
gate changes the state of the qudit assigned with green label m in Fig. 3.10. The definition
for other qudit gates can be found in Table. 3.11.

Next, we use the circuits for the string operators to construct a circuit for the C-B̂p. The
controlled gate C-B̂p can be seen as applying a type-s string operator around the plaquette
if the control qudit of the gate (i.e. the representative qudit for the plaquette) is in state
|s⟩. It thus follows that we can decompose C-B̂p into a sequence of local controlled gates
that prepare and deform the string operator as in Fig. 3.9 and Fig. 3.10. We show how
this can be done for the non-abelian case, the abelian case follows straightforwardly. Note

s

Figure 3.11.: Definition for the qudit gates used in the construction of the open string
operators, where s is the label for the corresponding simple string operator.
The quantity ωp′,p is the phase ωk in Eq. (2.20) with i′k = p′ and ik = p, and
the orientation is to be identified from the direction of the string operators
in the circuit diagrams, such as in Fig. 3.9 and 3.10.
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Figure 3.12.: A circuit decomposition for C-B̂p gate using the labeling convention in
Eq. (3.12). All the gate operations are controlled by the qudit on the top
bond (the green s). The dashed arrows show the virtual location of the an-
cillary qudit state, which is stored in the initially disentangled qudit (orange)
throughout the steps. In step 1, the qudit gate is a qudit CNOT followed by
Fig. 3.10a. The CNOT aligns the |0⟩ qudit (orange) with the qudit at the
endpoint of the string operator which is to be initialized. In step 2 and 3,
the qudit gate is the same as Fig. 3.10b followed by a SWAP gate that keeps
the ancillary qudit state in the orange qudit. The step 4 is similar to step
2 and 3, except that we adapt the circuit slightly since no ancillary qudit is
required at the last step. The explicit circuit diagrams are given by Fig. 3.13.

that the subspace C-B̂p acts on is

. (3.12)

Our goal is to apply a type-s string operator around the plaquette, where |s⟩ is the state
of the control qudit at the top.

A schematic of the circuit is shown in Fig. 3.12. To construct C-B̂p, we first initialize a
length-two string using the circuits in Fig. 3.10a. In this step, we use one of the initially
disentangled qudits, which is chosen to be the one on the right in this example, to store
the ancillary qudit state. Next, we extend the string around the plaquette by applying the
circuit in Fig. 3.10b followed by a qudit SWAP gate that ensures the ancillary qudit state
is always stored in the same qudit throughout. In the last step, the endpoint of the string
is going to land at the qudit that stores the ancillary qudit state, We do this with a slight
adaptation of the circuit by fixing the state q3 to |0⟩ in Fig. 3.10b. In other words, since
the ancillary qudit is supposed to store the initial state of the endpoint qudit before the
string operator is applied, the use of the ancillary qudits becomes unnecessary if that initial
qudit is disentangled |0⟩. The resulting explicit circuit diagrams for the decomposition are
depicted in Fig. 3.13 for both abelian and non-abelian cases. One can check that for the
case s = 0, the circuit operates an identity on the input state.

We note that all the qudit gates that implement the corresponding F -symbol can be
realized as a multi-controlled qudit gate. The gate applies a single-qudit rotation on the
qudit marked by a green label depending on the states of the other qudits. We illustrate
this in the next section with an explicit example.
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Figure 3.13.: Explicit circuit diagrams for Fig. 3.12. The qudits are labeled by Eq. (3.12).
(a) The C-B̂p for the abelian case. Here we have used the controlled fusion
gate C-S, which performs the unitary C-S |s, i⟩ = |s, s× i⟩. (b) The circuit
for the non-abelian case, the qudit used to store the ancillary state is marked
orange.

F

Figure 3.14.: A quantum circuit for the F -symbol given in Ref. [136], where all the gates
are qubit gates. Here we have used a four-qubit controlled rotation gate,
i.e. a single-qubit rotation is applied to the fifth qubit if the qubits at the
solid dots are |1⟩, otherwise no operation will be performed. The single-qubit
rotation is defined in Eq. (3.13).

3.5.3. An example: Quantum circuits for double Fibonacci model

The double Fibonacci model is a string-net model that hosts a non-abelian topological
order. The model can be defined on a honeycomb lattice with qubit (|0⟩ or |1⟩ correspond
to string-0 and string-1) on each site. The strings are unoriented with branching rules
given by δ111 = δ110 = δ000 = 1. The F -symbol is defined by the Fibonacci unitary tensor
category

v0 = 1, v1 = ϕ
1
2 ,

F 111
110 = ϕ−

1
2 , F 111

111 = −ϕ−1,

F 110
110 = ϕ−1, F 110

111 = ϕ−
1
2 , (3.13)

where ϕ = 1+
√
5

2 is the golden ratio [52]. All the other non-zero values in F -symbol are 1.
As mentioned in the last section, a circuit implementation of the F -move can be realized

by a multi-controlled qubit gate. For the double Fibonacci model this gate can be decom-
posed as shown in Fig. 3.14 [136], where the single-qubit rotation is given by the F -symbol
in Eq. (3.13) as (F )ij = F 11i

11j .
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3.6. Discussion and conclusion

We can insert the circuit of the F -move into Fig. 3.10 and 3.13b to obtain a set of circuits
that efficiently simulates the double Fibonacci model on a digital quantum computer.
Although the circuit has not yet been optimized for practical implementation (this depends
on the connectivity of the device), we can still roughly estimate the resources needed for
the simulation by counting the number of CNOT gates needed to do a C-B̂p and perform
an anyon movement. The multi-controlled F gate in Fig. 3.14 can be broken down into 30
CNOT gates [137]. The Toffoli gate can be further decomposed into 6 CNOT gates [138],
together with the other 4 CNOT we have 40 CNOT gates in total. For the C-B̂p operator in
Fig. 3.13b, the first and last F -move unitary can be simplified exploiting the fact that we are
not using the full F -symbol. In the first F -move, the four-qubit controlled gate in Fig. 3.14
becomes a three-qubit controlled gate by identifying l = k, which can be decomposed into
13 CNOT [137], altogether the first F -move consists of 23 CNOT. Similarly for the last
F -move, by setting j = 0, the circuit in Fig. 3.14 can be simplified to 8 CNOT. Taking
into account these consideration, there are in total 120 CNOT gates (without any circuit
optimization).

The counting above does not take into account any circuit parallelization. In practice,
many of the gates can be operated in parallel to improve the efficiency, and circuit sim-
plification may be exploited. For example, the continuity of the strings on the subspace
in Eq. 3.12 implies e1 = i1 and i3 = e4, this can be used to further reduce the number of
gates needed in Fig. 3.13.

3.6. Discussion and conclusion

In light of the ground state structure of the string-net models, we develop a set of efficient
quantum circuits for preparing the topological string-net states with depth that scales
linearly as the minimum width of the system. The implementation offers substantial prac-
tical advantages compared to the previously known unitary constructions [117, 129]. The
prepared topological states serve as platforms supporting abelian or non-abelian anyons,
which are braided by the unitary string operators. Although we focus our discussion on
the honeycomb lattice, the implementation of the protocol can easily be run on the heavy-
hexagon lattice [139], which is available in current quantum computing platforms. The
construction also straightforwardly generalizes to any other 2D trivalent lattices compat-
ible with the architecture of the devices, rendering further reduction on the number of
qudits needed. The explicit quantum gates that we use during the construction are local
within each plaquette on the lattice (e.g. Fig. 3.3). In practice, the implementation of
these gates needs to be optimized based on specific device connectivity, as has been done
in Ref. [5] for the square lattice.

The circuit construction can be extended to other topological states or quantum stabi-
lizer codes that share a similar ground state structure. An example is Kitaev’s quantum
double model [43], which can be defined on any lattice embedded in 2D orientable surface
with orthonormal basis {|g⟩ |g ∈ G} labeled by the elements of a finite group G. The
Hamiltonian also takes the form as a sum of commuting local projectors on vertices and
plaquettes. We can use similar idea to obtain a linear quantum circuit for its ground
state with the representative spin in each plaquette initialized as 1

|G|
∑

g∈G |g⟩. This is not
surprising as it is known that quantum double models can be mapped to a subclass of
string-net models [140, 141]. The same scheme can also be used to prepare any states that
are related to the string-net states by a finite-depth quantum circuit, the corresponding
quasiparticle string operators being smeared out with support bounded by the light cone
of the finite circuit. The states of this form (often with a finite correlation length) will
exhibit the same topological order [93], making them valuable computing resources for the
study of correlated quantum many-body physics with controlled quantum systems.
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The preparation scheme can be exploited as an efficient generator for a family of 2D quan-
tum datasets on the digital quantum computers. It would be interesting to use these exotic
states for benchmarking various protocols where the non-trivial order of the states are rele-
vant. Some examples include quantum phase recognition [142, 143], quantum tomography
for weakly entangled states [144–146] or entanglement measurements [106, 147–149], which
have so far mostly only been illustrated on 1D cases. These quantum data can also be
efficiently generated on a photonic quantum computer [150].

Another exciting direction to be explored is fault-tolerant quantum computation. The
circuits realize an efficient unitary encoding of the logical information in planar geometry
with suitable boundary conditions, i.e. the surface code protocol [47, 151, 152]. Despite
not being intrinsically fault-tolerant, small-scale unitary encoding already provides use-
ful insights into the logical state injection and logical error dynamics [5]. An alternative
approach to achieve fault-tolerance is the topological quantum computation (TQC) [113],
where logical information is encoded in non-abelian anyons. A key advantage of TQC com-
pared to the surface code protocol is that it allows for universal fault-tolerant computation
by anyonic braiding. While universal computation is possible in surface code, it requires
a costly state distillation process. The unitary quasiparticle string provides a unitary en-
coding scheme for TQC (e.g. based on Fibonacci anyons). The braiding is accomplished
by a sequence of local gates, which can also be used to determine the fusion of the anyons.
However, whether all these anyonic operations can be performed fault-tolerantly, e.g., by
introducing syndrome measurements [136, 153] or anyon distillation [154], remains an in-
teresting open question for future work.
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4. Experimental realization of the Z2 toric
code ground state on a programmable
quantum processor

In the previous chapter, we develop the method for realizing and characterizing the topo-
logical order of the string-net states on a digital quantum computer. While the state
preparation protocol is efficient (i.e. the circuit depth scales linearly with the system size),
it had remained an open question whether this can be achieved experimentally with the
currently available quantum devices. In this chapter, we utilize the method from the last
chapter and demonstrate the realization of the Z2 topologically ordered ground state on
a programmable quantum processor. More specifically, we develop an optimized efficient
quantum circuit to prepare the toric code ground state on a lattice of 31 superconducting
qubits. We then experimentally establish the topological nature of the state by measuring
the topological entanglement entropy. By simulating interferometry of toric code exci-
tations, we fully determine their associated braiding statistics. Furthermore, we prepare
logical states of the distance-5 surface code on 25 qubits and demonstrate error correction
of logical measurements [47, 151]. While a meaningful implementation of active error cor-
rection on these states is beyond current experimental capabilities, we realize these states
without stabilizer circuitry, providing a scheme to characterize and understand errors of
logical qubits.

4.1. Realizing the ground state of the toric code

We realize the toric code ground state, depicted in Fig. 4.1A, by implementing a shallow
quantum circuit on a Sycamore quantum processor [37]. The toric code Hamiltonian (see
also Section 2.3 for more details)

H = −
∑
s

As −
∑
p

Bp (4.1)

is defined in terms of qubits living on the edges of a square lattice. The “star" operators
As =

∏
i∈s Zi are products of Pauli Z operators touching each star (+, blue). The “plaque-

tte" operators Bp =
∏
j∈pXj are products of Pauli X operators on each plaquette (□, pur-

ple). For the boundary conditions shown in Fig. 4.1A, there is a unique toric code ground
state |G⟩, with parity +1 for all star and plaquette operators: As |G⟩ = Bp |G⟩ = +1 |G⟩.

Rather than realizing the Hamiltonian explicitly, we directly prepare the ground state
using the algorithm depicted in Fig. 4.1B. This algorithm is motivated by the observation
that the ground state is an equal superposition of all possible “plaquette configurations"
and can be written as

|G⟩ = 1√
212

∏
p

(I +Bp) |0⟩⊗31 , (4.2)

where |0⟩⊗31 is the product of single-qubit states |0⟩, and the product is over the 12
plaquettes. We begin in the trivial state |0⟩⊗31, where all ⟨As⟩ = 1 and ⟨Bp⟩ = 0. For
each plaquette Bp, we perform a Hadamard on the upper qubit, preparing (|0⟩+ |1⟩)/

√
2,
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Figure 4.1.: Toric code ground state. (A) Experimentally-measured parity values for
a 31-qubit lattice in the toric code ground state |G⟩. Qubits (x) are drawn on
the standard toric code lattice, touching star (As, +, blue tile) and plaque-
tte (Bp, □, purple tile) operators. We compute each parity from a measured
probability distribution (measuring each As and Bp separately, 104 repeti-
tions), which we correct for readout error using iterative Bayesian methods
[155] (see Appendix B2). Mean parity: 0.92± 0.06 (1σ). (B) Quantum circuit
to prepare |G⟩, with quantum gates superimposed on experimentally-measured
parity values following each step. The circuit consists of Hadamard (H) and
CNOT gates, which we compile into CZ gates.

and then perform CNOT gates to the other qubits on the plaquette, effectively realizing
I+Bp. These operations are carefully ordered, starting in the middle and working outward,
to avoid conflict between plaquettes while minimizing circuit depth. The 12 Hadamards
create a superposition of 212 bitstrings, and the CNOTs transform each of those bitstrings
into a configuration where the Z parity on each star is +1; the final superposition has
X parity +1 on each plaquette. This circuit exhibits optimal scaling, with depth linear
in system width [125], specifically 3 + 2⌊(N − 1)/2⌋ nearest-neighbor CNOT layers for a
lattice N plaquettes wide.
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4.2. Measuring topological entanglement entropy
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Figure 4.2.: Topological entanglement entropy. (A) Schematic identifying the sub-
systems A, B, and C used to measure topological entanglement entropy Stopo
on 4-, 6-, and 9-qubit systems within the toric code lattice. (B) Illustration
identifying the expected entanglement entropy S for groups of qubits in the
toric code. We draw a red perimeter around each group and count the number
k of star operators (blue tiles) it crosses. S = k ln 2 + Stopo = (k − 1) ln 2.
(C) Experimental second Rényi entropy S(2) distributions measured on the
31-qubit toric code ground state. There is a histogram for each subsystem
shape. Dashed gray lines indicate the predicted integer values for |G⟩. (D)
Topological entanglement entropy Stopo/ ln 2 (ideal value −1) computed from
the entropies in C. We evaluate each dataset in all possible orientations of the
subsystems in A (2× 2: 4, 2× 3: 2, 3× 3: 8). Upper right: mean (dark green
line) and distribution standard deviation.

4.2. Measuring topological entanglement entropy

The topological entanglement entropy provides a “smoking gun” order parameter for the
topological nature of the ground state (see Section 2.1). To extract Stopo, a linear combi-
nation of subsystem entropies can be constructed such that the local contributions cancel.
For the subsystems depicted in Fig. 4.2A,

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC , (4.3)

where AB indicates the union of A and B. The structure of toric code eigenstates implies
that Stopo can be inferred from small subsystems. For the toric code ground state, Stopo =
− ln 2, reflecting the total quantum dimension of Z2 topological order [156], while Stopo = 0
in the absence of topological order.

The structure of the toric code Hamiltonian results in entanglement characterized by
integer multiples of ln 2, scaling with the number of star operators As intersecting the
subsystem boundary [116], as illustrated in in Fig. 4.2B. To compute Stopo, one can mea-
sure the second Rényi entropy S(2) = − ln[Tr

(
ρ2
)
], where ρ is density matrix, for each

subsystem in Eq. (4.3). Recently-introduced randomized methods enable efficient mea-
surement of Rényi entanglement entropies, requiring a smaller number of measurements
for large subsystems compared to full quantum state tomography [147, 149, 157]. This
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enables accurate entropy measurement when tomography is intractable, such as the 9-
qubit subsystem in Fig. 4.2A. We apply random single-qubit unitaries to the subsystem
of interest and sample the probability distribution of the bitstrings. Analyzing statistical
correlations across many random instances allows us to compute the second Rényi entropy.
We use an iterative Bayesian scheme [155] to mitigate measurement errors and remove
under-sampling bias (see Appendix B3, where we also compare randomized measurement
with tomography results).

Figure 4.2C shows distributions of the measured entanglement entropies for subsystems
of 2× 2, 2× 3, and 3× 3 qubits within the toric code ground state. For a subsystem with
n qubits, the entanglement entropy ranges from 0 for a product state up to n ln 2. In the
toric code, subsystems with no interior have the maximum value n ln 2; in those cases, we
measure a narrow distribution centered just below the ideal value. For subsystems with
an interior, we measure a wider distribution centered slightly above the predicted value.
This is consistent with unitary error and decoherence slightly mixing the system with its
environment, which increases entanglement entropies that are not yet at their maximal
value.

We compute Stopo from the subsystem entropies using Eq. (4.3) for 14 different 2 × 2
arrays, 20 different 2×3 arrays, and 3 different 3×3 arrays. Each randomized measurement
on the qubit array yields several Stopo estimates from different orientations of the partitions
A,B,C. Distributions of measured Stopo are shown in Figure 4.2D, with mean values
Stopo/ ln 2 = −0.89, −0.90, and −0.95 for the 2×2, 2×3, and 3×3 qubit arrays, respectively.
The distributions provide strong evidence for the non-trivial topological nature of the state,
closely approaching the ideal value of Stopo = − ln 2, completely distinct from the trivial
state value of zero.

4.2.1. Randomized measurement of second Renyi entropy

In this section, we provide further details for the experimental measurement of Stopo.
Measuring the entropy of a system is experimentally challenging: one often needs the
density matrix ρ, from which one can extract the von Neumann entropy

S = −Tr [ρ ln ρ] , (4.4)

or n-th order Rényi entropy

S(n) =
1

1− n
ln (Tr ρn) . (4.5)

The entropy cannot be measured directly, but can be accessed through quantum state
tomography of the density matrix. Full quantum state tomography is resource intensive,
with cost typically scaling exponentially with the subsystem size. Moreover, tomography
produces a biased estimator [158], which can sometimes be tricky to account for.

The topological entanglement entropy is defined using von Neumann entanglement en-
tropies for the subsystems [100, 101]. In the case of abelian topological order (such as
the toric code), the same equation holds when the von Neumann entropies are replaced
by second Rényi entropies [103, 104]. This equivalence is helpful when investigating larger
system sizes, as we can extract the second Rényi entropies from the statistical correla-
tions of the subsystems using the technique of randomized measurement (RM). A main
advantage of this protocol is the direct access to the entropy without reconstructing the
full state, significantly reducing the required number of measurements. It also provides a
simpler way to remove the bias and understand the statistical errors for the estimation.
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4.2. Measuring topological entanglement entropy

The RM protocol measures the second Rényi entropy by using single-qubit random
unitary. Consider a subsystem A, whose purity is given by

Tr
(
ρ2A
)
= 2NA

∑
s,s′

(−2)−H(s,s′)P (s)P (s′), (4.6)

where NA, ρA is the number of qubits and the density matrix of A. The average is over
the tensor product of single-qubit random unitaries which act on the qubits in A and are
independently drawn from the circular unitary ensemble (CUE). s, s′ are the binary strings
in the computational basis with H(s, s′) outputting the hamming distance between them,
and P (s) denotes the probability of observing s. The second Rényi entropy is given by
S(2)(ρA) = − ln

(
Tr
(
ρ2A
))

. A nice feature of the randomized method is that the same set
of measurement data can be used to compute the entropies for multiple subsystems at the
same time. This renders particular convenience in measuring the Stopo, which is inferred
from a linear combination of the entropies from different partitions. In the experiment,
we only have to measure the entropy of the subsystems themselves, from which Stopo can
be obtained by calculating all the entropies for different partition using the same data.
This avoids having several randomized measurements on the subsystem partitions and the
large statistical errors built up from adding and subtracting these independently-measured
entropies.

In practice, P (s)2 is a biased estimator for E(P (s))2 and needs to be replaced with an
unbiased estimator

P → P × nP − 1

n− 1
, (4.7)

where n is the number of measurements used to determine P (s) [159]. The random unitaries
can be drawn from the continuous (Haar) measure. However, on many current devices it
is more desirable to use a given finite set of pre-calibrated quantum gates. This is made
possible by approximating the ensemble (up to certain statistical moment) using a unitary
3-design, e.g. the Clifford group [160, 161]. The single-qubit random unitary can be
implemented as random single-qubit Clifford gates.

In the setting of RM, averaging over the tensor product of single-qubit Clifford gates is
equivalent to averaging over all the Pauli basis measurement [106]. This can be seen by
noting the qubit measurement projects the state onto Pauli Z basis, i.e. |0⟩⟨0| = (1+Z)/2
and |1⟩⟨1| = (1 − Z)/2. The single-qubit Clifford gates send the Pauli Z to any other
non-identity Pauli gates with equal frequency, U †ZU = ±P , where U ∈ Cliff(2) and P ∈
{X,Y, Z}. One can then go back to the Pauli Z basis as in the usual Pauli measurements.
The mapping with phase -1 corresponds to a bit-flip when transforming back to the Pauli
Z basis. The Hamming prefactor in Eq. (4.6) is preserved under bit-flip on s, s′, hence the
equivalence follows.

4.2.2. Error mitigated estimation of the second Renyi entropy

A subtlety arises when applying the error unfolding in RM of the entropy, which is esti-
mated from a list of cross-probabilities P (s)P (s′) between two bit-strings s, s′. However,
the multinomial nature indicates finite covariance between P (s) and P (s′). In other words,
the estimation of P (s)P (s′) becomes biased:

E[P (s)P (s′)]− E[P (s)]E[P (s′)] = cov(P (s), P (s′)). (4.8)

In practice, an unbiased estimator for the cross-probability is used to remove this bias.
That only allows us to remove the bias in the estimation based on the observed data, but
not the error-mitigated data after the iterative Bayesian unfolding (IBU) [155]. To fix this
deficiency, we need to simultaneously unfold the covariance during the iterative steps [162]
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Figure 4.3.: Classical Monte Carlo simulation of the error-mitigation for a 6-
qubit subsystem (2 × 3 qubit array) in toric code. Error mitigation
can be applied to estimate non-linear quantities like entropy, but the induced
bias needs to be removed by error-propagation. Here we show a simulation of
entanglement entropy estimation for a 2× 3 subsystem, using an uncorrelated
noise model (e0 = 0.01, e1 = 0.05). The red dotted line highlights the number
of repeated bitstring measurements used in the actual experiment. The inset
shows a simulated estimation of Stopo/ ln 2.

and use the unfolded covariance to remove the bias in the error-mitigated estimation at
the end.

In the experiment, the unfolding and the propagation of the covariance were performed
using RooUnfold package [162]. The iterative steps are chosen to be 15, 50 and 50 for the
4-qubit, 6-qubit and 9-qubit systems.

To illustrate the effectiveness of the error-mitigation and the unfolding techniques, we
classically simulate the 6-qubit experiment using an uncorrelated readout error model. The
model assumes asymmetric error rates e(0 → 1) = 0.01 and e(1 → 0) = 0.05 during the
readout procedure, while other sources of error such as decoherence and gate error are ne-
glected. The randomized measurements are simulated by drawing sufficiently many single-
qubit random unitaries (or equivalently, summing over the full Pauli basis rotations) and
repeating the bitstring measurements Nrep times for each random unitary instance, where
Nrep sweeps through a range of possible values. The results are shown in Fig. 4.3. Without
taking error-propagation into account, a clear under-sampling bias is induced, where the
estimated entropy will strongly depend on Nrep. Instead, when the error-propagation is
taken into account, the bias is removed, allowing an accurate determination of the entropy
for a wide range of bitstring samples Nrep.

4.3. Simulating and extracting the anyonic braiding statistics

Our approach of directly preparing the toric code ground state also allows us to simulate the
exotic braiding statistics of its quasiparticle excitations (anyons). We utilize a mapping
between the adiabatic evolution of toric code excitations and strings of Pauli operators
applied to the ground state. With this framing, a controlled Pauli string implements an
interferometry protocol through which we experimentally extract the mutual and exchange
statistics corresponding to all combinations of excitations.

The quasiparticle excitations of the toric code are commonly denoted as “electric" e with
⟨As⟩ = −1, and “magnetic" m with ⟨Bp⟩ = −1, in connection to lattice gauge theory. The
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Figure 4.4.: Extracting braiding statistics using Ramsey interferometry. (A)
Visualizing braiding with a toric code excited state |E⟩ = U1|G⟩ (excitations e
(red) and m (yellow), experimentally-measured parities). We apply additional
X gates (U2, U3, U4) to visualize braiding an e around the m. (B) Quantum
circuits with unitary U and an eigenstate |φ⟩. Left: Direct application. Right:
Extracting the phase θ using an auxiliary qubit (green). (C) Illustration of
Ramsey interferometry for the case of braiding an e and m (state |φ⟩) using
an operator U . We visualize the superposition of two paths, with the braid
operation U controlled by an auxiliary qubit in |+⟩. (D) Extracting the mutual
statistics for e and m. Left: initial excited eigenstate (similar to A). We
implement controlled-XXXX with an auxiliary control qubit (green) starting
in |+⟩. Right: parity measurements after controlled-XXXX. (E) Extracting
the fermion exchange statistics, analogous to D. We create two pairs of ψ
(neighboring e and m) and implement controlled-XXYYZZ to measure the
exchange phase. (F) Measured mutual and exchange phases, with braiding
diagrams. Phases are from tomography on the auxiliary qubit, 18000 total
repetitions per compiled instance. Standard error estimated with jackknife
re-sampling over instances.

four distinct anyons of the toric code are 1 (the absence of an e or m), e, m, and ψ (an
emergent fermion resulting from the combination of e and m) (see also Section 2.3). In
the toric code, the mutual statistics are encoded in the phase accumulated when dragging
one anyon around another anyon of different type, while the exchange statistics are phases
arising from spatial interchange of two identical anyons. The toric code excited states can
be created by applying a string of Pauli operators to the ground state: an X-string will
result in the state with e excitations at each end, while a Z-string prepares the state with
m excitations at each end. We visualize an example of e−m mutual braiding in Fig. 4.4A
with snapshots of experimentally-measured parity values, ⟨As⟩ and ⟨Bp⟩. We move an e
around m with an X-string, eventually returning to its initial position. The initial and
final states have the same parity values but differ by an overall phase, in this case π, which
is not directly detectable.
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To experimentally determine this phase, we employ multi-qubit Ramsey interferome-
try [110]. This protocol provides a scalable way to measure the overlap between the initial
and final states, allowing experimental access to the accumulated phase θ. A key step in
this protocol is the use of an auxiliary qubit and a controlled operation, effectively creat-
ing a superposition of the braided and non-braided states, as shown in Fig. 4.4B-C. This
sequence imparts θ into a measurable rotation of the auxiliary qubit. We efficiently com-
pile the multi-qubit controlled operations into CZ gates. Since the measured phases are
sensitive to coherent and non-Markovian errors, we use randomized compiling to mitigate
these errors [163]. See Appendix B4 for details.

Fig. 4.4D-E illustrate two examples of braiding interferometry. In Fig. 4.4D, we extract
the e − m mutual statistics, where the braiding path is a Pauli string XXXX, moving
e around the plaquette that contains an m. Fig. 4.4E shows a similar example for the
exchange statistics of two identical ψ excitations using a path of intertwining Pauli strings
of XXXX and ZZZZ, simplifying to XXYYZZ (see Appendix B6 for details). The parity
measurements show consistent values before and after the controlled-braiding operation,
slightly fading due to decoherence and gate error. We measure the phases for the other
mutual and exchange combinations, presenting the results in Fig. 4.4F. The phases are
plotted alongside their corresponding braid diagrams, with the expected values 0 and π
indicated by dashed gray lines.

Our measurements illuminate the non-trivial mutual and exchange statistics of the toric
code. Braiding e around m results in a π phase, which does not occur for local bosons or
fermions. Moreover, while e and m both satisfy bosonic exchange statistics, their combi-
nation ψ exhibits fermionic exchange statistics. The mutual and exchange statistics of the
anyons, conventionally summarized in the modular S and T matrices, fully characterize
the Z2 topological order [156].

Distinct topologically ordered ground states are locally indistinguishable, making them
attractive logical qubits due to this immunity to local perturbations. The lattice of
Fig. 4.1A has only one ground state under Eq. (4.1), but in Fig. 4.6A we use different
boundary conditions where the toric code admits a ground state degeneracy, as proposed
for the surface code [45, 46, 152]. We introduce logical operators ZL and XL which span
across the lattice and commute with the Hamiltonian but anti-commute with each other.
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Figure 4.5.: State preparation and injection circuits for 5× 5 logical qubit states
(mixed boundary). (A) Quantum circuit to transform |0⟩⊗25 → |0L⟩. This
maintains ZL = +1 (see Fig. 4.6A). To prepare |+L⟩, we rotate the circuit
90◦ and perform a transversal logical Hadamard at the end. (B) To inject an
arbitrary logical state α |0L⟩ + β |1L⟩, we replace steps (1) and (2) from A,
initializing the center qubit to the desired |ψ⟩ = α |0⟩+ β |1⟩.

4.4. Logical state injection and readout

We generalize the state preparation circuit of Fig. 4.1B to create the logical states |0L⟩
and |+L⟩, where ZL |0L⟩ = +1 |0L⟩ and XL |+L⟩ = +1 |+L⟩, on both 5 × 5 (distance-5)
and 3 × 3 (distance-3) arrays. The explicit quantum circuit for the 5 × 5 code is shown
in Fig. 4.5. The |0L⟩ and |+L⟩ preparations are closely related, connected by a logical
Hadamard. We then use the logical operators, which are simply products of single-qubit
gates, to realize |1L⟩ = XL |0L⟩ and |−L⟩ = ZL |+L⟩. See Appendix B1 for details on state
preparation and logical operations.

The logical states are resilient to local errors, which we demonstrate with logical mea-
surement with error correction, shown in Fig. 4.6B. Following surface code proposals, we
perform a logical measurement by projectively measuring all the qubits in Z or X basis (for
ZL or XL, respectively). Naively evaluating the parity of the logical operator is vulnerable
to errors on any qubit along the operator, but errors can be detected by also evaluating
the local parities (As or Bp) from the individual qubit measurements. By construction,
we expect the local parities to be +1, so any −1 values indicate nearby errors. We find
a minimal set of qubits to flip in order to recover +1 parities before evaluating the log-
ical operator. This correction decreases the logical error significantly. Averaging logical
preparation and measurement error over XL and ZL eigenstates, without correction, we
observe 0.17 for distance-5 and 0.090 for distance-3, while with correction, we observe
0.030 for both, lower than the average physical qubit preparation and measurement error,
0.034. This is a simplified form of error correction compared to the repetitive stabilizer
measurements of surface code proposals, where parity changes are matched together over
space and time.

The logical subspace also admits arbitrary superposition states α |0L⟩+β |1L⟩, which we
realize with state injection, encoding a single physical qubit state into the logical qubit.
For 5 × 5 state injection, we prepare the central qubit in α |0⟩ + β |1⟩ and then create a
GHZ-like state (αI+βXL) |0⟩⊗25 using three CZ layers. The toric code preparation circuit
maps |0⟩⊗25 → |0L⟩ and XL |0⟩⊗25 → |1L⟩, giving α |0L⟩+ β |1L⟩. For example, the states
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Figure 4.6.: Surface code logical qubit states. (A) Measured parity values for surface
code logical qubit states |TL⟩ =

(
|0L⟩+ eiπ/4 |1L⟩

)
/
√
2 on 5 × 5 and 3 × 3

qubit arrays. Logical operators ZL and XL span across each array. (B) Logi-
cal measurement with error correction. We measure a 25-qubit bitstring in X
or Z basis and evaluate the local parities of the same basis. Negative parities
indicate an error. We flip the circled qubits to restore positive parities. (C)
Experimental logical qubit tomography immediately after state injection for
128 states (sweeping the initial state of the center qubit |α⟩+ |β⟩), plotted in
the Bloch sphere (5 × 5). The ideal states lie on five planes: x = 0 (yellow),
y = 0 (purple), z = 1/

√
2 (red), z = 0 (blue), z = −1/

√
2 (green). Mean

Bloch vector length: 0.6 ± 0.1 (1σ). (D) We prepare logical states, wait for
a time t, and then perform a logical measurement. We compare logical mea-
surements for |1L⟩ (red) and |+L⟩ (purple), for both 5 × 5 (5-sided markers)
and 3× 3 (3-sided markers) states. Star markers: raw measurements. Hollow
markers: corrected measurements. Filled markers: corrected measurements
with dynamical decoupling during the wait time (|+L⟩ only, see main text).
Each logical measurement uses 104 repetitions.

depicted in Fig. 4.6A are logical T states |TL⟩ =
(
|0L⟩+ eiπ/4 |1L⟩

)
/
√
2, of interest for

non-Clifford operations. We characterize injected states using logical tomography. Mea-
suring ZL and XL is straightforward and robust, as discussed above. We measure YL by
performing another logical gate, X1/2

L = (I − iXL)/
√
2, decomposed into five CZ layers,

and then measuring ZL. We plot the resultant Bloch vectors for 128 injected states across
the Bloch sphere in Fig. 4.6C. By measuring these non-local order parameters, we illumi-
nate the logical degree of freedom that was invisible to the local parity measurements of
Fig. 4.6A. Note that, in contrast to surface code proposals, our state preparation meth-
ods are not fault tolerant, though in principle states prepared in this way can be further
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purified by distillation [47, 164, 165].
Finally, we investigate decoherence of ZL and XL eigenstates by plotting logical error

versus wait time t in Fig. 4.6D. We reiterate the importance of measurement error correc-
tion by comparing raw and corrected data. Note that while distance-5 has significantly
worse raw error, after correction it is modestly better than distance-3 for |1L⟩. However,
observe that |+L⟩ decays much more quickly than |1L⟩, due to its sensitivity to Z errors
(dephasing). We dynamically decouple the qubits from low-frequency noise with a simple
sequence executing an X gate on each qubit at t/4 and 3t/4, which brings |+L⟩ error
slightly below |1L⟩ error, with distance-3 remaining slightly lower-error. |1L⟩ and |0L⟩ are
not appreciably affected by this dynamical decoupling (see Appendix B5). Overall, the
logical error increases linearly at 0.06 per microsecond. For active error correction with
the surface code, we expect a few percent logical error per cycle at threshold [151]. Typ-
ical cycle durations are hundreds of nanoseconds [166], where the logical state suffers the
decoherence studied here as well as gate errors, suggesting continued efforts to decrease
the cycle duration and improve coherence.

4.5. Discussion and conclusion

In this chapter, we presented the results on the realization of the 31-qubit toric code
ground state on the Google Sycamore quantum processor. We benchmarked the quality
of the prepared ground state by measuring the stabilizer values on the ground state. We
then provided strong evidence of the topological nature of the prepared ground state by
performing, to our knowledge, one of the first direct measurements of the topological
entanglement entropy of the state. Using the high-quality topological state, we further
explored the error-correcting aspects of the surface code, including logical state injection
and logical information readout. Our results not only represent a significant advance in
the field of quantum simulation of topological phases of matter, it also sheds light into the
future development of quantum error correction.

The experimental method employed can be used to realize more general topological
ground states, including the string-net states as shown in the last chapter. Recently,
the theoretical method has been used to successfully demonstrate the non-abelian anyonic
braiding [68] and non-abelian ground states of the double Fibonacci model [69]. The quasi-
static protocol using controlled Pauli strings to simulate braiding can be generalized to
dynamical adiabatic braiding [167] by using deeper circuits in future devices. By encoding
quantum information in the degenerate ground state manifold of the toric code, we provide
a method for studying coherence properties of logical qubit states. This method could be
used to identify and mitigate noise correlations in the system, with critical implications
for future error correction experiments.
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Part II.

Detecting quantum phases of
matter on digital quantum

computers
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Overview of Part II

In Part I of the thesis, we discussed and presented the results on the realization of specific
fixed-point ground states of gapped topological phases and the topological nature of the
states is probed by measuring their topological entanglement entropy, which provides an
order parameter for the topological phases. However, the measurement scheme used for the
topological entanglement entropy is not scalable. i.e. the number of measurement samples
required to achieve a given accuracy grows exponentially with the system size. This poses a
significant challenge in characterizing the prepared topological ground states in large-scale
experiments. An interesting and important question is thus whether there exist other order
parameters for topological phases of matter that can be efficiently measured.

In Part II, we investigate the question within the framework of quantum machine learn-
ing. In Chapter 5, we propose a method to discover suitable order parameters by training
a quantum convolutional neural network in a model-independent way. We demonstrate
the effectiveness of the method on a few 1D quantum phases of matter. The method can
also be easily extended to higher dimensional systems. This chapter is based on the pub-
lication [2]. At the end of the chapter, we also briefly comment on the possibility of using
the framework of quantum error correction to detect emergent 1-form symmetries and 2D
topological quantum phase transitions. This is a work under preparation (in collaboration
with Wen-Tao Xu, Michael Knap and Frank Pollmann), in which we numerically bench-
mark the approach and demonstrate its success in the well-known phase diagram of the
2D toric code subject to both longitudinal and transverse fields.
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5. Quantum convolutional neural
networks and quantum phase
classifications

A good idea has a way of becoming simpler and solving
problems other than that for which it was intended.

Robert Tarjan

Phases of matter are traditionally identified by measuring order parameters, includ-
ing local order parameters for symmetry-breaking phases, string order parameters for
one-dimensional symmetry-protected topological (SPT) phases [13, 15, 168–171], or the
topological entanglement entropy for topologically ordered systems in 2D as discussed in
Chapter 2. Finding a suitable string order parameter can be difficult in general, in par-
ticular, without the presence of additional symmetries [172]. Nonetheless, non-local order
parameters, utilizing multiple copies of the system, can directly extract the topological
invariant of one-dimensional (1D) SPT phases for global symmetries [172, 173]. They can
also be probed by randomized measurements [174] at a cost that scales exponentially with
the subsystem size of interest.

Recently, classical and quantum machine learning approaches have been introduced to
tackle the task of quantum phase classification; see e.g. Refs. [142, 175–182]. Quan-
tum circuit classifiers, such as quantum convolutional neural networks (QCNNs) [142], as
demonstrated experimentally in Ref. [183], naturally provide a quantum machine learning
architecture to learn observables for the classification of phases. One advantage of these
classifiers is, that the learned observable can be efficiently measured on a quantum device.
Thus, an interesting question is to study whether a quantum machine learning approach,
such as the training of a QCNN, can automate the discovery of (non-local) order parame-
ters that characterize the phases and are efficient to measure experimentally. The training
of a quantum classifier faces challenges. For example, a large amount of labelled training
data, in the form of ground states, is needed. These states could be obtained by adia-
batic [184, 185] or variational algorithms [186, 187]. However, the generation of a large
amount of ground states can become infeasible, in particular, for noisy intermediate scale
quantum devices. Another prominent obstacle is vulnerability or over-fitting of the QCNN,
caused by training on a specific class of ground states.

In this chapter, we propose a model-independent quantum protocol for training QCNNs
using minimal information about the gapped quantum phases, which includes the fixed-
point wavefunctions and the symmetry group of the system [93, 94]. We train the QCNN
with synthetic training data by first constructing the fixed-point wavefunctions, which are
typically efficiently prepared [12, 71], and then apply a finite number of layers of random
symmetric local gates. Each layer is translationally invariant and independently sampled.
Randomness helps prevent the QCNN from learning local (non-universal) properties of the
states by masking the local structure of the fixed-point. We will focus on quantum phases
of matter in 1D, but the approach is applicable to finding order parameters for quantum
phases in higher dimensions.

55



Chapter 5. Quantum convolutional neural networks and quantum phase classifications

Figure 5.1.: Architecture of an 8-qubit QCNN and training data. (a) The QCNN consists
of three building blocks [142]. Convolutional layers consist of two-qubit gates
(orange). The pooling is achieved by a set of controlled rotations (green). The
gates in the pooling and the convolutional layers can be either translation-
invariant or independently parametrized. The fully connected layer in this
case is a two-qubit gate (blue). (b) Random local symmetric two-qubit gates
create finite correlations that mask the microscopic details of the state. In the
shown example, four layers of symmetric noise (Lnoise = 4) are applied to a
fixed-point in the thermodynamic limit. Each layer is translationally invariant
and independently sampled.

5.1. Quantum covolutional neural networks and the problem
setup

The architecture of QCNNs consists of convolutional, pooling, and fully-connected lay-
ers [142], as shown in Fig. 5.1a. Each convolutional layer is a finite-depth circuit of local
unitary gates. The pooling layer is a set of parallel controlled single-qubit rotations, where
the control qubits are discarded. During the training, the controlled rotations can be
absorbed into the convolutional layer. Originally, the unitary gates on the same circuit
layer were chosen to be identical everywhere [142]. Besides this uniform ansatz, we also
investigate independently parametrized gates. Despite having an extensive number of free
parameters, and hence an increase in the difficulty of training, both the uniform and the
generalized QCNN are barren-plateau free [188]. Before the readout, a fully connected
layer “summarizes” the information into the measured qubits. This layer is a multi-qubit
gate that acts on all the qubits at the final level of the network.

Here, we focus on 1D systems and consider the following task: Suppose we haveM phases
protected by a symmetry groupG and a set ΨG = {|ψ1⟩ , · · · , |ψM ⟩}, where each |ψm⟩ ∈ ΨG

is a fixed-point wavefunction for each phase under the real-space renormalization group
flow [12, 71–74]. We aim to find a QCNN that predicts the phase of any input ground
state |ψ⟩ of a symmetric Hamiltonian.

We tackle the classification task by training an N -qubit QCNN that acts on an infinite
system (Fig. 5.1b). We choose the number of readout qubits at the fully connected layer
to be ⌈log2M⌉ and associate each phase with a bitstring label s ∈ {1, 2, · · · ,M}. The
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5.2. Model-independent training of QCNN for 1D quantum phases of matter

probability for each bitstring |s⟩ is interpreted as the QCNN’s confidence score for that
phase, and the prediction is the phase with the largest probability. A quantum phase
transition is marked by the change of the label with the highest probability. This contrasts
the original QCNN considered in Ref. [142], which produces an order parameter that
vanishes for one phase and is non-zero for the other phases.

5.2. Model-independent training of QCNN for 1D quantum
phases of matter

To train an N -qubit QCNN, we use the stability of the quantum phases under finite-depth
symmetric quantum circuits. Two ground states |ψ1⟩ , |ψ2⟩ belong to the same phase if and
only if they are related by a finite-depth local quantum circuit |ψ1⟩ ∼

∏
k Û

(k) |ψ2⟩ , where
Û =

∏
k Û

(k) is a product of layers of local unitaries that can be continuously connected to
the identity [93, 94]. When the system has certain symmetries, Û needs to be symmetric
as well.

We generate the training data with the following steps (sketched in Fig. 5.1b):

1. Randomly pick a label m ∈ {1, · · · ,M} and prepare the fixed-point wavefunction
|ψm⟩ ∈ ΨG.

2. Apply Lnoise layers of random symmetric local two-qubit gates, for Lnoise < N/2.

The requirement of Lnoise < N/2 comes from the finite size of the QCNN. Namely, if
the correlation length created by the noise becomes comparable to the QCNN’s size, the
phases are no longer distinguishable by the QCNN. In practice, we first train the QCNN
with a single layer of noise then increase the number of layers one-by-one as we achieve
convergence. We continue until test accuracy falls below a threshold. We restrict ourselves
to the simplest case of two-qubit gates for the noise. However, the scheme can be easily
generalized to symmetric gates that act on more qubits.

5.3. Recognizing time-reversal symmetric quantum phases in
1D

To investigate the effectiveness of the protocol, we consider classification of gapped phases
of 1D translationally invariant spin-1/2 chains with time-reversal symmetry generated by
T = (

∏
iXi)K, whereX is the Pauli-X matrix andK is complex conjugation. We focus on

the cases where the translation symmetry is not spontaneously broken. The system hosts
three phases [15, 171]: (i) The symmetry-breaking (SB) phase, where T is spontaneously
broken and the system has degenerate ground states; (ii) the trivial phase; and (iii) the
SPT phase. In the thermodynamic limit, the ground state is unique for (ii) and (iii), but
T is fractionalized trivially and non-trivially, respectively. A fixed-point wavefunction can
be found for each phase

|ψSB⟩ =
1√
2
(|· · · 000 · · ·⟩+ |· · · 111 · · ·⟩) ,

|ψTrivial⟩ = |· · ·+++ · · ·⟩ , |ψSPT⟩ = |CS⟩ , (5.1)

where the basis Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ is used, and |+⟩ = (|0⟩ + |1⟩)/
√
2. The state

|CS⟩ is the cluster state satisfying Zi−1XiZi+1 |CS⟩ = − |CS⟩ , ∀i. The set of time-reversal
symmetric two-qubit unitary gates that continuously connects to the identity forms a Lie
group Q generated by the set of Pauli strings P = {iZ1, iZ2, iZ1Y2, iY1Z2, iZ1X2, iX1Z2}.
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Chapter 5. Quantum convolutional neural networks and quantum phase classifications

In Section 5.5, we prove that the QCNN that we aim to find does not exist without
imposing translational invariance (TI), or other additional symmetries, on the input data.
However, when we impose TI, there exists a set of observables that can be used to perfectly
identify the phases in the thermodynamic limit (see Section 5.5.5 for details). Therefore,
a QCNN for TI input states may be found and the prediction of the phase is obtained by
applying a low-depth quantum circuit followed by local bitstring measurements.

In principle we allow TI for arbitrary size unit cells. Here, we impose TI with a two-
site unit cell by using a single two-qubit gate per layer, which is repeated across the
system, see Fig. 5.1b. The two-quibt gate is parametrized as exp(

∑
k θkPk), where Pk ∈ P ,

the set of generators for the symmetric noise, and each θk is randomly sampled from a
uniform distribution. In the following, we will focus on the QCNN in which every gate
is independently parametrized. To classify the three phases, the prediction is made by
measuring two qubits at the end of the QCNN circuit. We assign labels to each bitstring
output: 00 → Trivial, 01 → SB and 10 → SPT. The bitstring 11 corresponds to an
unsuccessful classification.

5.3.1. Training of the QCNN

We focus on a QCNN that acts on N qubits with N = 4 or 8 (see Fig. 5.1). During
the training, the pooling layers are absorbed into the two-qubit gates at the end of the
convolutional layers. A two-qubit gate is a 4 × 4 unitary parametrized by 15 parameters
as exp

(
− i

2

∑
ρ,γ∈{0,1,2,3} θρ,γÔ

ρ ⊗ Ôγ
)
, with the matrices Ô0 = I, Ô1 = X, Ô2 = Y and

Ô3 = Z. We set θ0,0 = 0 to fix the phase degree of freedom of the gate.

Figure 5.2.: To simulate an N -site QCNN with N = 8 and Lnoise = 2, we use a 14-qubit
system with the QCNN acting on the middle 8 qubits. This avoids the finite-
size effects. The absence of the finite-size effects can be checked for the input
fixed-point function, e.g. |CS⟩ with Zi−1XiZi+1 = − |CS⟩ in the bulk as
shown. The H-gate is the Hadamard gate and the line connected by two dots
is the controlled-Z gate. The other fixed-point wavefunctions used in the work
can also be verified to have no finite-size effects for the chosen QCNN.

We train the QCNN based on a log-softmax cross entropy loss function. Given a batch
of |B| input states and their labels B = {(p, l)}, the loss function for the batch is defined
by

L(B) = − 1

|B|
∑

(p,l)∈B

log

(
eCpl∑
j
eCpj

)
. (5.2)

In the above equation, pj is the jth probability from the output bitstring distribution p, C
is a constant used to set the desired scale of probability difference between different labels.
In our experiments, we set C = 50. Suppose the symmetric local unitary is generated
by some Pauli strings Pk such that the unitary is parametrized as exp(

∑
k θkPk) for some

θk ∈ R. We sample the symmetric unitary by uniformly sampling θk ∈ (−π, π].
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5.3. Recognizing time-reversal symmetric quantum phases in 1D

Figure 5.3.: Prediction of the phase diagram of the cluster-Ising model HCI based on the 4-
qubit QCNN (filled circles); see Eq. (5.3). The background and the boundaries
are the theoretical phase diagram solved analytically. The right hand side
shows the prediction on a perturbed cluster-Ising Hamiltonian. The theoretical
phase diagram is obtained by an iDMRG algorithm.

To implement the proposed protocol, we generate the training data for each phase by
applying Lnoise = 1 or Lnoise = 2 layers of random symmetric two-qubit unitary to a
fixed-point wavefunction of the phase. The training is done as follows: we start with
Lnoise = 1 until we have reached 100% test accuracy and we use the output QCNN to
continue the training on data with Lnoise = 2. The optimization is performed using Adam
optimizer [189], with a learning rate of 5× 10−4 for Lnoise = 1 and 1× 10−4 for Lnoise = 2.
To ensure convergence, for each training session of the 4-qubit (8-qubit) QCNN we generate
30000 (60000) samples for training and 1000 samples for testing. The batch size is 30 (50)
and the number of epochs is chosen to be at most 12000. Note that we have not optimized
the choice of the training sample size here. We expect much fewer training samples can be
used to produce less optimal, yet reasonable results.

In the simulation, we simulate the application of an N -qubit QCNN to an infinite system
by including Lnoise+1 more qubits on the left and right of an N -qubit system, respectively.
In total, the system contains N+2(Lnoise+1) qubits. An example of N = 8 and Lnoise = 2
is depicted in Fig. 5.2, the system consists of 14 qubits in total. The QCNN only acts on
the middle 8 qubits, such that any expectation values evaluated within these 8 qubits are
the same as the expectation values evaluated in an infinite system. We can verify this with
the circuit generating the cluster state as shown in Fig. 5.2.

The trained QCNN is tested on 105 synthetic data constructed with different Lnoise to
obtain a final test accuracy. We first train a 4-qubit QCNN. The test accuracy reached by
the 4-qubit QCNN is 87.21% on the test data generated with Lnoise = 1. This means that
the 4-qubit QCNN is not able to perfectly distinguish the phases of a 4-qubit subsystem
when the correlation length of the system is roughly two sites. For an 8-qubit QCNN,
the performance is drastically improved and attains a test accuracy of 100% on engineered
data with Lnoise = 1 and of 97.37% on data with Lnoise = 2.

In Appendix C, we also examine the ansatz with uniformly parametrized gates within
the 8-qubit QCNN, which achieves similar performance to the non-uniform ansatz when
increasing the depth of the convolutional layer from 3 to 5 in Fig. 5.1a. Despite the deeper
circuit, the uniform ansatz has fewer free parameters.

5.3.2. Testing of the trained QCNN on physical ground states

We now test the trained QCNN on different time-reversal symmetric physical models.
We first consider a cluster-Ising model [143, 190, 191] where the phases are protected by
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Chapter 5. Quantum convolutional neural networks and quantum phase classifications

Figure 5.4.: (a) Prediction using the 8-qubit QCNN (b) QCNN prediction (filled circles)
obtained for a perturbed cluster-Ising model HpCI . (c) A zoom-in along the
cut of the perturbed phase diagram in (b) indicated by the black dashed line.
The QCNN prediction corresponds to the solid lines. The dashed vertical lines
mark the location of the critical points predicted by iDMRG.

time-reversal symmetry T = (
∏
iXi)K. The Hamiltonian of the system is

HCI = gzxz
∑
i

Zi−1XiZi+1 − gzz
∑
i

ZiZi+1 − gx
∑
i

Xi, (5.3)

where gzxz, gzz, gx ≥ 0. Depending on the couplings, the symmetry protects three distinct
phases—the trivial, the SB and the SPT phase. We test the QCNN over the phase diagram
of HCI in Eq. (5.3). We do this by first finding the ground states of HCI using an infinite
density matrix renormalization group algorithm (iDMRG) [32, 192], which are then input
to the QCNN for classification.

We first show the results using the 4-qubit QCNN in Fig. 5.3. The background color
marks the theoretical prediction, while the colored circles show the QCNN prediction. The
theoretical phase diagram is obtained by mapping HCI to a free-fermion chain [191]. As we
can see, near the fixed points where the correlation length of the system is small, the QCNN
does a good job. The prediction becomes incorrect quickly when approaching the phase
boundaries. To test robustness, we add a perturbation HpCI = HCI − gx

∑
iXiXi+1 that

breaks the free-fermion mapping of the chain. The prediction of the same QCNN is shown
in Fig. 5.3. In this case, the theoretical phase diagram is obtained by a transfer-matrix
approach [172] based on iDMRG. The trivial phase is expanded in parameter space due to
the additional coupling. The results based on the 8-qubit QCNN are shown in Fig. 5.4a.
We see that the 8-qubit QCNN accurately predicts the phase diagram compared to the
4-qubit case. For the perturbed cluster-Ising model, the trained 8-qubit QCNN again
accurately predicts the shifted phase boundary as shown in Fig. 5.4b. To take a closer
look, in Fig. 5.4c we show the probability for the three phases given by the QCNN along
a particular cut in the phase diagram (the black, dashed path with arrows in Fig. 5.4b).

The cluster-Ising model has the special property that the phase diagram contains the
fixed-point wavefunctions Eq. (5.1), when only one of gzxz, gzz, gx is non-zero. We re-
move this property by applying the trained 8-qubit QCNN to four additional time-reversal
symmetric physical models that are previously unseen by the network.
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5.3. Recognizing time-reversal symmetric quantum phases in 1D

Figure 5.5.: QCNN prediction on various microscopic models. In (a) and (b), a transition
between an SPT and the trivial phase is detected at λ = 1/2. (c) The system
is predicted to lie entirely in the trivial phase. A phase transition protected by
a different symmetry occurs at λ = 1/2. (d) The bond-alternating Heisenberg
model for ∆ = 4. The antiferromagnetic order is correctly detected by the
QCNN. Details can be found in the text.

To start, we consider a cluster model with a Y field, namelyH1 = (1−λ)
∑

i Zi−1XiZi+1−
λ
∑

i Yi. The model has a transition from the SPT phase to the trivial phase at λ = 1/2,
which is accurately captured by the QCNN as shown in Fig. 5.5a. Similarly, we consider
H2 = (1−λ)

∑
i Zi−1YiZi+1−λ

∑
i Yi with a modified cluster coupling term. The transition

at λ = 1/2 is also identified by the QCNN as shown in Fig. 5.5b.

Next, we consider H3 = (1− λ)
∑

iXi−1YiXi+1 + λ
∑

i Yi. This Hamiltonian illustrates
an intricate example where the correlation length diverges at λ = 1/2, but the system never
leaves the trivial phase with respect to the T symmetry. As shown in Fig. 5.5c, the QCNN
trained based on the representation T correctly predicts the phase diagram. We emphasize
that the system also has another time-reversal symmetry represented by T ′ = (

∏
i Zi)K

which is responsible for a phase transition at λ = 1/2: Under T ′, the system belongs to
distinct phases for λ > 1/2 and λ < 1/2. Such a transition can be captured if the QCNN
is trained based on the representation T ′. This can be easily verified by noting H2, where
the distinct phases are identified by the QCNN, is related to H3 by a basis transformation.

The last example we consider is H4 = (1 − λ)
∑

iH
bond
2i + λ

∑
iH

bond
2i+1 , describing an

antiferromagnetic alternating-bond Heisenberg model. We denote the XXZ-coupling on
each bond as Hbond

2i = X2iX2i+1 + Y2iY2i+1 + ∆Z2iZ2i+1. At the limit λ = 0 and λ = 1,
the system is in two different dimerized states. Interestingly, the system has a time-
reversal symmetry represented by an effective spin-1 π-rotation around the y-axis in the
bulk followed by a complex conjugation [191], which protects the two dimerized limits
as distinct phases. However, under the symmetry representation T , the two dimerized
limits can be continuously connected without a phase transition and they both belong to
the trivial phase (see Appendix C for more details). For sufficiently strong ∆, the model
exhibits an anitferromagnetic ordering at intermediate λ. In Fig. 5.5d we show the case of
∆ = 4, exhibiting an intermediate SB phase in the vicinity of λ = 1/2. We note that the
transition points predicted by the QCNN are slightly shifted away from the iDMRG phase
boundary. This is reasonable given the relatively large correlation length near the phase
boundary, which the 8-qubit QCNN cannot fully accommodate.
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Figure 5.6.: Comparing the theoretical phase diagram and the phase diagram predicted by
the 4-qubit QCNN trained based on Z2 × ZT2 symmetry.

Figure 5.7.: The 8-qubit QCNN trained based on Z2 ×ZT2 symmetry. Panel (b) shows the
probability along the same path as in Fig. 5.4b.

5.4. Recognizing 1D Z2 × ZT
2 symmetric quantum phases

The protocol we propose can be applied to generic 1D symmetric quantum phases (with ad-
ditional symmetries, such as TI). The set of local symmetric unitary gates for a given sym-
metry representation forms a unitary Lie group and can be found by identifying all the sym-
metric generators of the group (see Appendix C). For example, the cluster-Ising model is
also protected by a Z2×ZT2 symmetry, i.e. the set of symmetries {I,

∏
iXi,K, (

∏
iXi)K},

where I is the identity. The symmetric two-qubit unitary is generated by iZ1Y2 and iY1Z2.
Using the fixed-points Eq. (5.1), we can also train a QCNN that accurately characterizes
the cluster-Ising model.

We use the three fixed points provided in Section 5.3. Since T ∈ Z2 × ZT2 , the system
has more disconnected phases due to a larger symmetry group. Note that, by using only
three fixed points, we restrict to the phases that contain the fixed points, which only cover
a subset of all the phases protected by the symmetry (with TI). Unlike the time-reversal
case, we found the training in this case converges much quicker. We do not need to split
the entire training into sessions with different Lnoise. Instead, we directly train on the data
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with the prescribed Lnoise. We used a training sample size of 30000 and a batch size of
30. Therefore, even though more fixed-points are required to fully cover all the phases,
imposing more symmetry can simplify the training process.

In this case, the symmetric local unitary is generated by the Pauli strings iZ1Y2 and
iY1Z2. We first train a 4-qubit QCNN. The 4-qubit QCNN reaches a test accuracy of
99.98% for Lnoise = 1. In Fig. 5.6, we show the phase diagram prediction similar to
Fig. 5.4a and 5.4b using the 4-qubit QCNN. We see the QCNN does a nice job away from
the phase boundary. Near the phase boundary, the QCNN again suffers from the large
correlation length of the system and is less accurate.

Next, we train an 8-qubit QCNN and the QCNN reaches a test accuracy of 100% for
both Lnoise = 1 and 2. For Lnoise = 3, the QCNN is not perfect and achieves 99.93%
test accuracy. The phase diagram prediction is shown in Fig. 5.7. Compared to the 4-
qubit case, we see that the 8-qubit QCNN indeed improves significantly. Near the phase
boundary, the 8-qubit QCNN is able to distinguish the phases accurately.

The non-existence of a QCNN without additional symmetries, such as TI, can also be
proven for 1D systems with Z2×ZT2 or Z2×Z2 symmetry (see Section 5.5). The requirement
of additional symmetries is thus potentially applicable to the classification task of general
symmetric phases.

5.5. Non-existence of QCNN solution under random noise
without additional symmetries

In this section, we prove three non-existence results for classifying phases with physical
observables when no additional symmetries are present. This provides a theoretical support
for imposing translational invariance (TI) on the training data as in Section 5.3. For
systems with time-reversal symmetry only, we prove a non-existence result for a phase-
classifying observable. We also prove that in general no QCNNs can classify systems with
Z2 × ZT2 or Z2 × Z2 symmetry, where ZT2 is an anti-unitary order-2 group.

Proposition 1. Let U ⊆ CN×N be a compact unitary group and CU be the centralizer of
U in CN×N . If CU ⊆ {λI|λ ∈ C}, then for any M ∈ CN×N

E
µ(u)

uMu† =
Tr(M)

N
I. (5.4)

where the average is taken over the Haar measure µ of U .

Proof. We make use of the Haar integration. We have

A = E
µ(u)

uMu† =

∫
uMu†dµ(u). (5.5)

Consider any v ∈ U , we have vAv† = A based on the invariance of Haar integration. So
A ∈ CU is proportional to the identity. Taking the trace on Eq. (5.5), we get Tr(A) =

Tr(M). Knowing that the matrix is N ×N , we have A = Tr(M)
N I.

Proposition 2. Given two n-qubit states |ψa⟩ , |ψb⟩, there does not exist an operator Ô
such that ⟨ϕ| Ô |ϕ⟩ > 0, ∀ |ϕ⟩ ∈ Sa and ⟨ϕ| Ô |ϕ⟩ ≤ 0, ∀ |ϕ⟩ ∈ Sb. The sets are defined
as Sa = {u1 ⊗ u2 ⊗ · · · ⊗ um |ψa⟩ |ui ∈ U} and Sb = {u1 ⊗ u2 ⊗ · · · ⊗ um |ψb⟩ |ui ∈ U},
where U is a compact group of unitary operators that act on k qubits and has the centralizer
CU ⊆ {λI|λ ∈ C} and mk = n.
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Proof. The proof is adapted from Lemma 9 in Ref [180], by combining it with the Propo-
sition 1. We elaborate the idea here. The result is established by contradiction. Suppose
an operator Ô exists for Sa and Sb such that ⟨ϕ| Ô |ϕ⟩ > 0, ∀ |ϕ⟩ ∈ Sa and ⟨ϕ| Ô |ϕ⟩ ≤
0, ∀ |ϕ⟩ ∈ Sb. Next, we average over the Haar measure µ of U . From Proposition 1 this
yields

E
µ(u)

u†1 ⊗ u†2 ⊗ · · · ⊗ u†mÔu1 ⊗ u2 ⊗ · · · ⊗ um =
Tr Ô

2n
I. (5.6)

This follows by decomposing Ô into a linear combination of the basis operators, each of
which is a tensor product of local operators supported on each qubit. Note that for an
operator ô, we can always define a basis in the Hilbert space such that ô =

∑
ij oij |i⟩⟨j| and

oij is a matrix representation of ô, for which Proposition 1 applies. Since Haar integration
is a linear map, Proposition 1 can be applied on each basis operator. Now we can define

oa := Inf{⟨ϕ| Ô |ϕ⟩ | |ϕ⟩ ∈ Sa}, (5.7)

ob := Sup{⟨ϕ| Ô |ϕ⟩ | |ϕ⟩ ∈ Sb}. (5.8)

Note that U is compact and therefore closed. Hence, the infimum and supremum can be
attained by some elements in Sa and Sb, respectively. By definition, for |ψa⟩ ∈ Sa and
|ψb⟩ ∈ Sb we have

Tr Ô

2n
= E

µ(u)
⟨ψa|u†1 ⊗ u†2 ⊗ · · · ⊗ u†mÔu1 ⊗ u2 ⊗ · · · ⊗ um |ψa⟩ ≥ oa, (5.9)

Tr Ô

2n
= E

µ(u)
⟨ψb|u†1 ⊗ u†2 ⊗ · · · ⊗ u†mÔu1 ⊗ u2 ⊗ · · · ⊗ um |ψb⟩ ≤ ob. (5.10)

Now since oa > 0 and ob ≤ 0 by the assumption, we arrive at a contradiction that Tr Ô
2n ≤

ob < oa ≤ Tr Ô
2n .

5.5.1. Non-existence result for ZT
2 symmetry

Lemma 1. Consider a time-reversal symmetry represented by
∏
iXiK and two n-qubit

states |ψa⟩ , |ψb⟩, there exists no operator Ô such that ⟨ϕ| Ô |ϕ⟩ > 0 ∀ |ϕ⟩ ∈ Sa and
⟨ϕ| Ô |ϕ⟩ ≤ 0 ∀ |ϕ⟩ ∈ Sb, for the set Sa = {u1⊗u2⊗· · ·⊗um |ψa⟩ |ui ∈ Q} and the set Sb =
{u1⊗u2⊗· · ·⊗um |ψb⟩ |ui ∈ Q}, where ui acts on neighboring two qubits and n = 2m and Q
is a symmetric unitary Lie group generated by P = {iZ1, iZ2, iZ1Y2, iY1Z2, iZ1X2, iX1Z2}.

Proof. Let A ∈ C4×4, note that A commutes with all the elements of Q if and only if
[A, p] = 0 ∀p ∈ P . Since A can be decomposed into a linear combination of σ1σ2, with
σ1, σ2 ∈ {I,X, Y, Z}. We first consider p = iZ1 and iZ2. Commuting with Pauli-Z
on two sites individually implies A is a linear combination of I, Z1, Z2, Z1Z2. Since A
also commutes with Y1Z2 and Z1Y2, A has to be proportional to the identity. Then by
Proposition 2 we finish the proof.

If we consider any two states in the set of three fixed points considered in Section 5.3,
Lemma 1 implies there exists no QCNN that can be used to classify the time-reversal
symmetric phases. We now proceed to prove non-existence results for phases protected by
Z2 × ZT2 and Z2 × Z2 using a similar idea.

5.5.2. Non-existence result for Z2 × ZT
2 symmetry

We first prove a non-existence result for distinguishing the SPT and the SB phases in
systems protected by the symmetry Z2 × ZT2 generated via a global spin flip and the
complex conjugation. More precisely, we have the following
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Lemma 2. Let |ψ⟩ , |ψ′⟩ ∈ {|ψSB⟩ , |ψSPT⟩} as defined in Section 5.3 and |ψ⟩ ̸= |ψ′⟩.
Consider the set S = {u1⊗u2⊗· · ·⊗um |ψ⟩ |ui ∈ U} and S′ = {u1⊗u2⊗· · ·⊗um |ψ′⟩ |ui ∈
U}, where ui acts on neighboring three qubits and n = 3m. U is a unitary Lie group
generated by all the 3-qubit Pauli strings symmetric under Z2×ZT2 symmetry generated by
the global spin flip and complex conjugation. There does not exist an operator Ô such that
⟨ϕ| Ô |ϕ⟩ > 0 ∀ |ϕ⟩ ∈ S and ⟨ϕ| Ô |ϕ⟩ ≤ 0 ∀ |ϕ⟩ ∈ S′. Furthermore, there does not exist a
Hermitian operator D̂ with Tr D̂ = 0 and the number of supported qubits nD̂ < n such that
⟨ϕ| D̂ |ϕ⟩ ≠ 0 ∀ |ϕ⟩ ∈ S or ∀ |ϕ⟩ ∈ S′.

Proof. We use a similar idea of the proofs from above. Again we will establish the proof
by contradiction. To prove the first statement, we suppose such Ô exists.
Let U be the Lie group generated by all the anti-Hermitian Pauli matrices symmetric under
Z2×ZT2 , namely up to permutation we have iXY Z, iY ZX, · · · and iZY I, iZIY, · · · . Since
U is a compact Lie group, for any 8× 8 complex matrix M we can define

A =

∫
uMu†dµ(u), (5.11)

where µ is the Haar measure of U . Consequently, [A, u] = 0 for u ∈ U . This is true if and
only if A commutes with all the generators of U , which implies

A = c0I + c1X1X2X3, (5.12)

for some c0, c1 ∈ C. Next, we consider the average

Ô′ = E
µ(u)

u1 ⊗ u2 ⊗ · · · ⊗ umÔu
†
1 ⊗ u†2 ⊗ · · · ⊗ u†m. (5.13)

Ô can be decomposed into a sum of at most 4n Pauli strings. From Eq. (5.12) we de-
duce that Ô′ is a linear combination of Pauli strings of I or X. We note that any Pauli
strings of I and X evaluate to the same value in |ψSPT⟩ and |ψSB⟩, so ⟨ψSPT| Ô′ |ψSPT⟩ =
⟨ψSB| Ô′ |ψSB⟩. We can now apply exactly the same reasoning as in the proof of Proposi-
tion 2 to prove the first statement in the lemma.

Next we assume there exists an operator D̂ with Tr D̂ = 0 and the number of supported
qubits nD̂ < n such that ⟨ϕ| D̂ |ϕ⟩ ̸= 0 ∀ |ϕ⟩ ∈ S or ∀ |ϕ⟩ ∈ S′. Since Tr D̂ = 0 implies its
Haar average D̂′ satisfies Tr D̂′ = 0. D̂′ is either 0 or consists of Pauli strings that have at
least one X. Now knowing the support of D̂′ is smaller than the total number of qubits in
the system, we have ⟨ψSPT| D̂′ |ψSPT⟩ = ⟨ψSB| D̂′ |ψSB⟩ = 0.
Finally, we note that U is connected and ⟨ϕ| D̂ |ϕ⟩ is real-valued, it follows that there exists
some u1 ⊗ u2 ⊗ · · · ⊗ um that attains the mean value, resulting in a contradiction since
there is some |ϕ⟩ ∈ S and S′ such that ⟨ϕ| D̂ |ϕ⟩ = 0.

The lemma suggests that there exists no QCNN we can use to distinguish or recognize the
SPT and the SB phases protected by Z2×ZT2 . Note that the requirement Tr D̂ = 0 is easy
to meet. Since we can always remove the trace of an operator by redefining D̂ − Tr D̂

2n I.
The identity shift will not be relevant to characterize different phases if Tr D̂/2n → 0
happens faster than ⟨D̂⟩ → 0 as nD̂ → ∞. For the QCNN, we can distinguish the phases
by choosing D̂ to be the observable D̂ = Û(|s⟩⟨s| − |s′⟩⟨s′|)Û † for bitstrings s, s′, where Û
is the QCNN circuit. We automatically have Tr D̂ = 0.

5.5.3. Non-existence result for Z2 × Z2 symmetry

We proceed to the case of Z2×Z2, generated by the spin flip on the even and the odd sites
in the system. Note that the cluster state |ψSPT⟩ we defined in the Section 5.3 has an SPT
order under the symmetry. We prove that a QCNN cannot recognize the SPT phase if no
other symmetries are present.

65



Chapter 5. Quantum convolutional neural networks and quantum phase classifications

Figure 5.8.: A histogram that shows the evaluation of a string order parameter

Z1Y2

(∏i=6
i=3Xi

)
Y7Z8 on a cluster state subject to two layers of Z2 ×ZT2 sym-

metric noise. A total of 4000 samples are taken.

Lemma 3. Let |ψSPT⟩ be the n-qubit cluster state. Consider the set S = {u1 ⊗ u2 ⊗
· · · ⊗ um |ψSPT⟩ |ui ∈ U}, where ui acts on neighboring two qubits and n = 2m. The
group U = {eiαI+iβX1+iγX2+iδX1X2 |α, β, γ, δ ∈ R} is symmetric under Z2 × Z2 symmetry
generated by spin flip on even/odd sites. There does not exist a Hermitian operator Ô with
Tr Ô = 0 and the number of supported qubits nÔ < n/2 such that ⟨ϕ| Ô |ϕ⟩ ≠ 0 ∀ |ϕ⟩ ∈ S.

Proof. The proof is basically the same as Lemma 2. We prove by contradiction. Suppose
such Ô exists.
Since U is a compact Lie group, for any 4 × 4 complex matrix M we can define A =∫
uMu†dµ(u), where µ is the Haar measure of U . Consequently, [A, u] = 0 for u ∈ U .

This implies
A = c0I + c1X1 + c2X2 + c3X1X2, (5.14)

for some c0, c1, c2, c3 ∈ C. Next, we define Ô′ = E
µ(u)

u1⊗u2⊗ · · · ⊗umÔu
†
1⊗u†2⊗ · · · ⊗u†m.

Again, we can decompose Ô in the basis of 4nÔ Pauli strings. From Eq. (5.14), we deduce
that Ô′ is a linear combination of Pauli strings of I or X. Since Tr Ô = 0 implies Tr Ô′ = 0,
Ô′ contains Pauli strings that have at least oneX. Now knowing the support of Ô′ is smaller
than half the total number of qubits in the system, the Pauli strings do not contain any
symmetry of the system (i.e. Z2 × Z2). When they are applied to |ψSPT⟩, the resulting
state necessarily violates at least one of the cluster couplings so that Ô′ |ψSPT⟩ is a linear
combination of excited states for the cluster Hamiltonian and orthogonal to |ψSPT⟩, we
have ⟨ψSPT| Ô′ |ψSPT⟩ = 0. Using the connectedness of U and knowing ⟨ϕ| Ô |ϕ⟩ is real-
valued, we know there exists some u1⊗u2⊗· · ·⊗um that attains the mean value, resulting
in a contradiction, in that there is some |ϕ⟩ ∈ S such that ⟨ϕ| Ô |ϕ⟩ = 0.

5.5.4. Interpretation of the Lemmas for string order parameters

In this section, we clarify how to interpret the lemmas we prove in the context of physical
observables. The lemmas show that an observable that perfectly classifies the phases
cannot exist in general without additional symmetries such as translational invariance.
This forms a non-existence result for an observable that extracts the topological invariant
of the phases (without utilizing multiple copies of the system). However, the statement
can be overly restrictive in the context of string order parameters.

The lemma says that there does not exist a string order parameter that is zero, say in
phase A and strictly non-zero in a different phase B, i.e. there always exist some states
in phase B where the string order parameter is zero. The set of states in phase B that
have identically zero string order is measure-zero. This is because the vanishing of a string

66



5.5. Non-existence of QCNN solution under random noise without additional symmetries

order parameter relies on a set of selection rules [172] when the system is in phase A.
Without the selection rules a string order parameter is generically non-zero. To verify this,
we consider a cluster state at the thermodynamic limit and apply two layers of Z2 × ZT2
symmetric noise (each two-qubit gate is sampled as in one of the previous sections, but
each two-qubit gate within a noise layer is now independently sampled). A string order
parameter Z1Y2

(∏i=6
i=3Xi

)
Y7Z8 of length 8 is then measured. Without any noise, the

string order parameter attains +1 at the cluster state. With the noise, the string order
parameter can attain any values between +1 and -1, as shown in Fig. 5.8. In particular,
only for some instances the string order parameter is strictly zero in noisy cluster states.
Moreover, due to the randomness of the noise, the average string order parameter is zero.
However, the variance of it remains finite in the noisy cluster state.

This suggests that a string order parameter can still be used to classify phases in practice,
up to a small fraction of states whose string order is vanishingly small (e.g. the ones near
the center of Fig. 5.8).

It is worth noting that, even though a string order parameter may exist and work well, we
can neither directly use the string order to construct a cost function for optimization of a
QCNN nor it is obvious how a QCNN that is linear in its input state and makes prediction
based on a majority vote among the final measurement outcomes could reproduce the
behavior of the string order parameter. An exception will be the existence of a string order
that is zero in one phase and always non-negative (zero is only attained on a measure-zero
set) in the other phase. However, this is excluded by the non-existence results we proved.
When TI is enforced, it might be possible to find such string order parameters for unitary
on-site symmetries. In this case, QCNNs that learn them could exist. However, finding a
string order parameter is not so simple for SPTs protected only by time-reversal symmetry.
In the next section we will show that, for both unitary on-site symmetries and (antiunitary)
time-reversal symmetry, there exists a more complicated non-local order parameter and it
detects the topological invariant of the SPTs (e.g. it yields +1/-1 in different phases).
Therefore, a QCNN can in principle be found.

5.5.5. Circumventing the non-existence results

In Section 5.3, we claim that imposing a translational symmetry in addition to the time-
reversal symmetry allows one to avoid the non-existence result by Lemma 1. To see this,
let us first consider the case between the trivial and the SPT phases. Suppose A,B are
two disjoint connected subregions in the unique ground state of a local and gapped 1D
Hamiltonian. If A,B are separated from each other further than the correlation length of
the system, the reduced density matrix satisfies ρAB ≈ ρA ⊗ ρB. In TI system, we can
choose the two separated regions to be identical copies. In Ref. [172], an order parameter
that dictates the topological invariants and requires two copies of the state is proposed for
time-reversal systems: it attains different signs for the trivial and the SPT phases, and
it vanishes in the SB phases. We can therefore use it for the phase classification task,
as subsystems A and B serve as two copies of each other. A schematic diagram of this
TI order parameter is shown in Fig. 5.9a. In the case of the SB phases, we can always
find a local field ∆i such that ⟨ψ|∆i |ψ⟩ ≠ 0 (⟨ψ|∆i |ψ⟩ = 0) if |ψ⟩ breaks (respects) the
symmetry. For TI-SB systems, the phase can be probed by a non-zero value of ∆i∆i+L,
which vanishes in the trivial and the SPT phases for L → ∞. The same observable can
also be used to avoid the non-existence results in Lemma 2 for Z2×ZT2 with TI. While the
observable constructed above has Tr Ô ̸= 0 in general, by enlarging the SWAP operator
sequence in Fig. 5.9a, we can always define it in a way such that Tr Ô/2n → 0 happens
exponentially faster than ⟨Ô⟩ → 0 when it is evaluated on either SPT or the trivial phase
as n→ ∞.
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Figure 5.9.: In (a) we illustrate the order parameter for the TI time-reversal systems. The
solid circles represent the qubits on the chain. The double-arrow represents an
operator R = 1

2 (|01⟩⟨01|+ |10⟩⟨10|+ |01⟩⟨10|+ |10⟩⟨01|). The double-square
is a SWAP operator. The operator R is applied between all the pairs across
the light blue region of A,B, and the SWAP operator is applied between all
the pairs across the light purple region of A,B. In (b) and (c), we verify
the order parameter for TI time-reversal symmetric systems. We evaluate the
order parameter on the ground states of H2 and H4. The order parameter is
multiplied by 2L/4 for an easy comparison between cases with different L.

We numerically verify the order parameter for the TI time-reversal SPT in Fig. 5.9b and
5.9c. The order parameter ÔL of length L consists of two operators proposed in Ref. [172]
applied to two equally sized subsystems A,B that are next to each other on the chain. We
checked that taking A,B apart from each other has little effects on the expectation value in
the cases for which we will test it. We normalize the order parameter such that ||ÔL|| = 1,
where || · || is the operator norm. We evaluate the operator on H2 and H4, with L = 8
and 16. When L is much larger than the correlation length of the system, ÔL evaluates
to 0 in the SB phase, and ±(TrΛ4)3/2L/4 in the trivial and the SPT phase, respectively.
Here Λ is the diagonal matrix whose diagonal entries are the Schmidt values obtained by
cutting the chain into half. For cluster-state-like ground states, Λ has two equal entries
1/

√
2, we therefore expect ⟨2L/4ÔL⟩ = −1/8. For a product state, Λ only has one entry

with value 1, we have ⟨2L/4ÔL⟩ = 1. When the entanglement-cut crosses a singlet, Λ is
doubly degenerate leading to ⟨2L/4ÔL⟩ = 1/8. The plots give consistent results at these
limits, as well as reasonable prediction of the critical points.

For the on-site symmetry Z2 × Z2 with TI, the trivial and SPT phases can be detected
by a traceless observable proposed in Ref. [173]. The TI circumvents the non-existence
result by Lemma 3.

5.6. Discussion and conclusion

In this chapter, we proposed to train a QCNN with artificially created quantum states
obtained from randomly perturbing the fixed points with finite-depth quantum circuits.
The trained QCNN discovers order parameters that correctly identify different quantum
phases of matter. We illustrated the effectiveness of the method by considering the example
of 1D quantum phases protected by time-reversal symmetry and we showed the trained
QCNN accurately predicted the theoretical phase diagram from the given ground states of
the system in unknown quantum phases.
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The proposed method is reminiscent of data augmentation in classical machine learning
for reducing over-fitting [193]. A key difference is that our training data set is entirely gen-
erated with perturbation. This is possible due to the notion of quantum phases. Let δ be
the finite gap between the largest probability and the other probabilities in the output dis-
tribution of a QCNN. In practice, δ not only ensures that the QCNN’s prediction is robust
under weak perturbation, it also provides an estimate of the number of projective measure-
ments required to accurately determine the prediction of the QCNN based on a majority
vote. An error probability of ε < 1 can be achieved with more than 2 log ε/ log

(
1− δ2

)
repetitions (see Appendix C for a proof).

The protocol can be further simplified by replacing the SB fixed-point, i.e. 1√
2
(|· · · 000 · · ·⟩+

|· · · 111 · · ·⟩) with the asymmetric product state |· · · 000 · · ·⟩ or |· · · 111 · · ·⟩ which are easier
to prepare. In Appendix C, we show that such replacement does not affect the performance
of the trained QCNN on the time-reversal symmetric phases.

While physical observables that characterize 1D SPT phases are relatively well under-
stood, probing the SPT order in higher dimensions is much more challenging [16, 194].
One exciting question is whether the proposed protocol can discover such an observable.
Another interesting direction is to discover phase-classifying observables for intrinsic topo-
logical order, knowing that their fixed points can be efficiently prepared on quantum hard-
ware [4, 5, 195, 196]. Although it has been shown that such an observable cannot exist in
general [180], it remains an open question whether imposing TI or other symmetries could
help as for the 1D symmetric case discussed here.

Under the current setup, the proposed method is unable to detect hidden phases that are
not known a priori. However, we observed that in some examples when a trained QCNN
is implemented to classify an unknown phase, it gets confused by multiple phases with
matching probability (see Appendix C). It would therefore be intriguing to see whether this
behavior is generic at large system size and whether such confusion could be used to identify
the existence of an unknown phase [197]. Another important question to study is the
underlying principles for the phase detection behind a trained QCNN. Besides comparing
it with some known analytical examples such as in Refs. [142, 198], a possible strategy
would be to run the trained QCNN backward and use it as a generative model. Some
properties of the trained QCNN may be inferred by examining the generated states. It
will also be interesting to see whether the trainability of the classifiers can be improved by
incorporating symmetry in the design of the classifiers [199, 200].

A novel approach to be explored. In this chapter, we presented a method to dis-
cover suitable order parameters for quantum phases of matter based on quantum machine
learning. However, a disadvantage of that method is the lack of physical interpretation
of the discovered observables. Due to the hardness in classically simulating 2D quantum
systems, application of the proposed method to 2D quantum phases of matter, e.g. intrin-
sically topological phases of matter, requires implementation on actual quantum hardware.
Below, we outline another idea of detecting quantum phases of matter based on the frame-
work of quantum error correction [201]. This provides a method to efficiently detect 2D
topological phases and transitions based on the physics of emergent 1-form symmetry.

In Part I, we showed how topological order can be characterized using the topological
entanglement entropy. However, the measurement of topological entanglement entropy is
not scalable in quantum experiments and requires a sample size that grows exponentially
with the subsystem size of interest. Recently, it has been realized that topological order can
be understood using higher-form symmetries [95, 202, 203]. A p-form symmetry applies
on a d− p dimensional sub-manifold of a quantum system in d spatial dimensions, 1-form
symmetry generators of a 2D quantum system are loop-like objects. Topological order
can be understood as spontaneous higher-form symmetry breaking [204–207]. Therefore,
higher-form symmetry can be used as a probe for the topological phases and phase transi-
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tions. However, higher-form symmetry exists as emergent symmetries [95, 205, 206, 208],
which do not have a simple analytic form and it it unclear how they can be measured ex-
perimentally. There are some other proposals to detect topological phase transitions with
physical order parameters (not from entanglement). For instance, the Fredenhagen-Marcu
(FM) string order parameter [209, 210] has been used to detect the topological order re-
alized by the Rydberg quantum simulator [65]. Unfortunately, the FM order parameter is
obtained by taking the ratio between two exponentially small measured quantities, which
makes it infeasible to be measured in a scalable experiment.

The recoverability in quantum error correction (QEC) and existence of an emergent 1-
form symmetry are closely related. A remarkable property of 1-form symmetry is that it is
emergent. While the usual on-site symmetry is fragile under local perturbation violating
the symmetry, upon small perturbation that violates the exact 1-form symmetry, the sys-
tem is still symmetric under an 1-form symmetry adiabatically connected to the original
one. This is reminiscent of QEC based on surface code [47, 113, 151], i.e. under small
local noise, the logical information encoded in global loop operators is no longer explicitly
preserved. But there exists a recovery protocol to recover the logical information. If we
regard the violation of an exact 1-form symmetry as noise in the context of quantum error
correction, the emergence of the 1-form symmetry corresponds to the recoverability of some
effective “logical information”. A noise threshold beyond which the logical information is
no longer recoverable coincides with a critical perturbation strength for the breakdown of
the emergent 1-form symmetry.

Using this connection, it is possible to (i) devise an order parameter for an emergent
1-form symmetry based on recoverability decided by the QEC protocol and (ii) detect 2D
topological phase transition by first recovering the exact 1-form symmetry of the system
using QEC protocol, and then measuring an order parameter for the transition valid only
in the presence of an exact 1-form symmetry [211, 212]. In collaboration with Wen-Tao
Xu, Michael Knap and Frank Pollmann, we numerically benchmark this idea against well-
known phase diagrams for 2D topologically ordered systems. We show that indeed the
method provides an efficient experimental protocol for measuring emergent 1-form sym-
metries and 2D topological quantum phase transitions.

70



Part III.

Realizing 2D topological quantum
phase transition on digital

quantum computers
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Overview of Part III

In Part I and II, we focused on the realization and the characterization of fixed-point
ground states of gapped quantum phases of matter. Can we go beyond these specific
states and realize other many-body ground states away from the fixed points, or even
across a quantum critical point? In this part of the thesis, we address the question of
engineering topological quantum phase transitions on a programmable quantum computer
with the method of tensor networks.

In Chapter 6, we review the important concept of tensor networks and isometric tensor
networks, with an emphasis on the state preparation using efficient sequential quantum
circuits. In Chapter 7, we show how 2D tensor-network states can describe exact ground
states of some parametrized many-body Hamiltonian across a quantum phase transition
between distinct 2D symmetry-enriched topological (SET) phases of matter. They there-
fore provide exactly solvable simple model states for the physical realization. This chapter
is based on the publication [3]. In Chapter 8, we utilize the new class of isometric tensor-
network states as a tool to design efficient quantum circuits for preparing ground states
across the quantum phase transition between the distinct 2D SET phases. We further
discuss the experimental strategies for realizing the proposed quantum phase transition on
programmable quantum hardware, one method is based on the lattice realization and the
other method is based on the holographic duality of the isometric tensor networks. The
results are based on the preprint [1].

73





6. A short review of tensor-network states
and their preparation

The behaviour of large and complex aggregates of
elementary particles, it turns out, is not to be understood
in terms of a simple extrapolation of the properties of a
few particles. Instead, at each level of complexity entirely
new properties appear, and the understanding of the new
behaviours requires research what I think is as
fundamental in nature as any other.

Philip W. Anderson

A significant challenge of understanding quantum many-body systems, both using an-
alytical methods or computational methods, is rooted at their tensor product structure,
i.e. they require exponentially large Hilbert space description as the number of parti-
cles increases. However, it was realized that a large class of physically relevant states,
e.g. the ground states of a many-body system, has the feature of low entanglement.
This common feature allows for an efficient description of the states without exponen-
tially many parameters. Tensor-network representation provides a parametrization of the
wavefunctions such that a good approximation to the wavefunctions can be obtained in
a systematic way by keeping the parameters relevant for the entanglement of the state.
In one dimension, tensor-network representation of the states is called the matrix-product
states and has gained enormous success in the classical simulation of many-body ground
states based on the Density Matrix Renormalization Group (DMRG) method [31, 32]. In
higher dimensions, the tensor-network methods become more cumbersome in the numerical
simulation, but they still serve as the state-of-the-art numerical methods for many-body
problems [213, 214].

Apart from the application in the numerical simulation, tensor-network methods also
have profound impact in the theoretical understanding of many-body systems, including
the classification of quantum phases of matter in one and higher dimensions [15, 16, 171,
215–218]. In Part III, we use tensor-network representation as an analytical tool and
investigate the application of the tensor-network methods in designing efficient protocols for
engineering interesting classes of quantum many-body states on a programmable quantum
computer. Below, we briefly review the concept of tensor-network states in 1D and 2D,
and the efficient preparation of them using unitary quantum circuits.

6.1. Matrix-product states in 1D

Matrix-product states (MPS) are an ansatz class where the coefficients of a full n-qubit
state ψ are decomposed into products of matrices. Explicitly,

|ψ⟩ =
∑
{jk}

∑
{αl}

B[1]j1
α1

B[2]j2
α1α2

. . . B[n]jn
αn−1

|j1, j2, . . . , jn⟩ , (6.1)

where the jk ∈ {0, 1} indices are referred to as “physical” indices and the α indices are
referred to as “virtual indices.” By convention, we refer to the dimension of the α indices as
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Chapter 6. A short review of tensor-network states and their preparation

Figure 6.1.: (a) Basic MPS diagrammatic notation. Connected tensors represent summing
over the index corresponding to the connected legs. From left to right, a vector
inner product, a matrix-vector multiplication, and a matrix-matrix multipli-
cation. (b) Converting a general vector into an MPS. A generic vector with
size 2N can be viewed as an N index tensor. We convert each vector into
a product of matrices via a singular value decomposition, then truncate the
singular value matrix (the red tensor) to the desired number of singular values
(i.e., χ). By repeatedly applying this procedure, we decompose the original
vector into a matrix-product state with bond dimension χ. To return to the
vector representation, we would contract the MPS along the virtual indices αj
(albeit with some loss from the truncation).

the bond dimension χ. Without loss of generality, we may assign any MPS a single bond
dimension χ corresponding to the largest bond dimension in the network (padding the
others with zeros). In the above expression, each tensor B[k] for k = 2, . . . , n− 1 contains
three indices, two virtual and one physical. The boundary tensors B[1] and B[n] each
contain two indices. We will often use a diagrammatic notation for tensor manipulations,
where tensors are represented by symbols and each index is represented by a leg. Two
connected legs represent summing over the corresponding index. See Fig. 6.1a for more
details. The bond dimension χ controls the maximum amount of entanglement the system
can have. More precisely, consider two subsystems A and B seperated by a virtual bond,
the entanglement entropy satisfies SA = SB = −Tr(ρA log ρA) ≤ logχ, where χ is the
dimension of that virtual bond. To exactly represent the state, the bond dimension χ
grows exponentially with the system size n. Remarkably, it has been shown that the
ground states of 1D gapped local Hamiltonian are well approximated by an MPS with a
low bond dimension [99].

A length 2n vector can always be decomposed into a matrix-product state with n tensors;
see Fig. 6.1b. Decomposing a vector in this way will guarantee that the tensors satisfy the
isometry condition ∑

jk

∑
αk

B[k]jk
αk−1αk

(
B

[k]jk
α′
k−1αk

)∗
= δαk−1,α

′
k−1

. (6.2)

MPS satisfying this isometry condition is said to be in its (right) canonical form. Similarly,
the MPS is in its left canonical form when the local tensors satisfy the isometry when
contracted from the left. An extensive review of MPS can be found in Ref. [219].

6.1.1. Equivalence to sequential quantum circuits

Due to the isometry condition, a bond dimension χ MPS in the canonical form, i.e. where
all the tensors satisfy Eq. (6.2), can be exactly mapped to a sequential quantum circuit
with unitaries acting on logχ + 1 qubits [220], as shown in Fig. 6.2. MPS with length n
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6.2. Tensor-network states in 2D

Figure 6.2.: (a) The mapping between an MPS tensor and a unitary matrix. The MPS
tensors are used to define a unitary action on an additional set of qubits
initialized to a product state, where the number of additional qubits depends
on the bond dimension of the MPS. (b) An MPS with bond dimension χ is
equivalent to a quantum circuit where each gate acts on logχ+ 1 qubits. (c)
Every M -layer sequential quantum circuit with two qubit gates is a subset of
the set of sequential quantum circuits with (M+1) qubit gates. Here, we show
the equivalence for M = 3.

can therefore be efficiently prepared on a quantum computer with a circuit depth O(n).
For practical implementations, each unitary gate must be further decomposed into single
and two-qubit gates. For a generic quantum gate acting on log2 χ + 1 qubits, this re-
quires O(poly(χ)) single and two-qubit gates [201], resulting in a total cost of O(poly(χ)n)
quantum operations.

The mapping, which is diagrammatically depicted in Fig 6.2a, is given by

B[k]jk
αk−1αk

= ⟨αk, jk|U [k]|0k, αk−1⟩, (6.3)

where |0k⟩ is a product state.
On the other hand, a sequential quantum circuit with M layers of two-qubit gates can

be viewed as an equivalent sequential circuit with a single layer of M + 1 qubit gates (see
Fig 6.2b). This circuit, in turn, can be mapped to an MPS with bond dimension χ = 2M .
Every single-layer circuit thus has an exact χ = 2 equivalence.

6.2. Tensor-network states in 2D

The generalization of MPS to higher-dimensional systems is straightforward. A 2D tensor-
network state (TNS) (also known as Projected Entangled Pair States (PEPS) [213]) is
obtained by contraction of local tensors. Each local tensor T σijmn consists of four virtual
legs with bond dimension D and one physical leg with local physical dimension d. The
wavefunction for an N -site state is

|ψ⟩ =
∑
{σs}

tTr
(
T [1]σ1T [2]σ2 · · ·T [N ]σN

)
|σ1, σ2, · · · , σN ⟩ , (6.4)

where tTr denotes the 2D tensor contraction of the nearest neighbour virtual legs (see
Fig. 6.3a). Again, any 2D wavefunctions can be written as 2D TNS with a bond dimension
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=

Figure 6.3.: The schematics for 2D TNS (a) The wavefunction is contracted from local
tensors (yellow circles) with a finite bond dimension. (b) and (c) illustrate
the isometric tensor networks. (b) shows the isometric condition on the local
tensors. (c) Similar to how MPS is generated by a sequential quantum circuit
obtained from its canonical form. an isoTNS can be sequentially generated by
applying a unitary U sequentially to a product state )with ancillary qudits).
This unitary is obtained by lifting the isometric local tensors to a full unitary.

exponentially large in the system size. It is believed that the ground states of local gapped
2D Hamiltonian can be well approximated by 2D TNS with a low bond dimension. For an
extensive review of 2D TNS, see Ref. [214].

6.2.1. Isometric tensor networks and sequential quantum circuits

Unlike 1D MPS, generic 2D TNS do not have a well-defined canonical form and are hard
to prepare on a quantum computer [221]. A subclass of general 2D TNS, the isometric
tensor-network states (isoTNS) [128], shares the same property as 1D MPS that they can
be efficiently prepared with a sequential quantum circuit with depth O(L), where L is
the linear size of the system. Surprisingly, despite being a subclass of general 2D TNS,
isoTNS are expressive and are known to be able to exactly represent a large class of gapped
many-body ground states, including the string-net states [52, 129] (which are representative
models for topological phases of matter, see also Section 2.4) and ground states of various
symmetry-protected quantum phases of matter [222]. For this reason, isoTNS serve as a
valuable tool not only in the numerical method, but they can also be utilized to design
efficient quantum circuits for interesting class of many-body ground states, as we will
discuss in Section 8.

IsoTNS are 2D tensor-network states where the local tensors additionally satisfy an
isometric condition, as depicted in Fig. 6.3b. Explicitly, we have∑

m,n,σ

(
T σijmn

)∗
T σi′j′mn = δii′δjj′ , (6.5)

where δii′ is the kronecker delta and takes 1 if i = i′ and zero otherwise. Similar to
the canonical form of MPS, this isometric condition implies that each local tensor can be
directly lifted to a local unitary which can be used to efficiently generate the isoTNS (see
Fig. 6.3c).

We show how a simple sequential quantum circuit for general 2D isoTNS can be con-
structed. Suppose we want to prepare a finite 2D isoTNS with an open boundary condition.
We begin with a square lattice with physical qudits (a d-level quantum system) at each
vertex and ancillary qudits (a D-level quantum system, where D is the bond dimension
of the TNS) on each link. We initialize the sequential circuit from the boundary closer to
the input virtual legs of the lifted local unitary (left-pointing legs of Fig. 6.3c). The qudits
on this boundary are initialized according to the chosen boundary condition. The rest of

78
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Figure 6.4.: A sequential quantum circuit for general isoTNS. The white circles are disen-
tangled qudits in state |0⟩. The black circles are the ancillary qudits storing
the uncontracted virtual legs (legs i.j in Fig. 6.3c). The yellow circles are the
entangled physical qudits of the prepared wavefunction. (a) At each step, a
five-qudit gate is applied around each vertex. The gate first applies the lifted
unitary (yellow block) in Fig. 6.3c, where the black qudit states on the links
are taken as the input legs i.j. After the lifted unitary, The uncontracted vir-
tual legs (legs m,n in Fig. 6.3c) are still stored in the black qubit states. Next,
these ancillary states are swapped to the ancillary qudits on the right. (b)-(g)
The isoTNS is generated by applying the unitary in (a) along each column of
vertices sequentially. At the end of the circuit, the ancillary qubits are all in
disentangled states |0⟩ and the physical qudits store the isoTNS.

the qudits are all initialized in state |0⟩. The isoTNS is generated by applying the vertex
unitary in Fig. 6.4a sequentially to each column of the vertices (see Fig. 6.4b-g). The
application of the gates across each column is effectively contracting the isoTNS tensors
along the column. At each step, the ancillary qudits store the uncontracted virtual legs of
the local tensors. They are disentangled back to states |0⟩ at the end of the circuit.

The use of the ancillary qudits simplifies the structure of the circuit but they are not
necessary for the preparation. The ancillary states can also be stored in the disentangled
physical qudits that are not yet reached by the sequential circuit. With a careful design
of the gates, the resulting sequential circuit without ancillary qudits also consists of O(L)
layers of local quantum gates [130].
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7. Quantum phase transition between
symmetry enriched topological phases
in tensor-network states

Over the past decades, significant progress has been made in understanding quantum
phases of matter [20, 48, 97]. In the absence of any symmetries, quantum systems in
two or higher spatial dimensions can host distinct topologically ordered phases separated
by quantum phase transitions (QPT) [223]. When (intrinsic) topological order is absent,
the presence of symmetries alone can lead to different symmetry protected topological
(SPT) phases [12–18]. If both topological order and symmetries are present, distinct
symmetry enriched topological (SET) phases can emerge, which are characterized by how
symmetry operations act on the anyonic quasiparticle excitations [22, 23]. A remarkable
experimental manifestation of SET order is the ν = 1/3 Laughlin’s fractional quantum Hall
state [48, 50], where the anyons carry fractional charges under the global U(1) symmetry.
The classification and characterization of bosonic and fermionic SET phases have been
intensively investigated [22–30]. Certain phase transitions between different SET phases
can be understood via anyon condensation [216, 224, 225], or as SPT phase transitions after
gauging the global symmetries [28, 226]. Simple toy models realizing different SET phases
can be constructed in the following way: Starting from a Z2 topologically ordered system
(for example, the toric code [43]), different SET phases protected by a global symmetry
G can be constructed by decorating the loops in the topologically ordered state with one-
dimensional (1D) SPT states protected by the symmetry G [227–230]. As illustrated in
Fig. 7.1, the resulting state is a condensate of SPT loops and the symmetry will fractionalize
between the anyons in a similar fashion as the symmetry fractionalizes at the boundaries
of a 1D SPT chain with open boundary conditions [22, 227].

In this chapter, we follow this idea and construct a parameterized tensor-network solvable
model that realizes a direct continuous transition between SET phases with an antiunitary
time-reversal symmetry ZT2 . In particular, we derive a tunable model for which the ground
state is given by a tensor-network state (TNS) [213, 231]. This family of exact TNS corre-
sponds to states of decorated loops with string tension and a tunable internal parameter,
which are able to describe two distinct Z2 topologically ordered SET phases with differ-
ent symmetry fractionalization patterns and a continuous phase transition between them
(Fig. 7.1). We numerically determine the phase diagram of the system by examining the
correlation length, the topological entanglement entropy [100, 101] (see also Section 2.1),
and a membrane order parameter [229]. Along the phase boundary between the two SET
phases, the amplitudes of the wavefunction can be exactly mapped to the partition function
of the classical O(2) loop model in the dense loop phase, described by the compactified
free boson conformal field theory (CFT) with central charge c = 1. The model exhibits an
additional U(1) symmetry at the O(2) critical points. The additional U(1) symmetry is an
example of a pivot symmetry, which has recently been studied in the context of SPT phase
transitions [232]. These transition points are, similar to the Rokhsar–Kivelson point on a
square lattice [51], (2 + 0)D conformal critical points [233, 234], which have also appeared
in several Abelian and non-Abelian topological phase transitions described by TNS [235–
241]. Finally, we discuss how the constructed example is dual to tensor-network solvable
paths for the symmetry enriched double-semion model [52, 123] and (2 + 1)D SPT states
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Figure 7.1.: Schematic illustration of distinct SET phases and the transition between them.
(a) The symmetry fractionalizes over the edges in the 1D non-trivial SPT phase
(red dots). By tuning a parameter g, the non-trivial SPT phase becomes trivial
through a topological phase transition. (b) A state in the SET toric code
(SET-TC) phase or toric code (TC) phase with a pair of charge excitations at
the ends of the broken loops. The sum runs over all the configurations with
closed SPT loops and a broken SPT loop whose two ends are fixed. The global
symmetry fractionalizes over the charges. Notice that for the ground state on
a closed manifold, the configurations only contain closed loops. Using the 1D
SPT phase transition, we can construct a direct continuous phase transition
from the SET-TC phase to the TC phase.

protected by Z2 × ZT2 .

7.1. Quantum phase transitions in tensor-network states

In this section, we explain the two main ingredients for our construction. We begin by first
reviewing the 1D SPT phase transition described by a family of 1D TNS, namely matrix-
product states (MPS) that will be used for the decoration of the loops. We then recall the
definition of the toric code model with a tunable string tension on a honeycomb lattice. In
this paper, we use the standard notation {X,Z} for Pauli matrices, and their eigenstates
are denoted as Z |0⟩ = |0⟩, Z |1⟩ = − |1⟩, X |±⟩ = ± |+⟩, where |±⟩ = (|0⟩ ± |1⟩)/

√
2. The

Greenberger–Horne–Zeilinger (GHZ) state is defined as (|00 · · · 0⟩+ |11 · · · 1⟩)/
√
2.

7.1.1. 1D ZT
2 -symmetric SPT phase transition in matrix product states

We consider the antiunitary ZT2 time-reversal symmetry K
∏
iXi, which is a combination

of the global spin flip operator and complex conjugation K. A Hamiltonian describing a
phase transition between two 1D SPT phases protected by the ZT2 symmetry is [242]

H(g) =
∑
i

[
2(g2 − 1)ZiZi+1 − (1 + g)2Xi + (1− g)2ZiXi+1Zi+2

]
, (7.1)

where g ∈ [−1, 1] is the tuning parameter. When g = 1, H = −4
∑

iXi and the ground
state is a product state |ψ(1)⟩ = ⊗i|+⟩i. When g = −1, H reduces to the cluster model
H = 4

∑
i Zi−1XiZi+1 with the ground state |ψ(−1)⟩ =

∏
iCZi,i+1

∏
i Zi|ψ(1)⟩, where the

control Z gate CZi,i+1 acts on qubits i and i+1, and CZi,i+1 = −1 if both qubits are 1 and
CZi,i+1 = 1 otherwise. The two limits g = ±1 exactly correspond to two fixed points of
time-reversal symmetric SPT phases [15, 171]. A phase transition occurs at g = 0, which
is a multi-critical point characterized by a dynamical critical exponent z = 2 [242, 243].

The ground states of this Hamiltonian are exactly described by a one-parameter family
of MPS with bond dimension χ = 2 [242]

|ψ(g)⟩ = 1√
N (g)

∑
{si}

Tr(M [s1]M [s2] · · ·M [sN ])|s1, s2, · · · , sN ⟩, (7.2)

82



7.1. Quantum phase transitions in tensor-network states

where the MPS tensors are given by

M [0] =

(
0 0
1 1

)
, M [1] =

(
1 g
0 0

)
, (7.3)

and N (g) is the normalization coefficient (or simply squared norm) of the MPS. Notice
that at the phase transition point g = 0, the MPS becomes a GHZ state.

7.1.2. 2D toric code with string tension

Let us now consider a honeycomb lattice with qubits on the edges, as shown in Fig. 7.2.
Each vertex v is a set of three edges and each plaquette p is a set of six edges. The toric
code Hamiltonian is a sum of local and commuting projectors (see Section 2.3 for a review
of the toric code)

HTC =
∑
v

Av +
∑
p

Bp, (7.4)

where the star projector around each vertex v is Av = 1
2

(
1−

∏
e∈v Ze

)
. The plaquette

projectors have the form Bp = 1
2

(
1−

∏
e∈pXe

)
. The Hamiltonian has a ground state

energy of zero. As shown in Fig. 7.2, an edge of state |1⟩ is said to be occupied by a loop
segment (or a string) and the state |0⟩ is empty (vacuum). The ground state of the toric
code is then an equal-weight superposition of closed-loop configurations on the edges of
the lattice. The excitations in the toric code are denoted as electric eee with ⟨Av⟩ = 1 and
magnetic mmm with ⟨Bp⟩ = 1. Their composite forms a fermion, which we denote by fff . We
further denote the trivial (null) excitation as 111.

As we will discuss in Section 7.2, it turns out to be convenient to introduce a tunable
string tension η > 0 on the loops in the toric code [244, 245]. The ground state is then
modified to be a weighted superposition of closed-loop configurations

|Ψ(η)⟩ ∝
∑
C

ηL(C) |C⟩ , (7.5)

where C denotes the closed loop configurations on the honeycomb lattice and L(C) is
the total length of all loops in C. A parent Hamiltonian of the modified ground state is
given in Section 7.4. For η = 1, we recover the toric code ground state |Ψ(1)⟩ = |ΨTC⟩.
At large string tension (η → 0), the state becomes fully polarized. The amplitude ηL(C)

can be mapped to the Boltzmann weight of the 2D classical Ising model and the critical
string tension can be identified from the critical temperature of the Ising model as ηc =
3−1/4 [245].

Moreover, the one-parameter family of wavefunctions in Eq. (7.5) can be expressed in
terms of the “single-line” TNS

|Ψ(η)⟩ = 1√
N (η)

∑
{se}

tTr
(⊗
v
V

⊗
e
E[se](η)

)
| · · · se · · · ⟩ (7.6)

with bond dimension D = 2 [118], where the superscripts (subscripts) are the physical
(virtual) indices which take 0 or 1, tTr denotes the tensor contraction over all virtual
indices and

Vαβγ = δmod(α+β+γ,2),0, E
[s]
αβ(η) = ηsδαβδαp, (7.7)

are tensors placed at the vertices and edges of the honeycomb lattice, respectively. N (η) is
the squared norm of the TNS. The tensor V imposes the Z2 Gauss law on each vertex, and
the tensor E promotes the virtual degrees of freedom to the physical level and implements
the string tension.
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Figure 7.2.: A snapshot of an excited state. The system is defined on a honeycomb lattice,
the circles are two sets of physical qubits on the edges and vertices, respectively.
Red (blue) circles represent edge qubits in the state 1(0), and black circles are
vertex qubits. A loop in the toric code is formed by a string of edge qubits
with state 1 along which the 1D SPT states are decorated. Ends of open loops
(the open loop can deform freely except the endpoints) correspond to anyons
aaa, which can be eee or fff anyons of the toric code. The qubits in the grey regions
support the plaquette projector Bp, star projector Av and vertex projector Qv
of the parent Hamiltonian (7.14), respectively.

7.2. Decorating the toric code

Next, we consider the same honeycomb lattice on which the toric code ground state with
string tension |Ψ(η)⟩ is prepared on the qubits at the edges of the lattice. To decorate
the loops, we add to each vertex v a qubit as shown in Fig. 7.2. The decoration is carried
out with a simple procedure: whenever a loop is formed on the edges, we contract the
MPS tensors (7.3) on the vertices along the closed loop. The vertices away from the loops
are set to the product state |+ · · ·+⟩. The resulting decorated 2D state |Ψ(g, η)⟩ is thus
a superposition of MPS-loop configurations and has a global ZT2 symmetry generated by
K
∏
vXv, i.e. global spin flips on all vertices followed by complex conjugation.

At g = 1 and η = 1 (no string tension), the ground state is a tensor product of the toric
code ground state and a product state on all vertex qubits

|Ψ(g = 1, η = 1)⟩ = |ΨTC⟩ ⊗
(⊗
v
|+⟩v

)
, (7.8)

which has a trivial SET order, where the time-reversal symmetry fractionalizes trivially
over the anyons of the toric code. We will simply refer to the phase it belongs to as the
toric code (TC) phase. At g = −1, the system can be obtained from the toric code limit
by a constant-depth quantum circuit |Ψ(−1, 1)⟩ = U |Ψ(1, 1)⟩, where U is defined as

U =

∏
⟨v,v′⟩

CCZvv′e(v,v′)

∏
⟨e,e′⟩

CCZee′v(e,e′)

 , (7.9)

which is a 2D analogue of how we obtained |ψ(−1)⟩ from |ψ(1)⟩ in the 1D SPT model.
The first product goes over all distinct pairs of nearest neighbouring vertices with ⟨v, v′⟩ =
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⟨v′, v⟩, and the second product goes over all different pairs of nearest neighbouring edges
⟨e, e′⟩. We use e(v, v′) (or v(e, e′)) to denote the edge (or vertex) between the nearest
neighbouring pair ⟨v, v′⟩ (or ⟨e, e′⟩), as shown in Fig. 7.2. The CCZ gate satisfies

CCZabc =

{
−1, if all qubits at a, b, c are 1,
1, otherwise.

(7.10)

The wavefunction |Ψ(−1, 1)⟩ is the fixed point for a non-trivial SET phase , where the
symmetry fractionalizes non-trivially over the eee and fff anyons of the toric code. We refer
to the phase as SET-TC.

7.3. Tensor-network representation of the SET path

Away from the fixed points, the state |Ψ(g, η)⟩ can be conveniently represented as a 2D
TNS by decorating the MPS (7.3) onto the single-line TNS. The resulting decorated single-
line TNS, similar to the TNS in Eq. (7.6), consists of tensors with a bond dimension of
D = 3, which are placed at the vertices and edges of the honeycomb lattice. The virtual
degrees of freedom are spanned by the basis {|0), |1), |2)}. We apply a Z2 grading on this
virtual space such that the parity of |0) is even and the parity of |1) and |2) is odd, so the
dimension of the odd parity subspace is 2.

The decorated vertex tensor Ṽ is schematically shown in Fig. 7.3a. In contrast to
the vertex tensor V in Eq. (7.7), the decorated vertex tensor Ṽ has a physical leg of
dimension 2 corresponding to a vertex qubit. The Z2 Gauss law at the vertex tensor Ṽ
implies that either the vertex is not covered by any string or the vertex is covered by a
closed loop segment. In the former case, the physical vertex qubit is

√
2 |+⟩ and the three

virtual legs are |0). In the latter case, the entries of Ṽ given by the physical leg together
with the two odd virtual legs are exactly defined by the MPS tensor M [i], as shown in
Fig. 7.3a. To construct the single-line TNS with a bond dimension D = 3, the MPS
matrices M [i] used for the decoration have to be symmetric under the swapping of the
two virtual indices (transpose). This ensures that there is no ambiguity in the direction of
contracting the MPS along a loop within the TNS 1. While the original MPS matrices (7.3)
are not symmetric under transpose, in Appendix D.5, we utilize the gauge redundancy in
the MPS representation to obtain a set of equivalent MPS tensors MA and MB in a two-
site unit cell, which have the desired property. Since the honeycomb lattice is a bipartite
lattice, we use MA and MB to define two vertex tensors ṼA and ṼB for the two sublattices
A and B of the honeycomb lattice, separately. In summary, the tensor ṼA(g) on the A
sublattice is

Ṽ
[i]
A,αβγ(g) =



1, if α = β = γ = 0;

M
[i]
A,αβ(g), if p(α) = p(β) = 1, γ = 0;

M
[i]
A,αγ(g), if p(α) = p(γ) = 1, β = 0;

M
[i]
A,βγ(g), if p(β) = p(γ) = 1, α = 0;

0, otherwise,

(7.11)

where p(α) denotes the parity of |α). The construction works analogously for the tensor
ṼB(g).

The edge tensor Ẽ of the decorated TNS is shown in Fig. 7.3a and it maps the parity of
the virtual degree of freedom to the physical degree of freedom and implements the string

1Alternatively, we could decorate the MPS onto the double-line TNS of toric code [246], which can
keep track of the direction of tensor contraction along a loop in the cost of a larger bond dimension.
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Figure 7.3.: (a) The local tensors ṼA and Ẽ of the decorated TNS and their non-zero entries,
ṼB is obtained by replacing MA in ṼA with MB. (b) The TEE and MOP on an
infinitely long cylinder, where the anyon flux ααα penetrating inside the cylinder
gives rise to the MES |Ψααα⟩. The TEE comes from the reduced density matrix
obtained by tracing out all physical qubits on half of the cylinder, and the
MOP is obtained by applying the symmetry operator to the vertices on half
of the cylinder and evaluating the expectation value.

tension:
Ẽ

[s]
ij (η) = ηsδijδp(i),s. (7.12)

With these local tensors, the decorated TNS can be constructed as

|Ψ(g, η)⟩ = 1√
N (g, η)

∑
{se,iv}

tTr
(⊗
v
Ṽ [iv ](g)

⊗
e
Ẽ[se](η)

)
|{se, iv}⟩, (7.13)

where Ṽ can be ṼA or ṼB depending on which sublattice the vertex belongs to, and N (g, η)
is the squared norm of the decorated TNS.

7.4. Parent Hamiltonian

So far, we have obtained a continuously parameterized family of TNS that interpolates
between different fixed-point wavefunctions. We can also show that the states in Eq. (7.13)
are indeed ground states of a local Hamiltonian, which depends smoothly on the same
set of parameters. More precisely, there exists a frustration-free, ZT2 -symmetric parent
Hamiltonian that is a sum of local projectors

H(g, η) =
∑
v

Av +
∑
p

Bp(g, η) +
∑
v

Qv(g), (7.14)

where g ∈ [−1, 1] and η > 0. Each vertex projector Av, analogous to those in Eq. (7.4),
projects onto the +1 eigenspace of the product of Pauli Z around the vertex v. The plaque-
tte projector Bp(g, η) and the vertex projector Qv(g) act on the spins of a plaquette and
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7.4. Parent Hamiltonian

around a vertex, respectively (see Fig. 7.2). Let v(e), v′(e) be the two vertices connected
via the edge e, the projectors are explicitly given by

Bp(g, η) =
Kp

2
sech

(∑
e∈p

[
τ(g)Ze(1− Zv(e)Zv′(e)) + λ(η)Ze

])
,

Qv(g) =
(1−Av)Mv

2
sech

(
τ(g)

∑
e∈v

(1− Ze)Zv(e)Zv′(e)

)
, (7.15)

with

Kp = −
∏
e∈p

Xe +
∏
e∈p

e−τ(g)Ze(1−Zv(e)Zv′(e))η−Ze ,

Mv = −Xv +
∏
e∈v

e−τ(g)(1−Ze)Zv(e)Zv′(e) , (7.16)

where λ(η) = log(η) and τ(g) = − log(g)/4. Although for g ≤ 0, the complex-valued
logarithmic function τ(g) encounters a singularity and branch points, the plaquette and the
vertex projectors in Eq. (7.15) remain analytic in g for g ∈ (−1, 1), i.e. all the singularities
are removable. We present the details of the derivation in Appendix D.1.

At g = 1 and η = 1, we recover Bp(1, 1) = Bp as in Eq. (7.4). The vertex term
Qv(1) = (1 − Av)(1 − Xv)/2 fixes the spin on the vertex v to be in the state |+⟩ in the
ground state. The Hamiltonian is thus the same as the toric code Hamiltonian Eq. (7.4)
with the additional vertex terms. For g = 1 and η > 0, when removing the Qv term, the
Hamiltonian is a parent Hamiltonian for the toric code ground state with string tension
shown in Eq. (7.5). An alternative parent Hamiltonian is given in Ref. [244]. At g = −1
and η = 1, we recover the fixed-point Hamiltonian for the SET-TC phase:

Bp(−1, 1) =
1

2

(
1−

∏
e∈p

Xee
−iπZe(1−Zv(e)Zv′(e))/4

)
,

Qv(−1) =
1−Av

2

(
1−Xv

∏
e∈v

eiπ(1−Ze)Zv(e)Zv′(e)/4

)
. (7.17)

Note that the projector (1−Av) in Qv(−1) is necessary for Qv(−1) being Hermitian.
The Hamiltonian also has the dualityH(−g, η) = UH(g, η)U † = e−iπHpivot/8H(g, η)eiπHpivot/8,

where U is a finite-depth local quantum circuit given in Eq. (7.9) and Hpivot is an example
of a pivot Hamiltonian [232]

Hpivot =
∑
e∈E

(1− Ze)(1− Zv(e)Zv′(e)), (7.18)

where E denotes the set of all the edges. The Hamiltonians at g > 0 and g < 0 thus
share the same spectrum. At the line g = 0, the Hamiltonian has an enhanced U(1) pivot
symmetry generated by Hpivot, i.e. [exp(iθHpivot), H(0, η)] = 0, ∀θ ∈ R, see Appendix D.2
for the proof. The U(1) symmetry manifests itself in the O(2) criticality along the SET
transition line, which we discuss in the next section (see Fig. 7.4).

By tuning the parameter g from −1 to +1, the system can change from one SET phase
to another SET phase. However, an intermediate phase generically exists between the two
SET phases. The parameter η can be tuned to avoid such an intermediate phase so that
a direct transition between the two SET phases is possible.

87



Chapter 7. Quantum phase transition between symmetry enriched topological phases in
tensor-network states

7.5. Phase diagram and order parameters

To obtain the phase diagram of the system, we extract the correlation length of the ground
state by the corner transfer matrix renormalization group algorithm [247, 248] (see Ap-
pendix D.6 for details), and the resulting phase diagram is shown in Fig 7.4a. The system
hosts three distinct phases, the SET-TC phase with Z2 topological order and a non-trivial
ZT2 symmetry fractionalization, the TC phase with Z2 topological order and trivial sym-
metry fractionalization, and a totally trivial phase without topological order. Note that
the norm of each MPS loop inside the wavefunction |Ψ(g, η)⟩ contributes weight to the
amplitude of the configuration (an explicit expression for the amplitude is given in Ap-
pendix D.3).

The universality class of the phase boundaries can be determined by mapping the squared
norm of the decorated TNS to the partition function of classical statistical models. As
shown in Appendix D.3, along g = ±1, the decorated TNS can be mapped to the 2D
classical Ising model, the two critical points are located at (g, η) = (±1, 3−1/4). For
g ̸= 0 and g ̸= ±1, the model is mapped to an anisotropic Ashkin-Teller model (see
Appendix D.4). The phase boundary between the TC (SET-TC) phase and the trivial
phase is thus described by the (2 + 0)D Ising CFT with a central charge c = 1/2. Along
g = 0, the decorated TNS can be mapped to the classical O(2) loop model, which has
a high-temperature gapped phase and a low-temperature critical phase described by the
compactified free boson CFT with central charge c = 1 [249–251]. The transition between
low- and high-temperature phases at η = 21/4 is of the Kosterlitz-Thouless (KT) type.
Therefore, the phase boundary between the SET-TC and the TC phase, including the
tricritical point, has a central charge c = 1.

We further characterize these phases using non-local order parameters. The presence
of an intrinsic topological order can be detected by the topological entanglement entropy
(TEE) (see e.g. Section 2.1). The entanglement entropy of a topological state satisfies
S ∼ aN − γ, where γ is a universal correction called TEE, a is a non-universal coefficient
from the area law, and N is the length of the entanglement bipartition. On a torus,
the TEE has to be extracted from the minimally entangled states (MES) [134], which
are topologically degenerate ground states in a special basis such that the entanglement
entropy is minimal. There are four MES |Ψααα⟩ labelled by the anyons ααα = 111, eee,mmm,fff .

Instead of the von Neumann entropy, we consider the Renyi entropy, which is easier
to calculate using tensor-network methods. As shown in Fig. 7.3b, for a system on an
infinitely long cylinder with circumference N , the n-Renyi entropy is

S
(n)
ααα =

1

1− n
log Tr(ρnααα), ρααα = TrR |Ψααα⟩ ⟨Ψααα| , (7.19)

where TrR is the partial trace over all physical degrees of freedom of the MES |Ψααα⟩ on the
right half of the infinite cylinder. The topological Renyi entropy is independent of n [104],
we choose n = 2 for our calculation. In Appendix D.8, we exploit the tensor-network
approach to calculate the TEE γ directly in the limit N → ∞ without extrapolation. The
TEE obtained from a boundary MPS with bond dimension χ = 20 is shown in Fig 7.4b.
In the SET-TC phase and the TC phase, the four MES |Ψααα⟩ give the same TEE γ = log 2
as expected from the Z2 topological order. In the trivial phase, the ground state of the
system becomes unique on a torus and the MES states are no longer well-defined. In this
unique ground state, we indeed obtain γ = 0, indicating the absence of topological order.

As the SET-TC phase and the TC phase share the same TEE, we can further distin-
guish the two using the membrane order parameter (MOP), which captures the symmetry
fractionalization pattern of SET phases [229]. In our case, the system has an additional
Z2 symmetry generated by a global spin flip on the vertices

∏
vXv (it follows from the
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Figure 7.4.: (a) Phase diagram of the decorated TNS spanned by the string tension η
and a tuning parameter g. The central charge is denoted by c. The phase
transitions along vertical lines at g = ±1, highlighted by the blue dots, occur
at η = 3−1/4. The tricritical point is at (g, η) = (0, 21/4). (b) The topological
entanglement entropy of a minimally entangled state along η = 1. (c) The
membrane order parameters from the minimally entangled states 111 and eee.

additional global spin flip symmetry in the 1D model Eq. (7.1)). This allows us to define
a MOP on an infinitely long cylinder as

Oααα = lim
N→∞

(
⟨Ψααα|

∏
v∈R

Xv |Ψααα⟩

)1/N

, (7.20)

where |Ψααα⟩ is an MES, N is the circumference of the cylinder, and R is the set of vertices
of the right part of the cylinder. It can be shown that the MOP has a selection rule and
dictates that Oααα = 0 if the symmetry fractionalizes non-trivially on the anyon ααα 2. As
shown in Appendix D.7, the calculation of the MOP is similar to that of the TEE, and
we can use tensor-network methods to directly calculate Oααα in the limit N → ∞ without
extrapolation. Fig. 7.4c shows the MOP obtained from a boundary MPS with χ = 20.
Since the symmetry fractionalization on 111 and eee is identical to that on mmm and fff , we have
O111 = Ommm and Oeee = Offf . We only show O111 and Oeee in Fig. 7.4c. In the TC phase, O111 and
Oeee are non-zero, implying no symmetry fractionalization on the anyons. In the SET-TC
phase, Oeee vanishes, indicating that the symmetry fractionalizes on the eee and fff anyons.

2More precisely, using the additional symmetry
∏

v Xv and the technique from Ref. [172], one can show
that the MOP will vanish if only one of the symmetries K

∏
v Xx or K fractionalizes over the anyons. Our

example belongs to the first case. The symmetry K is not fractionalized, similar to the 1D SPT chain used
for the decoration.

89



Chapter 7. Quantum phase transition between symmetry enriched topological phases in
tensor-network states

An alternative way to distinguish the SET-TC phase from the TC phase is by examining
the entanglement spectrum. In the SET-TC phase, the time-reversal symmetry represented
by T on ρ111 and ρmmm satisfies T 2 = 1, whereas the time-reversal symmetry on ρeee and ρfff
is represented projectively, i.e., T 2 = −1, due to symmetry fractionalization, as shown in
Appendix D.8. Therefore, from Kramers’ theorem, each level of the entanglement spectra
in the eee and fff sectors is even-fold degenerate in the SET-TC phase, which is an important
feature inherited from 1D non-trivial SPT states [13].

7.6. Discussion and conclusion

In this chapter, we construct a family of 2D TNS that corresponds to the exact ground
states of ZT2 -symmetric Hamiltonians. In particular, the system describes a direct contin-
uous quantum phase transition between two distinct SET phases with ZT2 time-reversal
symmetry. Although we expect that these constructed ground states require fine tuning to
be reached, they serve as a useful starting point for a more general understanding of the
SET phase transitions.

Along the phase boundary separating the two SET phases, we obtain a particularly in-
teresting class of toy states which are ground states of local Hamiltonians. For example,
one of these states is

∣∣Ψ (0,√2
)〉

∝
∑

C 2N(C)/2 |C⟩, where C labels the configurations of
closed loops decorated with GHZ states, and N(C) denotes the total number of loops in
C. The power-law decay of correlation functions is revealed by non-local operators [252].
Moreover, these states have an area-law entanglement entropy up to a subleading logarith-
mic correction [253]. They serve as interesting examples for studying topological critical
phases [252, 254, 255], whose universality is characterized by non-local correlators.

The phase diagram of the system can be further extended. As we discuss in Ap-
pendix D.4, by introducing Ising couplings to vertex spins, it is possible to continuously
tune the system along a tensor-network solvable path to ferromagnetic or antiferromag-
netic phases, where the ZT2 symmetry is spontaneously broken. By the quantum-classical
mapping mentioned in Section 7.5, the phase boundaries of these transitions can be shown
to align with the critical regimes of an anisotropic Ashkin-Teller model.

The construction can be straightforwardly generalized to enrich the double-semion model [52,
123]. When restricted to the closed loop subspace, the toric code model and the double-
semion model are related by a diagonal unitary transformation UTC-DS =

∑
C(−1)N(C) |C⟩ ⟨C|,

where C is a configuration of decorated loops. Because UTC-DS commutes with the dec-
oration procedure (we state this more precisely in Appendix D.1), the phase diagram in
Fig. 7.4a is preserved under the unitary transformation. In the non-trivial SET double-
semion phase, the symmetry fractionalizes over the semions and the anti-semions. For the
gauge group Z2 and the global symmetry ZT2 , the SET classification based on Abelian
Chern-Simons theories is given by the third cohomology group H3(Z2 × ZT2 , U(1)) =
Z2×Z2 [22, 25]. Here the first Z2 index originates from the Dijkgraaf-Witten classification
and it labels two topological orders described by the toric code and double-semion theories.
The second Z2 labels different symmetry fractionalization patterns over the anyons under
time-reversal symmetry. Our construction thus generates direct phase transitions between
all of those with the same topological order.

By a similar procedure, decorating the domain walls in 2D Z2 SPT phases gives rise to
SPT phases protected by the symmetry Z2 × ZT2 [227]. By a duality transformation, the
SET-TC and the TC phases can be mapped to the 2D Z2×ZT2 SPT phases (see Ref. [226]
and Appendix D.4), the tensor-network solvable phase diagram Fig. 7.4a is thus dual to
a Z2 × ZT2 -protected phase diagram, where the two SET phases are replaced by two 2D
Z2 × ZT2 SPT phases and the trivial phase is replaced by a ferromagnetic phase in which
the Z2 symmetry is spontaneously broken.
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7.6. Discussion and conclusion

A key ingredient for the construction is the existence of an MPS path that interpolates
between the 1D SPT phases with a constant bond dimension. It will be interesting to
apply the proposed construction to the generalization of such MPS paths, such as the
MPS skeletons [243], to obtain a broader class of SET phases and their phase transitions.
The simplicity of the TNS description of the ground states raises the question of whether
these states admit an efficient quantum circuit representation and are easy to study on a
quantum computer, similar to the 1D MPS path [143]. While the SET fixed points may
be efficiently prepared [4, 5], the existence of an efficient state preparation near or at the
critical points remains an intriguing open question. We address this open question in the
next chapter using the subclass of 2D TNS, the isometric tensor-tensor states.
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8. Efficient quantum circuits and
holographic quantum algorithms for
simulating topological quantum phase
transitions from 2D isometric tensor
networks

The search for exotic quantum phases of matter is a central theme in condensed matter
physics. While the last decades have witnessed tremendous progress in our theoretical
understanding of topologically ordered phases, physical realization of topological phases
remains a significant challenge, with the fractional quantum Hall effect [48] representing
one of the few unambiguous examples in the solid state. The advent of programmable quan-
tum hardware has opened up unprecedented avenues for accessing novel quantum states.
Recently, breakthroughs were made in the realization of topologically ordered states using
Rydberg simulators [65, 255], superconducting qubits [4, 5] (see also Part I) and trapped
ions [70, 256]. While these realizations focused on specific topological states, the important
question of realizing the topological quantum phase transitions, i.e. transitions that cannot
be detected by any local order parameters, is more challenging. Progress has been made in
one-dimensional (1D) symmetry-protected topological (SPT) systems by exploiting the cor-
respondence between sequential quantum circuits and matrix-product states (MPS) [220]
(a brief review is given in Section 7.1). The exact ground states across SPT phase transi-
tions can be represented by a parameterized MPS with a finite bond dimension and can be
physically realized using its efficient quantum circuit representation [143, 242, 243]. Gen-
eral two-dimensional (2D) tensor-network states (TNS) with a finite bond dimension can
describe exact ground states across various quantum phase transitions—including some
critical states with a power-law correlation [3, 235–238, 240, 241]. However, general 2D
TNS cannot be efficiently prepared on a quantum computer [221]. Recently, measure-
ments are explored as a tool for generating such 2D TNS-solvable ground states [257, 258].
However, post-selection among exponentially many outcomes is required.

One can also consider realizing ground state away from the fixed point by deforming the
local unitary gates within the quantum circuit of the fixed point. However, with this ap-
proach it is difficult to retain the global symmetry of the system when deforming the circuit.
A more subtle issue appears if the state has intrinsic topological order: small deformation
of the local gates can lead to non-local perturbation to the wavefunction and the topo-
logical order becomes unstable [217]. While these problems pose a significant challenge in
working directly with quantum-circuit representation, they can be conveniently addressed
in the tensor-network representation: A global on-site symmetry can be preserved by en-
forcing local conditions on the tensor [214]. The stability of the intrinsic topological order
can be ensured by enforcing the correct virtual symmetries on the local tensors [215–217].

With the above motivation, we investigate topological quantum phase transitions be-
tween states exactly representable by 2D isometric tensor-network states (isoTNS) [128].
IsoTNS form a subclass of 2D TNS with an additional isometry condition and can repre-
sent a large class of gapped quantum phases [129]. The isometry condition establishes a
2D analogue of the canonical form in 1D MPS and directly leads to the correspondence
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Figure 8.1.: (a) Designing parametrized sequential circuits for ground states crossing 2D
quantum phase transitions. (b) Each yellow node labels a tensor. The isoTNS
wavefunction is obtained by contracting the virtual legs of the tensors. The
physical legs of the tensors, which encode the physical spins, are omitted. (b)
Each tensor has two physical legs (σ and ρ) and four virtual legs i, j,m, n. The
local tensor T is a product of some matrixW and two δ-tensors. The δ-tensor is
1 when all the legs are equal, and zero otherwise. (c) The isometry condition.
The contraction of the tensor T with its complex conjugate (depicted with
flipped physical legs) yields two two-leg δ-tensors. The arrows indicate the
direction of the contraction.

between isoTNS and linear sequentially generated quantum circuits [128, 130] (see a brief
review of this property in Chapter 6). The isoTNS have the advantages from both the
tensor-network and efficient quantum-circuit presentation, they therefore constitute an
ideal starting point for exploring efficient realization of ground states across 2D quantum
phase transitions, going beyond realizing specific fixed points.

In this chapter, we show how to use isoTNS as a tool to design efficient quantum circuits
across quantum phase transitions (see Fig. 8.1a). We propose a simple “plumbing” method
to construct isoTNS such that the coefficients in the wavefunction can be associated with
the Boltzmann weights of certain 2D classical partition functions. By introducing an in-
ternal parameter, the system can be deformed continuously from one phase to another
phase via a quantum phase transition. We illustrate this method by constructing a quan-
tum phase transition in the ground states between symmetry-enriched topological (SET)
phases, where the system has an intrinsic Z2 topological order enriched by an anti-unitary
ZT2 symmetry. We discuss the properties of the ground state both away from and at the
transition point. At the end, we discuss a hardware-efficient experimental proposal to real-
ize the isoTNS path and probe the SET phase transition.based on the holographic duality
of the isoTNS.

8.1. Isometric tensor networks and classical partition
functions

We focus our discussion on the 2D systems, the generalization of the construction to
arbitrary higher dimensions is straightforward. We begin by briefly reviewing the concept
of 2D TNS (Fig. 8.1b). Consider a 2D spin system on a square lattice with local Hilbert
space dimension d and each spin is located on the edges of the square lattice. A 2D
TNS can be defined via a rank-6 local tensor T σρijmn at each vertex, where σ (ρ) represents
the spin degree of freedom on the left (bottom) edge connected to the vertex. The legs
i, j,m, n label the virtual degrees of freedom (Fig. 8.1c). The dimension of the virtual legs
is referred to as bond dimension. For a translationally invariant system with N spins, the
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8.2. A continuous isoTNS path between symmetry-enriched topological phases crossing a
quantum critical point

wavefunction is obtained by contracting the neighbouring virtual legs of all the tensors

|ψ⟩ =
∑

σ1,··· ,σN

tTr ({T σ1σ2 , · · · , T σN−1σN }) |σ1, · · · , σN ⟩ , (8.1)

where tTr denotes the tensor contraction.
Classical partition functions can be encoded in the TNS with a finite bond dimen-

sion [235], such that the squared norm of the coefficients in the wavefunction is equal to
the Boltzmann weights in the classical partition function [50]. The thermal phase transi-
tion in the classical system is mapped to a quantum phase transition, where the classical
criticality is mapped to criticality in the wavefunction. We consider the restriction of this
class of tensor networks to isoTNS. To achieve this, we impose the following conditions on
the local tensors: (i) The local tensor T σρijmn can be decomposed as

T σρijmn =
∑
i′,j′

δσii′δ
ρ
jj′Wi′j′mn, (8.2)

where Wi′j′mn is a d2 × d2 matrix and δσab denotes a “plumbing” δ-tensor such that δσab = 1
if σ = a = b, and zero otherwise. This relation is depicted in Fig. 8.1c. This condition
relates the quantum wavefunction to a classical partition function in the following way:
The tensor δσab makes the virtual legs equivalent to the physical degrees of freedom in the
quantum system. As a result, the probabilities for the spin configurations at each vertex
in the tensor-network wavefunction are encoded in a local tensor Rijmn = |Wijmn|2, where
R is a weight matrix for spin states i, j,m, n around the vertex. The transfer matrix of the
isoTNS is thus the same as the transfer matrix for a classical partition function contracted
from the local weight matrix (see Appendix E for more details). (ii) We enforce an isometry
condition on the local tensor T σρijmn. More precisely, we require

∑
σ,ρ,m,n

(
T σρijmn

)∗
T σρi′j′mn = δii′δjj′ . (8.3)

This is pictorially shown in Fig. 8.1d. The set of TNS satisfying this condition is isoTNS.
For the plumbed isoTNS satisfying Eq (8.2), the 2D isometry condition Eq. (8.3) is satisfied
if and only if ∑

m,n

|Wijmn|2 = 1, ∀i, j. (8.4)

For a given bond dimension, the W -matrix representing the plumbed isoTNS forms a
finite dimensional manifold. Our strategy is to search for continuous paths within this
manifold that connect between ground states having different quantum phases. It is worth
mentioning that in 1D the plumbed isoTNS is a subclass of the canonical form for 1D
matrix-product states (MPS). Simple examples of quantum phase transitions previously
known in MPS [242] can also be constructed using the plumbing construction (see Ap-
pendix E for an explicit discussion).

8.2. A continuous isoTNS path between symmetry-enriched
topological phases crossing a quantum critical point

Let us consider a spin-1/2 system where each spin is encoded by a qubit with the Pauli
basis such that Z |0⟩ = |0⟩ and Z |1⟩ = − |1⟩. The physical leg of the tensor has dimension
d = 2, Eq. (8.2) implies that the plumbed isoTNS has bond dimension D = d = 2. The
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toric code ground state with Z2 topological order [43] naturally falls into this family of
isoTNS, with

W (TC) =


|00⟩ |01⟩ |10⟩ |11⟩
1√
2

0 0 1√
2

|00⟩
0 1√

2
1√
2

0 |01⟩
0 1√

2
1√
2

0 |10⟩
1√
2

0 0 1√
2

|11⟩

 , (8.5)

where the indices label the legs i.j,m, n in Wijmn. If we view |1⟩ as occupied by a string
and |0⟩ as empty, the eight non-zero entries in W are exactly the eight vertex configurations
with no broken strings. The resulting wavefunction is an equal-weight superposition of all
the closed-loop configuration as we expect from the toric code ground state. Consider the
following continuous path of W -matrix for g ∈ [−1, 1]

W (g) =


1√
1+|g|

0 0 sign(g)
√

|g|
1+|g|

0 1√
2

1√
2

0

0 1√
2

1√
2

0√
|g|

1+|g| 0 0 1√
1+|g|

 , (8.6)

where the function sign(g) picks up the sign of g. At g = 1, we recover the exact toric
code. At g = −1, the W -matrix differs from the toric code W (TC) by a minus sign for
one of the vertex configurations. This implies that the wavefunction is related to the toric
code ground state by a finite-depth local quantum circuit. However, as we will show below
that, the two limits belong to distinct quantum phases due to the presence of physical
symmetries.

The ground state along this path respects an anti-unitary ZT2 symmetry generated by the
global spin flip composed with complex conjugation (

∏
iXi)K. While at g = 1, the system

is the usual toric code with only an intrinsic Z2 topological order, at g = −1 the TNS
describes a ground state with a non-trivial symmetry-enriched topological (SET) order,
where the Z2 topological order is enriched by ZT2 symmetry. Along the path, there exists
a ZT2 -symmetric local parent Hamiltonian which remains frustration-free and continuous
in g (see Appendix E).

Recall that a topologically ordered system has a non-trivial SET order when the anyonic
excitations of the system transform non-trivially under the physical symmetries [22–24, 28].
The SET order in the ground state can be diagnosed by inspecting how the action of the
physical symmetries on the bulk relates to a non-trivial action on the open boundary of the
system; the boundary action carries labels that characterize the phases of the system [215,
216, 218]. To see this explicitly, we consider a cylindrical geometry with open ends. At
the boundary, the uncontracted virtual bonds of the TNS form an effective 1D system (see
Fig. 8.2a). Suppose a physical symmetry U is applied to the ground state in the bulk; this
physical action is equivalent to a virtual action of a boundary operator V . Using the TNS
defined by Eq. (8.6) on a cylinder with circumference L ∈ 4N, we have

U =

(∏
i

Xi

)
K → V (g) =

(∏
b

Xb

)
sign(g)

n(n−1)
2 , (8.7)

where b labels the virtual bonds forming the effective boundary spin-1/2 system and
n =

∑
b(1− Zb)/2 is a sum of Pauli Z matrices at each virtual bond (n essentially counts

the number of states |1⟩ on the boundary). For ZT2 symmetry, a discrete label for the SET
phase can be obtained from V (g)∗V (g) = sign(g)P , where ∗ denotes the complex conjuga-
tion and P is the parity of the boundary spin system. Different parity P corresponds to
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Figure 8.2.: Detecting SET order: (a) Physical symmetry U , consisting of Pauli X on all
the qubits in the bulk, is mapped to a virtual matrix-product operator (MPO)
V on the boundary formed by the uncontracted virtual legs of the tensors. (b)
The membrane order M computed on the minimally entangled ground state
corresponding to the anyon e at the thermodynamic limit. The numerical
method for extracting the membrane order is described in Appendix D.7. Here
SB is the appropriated string operator inserted at the boundary of the partial
action of the physical symmetry.

distinct anyon labels carried by the minimally entangled states [134]. In our convention,
P = 0 labels the trivial quasiparticle while P = 1 labels the vertex excitation (i.e. the e
anyon) in the toric code. For a given parity, the quantity V (g)∗V (g) is a discrete invari-
ant that labels the elements in the second cohomology group H(2)(ZT2 ,Z2) = Z2, which
classifies the symmetry fractionalization patterns on the anyons in Z2 topological order
under ZT2 symmetry (without permutation of anyons) [22, 25]. Therefore, the symmetry
fractionalization patterns on the e anyon are distinct for g > 0 and g < 0, the system
belongs to different SET phases, with the phase transition occurring at g = 0.

Distinct SET orders cannot be measured via any local order parameters, but they can be
distinguished via a non-local membrane order parameter [194, 229], which generalizes the
usual string order parameters for 1D symmetry-protected topological (SPT) phases [168,
169]. Consider the system on an infinite cylinder and let L be the circumference, a suitable
membrane order parameter in this case is given by M = limL→∞ | ⟨ψ|SBUsubsysSB |ψ⟩ |1/L,
where Usubsys =

∏
i∈subsysXi acts only partially on the bulk and the closed string operator

SB = X1I2X3I4 · · ·XL−1IL around the cylinder is the operator on the boundary of Usubsys.
In Fig. 8.2b, we show the membrane order for the minimally entangled state labeling the e
anyon. At g < 0, a non-trivial symmetry fractionalization over the anyon leads to M = 0
due to a superselection rule [172], while M ≠ 0 for g > 0 corroborates the absence of
non-trivial symmetry fractionalization 1.

8.3. Power-law correlation at the critical isoTNS

Along the entire isoTNS path, the classical weight matrix associated with the isoTNS
from Eq. (8.6) is the same as the weight matrix of the classical eight-vertex model which
is exactly solvable [259]. At the SET transition point g = 0, the classical eight-vertex

1Since the wavefunction is real, one can use the argument presented in Ref. [172] and show that this
additional symmetry implies that the membrane order parameter M vanishes in a non-trivial SET phase
protected by

(∏
i Xi

)
K.

97



Chapter 8. Efficient quantum circuits and holographic quantum algorithms for
simulating topological quantum phase transitions from 2D isometric tensor networks

Figure 8.3.: Quantum critical point at g = 0: (a) The system in Fig. 8.1c is rotated 45
degrees anticlockwise. The isoTNS is contracted from some boundary state
|ψ0⟩ formed by the boundary qubits (dark blue crosses). An example config-
uration in the wavefunction is shown. The red line denotes |1⟩ and the grey
line denotes |0⟩. The particles are located at the endpoints of the red lines and
emanate from the boundary (dashed line). They move according to stochastic
jumps determined by the W -matrix. (b) The correlation along the t-direction
averaging over 2 × 106 classical trajectories. Here |+⟩ = (|0⟩ + |1⟩)/

√
2. The

correlator shows a power law decay with an exponent 1/2.

model reduces to a gapless point of the six-vertex model. Interestingly, the corresponding
transfer matrix of the six-vertex model has the same spectrum as the Hamiltonian of the
1D ferromagnetic Heisenberg XXX chain (they are solved by the same Bethe Ansatz [259]),
exhibiting a spectral gap closing of O(1/L2). The Heisenberg chain has a long-range order
in space and it can support power-law temporal correlation. By analogy, we expect the 2D
critical wavefunction to exhibit a similar anisotropy in the correlation functions along the
two spatial directions.

In the gapped phases (i.e. g ̸= 0), the boundary conditions are irrelevant for the bulk
properties. However, they become important at the transition point g = 0. It is convenient
to rotate the lattice in Fig. 8.1b anticlockwise by 45 degrees and consider the system on
a planar geometry with open boundaries. The isoTNS is then obtained by initializing
the tensor network contraction from an arbitrary 1D boundary state |ψ0⟩ formed by the
qubits at the bottom boundary (see Fig. 8.3a). The resulting critical wavefunction respects
a conservation law: The number of lines formed by states |1⟩ is conserved across any
horizontal slice, unless they terminate on the boundary. A snapshot of the wavefunction
is given in Fig. 8.3a. This conservation law reveals a direct relation between the quantum
critical ground state and the dynamics of an 1D classical system. Suppose the boundary
state |ψ0⟩ is a product state in the Pauli-Z basis and we interpret the endpoint vertex of
a string of state |1⟩ as being occupied by a particle. In this picture, the conservation law
is simply that of the particle number. As the tensor network is sequentially contracted
from the bottom to the top, the particles are moving forward in time and tracing out their
worldlines (the x- and t-direction in Fig. 8.3a). The Floquet-type dynamics are generated
by stochastic jumps with probability given by the matrix elements |Wijmn|2. At a given
time t, a single particle either moves to the left or to the right along the x-direction with
an equal probability. If two particles meet at the same vertex, they bounce away from each
other. The classical picture suggests that the critical wavefunction is a superposition of all
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8.4. Anisotropic correlation at the quantum critical point

Figure 8.4.: The two-point correlation along the 45-degree direction exhibits an exponential
decay. The plot is displayed with log scale in the y-axis. The black dots are
the results from Monte Carlo sampling over 1.5× 106 samples on a system of
21× 21 plaquettes. The red line is a linear fit with a gradient around -0.68.

the worldlines of the particles emanating from the boundary.
A few properties of the critical wavefunction follow directly from the classical picture.

(i) The critical wavefunction can have a long-range order along the x-direction. This
long-range order comes from the long-range order at the boundary state |ψ0⟩ due to the
particle-number conservation: The number of states |1⟩ at any row along the x-direction
is determined by the number of states |1⟩ in |ψ0⟩. (ii) The critical wavefunction can sup-
port correlation with a power-law decay along the t-direction. To see this, suppose the
boundary state |ψ0⟩ only contains few particles. The moving particles have a small chance
of interacting with each other and the process thus behaves similarly to an independent
random walk with diffusive dynamics. More generally, the process is an example of the
nonunitary Floquet XXX model [260–262]. We verify the power-law correlation by com-
puting the spin-spin correlation ⟨ZiZj⟩ between sites i, j in the bulk along the t-direction
for the boundary condition |ψ0⟩ = |++ · · ·+⟩, where |+⟩ = (|0⟩+ |1⟩)

√
2. This boundary

condition is an equal-weight superposition of all the possible classical initial conditions.
The resulting correlation corresponds to the typical correlation function over this ensem-
ble. The result is shown in Fig. 8.3b, a clear power-law decay as 1/

√
r can be seen, which

is consistent with a diffusive behaviour.

8.4. Anisotropic correlation at the quantum critical point

In the previous section, we show that at the critical point with a boundary state |ψ0⟩ =
|++ · · ·+⟩, the two-point correlation along a particular spatial dimension decays alge-
braically. Along other spatial directions, we expect that the correlation decays exponen-
tially, similarly to the spatial-temporal correlation for a single random walker in the 1D
classical dynamics.

We note that along the x-direction in Fig. 8.3a, the spin-spin correlation ⟨ZiZj⟩ vanishes
due to the disordered boundary state. To further verify the correlation, suppose now we
measure the correlation along the 45-degree angle (see Fig. 8.4), a clear exponential decay
is observed. More generally, when ⟨ZiZj⟩ is measured along a direction different from
the t-direction in Fig. 8.3a, we expect that the correlation decays exponentially with an
angle-dependent correlation length.
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Figure 8.5.: Quantum circuit: (a) A parametrized 4-qubit gate generating the isoTNS.
The gate is decomposed into a single-qubit gate, two-qubit CNOT gates
and a control-rotation gate. An additional three-qubit gate is included for
g < 0. Here, A(g) and B(g) are single-qubit gates such that A(g) |0⟩ =√

1/(1 + |g|) |0⟩ +
√
|g|/(1 + |g|) |1⟩ and B(g) = HA(g)†, where H is the

Hadamard gate. The three-qubit gate is a CCZ gate such that CCZ |111⟩ =
− |111⟩ and it acts trivially otherwise. (b) Initialization. The physical qubits
(blue circles) are located at the edges of a square lattice. The system is ini-
tialized as |ψ0⟩ ⊗ |00 · · · 0⟩, where |ψ0⟩ is the boundary state. (c) Generating
the isoTNS. The gate in (a) is applied diagonally in parallel. The red shade
marks the spread of the entanglement.

8.5. Realizing 2D quantum phase transition based on
holographic duality of isoTNS

The isoTNS path above can be realized experimentally on a 2D array of qubits using an
efficient quantum circuit (see Chapter 6). In this section, we present the explicit quantum
circuit for the path. Furthermore, we show that the isoTNS path can also be realized in
a hardware-efficient way via the holographic duality of isoTNS. We further show how to
characterize the SET phase transition experimentally. This provides a minimal proposal
for proof-of-principle experiments for the realization of a 2D quantum phase transition on
programmable quantum hardware.

8.5.1. Quantum circuit representation

The quantum circuit representation for the isoTNS path can be easily found when the
system is defined with open boundaries 2. The isoTNS tensor is mapped to a 4-qubit
quantum gate acting on each vertex, as shown in Fig. 8.5a. The system is initialized as
|ψ0⟩ ⊗ |00 · · · 0⟩, where |ψ0⟩ is any 1D quantum state formed by the boundary qubits (see
Fig. 8.5b). The state is generated by sequentially applying the 4-qubit gate to each vertex
along the diagonal direction, as depicted in Fig. 8.5c. The depth of the circuit thus scales
as O(L) as long as the boundary state |ψ0⟩ can be prepared with an O(L)-depth circuit.
Using the exact quantum circuit, the ground states along the entire path can be realized
without any post-selection.

2For systems with a periodic boundary condition, there is no clear way to initialize the contraction of
the isoTNS.
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Figure 8.6.: A side view of the sequential circuit for the isoTNS. A lightcone for the isoTNS
can be clearly seen (denoted by the dashed line). The measurement outcomes
are uncorrelated with the qubits at the far side (right) along which the sequen-
tial circuit is applied. This implies that measurements of a tensor product of
single-site operators can be sampled sequentially as we sequentially apply the
circuit.

8.5.2. Simulating the isoTNS via holographic duality

An 1D matrix-product state (MPS) can be implemented on a quantum simulator with a
constant number of qubits by performing the contraction of the MPS temporally. This pro-
vides a hardware-efficient way to realize MPS on quantum computers (see e.g. Ref. [263]).
Here we show that the same idea can be used to simulate the isoTNS with only an one-
dimensional array of qubits. The approach provides a hardware-efficient protocol for
simulating the 2D topological quantum phase transition described by isoTNS on a pro-
grammable quantum processor.

The sequential quantum circuit for preparing the isoTNS (Fig. 8.5c) has a simple causal
structure. Following the direction of the sequential circuit, the measurements of any local
operators supported at the bulk of the wavefunction are unaffected by the qubits at the far
side along the direction of the sequential circuit (see Fig. 8.6). Consequently, the measure-
ment of a tensor product of single-site Hermitian operators ⟨O1O2 · · ·ON ⟩ is equivalent to
a sequential measurement as follows:

1. Following the orientation in Fig. 8.5c, we apply the first step of the sequential circuit
and measure the single-site observable Ok at the first row of qubits. Each measure-
ment is performed in the basis of Ok for each site k.

2. Proceed to the next step of the sequential circuit and increment to the next row of
qubits for measurement, repeat 1.

Note that a key feature of the sequential measurement is that at each step, the measure-
ments are not performed on the full isoTNS, but on the boundary of a partially prepared
isoTNS. Due to the causal structure of the isoTNS and commutativity of the measure-
ments on each row, the sampling based on the sequential algorithm is the same as directly
sampling ⟨O1O2 · · ·ON ⟩ on the full isoTNS wavefunction.

After each step of the sequential measurement, the post-measurement qubit at site k
collapses into some eigenstate of Ok and becomes completely disentangled from the system.
An immediate simplification is to re-initialize the disentangled qubits back to states |0⟩ and
reuse them for the next step of the sequential measurement, as depicted in Fig. 8.7. Then
the whole measurement process can be performed with two 1D arrays of qubits (which can
be implemented by the even and odd sites of an 1D array of qubits). Since at each step, the
quantum system stores the 1D boundary state of the partially prepared isoTNS conditioned
on the measurement outcomes, this is a generalization of the holographic realization of 1D
MPS to 2D isoTNS.

As a side comment, the sequential measurement also provides a classical numerical
method for sampling isoTNS. Since an MPS with a finite-bond dimension can be effi-
ciently sampled, the sequential measurement can be simulated by representing the 1D
boundary state as an MPS (conditioned on the sequential measurement outcomes from
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Figure 8.7.: Schematics for the holographic realization of the 2D isoTNS. On the left, the
steps of sequential circuit preparation on a 2D lattice are shown. The grey four-
qubit gate is given in Fig. 8.5a. On the right, the corresponding step (dashed
box) in the holographic realization is shown. At each step, we implement
the sequential circuit on both the entangled physical qubit array (red) and
the ancillary qubit array (blue), then we measure and collect the outcomes
from the output of the physical qubit array and reset the post-measurement
qubits to |0⟩ (solid black box). The reseted qubits are swapped and reused
as the ancillary qubit array in the next step (double arrow). Iterating the
steps is equivalent to sequentially sampling the ground state generated by the
sequential circuit. The swap operations can be performed classically by a
relabeling of the qubits.

the previous steps). If the 1D boundary state can be efficiently approximated by an MPS,
then we expect that the sampling of the isoTNS is classically simulable, otherwise (i.e.
when the MPS has an volume-law entanglement) the classical simulation is hard. This
is in spirit similar to the numerical method proposed for simulating 2D shallow quantum
circuits [264].

With this realization, it becomes easy to measure general observables. Entanglement
entropy can also be accessed via the technique of randomized measurements (which is based
on sampling bitstrings on random basis) [5, 149, 157]. A signature of phase transition
can in principle be captured by observing a diverging correlation length extracted from
the measurement of the correlators. However, the measurement of the membrane order
parameter used in Section 8.2, which distinguishes the SET phases, relies on the preparation
of minimally entangled states on a cylindrical geometry and is therefore experimentally
challenging to achieve. In the next section, we discuss how the issue of preparing minimally
entangled states can be circumvented and a similar SET membrane order order parameter
can be measured using the holographic quantum algorithm for the isoTNS.

8.5.3. Probing the SET transition

A defining feature of the non-trivial SET phase is that the symmetry action fractionalizes
non-trivially around the anyon. A straightforward order parameter for the SET phases
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Figure 8.8.: An illustration of a defect (e anyon) insertion into the isoTNS wavefunction.
(a) A defect can be inserted by applying an additional Pauli X flip to an
output qubit after a step of the sequential circuit. (b) The resulting wavefunc-
tion corresponds to the ground state with an e anyon at the defected vertex.
This is equivalent to generating an e anyon by applying some dressed string
operator connecting the defect and the open boundary. (c) The membrane
order parameter consists of a product of Pauli X on adjacent non-overlapping
plaquettes surrounding the defect.

is obtained by measuring the membrane order parameter in Section 8.2 around a single
anyon in the bulk. The membrane order parameter, which consists of partial symmetry
action, will vanish if there is a non-trivial symmetry fractionalization and remain non-zero
otherwise.

The difficulty of this approach lies on the creation of a single anyon in the bulk. While
this is easy at the two fixed points of the toric code (g = ±1), where the creation operators
for the anyons are some string-like operators that are exactly known and are simple to
realize, efficient ways to create and manipulate the anyons are not a priori known away
from the fixed-point limits.

The use of isoTNS provides a solution to the problem. To create an anyon, we simply
need to replace one of the local tensors in the isoTNS by a single “defect” tensor. The defect
tensor is still required to satisfy the isometry condition in Eq. (8.3) but unlike the local
tensor formed by the states summed to an even parity at each vertex (see Eq. (8.6)), the
defect tensor only allows for states that are summed to odd parity to meet at the vertex.
The rest of the tensors in the isoTNS stay the same. As a result, the isoTNS wavefunction
with a single defect local tensor is orthogonal to the ground state isoTNS. Physically, the
defected isoTNS corresponds to the ground state with a single vertex (or e anyon in the
toric code) excitation (potentially dressed by some local pairs of plaquette excitations, or
m anyons) at the defect vertex 3. Since the defected isoTNS is still an isoTNS, it can be
efficiently generated and simulated via the sequential protocol. An excitation is inserted
without the use of explicit particle-creation operators.

On a quantum circuit level, inserting a defect tensor is easy to achieve. In Fig. 8.8a,
we show one way of inserting defect by simply flipping an output qubit after one of the
sequential steps. The sequential steps afterwards stay the same as before.

3Note that on a closed manifold, we expect that all the anyons above Z2 topologically ordered ground
state to come in pairs. Here a single anyon is possible due to the open boundary condition, where one
anyon is in the bulk, the other anyon condenses on the boundary of the system (see Fig. 8.8b).
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Once we insert an e anyon, we can measure a membrane order parameter M, where

M = lim
L→∞

|⟨ψ|
∏
i∈Pe

Xi|ψ⟩|1/L, (8.8)

where |ψ⟩ is the wavefunction with inserted excitation and Pe denotes a set of sites on
adjacent non-overlapping plaquettes around the anyon (as shown in Fig. 8.8c), and L is
the perimeter of the supported region of this membrane. Similar to the membrane order
on the minimally entangled states in Section 8.2, for a real wavefunction, we expect this
membrane order to vanish at the non-trivial SET protected by (

∏
iXi)K, where K is

complex conjugation. In a trivial SET, M is generically non-zero. Now since M can
be measured by a product of Pauli X, this can be easily measured from the holographic
realization of the isoTNS path.

8.6. Discussion and conclusion

In this chapter, we proposed to design efficient quantum circuits for the realization of
2D topological quantum phase transitions using the tool of isoTNS. We achieved this
by restricting to a subclass of isoTNS via the plumbing construction, which connects
the resulting isoTNS wavefunctions to classical partition foundations. We illustrated the
method by constructing a minimal example of an D = 2 isoTNS path between distinct
SET phases and discussed the experimental protocols for physical realization on a digital
quantum computer via the holographic duality of isoTNS.

While we have illustrated the design of an efficient circuit based on a specific isoTNS
path interpolating between distinct SET phases, the method can be applied more generally.
A large class of topologically ordered states admits exact isoTNS representation where the
virtual legs and the physical legs can be related by the plumbing tensor (e.g. string-
net states [129]). One can start from these fixed-point isoTNS and apply the plumbing
method to prepare other ground states away from the fixed points and potentially cross a
quantum phase transition to reach a distinct phase of matter. For example, by adapting
the plumbing method to the domain walls of tensor-network virtual legs (the double-line
TNS [246]), we expect that an isoTNS path with bond dimension D = 4 can be constructed
between the toric code and the double-semion ground state with distinct Z2 topological
order [52, 123], crossing the same critical point as the SET case. The isoTNS path will
be analogous to the D = 4 non-isometric TNS path studied in Ref. [236], which crosses a
critical point with a different six-vertex criticality. Another example is the tensor-network
solvable path noted in Ref. [232]. It can be verified that the path is in fact an isoTNS path
that can be constructed with the plumbing method. This path interpolates between two
1-form SPT phases with the exact toric code ground state being the critical wavefunction.
Another interesting example is to consider a path between two intrinsically topological
phases. An exciting direction is to explore the possibility of connecting generic gapped
quantum phases via continuous isoTNS paths.

It has been known that the typical correlation in isoTNS follows an exponential de-
cay [265]. An open question remained whether isoTNS can support power-law correlation.
In our work, by giving a concrete example, we show that this is indeed possible. More
intriguingly, we find that the power-law decay in the example originates from a direct con-
nection between the worldlines of 1D stochastic dynamics and 2D isoTNS ground states.
Whether this connection leads to more interesting isoTNS is an open question. The effi-
cient physical realization of 2D topological quantum phase transitions is also a valuable
resource for performing and benchmarking algorithms for quantum phase recognition in
higher than 1D [2, 180].
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9. Summary and outlook

To conclude, let us summarize the main findings of this thesis. We started out by giving
a general overview and highlighted the importance of quantum simulation of topologically
ordered systems in Chapter 1. With the rapid advances in synthetic quantum systems,
the unprecedented degree of control over interacting quantum systems allows for evermore
direct access to exotic properties of topologically ordered systems. The thesis aimed to
address three core questions:

(i) How do we realize topologically ordered systems on currently available quantum
computers?

(ii) Once we have realized a topologically ordered system, how do we distinguish these
exotic quantum phases of matter?

(iii) Can we go beyond the realization of specific topologically ordered systems, and realize
quantum phase transitions between topologically ordered systems?

Indeed, the questions are too broad to be fully answered and are still under intense active
investigation by the broader community. In this thesis, we have shown our contribution to
each of these questions.

In Part I, we first briefly reviewed the concept of topologically ordered phases of matter
and their characteristic features. We addressed question (i) by describing in Chapter 3 a
general algorithm for constructing efficient quantum circuits for the string-net states—a
class of exactly solvable models realizing non-chiral topologically ordered systems. In par-
ticular, our algorithm yields the theoretically optimal circuit complexity when the system
size is increased. We also provided efficient quantum circuits, again with an optimal re-
source scaling, for creation and manipulation of anyonic excitations above the string-net
states. These together form a complete toolkit for the realization of topological ground
states on near-term quantum devices. In the following Chapter 4, we presented the suc-
cessful experimental realization of a 31-qubit Z2 topologically ordered state on the Google
Sycamore quantum processor using the method in Chapter 3. In particular, we measured
various quantities, including the stabilizer values, the topological entanglement entropy
(up to 9-qubit subsystems) and the anyonic statistics to establish the high quality of the
realization and to provide strong experimental evidence for the topological nature of the
wavefunction. The topological states were then used to demonstrate certain aspects of
quantum error correction, including logical state injection and logical state readout. The
experimental realization marked a milestone in the realization of topologically ordered
states on synthetic quantum systems and paved the way to larger-scale quantum sim-
ulation of strongly correlated systems. More recently, our methods have been used to
successfully demonstrate the non-abelian anyonic braiding [68] and non-abelian ground
states of the double Fibonacci model [69].

In Part II, we addressed question (ii) by proposing a simple method to generate a large
amount of quantum states as training data for training a quantum convolutional neural
network (QCNN) to discover order parameters for quantum phases of matter (Chapter 5).
We showed that this method discovers efficiently measurable observables that accurately
identify distinct 1D quantum phases protected by time-reversal symmetry. The proposed
method can be easily generalized to higher-dimensional systems, including systems with
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intrinsic topological order. Although in this case, classical simulation will be severely lim-
ited, quantum simulation can be used to perform the training task and discover suitable
order parameters for topologically ordered states. At the end of the chapter, we outline
another idea to efficiently characterize the topologically ordered phases and the quantum
phase transitions between them based on the framework of active quantum error correction.
In particular, the recoverability of active quantum error correction naturally leads to an
order parameter for emergent 1-form symmetries, which in turn can be used to determine
the topological order of the systems. While there are known quantities, such as the entan-
glement measure, that can be used to detect the topological order from the wavefunction,
to our knowledge none of the methods are scalable. Our results in this chapter pointed
out novel approaches that could achieve efficient characterization of topological order in
synthetic quantum systems.

In Part III, we addressed question (iii) by drawing inspiration from the method of tensor
networks. In Chapter 6, we reviewed the basic concepts of tensor networks in 1D and
2D, and the efficient preparation of tensor-network states. In Chapter 7, we constructed
simple exact tensor-network states with a finite fond dimension describing a quantum phase
transition between symmetry-enriched topological (SET) phases. These states demonstrate
that the 2D tensor-network states with a finite bond dimension are sufficiently expressive
to represent topological quantum phase transitions. However, there are no generic methods
to efficiently generate the states on a quantum computer. To achieve efficient generation, in
Chapter 8, we used the new concept of 2D isometric tensor networks (isoTNS), which can
be efficiently prepared by a sequential linear quantum circuit, as a tool to design efficient
protocols to realize topological quantum phase transitions on a quantum computer. We
proposed a plumbing protocol which allows for the construction of isoTNS that are closely
related to classical partition functions. As an illustration, we constructed the similar
isoTNS-solvable SET phase transition as in Chapter 7. The construction led to two efficient
experimental proposals for the realization and detection of the topological phase transition
on near-term quantum computers: one approach is based on the lattice realization of the
states with efficient quantum circuits, the other approach is more hardware-efficient and
is based on the holographic realization of the isoTNS. In the holographic realization, only
the boundary of the isoTNS is realized rather than the full wavefunction, but observables
on the full isoTNS can be efficiently measured. The realization considered in this chapter
focused on the level of the ground states across a quantum critical point. They will serve
as an important first step towards simulation of quantum phase transitions on synthetic
quantum systems beyond any classical simulation.

To summarize, we presented our findings in the realization and characterization of topo-
logically ordered systems on gate-based quantum computers by addressing questions (i)-
(iii). Our findings serve as valuable resources for the broader community of quantum
simulation, quantum information and quantum many-body physics. We also expect that
our findings are easily generalizable to the simulation of more general quantum phases of
matter on gate-based quantum computers. Furthermore, they open up a few novel and
important directions to be explored in the near future:

1. Realization of specific topologically ordered states/systems. Can we go
beyond the realization of systems with abelian topological order, and realize ground
states with non-abelian topological order and braid non-abelian anyons, as done
in Chapter 4. E.g., following a similar method, the recent experiment in Ref. [69]
realized the ground state of the double Fibonacci string-net model with a non-abelian
topological order, but a general braiding is lacking. Can we utilize the ground states
with non-abelian topological order to achieve and stabilize (perhaps combined with
mid-circuit measurements) universal quantum computation via braiding of the non-
abelian anyons [113]?
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2. Characterization of topological order. Can we gain a better understanding of
the learned order parameters from the quantum machine learning approach? E.g.
progress has been made recently by the work in Ref. [198], where analytical solu-
tions of QCNN are constructed for a wide class of 1D quantum phases of matter.
How about higher-dimensional systems? Can we design an experimental protocol to
perform the training assisted by actual quantum hardware? What is the general con-
nection between quantum error correction and quantum phases of matter? Is there
a fundamental limit on the resource required to detect a quantum phase transition
based on this connection?

3. Realization of topological quantum phase transitions. An immediate next
step is the experimental realization of the proposals in Chapter 8. It would be very
interesting to explore the realized states, e.g. by measuring their topological order
and detecting their critical point via experimental probes. An important open ques-
tion is whether there are other minimal examples constructed from isoTNS paths
that can be achieved on near-term quantum devices, and to what extent the pro-
posed construction is general. For example, can we apply the construction to higher
dimensional systems such as those with fracton order [266]?

The field of quantum simulation is rapidly evolving. The collision of quantum simulation,
quantum information and quantum many-body physics has sparked a fascinating line of
research in the physics community. Can we eventually use quantum computers to tackle
questions that are beyond the capabilities of any classical computers? Do quantum com-
puters really provide a key to unlock some of the unsolved mysteries in quantum many-body
systems? Does this mean that we have a solution for everything? I don’t know, but I am
very much looking forward to the journey ahead and whatever may be at the other end of
the quest.
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A. Appendix: Theoretical proposals for
simulating string-net states and
anyons on gate-based quantum
computers

A.1. Isometry Property of Plaquette Operator B̂s
p and the

Open String Operator

Here we prove that B̂s
p is an isometry on the given subspace as in Fig. 3.3a, when the

representative qudit is in the null state initially. This follows directly from the algebraic
definition of B̂s

p in Eq. (2.17). We show this isometry property for the case when h = 0
(by continuity of the strings b = g and c = i∗), i.e. we compute the overlap

. (A.1)

Taking the algebraic definition of B̂s
p
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= δj1j2δk1k2δl1l2 , (A.2)

where we repeatedly used the unitarity of the F -symbol in Eq. (2.14). The isometry
property required in Eq. (3.6) for C-B̂p to be well-defined follows by setting b = c = 0.
However, the isometry property holds even for b, c ̸= 0, this allows us to define C-B̂p on
a more general subspace, it follows that any permissible order, other than the row-wise
algorithm presented in the main texts, can be used for the string-net state construction.

In Section 3.5.1, we claim there exist unitary operators that can be used to prepare and
move the anyons on the string-net ground state. To see the conditions are compatible
with unitarity, it suffices to consider the non-abelian case of the operators, the form of
the abelian open string operator is a special case of the non-abelian string operator (see
Section 3.5.1). The isometry property of the operator for moving directly comes from
the unitarity (2.14) of F -symbol and ω being a phase. The isometry condition on the
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Appendix A. Appendix: Theoretical proposals for simulating string-net states and
anyons on gate-based quantum computers

preparation operator in Eq. (3.10) can be computed as

⟨mp1p2p2|
(
Û sprep

)†
Û sprep |eq1q2q2⟩

=
∑

q′1,q
′
2,p

′
1,p

′
2

dq′1
dq1ds

(
F
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s∗q′1q

′∗
2

)∗
F
eq∗2q1
s∗q′1q

′∗
2
δmeδp2q2δp′1q′1δp′2q′2

= δmeδp2q2δq1p1
∑
q′1

dq′1
dq1ds

δsq′∗1 q1

= δmeδp2q2δq1p1 , (A.3)

where the labelsm, p1, p2 correspond to a qudit configuration matching e, q1, q2 in Eq. (3.10).
In the second line of the calculation, we used Eq. (2.14) and the definition d = |v|2. The
last equality follows from Eq. (2.15).

Note that in Eq. (A.3) it is important to have an ancillary qudit at the endpoint to
orthogonalize the states. We expect that a similar construction using ancillary qudits can
be used to realize non-simple open string operators. However, non-simple string operators
will no longer correspond to a single string type, instead it is a mixture of several string
types. Correspondingly, the phase factors ωk in Eq. (2.19) associated with the strings are
replaced with tensors [52]. The construction will likely have to be modified.

A.2. Determine the S-matrix from Measurement

The measurement of S-matrix relies on measuring the expectation of the unitary paths by
an interferometry-like experiment (see Section 2.2). The S-matrix is obtained by Sab =
dadbMab/D, where Mab is called the monodromy and is measured by braiding anyons a and
b, as shown in Eq. (2.2). Sometimes we know the quantum dimension d of the quasiparticles
beforehand and sometimes we do not. However, it turns out we can directly obtain the
S-matrix just from the monodromy Mab without knowing the quantum dimensions. This
is because we restrict ourselves to anyon models that are described by a unitary modular
tensor category, where the S-matrix is unitary. The constraint of unitarity implies S† =
S−1, it follows that (

dadb
D

)2

=
(M−1)∗ba
Mab

, (A.4)

where M−1 is the inverse of the matrix Mab. We can substitute this relation into Eq. (2.2),
S-matrix is directly given by

Sab =

√
(M−1)∗ba
Mab

Mab, (A.5)

solely in terms of the measurement outcomes. Due to the structure of the S-matrix,
the monodromy Mab should also satisfy a set of constraints in order to yield a physical S-
matrix. For example, from Eq. (A.4) we can immediately conclude that (M−1)∗ba/Mab > 0.
By definition we have Sab = Sba, this suggests Mab = Mba. The list of constraints is
not exhausted. Other constraints c an come from, e.g. the Verlinde formula [112] or
being (together with the twist factors) the generator for the modular group [109]. In
practice, these stringent constraints and Eq. (A.5) will be very helpful in benchmarking
the experimental data and identify the correct S-matrix for the underlying modular tensor
category from the noisy data.
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B. Appendix: Experimental realization of
topologically ordered states on a
programmable quantum processor

B.1. Linear quantum circuit for the toric code

We provide a general circuit design principle for the toric code on a square lattice. The
construction can be implemented on Sycamore to (i) realize toric code with 3+2⌊(N−1)/2⌋
nearest-neighbor (NN) CNOT layers for a lattice with N ×M plaquettes, where N ≤M ,
and (ii) encode arbitrary distance-d logical qubit with d + 1 layers of nearest-neighbour
CNOT (however, in some instances this reduces to (d+ 3)/2 layers). Such construction is
generalizable to a wide range of Abelian and non-Abelian quantum codes [4]. The linear
scaling of the circuit is essentially optimal for topologically ordered states [125].

As mentioned in the main text, a toric code ground state takes the form of a product of
commuting projectors

|G⟩ = 1√
2NM

∏
p

(I +Bp) |00 . . . 0⟩ , (B.1)

where N ×M is the total number of plaquettes. We note that the choice of As and Bp
is dual to that originally used by Kitaev; both conventions are widely used in literature
and can be related by a single layer of Hadamards. An expansion of the product suggests
|G⟩ is an equal-weight linear combination of configurations with each plaquette p acted on
by I or Bp with equal probability. This resembles an equal-weight superposition of all the
binary digits with each binary representing the action of operators at p, with the relations
0 → I and 1 → Bp =

∏
i∈pXi (see Fig. B.1). This motivates the following construction of

toric code

1. Initialize the product state |00...0⟩ on all the qubits.

2. Identify a representative qubit for each plaquette.

3. Apply Hadamard gate H on each representative qubit.

4. Within each plaquette, apply CNOTs controlled by the representative qubit and
targeting the other qubits in the plaquette. Perform the control operation over all
plaquettes in an order such that the state stored in the representative qubits are not
changed until the CNOT operations in their plaquette have been applied.

Steps 1-3 initialize an equal weight superposition of all the binary strings of representative
qubits, in Step 4 we apply the plaquette operator Bp on each plaquette depending on the
representative qubit state, which turns a qubit binary string into a plaquette configuration.
We illustrate this in further detail in Fig. B.2.

To specify the state on a finite system, we need to impose boundary conditions. These
can either be “matching" or “mixed," corresponding to whether the boundary plaquettes
are of the same type or not, respectively. For the former, there is a unique ground state–
we call this the toric code ground state in the main text. For the latter, the ground state
subspace is two-dimensional and can thus encode a logical qubit–we refer to these states as
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Appendix B. Appendix: Experimental realization of topologically ordered states on a
programmable quantum processor

1

0

Figure B.1.: The binary correspondence of the configurations (toric code on 2×2 plaquette
system). The yellow plaquettes are acted by Bp, the white plaquettes are acted
by I. This can be viewed as an equal-weight superposition of binary strings
where the binary digit corresponds to the two operators.

logical states of the surface code in the main text. Other boundary conditions are possible,
though we do not explore them here, such as periodic boundary conditions placing the
code on a torus, or inserting defects inside the lattice.

B.1.1. Matching boundary conditions

In the case of matching boundary conditions, the lattice consists of a rectangular array
of complete plaquettes (see Figs. 4.1A and B.2). Following the design principle, all the
qubits are initialized with state |0⟩. We choose the top qubit on each plaquette to be the
representative qubit.

To proceed, let us consider a system of two plaquette columns, shown in Fig B.2. In
panel B, we initialize the qubits, apply Hadamards on the representative qubits, and apply
CNOTs from the representative qubits to the other qubits. Note that after B(1-3), the
states of representative qubits are stored in the boundary qubits on the sides, so in panel
B(4) the side qubits control the CNOTs, reducing the circuit depth. Fig. B.2C shows
the wavefunction after the Hadamards. The CNOTs act to “spread out" the 1’s to form
loops around the plaquettes, effectively realizing (I + Bp). As discussed in the main text,
each bitstring is an eigenstate of all the stars As (blue), and the superposition of all 16 is
an eigenstate of all the plaquettes Bp (purple): Bp |G⟩ maintains the same superposition.
The situation for the 31-qubit system in Fig. 4.1A is analogous but intractable to draw,
involving superpositions of 212 = 4096 bitstrings.

For systems with more columns, we can grow the toric code starting from the middle out,
following a similar strategy. This is shown in Fig. 4.1B. This larger circuit begins similarly
to Fig. B.2B, for the central two columns, and then extends outward (overlapping CNOT
layers where possible to reduce depth). This procedure generalizes easily to wider systems
with linear depth scaling, independent of the height.

B.1.2. Mixed boundary conditions (logical states)

Mixed boundary conditions result in a two-dimensional ground state subspace that can
encode a logical qubit. The distance-3 and 5 surface code can be encoded on the lattice
shown in Fig. 4.6A, where the plaquette (purple) and the star (blue) stabilizers correspond
to
∏
i∈pXi and

∏
i∈s Zi. On the boundary, some stars and plaquettes are incomplete, the

stabilizers there are taken to be the product of Pauli operators on the two remaining bonds.
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B.1. Linear quantum circuit for the toric code
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Figure B.2.: State preparation illustration for 12 qubits, matching boundary.
(A) Schematic showing the 12-qubit system with four plaquettes (purple),
similar to Fig. 4.1A. (B) Quantum circuit to transform |0⟩⊗12 → |G⟩, simi-
lar to Fig. 4.1B. (C) Wavefunction after the four Hadamard gates, a uniform
superposition of 24 = 16 bitstrings. Each Hadamard is associated with the
plaquette (purple) below. We darken a portion of each plaquette underneath
the 1’s that came from its associated Hadamard. Each plaquette has a dark-
ened portion in exactly half the bitstrings. (D) Wavefunction |G⟩ after the
complete circuit.

To construct the circuit for the distance-3 and 5 codes, we again follow the design
principle above. The representative qubit is chosen as the outer-top qubit referenced to
the center of the system. In the case of the incomplete plaquettes on the top boundary,
we choose the outer qubit to be representative (see Fig. B.3 and Fig. B.5).

Fig. B.3 shows the circuit construction to encode the logical state |0L⟩ for a distance-3
code, with many parallels to Fig. B.2 to help visualize the state. Here again, the CNOTs act
to “spread out" the 1’s to form loops around the plaquettes, effectively realizing (I +Bp).
This state is a +1 eigenstate of ZL (see Fig. 4.6A). The situation for the 5 × 5 system
in Fig. 4.6A is analogous but intractable to draw, involving superpositions of 212 = 4096
bitstrings. We can readily create |1L⟩ using XL |0L⟩, where XL is simply a product of
single-qubit X gates.

To create XL eigenstates, we take advantage of the transversal logical Hadamard, where
applying H to all the qubits performs a logical H and, as a side effect, also rotates the code
90◦ [267]. To compensate, we simply rotate the |0L⟩ circuit 90◦ and add the transversal
Hadamard, as shown in Fig. B.4. This creates |+L⟩, and we can also readily create |−L⟩ =
ZL |+L⟩.

These circuits generalize readily to larger circuits, such as the distance-5 case shown in
Fig. B.5A. Distance-d requires only (d+ 3)/2 CNOT layers (for odd d).

By altering the beginning of the circuit, we can inject an arbitrary logical state. This
is shown in Fig. B.5B for the distance-5 case (it generalizes easily with depth linear in
distance). The center qubit (red) is prepared in arbitrary single-qubit state α |0⟩ + β |1⟩.
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Figure B.3.: State preparation illustration for 9 qubits, mixed boundary, |0L⟩.
(A) Schematic showing a 3 × 3 logical qubit with four plaquettes (purple),
similar to Fig. 4.6A. (B) Quantum circuit to transform |0⟩⊗9 → |0L⟩. This
maintains ZL = +1. (C) Wavefunction after the four Hadamard gates, a uni-
form superposition of 24 = 16 bitstrings. Each Hadamard is associated with
a plaquette (purple). We darken a portion of each plaquette by the 1’s that
came from its associated Hadamard. Each plaquette has a darkened portion
in exactly half the bitstrings. (D) Wavefunction |0L⟩ after the complete cir-
cuit.

In (1a), we initialize the center qubit in |ψ⟩ = α |0⟩+ β |1⟩ along with the Hadamards. In
(2a-c), we “spread" this state along the qubits of XL (the five qubits in the center column;
see Fig. 4.6A) using the CNOTs highlighted in red. This creates a GHZ-like state on those
five qubits, (αI+βXL) |00000⟩ = α |00000⟩+β |11111⟩. Step (2c) includes the final layer of
red CNOTs as well as step (2) from Fig. B.5A to minimize circuit depth. We then proceed
with steps (3-5) from Fig. B.5A.

B.1.3. Circuit compilation and optimization

In Fig. B.6, we walk through our circuit optimization techniques for an example state
preparation circuit. We use these optimization steps on all of the circuits run in the main
text except for the randomized compiling case (see Sec. B.4.2).
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Figure B.4.: State preparation illustration for 9 qubits, mixed boundary, |+L⟩.
(A) Quantum circuit to transform |0⟩⊗9 → |+L⟩. Steps (1-4) are the same as
Fig. B.3B but rotated 90◦. The final step is a transversal logical Hadamard
[267], which transforms |0L⟩ → |+L⟩ and effectively rotates the code 90◦. (B)
Wavefunction after the four Hadamard gates, a uniform superposition of 24 =
16 bitstrings. Each Hadamard is associated with a star (blue). We darken a
portion of each star by the 1’s that came from its associated Hadamard. Each
star has a darkened portion in exactly half the bitstrings. (C) Wavefunction
|+L⟩ after the complete circuit. This is similar to |0L⟩ in Fig. B.3D, but in X
basis and rotated by 90◦. Each element in the sum is an eigenstate of all the
plaquettes Bp, and the superposition of all 16 is an eigenstate of all the stars
As (blue). The state can also be written in Z basis as (|0L⟩ + |1L⟩)/

√
2 =

(|0L⟩ + XL |0L⟩)/
√
2. The situation for the 5 × 5 system in Fig. 4.6A is

analogous. To prepare |+L⟩ in the 5 × 5 system, we rotate the circuit in
Fig. B.5A by 90◦ and end with a transversal logical Hadamard.

A (1) H

H H H H

H

HH

HH

HH

H

(2) CNOT (3) CNOT (4) CNOT (5) CNOT

B (1a)

H H H H

H

HH

HH

HH

H

ψ

(2a) (2b) (2c)

Figure B.5.: (Repeated Fig. 4.5 from the main text for convenience) State prepa-
ration and injection circuits for 5 × 5 logical qubit states (mixed
boundary). (A) Quantum circuit to transform |0⟩⊗25 → |0L⟩, similar to
Fig. B.3A. This maintains ZL = +1 (see Fig. 4.6A). To prepare |+L⟩, we
rotate the circuit 90◦ and perform a transversal logical Hadamard at the end,
as in Fig. B.4. (B) To inject an arbitrary logical state α |0L⟩ + β |1L⟩, we
replace steps (1) and (2) from A, initializing the center qubit to the desired
|ψ⟩ = α |0⟩+ β |1⟩.

115



Appendix B. Appendix: Experimental realization of topologically ordered states on a
programmable quantum processor

A

Convert CNOT to CZ and H

B
H

H

H

D

C

H H

CZCNOT

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Defer H until neededE

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Insert X ("echo") where active qubits idle; use last step to correct unitaryF

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

√Y

H

H

X X

X

X

X

X

X

X

X

X

X

X

X

X

√Y

Figure B.6.: Circuit compilation example. (A) Example 10-qubit system with match-
ing boundaries, similar to Fig. B.2A. (B) Circuit to prepare |G⟩, similar to
Fig. 4.1B but rotated 90◦. We intentionally use this orientation with 5 CNOT
layers to illustrate the optimization steps. (C) Decomposition of CNOT into
CZ and Hadamard. (D) Using C, convert B into CZ and H, preserving the
CNOT layer structure. (E) Defer H gates to keep qubits longer in |0⟩. (F)
Insert X gates to echo low-frequency noise. Once a qubit leaves |0⟩, we do not
let it idle between CZ layers. In the final step, we transform the single qubit
gates to cancel out the effects of the inserted X gates, in this case using X,√
Y , and identity.

B.2. Readout error mitigation

Measuring superconducting qubits is vulnerable to various errors, such as qubit decay,
other unwanted qubit transitions, and separation error. Without full error correction,
these readout errors impose severe limitations on the computational fidelity of quantum
processors. It is therefore important to mitigate the readout errors strategically when using
NISQ devices.

Note we discuss and benchmark readout performance in Sec. B.5.3, including discus-
sion of related errors as state preparation and gate error, which we neglect here, since
measurement error is dominant on this device.

One way to mitigate readout errors is using the response matrix [155]. Suppose, for
bitstrings s, s′, the observed probabilities are Po(s) and the actual error-free probabilities
are Pa(s′). This method assumes the two probability distributions are related by a response
matrix P (s|s′) via Po(s) =

∑
s′ P (s|s′)Pa(s′). In the experiment, the response matrix is

obtained by a set of calibration experiments over computational basis states [155]. This is
done by preparing the product state |s⟩ for some bitstring s, then measuring the probability
distribution by repeated bitstring readouts. Such measurements are carried out for all the
possible bitstring s. The measured probabilities are then used to approximate the response
matrix. In this work, the number of repetitions used in each bitstring basis is 10000, 64000
and 64000 for 4-, 6- and 9-qubit error-mitigation, respectively.
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Figure B.7.: Parity data with and without readout correction. (A) Same as
Fig. 4.1A. Before evaluating the parities, we correct each probability distribu-
tion using iterative Bayesian unfolding (see text). (B) Evaluating the parities
directly from the measured probability distributions (no iterative Bayesian
unfolding or other correction).

The task of error-mitigation becomes a matter of inverting the response matrix to infer
the actual distribution from the observed distribution; this procedure is known as “unfold-
ing" in high energy physics. The unfolding of the response matrix can be performed with
different methods. Here we employ iterative Bayesian unfolding (IBU) [155], where the un-
folded distribution is inferred by recursively calling Bayes’ theorem. This error-mitigation
scheme is used to mitigate the readout errors in the parity measurements (see Fig. B.7)
and the entropy measurements (see Sec. B.3). The regularization parameter for IBU is the
number of iteration steps, which can be chosen in advance, seeking optimal convergence.

The full response matrix is known to capture typical uncorrelated and correlated noise.
However, obtaining and unfolding the full response matrix is in general exponentially costly
for large systems. This limits the scalability of such error-mitigation techniques. For certain
types of error models that are typical in the current superconducting qubits device (such
as the uncorrelated errors), the cost of the calibration and the classical processing can
be greatly reduced. This allows a possible scalable protocol for mitigating readout errors
[268].

In our experiment, the structures of the response matrices were consistent with uncorre-
lated errors (see Fig. B.8 for typical response matrices measured in the experiments). This
allows us to understand the error effects by Monte Carlo simulation.
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Figure B.8.: Selected response matrices displayed in log-scale to highlight un-
correlated pattern. Visualization of typical response matrices obtained in
the error-mitigation calibration experiments. The colors are displayed in log-
scale to highlight the uncorrelated noise pattern in the response matrices. We
extract effective uncorrelated error rates from the matrices given respectively
by (2 × 2) e0 = 0.016 and e1 = 0.056, (2 × 3) e0 = 0.019 and e1 = 0.050,
(3 × 3) e00.018 and e1 = 0.048. For comparison we show the image for an
exact response matrix of a 3× 3 subsystem for uncorrelated noise with error
rates e0 = 0.02 and e1 = 0.05 (green dashed box).

B.3. Measuring topological entanglement entropy

Measuring the entropy of a system is experimentally challenging: one often needs the
density matrix ρ, from which one can extract the von Neumann entropy

S = −Tr [ρ ln ρ] , (B.2)

or n-th order Rényi entropy

S(n) =
1

1− n
ln (Tr ρn) . (B.3)

The entropy cannot be measured directly, but can be accessed through quantum state
tomography of the density matrix. Full quantum state tomography is resource intensive,
with cost typically scaling exponentially with the subsystem size. Moreover, tomography
produces a biased estimator [158], which can sometimes be tricky to account for.
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B.3.1. Randomized measurement of second Rényi entropy

In this work, we focus on the randomized measurement (RM) protocol that measures the
second Rényi entropy using single-qubit random unitary. Consider a subsystem A, whose
purity is given by

Tr
(
ρ2A
)
= 2NA

∑
s,s′

(−2)−H(s,s′)P (s)P (s′), (B.4)

where NA, ρA is the number of qubits and the density matrix of A. The average is over
the tensor product of single-qubit random unitaries which act on the qubits in A and are
independently drawn from the circular unitary ensemble (CUE). s, s′ are the binary strings
in the computational basis with H(s, s′) outputting the hamming distance between them,
and P (s) denotes the probability of observing s. The second Rényi entropy is given by
S(2)(ρA) = − ln

(
Tr
(
ρ2A
))

. A nice feature of the randomized method is that the same set
of measurement data can be used to compute the entropies for multiple subsystems at the
same time. This renders particular convenience in measuring the Stopo, which is inferred
from a linear combination of the entropies from different partitions. In the experiment,
we only have to measure the entropy of the subsystems themselves, from which Stopo can
be obtained by calculating all the entropies for different partitions using the same data.
This avoids having several randomized measurements on the subsystem partitions and the
large statistical errors built up from adding and subtracting these independently-measured
entropies.

In practice, P (s)2 is a biased estimator for E(P (s))2 and needs to be replaced with an
unbiased estimator

P → P × nP − 1

n− 1
, (B.5)

where n is the number of measurements used to determine P (s) [159]. The random unitaries
can be drawn from the continuous (Haar) measure. However, on many current devices it
is more desirable to use a given finite set of pre-calibrated quantum gates. This is made
possible by approximating the ensemble (up to certain statistical moment) using a unitary
3-design, e.g. the Clifford group [160, 161]. The single-qubit random unitary can be
implemented as random single-qubit Clifford gates.

In the setting of RM, averaging over the tensor product of single-qubit Clifford gates is
equivalent to averaging over all the Pauli basis measurement [106]. This can be seen by
noting the qubit measurement projects the state onto Pauli Z basis, i.e. |0⟩⟨0| = (1+Z)/2
and |1⟩⟨1| = (1 − Z)/2. The single-qubit Clifford gates send the Pauli Z to any other
non-identity Pauli gates with equal frequency, U †ZU = ±P , where U ∈ Cliff(2) and P ∈
{X,Y, Z}. One can then go back to the Pauli Z basis as in the usual Pauli measurements.
The mapping with phase -1 corresponds to a bit-flip when transforming back to the Pauli
Z basis. The Hamming prefactor in Eq. (B.4) is preserved under bit-flip on s, s′, hence the
equivalence follows.

Despite the properties of unitary 3-design, discretizing the random unitary measure with
the Clifford group can give rise to different behaviour in the statistical fluctuations of the
entropy measurement. In the example of toric code subsystems, the statistical errors are
observed to be much larger in the random Clifford/Pauli case than in the Haar-random
case. We illustrate this with the Monte Carlo simulation in Figure. B.9. In the simulation,
we estimate the second Rényi entropy of the 2×3 (6-qubit) subsystem within the toric code
assuming the bitstring probabilities can be measured perfectly, and compare the results
of using random Pauli basis rotations and using Haar-random unitaries. To draw the
random Pauli rotations from a finite set of 36 = 729 elements, we can either sample with
or without replacement. For the entropy estimation, the random Pauli protocol is observed
to be biased upward. In the case when the samples are statistically independent (sampling
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Figure B.9.: Monte Carlo simulation of entropy estimation. We show the difference
of using the discrete random Pauli rotations and using Haar-random unitary
for estimating the second Rényi entropy of a 6-qubit subsystem (2 × 3 qubit
array) in toric code. In the simulation, the bitstring probability distributions
are measured perfectly in each random unitary instance. We use 200 Monte
Carlo experiments for the Haar-random case and > 104 experiments for the
discrete Pauli rotation case. The Haar-random unitary protocol shows much
smaller statistical errors and bias in the estimation.

with replacement), the bias can be mitigated by a jackknife resampling technique [269].
The Haar-random case, however, produces nice estimation with minimal bias. The relative
statistical errors reveal the advantage of the Haar-random protocol when the number of
random unitaries drawn NU are fewer than the full set of Pauli rotations, with much
smaller statistical errors than the other protocols. When NU ≥ 36, random sampling
becomes unnecessary, as we can simply sum over all the possible Pauli rotations to obtain
the exact average over the ensemble, resulting in zero statistical errors.

This motivates the RM experiments to use the random Pauli rotations in 4- and 6-qubit
systems where the measurements over the full Pauli basis are feasible (34 = 81 for 4-qubit
and 36 = 729 for 6-qubit, equivalent to full tomography), and use 1000 instances of Haar-
random single-qubit unitaries in the 9-qubit system where a scan of the full Pauli basis
is not feasible (39 = 19683 basis states). For each instance of the single-qubit unitaries,
we repeat the bitstring measurement 10000 times, and then we attempt to correct the
measured probability distribution for readout error (see Sec. B.2).

B.3.2. Extended experimental details

As a check for the state quality and the success of the entropy measurement protocol, we
probed the (second Rényi) entropy for the 4-qubit subsystems by taking snapshots of the
entropy values after each step of the state preparation in Fig. 4.1B. The entropies of all
the 4-qubit subsystems at the stars and plaquettes are measured following the protocol de-
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Figure B.10.: Experimental snapshots of the second Rényi entropies during the
ground state preparation steps. We probed the second Rényi entropy of
all the 2×2 subsystems during the state preparation steps using randomized
measurement, measuring over all 34 = 81 Pauli basis combinations (10000
repetitions per basis). The values are shown in units of ln 2 and are consistent
with the predicted values. Note that the corner plaquettes end with an
entropy of 2, as expected due to the boundary conditions.

scribed above, giving a sequence of the 4-qubit subsystem entropies at each step as shown in
Figure. B.10. The measured entropies closely match the ideal values (by carefully following
the CNOT gates), demonstrating the quality of the state and entropy measurements.

As mentioned earlier, the topological entanglement entropy (Stopo) can be computed
using a single set of randomized measurements data for a given subsystem. In our experi-
ments, we perform the Stopo measurements on 14 4-qubit subsystems, 20 6-qubit subsys-
tems and 3 9-qubit subsystems across the device (see Figure. B.11). For each subsystem,
we extracted multiple Stopo values based on different partitions. By rotation and reflection,
we can have 4, 2 and 8 ways to partition the 4-, 6- and 9-qubit subsystems. The Stopo
distributions for all these values are summarized in Fig. 4.2. In Fig. B.12, we present the
individual Stopo values with estimated error bars of one standard deviation. We estimate
the statistical errors with bootstrapping [270]. Despite the much larger Hilbert space,
the 9-qubit subsystems show small uncertainty with an average relative statistical errors
of 12%. This compares favorably against the uncorrelated error modelling on a 9-qubit
subsystem with asymmetric error rates e(0 → 1) = 0.01 and e(1 → 0) = 0.05, estimating
a relative statistical errors of 13%.

The data for the 4- and 6-qubit randomized measurements were taken by measuring
the bitstring probability distributions over all the Pauli bases, which is equivalent to a
full quantum state tomography. We can therefore analyze the same set of data with
standard quantum state tomography techniques. We find the reduced density matrices
using maximum likelihood estimation through convex optimization. In Figure. B.13, we
show the comparison of the estimated Stopo between the tomographic analysis and the
randomized analysis on the same sets of data. The direct access to the density matrices
also allows the computation of the corresponding von Neumann entropy for the subsystem,
which is the usual entropy measure used to define Stopo, as opposed to the second Rényi
entropy. The consistency between the Stopo values obtained through different analysis of
the same data again supports the reliability of the experiments.

In Figure. B.14, we show the examples of reduced density matrices for 4- and 6-qubit
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2x2 (14)A B C2x3 (20) 3x3 (3)

Figure B.11.: Systems used for Stopo measurements. Refer to the 2 × 2, 2 × 3, and
3×3 systems in Fig. 4.2A. As discussed in the main text, for the entropy data
in Fig. 4.2C-D, we measure several of each system shape across the 31-qubit
toric code ground state (see Fig. 4.1A). (A) 2 × 2 systems (14). Note we
exclude the corners which have different entropy; see Fig. B.10. (B) 2 × 3
systems (20). For clarity, we split into two groups with different orientations.
(C) 3× 3 systems (3).

subsystems obtained by tomographic analysis. The non-trivial entanglement pattern of
the states are manifested by the rank deficiencies in the matrices. We can further extract
the state fidelity of the subsystems against the exact toric code, which is summarized in
the histograms in Figure. B.14. The average fidelity of the 4- and 6-qubit subsystems have
reached 94% and 88% respectively.
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Figure B.12.: The individual values of Stopo of each subsystem for different par-
titions into subregions. Here we present details for the histograms shown
in Figure. 4.2D. In units of ln 2, the expected topological entanglement en-
tropy for the toric code is -1. The average relative statistical errors are 1.3%.
1.2% and 12% for the 4-, 6- and 9-qubit subsystems, respectively.

Figure B.13.: Comparison between the topological entanglement entropy estima-
tion obtained with randomized measurements and quantum state
tomography. The full Pauli basis rotation data can be analyzed using ran-
domized measurements and also quantum state tomography. We compare
both cases to check consistency. Top: 2× 2 subsystems. Distribution mean
and standard deviation: S

(2)
rand = −0.89 ± 0.07, Stomo = −0.82 ± 0.1 and

S
(2)
tomo = −0.89 ± 0.06. Bottom: 2 × 3 subsystems, S(2)

rand = −0.90 ± 0.09,
Stomo = −0.91± 0.1 and S(2)

tomo = −0.91± 0.07.
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Figure B.14.: Example density matrices and fidelity histogram. The left panels
show examples of 4- and 6-qubit measured density matrices. The density
matrices are obtained using maximum likelihood estimation based on full
quantum state tomography (with 10000 repeated measurements in each ba-
sis). The right panels show the histograms of fidelity for all the measured
density matrices against the corresponding toric code subsystems. The aver-
age fidelity reaches 94% and 88% for 4- and 6-qubit states, respectively. On
average, we estimate the uncertainty of the fidelity to be 0.004 and 0.002 for
4- and 6-qubit subsystems, respectively. The shown examples are chosen to
be near the average, having fidelity 94% (4-qubit) and 91% (6-qubit).

B.4. Simulating braiding

In this Appendix, we elaborate on the protocol for simulating braiding in Fig. 4.4 of the
main text, cf. Fig. B.15. Exchange statistics refers to interchanging the position of a
pair of identical anyons, while mutual statistics refers to exchanging the positions of two
(possibly distinct) anyons twice. Equivalently, mutual statistics arise when circling one
anyon around another (the two pictures are related by switching to the reference frame
of one of the anyons). While fundamental particles have trivial mutual statistics (all +1)
and exchange statistics (+1 for bosons and −1 for fermions), braiding Abelian anyons can
result in more general phases.

B.4.1. Interferometry

The interferometric protocol is motivated by the simple quantum optics picture in which
a single light source is split into two paths that interfere when recombined. In our digital
quantum processor, we use an auxiliary qubit a which is initially prepared as (|0⟩+ |1⟩)/

√
2

to “split" the target state |φ⟩ into a superposition

|Ψ⟩ = |0⟩ ⊗ |φ⟩+ |1⟩ ⊗ U |φ⟩ (B.6)

by an controlled-U operation using the auxiliary a. Then

⟨φ|U |φ⟩ = ⟨Ψ|Xa|Ψ⟩+ i ⟨Ψ|Ya|Ψ⟩ , (B.7)
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where Xa, Ya are single-qubit Pauli operators that act on a. This procedure thus allows an
experimental measurement of the overlap ⟨φ|U |φ⟩ for some state |φ⟩ and local unitary U .
The final overlap can be measured by single-qubit tomography of the auxiliary qubit a.

In our case, the unitary U is a Pauli string simulating moving the anyons of the toric
code. In Fig. B.16, we show the set of minimal experiments to measure all the braiding
statistics between the anyons. Most of these paths can be understood based on the ψ
(fermion) exchange as shown in Fig. B.15E. To exchange ψ, we first create two pairs of ψ
near the corner of the device. Each movement of ψ consists of a single Pauli X and Pauli
Z that move the constituent e and m respectively. The resulting total path simplifies to a
Pauli string XXYYZZ (see Figure. B.15F). Other minimal braiding paths can be deduced
from the ψ-exchange case by only keeping the anyon of interest. The exception is the e−m
mutual statistics. If we perform two exchanges between the m near the corner and e away
from the corner, we can extract the e−m mutual statistics with a Pauli string of 6 Pauli
operators. However, a simpler path is to move e around m (topologically equivalent to
exchanging e and m twice). This path only consists of a Pauli string XXXX (4 operators)
as shown in Figure. B.16A.

The major cost of the procedure comes from the implementation of the controlled-U
that controls the auxiliary qubit and targets the support of U , which in general will involve
multiple swap gates when decomposed into nearest-neighbor CNOTs. In order to reduce
the depth of the circuit, we made use of a second auxiliary qubit (gray). The two auxiliary
qubits are initially entangled in a Bell pair (|00⟩ + |11⟩)

√
2. Then we can parallelize the

decomposition of the controlled-U by using both auxiliary qubits as control qubits (see
Figure. B.15A-D. At the end of the circuit, we disentangle the second auxiliary qubit from
the system by a single CNOT. This trick roughly halves the depth of the circuit in terms of
nearest-neighbour gates. Rather than disentangling, it is also possible to directly measure
a Pauli string ⟨φ|U |φ⟩ = ⟨Ψ|XaXb|Ψ⟩ + i ⟨Ψ|XaYb|Ψ⟩, where a, b are the two auxiliary
qubits. In our case, disentangling is advantageous because our CZ error (≈ 0.005) is much
lower than our measurement error (≈ 0.04); see Sec. B.5.3.

This interferometric protocol can be generalized beyond the Abelian braiding statistics
of the toric code to measure the braiding statistics of other models, including some with
non-Abelian braiding statistics supporting universal quantum computation [4].

B.4.2. Randomized compiling

For the phase measurements in Fig. 4.4F, we utilize randomized compiling [163, 271]. This
is a more sophisticated technique than the circuit optimizations described above (primarily
inserting many X gates) used for all the other experiments. Essentially, the layers of single-
qubit gates (between layers of CZs) are transformed by random single-qubit Paulis in such
a way that the overall circuit unitary is unchanged. We use 30 different randomly-compiled
instances for each experiment. Each individual instance has a different perspective on the
various coherent and non-Markovian errors that we wish to mitigate.

For example, in Fig. B.17, we plot the scatter in the measured Bloch vector for the em
mutual measurement from Fig. 4.4F, as well as two control experiments. The key result of
Ref. [163] is that by averaging over randomly-compiled instances, we tailor these coherent
and non-Markovian errors into a depolarizing channel, which is suitable since here our
focus is on extracting the phase of a qubit after a sophisticated and deep 33-qubit circuit.
The price is that all the errors now manifest incoherently, so the Bloch vector length is
decreased.

There is not a well-established method of estimating the uncertainty in the phase, so
we employ a simple technique, jackknife resampling [269]. Resampling techniques are
appealing here because each individual instance is subject to significant coherent and non-
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Figure B.15.: Circuit decompositions for Fig. 4.4. (A) Circuit decomposition of
controlled-XXXX for Fig. 4.4D. We use a second auxiliary qubit, ini-
tially in |0⟩, to decrease the circuit depth. We decompose into swap and
CNOT (see D for further decomposition). (B) Circuit decomposition of
controlled-XXXXXX, which is used for Fig. 4.4E. (C) Circuit decomposi-
tion of controlled-XXXX targeting qubits deeper in the array, which is used
for other interferometry experiments. (D) Additional circuit decomposition
details. Left: Conversions between swap and CNOT. Middle and right:
example conversions between controlled operators using single-qubit rota-
tions (S is Z1/2). Ultimately, everything is compiled into CZ gates, and we
use randomized compiling on these circuits when we extract the phases (see
Sec. B.4.2). (E) Schematic showing the idea behind the controlled-XXYYZZ
used in Fig. 4.4E. In two steps, we exchange the location of two ψ’s. Unlike
the similar plots in the main text, these are not experimentally-measured
parities. (F) Simplification of the two-step sequence in E to a single step
XXYYZZ, as used in Fig. 4.4E.
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Figure B.16.: Extended version of Fig. 4.4D-E. (A-I) Measured parity values for
toric code eigenstates before and after the indicated controlled operation
(green auxiliary qubit starts in |+⟩), in the same order as the measured
phases in Fig. 4.4F. (A) Same as Fig. 4.4D. (B) Note the simplification
where two sets of XXXX cancel, similar to the simplification in Fig. B.15F.
(C) Similar ZZZZ cancellation. (I) Same as Fig. 4.4E. (J) Trivial case,
effectively measuring ⟨0000|XXXX |0000⟩ = 0 (also see Fig. B.17C).
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Figure B.17.: Example scatter over randomized compiling instances. For each
randomized compiling instance, we perform single-qubit tomography on the
auxiliary qubit to obtain its Bloch vector. This single-qubit tomography con-
sists of six sequences, effectively measuring along ±X, ±Y , and ±Z, which
averages out readout bias. We do not use any readout correction such as
unfolding here. We plot the projection of the Bloch vector in the XY plane,
which determines the phase of the qubit state. The Bloch vector for each
instance is shown in a smaller light green point (30 total), while the average
Bloch vector over all the instances is a larger dark green point. (A) Con-
trol experiment where we prepare |+⟩ and immediately perform tomography.
The measured phase is (0.007±0.001)π (see text for discussion of estimating
the phase uncertainty). The mean Bloch vector length is 0.96, where the
discrepancy from 1.0 is dominated by measurement error. (B) Data used
for the em mutual datapoint in Fig. 4.4F, also connected to Fig. 4.4D and
Fig. B.16A. Note the scatter in the data from individual instances, which
we attribute to coherent and non-Markovian errors manifesting differently in
different compiled instances. (C) Control experiment measuring XXXX on
the trivial state |0⟩⊗31, as shown in Fig. B.16J. We measure a Bloch vector
close to (0, 0, 0) without any well-defined phase, as expected, since |0⟩⊗31 is
not an eigenstate of XXXX : ⟨0000|XXXX |0000⟩ = 0.
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Markovian error, while averaging over many instances should be less sensitive. For each
instance i (of n = 30 total), we compute the phase θ̄i averaging the Bloch vector over the
n−1 other instances. The average over all n instances is θ̄. Then we estimate the standard
error of the mean value of θ̄,

σ =

[
n− 1

n

n∑
i=1

(
θ̄i − θ̄

)2]1/2
.

This is how we compute the error bars in Fig. 4.4F.

B.5. Logical qubit states

B.5.1. Logical state measurement

Now we expand on the logical state measurement and error correction illustrated in Fig. 4.6B.
The logical measurement proceeds as follows. We fix a basis, Z or X, and measure all
qubits in that basis. We use the resulting bitstring to evaluate the logical operator, ZL or
XL, respectively. At this stage, we work with individual measured bitstrings, rather than
probability distributions. The bitstring can be used to evaluate the local parities, As or
Bp, respectively, equal to ±1. We perform error correction on the logical measurement by
finding the minimal set of qubits to flip such that all local parities are +1.

There are various ways to choose which qubit measurements to flip. Here, we use a
brute force approach. Consider Z basis. For the distance-3 surface code, the logical Z
states |0L⟩ and |1L⟩ = XL |0L⟩ are superpositions of 24 = 16 bitstrings. For the distance-5
surface code, the logical Z states are superpositions of 212 = 4096 bitstrings. Each bitstring
satisfies As = +1 for all s. By taking the Hamming distance (number of differing bits)
between the measured bitstring and all the constituent bitstrings of the logical Z states,
we can find which constituent bitstring is closest to the measured bitstring. The correct
logical measurement outcome is then simply whether that closest bitstring is associated
with |0L⟩ or |1L⟩. The logical X measurement proceeds similarly with all measurements
in the X basis.

As discussed in the main text, we use a logical operation X
1/2
L for logical tomography.

This rotates the YL axis onto ZL, so that measuring YL on |ψL⟩ is nominally equivalent
to measuring ZL on X

1/2
L |ψL⟩. Unfortunately, this is a nontrivial entangling operation

that essentially involves shrinking the XL observable to two qubits, performing the desired
rotation, and expanding the XL observable back across the array. This makes it especially
vulnerable to errors, similar to the state injection protocol. This can be generalized for
other powers Xα

L (and also ZαL) using a complementary circuit. The ladder structure also
generalizes to larger code distances. We show the specific CZ circuits used for X1/2

L in
Fig. B.18.

B.5.2. Dynamical decoupling

Studying the onset of logical errors over time in Fig. 4.6D, we observe a significant basis
dependence where |+L⟩ decays much more rapidly than |1L⟩. This is expected due to
qubit frequency drift and low-frequency noise, which manifest as Z errors. For example, if
a qubit has a constant 500 kHz frequency offset, it will precess a π rotation (Z error) in
1 µs. These issues can be studied and mitigated using dynamical decoupling, techniques
developed for nuclear magnetic resonance [272–275] that have been adopted successfully
for superconducting qubits [276].

The dynamical decoupling we test in Fig. 4.6D is extremely simple. Given a particular
wait time t, we apply an X gate on each qubit at t/4 and again at 3t/4, very similar to a
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Figure B.18.: CZ decomposition for X
1/2
L . The operator X1/2

L = (I − iXL)/
√
2 is

useful for logical tomography as it maps |+iL⟩ = (|0L⟩+ i |1L⟩)/
√
2 → |0L⟩.

We operate on the qubits that appear in XL. The circuit decomposes the
operator (I − iXL)/

√
2 into CZ, H, and S (Z1/2) for the (A) 3 × 3 and (B)

5 × 5 qubit arrays. The S and H gates are compiled into one step, and we
use the optimizations discussed in Fig. B.6.

“spin echo" sequence. These X gates nominally cancel out each other, but they also cancel
out quasi-static Z rotations over the course of the wait time. As shown in Figs. B.19-B.20,
using dynamical decoupling dramatically improves the performance for |+L⟩ and |−L⟩ (XL

eigenstates sensitive to Z errors), while it does not make a significant difference for |0L⟩ or
|1L⟩, as expected.

Minimizing idle error in these states is important for the surface code, where an appre-
ciable amount of time is spent idling while stabilizers are measured [166]. One direction
to explore in future work is to look at other states, notably YL eigenstates. Developing
protocols that work well for all logical states, such as alternating X and Y pulses (see
Ref. [275]) are highly desirable. Another direction is to study the noise frequency spec-
trum by using different numbers of decoupling pulses, as demonstrated for a single physical
qubit in Ref. [276].

B.5.3. Extended experimental results

In Figs. B.19-B.20, we present the data from Fig. 4.6D with extended context. We examine
all four ZL and XL eigenstates for both 5 × 5 and 3 × 3, for raw measurement, corrected
measurement, and corrected measurement with dynamical decoupling. Primarily, this
supports the claim in the main text that dynamical decoupling does not substantially
affect the ZL eigenstates |0L⟩ and |1L⟩. We observe that generally |0L⟩ and |1L⟩ (ZL
eigenstates) behave similarly, as do |+L⟩ and |−L⟩ (XL eigenstates). Note the interesting
oscillations for |+L⟩ and |−L⟩ without dynamical decoupling with microsecond timescale,
only visible in Fig. B.20. The oscillations are most pronounced for the 3× 3 data and may
come from individual qubits’ static frequency offsets. The sharp dips in the corrected data
suggest brief windows when the Z errors coherently cancel enough that error correction
can still succeed.

In Fig. 4.6A, we display local parity measurements for a particular logical state to il-
lustrate we are in a toric code ground state (all local parities close to +1). In Fig. B.21,
we plot similar data for seven different logical states, both for 5× 5 and 3× 3. Although
the logical states can be distinguished by global observables (ZL and XL), they all look
the same to the local parity operators As and Bp. We also show logical tomography data
for both 5× 5 (same as Fig. 4.6C) and 3× 3 state injection in Fig. B.22. Note the longer
Bloch vectors for the 3×3 case: the state injection, state preparation, and YL tomography
circuits are all lower depth for the 3× 3 case (each one has linear depth in code distance).
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Raw
Corrected

Corrected & Decoupled
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Figure B.19.: Logical error versus wait time (1 µs). Extended version of Fig. 4.6D.
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Figure B.20.: Logical error versus wait time (5 µs). Extended version of Fig. 4.6D.
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X parity, ⟨B⟩Z parity, ⟨A⟩

|0L⟩ |1L⟩ |+L⟩ |-L⟩ |+iL⟩ |-iL⟩ |TL⟩

Figure B.21.: Local parity measurements for various logical states. Extended
version of Fig. 4.6A. Experimental parity measurements ⟨As⟩ and ⟨Bp⟩. For
each column, we prepare a different logical state. We prepare ZL eigenstates
(|0L⟩ and |1L⟩) and XL eigenstates (|+L⟩ and |−L⟩) directly. We prepare
YL eigenstates (|+iL⟩ and |−iL⟩) and |TL⟩ = (|0⟩+ eiπ/4 |1⟩)/

√
2 using state

injection. Top row: 5× 5, bottom row: 3× 3. The rightmost column is the
same data as Fig. 4.6A.

5x5 3x3

XL YL

ZL

XL YL

ZL

Figure B.22.: Logical tomography of injected states. Extended version of Fig. 4.6C.
Left: Logical tomography of injected states for the 5× 5 logical qubit, same
as Fig. 4.6C. Right: 3× 3 version.

B.6. Experimental details

We use precisely the same Sycamore processor and experimental setup as in Ref. [37].
We use CZ gates, resonantly swapping |11⟩ with |02⟩ and back; see Refs. [166, 277]. We
optimize a frequency configuration for CZ gates with 35 active qubits and the others biased
to low frequency, similar to Ref. [166].

In Fig. B.23-B.24, we map experimental benchmarks across our qubit configuration. The
center qubit, both in Fig. 4.1A and Fig. 4.6A, is (row, column) = (5, 4). The toric code
rectangle (Fig. 4.1A) is rotated 45◦ with respect to these plots. The auxiliary qubits used
in Fig. 4.4 are (1, 4) and (1, 5). Qubits (3, 2) and (7, 6) are only used in the 5× 5 logical
qubit experiments, Fig. 4.6.

In Fig. B.23, we present typical readout error benchmark results. Each experiment
involves readout assignment error and also state preparation error. Readout assignment
error is dominant, for example from unwanted transmon transitions and separation error.
State preparation error includes stray |1⟩ population, typically < 0.01, and π pulse error,
typically ≈ 0.001. The single-qubit measurements (left panel) are representative of the
errors we experience in multi-qubit experiments. In the center and right panels, we show the
specific errors we observed for simultaneous 25-qubit and 9-qubit readout used for logical
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Figure B.23.: Typical readout error. State preparation and measurement error on each
qubit, averaging over |0⟩ and |1⟩ error. Left: “Isolated" error measuring one
qubit at a time. Center: Simultaneous 25-qubit error for the 5 × 5 system
used in Fig. 4.6. Right: Simultaneous 9-qubit error for the 3×3 system used
in Fig. 4.6.
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Figure B.24.: Typical lifetime and gate error. Left: Qubit lifetime T1 for each qubit,
measured at its idle frequency in our configuration. Center: Single-qubit π/2
pulse cross-entropy benchmarking results, in Pauli error. Median: 0.0016.
Right: Two-qubit CZ cross-entropy benchmarking results, in Pauli error per
cycle. Each cycle contains one CZ and two single-qubit π/2 pulses. Median:
0.0084.

measurements in Fig. 4.6. We benchmark 200 random bitstrings and 2000 repetitions each,
then plot the fraction of runs where each qubit had an error. For more details about the
readout setup, calibration, and benchmarking, see Ref. [37].

In Fig. B.24, we present typical qubit lifetime and gate error. We benchmark gate
error (single-qubit π/2 pulses and two-qubit CZ gates) using cross-entropy benchmarking
(XEB). Note we present Pauli error, and the CZ benchmarks (right panel) are error per
cycle, where a cycle includes a CZ and two single-qubit π/2 pulses. Taking into account the
single-qubit gate errors, the typical CZ Pauli error is about 0.005. In these benchmarks,
we only examine one qubit or pair at a time, while we use many different gate patterns
throughout the experiments in the main text. For more details, see Ref. [37].
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C. Appendix: QCNN and quantum phase
classifications

The appendix provides further details for the chapters on quantum convolutional neural
networks (QCNN) and quantum phase classification.

C.1. QCNN prediction with modified training setup

As we remark in the main text, the QCNN trained by the perturbed fixed-point wave-
function can pick up the long-range order of the system. We therefore expect that the
fixed-point wavefunctions can be replaced by any wavefunctions that share the same long-
range order of the phase. For example, we can simplify the training procedure by replacing
the symmetric SB state (|· · · 000 · · ·⟩ + |· · · 111 · · ·⟩)/

√
2 by the asymmetric product state

|· · · 000 · · ·⟩ or |· · · 111 · · ·⟩ which are much easier to prepare on a quantum hardware.
We test this thought by performing the training of an 8-qubit QCNN for the time-reversal

symmetry using the SB state |· · · 000 · · ·⟩. Again, for each training session we use 60000
training samples and 1000 testing samples. We run the training with a batch size of 50
and 1000 epochs in total. At the end, we test the performance on 10000 data generated
by the set of fixed-points involving the symmetric state, namely, the same test set for the
QCNN in the previous section. For Lnoise = 1, we achieve a test accuray of 100% and for
Lnoise = 2 we achieve a test accuracy of 96.4%. We see the performance is comparable to
the QCNN trained with the symmetric fixed-point.

C.2. Training with Z2 × ZT
2 symmetry

In this section, we apply the protocol to training the QCNN based on Z2 × ZT2 generated
by global spin flip and complex conjugation. We use the three fixed points provided in
the main text. Note that, by using only three fixed points, we restrict to the phases
that contain the fixed points, which only cover a subset of all the phases protected by
the symmetry (with TI). Unlike the time-reversal case, we found the training in this case
converges much quicker. We do not need to split the entire training into sessions with
different Lnoise. Instead, we directly train on the data with the prescribed Lnoise. We used
a training sample size of 30000 and a batch size of 30.

In this case, the symmetric local unitary is generated by the Pauli strings iZ1Y2 and
iY1Z2. We first train a 4-qubit QCNN. The 4-qubit QCNN reaches a test accuracy of
99.98% for Lnoise = 1. In Fig. C.1, we show the phase diagram prediction similar to
Fig. 5.4a and 2b using the 4-qubit QCNN. We see the QCNN does a nice job away from
the phase boundary. Near the phase boundary, the QCNN again suffers from the large
correlation length of the system and is less accurate.

Next, we train an 8-qubit QCNN and the QCNN reaches a test accuracy of 100% for
both Lnoise = 1 and 2. For Lnoise = 3, the QCNN is not perfect and achieves 99.93%
test accuracy. The phase diagram prediction is shown in Fig. C.2. Compared to the 4-
qubit case, we see that the 8-qubit QCNN indeed improves significantly. Near the phase
boundary, the 8-qubit QCNN is able to distinguish the phases accurately.
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Figure C.1.: Comparing the theoretical phase diagram and the phase diagram predicted
by the 4-qubit QCNN trained based on Z2 × ZT2 symmetry.

Figure C.2.: The 8-qubit QCNN trained based on Z2 × ZT2 symmetry. Panel (a) and (b)
are similar to Fig. 5.4 in the main text.

We summarize the test accuracy of the trained QCNN for different symmetries and
number of qubits in Table. C.1 and C.2 with the values of Lnoise, which we selected for the
training of the QCNN in this section and Section 5.3.1 marked in blue.

As we mentioned in the beginning of the section, the training is performed only with
three fixed points under Z2×ZT2 symmetry. What happens if we apply the trained QCNN to
predict an unknown phase? To experiment with this, we consider the following Hamiltonian
with Z2 × ZT2 symmetry

H = (1− λ)
∑
i

Zi−1XiZi+1 − λ
∑
i

Yi−1XiYi+1, (C.1)

where λ ∈ [0, 1]. At λ = 0, we recover the fixed point we used in the main text and the
training. At λ = 1, the system in fact has a non-trivial SPT order where the symmetry of
complex conjugation K acquires a non-trivial fractionalization, but K

∏
iXi fractionalizes

trivially. This phase is an unknown phase for the trained QCNN. Applying the trained
QCNN to this model with different λ yields the prediction as shown in Fig. C.3. We see
that after a phase transition at λ = 1/2, the QCNN starts to get confused by multiple
phases with a similar probability for λ > 1/2. Whether this behavior is generic for other
unknown phases using a larger QCNN is an interesting question to be investigated in the
future.
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Figure C.3.: The 8-qubit QCNN trained with Z2 × ZT2 symmetric samples gets confused
by multiple phases with matching probability when applied to an unknown
phase.

Time-reversal Lnoise = 1 Lnoise = 2 Lnoise = 3

4-qubit (90 parameters)
Lnoise = 1 87.21% 68.69% 60.18%
Lnoise = 2 84.66% 71.33% 64.44%
Lnoise = 3 79.02% 69.44% 63.99%

8-qubit (255 parameters)
Lnoise = 1 100% 94.71% 89.88%
Lnoise = 2 100% 97.37% 93.46%
Lnoise = 3 100% 97.09% 93.62%

Uniform 8-qubit (165 parameters)
Lnoise = 1 100% 93.64% 87.61%
Lnoise = 2 100% 96.76% 92.46%
Lnoise = 3 100% 97.19% 93.37%

Table C.1.: The extended table for time-reversal symmetry. Different rows in the table
correspond to different Lnoise used for the training. Different columns show
the test accuracy on data with different Lnoise using the trained QCNN. The
blue Lnoise are the ones we selected for the training in the main text and in
Section 5.3.1 and C.3. They are chosen based on the stopping criterion we
propose.

Z2 × ZT2 Lnoise = 1 Lnoise = 2 Lnoise = 3

4-qubit (90 parameters)
Lnoise = 1 99.98% 86.88% 83.17%
Lnoise = 2 99.72% 98.08% 95.41%
Lnoise = 3 99.62% 98.08% 95.94%

8-qubit (255 parameters)
Lnoise = 1 100% 97.67% 94.41%
Lnoise = 2 100% 100% 99.53%
Lnoise = 3 100% 100% 99.93%

Uniform 8-qubit (165 parameters)
Lnoise = 1 100% 91.97% 89.07%
Lnoise = 2 100% 100% 99.21%
Lnoise = 3 100% 100% 99.76%

Table C.2.: The extended table for Z2 × ZT2 symmetry. The blue Lnoise are the ones we
selected for the training in Section C.2 and C.3. They are chosen based on the
stopping criterion we propose.
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C.3. Results for uniform QCNN

In this section, we show results for training the uniform ansatz of the QCNN based on
both the time-reversal symmetry and Z2×ZT2 . The uniform ansatz has the same structure
as the non-uniform case depicted in Fig. 5.1a in the main text, but with all unitaries at
the same circuit layer being identical now. We compare the uniform ansatz to the non-
uniform ansatz and observe that the performance is worse for the uniform ansatz when the
depth of the convolutional layer is 3 as in Fig. 5.1a. To achieve a similar performance, we
increase the depth of the convolutional layer from 3 to 5. For illustration, we will focus
on the QCNN that acts on 8 qubits. The optimization is similar to the training of the
time-reversal case. For each training session, we generate 30000 training samples and 1000
test samples. At the very end, we obtain a final test accuracy of the already-trained QCNN
on 10000 engineered data with different Lnoise.

For time-reversal symmetric systems, we obtain a QCNN that achieves 100% on Lnoise =
1 data and 96.76% on Lnoise = 2 data when training with Lnoise = 2. For the symmetry
Z2 × ZT2 , we obtain a QCNN that achieves 100% for both Lnoise = 1 and 2 data. For
Lnoise = 3 it achieves an accuracy of 99.76% when training with Lnoise = 3. Both ansatzs
are therefore comparable, see Table. C.1 and C.2,

C.4. Extended numerical results

In the previous sections, we show the testing results of the trained QCNN for the time-
reversal case. The QCNN is trained on a prescribed Lnoise picked by the stopping criterion
we adopt. Namely, we increase Lnoise used in the training, until the test accuracy for the
current Lnoise drops below certain threshold, which we choose to be 100%. It is important
that we do not over train the classifier with Lnoise that is too large, since this can potentially
lead to over-fitting. The criterion aims to provide a stopping point where the classifier is
reasonably converged and not over-fitted. We show the extended Table C.1 for time-
reversal symmetry. In the extended table, we train and test the QCNN with Lnoise = 1, 2
and 3. The training is performed sequentially: we start the training with data generated
by Lnoise = 1 layer of noise. Once a convergence is reached we continue the training with
Lnoise = 2 and so on until we reach the prescribed Lnoise. The color blue marks the Lnoise
we use for the training based on the stopping criterion. We see that at the stopping points,
the QCNNs have reasonably converged.

In contrast to the time-reversal case, we do not use the sequential training for obtaining
the Z2×ZT2 results. Instead, we directly train on the data with a prescribed Lnoise. We also
picked a suitable Lnoise used in the training based on the same stopping criterion, which
correspond to the Lnoise marked blue in the extended Table C.2. For the 4-qubit case, we
see that the performance of the QCNN can be further improved. This can be taken into
account if we were to modify the threshold for the test accuracy from 100% to 99%.

C.5. Making predictions with weak disorder

The non-existence results in Section 5.5 suggest that if the system is perturbed with noise
that is not translationally invariant, the trained QCNNs in Section 5.3.1 and C.2 will not
be able to retain their high prediction accuracy even when the system only has a very
short correlation length. However, when the breaking of the translation symmetry is weak,
namely the perturbation is close to a symmetric operator, we still expect certain level of
robustness. In particular, the robustness is characterized by a finite difference between the
probability of the predicted phase and the other probabilities in the output distribution,
i.e., by a finite probability gap.
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Figure C.4.: Predictions of the pre-trained 8-qubit QCNNs states generated with spatially
disordered perturbation. (a) The test accuracy over 1000 test states generated
by perturbing the fixed-points with one layer of independent two-qubit sym-
metric noise. Each noisy unitary is parametrized as described in Section 5.3.1,
with each angle parameter uniformly sampled from [−θ, θ], where θ ≥ 0 char-
acterizes the disorder strength (the x-axis). TRS stands for time-reversal
symmetry. (b) Smallest difference between the probability of the predicted
phase and the rest of the probabilities. A finite probability gap ensures some
stability of the prediction against weak disorder.

In Fig. C.4, we study this using the already-trained QCNNs from Section 5.3.1 and C.2 to
make prediction on the fixed-points perturbed by disordered noise. When the probability
gap (Fig. C.4(b)) is finite we obtain a perfect test accuracy (Fig. C.4(a)). When the
probability gap closes (Fig. C.4(b) gets close to zero), the prediction no longer guaranteed
to be stable against disordered perturbation and the test accuracy in Fig. C.4(a) deviates
from the perfect 100%.

C.6. Alternating-bond Heisenberg model

In this section, we show the two dimerized limits in the alternating Heisenberg model
belong to the same trivial phase under the time-reversal symmetry T = (

∏
iXi)K. In

the dimerized limits, the ground state of the system is a product of local singlets. Since
the wavefunctions are now real product states (K acts trivially), we can examine how T
fractionalizes in the ground states by looking at how

∏
iXi fractionalizes. If we apply∏L

i Xi to part of the system, we see that the operator acts as either X or I depending on
whether the singlets are formed in the even or odd bonds. In both cases, the time-reversal
SPT invariant is X2 = I2 = +1 [15, 171]. So they belong to the same trivial phase under
T .

Next, we discuss how to connect the two dimerized limits by a gapped symmetric Hamil-
tonian path. Consider the Hamiltonian

H = (1− λ)
∑
i

S2i+1S2i+2 + λ
∑
i

S2iS2i+1, (C.2)

which corresponds to the case of ∆ = 1 in H4 in the main text. The Hamiltonian has the
same dimerized ground states at the limits λ = 0, 1. A transition exists at λ = 1/2. As
we mention in the main text, this transition is protected by an π-rotation of the effective
spin-1 (2-site unit cell) in the bulk followed by a complex conjugation. The transition can
never be avoided if we keep this symmetry.
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Figure C.5.: We verify the absence of transition in the bond-alternating Heisenberg model
under time-reversal (T ) symmetry, by examining the correlation length of the
system. In the unperturbed case Eq. (C.2), the ground state has a diverging
correlation length at λ = 1/2 (red solid line). This singular point can be
avoided by adding a T -symmetric perturbation λ(1 − λ)

∑
i(−1)iXi. The

perturbed ground state continuously interpolates between the two dimerized
limits without a diverging correlation length (black solid line).

However, we can avoid this gap-closing point by adding T -symmetric perturbation. A
continuous path can be found by considering, e.g. (1−λ)

∑
i S2i+1S2i+2+λ

∑
i S2iS2i+1+

λ(1 − λ)
∑

i(−1)ihi, where hi = Xi respects the symmetry T . The added perturbation
allows interpolation between the dimerized ground states without gap-closing and therefore
the two dimerized states can be continuously connected. The absence of a transition is
verified numerically by DMRG, as shown in Fig. C.5.

C.7. Symmetrization of local quantum gates for generic
symmetry groups

Suppose we are given an on-site symmetry of the form U(g) = u(g)⊗ u(g)⊗ · · · ⊗ u(g) for
g ∈ G, where G is a finite group and u(g) is a linear representation of G. An important
question related to the proposed method is, how to find symmetric local quantum gates
under a given (representation of the) symmetry group? A direct way for achieving this is
by solving a set of linear equations (assuming the local gates have the same support as
u(g)):

[u(g),
∑
m

cmôm] = 0, g ∈ G, cm ∈ R, (C.3)

where ôm are the generators of the local unitary (usually anti-Hermitian Pauli strings).
For time-reversal symmetry of the form T = u(g)K with some g ∈ G and T 2 = 1, we can
enforce the symmetry locally and modify Eq. (C.3) to be

u(g)

(∑
m

cmôm

)∗

−

(∑
m

cmôm

)
u(g) = 0, cm ∈ R, (C.4)

A convenient way to find the symmetric generators for on-site symmetry is by a twirling
of the generators ôm.

ô′m = T [ôm]G =
1

|G|
∑
g∈G

u(g)ômu(g)
†, (C.5)

which automatically ensures that [ô′m, u(g)] = 0 for all m and g ∈ G. This symmetrization
procedure is used in Ref. [199] to construct symmetric quantum circuit architectures. For
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a time-reversal symmetry of the form T = u(g)K with some g ∈ G and T 2 = 1, we can
define

ô′m = ôm + u(g)(ôm)
∗u(g)†, (C.6)

which ensures [ô′m, u(g)K] = 0 for all m.
The two procedures mentioned can be easily extended to symmetries described by com-

pact Lie groups as well.

C.8. The error probability for a majority vote

In this section, we derive an upper bound for prediction made by a majority vote process.
This provides an estimate for the sample size we need in order to make a reliable prediction
in practice.

Suppose we have a discrete probability distribution with M outcomes and the probabil-
ities (p1, p2, · · · , pM ), such that

∑M
i=1 pi = 1 and pi ≥ 0. The task is to find the label with

the largest probability based on a majority vote among 2N +1 independent samples from
the distribution. We say a mistake is made if either (i) the majority vote cannot decide or
(ii) the majority vote yields a wrong guess for the most probable label.

Without loss of generality, we sort the probability in descending order such that p1 >
p2 ≥ p3 ≥ · · · ≥ pM . The sampling process is multinomial and therefore we can write the
error probability for the majority vote as

P =
∑

n1+···+nM=2N+1
n1≤ni, for at least one i∈[2,M ]

(
2N + 1

n1, n2, · · · , nM

)
pn1
1 p

n2
2 · · · pnM

M

≤
∑

n1+···+nM=2N+1
n1≤ni, for at least one i∈[2,M ]

(
2N + 1

n1, n2, · · · , nM

)
pn1
1 p

n2+···+nM
2

≤
∑

n1+···+nM=2N+1
n1≤n2+···+nM

(
2N + 1

n1, n2, · · · , nM

)
pn1
1 p

n2+···+nM
2

k=n2+···+nM=
2N+1∑
k=N+1

(
2N + 1

k

)
p2N+1−k
1 pk2

=
N∑
q=0

(
2N + 1

N + 1 + q

)
pN−q
1 pN+1+q

2

≤ pN1 p
N+1
2

N∑
q=0

(
2N + 1

N + 1 + q

)
= pN1 p

N+1
2 22N ≤ (4p1p2)

N . (C.7)

In the third line above, we summed over the free multinomial indices to obtain a binomial
coefficient. If we denote the probability gap by δ = p1 − p2, then we arrive at the bound

P ≤ (4p1p2)
N =

(
(p1 + p2)

2 − δ2
)N ≤ (1− δ2)N . (C.8)

Suppose we want to ensure the error probability satisfies P < ε for some positive ε < 1,
the sample size should at least be

2N + 1 ≥ 2 log ε

log(1− δ2)
+ 1, (C.9)

as claimed in the main text.
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D. Appendix: Symmetry-enriched
topological phase transitions in 2D
tensor-network states

D.1. Parent Hamiltonians away from the fixed points

In this section, we construct a frustration-free parent Hamiltonian, whose ground states
are exactly the decorated TNS. The parent Hamiltonian depends smoothly on the TNS
parameters.

D.1.1. Warm-up: 1D case

Let us illustrate the idea of the parent Hamiltonian construction with a 1D example, which
will later be generalized to the 2D case. One can verify that the MPS |ψ(g)⟩ in Eq. (7.2) that
smoothly depends on some parameter g ∈ [−1, 1] can be re-parameterized as an imaginary-
time evolved state. More precisely, when g ∈ (0, 1] it satisfies that |ψ(g)⟩ = |ϕ(τ(g))⟩, where
τ(g) = − log(g)/4 and the 1D imaginary-time evolved state is given by

|ϕ(τ)⟩ ∝ eτ
∑

i ZiZi+1 |++ · · ·+⟩ , (D.1)

By a direct substitution, we find the relation

Ki |ϕ(τ)⟩ = 0, ∀i; Ki = −Xi + e−2τZi−1Zi−2τZiZi+1 . (D.2)

Notice that Ki satisfies

K2
i = 2 cosh (2τZi−1Zi + 2τZiZi+1)Ki, (D.3)

and
[cosh (2τZi−1Zi + 2τZiZi+1) ,Ki] = 0. (D.4)

This suggests that we can define a projector

Pi =
1

2
sech (2τZi−1Zi + 2τZiZi+1)Ki, (D.5)

such that P 2
i = Pi and Pi |ϕ(τ)⟩ = 0. One choice of a local parent Hamiltonian for τ ≥ 0

is, therefore, h =
∑

i Pi with a ground state energy of zero.
To obtain a Hamiltonian smooth in g ∈ [−1, 1], we evaluate Pi in Eq. (D.5) in terms of

g, this yields

2(1 + g2)Pi − 2(1 + g2)

= −gxXi −
gzz
2

(Zi−1Zi + ZiZi+1) + gzxzZi−1XiZi+1, (D.6)

where gx = (1 + g)2, gzz = 2(1 − g2) and gzxz = (1 − g)2. A parent Hamiltonian analytic
in g is therefore given by

H(g) = 2(1 + g2)
∑
i

(Pi − 1)

= −gx
∑
i

Xi − gzz
∑
i

ZiZi+1 + gzxz
∑
i

Zi−1XiZi+1, (D.7)

143



Appendix D. Appendix: Symmetry-enriched topological phase transitions in 2D
tensor-network states

with a ground state energy density of −2(1 + g2). This Hamiltonian is exactly Eq. (7.1)
found in Ref. [242]. While in the derivation we assume g ∈ (0, 1], since all the functions
depend analytically on g for g ∈ {a+ iε|a ∈ R, ε ∈ (−1, 1)}, by analytic continuation H(g)
remains to be a valid parent Hamiltonian for g ∈ [−1, 1].

D.1.2. 2D parent Hamiltonian

Since each configuration in the 2D wavefunction consists of loops of 1D chains (D.1), the
2D ground state also admits a representation in terms of imaginary time evolution starting
from the fixed point of the TC phase

|Ψ(g, η)⟩ ∝

(∏
e∈E

eτ(g)[(1−Ze)Zv(e)Zv′(e)+Ze]/2ηZe/2

)
|Ψ(1, 1)⟩ , (D.8)

where τ(g) = − log(g)/4 ≥ 0 and g ∈ (0, 1]. Note that the alternative interpretation
implies that the decoration (imaginary time evolution) commutes with any operators diag-
onal in the computational basis, including the unitary transformation UTC-DS discussed in
Section 7.6 that maps between the toric code ground state and the double-semion ground
state. A phase diagram of the same structure as Fig. 7.4a can, therefore, also be obtained
by enriching the double-semion model.

Analogously to the 1D case shown in Eq. (D.2), it can be verified that

Kp |Ψ(g, η)⟩ = 0, ∀p;

Kp = −
∏
e∈p

Xe +
∏
e∈p

e−τ(g)Ze(1−Zv(e)Zv′(e))η−Ze . (D.9)

Similar to Eq. (D.3) and (D.4), we can obtain a local plaquette projector for each plaquette
p

Bp(g, η) =
1

2
sech

(∑
e∈p

[
τ(g)Ze(1− Zv(e)Zv′(e)) + λ(η)Ze

])
Kp, (D.10)

where λ(η) = log(η). The ground state |Ψ(g, η)⟩ satisfies Bp(g, η) |Ψ(g, η)⟩ = 0 for all p.
Recall that |Ψ(g, η)⟩ can be understood as a linear combination of closed-loop configura-
tions weighted by some loop tension, where each loop is the 1D MPS state that depends
smoothly on a parameter for g ∈ [−1, 1].

The operators

sech

(
τ
∑
e∈p

Ze(1− Zv(e)Zv′(e)) + λZe

)
,

and

sech

(∑
e∈p

[
τZe(1− Zv(e)Zv′(e)) + λZe

])∏
e∈p

e−τZe(1−Zv(e)Zv′(e))−λZe ,

are both diagonal in the computational basis with diagonal elements of the form 1/ cosh(4n1τ + 2n2λ)
and e−4n1τ−2n2λ/ cosh(4n1τ + 2n2λ) for some integers n1, n2 ∈ [−3, 3]. Inserting the re-
parameterization τ(g) = − log(g)/4, the matrix elements can be written as

1

cosh(4n2τ + 2n2λ)
=

2gn1

η2n2 + g2n1η−2n2
,

e−4n1τ−2n2λ

cosh(4n2τ + 2n2λ)
=

2g2n1η−2n2

η2n2 + g2n1η−2n2
, (D.11)

144



D.2. U(1) pivot symmetry at g = 0

which are analytic functions of g for all η > 0 and g = a+ iε, where a, ε ∈ R and |ε| < δ(λ).
Here δ(λ) is the positive real number that corresponds to the smallest distance between
the real line and the zeros of cosh(4n1τ + 2n2λ) in the complex plane. Therefore, the
projector Eq. (D.10) can be analytically continued to η > 0 and g ∈ [−1, 1]. For g < 0,
the logarithmic function τ(g) will encounter a branch cut. As we have shown, all the
singularities are removable regardless of how the function is defined across the branch cut.

A similar analysis can be performed for the vertex operators. We have the relation

(1−Av)Mv |Ψ(g, η)⟩ = 0, ∀v; (D.12)

Mv = −Xv +
∏
e∈v

e−τ(g)(1−Ze)Zv(e)Zv′(e) . (D.13)

Note that we include an additional projector (1−Av) to project out the terms that violate
the closed-loop constraint. The vertex projector at vertex v is given by

Qv(g) =
(1−Av)

2
sech

(
τ(g)

∑
e∈v

(1− Ze)Zv(e)Zv′(e)

)
Mv. (D.14)

Similar to the plaquette projectors, inserting τ(g) = − log(g)/4 in Eq. (D.14) results in a
form analytic for g close to the real axis, allowing us to analytically continue the function
to g ∈ [−1, 1]. We can define the analytically continued projector for g ∈ [−1, 1].

Therefore, a parent Hamiltonian for η ≥ 0 and g ∈ [−1, 1] is, as claimed in the main
text,

H(g, η) =
∑
v

Av +
∑
p

Bp(g, η) +
∑
v

Qv(g), (D.15)

with a ground state energy of zero. At the fixed points (g, η) = (±1, 1), we recover the
fixed-point Hamiltonians as given in the main text. As a consistency check of the analytic
continuation, using the relation Eq. (D.29), it can be shown that the imaginary time-
evolved state Eq. (D.8) satisfies the relation |Ψ(−g, η)⟩ = U |Ψ(g, η)⟩, where g ∈ [−1, 1]
and U is the quantum circuit defined in Eq. (7.9). It follows that the analytically continued
state (D.8) is proportional to the TNS defined in the main text when g < 0.

Indeed, the parent Hamiltonian is not unique. For example, Eq. (D.9) and (D.12) suggest
that we may use (g3Kp)

2 and (1 − Av)(gMv)
2 to construct another parent Hamiltonian

that depends smoothly on g and has a ground state energy of zero. Nonetheless, the parent
Hamiltonians will share the same low-energy physics.

D.2. U(1) pivot symmetry at g = 0

In Ref. [232], it is found that the 1D Ising-cluster model shown in Eq. (7.1) has a U(1) pivot
symmetry at g = 0. In this subsection, we show that the 2D Hamiltonian in Eq. (7.14)
also has a U(1) pivot symmetry at g = 0. We first derive the U(1) pivot symmetry for the
1D case as a warm-up.

D.2.1. U(1) pivot symmetry for 1D Hamiltonian

We start from a local term Pi(g = 0) for the 1D parent Hamiltonian shown in Eq. (D.5).
At g = 0, τ → ∞, it can be derived that

Pi ≡ lim
τ→∞

sech(2τZi−1Zi + 2τZiZi+1) =
1− Zi−1Zi+1

2
, (D.16)
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and Pi(g = 0) = PiKi/2, [Pi,Ki] = 0. Moreover, notice that Pi(Zi−1Zi+ZiZi+1) = 0 and
Pi only acts on three sites, we have[

Pj(g = 0),
∑
i

ZiZi+1

]
= 0, ∀j. (D.17)

Above equation implies that the generator of the U(1) pivot symmetry can be defined as
HIsing =

∑
i ZiZi+1, such that

[HIsing, H(g = 0)] = 0, H(g = 0) =
∑
i

Pi(g = 0). (D.18)

The U(1) pivot symmetry is Upivot(θ) = eiθHIsing , θ ∈ R. The Hamiltonian at g = 0 is
invariant under Upivot(θ):

Upivot(θ)H(g = 0)U †
pivot(θ) = H(g = 0), ,∀θ. (D.19)

When θ = π/4, one can check that

Upivot

(π
4

)
= e

πi
4

∑
n ZnZn+1 = e

πi
4

∑
n(1−2sn)(1−2sn+1)

= e
πiN
4 e−πi

∑
n sneπi

∑
n snsn+1 = e

πiN
4

∏
n

Zn
∏
n

CZn,n+1,

where N is the length of the 1D chain and si = (1−Zi)/2 is the transformation from Ising
spins Zi = ±1 to qubits si = 0, 1. Therefore the pivot symmetry at θ = π/4 transforms
between the trivial and non-trivial SPT state:

Upivot

(π
4

)
H(g)U †

pivot

(π
4

)
= H(−g). (D.20)

D.2.2. U(1) pivot symmetry for 2D parent Hamiltonian

For the 2D case, the U(1) pivot symmetry can be derived similarly. We begin from Bp(g, η)
shown in Eq. (D.10). At g = 0, τ → ∞, we have

Pp ≡ lim
τ→∞

sech

(
τGp + λ(η)

∑
e∈p

Ze

)
= sech

(∑
e∈p

λ(η)Ze

)
δGp,0,

where
Gp =

∑
e∈p

Ze(1− Zv(e)Zv′(e)). (D.21)

Therefore, Bp(g = 0, η) = PpKp/2, [Pp,Kp] = 0. Moreover, using PpGp = 0, it follows
that [

Bp(g = 0, η),
∑
e∈E

Ze(1− Zv(e)Zv′(e))

]
= 0, ∀p. (D.22)

We can deal with the vertex terms Qv(g) shown in Eq. (D.14) similarly. At g = 0,
τ → ∞, another projector can be derived:

Pv ≡ lim
τ→∞

sech (τGv) = δGv ,0, Gv =
∑
e∈v

(1− Ze)Zv(e)Zv′(e). (D.23)

Analogous to the derivation of Eq. (D.22), we find[
Qv(g = 0),

∑
e∈E

(1− Ze)Zv(e)Zv′(e)

]
= 0. (D.24)
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To construct the U(1) symmetry generator, we make use of the additional observation
that [

Bp(g, η),
∑
e∈E

(1− Zv(e)Zv′(e))

]
=

[
Qv(g),

∑
e∈E

(1− Ze)

]
= 0. (D.25)

Therefore, the generator H(2D)
pivot of the U(1) pivot symmetry can be constructed as:

H
(2D)
pivot =

∑
e

(1− Ze)(1− Zv(e)Zv′(e)), [H
(2D)
pivot, H(g = 0, η)] = 0. (D.26)

The 2D parent Hamiltonian H(g = 0, η) is invariant under the transformation U (2D)
pivot(θ) =

exp
(
iθH

(2D)
pivot

)
:

U
(2D)
pivot(θ)H(g = 0, η)U

(2D)†
pivot (θ) = H(g = 0, η), θ ∈ R. (D.27)

Analogous to the 1D case, at θ = π/8, the U(1) pivot symmetry realizes a unitary
transformation:

U
(2D)
pivot

(π
8

)
H(g, η)U

(2D)†
pivot

(π
8

)
= H(−g, η). (D.28)

Via the transformation from Ising spins to qubits se = (1 − Ze)/2 and sv = (1 − Zv)/2,
U

(2D)
pivot(π/8) can be expressed in terms of CCZ gates:

U
(2D)
pivot

(π
8

)
= exp

[
πi

8

∑
e

(1− Ze)(1− Zv(e)Zv′(e))

]

= exp

[
πi

2

∑
e

se
(
sv(e) + sv′(e) − 2sv(e)sv′(e)

)]

= exp

[
πi

2

∑
e

se
(
sv(e) + sv′(e)

)]∏
e

CCZv(e)v′(e)e

=
∏
v

exp

(
iπ

2
sv
∑
e∈v

se

)∏
e

CCZv(e)v′(e)e

=
∏
⟨ee′⟩

exp
(
iπsv(e,e′)sese′

)∏
e

CCZv(e)v′(e)e

=
∏
⟨ee′⟩

CCZv(e,e′)ee′
∏
⟨vv′⟩

CCZvv′e(v,v′). (D.29)

The second to last line is obtained by substituting the relation
∑

e∈v se = 2
∑

⟨ee′⟩∈v sese′ ,
which is only valid in the closed-loop subspace, into the third last line. We prove that
U

(2D)
pivot(π/8) is equivalent to the unitary transformation (7.9) in the main text.

D.3. Mapping the SET TNS norm to a partition function

In this Appendix, we show that along g = ±1, the decorated TNS can be mapped to the
2D classical Ising model, and along g = 0 they can be mapped to the 2D classical O(2) loop
model. The essence of the quantum-classical mapping is identifying the squared norm of
the decorated TNS with the partition function of an exactly solved 2D classical statistical
model.

When decorating the MPS onto the loops of the toric code, the norm of the MPS,
which depends on the length of the MPS, will affect the coefficients in the 2D decorated
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Figure D.1.: (a) Reduction of the double tensor bond dimension from D2 = 9 to 3. (b)
The non-zero entries of the reduced double tensor, where blue dashed lines
represent the one-dimensional odd bond and red solid lines represent the two-
dimensional even bond.

wavefunction. We first derive the norm of the MPS defined in Eqs. (7.2) and (7.3). The
transfer operator can be defined from the MPS tensor

T =
∑
i

M [i] ⊗ M̄ [i], (D.30)

whose eigenvalues are (1+g, 1−g, 0, 0). The squared norm of the periodic MPS (7.2) with
a length L is N (g) = (1 + g)L + (1− g)L.

Then, let us consider the norm of the decorated TNS, which is a tensor network generated
by the double tensor in Fig. D.1a. We duplicate the physical degrees of freedom at the edges
so that the tensor looks more symmetric. Because the virtual degrees of freedom in the bra
and ket layers have the same parity, we can reduce the bond dimension of the double tensor
from D2 = 9 to 5. The bond dimension 5 is a direct sum of a 1-dimensional even bond
and a 4-dimensional odd bond. The 4-dimensional odd bonds support the MPS transfer
operator (D.30). However, since the MPS transfer operator has two zero eigenvalues, we
can further reduce the dimension of an even bond from 4 to 2 by diagonalizing the MPS
transfer operator. Finally, the bond dimension of the double tensor is reduced to 3 and its
non-zero entries are given in Fig. D.1b.

From the reduced double tensor shown in Fig. D.1, there are two kinds of loops with
labels α = 1, 2 and loop tension (1 ± g)η2, respectively. Therefore, the squared norm of
the decorated TNS (7.13) is given by

N (g, η) = 2Nv
∑
C

∏
c∈C

[(
η2 + gη2

2

)lc
+

(
η2 − gη2

2

)lc]
, (D.31)

where Nv is total number of vertices, C is a given closed loop configuration, and c ∈ C is
a closed loop in C, and lc is the length of a given loop c.

When g = 0,±1, the squared norm of the decorated TNS becomes the partition function
of the classical O(n) loop models [249, 251]

Z(n,K) =
∑
C

nN(C)KL(C), (D.32)

where N(C) is the total number of loops in C, L(C) is the total length of all loops in C,
n is called the loop fugacity and K is the loop tension. The position of the critical point

148



D.4. 2D Z2 × ZT2 SPT states and corresponding partition function

Kc and the central charge c at the critical point are [250]

Kc = (2 +
√
2− n)−1/2, c = 1− 6(h− 1)2

h
,

h = − 1

π
arccos

(
−n
2

)
+ 1. (D.33)

When g = ±1, the squared norm (D.31) of the decorated TNS is equivalent to the
partition function of the O(1) loop model

N (g = ±1, η) ∝
∑
C

η2L(C) = Z(1, η2), (D.34)

which is also equivalent to the Ising model on a triangular lattice. The critical point is at
ηc = 3−1/4 ≈ 0.7598 and c = 1/2. When g = 0, the squared norm (D.31) of the decorated
TNS is equivalent to the partition function of the O(2) loop model:

N (g = 0, η) ∝
∑
C

2N(C)
(
η2/2

)L(C)
= Z

(
2, η2/2

)
. (D.35)

It is well known that the O(2) loop model is qualitatively equivalent to the classical XY
model. The critical point ηc = 21/4 ≈ 1.189 is a Kosterlitz-Thouless phase transition point
with central charge c = 1. When η < ηc, it is the gapped dilute loop phase. When η > ηc,
it is the gapless dense loop phase described by a compactified free boson CFT with c = 1.
The O(2) symmetry of the loop model is consistent with the U(1) pivot symmetry of the
parent Hamiltonian shown in Appendix D.2.

D.4. 2D Z2 × ZT
2 SPT states and corresponding partition

function

A duality transformation exists between the 2D trivial (non-trivial) Z2 SPT model and
the toric code (double-semion) model [226], which is given by

Ze = Zp(e)Zp′(e),
∏
e∈p

Xe = Xp, (D.36)

where the Zp, Xp are Pauli operators located at plaquettes and p(e), p′(e) are two pla-
quettes adjacent to edge e. Applying the duality transformation to the imaginary time
evolved wavefunction (D.8) describing ZT2 SET phase transitions gives rise to the following
wavefunction describing Z2 × ZT2 SPT phase transitions:

|ΨSPT⟩ ∝
∏
e∈E

e
τ
2
Zv(e)Zv′(e)+( τ

2
−λ)Zp(e)Zp′(e)−

τ
2
Zv(e)Zv′(e)Zp(e)Zp′(e) |+⟩v |+⟩p , (D.37)

where |+⟩v (|+⟩p) is a product state |++ · · ·+⟩ of all vertex (plaquette) qubits. The duality
transformation preserves the structure of the phase diagram, as shown in Ref. [236]. The
TC phase is mapped to the trivial Z2 × ZT2 SPT phase and the SET-TC phase is mapped
to a non-trivial Z2 × ZT2 SPT phase. The trivial phase of the phase diagram shown in
Fig. 7.4a is mapped to the symmetry broken phase, in which the Z2 spin flip symmetry of
plaquette spins is spontaneously broken.

The squared norm of the wavefunction (D.37) can be expressed as

|| |ΨSPT⟩ ||2 ∝
∑

{Zp,Zv}

∏
e∈E

eτZv(e)Zv′(e)+(τ−2λ)Zp(e)Zp′(e)−τZv(e)Zv′(e)Zp(e)Zp′(e) . (D.38)
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It can be interpreted as the partition function of the Ashkin-Teller model, which consists
of two coupled Ising models, one has Ising spins {Zv} on the honeycomb lattice and the
other has Ising spins {Zp} on the triangular lattice. This partition function is equivalent
to the partition function (D.31). This suggests that we can also add the additional de-
formation

∏
e e

βZv(e)Zv′(e) to the original SET model and obtain a ferromagnetic phase or
antiferromagnetic phase in which the ZT2 symmetry is broken spontaneously.

D.5. Real symmetric tensors and symmetry fractionalization

Here, we show that the MPS tensors have a real and symmetric form under exchanging two
virtual indices such that the single-line tensors of the decorated TNS are real and have a
bond dimension D = 3. This lowers the numerical cost. We apply a gauge transformation
to MPS tensors in the 2-site unit cells

෨𝑋 ෨𝑍෨𝑍෨𝑍

(a) (b)

𝑁 𝑁−1 𝑁 𝑁−1 𝑁 𝑁−1 𝑁 𝑁−1

𝑀𝐴 𝑀𝐵

⋯⋯
, (D.39)

where the gauge transformation is given by

N =

(
g −g
−g 1

)
, N−1 =

1

g(1− g)

(
1 g
g g

)
. (D.40)

The real and symmetric MPS tensors in a 2-site unit cell are

M
[0]
A = M [0]N =

(
0 0
0 1− g

)
,

M
[1]
A = M [1]N =

(
g(1− g) 0

0 0

)
,

M
[0]
B = N−1M [0] =

1

g(1− g)

(
g g
g g

)
,

M
[1]
B = N−1M [1] =

1

g(1− g)

(
1 g
g g2

)
. (D.41)

At g = 0 and 1, because the MPS is non-injective, the gauge transformation N is not
well-defined.

Next, we consider the ZT2 symmetry of the MPS tensors MA and MB in a unit cell. By
applying the ZT2 symmetry to the MPS, we find∑

i

(X)ijM̄
[i]
A = sign(g)UM [j]

A UT ,∑
i

(X)ijM̄
[i]
B = sign(g)(UT )−1M

[j]
B U−1,∑

ik

(X)ij(X)klM̄
[i]
A M̄

[k]
B = UM

[j]
A M

[l]
B U

−1, (D.42)

where

U =

(
0 sign(g)

√
|g|

1/
√

|g| 0

)
, U−1 = sign(g)U. (D.43)

U is the representation of the symmetry operator on the virtual level. Because UŪ =
sign(g), it is a projective representation when g < 0.
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D.6. CTMRG and correlation length

With the MPS tensors MA and MB, we can construct the tensors of the decorated TNS
shown in Fig. 7.3a and Eq. (7.11). The tensors of the decorated TNS have two symmetries,
one originates from the topological order and the other comes from the ZT2 symmetry. The
symmetry from the topological order is

=

෨𝑍

෨𝑍
෨𝑍

=
෨𝑍 ෨𝑍 = , (D.44)

where Z̃ = 1⊕(−1). Because of Eq. (D.42), it can be found that applying the ZT2 symmetry
to the decorated TNS tensor gives rise to

෩𝑈
෩𝑈

෩𝑈
= sign(𝑔) =

෨𝑍

෨𝑍
෨𝑍

=
෨𝑍 ෨𝑍 =

෩𝑈𝑋𝑣

= sign(𝑔)

෩𝑈−1𝑋𝑣
෩𝑈−1

෩𝑈−1

෩𝑈−1

𝑉𝐴

𝑉𝐵𝑉𝐵

෩𝑈
𝑖 𝑗 = ෩𝑈𝑖𝑗

, (D.45)

where Ũ = 1⊕U . Because Ũ is not a symmetric matrix, we use arrows to differentiate its
row and column indices. Considering that in a unit cell, sign(g) will be cancelled, we have

෨𝑍

෨𝑍
෨𝑍

=
෨𝑍 ෨𝑍 =

෨𝑍

෩𝑈
෩𝑈−1

= ෩𝑈

෩𝑈−1

𝑋𝑣
⊗2

෨𝑍
෨𝑍
=

෨𝑍

෨𝑍
𝒆 𝒆

(−1)

, (D.46)

where X⊗2
v acts on two physical degrees of freedom of two vertices. Applying the ZT2

symmetry twice, it can be found that Ũ ¯̃U = Z̃. Because a single-line tensor carrying an
anyon eee satisfies

෨𝑍

෨𝑍
෨𝑍

=
෨𝑍 ෨𝑍 =

෨𝑍

෩𝑈
෩𝑈−1

= ෩𝑈

෩𝑈−1

𝑋⊗2

෨𝑍
෨𝑍
=

෨𝑍

෨𝑍
𝒆 𝒆

(−1)
, (D.47)

applying the ZT2 symmetry twice on an eee anyon gives rise to a minus sign. The ZT2 symmetry
fractionalizes on the eee anyons (and also on the fff anyons).

Note that the decorated TNS can be made to satisfy the MPO-injectivity [218] by group-
ing the edge and vertex tensors appropriately. The set of virtual matrix-product-operator
(MPO) symmetries corresponding to the action of the physical symmetry group, including
the product MPO symmetry consisting of Ū , encodes the universal labels of the quantum
phase of the system [215, 216].

D.6. CTMRG and correlation length

In this subsection, we show the basic idea of the CTMRG algorithm and the results of the
correlation length. At first, we use a simplified notation of the double tensors

𝑋⊗2

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

= =. (D.48)
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Since the above tensor is not symmetric under exchanging left and right (or upper and
lower) indices, the transfer operator of the decorated TNS is non-Hermitian. Therefore,
we approximate the environment of the blocked double tensor in terms of four edge tensors
and four corner tensors with a bond dimension χ [247]:

𝐿 𝑅𝐿

…
…

… … … …

…
…

… … …

𝒃

= 𝛾1
1

𝑅𝐿𝑇. (D.49)

These edge tensors and corner tensors can be obtained using the CTMRG algorithm [248].
The correlation length ξi = −1/ log

(
t̂i/t̂0

)
can be calculated from the largest eigenvalue t̂0

and the (i+ 1)-th largest eigenvalue t̂i of the transfer operator T̂ shown in Eq. (D.49).
We scan the whole phase diagram by calculating the correlation length ξ1 using the CTM

environment with bond dimension χ = 20. The results shown in Fig. D.2a clearly indicate
the phase boundaries. We notice that the position of the tricritical point obtained from
the correlation length is not very close to the exact result (g, η) = (0, 21/4) ≈ (0, 1.1892).
This is reasonable because it is notoriously hard to numerically determine the KT phase
transition point. The reason is that there is a logarithmic correction to the position of the
KT phase transition point due to the finite bond dimension χ [278]:

ηc(χ) = ηc + a log[ξ−2
1 (χ)], (D.50)

where ξ1(χ) is the correlation length from a finite bond dimension χ, ηc(χ) is the location of
the phase transition from a finite χ, and a is a constant. We can calculate the correlation
length ξi(χ) along g = 0 for various large bond dimensions χ using the reduced tensor
shown in Fig. D.1. As shown in Fig. D.2b, no signature of the phase transition can be
found in ξ1(χ) and we can not determine ηc(χ). However, we find that ξ2(χ) exhibits peaks,
which move towards the exact critical point with increasing χ (see Fig. D.2c), indicating
that it could be used to determine ηc(χ). An alternative way to determine ηc(χ) is to
use the entanglement entropy S from boundary MPS or corner tensors of the CTMRG
environment [278, 279]. As shown in Fig. D.2d, the locations of the peaks in ξ2 and S
coincide, the differences are smaller than 0.0005. Using Eq. (D.50), the position of the
tricritical point can be extrapolated, and the result is shown in Fig. D.1e, indicating that
a larger bond dimension is needed to get a more accurate result.

D.7. Calculation of membrane order parameters using tensor
networks

In this Appendix, we show how to simplify the calculation of the MOP shown in Eq. (7.20)
using tensor networks. We define a modified double tensor that sandwiches the symmetry
operator X⊗2

v :

𝑋𝑣
⊗2

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

= = . (D.51)

Since there is no canonical form, a given 2D TNS is usually unnormalized, and the MOP
has to be expressed as a ratio of two tensor networks. The tensor network in the numerator
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(a)

0

5

10

15

20

(b) (c)

(d) (e)

Figure D.2.: (a) The correlation length ξ1 obtained from T̂ shown in Eq. (D.49). (b) The
correlation length ξ1 obtained from T̂ along g = 0. (c) The correlation length
ξ2 obtained from T̂ along g = 0. (d) The entanglement entropy S obtained
from corner matrices. (e) Extrapolating the position of the tricritical point.
ηc(χ) is obtained from the peaks in (c).

of the ratio is

… …

…
…

… …

…
…

Numerator: Denominator:

𝕋 𝕋 ෩𝕋 ෩𝕋𝑃± 𝑃±

, (D.52)
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and the tensor network in the denominator of the ratio represents the norm of the decorated
TNS:

… …

…
…

… …

…
…

Numerator: Denominator:

. (D.53)

The entries of the tensors generating the vertical matrix product operator (MPO) are

𝑈𝑛
[2]

𝐷𝑛
[2]

1

1

= 𝕝

2

2

= 1,

𝑈𝑛
[2]

𝐷𝑛
[2]

1

1

= 𝕝

2

2

= Z̃,

and the matrices inserted along the horizontal lines are

𝑈𝑛
[2]

𝐷𝑛
[2]

1

1
= 𝕝

2

2

𝑈𝑘
𝜌

𝐷𝑘
𝜌

=

{
1, if ααα = 111 or eee,
Z̃, if ααα =mmm or fff,

,

𝑈𝑛
[2]

𝐷𝑛
[2]

1

1
= 𝕝

2

2

𝑈𝑘
𝜌

𝐷𝑘
𝜌

=

{
1/2, if ααα = 111 or mmm,
Z/2, if ααα = eee or fff.

The vertical MPO and horizontal matrices are used to generate MES in the bra and ket
layers. Explicitly, a vertical MPO is a projector

P± =
1

2
(1⊗N ± Z̃⊗N ), P 2

± = P±, (D.54)

where P+ (P−) corresponds to the red dot being 1/2 (Z̃/2), respectively, and N is the
circumference of the cylinder.

Then we can contract the tensor networks for the numerator and denominator. We
define the left fixed point σL and the right fixed points σR of the transfer operators T (see
Eq. (D.52)), as well as the left fixed point σ̃L and the right fixed points σ̃R of the transfer
operator T̃ (also see Eq. (D.52)). These fixed points can be approximated by the MPS

𝐿

𝐿

𝐿

𝐿

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

𝐿

𝐿

𝐿

𝐿

… … … …

… … … …

Left fixed 
point of 𝕋

Right fixed 
point of 𝕋

Left fixed 
point of 𝕋𝑋

Right fixed 
point of 𝕋𝑋

𝜎𝐿 𝜎𝑅 𝜎𝐿 𝜎𝑅

, (D.55)
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where the tensor L and R come from the edge tensors of the CTM environment shown in
Eq. (D.49), the tensors represented by the green dots are Ũ = 1 ⊕ U and U is defined in
Eq. D.43. The fixed points σ̃L and σ̃R of T̃ are derived from the fixed points σL and σR
of T using Eq. (D.45). The matrices represented by blue boxes in Eq. (D.55) come from
the two horizontal Z̃ strings in Eq. (D.52). However, due to the Z2 Gauss law on every
vertex tensor, the Z̃ strings in the bra and ket layers cancel each other, and the matrices
represented by the blue boxes become the identity matrix.

With the above fixed points, we can contract the tensor networks of the numerator and
denominator in Eqs. (D.52) and (D.53) from the left and right:

𝐿 𝑅

෩𝑈𝑛

෩𝐷𝑛
𝑈𝑛

𝐷𝑛

𝐿 𝑅

𝑈𝑛

𝐷𝑛

෩𝑈𝑛

෩𝐷𝑛

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅
…

…

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

and . (D.56)

The above tensor networks can be further simplified using the relation P±σL/R = σL/RP±:

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

and

෨𝑇 𝑇

. (D.57)

The channel operators T̃ and T can be defined from the above tensor networks, and it is
easy to find their fixed points:

⟨Ũn|T̃ = t̃⟨Ũn|, T̃ |D̃n⟩ = t̃|D̃n⟩;
⟨Un|T = t⟨Un|, T |Dn⟩ = t|Dn⟩. (D.58)

Here t, t̃ ∈ R are the dominant eigenvalues of the channel operators T and T̃ respectively,
and we specify the degenerate channel fixed points with a subscript n. Notice that the
channel fixed points have to be biorthonormalized: ⟨Un|Dm⟩ = δnm. Finally, by contracting
the tensor networks using the channel fixed points from above and below, the MOP can
be expressed as

Oααα = lim
N−→∞

[(
t̃

t

)N
F̃ααα
Fααα

]1/N
=

{
0, if F̃ααα/Fααα = 0

tv/t, if F̃ααα/Fααα ̸= 0,
(D.59)
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where

F̃ααα =
∑
n

𝐿 𝑅

෩𝑈𝑛

෩𝐷𝑛

𝑈𝑛

𝐷𝑛

𝐿 𝑅

𝑈𝑛

𝐷𝑛

෩𝑈𝑛

෩𝐷𝑛

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

and

𝑇𝑉 𝑇

, Fααα =
∑
n

𝐿 𝑅

෩𝑈𝑛

෩𝐷𝑛

𝑈𝑛

𝐷𝑛

𝐿 𝑅

𝑈𝑛

𝐷𝑛

෩𝑈𝑛

෩𝐷𝑛

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

and

𝑇𝑉 𝑇

. (D.60)

In the trivial phase, we find that Feee and Ffff are zero, which is consistent with the fact that
eee and fff are confined and the MES is no longer well-defined: ⟨Ψeee|Ψeee⟩ = ⟨Ψfff |Ψfff ⟩ = 0.

D.8. Degeneracy of entanglement spectrum and calculation
of TEE using tensor networks

The key object for investigating entanglement properties of a quantum many-body wave-
function is the reduced density operator ρ from bipartition. From Ref. [280], it is known
that the spectrum of a reduced density operator ρ of a TNS is identical to the spectrum of
σ = σTLσR, where σL and σR are the fixed points of the transfer operator T of the TNS. The
entanglement spectrum can be obtained by applying minus the logarithm to eigenvalues
of σ. Moreover, considering the topological sectors, we have

σ111 = σmmm = P+σ, σeee = σfff = P−σ, (D.61)

where P± is defined in Eq. (D.54). In the SET-TC phase, applying the ZT2 symmetry on
the TNS reveals the symmetry transformations on σααα:

Ũ⊗N σ̄ααα

(
Ũ−1

)⊗N
= σααα, Z̃⊗NσαααZ̃

⊗N = σααα. (D.62)

Since Z̃⊗NP± = ±P±, we have

Ũ⊗N ˜̄U⊗N =

{
1, ααα = 111,mmm

−1, ααα = eee,fff
. (D.63)

Therefore, we can apply Kramers’ theorem to σeee and σfff , and derive that the entanglement
spectra of the eee and fff sectors are even-fold degenerate in the SET-TC phase.

In the following, we show a method of directly calculating the TEE in the limit N → ∞,
which is similar to the MOP calculation. Since the transfer operator T is non-Hermitian,
we calculate the second Renyi entropy using tensor networks. From Eq. (7.19), the second
Renyi entropy is

S
[2]
ααα = 2 logTr(σααα)− log Tr

(
σ2ααα
)
, (D.64)

where there is an extra term 2 log Tr(σααα) since usually σααα is not normalized in tensor-
network calculations. Tr

(
σ2ααα
)

can be expressed in terms of a tensor network:

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

𝐿

𝐿

𝐿

𝐿

𝑅

𝑅

𝑅

𝑅

…
…

…
…

T [2] 𝑇𝜌

. (D.65)
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The tensor network of Tr(σααα) is the right hand side of Eq. (D.57). Defining another channel
operator T [2], as shown in Eq. (D.65), its fixed points U [2]

n , D[2]
n can be found

⟨U [2]
n |T [2] = t[2]⟨U [2]

n |, T [2]|D[2]
n ⟩ = t[2]|D[2]

n ⟩, (D.66)

where the subscript n specifies the degenerate fixed points and we impose the biorthonor-
mality condition ⟨U [2]

k |D[2]
m ⟩ = δkm. We can contract the tensor networks of Tr

(
σ2ααα
)

and
Tr(σααα) using their channel fixed points

Tr
(
σ2ααα
)
= lim

N→+∞
tN[2]F

[2]
ααα , Tr(σααα) = lim

N→+∞
tNFααα, (D.67)

where

F
[2]
ααα =

∑
n

𝑈𝑛
[2]

𝐷𝑛
[2]

1

1
= 𝕝

2

2

𝑈𝑘
𝜌

𝐷𝑘
𝜌

(D.68)

and Fααα is defined in Eq. (D.60). Substituting these relations into Eq (D.64), we obtain the
second Renyi entanglement entropy in the limit N → ∞

S
[2]
ααα = lim

N→∞
N log

t2

t[2]
− log

F
[2]
ααα

F 2
ααα

, (D.69)

from which we can identify the TEE γ = logF
[2]
ααα /F 2

ααα.
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E. Appendix: Efficient quantum circuits
and quantum algorithms for simulating
topological quantum phase transitions
in 2D isometric tensor networks

E.1. The plumbing construction in 1D MPS

The plumbing method can be applied to the 1D system and we recover some of the familiar
examples of quantum phase transitions in 1D matrix-product states (MPS) [242]. MPS
are an ansatz class where the coefficients of a full 1D N -qubit state |ψ⟩ are decomposed
into products of matrices. Explicitly, for a system with open boundaries and translational
invariance in the bulk

|ψ⟩ =
∑
{σ}

Aσ1Bσ2Bσ3 . . . Bσn−1Cσn |σ1σ2σ3 . . . σn⟩ , (E.1)

where the σk ∈ {0, 1, · · · , d} indices are the physical indices and Bσ are χ × χ matrices
with χ being the bond dimension of the MPS. The boundary tensors Aσ and Cσ are 1×χ
and χ × 1 matrices, respectively. Analogous to the main text, we employ the plumbing
structure and impose the isometry condition. Namely, we require

Bσ
ij =

∑
j′

δσij′Wj′j , (E.2)

where the δ-tensor takes value 1 when all indices are the same and zero otherwise. Fur-
thermore ∑

σ,j′

(
Bσ
ij′
)∗
Bσ
jj′ = δij . (E.3)

This isometry condition is satisfied if and only if∑
j

|Wij |2 = 1, ∀i. (E.4)

Now suppose we take Cσi = δσi and Aσ is some boundary condition that can be chosen at
will. The MPS in Eq. (E.1) is essentially a canonical form of the MPS, which is equivalent
to a sequential quantum circuit [220].

As an example, consider a W -matrix path with d = χ = 2, for g ∈ [−1, 1]

W (g) =


|0⟩ |1⟩
1√
1+|g|

sign(g)
√

|g|
1+|g| |0⟩√

|g|
1+|g|

1√
1+|g|

|1⟩

 . (E.5)

At g = 1, the wavefunction |ψ(g)⟩ is a simple product state |++ · · ·+⟩ in the bulk. At
g = −1, the state is a cluster state with ZiXi+1Zi+2 |ψ(−1)⟩ = −1 for all i in the bulk.
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At these two limits, the 1D system belongs to distinct 1D SPT phases protected by anti-
unitary ZT2 symmetry generated by (

∏
iXi)K, where K is the complex conjugation. It

can be verified that this is a symmetry for the state for all g.
A quantum phase transition happens at g = 0, where the wavefunction has a long-range

order and becomes the Greenberger–Horne–Zeilinger (GHZ) state |ψ(0)⟩ = (|00 · · · 0⟩ +
|11 · · · 1⟩)/

√
2 with the boundary tensor chosen as Aσi = δσi . In fact, the MPS along this

path is exactly the canonical form of the χ = 2 MPS considered in Ref. [242], with a parent
Hamiltonian

H(g) = gzxz
∑
i

Zi−1XiZi+1 − gzz
∑
i

ZiZi+1 − gx
∑
i

Xi, (E.6)

where gzxz = (1 − g)2, gx = (1 + g)2 and gzz = 2(1 − g2). This canonical form has been
utilized to construct an efficient quantum circuit for the physical realization of this phase
transition on a digital quantum computer [143].

E.2. Quantum-classical correspondence

In this section, we describe the connection between the plumbing construction and the
quantum-classical correspondence in tensor networks. We note that the squared norm of
the TNS wavefunction represented by the plumbed local tensor T σρijmn can be expressed
as the product of the transfer operators ⟨ψ|ψ⟩ = Tr

(
ML

)
(assuming periodic boundary

condition on an L× L system). The transfer operator M = R1R2 · · ·RL is the product of
the weight matrix R along each row, where Rijmn = |Wijmn|2 and W is the W -matrix used
in the plumbing procedure. One way to contract the transfer operator can be visualized as

. (E.7)

Indeed, one can also rotate each weight matrixR by 45 degrees and contract. This is exactly
the same as contracting a 2D classical partition function. As an example, consider an
L×L classical spin system on a square lattice with nearest-neighbour two-body interaction
H =

∑
⟨i,j⟩ h(σi, σj). The partition function of the system Z = Tr

(
e−βH

)
= Tr

(
ML

)
can

be conveniently expressed using the transfer matrix M = R1R2 · · ·RL, where (Rk)ijmn =∑
σ exp [−β (h(i, σ) + h(j, σ) + h(σ,m) + h(σ, n))] is the local weight matrix that carries

the statistical weights associated with the coupling between the k-the spin along each row
and its neighbours. The 2D classical model can thus be mapped to a 2D quantum model
using the plumbing construction.

E.3. A parent Hamiltonian for the isoTNS path between SET
phases

In this section, we derive the parent Hamiltonian for the isoTNS path presented in the
main text. Let us consider the toric code described by the Hamiltonian defined on the
same square lattice as in the main text,

HTC =
∑
v

Av +
∑
p

Bp, (E.8)

where Av = (1 −
∏
i∈v Zi)/2 and Bp = (1 −

∏
i∈pXi)/2 are projectors made from prod-

ucts of Pauli operators around each vertex v and each plaquette p. The vertex and
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Figure E.1.: A local parent Hamiltonian for the isoTNS ground states in the main text.
The Hamiltonian is frustration-free and consists of projectors around each
plaquette (the shaded 12 qubits) and each vertex (shaded 4 qubits).

the plaquette operators commute with each other and the ground state |TC⟩ satisfies
Av |TC⟩ = Bp |TC⟩ = 0 for all v, p. For g > 0, the isoTNS path between the SET phases
can be obtained from the toric code ground state by an imaginary time evolution

|Ψ(g)⟩ = T (β1, β2) |TC⟩ =
∏
v

eβ1P
(1)
v +β2P

(2)
v |TC⟩ , (E.9)

where the projectors at each vertex v are defined as

P (1)
v =

1

8
(1 + Zv(A)Zv(B))(1 + Zv(C)Zv(D))(1 + Zv(A)Zv(D)), (E.10)

P (2)
v =

1

8
(1 + Zv(A)Zv(B))(1 + Zv(C)Zv(D))(1− Zv(A)Zv(D)). (E.11)

Note that here we use the labeling convention

. (E.12)

The parameters are related to g via

β1 =
1

2
(log 2− log(1 + |g|)) , (E.13)

β2 =
1

2
(log 2− log(1 + |g|)) + 1

2
log g. (E.14)

To derive a local parent Hamiltonian, we employ the method in Ref. [3]. Since (bpT bpT −1−
bp) |Ψ(g)⟩ = 0, where bp =

∏
i∈pXi. If follows that(
eΛa+Λc+Ob+Od − bp

)
|Ψ(g)⟩ = 0, (E.15)

where we use the following labeling convention for the vertices on each plaquette

. (E.16)

The operators at each vertex are defined as

Λv = −1

4
(β1 − β2)

(
1 + Zv(A)Zv(B)

) (
1 + Zv(C)Zv(D)

)
Zv(A)Zv(D),

Ov = −1

4

(
Zv(A)Zv(B) + Zv(C)Zv(D)

) [
(β1 + β2) + (β1 − β2)Zv(A)Zv(D)

]
. (E.17)
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Figure E.2.: Energy spectrum from the exact diagonalization of a system with 4 × 2 pla-
quettes (16 qubits) and periodic boundary condition. The plot shows the
low-lying eigenvalues of the Hamiltonian. At g = ±1, the models are fixed
points of the topological phases with an energy gap ∆ = 2.

We can use this observation to obtain a suitable local term in the parent Hamiltonian. It is
possible to choose a path slightly deviated from, but continuously connected to Eq. (E.13)
such that the resulting wavefunction Eq. (E.9) is analytic in g for g ∈ (−1, 1). The
definition of the parameters β1, β2 can then be extended to g < 0 using an argument in
Ref. [3] based on analytic continuation. The path Eq. (E.13) is therefore also valid for
g ∈ [−1, 1], where we define log g = log |g| + iπ for g < 0. As a sanity check, it can be
verified that the imaginary time evolution at g = −1 is analytically continued to a finite-
depth local unitary symmetric under the global spin flip, and the wavefunction Eq. (E.9)
at g = −1 is the same as the SET isoTNS wavefunction discussed in the main text (up
to an overall phase factor). Therefore, all the analysis for g > 0 can be straightforwardly
extended to the case g < 0.

To proceed, note that(
eΛa+Λc+Ob+Od − bp

)2
=

2 cosh(Λa + Λc +Ob +Od)
(
eΛa+Λc+Ob+Od − bp

)
. (E.18)

We can therefore define a new plaquette projector as

Bp(g)Pp(v) =
sech(Λa + Λc +Ob +Od)

2

(
eΛa+Λc+Ob+Od − bp

)
Pp(v). (E.19)

where Pp(v) is the projector onto the closed loop configuration around each plaquette p,
i.e. Pp(v) =

∏
v∈p(1−Av). It is included to ensure that Bp(g)Pp(v) remains Hermitian and

therefore a projector for g ∈ [−1, 1]. The operator hyperbolic secant function is defined
as sech(O) ≡ 1/ cosh(O) within the subspace Pp(v) = 1, and sech(O) ≡ 0 in the subspace
Pp(v) = 0. A local frustration-free parent Hamiltonian is thus given by

H(g) =
∑
v

AV +
∑
p

Bp(g)Pp(v), (E.20)

with a ground-state energy of zero. The support of each term in H(g) is depicted in
Fig. E.1. When the system is defined on a torus (periodic boundary condition), H(g) is
gapped and the ground states are exactly four-fold degenerate for g ̸= 0. At g = 0, the
system is gapless. In addition, the ZT2 symmetry is satisfied, i.e. [H(g), (

∏
iXi)K] = 0

for g ∈ [−1, 1]. The low-lying spectrum of the Hamiltonian on a square lattice with
4×2 plaquettes (16 qubits) is shown in Fig. E.2. Note that the parent Hamiltonian for the
ground states is not unique, the one derived here is one of the possible parent Hamiltonians.
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