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Abstract. Aligning 2D ultrasound images with 3D CT scans of the liver
holds significant clinical value in enhancing diagnostic precision, surgi-
cal planning, and treatment delivery. Conventional approaches primar-
ily rely on optimization techniques, which often have a limited capture
range and are susceptible to initialization errors. To address these limi-
tations, we define the problem as ”probe pose regression” and leverage
deep learning for a more robust and efficient solution for liver US-CT reg-
istration without access to paired data. The proposed method is a three-
part framework that combines ultrasound rendering, generative model
and pose regression. In the first stage, we exploit a differentiable ultra-
sound rendering model designed to synthesize ultrasound images given
segmentation labels. We let the downstream task optimize the rendering
parameters, enhancing the performance of the overall method. In the sec-
ond stage, a generative model bridges the gap between real and rendered
ultrasound images, enabling application on real B-mode images. Finally,
we use a patient-specific pose regression network, trained self-supervised
with only synthetic images and their known poses. We use ultrasound,
and CT scans from a dual-modality human abdomen phantom to vali-
date the proposed method.

Our experimental results indicate that the proposed method can esti-
mate probe poses within an acceptable error margin, which can later
be fine-tuned using conventional methods. This capability confirms that
the proposed framework can serve as a reliable initialization step for
US-CT fusion and achieve fully automated US-CT fusion when coupled
with conventional methods. The code and the dataset are available at
https://github.com/mfazampour/SS Probe Pose Regression.
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DL-based pose regression

https://github.com/mfazampour/SS_Probe_Pose_Regression


2 M.F. Azampour et al.

1 Introduction

1.1 Problem definition

The fusion of information from multiple imaging modalities significantly en-
hances medical analysis, offering a comprehensive view of both anatomy and
pathology that individual modalities can’t provide. This multimodal fusion is
accomplished through image registration. Accurate registration of US and CT
of the liver is of high importance, especially in the context of liver interventions.
Liver disease affects millions of people worldwide and often requires surgical
or minimally invasive interventional procedures. During these interventions, ul-
trasound imaging is commonly employed for its real-time guidance capabilities
while pre-operative CT image provides a detailed and global view of the liver,
including its vasculature and the location of pathological lesions. Registering
these two imaging modalities can offer the best of both: real-time guidance from
US and comprehensive detail from CT. Developing registration techniques comes
with challenges, like the need for large paired training datasets, which are hard
to acquire and may raise privacy issues. This paper introduces a deep learning
method for ultrasound-CT registration that removes the need for paired data.
We train our pose regression network on synthetic data using a differentiable
ultrasound rendering model and generative models. We then apply our method
to real data, aiming to improve registration accuracy for US-CT registration.

Overview on registration methods Conventional medical image registration
methods, like those by Roche et al. [1] and Wein et al. [2], align images using
optimization based on similarity measures. While effective, they often have a
limited capture range and may not always adapt well to new data. The rise
of deep learning has transformed medical image registration. Techniques, such
as those proposed by Balakrishnan et al. [3] and Cao et al. [4], use neural net-
works to map input images to transformation fields. However, these often require
paired training data or differentiable similarity metrics, currently unfeasible for
ultrasound and CT images. 2D-3D registration methods include registering ultra-
sound sweeps using dense keypoint descriptors to address challenges in freehand
ultrasound sweeps [5], self-supervised 2D/3D registration frameworks combining
simulated training with unsupervised adaptation for X-ray and CT images [6,7],
and a technique to create 3D ultrasound reconstructions from 2D probes using
convolutional networks [8]. For ultrasound probe pose estimation, methods in-
volve estimating 2D probe poses from ultrasound sequences using CNNs and
RNNs [9], a hybrid transformer-based method for 3D ultrasound reconstruc-
tion [10], and a deep learning approach for registering ultrasound frames to
pre-operative volumes [11].

While these studies highlight the potential of deep learning, obtaining train-
ing data remains a challenge. While the method of Markova et al. [5] achieves
impressive results, it requires pre-registered paired data for training. The ap-
proach of Zhang et al. [7] presents a novel idea, focusing on a self-supervised
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method for X-ray and CT images. We extend this concept but for the case of US
and CT to devise a self-supervised method for ultrasound probe pose estimation.

1.2 Generative models for ultrasound imaging

Generative models offer versatile tools for tackling various challenges in ultra-
sound imaging. Liu et al. [12] employed generative models to mitigate speckle
noise in ultrasound images, thereby enhancing the potential for accurate diag-
nosis. Alsinan et al. [13] utilized GANs to synthesize realistic ultrasound im-
ages along with their corresponding segmentations, addressing the issues of data
scarcity. Peng et al. [14] demonstrated that GANs can offer computationally effi-
cient and visually accurate ultrasound simulations, which hold particular utility
in medical training scenarios.

Velikova et al. [15] addressed data scarcity by using GANs to close the gap
between simulated and real ultrasound images, particularly for ultrasound seg-
mentation. Their method utilizes CT-generated ultrasound simulations, training
a segmentation network with CT labels. They also transformed real ultrasound
images into simulations using a generative model. In a subsequent study [16],
they added a differentiable ultrasound rendering module, enabling end-to-end
training and task-specific optimization of simulations. Their findings show how
various segmentation targets affect the simulation module’s behavior. Our re-
search extends their approach, applying it from segmentation to ultrasound-to-
CT registration.

2 Method

Our approach to achieving self-supervised probe pose estimation consists of three
modules. The first module is a differentiable ultrasound rendering module, gener-
ating ultrasound with ground truth poses from CT segmentation maps. The sec-
ond module bridges the domain gap between real and simulated images through
the use of generative models. The third module, a pose regression network, takes
the output from the second module and estimates the probe pose. We train the
overall framework end-to-end.

2.1 Differentiable ultrasound rendering module

Velikova et al [16] modified the equations of ray tracing and ultrasound echo gen-
eration for differentiability while still representing US B-mode image generation
physics. The renderer takes a 2D tissue label map with five ultrasound-specific
parameters for each tissue label: attenuation coefficient α, acoustic impedance
Z, and speckle distribution parameters µ0, µ1, σ0. These parameters are used to
define attenuation, reflection, and scatter maps. Modeling ultrasound waves as
rays starting from the transducer, we simulate ray casting at depth d using:

Ei(d) = Ri(d) +Bi(d) (1)
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Fig. 1. Overall Framework: The sliced label map undergoes differentiable rendering
and the generator to create the identity image, which is then used for pose prediction.
Losses Lrot, Ltrans, and LGC are computed based on the predicted pose. Real US images
go through the generator, and the resulting output is combined with the identity image
to train the CUT network.

Where Ri(d) represents reflected energy from tissue interfaces, and Bi(d) is the
backscattered energy. The reflection is described by:

Ri(d) = |Ii(d) ∗ Zi(d)| ∗ P (d)⊗G(d) (2)

Where Ii(d) = e−αd models the attenuation, Z is the reflection coefficient, P (d)
is the Point Spread Function, and G(d) identifies boundaries.

The backscattered energy term is calculated as:

Bi(d) = Ii(d) ∗ P (d)⊗ T̃ (x, y) (3)

With the texture T̃ (x, y) constructed from random Gaussian distributions, con-
trolled by parameters µ0, µ1, and σ0. Differentiability is ensured by approximat-
ing the conditional operation using the sigmoid function.

At the start of training, we initialize default values specific to each tissue
type. These values are dynamically updated throughout the training process,
guided by the downstream task, to optimize ultrasound simulations. We refer
to the domain formed by this updated simulation module as the intermediate
representation (IR).

2.2 Bridging the gap using generative models

The second module used is a generative model that tries to translate the real
US images to the IR domain. The translation aims to modify only the image
style while retaining the organ shapes. Notably, we train this generative model
on unpaired simulated and real US images—meaning there are no paired images
from the same patient. Although many computer vision methods like DRIT++
[17] and MUNIT [18] have addressed this issue, they presume a bidirectional
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relationship between the two domains. We find this unfeasible for translating
simulated ultrasound images to real images and therefore choose a method called
Contrastive Unpaired Translation (CUT) [19], which does not rely on such a
bidirectional relationship. Training the CUT model is guided by two principal
losses:

– Adversarial Loss: This loss ensures that the generator’s output mirrors
the style of images present in the IR domain.

– Contrastive Loss: To guarantee that the anatomy’s structure is retained in
the translated image, a contrastive loss is imposed. By maximizing mutual
information across matching image patches from the original and output
images, the structure is preserved. This is facilitated using the Patch Sampler
from CUT to extract relevant image patches, resulting in the calculation of
the contrastive NCE (LNCE) loss [19].

The cumulative loss for the generative model is articulated as:

LCUT (X,Y ) = LGAN (X,Y ) + LNCE(X,G(X)) + LNCE(Y,G(Y )) (4)

Here, LNCE is computed across two sets of pairs: one pairing a source domain
sample (x) with its generated counterpart G(x), and the other pairing a tar-
get domain sample (y) with G(y), referred to as the identity image. The latter
loss acts as an identity preservation measure, safeguarding the generator from
introducing unwarranted alterations to the image.

2.3 Pose Regression Network

the pose regression network employs a dual-component structure: a Convolu-
tional Neural Network (CNN) backbone followed by a Multi-Layer Perceptron
(MLP) that serves as the head, responsible for predicting the pose. For the CNN
backbone, we utilize EfficientNet [20]. the MLP head outputs 7 values, out of
which 3 represents the translation and 4 represents the rotation in the form of
a quaternion. While newer architectures utilizing attention mechanisms could
potentially enhance the overall framework’s accuracy, the focus of this work is
to demonstrate the efficacy of the self-supervised method and the IR space.
Therefore, optimizing the regression architecture is not a primary concern.

It’s important to note that the pose estimation network is patient-specific
and trained solely on simulated data from a single patient. This specialization
enhances accuracy by mitigating inter-patient variability. In the proposed model,
the CNN backbone, responsible for generating robust latent features, is common
across all patients. However, each patient has a distinct MLP head, which is
trained separately. For inference on a new patient, the MLP head’s initial setup
derives from an average of weights obtained during the training phase. Subse-
quently, this initialized structure undergoes fine-tuning, leveraging ultrasound
simulations generated from the new patient’s CT scan.
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2.4 Overall Pipeline

We depict the overall framework in Fig. 1. To train the framework, we initiate the
process by gathering a collection of labeled CT images from publicly available
datasets. This is complemented by a set of liver ultrasound images, sourced from
multiple patients and volunteers. We slice these CT images in various random
orientations, ensuring that the part of the liver is visible in each slice. Conse-
quently, each labeled slice having a known pose derived from the original CT
pool. For every distinct CT image in our dataset, we instantiate a corresponding
pose regression network. During the training process, each slice goes through
the ultrasound rendering module, producing an IR image. Subsequently, this
simulated image is utilized to infer the pose using the pose regression network
associated with the original CT image from which the slice was derived.

Another step in the pipeline is the passage of the IR image through the
generator network of the CUT model prior to its use in pose regression. This step
assists in reducing the domain discrepancy between the simulated IR space image
and the generator’s output for real US images, resulting in a pose regression
network more adept at handling real images.

The pose regression loss is sum of the Euclidean distance between the trans-
lational parts of the predicted pose and the ground truth pose and the geodesic
distance applied to quaternions representing the rotational segments:

Ltrans = ||tpred − tgt||2 (5)

where tpred is the predicted translation and tgt is the ground truth translation.

Lrot = dgeo(qpred, qgt) (6)

= cos−1
(
2⟨qpred, qgt⟩2 − 1

)
where dgeo is the geodesic distance function, qpred is the predicted quaternion,
and qgt is the ground truth quaternion.

Additionally, based on the inferred pose, we extract a slice from the original
CT volume. We then compute the gradient correlation loss between this obtained
slice and the input of the network. Essentially, if the predicted pose is correct,
the gradient correlation between the resultant slice and the ultrasound rendering
module’s output should be high.

LGC = 1− ρ(∇Ipred,∇Igt) (7)

where ρ is the correlation function, ∇Ipred is the gradient of the slice based on
the predicted pose, and ∇Igt is the gradient of the slice based on the ground
truth pose.

Ltotal = λtransLtrans + λrotLrot + λGCLGC (8)

where λtrans, λrot, and λGC are hyperparameters that determine the weights
of each loss component in the total loss. In our experiments, we balance the
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translation and rotation losses by setting λtrans = 0.1 and λrot = 1, due to their
different ranges. This ensures that both losses contribute effectively to the final
loss value. Additionally, we set λGC = 0.1 to give higher importance to the pose
regression losses.

3 Experiment

Dataset Since patient data for testing the algorithm is not available, we opted
for a CT-ultrasound abdominal phantom5 as an appropriate substitute. For
training, we depend on unpaired simulated and real ultrasound images. In the
subsequent sections, we describe the acquisition process for each data type.

Synthetic data The simulation process commences with the segmentation of
an abdominal CT scan. To accomplish this, we employ TotalSegmentator [21],
a tool capable of segmenting all the requisite organs necessary for simulating
liver ultrasound images. Afterwards, we define probe trajectories and directions
to slice the volume along these trajectories. The result of slicing combined with
the pose results in our synthetic dataset.

Real data For the real data component of our dataset, we collected 2D ul-
trasound images from 15 volunteers, ranging in age from 22 to 34. We used
ACUSON Juniper6 with a 5C1 convex probe for the data collection. From this
data collection, we manually filtered out slices where either no part of the liver
was visible or where the image quality was significantly degraded due to breath-
ing. After this filtering process, we obtained a total of 10,000 ultrasound frames
from all volunteers combined.

Phantom data We positioned the probe on the three standard sites for liver
ultrasound scans: subcostal, intercostal, and epigastric regions. The probe was
attached to a KUKA LBR iiwa robot7, which provided ground truth tracking
data. To align the US images with the CT scans, we registered them manually.
This allowed us to obtain the ground truth pose of the frames in the CT image.
We acquired the CT of the phantom and conducted the segmentation ourselves,
which allows to train the pose regression network specific to this phantom. The
CT of the phantom and a registered ultrasound slice is depicted in Fig. 2.

Baseline As baseline, we compare the proposed method to a conventional 2D-
3D registration method that relies on LC2 [2] as the similarity metric. Different
to the deep learning models, convectional methods have a limited region of con-
vergence. The region is expanded if a sweep of slices is used. We report the

5 https://www.kyotokagaku.com/en/products data/us-22/
6 Siemens Healthineers, Erlangen, Germany
7 KUKA GmbH, Augsburg, Germany
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(a) (b) (c)

Fig. 2. Dual modality abdomen phantom. (a) is the 3D reconstruction of the CT of
the phantom, (b) a CT slice where organs and part of the rib cage are visible and (c)
shows the overlay of the registered US slice in red over the CT slice.

a ) b ) c ) d )

Fig. 3. Output of Rendering Module: (a) Input slice; (b) Rendered image with default
values; (c) Rendered image with optimized values, showing enhanced contrast and
distinct adjacent organs; (d) Identity image produced by the generator.

results for both experiments, single slice and sweep registration. For registering
a single slice the range of misalignment is set to less than 5 mm or 5° of rotation
around an axis. For the sweep case, it is set to 15 mm or 15°.

Ablation study We run experiments to measure the effect of different parts of
the algorithm, namely fixing the IR space by freezing the weights of the rendering
module and the effect of having gradient correlation as part of the loss.

4 Results and discussion

In table 1, we present the quantitative results. While the conventional method
yields satisfactory outcomes within a specified capture range, it fails to converge
to the correct transformation when operating outside this range, especially in
single-slice scenarios. In contrast, the proposed method has a broader capture
range, as it estimates the probe pose solely based on the input image without re-
quiring any prior information. Although the method’s final misalignment values
are higher compared to the conventional approach, its utility as an initializa-
tion step for precise registration is evident. After initialization, the slices can be
grouped and converted into a sweep and then registered to the CT using the
conventional methods.
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Table 1. Comparison of the result of pose regression. We compare the conventional
method in two modes of single slice and multi slice (US sweep) to the output of the
network. For the conventional method we only test it in the small capture range of the
method. The value noted after ± represents the standard deviation of that result.

Method Initial misalignment Multi slice Translation
error (mm)

Rotation error (°)

LC2
≤ 5 mm & ≤ 5° - 2.4 ± 1.4 1.6 ± 1.9

≤ 15 mm & ≤ 15° ✓ 5.3 ± 3.7 3.1 ± 2.0

Proposed - - 9.1 ± 4.4 8.2 ± 4.5
Proposed w/o
GC loss

- - 10.4 ± 5.0 12.7 ± 6.1

Proposed w/
fixed rendering

- - 11.2 ± 4.8 11.9 ± 6.4

Fig. 3 demonstrates the effects of optimized rendering parameters. Default
parameters render organs like kidneys and liver with similar intensities due to
shared ultrasound-specific parameters, making it challenging for pose regression
models to distinguish between different organs. Optimizing these parameters for
the pose regression task results in each organ being distinctly rendered, providing
clearer cues for better pose estimation. The final optimized image shows high
contrast between adjacent organs, such as the liver and spleen, and between
muscle and the surrounding fat layer in the abdominal area. This enhanced
contrast aids the pose regression network in more easily pinpointing the pose
of the slices. The increased contrast is particularly noticeable between the liver
and the spleen, as well as between the muscle and the fat layer surrounding the
abdominal area.

5 Conclusion

In this work, we tackled the challenging task of US-CT registration of liver. Tradi-
tional methods, while effective within a specific capture range, exhibit limitations
in convergence, especially when applied to single-slice scenarios. We introduced
a novel three-tiered framework, consisting of a differentiable ultrasound render-
ing model, a domain adaptation model, and a self-supervised, patient-specific
pose regression network. The differentiable rendering model permits the opti-
mization of ultrasound-specific parameters, thereby enhancing the framework’s
performance. The domain adaptation model bridges the gap between real and
simulated ultrasound images, while the pose regression network estimates the
probe’s position. Experimental validation using a dual modality human abdomen
phantom confirmed the method’s efficacy. We demonstrated that the proposed
method provides a reliable initialization step for subsequent fine-tuning using
conventional US-CT registration techniques.
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