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Abstract 

Despite advances in BIM technology, achieving a 
comprehensive machine-readable design representation 
for Automated Code Checking (ACC) remains a 
challenge. We propose decomposing regulatory checks 
into sets of semantic enrichment tasks, each tailored with 
a suitable solution. We demonstrate this approach with a 
case study on Israeli regulations for security rooms, 
focusing on two distinct semantic enrichment tasks. We 
use the Girvan-Newman algorithm to isolate single 
apartments in a floor plan. A GNN then categorizes 
security rooms based on the ratio of supporting walls, 
according to the ranges defined in the regulations. The 
approach paves the way for a highly automated ACC 
methodology, with potential implications for diverse 
regulatory contexts.  

Background 
The conventional approach to ACC involves two pivotal 
tasks: the translation of human-written text into machine-
readable rules and the establishment of a machine-
readable representation of the building design. The ability 
to translate regulatory documents into hard-coded rule 
sets is limited due to ambiguous, subjective, or vague 
regulatory statements, requiring manual interpretation 
and contextual knowledge (Nawari, 2019; Zhang and El-
Gohary, 2017). Despite the prevalence of BIM technology 
and the adoption of Industry Foundation Classes schema 
(IFC) as an industry standard, achieving a machine-
readable representation of the design that contains all 
semantic information required for ACC, remains a 
challenging task that often leads to manual preprocessing 
of the BIM models.  
Moreover, matching regulatory concepts to those 
represented in the computer-readable design remains 
highly reliant on human understanding. Recent research 
proposed implementing ML approaches for ACC, 
eliminating the need for compiling explicit rule sets 
(Bloch et al., 2023). However, the efficacy of ML-based 
code checking is contingent on comprehensive input 
information. As BIM models often lack the necessary 
highly rich semantic information, semantic enrichment 
offers an automated solution for supplementing it.  

Complex code clauses typically require querying the 
topological relationships among building elements, for 
example, checks of wall continuity across security rooms 

in Israeli Home Front Command regulations, rules of 
accessible route and line of visibility in the New Zealand 
Building Code, checks on support of plaster skins in the 
International Residential Code, rules related to the travel 
path and distance in the ADA Standards for Accessible 
Design and the International Building Code. 

Verifying building regulations necessitates a thorough 
understanding of the complex relationships among 
various elements throughout the building's structure. 
Consequently, code checking requires extended data 
structures or a proof-of-solution describing how the 
design proves compliance rather than merely fulfilling 
prescribed criteria. For example, graph processors can be 
integrated to address implicit spatial properties (Solihin 
and Eastman, 2015). In this work, we decompose the ACC 
task into a series of semantic enrichment tasks aiming to 
automatically supplement needed information for the 
checking process, focusing on complex requirements that 
involve relational aspects of the design. We turn to graph-
based semantic enrichment techniques to address these 
specifications, leveraging the inherent relational structure 
within the design data. 

Semantic enrichment  

Semantic enrichment of BIM models emerged as a 
solution for lifting the need for multiple domain-specific 
Model View Definitions (MVDs) by reasoning over 
explicitly represented information to derive new facts 
about the model (Belsky et al., 2016). While some efforts 
previously focused on querying BIM to extract implicit 
information stored in models (Borrmann et al., 2006; 
Mazairac and Beetz, 2013; Wülfing et al., 2014), they 
often fell short in providing explicit representations of 
inferred information as part of the building information, 
limiting downstream applications. The SEEBIM system, 
proposed by Belsky et al. (2016), leveraged domain expert 
knowledge, represented as logical statements, to infer new 
facts and explicitly add them to the model. Wu and Zhang 
(2019) also implemented a rule-based, iterative method 
for classifying BIM objects in IFC, leveraging geometric 
features to identify objects with similar geometric 
representations. They also recognized that pure geometry, 
without contextual information is limited in the ability to 
distinguish between elements with similar geometry.  In 
parallel, semantic enrichment solutions that are based on 
semantic web technology have been suggested and 
illustrated as well. In fact, one of the motivations for using 
the Web ontology, as presented by Pauwels et al. (2017), 



is utilizing logical inference and proofs, which involves 
the use of First Order Logic (FOL) to derive new insights 
from the initial building model. Combining inferred 
information with the original data represents the core 
objective of semantic enrichment.  

Departing from the FOL methodology, Bloch & Sacks 
(2018) explored different methods for semantic 
enrichment. Their work compares a rule-based and a ML-
based approach for semantic enrichment by 
demonstrating both for classifying room types in 
residential apartments. They found machine learning 
worked better than rules for this specific task. With the 
recent developments in the ML domain, and the 
introduction of Graph Neural Networks (GNNs) (W. L. 
Hamilton et al., 2017), the applicability and benefit of 
such models has been demonstrated for the same room 
type classification problem (Wang et al., 2022). The 
major benefit of such models is the ability to leverage not 
only geometric but also contextual information about the 
building elements. Motivated by limitations in existing 
BIM software regarding semantic representation and 
interoperability, the authors proposed leveraging graph-
based data structures coupled with enhanced GNN 
architectures that incorporate both node and edge features. 
They develop the SAGE-E algorithm and generate the 
Room Graph dataset containing apartment layouts. 
Experiments demonstrate the superior performance of 
SAGE-E over conventional ML methods for room type 
classification, validating the promise of GNNs for BIM 
semantic enrichment. This groundbreaking effort 
establishes a research foundation for applying GNNs to 
augment BIM semantics. As suggested in Bloch and 
Sacks (2020), different semantic enrichment tasks can 
benefit from different approaches to solution. Until now, 
the more classic graph-based methods remain mostly 
unexplored in the context of semantic enrichment.  

Graph representation of building design information  

Building models encapsulate a wealth of architectural and 
engineering design knowledge, along with specific native 
design intentions tailored to meet the predefined 
requirements. In the realm of representing the embedded 
design properties and the complex topological 
relationships among building elements, graph structures 
have emerged as a prevalent tool (Vilgertshofer and 
Borrmann, 2017). 

The adoption of graph-based methodologies facilitates the 
transformation of building models of structures into 
networks. These networks comprise nodes and edges, 
which represent building objects and interrelationships. 
The graph representation hinges on the specific nature of 
the building's design structure and the intended 
application scenarios. Furthermore, the choice of the 
graph structures depends on the varying objectives of the 
query. For example, dependency graphs are utilized to 
predict the clash change components (Hu et al., 2023), and 

parametric building graphs are employed to match 
detailing patterns (Abualdenien and Borrmann, 2021). 

Method 
In this work, we propose a comprehensive, hybrid 
approach for addressing the challenges of ACC. We 
demonstrate the approach through a case study, focusing 
on the effectiveness of graph-based semantic enrichment 
in addressing the requirements defined by the Israeli 
Home Front Command regulations for security rooms 
(Home Front Command, 2010). The experiment 
described below is structured to fulfill two essential tasks 
integral to the checking process. The first task is to 
correctly identify the security rooms in the BIM model. 
As previous work on the subject demonstrated effective 
solutions under the assumption that we can isolate 
individual apartments in the building, we implement 
community detection to automatically isolate spatial 
groupings representing individual apartments. The second 
task addressed in the described experiment is 
automatically recognizing the ratio of vertical 
connectivity between the walls of the security rooms.   
Recognizing the complexity of calculating this ratio, we 
propose a ML-based classification approach using GNNs. 
The GNN model was trained to categorize the ratio of 
vertical continuity into predefined ranges specified by the 
regulations, streamlining the checking process without the 
need for precise numeric calculations. The checking 
process is then complete using a set of logical statements. 
By implementing diverse computational techniques, we 
demonstrate an enhanced ACC process with no additional 
information requirements for the modeler. 

Experiment and results 

Israeli regulations for security rooms  

Security rooms (bomb shelters) are designated spaces 
within a building specifically designed and constructed to 
provide protection during emergency situations related to 
military actions. These spaces are fully constructed from 
reinforced concrete and equipped with specialized 
windows and doors that are designed to withstand 
shrapnel from a blast. As per Israeli Home Front 
Commands regulations (2010), there are several 
restrictions for the components of the individual security 
rooms, such as room dimensions, thickness of slabs and 
walls, dimensions of openings, etc. However, collections 
of security rooms are also examined together. The 
security rooms must be vertically stacked so that the 
reinforced concrete walls are continuous and reach the 
foundations. Due to functional design requirements, 
parking, storage, or other non-protective spaces (security 
space) often reside above or below the security rooms, 
where reinforced concrete walls may interfere with the 
functionality of these spaces. Alterations like wall 
removals, added openings, or weaker materials in those 
spaces can disconnect the security room from its base. 



 
Figure 1: Ratio of vertical continuity of security room walls. 

Regulations thus allow for some vertical discontinuity 
contingent upon certain conditions. One key determinant 
that dictates additional measures required is the 
percentage of the security room walls that are continuous 
and reach the foundation. We will refer to this as the “ratio 
of vertical continuity.”  
The regulations delineate three ranges, as illustrated in 
Figure 1, for the ratio of vertical continuity: spaces with 
over 70% continuous walls require no further 
enhancements, effectively extending the requirements for 
individual security rooms through all associated levels. 
Spaces with 50-70% vertical continuity and spaces 

showing less than 50% vertical continuity must 
incorporate thicker structural walls and slabs and are 
restricted in the accepted sizes of openings. Note that the 
ratio of vertical continuity can be calculated per wall 
individually, thereby dictating additional constraints on 
the permissible horizontal displacement between walls. 
And can be calculated for the entire space as the sum of 
the inner boundaries defined by the walls that compose 
the space. The ratio of vertical continuity for spaces 
determines the requirements for the concrete thickness of 
slabs and walls in the security shaft. The ability to check 
the compliance of a design to the concrete thickness 
requirements is the focus of this work.  The calculation of 
the ratio of vertical continuity for walls and spaces 
involves a large set of guidelines, conditions, and 
exceptions. The topology of the walls supporting the 
security rooms, their orientation, sizes of openings and 
distances between them, and their proximity to existing 
wall corners, etc., can impact the calculation of the 
vertical continuity ratio since, under specific conditions, 
openings must be subtracted from it.   

To automate this complex calculation based on BIM data, 
parametric and relational details of building components 
that are not explicitly present in the models must be 
considered. While some of the needed information is 
intrinsic to individual components, some rely on 
relationships between model elements, which may be 
more difficult to retrieve.  
In this work, we demonstrate a workflow towards a highly 
automated compliance checking of these regulations 
using a case study of a residential building that includes 
overall five security shafts.   

Community detection and room classification  

As explained in the previous sections, any kind of ACC 
routine is contingent upon information requirements that 
are not always given in the BIM model in their explicit 
form. Spaces are the most primitive building elements that 
are crucial for many checks. Given that there are no 
standards or enforced naming conventions, the room 
names provided by designers become unreliable, which 
poses challenges for downstream applications. Given that 
our goal is to avoid introducing information specifications 
to the design process, the implementation of semantic 
enrichment to support ACC emerges as a promising 
solution.  In the context of automated space function 

classification, it has been demonstrated that semantic 
enrichment for classifying abstract elements, such as 
spaces, is better addressed with ML than rules (Bloch and 
Sacks, 2018). Later, a graph-based approach for room 
type classification has also been demonstrated using 
GNNs (Wang et al., 2022). In both cases, however, the 
basic assumption was that we operate within the 
boundaries of an apartment, and the question of how we 
can isolate the apartments without additional information 
requirements for the designers remained open. We 
propose an automatic solution by implementing a 
community detection algorithm. 
Community detection algorithms are useful for analyzing 
complex networks to identify subgroups within them. In 
the context of buildings, where spatial relationships and 
connectivity are crucial, algorithms for community 
detection can help uncover distinct spatial groupings 
indicative of separate apartments. In this test case, we 
implement the Girvan-Newman algorithm (Girvan and 
Newman, 2002) for community detection, which was 
originally designed for social networks. The principle of 
this algorithm is isolating communities in a graph by 

Figure 2: Graph representation of individual floors and community detection for isolating apartments. 



iteratively removing edges with high betweenness 
centrality, a measure of how often an edge lies on the 
shortest path between two nodes. It is important to note 
that while the Girvan-Newman algorithm is considered 
relatively slow, it has been determined that it can be 
effectively used on graphs with less than 1000 edges 
(Fortunato, 2010). As we are concerned with floorplan 
layouts that translate into small graphs (in our case, no 
more than 200 edges), the algorithm provided accurate 
results within seconds. Other community detection 
algorithms were not examined. 
To implement the suggested technique, we followed the 
workflow described in Figure 2. Utilizing the API of the 
BIM authoring tool (Autodesk Revit) and Dynamo 
(Autodesk, 2022), we collect the building elements that 
engage in any connection relationship within the spatial 
layouts, including spaces and doors. Additionally, 
designers typically use separation lines to divide distinct 
functional areas within shared spaces. Thus, both the 
connecting doors, typically situated in boundary walls, 

and separation lines are recognized as accessible or 
connecting elements. Furthermore, we perform 
topological queries on the BIM model to determine the 
relationships between spaces and accessible elements, 
forming the undirected edges within the graph structure. 
For each selected element, the spatial data (floor level) 
and the associated semantic data (element type) are 
queried and attached to the related graph node. Within the 
graph structure representing the whole building model, 
the elements that belong to each floor are determined by 
grouping the unconnected subgraphs. As a result, each 
floor plan of the model is individually processed, leading 
to the automated generation of accessibility graph 
structures for our test case. 
Once graph extraction was complete, the Girvan-Newman 
algorithm for community detection was applied on the 

typical floors, and all individual apartments were 
correctly identified, after which the previously developed 
methods for room type classification can be applied. At 
the end of this stage, we assume all the security rooms in 
the model are identified and correctly tagged.   

Graph Neural Networks for semantic enrichment  

Calculating the ratio of vertical connectivity is a complex 
task. However, the absolute numerical value itself holds 
minimal significance. What is important is discerning the 
category of further requirements associated with the 
ratio—whether it falls within the 70%, 50-70%, or below 
50% range. In essence, complex calculation can be 
avoided by implementing a ML model tailored 
specifically for this classification task. Given that the 
calculation heavily relies on the relationships between 
walls, GNNs emerge as a valuable tool for this 
classification task. Unlike traditional models, GNNs 
possess the unique ability to account for and leverage the 
complex interconnections among building elements.  

To enable the application of GNNs, two steps are 
implemented. First, we aggregate all security rooms 
within a single shaft and link them to any continuous walls 
that support the security rooms. Given the high 
complexity of the interconnections among security-room-
related elements, we interpret the design model to 
generate a shaft-centered graph structure utilizing the 
authoring tool’s API via Dynamo (Autodesk, 2022). The 
topological query analyzes all shaft-related building 
elements across all floors. 
By taking the bounding box coordinates of all shafts as 
horizontal references, we identify all security spaces that 
align horizontally with the shafts on all floors. We then 
filter out the irrelevant spaces and perform a bounding 
box geometric analysis at the space level to calculate the 
connecting relationships in the vertical direction. To 

Figure 3: Graph representation of security shafts - extracting the vertical graphs. 



achieve this, we vertically extend the space bounding 
boxes with a pad dimension threshold, which equals to the 
identified slab thickness. We also analyze the bounding 
relationships, including the boundary interactions 
between spaces and walls and the hosting relationships 
between walls and openings like windows and doors. This 
analysis translates the topological relationships of 
building elements and their hosts into the graph structure. 
Similarly, we apply the bounding box analysis to the 
selected walls to provide edge information about whether 
the structural walls of security rooms are continuously 
stacked until the foundations are reached. The 
abovementioned topological queries and geometric 
calculations are accomplished in an automated manner by 
taking the shaft-related building elements extracted from 
the design authoring tool as a basis. 
The generated shaft-centered graph structure includes 
nodes that correspond to the individual components from 
the building models - walls, spaces, doors, and windows 
(Figure 3). Each node contained continuous geometric 
features like minimum and maximum x, y, z coordinates, 
area, length, height, and width, as well as intrinsic 
categorical features indicating the specific component 
type. The graph edges represent connection relationships 
between components based on the BIM layouts. Within 
the security shaft, each space is connected to the spaces 
above and below. Moreover, these spaces link with the 
associated walls, while the doors and windows are 
connected to the host wall. The walls of each space are 
linked with the aligned walls above and below that belong 
to security rooms on a level above and level below. 
and the resulting graph representation was used to train a 
GNN model for node classification to categorize shaft 
components by vertical connection length ratio. To train 
the model, a set of 710 BIM models of shafts representing 
security rooms and other components that may be found 
in these shafts were generated and labeled manually using 
the Revit platform. To introduce realistic design 
variations into the models, the researchers received 
guidance from one of Israel’s building control companies, 
in addition to reviewing several building control reports. 
One example of such a design variation is interconnected 
security shafts (where two security rooms share a wall) 
versus shafts comprising individual security rooms. 
Overall, the data set consists of 51,630 nodes and 78,811 
edges, capturing the connections and relationships 
between the various components in the shafts. 
The use of synthetic data comes in response to the great 
challenge of collecting relevant data, as industry 
stakeholders are usually reluctant to share BIM models. 
Hence, we follow the workflow suggested by (Bloch et 
al., 2023), where fully synthetic data was used for training 
a GNN model for ACC. It could be shown that the trained 
model had similar accuracy rates when applied for making 
predictions for real design.  
In this case, the labels correspond to the three distinct 
classes characterized by the proportions of vertical 
connection ratios, as defined in the regulations. Namely, 
70%, 50-70% range, and less than 50%. As illustrated in 
Figure 4, there are four types of elements represented as 

nodes in the graphs: spaces, walls, doors, and openings. 
Hence, we introduce an additional class that is related to 
“not applicable” (NA) nodes representing windows and 
doors.  
The graph representations of these models were obtained 
using an automated workflow based on data extracted 
from the models to a spreadsheet. Since the synthetic data 
includes only individual security room shafts, the graph 
extraction process was different, but the resulting graph 
representation structure is identical to the structure 
obtained by the process depicted in Figure 4.  
Using the described synthetic data set, a two-layer Graph 
Attention Network (GAT) model (Veličković et al., 2017) 
was trained to perform a node classification task. The 
training set was split into 70% for training, 15% for 
validation and 15% for testing. The testing phase provided 
a comprehensive assessment of the model's capabilities, 
even though the test phase was performed using a portion 
of the synthetic data set. The testing accuracy achieved 
94.58% reflecting the model's proficiency in correctly 
classifying nodes within the graph. Precision, recall, and 
F1 score further validate the model's effectiveness, with 
values exceeding 94%. The described results are the 
outcome of iteratively evaluating multiple configurations 
of GNN models (such as GCN (Kipf and Welling, 2016) 
and SAGE (W. Hamilton et al., 2017)), model 
architectures and graph structures. Within the variations 
in graph structure, we evaluated graphs with different 
building elements to node mappings and with different 
feature vectors assigned to each node. 
Table 1 illustrates the confusion matrix providing the 
results of predictions vs. actual labels of the test set. It 
provides insights into the model's classification behavior, 
with high counts along the diagonal indicating accurate 
predictions with a notable emphasis on correctly 
identifying all the 2025 instances in the "not applicable" 
class (class 4). For class 1 (>70%), the total count of nodes 
was 3,778, among these 3,650 instances were correctly 
predicted. However, 62 instances were misclassified as 
class 2 (50-70%) and additional 66 instances were 
misclassified as class 3 (<50%). 
 

Table 1 Confusion matrix for synthetic test set 

Class 2 (50-70%) showed the lowest accuracy, with 664 
instances, out of which 449 instances correctly predicted, 
but 196 misclassified as class 1, and 19 misclassified as 
class 3. These misclassifications can be attributed to the 
imbalanced data set and insufficient number of examples 
covering these cases. Class 3 (<50%) predictions reached 
a better classification accuracy in comparison to class 2.  

 Actual 

P
re

di
ct

ed
 

 >70% 50-70% <50% NA 

>70% 3650 62 66 0 

50-70% 196 449 19 0 

<50% 74 3 1201 0 

NA 0 0 0 2025 



The total count of true class was 1278, out of which 1201 
instances were correctly predicted. However, 74 instances 
were misclassified as Class 1, and an additional three 
instances were misclassified as Class 2. This also 
indicates the difficulty in identifying class 2 as it has high 
similarity to both class 1 and class 3. A better 
representation of this class can improve the results. In case 
the model is still not accurate enough in identifying class 
2, we might think of a slightly different workflow that 
relies on distinguishing between the common case (>70% 
continuity) and the other cases. 
After testing the model using a portion of the synthetic 
data, it was utilized to generate classifications on a real 
test case model. The real model is a residential building 
comprising 11 floors. Each floor accommodates five 
apartments, while the ground and first floors contain extra 
common and technical service areas. Additionally, the 
building includes two underground levels dedicated to 
parking, storage, and technical rooms. Each apartment in 
the building features a dedicated security room. 
Notably, the model has five security shafts, where the first 
and second shafts are interconnected, as are the third and 
fourth shafts, via a shared separating wall (see Figure 4). 
The fifth shaft stands independently. Applying the 
classifier to the described real case, the model predictions 
achieved an accuracy of 86.84%. The confusion matrix 
for predictions is described in Table 2. 
 

Table 2 Confusion matrix for the real case 

The complexity of the chosen test case is a result of 
aiming to maximize the available parking spaces, making 
the configuration of the walls on the lower levels of the 
building is not a standard case. While most of the 
elements follow the preferred guidelines of at least 70% 

vertical connection ratio, we can see representation of the 
other cases as well. It's noteworthy that the real-world 
instances include unique configurations that are not 
encountered and were not present in the training data. 
 
Results of classification were injected back into the BIM 
model to be used for further checking requirements for 
reinforced concrete elements' thickness. Based on the 
predicted class for the spaces, a set of logical rules was 
inactivated to check the model for compliance with 
requirements for reinforced concrete element thickness. 
The overall checking process thus becomes “hybrid” by 
relying partially on graph-based and rule-based 
techniques. The supporting wall ratio for each space 
determines what requirements are applicable for the walls 

 and slabs in the safety areas. Obviously, a 
misclassification of the elements by the GNN can lead to 
incorrect checking results. In this case, 90% of the 
security rooms in the model (nodes representing spaces) 
were classified correctly by the GNN model. The overall 
checking results based on this classification showed that 
out of a total of 265 walls and slabs checked, only 27 
elements were incorrectly identified as “not compliant” 
while they truly are compliant with the code. Namely, 27 
false positive cases. Zero false negative cases were 
identified. In the context of ACC, this distinction is very 
important since the non-compliant cases will have to be 
reevaluated by the designer\checker, but the false 
negatives may be approved despite not adhering to the 
code. ML models are not deterministic and may provide 
unreliable results. This limitation can be mitigated by 
further development of data sets, refinement of the 
models, and by constant validation against real cases. 
Additionally, by incorporating human oversight into the 
process, a more robust and reliable compliance-checking 
framework can be established. 

Discussion and Conclusions  
The extensively researched ACC domain may benefit 
from a significant shift in the overall approach. Hard-
coded rules, being explicitly predefined and manually 

 Actual 

Pr
ed

ic
te

d 

 >70% 50-70% <50% NA 

>70% 208 6 6 0 

50-70% 9 21 9 0 

<50% 23 2 32 0 

NA 0 0 0 102 

Figure 4: Graph representation of security shafts. 



encoded, are often too restrictive. Furthermore, there is a 
tendency to confine the entire process to one single 
method, predominantly relying on rule-based systems. As 
a result, we miss opportunities for leveraging mutually 
beneficial methods that may lead to higher levels of 
automation in the overall process.  Such approaches may 
incorporate learning techniques in addition to the human 
coded predetermined rules. The flexibility provided by the 
learning techniques is crucial in the field of ACC, where 
building regulations can be ambiguous or complex. One 
of the main limitations of such models is that they are not 
deterministic therefore, may be unreliable in the process 
of ACC. However, with large enough data sets and 
continuous exposure to diverse examples, these models 
can enhance their performance, making them well-suited 
for handling tasks from the code compliance checking 
domain. This work introduces a novel approach for ACC, 
leveraging semantic enrichment to enhance the level of 
automation that can be achieved.  The approach is based 
on the capacity to decompose regulatory clauses into 
distinct semantic enrichment tasks, each addressed by a 
suitable solution. We demonstrate this approach with a 
test case, addressing specific requirements of Israeli 
regulations for security rooms. As described in this paper, 
most of the methods implemented in this case are based 
on graph theory, including community detection 
algorithms, and Graph Neural Networks. The introduced 
workflow is highly automated, with very little 
information requirements for the designers, showcasing 
the ability to reach a higher level of automation in the 
process by implementing diverse methods for every code 
clause. Although the training process includes manual 
work, it is not part of the checking as the model can be 
pretrained. The checking process itself relies on minimal 
data requirements and minimal manual BIM 
preprocessing, mainly making sure that the spaces have 
been created and that the security rooms are properly 
tagged.      

Limitation 

Several limitations are acknowledged in this study. 
Firstly, the transformation of the accessibility and 
connectivity relationships into graphs requires a well-
defined BIM model, where space elements are 
comprehensively placed and correctly separated in the 
building layouts. While we aim not to add information 
requirements or specifications, good quality modeling 
practice is expected. The utilized building graphs, which 
are only parts of the various graph structures, are selected 
according to the topological features of the envisaged 
regulatory requirement. Thus, the applicability of the 
proposed graph-based enrichment for code checking on 
other regulations is to be justified. 
Second, while we demonstrate the potential of GNNs for 
ACC, we acknowledge the limitation of the developed 
classifier, which is tailored to the context of the Israeli 
regulations for security rooms. Implementing a similar 
technique for different regulations would necessitate the 
collection or creation of new, context-specific synthetic 

datasets for training the models. Furthermore, the 
automated routines for data extraction must be modified 
to generate graphs with needed structures. Another 
limitation of using a synthetic data set for training is that 
real-world data may follow assumptions that are not well 
represented in the synthetic set. While we tried to limit 
this problem by working under the guidance of a building 
control company, our access to the design documents was 
limited. This underscores the importance of future efforts 
to address the scalability of the approach to accommodate 
a broader spectrum of regulations, including generating 
graph datasets tailored to support various requirements. 
The demonstrated promising model performance across 
various evaluation metrics is encouraging to continue 
developing this research direction.   

Contribution 

This work contributes to the ACC domain, addressing 
several existing challenges and paving the way for a more 
automated and adaptable approach to code compliance 
checking. The proposed approach for code checking, 
which leverages graph representation, introduces a novel 
way of thinking about ACC processes, where we do not 
have to be confined solely to rules. This approach 
facilitates a more comprehensive investigation of design 
knowledge. It has the capacity to elucidate not only the 
instances of non-compliance but also to subsequently link 
other elements that may be interconnected with these 
issues. Such enriched results empower designers with 
detailed insights, enabling more effective resolution 
strategies (Wu et al., 2023). This approach lays the 
groundwork for the advanced automated design 
adaptation method known as “Design Healing.” By 
providing a more nuanced understanding of the design 
and its compliance with building codes, designers can 
leverage this foundational data to make informed 
adjustments, enhancing the overall efficacy and 
compliance of the building model. 
This work lays the groundwork for future research on 
automated code checking, encouraging the exploration of 
hybrid models that harness the strengths of diverse 
computational techniques for enhanced regulatory 
compliance. The proposed workflow is fully automated, 
with minimal information requirements to be 
supplemented by users. The success of the approach 
underscores the potential of semantic enrichment to 
enhance the level of automation achieved in ACC.  
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