
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Black-Box Optimization for Engineering
Systems with Score-Function Estimator

Mohammad Anas Khan

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Black-Box Optimization for Engineering Systems with
Score-Function Estimator

Author: Mohammad Anas Khan
1st examiner: Prof. Dr. Hans-Joachim Bungartz

2nd examiner: Prof. Dr. Faidon-Stelios Koutsourelakis
1st Supervisor : M.Sc. Kislaya Ravi

2nd Supervisor: M.Sc. Atul Agrawal
Submission Date: July 19th,2024

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

July 19th, 2024 Mohammad Anas Khan

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my thesis supervisors,
M.Sc. Kislaya Ravi and M.Sc. Atul Agrawal, for their unwavering support, invaluable
guidance, and constant encouragement throughout the duration of my research. Their

profound knowledge and expertise have been instrumental in the successful completion
of this thesis. Their patience, insight, and commitment to excellence have inspired me to

strive for the best in my work.
I am also immensely grateful to my parents, whose unconditional love, patience, and

understanding have been my greatest source of strength and motivation. Without their
sacrifices and encouragement, this achievement would not have been possible.

Thank you all for your invaluable contributions.

vii

viii

Abstract

Optimization of engineering systems is essential for efficient operation and enhanced
lifespan of these systems. Owing to their complex designs, multiple design parameters,
and their operation under stochastic conditions, optimization of such systems becomes
difficult. The absence of a well-defined mathematical relation between the input and the
output of such systems prevents the conventional gradient based methods from providing
meaningful solutions. To optimize such problems, we use black-box optimization tech-
niques. Multiple black-box optimization techniques have been developed, which have
been shown to perform well for low and medium dimensional problems. ScoutND, a
black-box optimization algorithm is shown to perform well for high dimensional prob-
lems as well as stochastic problems. The present work extends ScoutND to perform shape
optimization of the PitzDaily problem, a test case problem in Computational Fluid Dy-
namics. We propose methods to perform Constrained and Unconstrained optimization of
the PitzDaily problem. We perform optimization under stochastic and non-stochastic con-
ditions. We compare the results of our shape optimization problem from ScoutND with
other optimizers such as Nelder-Mead, SLSQP, COBYLA, and L-BFGS-B. We show that
ScoutND successfully optimizes the problem for stochastic and non-stochastic conditions
and outperforms all other optimizers in the case of stochastic conditions.

ix

Contents

 Acknowledgements vii

 Abstract ix

 I. Introduction and Background Theory 1

 1. Introduction 3

 2. Literature Review 5

 II. Method and Theory 9

 3. ScoutND 11
 3.1. Monte Carlo Method . 13
 3.2. Gradient Estimation . 13
 3.3. Adam Optimizer . 15
 3.4. Natural Gradients and Fisher Information Matrix 16
 3.5. Problem Definition . 16
 3.6. Variance Reduction . 18
 3.7. ScoutND Algorithm . 18

 4. PitzDaily 21
 4.1. CFD Simulation of PitzDaily . 22

 4.1.1. SIMPLE Algorithm . 23
 4.1.2. Turbulence Model . 26
 4.1.3. Geomtric Algebraic Multi-Grid (GAMG) 28

 4.2. OpenFOAM Simulation . 30
 4.3. Catmull-Clark Subdivision Curves . 32
 4.4. Objective Function . 35
 4.5. Constrained Optimization . 35
 4.6. Normalization of Input . 36
 4.7. Unconstrained Optimization . 37
 4.8. Normalization of Output . 38
 4.9. Stochasticity in Fluid flows . 38

xi

Contents

 4.10. Objective Function Evaluation . 38

 III. Results and Conclusion 41

 5. Results 43
 5.1. Non-stochastic constrained optimization using ScoutND 43
 5.2. Stochastic constrained optimization using ScoutND 51
 5.3. Non-stochastic unconstrained optimization using ScoutND 58
 5.4. Stochastic unconstrained optimization using ScoutND 63
 5.5. Comparative Analysis . 67

 6. Conclusion 73

 Bibliography 81

xii

Part I.

Introduction and Literature Review

1

1. Introduction

The use of engineering systems can be traced back to ancient civilizations where human be-
ings developed tools to accomplish difficult tasks with ease. Over the years, the designing
process has seen multiple phases, from designing new systems to improving the existing
ones. The last century has seen rapid growth in the development and design of engineer-
ing systems. Modern engineering systems are often accompanied by complex design and
multiple design parameters. Optimization of these design parameters becomes essential
for efficient operation of the system. Therefore, optimization has become a topic of keen
interest among engineers. Multiple optimization techniques have been developed to opti-
mize mathematical problems, which have been extended to engineering systems as well.
Structures, automotive systems, electronic circuits, transportation networks, power grids,
and fluid systems are typical cases of engineering systems where optimization of design
parameters is essential. With advent of computational techniques, engineering systems
today can be digitally designed and simulated before they are prototyped. This makes the
optimization process much more economical. There has been extensive research in devel-
oping softwares to simulate engineering systems. The present work deals with optimizing
a fluid flow problem, the PitzDaily problem. Fluid flows are governed by Navier-Stokes
equations, which are non-linear, coupled, partial differential equations [1]. The Navier-
Stokes equation cannot be solved analytically. Computational Fluid Dynamics(CFD) is a
numerical approach to simulating fluid flow and heat transfer problems in engineering
systems. Multiple CFD simulation methods have been proposed which solve the Navier-
Stokes equation. The solution of CFD problems is an iterative process that consumes sig-
nificant time and computational power. Complex problems may run for hours or even a
few days before providing some meaningful results. This becomes a major bottleneck in
the optimization of such systems as optimization is also an iterative process that requires
multiple evaluations of the objective function. Another issue with CFD problems is the
absence of gradient information. Given these constraints, we make use of Black-Box opti-
mization or Derivative-Free optimization [2] techniques to optimize CFD problems. Some
CFD problems have been extensively modeled, tested, and validated over the years. The
PitzDaily problem is a popular test case problem in Computational Fluid Dynamics. The
aim of the current work is to minimize the objective function defined for our PitzDaily
problem using ScoutND, a black-box optimization algorithm.

3

2. Literature Review

Optimization procedures can be traced back to the works of early mathematicians who
sought to optimize functions. Its formal application began to emerge in the 20th century
for industrial problems. Multiple optimization techniques have been developed in the
past century. Optimization problems can be classified into different categories, some of
which are, Constrained and Unconstrained optimization problems, Gradient based and
Derivative-free optimization problems, Linear and non-Linear problems, Deterministic
and Stochastic Optimization problems. Many optimization problems rely on gradients
to calculate the minimum. An analogy for these methods explained by Vanderplaats [3]
is a boy standing between two fences on a hillside, wearing a blindfold. To reach the top,
the boy moves in the direction of maximum steepness of the terrain using fixed steps. At
the end, the boy ends up on a higher terrain, where the two fences intersect, and cannot
move further. His final position represents the local maxima, the hilltop being the global
maxima. A problem with these methods is that the gradient cannot always be analytically
calculated. Therefore, we require numerical methods to estimate the gradient. Many algo-
rithms have been developed to deal with such problems, some of which will be discussed
here.

The most basic of the gradient based optimization methods is the Gradient Descent
method. Gradient Descent iteratively calculates the gradient and updates the value based
on a defined step size by moving in the direction of steepest descent. It is easy to imple-
ment but has slow convergence and may converge locally. Multiple variants of Gradient-
Descent have been proposed to counter these issues. Stochastic Gradient Descent (SGD)
[4] updates the gradient using a single sample from the dataset. It has fast convergence
when dealing with large datasets but is less accurate due to noise in gradient estimation.
A trade-off between SGD and Gradient Descent is the Mini-batch Gradient Descent which
works by using a small batch of samples to calculate the gradient [5]. It has faster conver-
gence than Gradient Descent and better accuracy than SGD. Momentum techniques [6 , 7]
were introduced to accelerate the convergence of Gradient Descent methods. Momentum
techniques keep a history of previously calculated gradients and assign a weight to the
current and previously calculated gradients to calculate the momentum, which is used to
accelerate convergence. Some common optimizers based on momentum techniques are
Adagrad [8] and Adam [9]. Newton’s method is a popular iterative optimization method
[10] which uses the Hessian matrix to estimate the search direction and the updated value.
Newton’s method has fast, quadratic convergence. An essential condition of Newton’s
method is that the Hessian matrix should be positive definite. For high-dimensional prob-
lems, computing the inverse of the Hessian matrix can be expensive. Quasi-Newton’s

5

2. Literature Review

methods address the limitations of Newton’s methods. In Quasi-Newton’s methods, the
Hessian matrix is calculated at each iteration using information from previously calculated
gradient. There are multiple variants of Quasi-Newton’s methods, which mainly differ in
the method used to update the Hessian matrix. Broyden-Fletcher-Goldfarb-Shanno(BFGS)
[11 , 12 , 13 , 14] is a popular Quasi-Newton method, named after its founders, which ap-
proximates the inverse of the Hessian matrix. Although BFGS is more computationally
efficient than Newton’s method, it still needs to store the matrix, which is memory in-
tensive. An improvement to the BFGS method is the Limited memory-BFGS (L-BFGS)
method [15]. Instead of storing the approximation of the inverse of the Hessian matrix,
L-BFGS stores vectors to obtain the inverse of the Hessian matrix. These methods are
generally employed for non-constrained, non-bounded problems. Limited-memory BFGS
with Bounds (L-BFGS-B) is an extension to L-BFGS which is capable of implementing
bounds to the optimization problem [16]. The Sequential Quadratic Programming (SQP)
[17] method is a well-known technique used to solve constrained optimization problems.
SQP method works by approximating the objective function into a quadratic problem and
the constraints into a linear problem, which is solved iteratively by forming a Lagrangian,
to obtain the updated value. Dieter and Kraft [18] introduced Sequential Least-Square Se-
quential Quadratic Programming (SLSQP), an extension of the SQP method which solves
a Least-Squares problem instead of a Lagrangian. SQP and SLSQP can handle equality as
well as inequality constraints.

In practical scenarios, the objective function is often not differentiable, or the gradient
information is unavailable. Derivative-free optimization techniques are algorithms that
do not rely on gradients for optimization. Genetic Algorithm (GA) [19] is a derivative-free
optimization technique based on the natural selection principle. GA works by initializing
a set of population, which is used to calculate the objective function. Crossover and Mu-
tation operators are applied across generations to select the best individual. GA requires
multiple evaluations of the objective function in a single generation, which makes it com-
putationally expensive for real-life problems. Bayesian Optimization [20] is a derivative-
free optimization method useful in scenarios where the objective function is expensive to
calculate. It works by constructing a surrogate model to approximate the objective func-
tion. An acquisition function is used to obtain the next evaluation points for the optimiza-
tion process. Dantzig proposed the simplex algorithm [21] to solve linear programming
problems. Simplex algorithm works by evaluating the objective function on the vertices
of a feasible region until an optimal value is obtained. This feasible region is bounded by
constraints. Simplex can handle equality and inequality constraints. Simplex, although,
was originally designed for linear problems, there are simplex based methods to optimize
non-linear functions. Constraint Optimization By Linear Approximation (COBYLA) [22] is
a derivative-free optimization technique used to solve Non-Linear Constrained problems.
It is a trust-region based simplex method. It approximates the objective function and con-
straints into linear problems. COBYLA is not useful in cases of highly non-linear problems.
The Nelder-Mead method [23] is a simplex based derivative-free optimization technique
to optimize non-linear functions. A disadvantage of Nelder-Mead is that it may converge

6

to a local optimum and does not support constraints. Optimization methods discussed
so far either require gradient information, converge locally, or do not perform well in the
case of high dimensions[24]. Moreover, engineering systems are often subject to stochas-
tic conditions. The algorithms discussed so far are not effective in optimizing problems
under stochastic conditions. We will be implementing ScoutND, a black box optimization
algorithm [25] for our optimization problem, which can address these issues.

7

Part II.

Method and Theory

9

3. ScoutND

Gradient based optimization methods cannot be used in the case of non-continuous func-
tions, where the gradient cannot be calculated, or in the case of black-box functions, where
the gradient is unavailable. The work of Staines and Barber [26] shows that it is possible
to define an upper bound to the function, which is smooth and can be made differentiable
under weak conditions. The basic idea behind Variational Optimization is based on the
bound

min
x∈C

f(x) ≤ Ep(x|θ)[f(x)], (3.1)

where x ∈ Rn is our input parameter, f : Rn → R is our objective function, Ep(x|θ) is the
expectation with respect to the distribution p(x|θ) defined over solution space C and θ is
the distribution parameter. This bound becomes tight, as the variance reduces. A bound
with a lower value of variance approximates the objective function closely but makes it
difficult to find the optimum, whereas a bound with a higher value of variance does not
approximate the function closely but its optimum is easier to find. Figure 3.1 shows a non-
differentiable function f(x) = |x| and the approximation to the function using different
variance values. From the figure, we observe that lower variance values approximate the
function more closely than higher variance values. For optimization problems, a solution
to this is to start with a higher variance value and reduce it iteratively.

11

3. ScoutND

Figure 3.1.: Figure shows f(x) = |x| and the approximation to the function using different
variance values. Lower variance values approximate the function closely as
compared to higher variance values.

We defined a bound to our function using Variational Optimization in equation 3.1 ,
which states that, for a set of sampled values, the expectation of function evaluations
at these samples is greater than or equal to the minimum of these function evaluations.
This expectation acts as a bound to our function. Instead of optimizing the function with
respect to the input parameter, we optimize this bound with respect to the distribution
parameter. Stochastic Variational Optimization [27] aims to optimize this bound by es-
timating the gradient of this bound using score-function estimator. ScoutND (Stochastic
Constrained Optimization for N dimensions) [25] is a black-box optimization algorithm
based on Stochastic Variational Optimization.

In this chapter, we describe the working of the ScoutND Algorithm. We begin this chap-
ter by providing a general theory and the relevant equations of different techniques used
in the ScoutND algorithm. Later in this chapter, we specify the relevant equations specif-
ically for ScoutND and highlight the general algorithm of ScoutND. Section 3.1 describes
the basics of Monte Carlo methods. In section 3.2 , we describe the general method used
for gradient estimation in ScoutND. Section 3.3 describes the Adam optimizer used in our
optimization problem. Section 3.4 describes the concept of Natural gradients. Section
 3.5 describes the problem statement that ScoutND solves. Section 3.6 describes the vari-
ance reduction techniques used in ScoutND. Section 3.7 outlines the general Algorithm of
ScoutND.

12

3.1. Monte Carlo Method

3.1. Monte Carlo Method

Monte Carlo simulation [28] is used to estimate the value of an input function using ran-
dom sampling. Suppose we generate N random variables having probability distribution
p(x|θ) where x is sampled from the distribution parameters θ and let f : Rn → R be a
function. The expectation, Ep(x|θ)[f(x)], is given as:

Ep(x|θ)[f(x)] =

∫ ∞

−∞
f(x)p(x|θ)dx (3.2)

Using Monte Carlo, sampling we can approximate Equation (3.2) as

Êp(x|θ)[f(x)] =
1

N

N∑
i=1

f(xi), (3.3)

where xi ∼ p(x|θ).

where Êp(x|θ)[f(x)] is the approximate value of expectation of the function.

3.2. Gradient Estimation

For any optimization problem, gradient plays an essential role in the efficiency and sta-
bility of the optimization algorithm. The gradient estimates the direction of the optimum
value and guides the optimization algorithm in that direction [10]. For analytical func-
tions, gradients can be easily calculated by differentiating the objective function. Black-box
functions on the other hand, owing to the ambiguity of the internal functioning of their
functions and constraints, make it impossible to calculate the gradient analytically [29].
In such scenarios, we resort to numerical techniques to calculate the gradient. The two
approaches to obtain the derivative of the bound in equation 3.1 include the Derivative of
Paths approach, where the gradient can be obtained by differentiation f(x) with respect to
the input x, or the Derivatives of Measure approach, where the gradient can be obtained
by differentiation of the distribution p(x|θ) with respect to the distribution parameter θ
[30]. We will be using the Derivatives of Measure approach for our problem. ScoutND
uses score function estimator to estimate the gradient. The score function estimator, also
known as the REINFORCE estimator, is commonly used in reinforcement learning [31].
As mentioned, instead of calculating the derivative of f with respect to x, we calculate
the derivative of expectation of f with respect to distribution parameter θ. We begin by
defining the bound of the objective function U(θ) and its derivative with respect to θ ,

U(θ) = Ep(x|θ)[f(x)], (3.4)
dU

dθ
= ∇θEp(x|θ)[f(x)]. (3.5)

13

3. ScoutND

where x ∈ Rn is our input parameter, f : Rn → R is our objective function, Ep(x|θ) is the
expectation with respect to the distribution p(x|θ) and θ is the distribution parameter. We
expand the term on the right hand of equation 3.5 ,

∇θEp(x|θ)[f(x)] = ∇θ

∫
p(x, θ)f(x) dx (3.6)

We encounter an issue equation 3.6 . In case of black-box functions, our objective func-
tion is not differentiable. In addition to that, using quadrature can be ineffective in case
our input x is of high dimension [30]. We can use Monte Carlo sampling to estimate the
integral in equation 3.6 .

∇θEp(x|θ)[f(x)] =

∫
p(x|θ)F (x) dx, (3.7)

where F (x) is some function. We use the ”log-derivative trick” here to show that,

∇θ log p(x|θ) =
∇θp(x|θ)
p(x|θ)

. (3.8)

Substituting equation 3.8 in 3.6 , we get the following equation:

∇θEp(x|θ)[f(x)] =

∫
∇θ log p(x|θ)p(x|θ)f(x) dx. (3.9)

On comparing equation 3.7 and equation 3.9 , we have

F (x) = ∇θ log p(x|θ)f(x) dx. (3.10)

This allows us to evaluate the gradient using equation using Monte Carlo sampling. The
gradient in equation 3.6 can be simplified and written as,

∇θEp(x|θ)[f(x)] = Ep(x|θ)[F (x)]. (3.11)

To approximate the right hand side of equation 3.11 using Monte Carlo Sampling, we
write it as,

Êp(x|θ)[F (x)] =
1

N

N∑
i=1

F (xi) (3.12)

where xi ∼ p(x|θ).

Equation 3.12 is the estimated gradient for our black-box objective function.

14

3.3. Adam Optimizer

3.3. Adam Optimizer

Now that we have obtained our gradient, we can pair it with any gradient based optimizer.
ScoutND comes with different choices of optimizers. For our problem, we use the Adam
(Adaptive Moment Estimation) optimizer [9]. The most basic optimizer, the Gradient De-
scent method is defined as follows:

θt+1 = θt − α ·
[
∂U(θ)

∂θt

]
, (3.13)

where θ is the input parameter and U(θ) is our objective function. Adam optimizer is an
upgrade to other adaptive learning rate optimizers like AdaGrad [8] and RMSProp [32].
The Adam optimizer combines two important aspects:

• Adam uses exponential weighted average of past gradients. The exponential weighted
average of the gradients mt is calculated as follows:

mt = β1mt−1 − (1− β1)

[
∂U(θ)

∂θt

]
. (3.14)

• Adam uses exponential weighted average of the square of past gradients. The expo-
nential weighted average of the squared gradients, vt, is calculated as follows:

vt = β2vt−1 − (1− β2)

[
∂U(θ)

∂θt

]2
(3.15)

where β1 and β2 are the exponential decay rates. We cannot directly use the values of
equation 3.14 and equation 3.15 to update our parameters. The values of m and v are
initialized as zero. This makes these values to be biased towards zero initially. To counter
this, we use bias corrector which is defined as follows:

m̂t =
mt

1− βt
1

, (3.16)

v̂t =
vt

1− βt
2

. (3.17)

The final equation for updating the parameters using the Adam optimizer is defined as
follows:

θt+1 = θt − m̂t

(
α√

v̂t + ϵ

)
. (3.18)

The commonly accepted values for constants in Adam algorithm are shown in Table 3.1 .

α = 0.001 β1 = 0.9 β2 = 0.999

Table 3.1.: Values of constants in Adam Optimizer

15

3. ScoutND

3.4. Natural Gradients and Fisher Information Matrix

Natural gradient method is an extension to the gradient descent method which soughts to
improve convergence. We defined the gradient descent method in equation 3.13 . Amari
[33] showed that the direction of steepest descent in a Riemannian space can be obtained
using the following equation,

θt+1 = θt − αG−1

[
∂U(θ)

∂θt

]
, (3.19)

where G is the Riemannian metric tensor. The gradient descent method is a special case
of equation 3.19 , where G is an identity matrix, representing the gradient in the Euclidean
space.

In the case of probabilistic models, we use the Fisher Information Matrix [33]. The Fisher
Information matrix F is the covariance of the likelihood is defined as,

F = Ep(x|θ)

[
∇θ log p(x|θ)∇θ log p(x|θ)⊤

]
. (3.20)

The modified gradient descent method is

θt+1 = θt − αF−1

[
∂U(θ)

∂θt

]
. (3.21)

Although we generalised this for the gradient descent algorithm, the new gradient can
be substituted in Adam’s algorithm described in section 3.3 .

For a probability distribution p(x,θ), the Fisher Information Matrix measures how well
a random variable x is aware of the distribution parameter θ. It stores the information
about the curvature of the parameter space [34]. Fisher Information Matrix with higher
eigenvalues indicates high curvatures, where small changes in parameters have a notable
effect on the log-likelihood function and lower eigenvalues indicate flat curvatures where
small changes in parameters have less effect on the log-likelihood function [35]. The Fisher
Information Matrix can be ill-conditioned when the variance is high. Moreover, the Fisher
Information Matrix calculation and inversion can be computationally expensive in case
of higher dimension problems. ScoutND ensures that natural gradients are used after a
certain degree of convergence when variance values are reduced.

3.5. Problem Definition

Now that we have highlighted the relevant theory behind Stochastic Variational Optimiza-
tion, it is time to define the problem that ScoutND aims to solve. Consider the function
f(x,b) where x ∈ Rn is our deterministic input parameter, f : Rn → R is our objective
function and b is a random vector. The constrained optimization problem with objective
function f(x,b), subject to constraints (C(x,b)) is defined as,

16

3.5. Problem Definition

min
x

Eb[f(x,b)],

s.t Eb[C(x,b)] ≤ 0. (3.22)

To implement a constrained optimization, we use the Sequential Unconstrained Mini-
mization Technique (SUMT) to convert our constrained optimization problem to an uncon-
strained optimization problem [36]. In SUMT, we define an augmented objective function
(L) which penalizes the constraints using a penalty term (λ) if they go out of bounds but
leaves it unchanged if constraints are satisfied. We start by defining our penalty function
(P) as,

P(x,b) = max(0, C(x,b)). (3.23)

We define our augmented objective function L, subject to K constraints as,

L(x,b, λ) = f(x,b) + λ · P(x),

Equation (3.24) represents the transformed unconstrained optimization problem of our
original constrained optimization problem defined in equation 3.22 . Therefore, our new
optimization problem is defined as,

min
x

Eb[L(x,b,λ)]. (3.24)

Using the gradient estimation method explained in section 3.2 , the gradient for the prob-
lem is defined as,

∇θU(θ) = Ex,b [∇θ log p(x | θ)L(x,b,λ)] (3.25)

The gradient in equation 3.25 can be estimated using Monte Carlo sampling as follows:

∇θU(θ) ≈ 1

N

N∑
i=1

[L(xi, bi,λ)∇θ log p(xi | θ)] (3.26)

During optimization, when a constraint is violated, the value of L increases due to the
additional penalty terms. The magnitude of increase in L is determined by the value of λ
and the magnitude of constraint function C. This increase in value ofL forces the optimizer
to search within the constrained domain. The value of the penalty term(λ) is another im-
portant factor to consider. Higher values of λ impose stricter penalties to the constraints.
We start our optimization with a small value of λ and increase its value iteratively. This
method allows our optimizer to explore the domain with less restriction initially, even if
the constraints are violated. As the solution progresses, we increase λ to impose strict
penalties, which helps in directing the optimizer towards a feasible solution.

Optimization using stochastic gradient methods has been performed before but for un-
constrained problems [37 , 38 , 39 , 40]. ScoutND extends the Stochastic Variational Opti-
mization method to constrained optimization problems.

17

3. ScoutND

3.6. Variance Reduction

The gradient estimator explained in section 3.2 has a high variance [41]. Variance reduction
techniques are used to improve the accuracy of the Monte Carlo estimator. There are many
variance reduction techniques available. ScoutND uses two variance reduction techniques:

• Quasi-Monte Carlo methods (QMC) uses low discrepancy sequences to generate de-
terministic samples instead of pseudorandom samples. QMC samples are evenly dis-
tributed across the domain which reduces the variance. Common QMC sequences
include Sobol and Halton sequences [42]. We use the Sobol sequence to generate
QMC samples for our optimization problem. Figure 3.2 shows comparison between
random samples and QMC samples.

• ScoutND uses the baseline [43] to reduce the variance. The derivative of the bound
with respect to the distribution parameter is defined as,

∂U

∂θ
≈ 1

S

S∑
i=1

∂

∂θ
log p(xi | θ)

L(xi, bi,λ)−
1

S − 1

S∑
j=1,j ̸=i

L(xj , bj ,λ)

 . (3.27)

Figure 3.2.: Figure shows Monte Carlo(left) samples and Quasi-Monte Carlo sam-
ples(right) generated using Sobol sequences

3.7. ScoutND Algorithm

Now that we have highlighted the theory behind ScoutND, in this section, we present the
general algorithm of ScoutND [25].

18

3.7. ScoutND Algorithm

Algorithm 1 ScoutND Algorithm
Input: Dimension(d),Number of samples N , Objective function f , Constraints (C), penalty
parameter(λ), [Mean,Variance] (θ), Optimizer (G)

1: Initialize λ,θ,N ,f ,C
2: repeat
3: n← 0
4: repeat
5: xi ∼ p(x|θnk) bi ∼ q(b) //SAMPLE FROM DISTRIBUTION

6: Evaluate L(xi, bi,λk) //EVALUATE AUGMENTED OBJECTIVE FUNCTION

7: Estimate∇θ U //EVALUATE GRADIENT

8: θn+1
k ← G(θn

k ,λk,∇θU) //CALL OPTIMIZER

9: until ∥θn
k−θn−1

k ∥ > ϵθ //CONVERGENCE CRITERIA FOR DISTRIBUTION PARAMETERS

10: θ0
k+1 ← θn

k ; {µ, σ} ← θn
k and k ← k + 1

11: until ||σ|| > ϵσ
12: return {µ, σ}

19

4. PitzDaily

In many flow systems, shape optimization plays a crucial role in components such as noz-
zles, diffusers, and different flow channels for better energy efficiency. Shape optimization
of flow devices improves the life and reliability of such systems, which is critical in in-
dustries like aerospace and automotive, where operational costs are of significant impor-
tance. With strong resolutions taken towards shaping a sustainable environment, shape
optimization of fluid flow systems can reduce the emission of harmful substances into the
environment. With this motivation, we begin by introducing our shape optimization prob-
lem. The PitzDaily problem is a benchmark problem in CFD, based on an experiment by
Pitz and Daily [44]. It is a two-dimensional CFD simulation problem with the fluid enter-
ing the computational domain, then going through sudden expansion due to a backward-
facing step and moving forward to exit the domain through a converging passage. Figure

 4.1 shows the domain of the PitzDaily problem, with the left upper boundary represent-
ing the inlet and the right boundary representing the outlet. In this chapter, we cover the
CFD simulation setup for the PitzDaily problem for optimization. In section 4.1 we explain
the theory behind the CFD simulation of our PitzDaily problem. Section 4.2 describes the
OpenFOAM code structure used to carry out the CFD simulation. Section 4.3 describes
the methodology used to generate the new boundary for our optimization problem. Sec-
tion 4.4 defines the objective function of our optimization problem. Section 4.5 explains
the methodology proposed to implement constraints for the problem. Section 4.6 explains
the need to normalize the input. Section 4.7 explains the methodology used to convert the
constrained optimization problem to an unconstrained optimization problem. Section 4.8

explains the need and methodology used to normalize the output. Section 4.9 explains the
implementation of stochasticity in our optimization problem. Section 4.10 highlights the
general algorithm used for the evaluation of the objective function and parallelization for
the optimization process.

21

4. PitzDaily

Figure 4.1.: Figure shows the domain of the PitzDaily problem.

4.1. CFD Simulation of PitzDaily

For the purpose of this study, the PitzDaily problem is simulated using OpenFOAM. Open-
FOAM stands for Open Field Operation and Manipulation, which is an open-source soft-
ware for CFD simulations [45]. It has different utilities to simulate simple as well as com-
plex fluid flows. Being an open-source software, OpenFOAM provides the option to code
and manipulate solvers. In the present study, we use the simpleFoam solver [46] provided
by OpenFOAM as our base for the CFD simulation. We use other OpenFOAM utilities to
modify the domain(to be discussed in section 4.2) which are all built upon the simpleFoam
solver. The simpleFoam solver is a pressure-based solver, based on the SIMPLE algorithm.
It is designed to simulate steady-state, incompressible turbulent flows. simpleFoam sup-
ports the use of multiple turbulence models. Table 4.1 shows the simulation settings for
the PitzDaily problem.

Field Boundary Condition

Inlet Velocity 10 m/s
Outlet Pressure 0 Pa (static)

Wall No-slip Condition
Pressure-Velocity coupling scheme SIMPLE

Turbulence model k − ϵ
Pressure Poisson Solver GAMG with Gauss Seidel

Table 4.1.: Table shows the simulation settings for the PitzDaily shape optimization prob-
lem.

22

4.1. CFD Simulation of PitzDaily

4.1.1. SIMPLE Algorithm

Solving the Navier-Stokes equation becomes particularly difficult due to strongly coupled
pressure and velocity fields. For fluid flows, mass conservation is a strict constraint for the
solution of momentum equations. Unlike incompressible flows, density can be directly
related to the pressure using Equations of State in the case of compressible flows. The mo-
mentum equations in the Navier-Stokes equation require the pressure gradient at the grid
point where the velocities are evaluated. Using a central differencing leads to numerical
errors, known as the checkerboard problem, which leads to inaccurate values of pressure
gradients [1]. To approach this problem, we use pressure correction methods, specifically
the Semi-Implicit method for Pressure-Linked Equations (SIMPLE) Algorithm [47]. The
SIMPLE algorithm is a predictor-corrector method. Figure 4.2 shows a staggered grid ar-
rangement.

(i,j)

(i+1/2,j)(i-1/2,j)

(i,j+1/2)

(i,j-1/2)

(i-1,j)

(i,j+1)

(i,j-1)

(i+1,j)

(i+3/2,j)

(i+1,j-1/2)

(i+1,j+1/2)

(i-1,j-1)
(i-1/2,j-1) (i+1/2,j-1)

(i-1,j+1)

(i+1,j-1)

(i+1,j+1)

(i+3/2,j+1)

(i+3/2,j-1)

(i-1,j-1/2)

(i-1,j+1/2)

(i-1/2,j+1) (i+1/2,j+1)

Figure 4.2.: Figure shows a staggered grid arrangement used for SIMPLE algorithm. Stag-
gered grid mitigates the checkerboard board problem.

We start with the Navier-Stokes Equation in two-dimensions. The x-momentum and the
y - momentum equations are

23

4. PitzDaily

∂(ρux)

∂t
+

∂(ρu2x)

∂x
+

∂(ρuxuy)

∂y
= −∂p

∂x
+ µ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
, (4.1)

∂(ρuy)

∂t
+

∂(ρuxuy)

∂x
+

∂(ρu2y)

∂y
= −∂p

∂y
+ µ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
, (4.2)

and the continuity equation is

∂ux
∂x

+
∂uy
∂y

= 0 , (4.3)

where ρ is the density, p is the pressure, t is time, ux and uy represent the velocities in x
and y directions. Consider the staggered grid arrangement shown in figure 4.2 .

Discretizing the x-momentum equation at at the point (i+ 1/2, j), we can write,

(ρux)
n+1
i+1/2,j − (ρux)

n
i+1/2,j

∆t
= −

pni+1,j − pni,j
∆x

+

−

[
(ρu2x)

n
i+3/2,j − (ρu2x)

n
i−1/2,j

2∆x
+

(ρuxuy)
n
i+1/2,j+1 − (ρuxuy)

n
i+1/2,j−1

2∆y

]

+ µ

[
(ux)

n
i+3/2,j − 2(ux)

n
i+1/2,j + (ux)

n
i−1/2,j

∆x2
−

(ux)
n
i+1/2,j+1 − 2(ux)

n
i+1/2,j + (ux)

n
i+1/2,j−1

∆y2

]
,

(4.4)

On simplifying equation 4.4 we get,

(ρux)
n+1
i+1/2,j = (ρux)

n
i+1/2,j +A∆t− ∆t

∆x
(pni+1,j − pni,j), (4.5)

where A is:

−

[
(ρu2x)

n
i+3/2,j − (ρu2x)

n
i−1/2,j

2∆ux
+

(ρuxuy)
n
i+1/2,j+1 − (ρuxuy)

n
i+1/2,j−1

2∆y

]

+ µ

[
(ux)

n
i+3/2,j − 2(ux)

n
i+1/2,j + (ux)

n
i−1/2,j

∆x2
−

(uy)
n
i+1/2,j+1 − 2(uy)

n
i+1/2,j + (uy)

n
i+1/2,j−1

∆y2

]
.

(4.6)

Similarly, we can show that,

(ρuy)
n+1
i,j+1/2 = (ρuy)

n
i,j+1/2 +B∆t− ∆t

∆y
(pni,j+1 − pni,j), (4.7)

24

4.1. CFD Simulation of PitzDaily

where B is:

−

[
(ρu2y)

n
i,j+3/2 − (ρu2y)

n
i,j−1/2

2∆y
+

(ρuyuy)
n
i+1,j+1/2 − (ρuxuy)

n
i+1,j+1/2

2∆y

]

+ µ

[
(uy)

n
i+1,j+1/2 − 2(uy)

n
i,j+1/2 + (uy)

n
i−1/2,j+1/2

∆x2
−

(uy)
n
i,j+3/2 − 2(uy)

n
i,j+1/2 + (uy)

n
i,j−1/2

∆y2

]
.

(4.8)

We start with p*,u* and v*, as predicted values for pressure and velocity fields. We
substitute these values in Equation 4.5 and Equation 4.7 to obtain the following equations:

(ρu∗x)
n+1
i+1/2,j = (ρu∗x)

n
i+1/2,j +A∗∆t− ∆t

∆x
((p∗)ni+1,j − (p∗)ni,j), (4.9)

(ρu∗y)
n+1
i,j+1/2 = (ρu∗y)

n
i,j+1/2 +B∗∆t− ∆t

∆x
((p∗)ni,j+1 − (p∗)ni,j). (4.10)

Substracting the predicted pressure in equation 4.9 value from the true pressure value
in equation 4.5 , we get,

(ρu′x)
n+1
i+1/2,j = (ρu′x)

n
i+1/2,j +A′∆t−

(p′)ni+1,j − (p′)ni,j
∆x

, (4.11)

where
(ρu′x)

n+1
i+1/2,j = (ρux)

n+1
i+1/2,j − (ρu∗x)

n+1
i+1/2,j ,

(ρu′x)
n
i+1/2,j = (ρux)

n
i+1/2,j − (ρu∗x)

n
i+1/2,j ,

A′ = A−A∗,

p′i+1,j = pi+1,j − p∗i+1,j

p′i,j = pi,j − p∗i,j ,

Similarly, we can show that,

(ρu′y)
n+1
i,j+1/2 = (ρuy)

n
i,j+1/2 +B′∆t− ∆t

∆y
(p′i,j+1 − p′i,j), (4.12)

where,
(ρu′y)

n+1
i,j+1/2 = (ρuy)

n+1
i,j+1/2 − (ρu∗y)

n+1
i,j+1/2,

(ρu′y)
n
i,j+1/2 = (ρuy)

n
i,j+1/2 − (ρu∗y)

n
i,j+1/2,

B′ = B −B∗,

p′i,j+1 = pi,j+1 − p∗i,j+1,

p′i,j = pi,j − p∗i,j .

Using equations 4.11 and 4.12 and substituting the values A′, B′, (ρu′x)ni+1/2,j and (ρuy)
n
i,j+1/2

as zero [1], we obtain the following equations:

25

4. PitzDaily

(ρu′x)
n+1
i+1/2,j = −

∆t

∆y
(p′)ni+1,j − (p′)ni,j , (4.13)

(ρu′y)
n+1
i,j+1/2 = −

∆t

∆y
(p′i,j+1 − p′i,j)

n. (4.14)

On substituting the values, from equations (4.13) and (4.14) in the discretized continuity
equation using central differencing scheme we obtain,

(ρux)i+1/2,j − (ρux)i−1/2,j

∆x
+

(ρuy)i,j+1/2 − (ρuy)i,j−1/2

∆y
= 0, (4.15)

(ρu∗x)i+1/2,j −∆t/∆x(p′i+1,j − p′i,j)− (ρu∗x)i−1/2,j +∆t/∆x(p′i,j − p′i−1,j)

∆x

+
(ρu∗y)i,j+1/2 −∆t/∆y(p′i,j+1 − p′i,j)− (ρu∗y)i,j−1/2 +∆t/∆y(p′i,j − p′i,j−1)

∆y
= 0.

(4.16)

On solving the pressure Poisson equation (4.16), iteratively, we obtain the value of p′.
The pressure value at the next time step is calculated as follows:

pn+1 = (p∗)n + p′. (4.17)

The updated velocity fields un+1 and vn+1 are obtained by substituting pn+1 in the mo-
mentum equations.

The updated pressure value, pn+1 is our new p∗ value. The equations are iteratively
solved until convergence is achieved.

4.1.2. Turbulence Model

Turbulence modeling is an important aspect of CFD simulations. A straightforward ap-
proach to model turbulence is to directly solve the Navier-Stokes equation using discretiza-
tion schemes and iterative solvers, a method known as Direct Numerical Simulation (DNS)
method [1]. Although accurate, DNS is computationally expensive to solve which makes
it unsuitable for complex problems. The Reynolds Averaged Navier Stokes (RANS) is
the most popular turbulence modeling technique. RANS works by expressing the veloc-
ity and pressure fields as the sum of its mean and fluctuating components [48]. It is less
computationally intensive but less accurate. Some common RANS models include the
Spalart-Allmaras mode, the k−ω model, the k− ϵ model, and the Shear-stress model(SST)
[49 , 50 , 51]. Large Eddy Simulation (LES) [52] is a tradeoff between DNS and RANS. LES
works by applying a filter to segregate large and small eddies, subsequently resolving the
large eddies and modeling the smaller eddies using SGS models. LES is more accurate
than RANS but less accurate than DNS. It is less computationally expensive than DNS
but more than RANS. Among the different turbulence models available, we choose the

26

4.1. CFD Simulation of PitzDaily

RANS k − ϵ model for our PitzDaily problem. The k − ϵ model [53] has become one of the
most popular turbulence models. It is robust and capable of simulating a wide range of
CFD problems. Turbulence modeling begins with the Reynolds Averaged Navier Stokes
(RANS) equations. The velocity and pressure fields for a two-dimensional flow are ex-
pressed as,

u = U + u’. (4.18)
p = P + p′. (4.19)

where

ux = Ux + u
′
x, (4.20)

uy = Uy + u
′
y. (4.21)

(4.22)

where U is the mean velocity component and u’ is the fluctuating velocity component.
The time-averaged Navier-Stokes equation is obtained by substituting the velocity and
pressure fields defined in equation 4.18 and equation 4.19 in the Navier-Stokes equation.
Equation 4.23 shows Reynold’s Averaged Navier-Stokes in tensorial form.

∂(ρUi)

∂t
+

∂(ρUiUj)

∂xj
= − ∂P

∂xi
+

∂

∂xj

[
µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
− ρu′iu

′
j

]
. (4.23)

In equation 4.23 , we have an additional Reynold’s stress term which has fluctuating
velocity components. We use the Boussinesq hypothesis to express Reynold’s stress term
as a function of the mean velocity. Equation 4.24 shows the Boussinesq’s hypothesis.

−ρu′iu′j = µt

(
∂Ui

∂xj
+

∂Uj

∂xi
− 2

3

∂Uk

∂xk
δij

)
− 2

3
ρkδij , (4.24)

where µt is the eddy viscosity and is an unknown quantity. We need to calculate the
eddy viscosity (µt) to close the RANS equations given by 4.23 .

The standard k− ϵ model is a two-equation model which solves equation 4.26 and equa-
tion 4.25 to obtain the Turbulent Kinetic Energy(k) and the dissipation rate(ϵ).

The (k − ϵ) model uses the following transport equations to solve for k and ϵ.
The transport equation for the turbulent kinetic energy(k) is given as,

∂(ρk)

∂t
+

∂(ρUik)

∂xi
=

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+ Pk + Pb − ρϵ+ Sk, (4.25)

where, σk is the Prandtl number for k, Pk is the production of turbulent kinetic energy
due to mean velocity gradients, Pb is the production of turbulent kinetic energy due to
buoyancy, and Sk is the source term.

27

4. PitzDaily

The transport equation for the turbulent dissipation rate(ϵ) is given as,

∂(ρϵ)

∂t
+

∂(ρUiϵ)

∂xi
=

∂

∂xj

[(
µ+

µt

σϵ

)
∂ϵ

∂xj

]
+ C1ϵ

ϵ

k
(Pk + C3ϵPb)− C3ϵρ

ϵ2

k
+ Sϵ (4.26)

where, σϵ is the Prandtl number for ϵ, C1ϵ, C2ϵ, and C3ϵ are model constants, Pk is the
production of turbulent kinetic energy due to mean velocity gradients, Pb is the production
of turbulent kinetic energy due to buoyancy, and Sϵ is the source term.

The eddy viscosity can be obtained by using equation 4.27 , which is substituted in 4.24

and is subsequently used to solve RANS.

µt = Cµ
ρk2

ϵ
. (4.27)

The constants used in the equation have been extensively researched [54 , 55] resulting
in the standardised values shown in table 4.2 :

Cµ = 0.09 σk = 1.00 σϵ = 1.30 C1ϵ = 1.44 C2ϵ = 1.92

Table 4.2.: Values of constants in k − ϵ equations

4.1.3. Geomtric Algebraic Multi-Grid (GAMG)

Restriction

Prolongation

Restriction

Prolongation

Figure 4.3.: Figure shows different levels in Multi-Grid from the finest(left) to the coars-
est(right).

The idea of Multigrid solvers was proposed by Brandt [56] to accelerate the convergence
of iterative methods. GAMG belongs to the class of Multigrid solvers[46]. In multi-grid
solvers, the simulation is initially performed on a fine mesh, which reduces the high-
frequency errors, leaving the low-frequency errors untouched. These low-frequency er-
rors are transferred to a coarser mesh through a process known as restriction. The low-
frequency errors behave as high-frequency errors on the coarse mesh and are resolved
subsequently. The cycle continues iteratively until the coarsest mesh is reached. From
here, the solution is interpolated back to the finer meshes in steps through the process
known as prolongation. GAMG is not a solver in itself. We use the Gauss-Seidel solver on

28

4.1. CFD Simulation of PitzDaily

each grid of the Multigrid meshes. In Multigrid methods, the solver used to reduce the
errors is called the smoother.

According to traversal between different grids, the multigrid method can be categorized
into different cycles[57].

• V-cycle: In the V-cycle, the algorithm descends to the coarsest grid by traversing
through different levels and then returns back to the topmost grid in the same man-
ner. In the V-cycle, each intermediate level is visited only twice, once while descend-
ing and once while ascending. Figure 4.4 shows a V-cycle.

Restriction

Restriction Prolongation

Prolongation

Figure 4.4.: Figure shows a V-cycle Multi-Grid

• W-cycle: In the W-cycle, the algorithm descends to intermediate levels and may re-
visit these levels multiple times before descending to the coarsest level and ascending
to the finest level. It is used in case of more difficult problems. Figure 4.5 shows a
W-cycle.

Restriction

Restriction Prolongation

Prolongation

Figure 4.5.: Figure shows a W-cycle Multi-Grid

• Full-MultiGrid Cycle: In the Full-MultiGrid cycle, we start with the coarsest mesh
and move to the next finer mesh. We perform a V-cycle and end up in the next

29

4. PitzDaily

finer grid above the previous level. This cycle continues till we reach the finest grid.
Figure 4.6 shows the full multigrid cycle.

Prolongation

Restriction
Prolongation

Figure 4.6.: Figure shows a Full Multi-Grid

4.2. OpenFOAM Simulation

This section explains the different libraries used in OpenFOAM for the PitzDaily problem.
Figure 4.7 shows the code structure used for the Pitzdaily simulation. The PitzDaily folder
consists of three main folders: constant, system, and 0. We will be discussing the role of
relevant files in these folders.

Figure 4.7.: Flowchart representing the OpenFOAM code structure for the PitzDaily prob-
lem

The system folder consists of files defining the parameters and simulation settings. We
describe the important files used in the simulation. fvSolution file specifies settings rel-
evant to the solution process. For our simulation, we use the GAMG solver for the pres-

30

4.2. OpenFOAM Simulation

sure field with the Gauss-Seidel method as smoother. We use the Gauss-Seidel method
for the velocity fields (U), the turbulent kinetic (k) energy, and the dissipation rate (ϵ).
The fvSolution file also specifies the residual settings for the SIMPLE algorithm like
the reference pressure and the convergence criteria. The last thing we include in this file
is the under-relaxation factors to ensure the stability of the solution. The fvSchemes
file specifies the different discretization schemes for the solver. We use the steadyState
discretization scheme for our time discretization since we are simulating a steady-state
problem. The file also specifies the variable for which we calculate the flux, which in our
case is the pressure. For the divergence of the convective flux of the velocity field U , the
”boundedGausslinearUpwindV grad(U)” scheme is used. This scheme ensures numerical
stability and accuracy by combining Gaussian quadrature with a bounded linear upwind
interpolation that uses the gradient of the velocity field. For the turbulence kinetic energy
k and the turbulence dissipation rate ϵ, the ”boundedGaussupwind” scheme is used. The
interpolation scheme used for the simulation is ”linear”. The blockMeshDict file spec-
ifies the measurement unit, points, and the different blocks of the simulation domain. It
also specifies the boundary patches. It is used to generate a basic structured mesh using
the blockMesh command. The controlDict file stores the simulation settings like the
timestep, write interval, end time, etc. It also stores the list of functions used in postpro-
cessing. The PitzDaily case can be simulated without the snappyHexMeshDict, but this
file becomes necessary for our simulation since we are creating a more complex geometry
and modifying the original domain. The snappyHexMesh is a meshing tool in OpenFOAM
used to generate hexahedral meshes. Using castellatedMeshControls utility, we define the
maximum number of cells, minimum refinement of cells, and refinement of the edges and
surfaces of the generated boundary during the optimization process. The addLayersCon-
trols utility is used to add and refine the boundary layer to capture the flow characteristics
near the walls of the new boundary generated during optimization. snapControls utility
is used to project and align the mesh with the domain geometry. To generate the mesh,
snappyHexMesh command is used. The surfaceFeatureDict file is used to define the
surface features. The surface is stored in the constant/triSurface folder. During optimiza-
tion, the generated STL curve is copied into this folder. The mapFieldsDict file is used
to map the fields from one mesh to another. It contains the patchmap utility, which maps the
data from the source mesh to the target mesh, and the cuttingPair utility, which specifies
the patch of the target mesh that cuts through the domain. In our case, this would be our
lower wall surface generated during optimization. The createPatchDict file specifies
the name, type, and the method using which the patch is created. The meshQualityDict
file specifies and checks the quality of the mesh generated. The constant folder consists
of the transportProperties file which specifies the physical properties of the fluid in
the simulation. We specify the fluid type as Newtonian and the kinematic viscosity value.
The turbulenceProperties file specifies the turbulence model used, which in our case
is the k − ϵ RANS model. The 0 folder contains files that specify the initial conditions for
the velocity field (U), pressure field (p), kinematic viscosity (nu), turbulent kinetic energy
(k) and the dissipation rate (epsilon).

31

4. PitzDaily

4.3. Catmull-Clark Subdivision Curves

For the current problem, the lower boundary of the PitzDaily problem needs to be changed
in order to optimize the objective function. This requires generation of a curve and patch-
ing it to the lower boundary of the PitzDaily problem on each function evaluation. To do
this, we define a bound around the lower boundary. Within this bound, we specify a set
of control points. To create a curve using these control points, we use the Catmull-Clark
Subdivision curve [58]. To generate the Catmull-Clark Subdivision curve, we start by set-
ting the boundary points at their fixed positions using equation 4.28 and 4.29 . We insert
new points between two adjacent points using equations 4.30 and 4.31 at the jth iteration.
This algorithm is capable of generating a smooth curve in a few iterations. The governing
equations to generate the curve are:

Sj [1] = Sj−1[1], (4.28)

Sj [|Sj |] = Sj−1[|Sj−1|], (4.29)

Sj [2i] =
Sj−1[i− 1] + 6Sj−1[i] + Sj−1[i+ 1]

8
, (4.30)

Sj [2i+ 1] =
4Sj−1[i− 1] + 4Sj−1[i+ 1]

8
. (4.31)

This generated curve is converted into an STL file which is mapped on the domain and
replaces the lower boundary of the original PitzDaily problem. The simulation for the
optimization process is carried out on this new domain. Figure 4.8 describes the problem
and figure 4.9 shows the final domain on which the simulation is carried out.

Figure 4.8 shows a general outline of the PitzDaily domain. Figure 4.9 shows the final
PitzDaily domain for the simulation. Figure 4.10 shows the generated STL curve. Figure
 4.11 shows the modified PitzDaily domain after the STL is mapped on the old domain.
Figure 4.12 shows the velocity contour when simulated on the newly generated domain.

Figure 4.10.: Figure shows the STL curve generated using the Catmull-Clark Subdivision
curve.

32

4.3. Catmull-Clark Subdivision Curves

Figure 4.8.: Figure shows the new PitzDaily problem. The black line represents the original
PitzDaily problem. The green box represents the rectangular bound within
which the control points are generated. The blue points represent the control
points. These points are used to generate the red curve which is the generated
Catmull-Clark subdivision curve.

Figure 4.9.: Figure shows the final PitzDaily domain on which simulation is carried out for
the shape optimization problem.

33

4. PitzDaily

Figure 4.11.: Figure shows the STL curve mapped on the original PitzDaily problem.

Figure 4.12.: Figure shows the final simulation on the New Generated Domain

34

4.4. Objective Function

4.4. Objective Function

The previous sections of this chapter described the setup required for the evaluation of the
objective function for our optimization problem. CFD simulations are computationally
expensive and time-consuming to evaluate. Optimization requires multiple calls of the
objective function and this is a major drawback in the optimization of CFD systems. In ad-
dition to that, CFD systems are complex, non-linear systems which makes gradient calcula-
tion unfeasible. This drives our motivation to use black-box optimizers, such as ScoutND
for optimizing CFD systems. The objective function of our optimization problem(ξ) in-
spired by the work of [58], is a non-dimensionalized value obtained by dividing the static
pressure drop across the inlet and the outlet boundaries with the kinetic energy per unit
volume of the fluid. It is defined as

ξ =
2

ρ.U2
in

[
1

Ain

∫
pin.dAin −

1

Aout

∫
pout.dAout

]
, (4.32)

where, Ain and Aout are the areas of the inlet and the outlet boundaries, respectively, pin
and pout are the static pressures at the inlet and the outlet, respectively, Uin is the velocity
at inlet and ρ is the density of the fluid.

4.5. Constrained Optimization

To ensure the control points do not go out of the bound, we need to define constraints.
Scout-ND requires the constraint’s value to be less than or equal to zero if the constraint is
satisfied and greater than zero if the constraint is not satisfied. Each control point has the
following 4 constraints for its x and y coordinates:

x ≥ xmin ; x ≤ xmax ; y ≥ ymin ; y ≤ ymax (4.33)

where xmin , xmax, ymin and ymax represent the minimum and maximum values of the
bounds . For n control points, there are 4n constraints. We propose a method to agglomer-
ate all constraints into a single value.
Let’s say a control point is randomly generated inside or outside the polygonal bound as
shown in figure 4.13 . If we join the control point to each corner of the polygonal bound,
it leads to the formation of K triangles, where K is the number of vertices of the polygon.
The vertices of each triangle are the two consecutive points of the polygonal bound, and
one vertex being the control point itself. We calculate the sum of the area of K triangles. If
the control point is inside the bound, the sum of the K triangles will be equal to the area
of the polygonal bound and if the control point is outside the bound, the sum of the K
triangles will be greater than the area of the polygonal bound. We replicate this for all M
control points. The constraint value (C) is calculated as

35

4. PitzDaily

C =

∑M
j=1

(∑K
i=1(A∆)i

)
j

Abound × (M)
− 1, (4.34)

where A∆ is the area of triangle, Abound is the area of the bound, M is the number of
control points and K is the number of vertices of the polygonal bound. Constraint value
(C) is zero if all control points are inside the domain. Constraint value (C) is positive if even
one control point is outside the domain. For our problem, we use, M = 5 and K = 4

(a) Control point lying inside the domain (b) Control point lying outside the domain

Figure 4.13.: Figure (4.13a) shows the control point inside the domain while (4.13b) shows
the control point outside the domain. The value of constraint using equation
(4.34) is equal to zero in case (4.13a) and greater than zero in case (4.13b).

4.6. Normalization of Input

Scout-ND generates samples for coordinates of the control points using the input mean
and variance. An issue here is that if samples are generated in such a way that the control
points are way outside the bound, it may happen that the generated curve leads to unfea-
sible CFD simulation. Figure 4.14 shows one such scenario where this might happen.

Figure 4.14.: Figure shows the control points going out of bound which causes issue in
simulating the PitzDaily problem as the domain splits in between, making
the simulation infeasible.

The red curve is the generated Catmull-Clark Subdivision curve. As seen from the fig-
ure, the red curve completely splits the PitzDaily domain, and in this case, the simulation

36

4.7. Unconstrained Optimization

is unfeasible, and ξ value cannot be obtained. Using low variance values circumvents this
issue but this leads the optimizer in a local minima without exploring the bound com-
pletely. In order to resolve this, the input is normalized to ensure that the mentioned situa-
tion does not arise and the optimizer can explore the domain without abruptly generating
an unfeasible PitzDaily domain.

4.7. Unconstrained Optimization

We propose a simple method to convert our CFD problem to an unconstrained optimiza-
tion problem without using SUMT. To achieve this, we apply the sigmoid transformation
to the input coordinates of the control points. Sigmoid transform is given as:

σ(x) =
1

1 + e−x
. (4.35)

Figure 4.15 shows a basic sigmoid Transformation function that restricts an input (Xmin,Xmax)
between (0.0, 1.0).

Figure 4.15.: Sigmoid Function

We modify the original sigmoid function to restrict the x and y coordinates of each con-
trol point to lie in the range defined in equation 4.33 . The modified equations are defined
as,

σ(x) = xmin +
xmax − xmin

1 + e−(x)·kx
, (4.36)

σ(y) = ymin +
ymax − ymin

1 + e−(y)·ky
. (4.37)

.

37

4. PitzDaily

4.8. Normalization of Output

Normalization plays a crucial role in optimization. Normalization of output leads to faster
convergence and prevents numerical instabilities. There are many ways to optimize the
objective function. We randomly generate 50 samples of input coordinates and simulate
them. We use the ”Min-Max Normalization” technique defined as follows:

ξ′ =
ξ − ξmin

ξmax − ξmin
, (4.38)

where ξ′ is the normalized value of the objective function, ξ is the current value of the
objective function, ξmax is the maximum value of the objective function from the 50 simu-
lated samples and ξmin is the minimum value of the objective function from the 50 simu-
lated samples.

4.9. Stochasticity in Fluid flows

Fluid flow problems in practical scenarios are inherently unpredictable due to their ran-
dom behavior. Turbulence is a major cause of this randomness. These random parameters
follow a distribution instead of being fixed. In such a scenario, it is crucial to account for
stochasticity in order to predict more accurate results. ScoutND is capable of optimizing
under stochastic conditions and can be easily implemented in the algorithm. To achieve
this, instead of using a fixed value for the inlet velocity, we introduce a stochastic inlet ve-
locity generated using random uniform sampling between a provided upper limit, Umax

and lower limit Umin.

x ∼ U(Umin, Umax). (4.39)

Equation 4.39 is used to sample an inlet velocity value at each function evaluation. This
sampled inlet velocity is subsequently used to simulate the PitzDaily problem.

4.10. Objective Function Evaluation

Now that we have highlighted the necessary steps for shape optimization of our Pitz-
Daily problem, we outline the algorithm used to calculate the objective function and the
constraints in this section. Algorithm 2 presents the algorithm to calculate the objective
function and Algorithm 3 presents the algorithm to calculate the constraints.

38

4.10. Objective Function Evaluation

Algorithm 2 Objective Function Algorithm
Input: Input Array θ of x and y coordinates of size 2N ,where N is the number of control
points
Output: Mechanical Energy Loss Factor, ξ

1: θ← Reshape(θ) // ARRAY FROM SIZE (1,N) TO (N/2 , 2)

2: θ← Sort(θ) // SORT IN ORDER OF INCREASING X-COORDINATES

3: θ← Vstack(θ) // CONNECT CURVE TO FIXED POINTS IN THE DOMAIN

4: θ← GenCurve(θ) // GENERATE CATMULL-CLARK SUBDIVISION CURVE

5: GenSTL(θ) // CONVERT TO STL FILE

6: ξ← Solve() // RUN OPENFOAM COMMANDS TO CALCULATE (ξ)

7: ξ′← Normalize(ξ) // NORMALIZE THE OUTPUT, (ξ)

8: return ξ′

Algorithm 3 Constraint Function Algorithm
Input: Input Array θ of x and y coordinates of size 2N ,where N is the number of control
points
Output: Constraint Value, C

1: θ← Reshape(θ) // ARRAY FROM SIZE (1,N) TO (N/2 , 2)

2: θ← Sort(θ) // SORT IN ORDER OF INCREASING X-COORDINATES

3: sumArea← 0
4: for i in Control point do
5: ar(∆)i = calcArea(i,domainPoints) // CALCULATE AREA OF EACH TRIANGLE

sumArea← sumArea + ar(∆)i // SUM OF ALL TRIANGLES

6: end for
7: C ←Constraint(sumArea)// CALCULATE CONSTRAINT VALUE USING EQUATION 4.34

8: return C

The average evaluation time of the objective function using OpenFOAM is 40 seconds.
An optimization problem with 5 control points requires 128 sample evaluations per itera-
tion. With an average compute time of 40 seconds per sample, a single iteration may take
up to 90 minutes. Scout-ND is based on Monte Carlo sampling for gradient estimation.
This makes the evaluation of the samples ”embarrassingly parallel”. To address the prob-
lem of long computation times, a parallel setup of function evaluations is employed.

39

Part III.

Results and Conclusion

41

5. Results

In this chapter, we present the results of our optimization problem. Section 5.1 presents
the results of non-stochastic constrained optimization using ScoutND. In section 5.2 , we
present the results of stochastic constrained optimization using ScoutND. Section 5.3 presents
the results of non-stochastic unconstrained optimization using ScoutND. Section 5.4 presents
the results of stochastic unconstrained optimization using ScoutND. In section 5.5 , we
present a comparison of results of different ScoutND simulations and also compare the re-
sults of ScoutND with the results of different optimizers techniques such as Nelder-Mead,
L-BFGS-B, COBYLA, and SLSQP.

5.1. Non-stochastic constrained optimization using ScoutND

In this section, we present the results of optimization with ScoutND. We define the dimen-
sions of the bound for the control points as:

xmin = 0.0 ; xmax = 0.28 ; ymin = −0.03 ; ymax = 0.01. (5.1)

The next step is to provide an input array as an initial guess for our optimization prob-
lem. Since we are using five control points to generate our boundary and each control
point is defined by x and y coordinates, we need to provide a mean array of size 10 with
every two consecutive elements representing the coordinates of a single control point and
an array of initial values of variance for each element of our mean array. Therefore, our
initial guess array is of size 20. As discussed in section 4.6 , we provide normalized values
of x and y coordinates as our initial guess which are normalized in the range (-1,1). In case
of variance, the initial guess value we provide is the value of exponent of e i.e. we provide
the values of ln(σ). We start with a variance of σ = e−1. Therefore, we assign an initial
value of −1 to initialise the variance for all 10 input parameters of the variance array. The
initial guess, θ = {µ, ln(σ)}, used for our optimization problem is defined as,

µ = [−0.9, 0.0, −0.45, 0.0, 0.0, 0.0, 0.45, 0.0, 0.9, 0.0], (5.2)
ln(σ) = [−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0]. (5.3)

The next step is to initialise our penalty term (λ). A violated constraint in our problem
does not return a very high magnitude. The magnitude order can be around 10−3. In such

43

5. Results

a scenario, it only makes sense to start with a value of λ that scales the penalty component
to be in the same order of magnitude as the objective term. ScoutND initializes penalty
term using powers of e. We start with an initial value of λ = e0. As discussed in sec-
tion 2.3, we use the Adam optimizer with a fixed learning rate. A very high learning rate
might cause oscillations and a small learning rate slows down convergence. To counter
this, we start with a higher value of learning rate of 0.1, reduce it to 0.01, and then to 0.001
as the solution converges. This prevents the optimizer from overshooting the optimum
and helps in improving the quality of the optimum without compromising on the rate of
convergence. The non-normalized, true optimum value of the objective function for our
PitzDaily problem is ξ∗ = 0.0, which indicates zero pressure drop. Figures 5.1 and 5.2 show
the velocity and the pressure contours for the simulation carried out using the initial guess
value from equation 5.2 . The value of the normalized objective function (ξ′), from equation
 4.38 , for our initial guess is 0.7863.

Figure 5.1.: Velocity Contour obtained from simulation using initial values from equation
 5.2 .

Figure 5.2.: Pressure contour obtained from simulation using initial values from equation
 5.2 .

Figures 5.3 and 5.4 show the simulation carried out for the optimized values. Our objec-

44

5.1. Non-stochastic constrained optimization using ScoutND

tive function is a non-dimensionalised quantity which is mainly dependent on the static
pressure difference between the inlet and the outlet. It can be easily observed, that the
optimized domain enforces this condition. The fluid enters the domain and goes through
a gradual expansion. This increases the pressure in the area following the inlet boundary.
In addition to this, we observe that near the outlet boundary, the generated curve slightly
reduces the cross-section area near the outlet, which increases the pressure in the region
preceding the outlet boundary. This further increases the pressure near the inlet. A thing
to note here is that the static pressure at the outlet is fixed due to the outlet boundary con-
dition. Therefore, in the original PitzDaily problem, we have a lesser static pressure value
at the inlet, which is the reason our optimized curve tries to increase the static pressure
at the region preceding the outlet boundary. Figure 5.6 shows the pressure plotted on a
horizontal line, extending from the inlet to the outlet, along the flow i.e. in the X-direction.
We observe that the pressure difference between the inlet and the outlet is negligible for
the optimized curve, which directly influences the objective function. Figure 5.5 shows
the control points for the optimized values of the non-stochastic constrained optimization
problem.

Figure 5.3.: Velocity Contour obtained from simulation of optimized values of non-
stochastic constrained optimization problem.

Figure 5.4.: Pressure Contour obtained from simulation of optimized values of non-
stochastic constrained optimization problem. We observe that the pressure at
the inlet and outlet boundaries have the same color, indicating very close pres-
sure values.

45

5. Results

Figure 5.5.: Figure shows the domain and the control points for the non-stochastic con-
strained optimization problem. The numbers next to the point denote the point
number.

Figure 5.6.: Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configuration for
the non-stochastic constrained optimization problem. We can observe that the
pressure difference between the inlet and the outlet is almost negligible for the
final configuration.

Figures 5.7a and 5.7b show the evolution of the augmented objective function and the
evolution of the objective function with iterations. We observe that during the initial itera-
tions, he graph of the augmented objective function and the objective function are slightly
different as the optimizer searches for the minimum value throughout the domain as we
start with a lower value of penalty term and higher value of variance. As the solution
converges towards the minima, the graphs show a similar trend.

46

5.1. Non-stochastic constrained optimization using ScoutND

(a) Figure shows evolution of E[L] with iter-
ations.

(b) Figure shows evolution of E[f] with iter-
ations.

Figure 5.7.: Figure shows evolution of E[L] and E[f] with iterations for the non-stochastic
constrained optimization problem. The two graphs are different initially as the
optimizer searches for the minimum throughout the domain because of lower
value of λ and higher value of ln(σ),but align as the solution converges.

Figure 5.8a shows the evolution of the constraint value with iterations. We observe that
the constraints initially have a high value due to a lower value of the penalty term and
decreases as the solution progresses due to strict penalisation and convergence of solution
towards the minimum value within the bound. Figure 5.8b shows the evolution of penalty
term with iterations. We observe that the penalty term increases in steps as the solution
progresses.

(a) Figure shows evolution of C with itera-
tion.

(b) Figure shows evolution of λ with itera-
tion.

Figure 5.8.: Figure shows evolution of constraint (C) and the penalty term (λ) for the non-
stochastic constrained optimization problem with iterations. The constraints
during the initial iterations have a higher magnitude due to lower value of λ.

Figures 5.9 and 5.10 show the evolution of the mean and the variance of each variable

47

5. Results

with iterations, respectively. We started with the values shown in equations 5.2 and 5.3 .
We pointed out that the objective function decreases as the region near the outlet restricts
the flow. This makes the objective function sensitive to the control point 5, which is the
control point nearest to the outlet boundary. We observe from figure 5.3 that the (ln(σX5))
and (ln(σY 5)) have the least values as the solution converges. This shows that the control
point 5 is the most sensitive point around the optimum. Following them is (ln(σX1)), a
parameter of the control point 1, which shows that the shape of the lower boundary in
the region where the fluid goes through expansion, has a notable effect on the objective
function.

Figure 5.9.: Figure shows the evolution of µ of each input variable for the non-stochastic
constrained optimization problem.

48

5.1. Non-stochastic constrained optimization using ScoutND

Figure 5.10.: Figure shows the evolution of ln(σ) of each input variable with iterations for
the non-stochastic constrained optimization problem. It is observed that the
points near the boundary, with minimum cross-section area, have the least
variance as these points are critical in the optimization of the objective func-
tion. The point near the expansion area also has a notable effect on the objec-
tive function.

Figure 5.11 shows the evolution of the learning rate with iterations. The effect of change
in learning rate can be seen in the evolution of µ and ln(σ). As the learning rate reduces,
the convergence of ln(σ) slows down, the oscillations reduce and the solution converges
gradually. Similarly, the oscillations in µ reduce as the learning rate drops.

49

5. Results

Figure 5.11.: Figure shows the evolution of learning rate with iterations. The effect of the
drop-in learning rate is evident in the evolution of µ and ln(σ) as the oscilla-
tions reduce and stable convergence is observed.

50

5.2. Stochastic constrained optimization using ScoutND

5.2. Stochastic constrained optimization using ScoutND

We discussed in section 4.9 , the necessity to consider stochasticity in optimizing engineer-
ing systems. In this section, we present the results of optimization under stochastic con-
ditions. For our optimization problem in section 5.1 , we used a constant inlet velocity of
10ms−1. We now sample our velocity using a uniform sampling as follows:

Uin ∼ U(9.5ms−1, 10.5 ms−1).. (5.4)

(a) Figure shows frequency vs input velocity.
(b) Figure shows frequency vs objective

function.

Figure 5.12.: Figure shows input velocity samples(left) and the corresponding objective
function vallue(right) for the PitzDaily problem evaluated for 250 samples.

We wanted to ensure that the choice of input velocity distribution does not introduce
high variance in output. To do so, we use a simple sampling study by drawing histograms
of input and output. Figure 5.12b shows the output of the PitzDaily problem for 250 sam-
pled velocities in figure 5.12a , using the uniform distribution in equation 5.4 . The his-
togram of the output objective function resembles the input velocity histogram. We see
that the variance is not too large. However, it is not small either. We observe from figure

 5.12b that the spread of the uniform distribution is approximately 25% of the median. So,
we cannot deal with this as a deterministic problem and we must take stochasticity into
consideration.

We keep all other simulation settings the same as described in section 5.1 . Figures 5.13

and 5.14 show the pressure and velocity contours of the simulation carried out for the
optimized values. The final PitzDaily domains for stochastic and non-stochastic problems
are similar in the sense that both try to reduce the cross-section area near the outlet which
increases the pressure between the domain, reducing the pressure difference between the
inlet and the outlet. The reduced cross-section area near the outlet in this problem is more
prominent, designed to accommodate for stochastic conditions. Figure 5.16 shows the

51

5. Results

pressure plotted on a line along the flow i.e in the X-direction, extending from the inlet
and outlet. We observe from figure 5.16 that the pressure difference between the inlet
and the outlet is negligible for the optimized curve, which directly influences the objective
function.

Figure 5.13.: Velocity Contour obtained from simulation of optimized values of stochastic
constrained problem.

Figure 5.14.: Pressure Contour obtained from simulation of optimized values of stochastic
constrained problem. We observe that the pressure at the inlet and outlet
boundaries have the same color, indicating very close pressure values.

52

5.2. Stochastic constrained optimization using ScoutND

Figure 5.15.: Figure shows the domain and the control points for the stochastic constrained
optimization. The numbers next to the point denote the point number.

Figure 5.16.: Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configuration
for the stochastic constrained optimization problem. We can observe that the
pressure difference between the inlet and the outlet is almost negligible for
the final configuration.

Figures 5.17a and 5.17b show the evolution of the augmented objective function and the
objective function with iterations. Similar to section 5.1 , we see slight differences in both
plots due to lower penalty term and higher variance value initially. We also observe a
slight difference in both the plots after 300 iterations due to a violated constraint but dies
out quickly due to strict penalisation because of the high penalty term.

53

5. Results

(a) Figure shows evolution of E[L] with iter-
ation under stochastic input velocity.

(b) Figure shows evolution of E[f] with iter-
ation under stochastic input velocity.

Figure 5.17.: Figure shows evolution of E[L] and E[f] for stochastic constrained optimiza-
tion problem with iterations. The two graphs are different initially due to
higher constraint violations because of lower value of λ and higher value of
ln(σ).

Figures 5.18a and 5.18b show the evolution of constraints and the penalty term. We see
a similar trend of high constraint value during initial iterations, as in section 5.1 , but the
constraints die out due to strict penalisation as the penalty term increases. On compar-
ing figure 5.8a with 5.18a , we observe that during initial iterations, constraint violation is
higher in the present case due to stochastic conditions.

(a) Figure shows evolution of C with itera-
tion under stochastic input velocity.

(b) Figure shows evolution of λ with itera-
tion under stochastic input velocity.

Figure 5.18.: Figure shows evolution of C and λ for the stochastic constrained optimization
problem with iterations. The constraints during the initial iterations is more
due to lower value of λ.

Figures 5.19 and 5.20 show the evolution of the mean and the variance of each variable
with iterations, respectively. We started with the values shown in equations 5.2 and 5.3 .

54

5.2. Stochastic constrained optimization using ScoutND

Similar to section 5.1 , we observe from figure 5.20 that (ln(σX5)) and (ln(σY 5)), the variance
of the point closest to the outlet boundary, i.e. control point 5, which influences the objec-
tive function the most, have the least variance values as the solution converges. Moreover,
the parameters of the first point, (ln(σX1)) and (ln(σY 1)), have a lower variance as well,
indicating that the shape of the lower boundary in the region where the fluid goes through
expansion, has a notable effect on the objective function. Figure 5.21 , shows the evolution
of the learning rate with iterations. As explained in section 5.1 we see a similar reduction
in oscillations and smooth convergence of µ and ln(σ) as the learning rate drops.

Figure 5.19.: Figure shows the evolution of µ of each input variable with iterations for the
stochastic constrained optimization problem.

55

5. Results

Figure 5.20.: Figure shows the evolution of ln(σ) of each input variable with iterations for
stochastic constrained optimization problem. It is observed that the point
near the boundary i.e. point 5, with the minimum cross-section area, has the
least variance as these points are critical in the optimization of the objective
function. Variance of parameters of Point 1 have the next lowest values, in-
dicating that the shape of the lower boundary in the region where the fluid
goes through expansion, has a notable effect on the objective function.

56

5.2. Stochastic constrained optimization using ScoutND

Figure 5.21.: Figure shows evolution of learning rate with iterations for stochastic con-
strained optimization problem. The effect of drop in learning rate is evident
in the evolution of µ and ln(σ) as the oscillations reduce and stable conver-
gence is observed.

57

5. Results

5.3. Non-stochastic unconstrained optimization using ScoutND

In this section, we present the results of non-stochastic unconstrained optimization ex-
plained in section 4.7 . We defined the formula for obtaining the transformed control points
in equation 4.35 . We observed during the initial tests that the values of kx and ky can in-
fluence the convergence. Higher values of kx and ky make the sigmoid function steeper,
and the sampled points can move to regions of vanishing gradients. Moreover, a steeper
sigmoid function increases sensitivity to small changes in input. We choose kx = ky = 3
to ensure an effective transformation of sampled values. The initial guess, θ = {µ, ln(σ)},
used for our unconstrained optimisation problem is defined as,

µ = [−1.0, 0.0, −0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 1.0, 0.0], (5.5)
ln(σ) = [−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0]. (5.6)

Figures 5.22 and 5.23 show the velocity and pressure contours for the optimized Pitz-
Daily problem. The PitzDaily domain for the unconstrained problem is significantly dif-
ferent than the stochastic constrained and the non-stochastic constrained problems pre-
sented in section 5.1 and 5.2 but follows the same principle of increasing the pressure near
the inlet by restricting the flow in between the domain. Figure 5.25 shows the pressure
plotted on a line along the flow i.e. in the X-direction, extending from the inlet to the out-
let, for the initial and the optimized values. We observe from figure 5.25 that the pressure
difference between the inlet and the outlet is negligible for the optimized curve, which
directly influences the objective function. In addition to that, the variation in pressure
values along the domain is higher in the present case than the stochastic constrained and
non-stochastic constrained problems. We observe from figure 5.23 that the point of the
minimum cross-section has shifted from the end of the domain towards the centre. We
also observe that in the present case, the minimum cross-section area is the least among
the cases discussed previously. We mentioned that the critical factor responsible for mini-
mizing the objective function is the cross-section area. This makes the y-coordinates of the
control points a more sensitive parameter than the x-coordinates. The sigmoid transforma-
tion has a higher gradient in the middle region, which starts to vanish towards the outer
extremes. When dealing with sigmoid transformations, the total gradient of the objective
function with respect to the input is represented as a product of two; the derivative of the
objective function with respect to the sigmoid transformation function and the derivative
of the sigmoid transformation function with respect to the input. The total gradient starts
to vanish if this product is zero, i.e. if one of the derivatives from the product becomes
zero. At the outer extremes of the sigmoid transformation, the derivative of the sigmoid
transformation function with respect to the input starts to vanish, which eventually makes
the total gradient approach zero. As the total gradient becomes zero, moving towards the
minimum becomes infeasible and the value of our input parameters does not change. This
causes the the graphs of our input parameter, i.e. the mean and the variance to flatten

58

5.3. Non-stochastic unconstrained optimization using ScoutND

out. Since the y-coordinates are the more sensitive parameters, the optimizer is bound to
guide these parameters towards the extremes of the sigmoid function in order to change
the cross-section area, and we observe that except for one, all the y-coordinates get stuck in
the upper and the lower bounds of the bound box. The x-coordinates, on the other hand,
being less sensitive parameters do not move towards the extremes of the sigmoid function
in search for the optimum, as changes in x-coordinates do not significantly affect the objec-
tive function. Figure 5.24 shows that most of the y-coordinates move towards the extremes
of the bound except for Y 5, while the x-coordinates do not, affirming our statement that the
y-coordinates being the more sensitive parameter, will move towards the upper extreme
of the sigmoid function to reduce the cross-section area despite the decreasing gradients
of the sigmoid function. As the y-coordinates move to the upper extremes of the sigmoid
function, the cross-section area reduces significantly. In order to equalize the pressure at
the inlet and outlet boundaries, it was necessary for the point of minimum cross-section
area to shift towards the centre, thereby moving the x-coordinates of the minimum cross-
section area towards the centre instead of being near the outlet boundary.

Figure 5.22.: Velocity Contour obtained from simulation of optimized values of the non-
stochastic unconstrained optimization problem.

Figure 5.23.: Pressure Contour obtained from simulation of optimized values of the non-
stochastic unconstrained optimization problem. We observe that the pressure
at the inlet and outlet boundaries have the same color, indicating very close
pressure values.

59

5. Results

Figure 5.24.: Figure shows the domain and the control points of the non-stochastic uncon-
strained optimization problem. The numbers next to the point denote the
point number. We observe that most of the y-coordinates are stuck in the up-
per and the lower bound except for Y 5, which are the regions where gradients
vanish.

Figure 5.25.: Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configurations
for the non-stochastic unconstrained optimization problem. We can observe
that the pressure difference between the inlet and the outlet is almost negli-
gible for the final configuration. The variation in pressure is higher than the
Constrained problems.

Figures 5.26a and 5.26b show the evolution of objective function and learning rate with
iterations. We observe that the objective function converges faster at higher learning rates.
Similar to section 5.1 , we see a reduction in oscillations and observe smooth convergence
of µ and ln(σ) as the learning rate drops.

60

5.3. Non-stochastic unconstrained optimization using ScoutND

(a) Figure shows evolution of E[f] with iter-
ation.

(b) Figure shows evolution of learning rate
with iteration.

Figure 5.26.: Figure shows evolution of E[f] and learning rate with iterations for the non-
stochastic unconstrained optimization. The effect of drop in learning rate is
evident in the evolution of µ and ln(σ) as the oscillations reduce and stable
convergence is observed.

Figures 5.27 and 5.28 show the evolution of mean and the variance with iterations. We
observed in the constrained optimization problems that the points near the minimum
cross-section area have the least variance values at the end of the optimization, as change
in these parameters significantly affect the objective function. In the present case, points 3
and 4, which are present near the minimum cross-section area should have followed the
same trend. Instead, as the solution progressed, the y-coordinates of these points were
stuck in regions of vanishing gradients. For this reason, further changes in these values
have a negligible effect on the objective function and their variances do not reduce as much
as in the constrained optimization problem. We also observe that the variance (ln(σY 5)) is
the least. This is expected because this parameter is not stuck in the regions of vanishing
gradients and is in the proximity of the outlet boundary, which can significantly affect the
objective function. Moreover, as we observed in previous cases, the points near the outlet
can significantly affect the objective function. The plots lying in the middle of the region of
figure 5.27 have the least variance, as seen in figure 5.28 . This is because these parameters
do not get stuck in regions of vanishing gradients. Moreover, we observe that in the con-
strained optimization problems, the point near the expansion area also had less variance
values at the end of optimization. This is not observed in the unconstrained cases as this
point moves to the regions of vanishing gradients and has a high variance at the end of
the optimization. The non-stochastic unconstrained problem converged to a completely
different optimum, indicating that the shape optimization problem is multi-modal.

61

5. Results

Figure 5.27.: Figure shows evolution of µ of each input variable with iterations for the non-
stochastic unconstrained optimization.

Figure 5.28.: Figure shows evolution of ln(σ) of each input variable with iterations for
the non-stochastic unconstrained optimisation problem. It is observed that
ln(σY 3) and ln(σY 4), despite being the variances of the points near the min-
imum cross-section area, do not have much less variance values as they get
stuck in regions of vanishing gradients. The variance ln(σY 5) has the least
variance due to its proximity to the outlet boundary and its presence in the
middle region of the sigmoid function. Unlike constrained optimization prob-
lems, the point near the expansion region has the highest variance.

62

5.4. Stochastic unconstrained optimization using ScoutND

5.4. Stochastic unconstrained optimization using ScoutND

In this section, we present the results of unconstrained optimization under stochastic con-
ditions. We begin with the initial guess defined in equation 5.5 and 5.6 . Figures 5.29 and

 5.30 show the velocity and pressure contours for the optimized PitzDaily problem. The
PitzDaily domain for the stochastic unconstrained problem is similar to the results in the
constrained problems. Figure 5.31 shows the position of control points for the present
case. Similar to the non-stochastic unconstrained problem where most of the points move
towards the extremes of the sigmoid function, the control points in the stochastic problem
follow the same trend but the introduction of stochasticity leads the optimizer to a dif-
ferent profile, designed to accommodate for stochastic conditions. Figure 5.32 shows the
pressure plotted on a line along the flow i.e. in the X-direction, extending from the inlet
to the outlet, for the initial and the optimized values. We observe that the pressure differ-
ence between the inlet and the outlet is negligible for the optimized curve, which directly
influences the objective function.

Figure 5.29.: Velocity Contour obtained from simulation of optimized values of the
stochastic unconstrained optimization problem.

Figure 5.30.: Pressure Contour obtained from simulation of optimized values of the
stochastic unconstrained optimization problem. We observe that the pressure
at the inlet and outlet boundaries have the same color, indicating very close
pressure values.

63

5. Results

Figure 5.31.: Figure shows the domain and the control points of the stochastic uncon-
strained optimization problem. The numbers next to the point denote the
point number. We observe that many of the y-coordinates are stuck in regions
of vanishing gradients except point 5.

Figure 5.32.: Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configurations
for the stochastic unconstrained optimization problem. We can observe that
the pressure difference between the inlet and the outlet is almost negligible
for the final configuration.

Figures 5.33a and 5.33b show the evolution of objective function and learning rate with
iterations. We observe that the objective function converges faster at higher learning rates.
Similar to section 5.1 , we observe a reduction in oscillations and smooth convergence of µ
and ln(σ) as the learning rate drops.

64

5.4. Stochastic unconstrained optimization using ScoutND

(a) Figure shows evolution of E[f] with iter-
ation.

(b) Figure shows the evolution of learning
rate with iteration.

Figure 5.33.: Figure shows evolution of E[f] and learning rate with iterations for the
stochastic unconstrained optimization. The effect of drop in learning rate is
evident in the evolution of µ and ln(σ) as the oscillations reduce and stable
convergence is observed.

Figures 5.34 and 5.35 show the evolution of the mean and the variance with iterations.
We observe that the parameters that do not get stuck in the extremes of the sigmoid func-
tion have less variance values as compared to the ones that get stuck in those regions.
Moreover, (ln(σY 5)) has the least value because this parameter is not stuck in regions of
vanishing gradients and is in the proximity of the outlet boundary. We also observe that,
unlike the constrained optimization problems, the point near the expansion area has high
variance values at the end of optimization as it gets stuck in regions of vanishing gradients.
Although the present case is very similar to the non-stochastic unconstrained problem, the
convergence of variance is slower in the present case because of parameters getting stuck
in regions of vanishing gradients.

65

5. Results

Figure 5.34.: Figure shows evolution of µ of each input variable with iterations for stochas-
tic unconstrained optimisation problem.

Figure 5.35.: Figure shows the evolution of ln(σ) of each input variable with iterations for
stochastic unconstrained optimization problem. We observe that the points
that do not reach the extremes of the sigmoid have low variance. It is ob-
served that the parameter of the point lying near the outlet boundary, where
the cross-section area is minimum, has the least variance as this point is criti-
cal in the optimization of the objective function. We also observe that, unlike
the constrained optimization problems, the point near the expansion area has
high variance values at the end of optimization as it gets stuck in regions of
vanishing gradients.

66

5.5. Comparative Analysis

5.5. Comparative Analysis

In this section, we present a comparison between different simulations of the PitzDaily
problem carried out using ScoutND. Figure 5.36 shows the evolution of the objective func-
tion with iterations of different optimizations carried out using ScoutND. We observe that
the non-Stocastic constrained problem converges fastest. We observe some peaks in the
plot after 50 iterations as the optimizer searches through the domain, but it converges the
fastest as the solution progresses. The constrained stochastic has the slowest convergence
among others. This is expected as the introduction of stochasticity allows the optimizer
to explore the domain more effectively for the minimum, which delays convergence. The
non-stochastic unconstrained converges faster than stochastic unconstrained problem ini-
tially but their convergence plots gradually align. This is expected because as the solution
progresses, many parameters of the unconstrained problem get stuck in the regions of
vanishing gradients.

Figure 5.36.: Figure shows a comparison of stochastic and non-stochastic, constrained
and unconstrained optimization problems using ScoutND. We observe that
the non-stocastic constrained problem converges fastest. The constrained
stochastic has the slowest convergence among others. This is expected due to
the introduction of stochasticity. The non-stochastic unconstrained converges
faster than stochastic unconstrained initially but their convergence rate grad-
ually aligned. This is expected because as the solution progresses, many pa-
rameters of the unconstrained problem get stuck in the regions of vanishing
gradients.

67

5. Results

Table 5.1 highlights the initial and optimized values for the non-stochastic optimizations
carried out using ScoutND. We observe that the non-stochastic unconstrained problem has
the minimum value, despite many of its parameters getting stuck in regions of vanishing
gradients. Table 5.1 highlights the initial and optimized values for the stochastic optimiza-
tions carried out using ScoutND. We observe that the stochastic unconstrained problem
has a lesser value, but it is very close to the stochastic constrained problem.

Optimizer Initial V alue Optimised V alue(ξ) Percentage Reduction

Non-stochastic constrained 0.14047 0.00065 99.53
Non-stochastic unconstrained 0.12364 0.00007 99.94

Table 5.1.: Table shows a comparison of initial and optimized objective values for non-
stochastic problems.

Optimizer Initial V alue Optimised V alue(ξ) Percentage Reduction

Stochastic constrained 0.14047 0.00058 99.58
Stochastic unconstrained 0.12364 0.00045 99.63

Table 5.2.: Table shows a comparison of initial and optimized function values for stochastic
problems.

We compare the results from the constrained optimization problem from ScoutND with
Nelder-Mead, COBYLA, SLSQP and L-BFGS-B. We use non-normalized objective function
values for our comparison. To compare ScoutND with other optimizers, we evaluate the
function at the mean arrays obtained at each iteration. Table 5.3 summarizes the results
of each optimizer for non-stochastic constrained problem. Among the listed optimizers,
Nelder-Mead and L-BFGS-B do not support constraints. Instead of using constraints, we
use bounds defined in equation 4.33 . Figure 5.37 shows the convergence of the error with
iterations. We observe that the Nelder-Mead runs upto significant number of iterations
but fails to converge effectively. The COBYLA, SLSQP and L-BFGS-B methods performed
significantly better, bringing the solution very close to the true optimum value. ScoutND
significantly reduced the function value. Our optimization problem has 10 dimensions
which makes it a medium dimensionality problem. It has been stated in the work of [25]
that COBYLA performs better than ScoutND for relatively low dimensional problems but
fails in the case of high dimensional problems.

68

5.5. Comparative Analysis

Figure 5.37.: Figure shows the error vs iterations for different optimizers for non-stochastic
constrained problems. COBYLA, SLSQP, L-BFGS-B, and ScoutND effectively
optimize the problem but Nelder-Mead fails.

We compare the results of stochastic constrained optimization of different optimizers
with ScoutND. Table 5.3 summarizes the results of each optimizer for the stochastic con-
strained problem. Although, stochastic optimization of engineering systems is necessary,
as there are always some uncertain parameters but in general, they are often expected to
operate at some fixed parameter. We use the mean of our stochastic velocity distribution
as a baseline, to compare the results of different stochastic optimization problems. We sim-
ulate our function using the control points obtained at each iteration of the optimizers, at
the mean velocity. We observe that Nelder-Mead, SLSQP, and L-BFGS-B fail to optimize
the PitzDaily problem under stochastic conditions. This is because the objective function
is noisy, so the approximated Hessian does guarantee a positive definite matrix. SLSQP
requires gradient information for convergence, which is difficult to obtain in the case of
noisy functions. COBYLA performs significantly better than the aforementioned optimiz-
ers. ScoutND proves to be the most effective among all optimizers under stochastic con-
ditions, minimizing the function very close to the true optimum. Figure 5.38 presents the
results of stochastic constrained optimization of different optimizers. Table 5.4 shows the
profiles of the PitzDaily problem for different optimizers. We observe different profiles for
each optimizer, indicating that this optimization problem is multimodal.

69

5. Results

Figure 5.38.: Figure shows the Error vs Iterations for stochastic constrained problems.
SLSQP, L-BFGS-B and Nelder-Mead fail to optimize the problem but
COBYLA performs significantly better. ScoutND outperforms all other op-
timizers in case of stochastic problems.

Optimizer Initial V alue
Optimised V alue

Non− Stochastic

Percentage Reduction

Non− Stochastic

Optimised V alue

Stochastic

Percentage Reduction

Stochastic

ScoutND 0.14047 0.00065 99.53 0.00058 99.58
Nelder-Mead 0.14047 0.07060 49.74 0.07164 49.0

COBYLA 0.14047 0.000005 99.99 0.00428 96.9
SLSQP 0.14047 0.000001 99.99 0.14047 0.0

L-BFGS-B 0.14047 0.000005 99.99 0.14047 0.0

Table 5.3.: Table shows a comparison of initial and optimized function values for different
optimizers for stochastic and non-stochastic problems.

70

5.5. Comparative Analysis

Optimizer non− stochastic constrained stochastic constrained

ScoutND

Nelder-Mead

COBYLA

SLSQP

L-BFGS-B

Table 5.4.: Table shows the optimized profiles for non-stochastic and stochastic optimiza-
tion problems of different optimizers. Different profiles indicate that this opti-
mization problem is multimodal.

71

6. Conclusion

The present work focuses on the optimization of engineering systems using black-box
optimization. ScoutND, a black-box optimization algorithm has been proven to perform
well for high dimensional and stochastic problems. The present work extends the use of
ScoutND to optimize engineering systems. We perform shape optimization of the Pitz-
Daily problem, a test case CFD problem. We used OpenFOAM, an open-source CFD
software to simulate the CFD problem. We used the simpleFoam solver, an OpenFOAM
library to solve steady state, incompressible, turbulent flows, and modified it to accom-
modate for the shape optimization of the PitzDaily problem. To solve the problem, we
modify the lower boundary of the original PitzDaily problem. We define a bound around
the lower boundary. Within this bound, we generate a set of control points, which are
used to generate a curve that replaces the lower boundary in the original PitzDaily prob-
lem. Any point outside this bound is treated as a constraint violation in our optimiza-
tion problem. These control points are provided as an input to the optimizer. We use
Python’s PyFoam library to link our optimizer to OpenFOAM. ScoutND uses Monte Carlo
simulation to estimate the gradient. This allows us to evaluate the functions in parallel
which significantly reduces the computation time. We proposed methods to implement
constrained and unconstrained optimization of the PitzDaily problem under determinis-
tic and stochastic conditions. In the case of non-stochastic constrained optimization, we
observed that the convergence was the fastest. Moreover, the control points near the min-
imum cross-section area have the least variance values, implying that these points have
the most significant effect in minimizing the problem. For the stochastic constrained opti-
mization, we observed a slower convergence when compared with the non-stochastic case
due to the introduction of stochasticity. The shape profile also turned out to be slightly dif-
ferent. Similar to the non-stochastic case, we observed that the points near the minimum
cross-section area have the least variances. For the unconstrained optimization problem,
we used sigmoid transformation to convert our problem to an unconstrained optimization
problem. The sigmoid transformation has an issue of vanishing gradients, which causes
the control points to get stuck into regions of vanishing gradients. We observed this is-
sue in our unconstrained optimization problem where some input parameters were stuck
in regions of vanishing gradients which slowed down convergence(explained in section

 5.3). The stochastic unconstrained optimization faces a similar issue of parameters getting
stuck in regions of vanishing gradients, but the introduction of stochasticity leads the op-
timizer to a different solution. From the simulations, we observed that a control point’s
proximity to the outlet boundary, and the minimum cross-section area, is a critical fac-
tor in minimizing the objective function. A general observation is that the parameters of

73

6. Conclusion

these points have the highest convergence. The point near the region of expansion plays a
critical role in minimizing the objective function. This was evident in the constrained min-
imization problems. However, in the case of unconstrained problems, this effect was not
observed because the point was stuck in regions of vanishing gradients. Tables 5.1 and 5.2

compare the different optimization problems carried out using ScoutND. We compare our
results from ScoutND with other optimizers such as Nelder-Mead, SLSQP, COBYLA, and
L-BFGS-B for stochastic and non-stochastic conditions. We observe that SLSQP, COBYLA,
and L-BFGS-B minimize the problem effectively with a 99.99% reduction in the objective
function under non-stochastic conditions however, Nelder-Mead turns out to be ineffec-
tive with a 49.74% reduction. ScoutND effectively minimizes the problem with a 99.53%
reduction. Under stochastic conditions, ScoutND outperforms all other optimizers with a
99.58% reduction. COBYLA reduces the objective function by 96.9%. SLSQP and L-BFGS-
B completely fail to optimize the problem and Nelder-Mead proves to be ineffective with
49.0% reduction. The optimizers that successfully minimized the problem led to differ-
ent shape profiles of the PitzDaily problem, indicating that the present shape optimization
problem is multimodal. To conclude the present work, we found that ScoutND is effective
in optimizing high-dimensional problems effectively. Moreover, for engineering systems,
where stochasticity is an important factor to consider, ScoutND proves to be the most ef-
fective.

74

List of Figures

 3.1. Figure shows f(x) = |x| and the approximation to the function using dif-
ferent variance values. Lower variance values approximate the function
closely as compared to higher variance values. 12

 3.2. Figure shows Monte Carlo(left) samples and Quasi-Monte Carlo samples(right)
generated using Sobol sequences . 18

 4.1. Figure shows the domain of the PitzDaily problem. 22
 4.2. Figure shows a staggered grid arrangement used for SIMPLE algorithm.

Staggered grid mitigates the checkerboard board problem. 23
 4.3. Figure shows different levels in Multi-Grid from the finest(left) to the coars-

est(right). 28
 4.4. Figure shows a V-cycle Multi-Grid . 29
 4.5. Figure shows a W-cycle Multi-Grid . 29
 4.6. Figure shows a Full Multi-Grid . 30
 4.7. Flowchart representing the OpenFOAM code structure for the PitzDaily

problem . 30
 4.10. Figure shows the STL curve generated using the Catmull-Clark Subdivision

curve. 32
 4.8. Figure shows the new PitzDaily problem. The black line represents the orig-

inal PitzDaily problem. The green box represents the rectangular bound
within which the control points are generated. The blue points represent
the control points. These points are used to generate the red curve which is
the generated Catmull-Clark subdivision curve. 33

 4.9. Figure shows the final PitzDaily domain on which simulation is carried out
for the shape optimization problem. 33

 4.11. Figure shows the STL curve mapped on the original PitzDaily problem. . . 34
 4.12. Figure shows the final simulation on the New Generated Domain 34
 4.13. Figure (4.13a) shows the control point inside the domain while (4.13b) shows

the control point outside the domain. The value of constraint using equation
(4.34) is equal to zero in case (4.13a) and greater than zero in case (4.13b). . . 36

 4.14. Figure shows the control points going out of bound which causes issue in
simulating the PitzDaily problem as the domain splits in between, making
the simulation infeasible. 36

 4.15. Sigmoid Function . 37

75

List of Figures

 5.1. Velocity Contour obtained from simulation using initial values from equa-
tion 5.2 . 44

 5.2. Pressure contour obtained from simulation using initial values from equa-
tion 5.2 . 44

 5.3. Velocity Contour obtained from simulation of optimized values of non-stochastic
constrained optimization problem. 45

 5.4. Pressure Contour obtained from simulation of optimized values of non-
stochastic constrained optimization problem. We observe that the pressure
at the inlet and outlet boundaries have the same color, indicating very close
pressure values. 45

 5.5. Figure shows the domain and the control points for the non-stochastic con-
strained optimization problem. The numbers next to the point denote the
point number. 46

 5.6. Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configuration
for the non-stochastic constrained optimization problem. We can observe
that the pressure difference between the inlet and the outlet is almost negli-
gible for the final configuration. 46

 5.7. Figure shows evolution of E[L] and E[f] with iterations for the non-stochastic
constrained optimization problem. The two graphs are different initially as
the optimizer searches for the minimum throughout the domain because of
lower value of λ and higher value of ln(σ),but align as the solution converges. 47

 5.8. Figure shows evolution of constraint (C) and the penalty term (λ) for the
non-stochastic constrained optimization problem with iterations. The con-
straints during the initial iterations have a higher magnitude due to lower
value of λ. 47

 5.9. Figure shows the evolution of µ of each input variable for the non-stochastic
constrained optimization problem. 48

 5.10. Figure shows the evolution of ln(σ) of each input variable with iterations
for the non-stochastic constrained optimization problem. It is observed that
the points near the boundary, with minimum cross-section area, have the
least variance as these points are critical in the optimization of the objective
function. The point near the expansion area also has a notable effect on the
objective function. 49

 5.11. Figure shows the evolution of learning rate with iterations. The effect of
the drop-in learning rate is evident in the evolution of µ and ln(σ) as the
oscillations reduce and stable convergence is observed. 50

 5.12. Figure shows input velocity samples(left) and the corresponding objective
function vallue(right) for the PitzDaily problem evaluated for 250 samples. 51

 5.13. Velocity Contour obtained from simulation of optimized values of stochastic
constrained problem. 52

76

List of Figures

 5.14. Pressure Contour obtained from simulation of optimized values of stochas-
tic constrained problem. We observe that the pressure at the inlet and outlet
boundaries have the same color, indicating very close pressure values. . . . 52

 5.15. Figure shows the domain and the control points for the stochastic constrained
optimization. The numbers next to the point denote the point number. . . . 53

 5.16. Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configuration
for the stochastic constrained optimization problem. We can observe that
the pressure difference between the inlet and the outlet is almost negligible
for the final configuration. 53

 5.17. Figure shows evolution of E[L] and E[f] for stochastic constrained optimiza-
tion problem with iterations. The two graphs are different initially due to
higher constraint violations because of lower value of λ and higher value of
ln(σ). 54

 5.18. Figure shows evolution of C and λ for the stochastic constrained optimiza-
tion problem with iterations. The constraints during the initial iterations is
more due to lower value of λ. 54

 5.19. Figure shows the evolution of µ of each input variable with iterations for
the stochastic constrained optimization problem. 55

 5.20. Figure shows the evolution of ln(σ) of each input variable with iterations for
stochastic constrained optimization problem. It is observed that the point
near the boundary i.e. point 5, with the minimum cross-section area, has the
least variance as these points are critical in the optimization of the objective
function. Variance of parameters of Point 1 have the next lowest values,
indicating that the shape of the lower boundary in the region where the
fluid goes through expansion, has a notable effect on the objective function. 56

 5.21. Figure shows evolution of learning rate with iterations for stochastic con-
strained optimization problem. The effect of drop in learning rate is evident
in the evolution of µ and ln(σ) as the oscillations reduce and stable conver-
gence is observed. 57

 5.22. Velocity Contour obtained from simulation of optimized values of the non-
stochastic unconstrained optimization problem. 59

 5.23. Pressure Contour obtained from simulation of optimized values of the non-
stochastic unconstrained optimization problem. We observe that the pres-
sure at the inlet and outlet boundaries have the same color, indicating very
close pressure values. 59

 5.24. Figure shows the domain and the control points of the non-stochastic un-
constrained optimization problem. The numbers next to the point denote
the point number. We observe that most of the y-coordinates are stuck in
the upper and the lower bound except for Y 5, which are the regions where
gradients vanish. . 60

77

List of Figures

 5.25. Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configurations
for the non-stochastic unconstrained optimization problem. We can observe
that the pressure difference between the inlet and the outlet is almost negli-
gible for the final configuration. The variation in pressure is higher than the
Constrained problems. 60

 5.26. Figure shows evolution of E[f] and learning rate with iterations for the non-
stochastic unconstrained optimization. The effect of drop in learning rate is
evident in the evolution of µ and ln(σ) as the oscillations reduce and stable
convergence is observed. 61

 5.27. Figure shows evolution of µ of each input variable with iterations for the
non-stochastic unconstrained optimization. 62

 5.28. Figure shows evolution of ln(σ) of each input variable with iterations for
the non-stochastic unconstrained optimisation problem. It is observed that
ln(σY 3) and ln(σY 4), despite being the variances of the points near the min-
imum cross-section area, do not have much less variance values as they
get stuck in regions of vanishing gradients. The variance ln(σY 5) has the
least variance due to its proximity to the outlet boundary and its presence
in the middle region of the sigmoid function. Unlike constrained optimiza-
tion problems, the point near the expansion region has the highest variance.

 . 62
 5.29. Velocity Contour obtained from simulation of optimized values of the stochas-

tic unconstrained optimization problem. 63
 5.30. Pressure Contour obtained from simulation of optimized values of the stochas-

tic unconstrained optimization problem. We observe that the pressure at the
inlet and outlet boundaries have the same color, indicating very close pres-
sure values. 63

 5.31. Figure shows the domain and the control points of the stochastic uncon-
strained optimization problem. The numbers next to the point denote the
point number. We observe that many of the y-coordinates are stuck in re-
gions of vanishing gradients except point 5. 64

 5.32. Figure shows the pressure variation along the flow, starting from the inlet
boundary to the outlet boundary, for the initial and the final configurations
for the stochastic unconstrained optimization problem. We can observe that
the pressure difference between the inlet and the outlet is almost negligible
for the final configuration. 64

 5.33. Figure shows evolution of E[f] and learning rate with iterations for the
stochastic unconstrained optimization. The effect of drop in learning rate
is evident in the evolution of µ and ln(σ) as the oscillations reduce and sta-
ble convergence is observed. 65

 5.34. Figure shows evolution of µ of each input variable with iterations for stochas-
tic unconstrained optimisation problem. 66

78

List of Figures

 5.35. Figure shows the evolution of ln(σ) of each input variable with iterations for
stochastic unconstrained optimization problem. We observe that the points
that do not reach the extremes of the sigmoid have low variance. It is ob-
served that the parameter of the point lying near the outlet boundary, where
the cross-section area is minimum, has the least variance as this point is
critical in the optimization of the objective function. We also observe that,
unlike the constrained optimization problems, the point near the expansion
area has high variance values at the end of optimization as it gets stuck in
regions of vanishing gradients. 66

 5.36. Figure shows a comparison of stochastic and non-stochastic, constrained
and unconstrained optimization problems using ScoutND. We observe that
the non-stocastic constrained problem converges fastest. The constrained
stochastic has the slowest convergence among others. This is expected due
to the introduction of stochasticity. The non-stochastic unconstrained con-
verges faster than stochastic unconstrained initially but their convergence
rate gradually aligned. This is expected because as the solution progresses,
many parameters of the unconstrained problem get stuck in the regions of
vanishing gradients. 67

 5.37. Figure shows the error vs iterations for different optimizers for non-stochastic
constrained problems. COBYLA, SLSQP, L-BFGS-B, and ScoutND effec-
tively optimize the problem but Nelder-Mead fails. 69

 5.38. Figure shows the Error vs Iterations for stochastic constrained problems.
SLSQP, L-BFGS-B and Nelder-Mead fail to optimize the problem but COBYLA
performs significantly better. ScoutND outperforms all other optimizers in
case of stochastic problems. 70

79

List of Tables

 3.1. Values of constants in Adam Optimizer . 15

 4.1. Table shows the simulation settings for the PitzDaily shape optimization
problem. 22

 4.2. Values of constants in k − ϵ equations . 28

 5.1. Table shows a comparison of initial and optimized objective values for non-
stochastic problems. 68

 5.2. Table shows a comparison of initial and optimized function values for stochas-
tic problems. 68

 5.3. Table shows a comparison of initial and optimized function values for dif-
ferent optimizers for stochastic and non-stochastic problems. 70

 5.4. Table shows the optimized profiles for non-stochastic and stochastic opti-
mization problems of different optimizers. Different profiles indicate that
this optimization problem is multimodal. 71

81

Bibliography

[1] J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications. McGraw-
Hill Education, 2010.

[2] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization. Springer, 2017.

[3] G. Vanderplaats, Multidiscipline Design Optimization. Vanderplaats Research & De-
velopment, Incorporated, 2007.

[4] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Pro-
ceedings of COMPSTAT’2010. Physica-Verlag HD, 2010, pp. 177–186.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[6] B. Polyak, “Some methods of speeding up the convergence of iteration methods,”
USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1–17, 1964.

[7] Y. Nesterov, “A method for solving the convex programming problem with conver-
gence rate o(1/k2),′′ pp.543−−547, 1983.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and
stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp. 2121–2159, 2011.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014.

[10] J. Nocedal and S. J. Wright, Numerical Optimization, 2006.

[11] C. G. Broyden, “The convergence of a class of double-rank minimization algorithms 1.
general considerations,” IMA Journal of Applied Mathematics, vol. 6, no. 1, pp. 76–90, 1970.

[12] R. Fletcher and M. J. D. Powell, “A new approach to variable metric algorithms,” The Com-
puter Journal, vol. 13, no. 3, pp. 317–322, 1970.

[13] D. Goldfarb, “A family of variable-metric methods derived by variational means,” Mathe-
matics of Computation, vol. 24, no. 109, pp. 23–26, 1970.

[14] D. F. Shanno, “Conditioning of quasi-newton methods for function minimization,” Mathe-
matics of computation, vol. 24, no. 111, pp. 647–656, 1970.

83

Bibliography

[15] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale optimiza-
tion,” Mathematical Programming, vol. 45, pp. 503–528, 1989.

[16] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “L-BFGS-B: Algorithm 778: L-BFGS-B, FOR-
TRAN routines for large-scale bound-constrained optimization,” pp. 550–560, 1997.

[17] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. Academic Press, 1981.

[18] D. Kraft, A Software Package for Sequential Quadratic Programming, ser. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht.
Wiss. Berichtswesen d. DFVLR, 1988.

[19] J. H. Holland, “Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence,” 1992.

[20] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out
of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp.
148–175, 2016.

[21] H. Karloff, The Simplex Algorithm. Birkhäuser Boston, 1991.

[22] M. J. D. Powell, “A direct search optimization method that models the objective and con-
straint functions by linear interpolation,” 1994.

[23] J. A. Nelder and R. Mead, A Simplex Method for Function Minimization. Oxford University
Press, 1965, vol. 7, no. 4.

[24] J. J. Moré and S. M. Wild, “Benchmarking derivative-free optimization algorithms,” SIAM
Journal on Optimization, vol. 20, no. 1, pp. 172–191, 2009.

[25] A. Agrawal, K. Ravi, P.-S. Koutsourelakis, and H.-J. Bungartz, “Multi-fidelity constrained
optimization for stochastic black box simulators,” 2023.

[26] J. Staines and D. Barber, “Variational optimization,” 2012.

[27] T. Bird, J. Kunze, and D. Barber, “Stochastic variational optimization,” 2018.

[28] C. P. Robert and G. Casella, “Monte carlo statistical methods,” New York, NY, 2004.

[29] S. Alarie, C. Audet, A. E. Gheribi, M. Kokkolaras, and S. Le Digabel, “Two decades of
blackbox optimization applications,” 2021.

[30] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gradient estimation in
machine learning,” 2020.

[31] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning,” in Machine Learning, 1992, pp. 229–256.

84

Bibliography

[32] G. Hinton, “Neural networks for machine learning.” 2012.

[33] S. I. Amari, “Natural Gradient Works Efficiently in Learning,” Neural Computation, vol. 10,
no. 2, pp. 251–276, 1998.

[34] R. Shrestha, “Natural gradient methods: Perspectives, efficient-scalable approximations,
and analysis,” 2023.

[35] R. Karakida, S. Akaho, and S. ichi Amari, “Universal statistics of fisher information in deep
neural networks: Mean field approach,” 2019.

[36] A. V. Fiacco and G. P. McCormick, “The sequential unconstrained minimization technique
(sumt) without parameters,” pp. 820–827, 1967.

[37] G. Louppe, J. Hermans, and K. Cranmer, “Adversarial variational optimization of non-
differentiable simulators,” 2020.

[38] G. C. Pflug, “Optimization of stochastic models: The interface between simulation and
optimization,” 2012.

[39] S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin, and A. G. Baydin, “Black-box opti-
mization with local generative surrogates,” 2020.

[40] N. Ruiz, S. Schulter, and M. Chandraker, “Learning to simulate,” 2019.

[41] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous relax-
ation of discrete random variables,” 2017.

[42] R. G. McClarren, “Uncertainty quantification and predictive computational science: A
foundation for physical scientists and engineers,” 2018.

[43] W. Kool, H. van Hoof, and M. Welling, “Buy 4 reinforce samples, get a baseline for free!”
in DeepRLStructPred@ICLR, 2019.

[44] R. W. Pitz and J. W. Daily, “Combustion in a turbulent mixing layer formed at a rearward-
facing step,” pp. 1565–1570, 1983.

[45] H. Jasak, A. Jemcov, and Željko Tuković, “Openfoam: A c++ library for complex physics
simulations,” 2007.

[46] “Openfoam v9 user guide,” 2021.

[47] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corpora-
tion, 1980.

[48] H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The
Finite Volume Method, 2nd ed. Pearson Education Limited, 2007.

85

Bibliography

[49] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applica-
tions,” AIAA Journal, vol. 32, pp. 1598–1605, 1994.

[50] P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic flows,”
AIAA, vol. 439, 01 1992.

[51] D. C. Wilcox, “Reassessment of the scale-determining equation for advanced turbulence
models,” AIAA Journal, vol. 26, pp. 1299–1310, 1988.

[52] L. H. Hodges, W. Reichelderfer, J. E. Caskey, and Smagorinsky, “General circulation exper-
iments with the primitive equations i . the basic experiment,” 1962.

[53] B. Launder and B. Sharma, “Application of energy dissipation model of turbulence to the
calculation of flow near spinning disc,” Letters Heat Mass Transfer, vol. 1, pp. 131–137, 11
1974.

[54] W. Jones and B. Launder, “The prediction of laminarization with a two-equation model of
turbulence,” International Journal of Heat and Mass Transfer, vol. 15, pp. 301–314, 1972.

[55] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” pp.
269–289, 1974.

[56] A. Brandt, “Multi-level adaptive solutions to boundary-value problems math comptr,”
1977.

[57] T. J. Chung, “Computational fluid dynamics,” 2010.

[58] S. J. Daniels, A. A.-A. M. Rahat, R. M. Everson, G. R. Tabor, and J. E. Fieldsend, “A suite
of computationally expensive shape optimisation problems using computational fluid dy-
namics,” 2018.

86

	Acknowledgements
	Abstract
	Introduction and Background Theory
	Introduction
	Literature Review

	Method and Theory
	ScoutND
	Monte Carlo Method
	Gradient Estimation
	Adam Optimizer
	Natural Gradients and Fisher Information Matrix
	Problem Definition
	Variance Reduction
	ScoutND Algorithm

	PitzDaily
	CFD Simulation of PitzDaily
	SIMPLE Algorithm
	Turbulence Model
	Geomtric Algebraic Multi-Grid (GAMG)

	OpenFOAM Simulation
	Catmull-Clark Subdivision Curves
	Objective Function
	Constrained Optimization
	Normalization of Input
	Unconstrained Optimization
	Normalization of Output
	Stochasticity in Fluid flows
	Objective Function Evaluation

	Results and Conclusion
	Results
	Non-stochastic constrained optimization using ScoutND
	Stochastic constrained optimization using ScoutND
	Non-stochastic unconstrained optimization using ScoutND
	Stochastic unconstrained optimization using ScoutND
	Comparative Analysis

	Conclusion
	Bibliography

