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Omni-Kernel Modulation for
Universal Image Restoration

Yuning Cui, Wenqi Ren and Alois Knoll, Fellow, IEEE

Abstract—Image restoration is the process of recovering a clean
image from a degraded observation. In order to achieve this,
it is essential to refine features at multiple scales. This paper
develops an effective omni-kernel modulation module to enhance
multi-scale representation learning for image restoration. The
module consists of three branches, namely global, large, and
local branches, which are designed to learn global-to-local feature
representations efficiently. Specifically, the global branch achieves
a global perceptive field via the dual-domain channel attention
and frequency-gated mechanism. Furthermore, to provide multi-
grained receptive fields, the large branch is formulated using
different shapes of depth-wise convolutions with unusually large
kernel sizes. Moreover, we complement local information with
a point-wise depth-wise convolution. Finally, we demonstrate
the effectiveness of our omni-kernel modulation module in two
cases: general image restoration and all-in-one image restoration
tasks. Incorporating our method into a convolutional backbone
results in a model that achieves state-of-the-art performance on
the 15 datasets for three representative image restoration tasks,
including image dehazing, desnowing, and defocus deblurring.
Moreover, by integrating our module into a pure Transformer-
based backbone, the model demonstrates competitive perfor-
mance against state-of-the-art algorithms in two all-in-one image
restoration settings: the three-task and five-task settings.

Index Terms—Omni-kernel modulation, image restoration, all-
in-one image restoration.

I. INTRODUCTION

IMAGE restoration aims to reconstruct a sharp image from a
degraded counterpart, which may suffer from degradations

such as haze, noise, and blur [1], [2]. To deal with this
longstanding and ill-posed problem, conventional approaches
have utilized various hand-crafted features and assumptions to
restrict the solution space. However, these approaches are not
applicable to more challenging real-world scenarios.

In recent years, convolutional neural networks (CNNs)
have demonstrated superior performance over traditional ap-
proaches on image restoration tasks by learning generalizable
priors from large-scale datasets [5]–[7]. To boost performance,
many sophisticated functional units have been developed or
borrowed from other domains for image restoration, such as
the encoder-decoder architecture [8], residual connection [9],
dilated convolution [10], and attention mechanisms [11], [12].
More recently, Transformer models have been introduced into
image restoration, significantly advancing the state-of-the-art
performance [1], [13], [14]. However, pursuing large-scale
receptive fields using self-attention leads to high complexity.
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Fig. 1. (a) FLOPs vs. PSNR on the SOTS-Indoor [3] dataset for image
dehazing. (b) The number of parameters vs. PSNR on the DPDD [4] dataset
for image defocus deblurring. Our network achieves a better trade-off between
performance and computation overhead over other state-of-the-art algorithms.

In contrast to the convolution operator, which has limited
receptive fields, the Transformer can effectively model long-
range dependencies. Inspired by this operation, a few recent
works on CNNs strike back by designing efficient frame-
works with large kernel convolutions, such as 31 × 31 in
RepLKNet [15] and 51 × 51 in SLaK [16]. In the context
of image restoration, LKDNet [17] decomposes a 21 × 21
convolution into a smaller depth-wise convolution and a depth-
wise dilated convolution for image dehazing. LaKDNet [18]
leverages large kernel convolutions (e.g., 9 × 9) followed
by point-wise convolutions to obtain large effective receptive
fields for image deblurring. MAN [19] decomposes a large
kernel convolution into a depth-wise convolution, a depth-wise
dilated convolution, and a point-wise convolution. Neverthe-
less, the receptive fields generated by these methods remain
constrained, and they do not provide global receptive fields.

This paper examines the potential of unusual large kernel
convolutions for image restoration by utilizing a 63 × 63
depth-wise convolution. Furthermore, large strip-based convo-
lutions are used to enhance representation learning for high-
fidelity reconstruction. To mitigate the computational overhead
associated with these large convolutions, they are deployed
only in the bottleneck position. Moreover, we employ dual-
domain channel attention and a frequency-gated mechanism
to obtain global receptive fields. In addition to pursuing large
receptive fields, we leverage a 1×1 depth-wise convolution to
complement local information for small degradations. Finally,
the omni-kernel modulation (OKM) is formed by organizing
the abovementioned designs in parallel, thereby enhancing the
ability of the network to handle multi-scale degradations.

The employment of OKM in the bottleneck of a CNN-based
backbone results in a model that achieves state-of-the-art per-
formance on 15 datasets for three representative image restora-
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tion tasks. In particular, our model demonstrates a notable
superiority over the recent Transformer model Fourmer [20]
by 3.47 dB PSNR with comparable complexity on the SOTS-
Indoor [3] dataset (see Figure 1 (a)). For single-image defocus
deblurring, our model achieves a performance gain of 0.2 dB
PSNR over the strong Transformer model Restormer [1] in the
combined category of the DPDD [4] dataset, while consuming
46% fewer parameters. Moreover, the model demonstrates
remarkable proficiency in the image desnowing task, outper-
forming the recent algorithm IRNeXt [12] by 0.7 dB PSNR
on the widely used CSD [21] dataset.

Furthermore, our OKM can effectively serve the all-in-one
image restoration. When incorporated into a pure Transformer-
based backbone, our model outperforms PromptIR [22] by
0.19 dB PSNR when averaged across three image restora-
tion tasks under the all-in-one setting. Besides, compared
to IDR [23], our model obtains an average performance
improvement of 1.88 dB under the five-task setting. Overall,
the contributions of this study are summarized as follows:

• We present an omni-kernel modulation module that ef-
ficiently captures multi-scale receptive fields for image
restoration. The large-scale information is modulated via
dual-domain processing and large kernel convolutions of
different shapes.

• By incorporating the proposed plug-and-play module
into a CNN-based backbone, the model achieves state-
of-the-art performance on 15 widely used benchmark
datasets for three image restoration tasks, including image
dehazing, desnowing, and defocus deblurring.

• The Transformer model, equipped with the proposed
module, performs favorably against state-of-the-art algo-
rithms under two all-in-one image restoration settings.

This paper is an extension of the conference paper [24]. The
improvements made to the previous version are as follows:

• The established CNN-based model is extended to three
remote sensing image dehazing datasets and obtains com-
petitive performance compared to general and elaborately
designed algorithms. Furthermore, we utilize another
nighttime dehazing dataset, GTA5 [25], for evaluation.

• We investigate the effectiveness of our module under two
all-in-one image restoration settings. The OKM-based
model exhibits superior performance compared to the
recent PromptIR [22] under the three-task setting, with
a 0.19 dB PSNR improvement. Furthermore, our model
demonstrates a notable performance enhancement of 1.88
dB PSNR over the IDR [23] model under the five-task set-
ting. Additionally, we present experimental results for the
single-task setting in accordance with PromptIR [22] and
for evaluating the generalization ability following [23].

• We conduct more ablation studies in general and all-in-
one image restoration to confirm the efficacy of OKM.

II. RELATED WORKS

A. Image Restoration

As a challenging problem, image restoration aims to recover
a clean image from its degraded version, playing an important
role in many scenarios. Due to its highly ill-posed property,

many conventional algorithms have been proposed mainly
based on various assumptions and hand-crafted features, which
are inapplicable to complicated practical applications.

Recently, deep learning methods have demonstrated superior
performance compared to traditional competitors by learning
generalizable priors from large-scale datasets [26]. These
frameworks can be broadly classified into CNN-based and
Transformer-based methods. CNN-based methods have long
dominated image restoration by designing advanced functional
units [27]. For example, mixed convolution attention is utilized
in [28] to reduce feature redundancy based on depth-wise
convolutions of different kernel sizes. PGC-Net [29] leverages
multi-scale patch-wise features for modulation. SFNet [30]
employs a dynamic selective frequency module to identify the
most informative frequency for reconstruction. To model long-
range dependencies, Transformer [31] has been incorporated
into image restoration [14], [32]. To reduce the complexity
of self-attention, common practices include restricting self-
attention regions [13], [33] and switching from the spatial
dimension to the channel dimension [1]. Despite these mea-
sures, Transformer models remain expensive for pursuing
long-range dependencies. Moreover, the Transformer block
is unable to capture multi-scale receptive fields. This paper
presents an efficient and effective modulation module that
is capable of learning multi-scale representations, including
global information.

B. Large Kernel Network
In recent years, inspired by the plausible reasons behind the

success of Transformer, namely the long-range dependencies
modeling ability, CNN-based methods have employed large
kernel convolutions in an attempt to rival the effectiveness
of Transformer. For example, RepLKNet [15] achieves a
kernel size of 31 × 31 by following several guidelines for
designing large convolutions, thereby significantly narrowing
the performance gap between CNNs and Transformer models.
SLaK [16] employs sparse factorized 51 × 51 kernels to
confront Transformer methods. In the realm of image restora-
tion, LaKDNet [18] employs a combination of large kernel
(9 × 9) depth-wise convolutions and point-wise convolutions
to expand the effective receptive field. MAN [19] develops the
large kernel attention by decomposing a convolution into three
distinct types of convolutions. LKD-Net [17] decomposes a
depth-wise convolution into a smaller depth-wise convolution
and a depth-wise dilated convolution. Our strategy differs from
the aforementioned schemes in four aspects: (a) We investigate
the potential of unusually large kernel convolutions for image
restoration, specifically 63× 63; (b) In addition to the square
depth-wise convolution, we employ strip versions in different
directions to provide diverse shapes of receptive fields; (c)
The dual-domain processing is employed to achieve full-size
receptive fields. (d) An extremely lightweight 1×1 depth-wise
convolution is used to complement local information.

C. Global Modeling Network
Transformer has become renowned for their capacity for

modeling long-range dependencies [1], [13], [34], [35]. How-
ever, these methods cannot fully capture global information
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Fig. 2. The architecture of the CNN-based backbone involving our OKM. FFT and IFFT denote fast Fourier transform and its inverse operation, respectively.

due to the quadratic complexity of self-attention. Recently,
researchers have sought to bypass this limitation by leveraging
frequency learning techniques. A common practice is to adopt
existing tools, such as the fast Fourier transform [36], wavelet
transform [10], and global average pooling [37], to generate
explicit or implicit frequency features from spatial inputs [38].
These features are then modulated through convolutions, and
if necessary, the inverse transform converts the modulated
features into the spatial domain for further processing. In
contrast to these approaches, our frequency modulation is
realized via a frequency-gated mechanism, wherein the at-
tention weights are learned from the inputs and imposed
on features via multiplication. This improves the adaptability
of the model to manage degradations of different types and
degrees. Besides, the dual-domain channel-wise operator also
enhances the representation learning ability of the model.

D. All-in-One Image Restoration

Although task-specific and general image restoration ap-
proaches have produced promising performance on various
tasks, users must select the appropriate version for the cur-
rent task based on prior knowledge. Furthermore, employing
different copies for different degradation types and levels is
impractical for resource-constrained equipment. To address
these issues, all-in-one image restoration has emerged as a
promising topic by dealing with multiple degradations using
a unified model [39], [40]. For example, AirNet [41] employs
a contrastive learning strategy to differentiate diverse degra-
dation types. PromptIR [22] pre-defines a pool of prompts
to guide the restoration process. IDR [23] first establishes the
task-oriented prior hubs, which are used to perform restoration
in the second stage. These methods are designed to distinguish
different degradation types. In contrast, our OKM introduces

the enhanced multi-scale representation learning ability into
the all-in-one model, achieving promising performance.

III. METHODOLOGY

We begin by describing the pipeline of the CNN-based
model, which involves our omni-kernel modulation module
(OKM). We then delineate the architectural details of OKM.

A. Overall Pipeline

As shown in Figure 2 (a), the model adopts the encoder-
decoder architecture, consisting of three scales in both the
encoder and decoder stages. The ResGroup comprises multiple
residual blocks, each with two 3 × 3 convolutions and the
GELU [42] nonlinearity in between. OKM is only inserted
into the bottleneck position, where features have the lowest
resolution, in order to reduce the computational overhead.

Given an input image I ∈ R3×H×W , we first leverage
a 3 × 3 convolution to project the image into embedding
features of size C × H × W , where C denotes the number
of channels, and H × W specifies the spatial pixels. Next,
the resulting features are fed into the encoder stage to extract
in-depth representations. The downsampling operation is im-
plemented by a strided convolution, which expands the number
of channels while reducing the spatial dimension. After being
processed by the proposed OKM, the features pass through
the decoder network to restore high-resolution representations.
During this process, the decoder features are concatenated with
the encoder features to assist in recovery, followed by a 1× 1
convolution to reduce the number of channels by half. The
upsampling layer is accomplished by a transposed convolution,
which enlarges the spatial dimension and reduces the number
of channels. Finally, a 3×3 convolution generates the learned
residual image, which is then added to the input image to
produce the final restored output.
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Fig. 3. Experimental results for using depth-wise convolutions of different
kernel sizes in the large branch.

B. Omni-Kernel Modulation (OKM)

The architecture of OKM is shown in Figure 2 (b). Given
features X ∈ RC×H×W , after being processed by a 1 × 1
convolution, the features are fed into three branches, namely
local, large, and global branches, to enhance multi-scale repre-
sentation learning. The results of the three branches are fused
by addition and modulated by another 1×1 convolution. Next,
we introduce the internal components these branches.

1) Large Branch: In this branch, we apply a cost-effective
depth-wise convolution of kernel size K × K in order to
achieve a large receptive field. In addition to the regular depth-
wise convolution, we also employ 1 × K and K × 1 depth-
wise convolutions in parallel to the square one to harvest
strip-shaped contextual information, inspired by strip-based
self-attention [33], [43]. To circumvent the introduction of a
significant computational burden associated with large kernel
convolutions, the module is placed in the bottleneck position.

The potential of employing large convolutions for image
restoration is investigated by gradually increasing the kernel
size K. The experimental results are presented in Figure 3. In
general, the peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) metrics increase as the kernel size is
enlarged from K = 3 to K = 63. The employment location
of the module allows for the adoption of an unusually large
kernel size to capture large-scale different shapes of receptive
fields with few parameters and low complexity. Ultimately,
K = 63 is selected in the large branch of OKM for enhanced
performance. The cost-effective large branch yields a notable
performance enhancement of 3.97 dB PSNR while introducing
only additional 0.56M parameters and 2.28 GFLOPs.

2) Global Branch: Image restoration frameworks are pri-
marily trained on cropped image patches, with the bottleneck
features typically having a spatial size of 64 × 64. Conse-
quently, we adopt the largest odd kernel in the large branch.
However, the full-size images are considerably larger than the
training patches. As a result, a 63 × 63 kernel cannot cover
the global field. To alleviate this issue, we superadd the global
modeling capability by employing dual-domain processing in
the global branch. The global branch comprises a dual-domain
channel attention module (DCAM) and a frequency-based

spatial1 attention module (FSAM).
Given features XGlobal ∈ RC×H×W , the DCAM first ap-

plies frequency channel attention (FCA) to XGlobal as follows:

XFCA = IF(F(XGlobal)⊗WFCA
1×1 (GAP(XGlobal))) (1)

where F and IF are fast Fourier transform and its inverse
operator, respectively; XFCA, W1×1 and GAP indicate the
output of FCA, a 1×1 convolution and global average pooling,
respectively; ⊗ is element-wise multiplication. The Fourier
processing enables the refinement of global features in an
efficient manner in accordance with the convolution theorem.
The resulting features are subsequently fed into the spatial
channel attention module (SCA), which is expressed as:

XDCAM = XFCA ⊗W SCA
1×1 (GAP(XFCA)) (2)

where XDCAM is the output of DCAM. DCAM only enhances
dual-domain features at the channel-wise coarse granularity.
Then, we apply the frequency-based attention module among
the spatial dimension to refine the spectrum at a fine-grained
level, which is formally expressed as:

XFSAM = IF(F(W 1
1×1(XDCAM))⊗W 2

1×1(XDCAM)) (3)

where XFSAM is the output of FSAM. By doing this, the
model attends to informative frequency components for high-
fidelity image reconstruction.

3) Local Branch: In light of the crucial role played by
local information in image restoration [1], [13], we introduce
an extremely lightweight yet effective local branch for local
signals modulation using a 1 × 1 depth-wise convolutional
layer, as illustrated in Figure 2 (b). The efficacy of this
approach is demonstrated in Table VII.

IV. EXPERIMENTS: GENERAL IMAGE RESTORATION

We apply the previously introduced CNN-based model to
general image restoration tasks by training separate copies
for different datasets. The experiments are conducted on
15 datasets for three tasks: image dehazing, image defocus
deblurring, and image desnowing. In the tables, the best and
second best results are marked in bold and underlined.

A. Implementation Details

According to the task complexity, we scale the model by
setting different numbers of residual blocks in each ResGroup,
i.e., N = 4 for dehazing and desnowing, and N = 16 for
deblurring. Unless stated otherwise, the following hyperpa-
rameters are adopted. The models are trained using the Adam
optimizer with dual-domain L1 loss functions [24]. The batch
size is set to 8. The initial learning rate is set to 2e−4 and
gradually decreased to 1e−6 using cosine annealing. For data
augmentation, the cropped patches of size 256 × 256 are
randomly horizontally flipped with a probability of 0.5. FLOPs
are calculated on the 256× 256 patch size.

1This spatial indicates the spatial dimension instead of the spatial domain.
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Fig. 4. Image dehazing comparisons on the SOTS [3] dataset. The top and bottom images are obtained from SOTS-Indoor and SOTS-Outdoor, respectively.

TABLE I
IMAGE DEHAZING COMPARISONS ON THE DAYTIME SYNTHETIC AND REAL-WORLD DATASETS.

SOTS-Indoor [3] SOTS-Outdoor [3] Dense-Haze [44] NH-HAZE [45] O-HAZE [46] I-Haze [47]
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DCP [48] 16.62 0.818 19.13 0.815 10.06 0.39 10.57 0.52 16.78 0.65 12.38 0.40
AOD-Net [49] 20.51 0.816 24.14 0.920 13.14 0.41 15.40 0.57 15.03 0.54 10.86 0.41
GridDehazeNet [50] 32.16 0.984 30.86 0.982 13.31 0.37 13.80 0.54 23.51 0.83 18.73 0.77
MSBDN [51] 33.67 0.985 33.48 0.982 15.37 0.49 19.23 0.71 24.36 0.75 19.62 0.62
FFA-Net [52] 36.39 0.989 33.57 0.984 14.39 0.45 19.87 0.69 22.12 0.77 19.72 0.73
AECR-Net [53] 37.17 0.990 - 15.80 0.47 19.88 0.72 - -
PMNet [54] 38.41 0.990 34.74 0.985 16.79 0.51 20.42 0.73 24.64 0.83 -
MAXIM-2S [55] 38.11 0.991 34.19 0.985 - - - -
DeHamer [35] 36.63 0.988 35.18 0.986 16.62 0.56 20.66 0.68 - -
SDCE [38] - - 16.85 0.60 20.42 0.74 24.92 0.84 20.81 0.82
DehazeFormer-L [34] 40.05 0.996 - - - - -
Fourmer [20] 37.32 0.990 - 15.95 0.49 19.91 0.72 - -

Ours 40.79 0.996 37.68 0.995 16.92 0.64 20.48 0.80 25.64 0.94 21.72 0.87

B. Datasets

1) Image Dehazing: We evaluate the method on four types
of dehazing datasets: daytime synthetic/real-world, nighttime,
and remote sensing dehazing datasets. We adopt RESIDE [3]
for daytime synthetic scenarios. Separate models are trained on
its two subsets: the indoor training set (ITS) and the outdoor
training set (OTS). Subsequently, the ITS-trained and OTS-
trained models are applied to the test sets of RESIDE (SOTS-
Indoor and SOTS-Outdoor), respectively. The model is trained
on ITS for 1000 epochs. For OTS, the model is trained for 30
epochs with an initial learning rate of 1e−4.

Additionally, the model is evaluated on four real-world
datasets. Following [35], [37], the models are trained for 5000
epochs on a patch size of 800× 1200 with a batch size of 2.
Furthermore, we evaluate the model on two nighttime datasets,
NHR [56] and GTA5 [25], by separately training the model
for 300 epochs with an initial learning rate of 1e−4.

Besides, the model is applied to remote sensing with Sate-
Haze1k [57]. The model is individually trained on its three
subsets (Thin, Moderate, and Thick) for 1000 epochs with a
batch size of 32 and an initial learning rate of 8e−4.

2) Image Desnowing: We evaluate our model on three
datasets for image desnowing, including Snow100K [6],
SRRS [58], and CSD [21]. We adopt the same dataset config-
uration as previous methods [12], [37], [58] for fairness. The
model is trained for 2000 epochs on each dataset.

12.24 dB

Input

12.02 dB

DeHamer

13.57 dB

Ours

PSNR

Target

Fig. 5. Real-world dehazing comparisons on the Dense-Haze [44] dataset.

3) Image Defocus Deblurring: Consistent with [1], [9],
we utilize DPDD [4] for evaluation. This dataset comprises
500 indoor/outdoor scenes captured with a DSLR camera.
Each scene contains four images labeled as right view, left
view, center view, and all-in-focus ground truth. We train the
model by feeding the center view images and reducing the
discrepancy between the predicted output and the ground truth.

C. Experimental Results

1) Image Dehazing Results: We conduct dehazing experi-
ments on four kinds of datasets: a daytime synthetic dataset
(RESIDE [3]), four daytime real-world datasets (Dense-
Haze [44], NH-HAZE [45], O-Haze [46], and I-Haze [47]),
two nighttime datasets (NHR [56], GTA5 [25]), and a remote
sensing dataset (SateHaze1k [57]). The results for daytime
datasets are presented in Table I. Our model achieves the best
results on most metrics. Specifically, it outperforms the expen-
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Fig. 6. Nighttime image dehazing comparisons on the GTA5 [25] dataset.

TABLE II
NIGHTTIME IMAGE DEHAZING COMPARISONS ON THE GTA5 [25] DATASET.

Methods GS [60] MRP [61] Ancuti et al [62] Yan et al [25] CycleGAN [63] Jin et al [59] FocalNet [37] Ours

PSNR↑ 21.02 20.92 20.59 27.00 21.75 30.38 30.62 31.53
SSIM↑ 0.639 0.646 0.623 0.850 0.696 0.904 0.909 0.920
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Fig. 7. Nighttime image dehazing comparisons on the NHR [56] dataset.

TABLE III
NIGHTTIME IMAGE DEHAZING COMPARISONS ON THE NHR [56] DATASET.

GS MRP OSFD HCD FSNet-S FocalNet
Method [60] [61] [56] [64] [65] [37] Ours

PSNR↑ 17.32 19.93 21.32 23.43 24.35 25.35 27.92
SSIM↑ 0.629 0.777 0.804 0.953 0.965 0.969 0.979

sive DehazeFormer-L [34] by 0.74 dB PSNR on the SOTS-
Indoor [3] dataset with only 14% FLOPs, as shown in Figure 1
(a). Furthermore, our model demonstrates superior perfor-
mance on all real-world datasets compared to SDCE [38],
which is elaborately designed for real-world scenarios. The
visual comparisons for SOTS and Dense-Haze are illustrated
in Figure 4 and Figure 5, respectively. Our results are more
faithful than those of other competitive algorithms.

Additionally, we assess the efficacy of our method on
the nighttime dataset, GTA5 [25], wherein the ground truth
images are captured in night scenes. Table II shows that our
method exhibits a notable enhancement in performance com-
pared to the general method [37] and the specially designed
method [59]. Figure 6 shows that our model recovers more
details (e.g., the moon) from the nighttime hazy image than the
other two algorithms. Furthermore, we present results on the
nighttime image dehazing dataset NHR [56], whose ground-
truth images are in the daytime scenes. Table III shows that
our method outperforms the recent FocalNet [37] by 2.57 dB
PSNR and 0.01 SSIM. Figure 7 illustrates that the results
yielded by our network are closer to the ground-truth targets.

TABLE IV
IMAGE DEHAZING RESULTS ON THE REMOTE SENSING SATEHAZE1K [57]
DATASET UNDER THREE LEVELS: THIN, MODERATE, AND THICK. MODELS

ARE SEPARATELY TRAINED AND TESTED ON EACH SUBSET.

Thin Moderate Thick
Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DCP [48] 13.15 0.725 9.78 0.574 10.25 0.585
AOD-Net [49] 19.54 0.854 20.10 0.885 15.92 0.731
H2RL-Net [66] 20.91 0.880 22.34 0.906 17.41 0.768
FCFT-Net [67] 23.59 0.913 22.88 0.927 20.03 0.816
Uformer [13] 22.82 0.907 24.47 0.939 20.36 0.815
C2PNet [68] 19.62 0.880 24.79 0.940 16.83 0.790
Restormer [1] 23.08 0.912 24.73 0.933 18.58 0.762
Trinity-Net [69] 21.55 0.884 23.35 0.895 20.97 0.823

Ours 23.80 0.973 26.77 0.978 22.36 0.953

TABLE V
IMAGE DESNOWING COMPARISONS ON THE CSD [21], SRRS [58], AND

SNOW100K [6] DATASETS.

CSD SRRS Snow100K Params
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ (M)

DesnowNet [6] 20.13 0.81 20.38 0.84 30.50 0.94 15.6
All in One [70] 26.31 0.87 24.98 0.88 26.07 0.88 44
JSTASR [58] 27.96 0.88 25.82 0.89 23.12 0.86 65
HDCW-Net [21] 29.06 0.91 27.78 0.92 31.54 0.95 6.99
TransWeather [40] 31.76 0.93 28.29 0.92 31.82 0.93 21.9
FSNet-S [65] 35.33 0.98 31.39 0.98 33.36 0.95 3.95
FocalNet [37] 37.18 0.99 31.34 0.98 33.53 0.95 3.74
IRNeXt [12] 37.29 0.99 31.91 0.98 33.61 0.95 5.46

Ours 37.99 0.99 31.70 0.98 33.75 0.95 4.72

As image dehazing plays an important role in remote
sensing, we apply our model to three subsets of a widely used
remote sensing dehazing dataset, SateHaze1k [57]. Table IV
shows that our model performs better than other general and
task-specific competitors in removing remote sensing degrada-
tions of three different degrees. In particular, on SateHaze1k-
Thick, our method significantly outperforms the specially
devised Trinite-Net [69] by 1.39 dB PSRN and 0.13 SSIM.

2) Image Desnowing Results: We evaluate the proposed
model on three widely used datasets for image desnowing,
including Snow100K [6], SRRS [58], and CSD [21]. Ta-
ble V shows that the network exhibits a strong snow removal
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Fig. 8. Image desnowing comparisons on the CSD [21] dataset.
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Fig. 9. Image defocus deblurring comparisons on the DPDD [4] dataset.

TABLE VI
SINGLE-IMAGE DEFOCUS DEBLURRING COMPARISONS ON THE DPDD [4] DATASET.

Indoor Scenes Outdoor Scenes Combined Params
Method PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ (M)

DPDNet [4] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277 31.03
KPAC [71] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227 2.06
DRBNet [9] - - 25.73 0.791 - 0.183 11.69
IFAN [72] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217 10.48
MDP [73] 28.02 0.841 0.027 - 22.82 0.690 0.052 - 25.35 0.763 0.040 0.303 46.86
Restormer [1] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178 26.16
LaKDNet [18] - - 26.15 0.810 - 0.155 17.7

Ours 28.99 0.877 0.024 0.169 23.51 0.751 0.049 0.241 26.18 0.812 0.037 0.206 14.02

capability. Specifically, it outperforms the recent algorithm
IRNeXt [12] by 0.14 dB PSNR on the Snow100K dataset
while using 14% fewer parameters. On the CSD dataset, which
contains more complex snow scenarios, the superiority of our
model is more pronounced, indicating the efficacy of our
approach in addressing intricate snow degradations. The visual
comparisons in Figure 8 illustrate that our results are more
visually pleasing than those of other methods.

3) Image Defocus Deblurring Results: We verify the effec-
tiveness of the network for single-image defocus deblurring
using the DPDD [4] dataset. Table VI shows that our model
achieves superior performance compared to other methods
on most metrics. In particular, our model achieves a notable
improvement of 0.27 dB PSNR over the strong Transformer
model Restormer [1] in outdoor scenes while utilizing only
54% parameters. Moreover, compared to LaKDNet [18],

which also employs large kernel convolutions, our model
yields performance gains of 0.03 dB PSNR and 0.002 SSIM
on the combined category with 21% fewer parameters, as
illustrated in Figure 1 (b). Figure 9 shows that our method
generates a more visually faithful result than competitors.

D. Ablation Studies

Unless stated otherwise, we perform ablation studies by
training the model with one residual block in each ResGroup
on ITS [3] for 300 epochs and evaluating on SOTS-Indoor [3].
The baseline is obtained by removing OKM from this model.

1) Effects of Individual Components: We progressively add
the designed large branch, small branch, and global branch to
the baseline model. Table VII shows that the baseline model
achieves 31.32 dB PSNR on SOTS-Indoor. The unusually large
regular convolution results in a significant gain of 3.75 dB
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TABLE VII
ABLATION STUDIES FOR THE PROPOSED COMPONENTS IN OKM.

Large Branch Small Branch Global Branch
# Baseline 63×63 63×1 1×63 DCAM/FCA DCAM/SCA FSAM PSNR↑ SSIM↑ Params/M FLOPs/G

1 ✓ 31.32 0.98357 1.48 15.44
2 ✓ ✓ 35.07 0.99082 2.02 17.65
3 ✓ ✓ ✓ 35.15 0.99082 2.03 17.69
4 ✓ ✓ ✓ 35.16 0.99093 2.03 17.69
5 ✓ ✓ ✓ ✓ 35.29 0.99088 2.04 17.72
6 ✓ ✓ ✓ ✓ ✓ 35.48 0.99120 2.04 17.72
7 ✓ ✓ 32.84 0.98748 1.49 15.44
8 ✓ ✓ ✓ ✓ ✓ ✓ 35.82 0.99151 2.05 17.72
9 ✓ ✓ 32.35 0.98676 1.49 15.44

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 36.12 0.99188 2.07 17.72
11 ✓ ✓ 33.32 0.98879 1.81 15.57
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 36.48 0.99204 2.40 17.86

TABLE VIII
ABLATION STUDIES FOR THE NUMBER OF RESBLOCKS ON IMAGE DEHAZING AND DESNOWING DATASETS.

Image Dehazing Image Desnowing
SOTS-Indoor [3] SOTS-Outdoor [3] CSD [21] Snow100K [58] SRRS [6] Params FLOPs

ResBlocks PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ (M) (G)

N=4 40.79 0.996 37.68 0.995 37.99 0.99 33.75 0.95 31.70 0.98 4.72 39.67
N=16 41.82 0.997 39.39 0.996 39.97 0.99 33.95 0.96 32.13 0.98 14.02 126.9

TABLE IX
ABLATION STUDIES FOR FSAM. F AND S DENOTE THE FREQUENCY AND

SPATIAL PATHS IN FSAM, RESPECTIVELY. F-F MEANS USING TWO
FREQUENCY PATHS.

Method F-F S-S F-S (FSAM)

PSNR↑ 23.98 31.35 33.32
SSIM↑ 0.925 0.984 0.989

over the baseline. Furthermore, the vertical and horizontal
strip-based convolutions produce performance gains of 0.08
dB and 0.09 dB, respectively. The dual-dimensional variant
further improves the performance to 35.29 dB, demonstrating
the effectiveness of capturing different shapes of receptive
fields. The extremely lightweight small branch boosts the
accuracy to 35.48 dB by enhancing local information. Finally,
we investigate the efficacy of individual components in the
global branch. FCA, SCA, and FSAM achieve performance
gains of 1.52 dB, 1.03 dB, and 2 dB over the baseline model,
respectively. The combination (#10) of FCA and SCA yields
a higher score than the use of FCA alone (#8), suggesting the
compatibility of the designs. The complete model, which is
equipped with FSAM, produces the best performance, with a
gain of 5.16 dB over the baseline model.

2) The Number of ResBlocks: We scale the network ac-
cording to the task complexity. In this part, we apply the large
model used for deblurring to other tasks to investigate the
impact of the number of ResBlocks. As shown in Table VIII,
with the increase in the number of ResBlocks, the results on
image dehazing and desnowing improve significantly. Accord-
ingly, the large model requires a high computation overhead.
Consequently, in order to achieve a superior balance between
accuracy and computation overhead compared to competitors,
we adjust the number of Resblocks for each task.
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Fig. 10. Architectural comparisons for FSAM.

3) Alternatives to FSAM: We further compare our FSAM
with other designs in Table IX. It can be observed that the
deployment of isomorphic operations in two paths results in
inferior performance compared to our approach, which em-
ploys spatial attention weights to modulate spectral features.
The architectural comparisons are illustrated in Figure 10.

E. Limitations

As shown in Figure 5, despite the superior visual result over
the competitor, there is still a noticeable gap between our result
and the ground-truth image. This is due to the limited training
samples and the high complexity of real-world scenarios. One
promising direction for future research is to explore the utility
of synthetic data in addressing real-world degradations using
transfer learning or domain adaptation techniques.

V. EXPERIMENTS: ALL-IN-ONE IMAGE RESTORATION

In addition to general image restoration, we apply OKM
to all-in-one settings to demonstrate its effectiveness. In this
section, we first introduce the datasets and training config-
urations used in the all-in-one setting. Next, we present the
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Fig. 11. The pipeline of the U-shaped Transformer model for all-in-one tasks. The architecture and number of Transformer Block closely follow [1].
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Fig. 12. Visual comparisons for image denoising on the BSD68 [74] with σ = 50 under the three-task setting.
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Fig. 13. Visual comparisons for image deraining on the Rain100L [75] dataset under the three-task setting.

experimental results under three-task and five-task settings.
Finally, we conduct the ablation experiments.

A. Datasets

We choose image denoising, deraining, and dehazing tasks
for the three-task all-in-one setting, closely following [22].
Specifically, for image denoising, we employ BSD400 [76]
and WED [77] for training. The noise images are generated by
adding Gaussian noise with different noise levels of 15, 25, and
50. The trained models are evaluated on BSD68 [74] and Ur-
ban100 [78]. For image deraining, the Rain100L [75] dataset
is used for training and testing. For image dehazing, RESIDE-
β [3] and SOTS-Outdoor [79] are used for training and testing,
respectively. The model is trained on a combination of the
abovementioned training datasets for the three-task setting.

In addition, the GoPro [80] dataset and the LoL-V1 [81]
dataset are employed for motion deblurring and low-light
image enhancement, respectively, in the five-task setting [23].

B. Implementation Details

The architectural details of our all-in-one model are illus-
trated in Figure 11. Our OKM is inserted into the bottleneck
position of a Transformer [1] network. The details and number
of Transformer blocks are identical to [1]. The model is trained
using the Adam optimizer with an initial learning rate of 2e−4

and an L1 loss function. The patch size is set to 128 × 128,
and random vertical and horizontal flips are adopted for data
augmentation. The models are trained for 120 and 150 epochs
for the three-task and five-task settings, respectively. The batch
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TABLE X
COMPARISONS UNDER THE THREE-TASK ALL-IN-ONE SETTING.

Denoising on BSD68 [74] Deraining on Dehazing on
σ = 15 σ = 25 σ = 50 Rain100L [75] SOTS [3] Average

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

BRDNet [82] 32.26 0.898 29.76 0.836 26.34 0.693 27.42 0.895 23.23 0.895 27.80 0.843
LPNet [83] 26.47 0.778 24.77 0.748 21.26 0.552 24.88 0.784 20.84 0.828 23.64 0.738
FDGAN [84] 30.25 0.910 28.81 0.868 26.43 0.776 29.89 0.933 24.71 0.929 28.02 0.883
MPRNet [11] 33.54 0.927 30.89 0.880 27.56 0.779 33.57 0.954 25.28 0.955 30.17 0.899
DL [39] 33.05 0.914 30.41 0.861 26.90 0.740 32.62 0.931 26.92 0.931 29.98 0.876
Restormer [1] 33.86 0.933 31.20 0.888 27.90 0.794 35.56 0.969 29.92 0.970 31.69 0.911
AirNet [41] 33.92 0.933 31.26 0.888 28.00 0.797 34.90 0.968 27.94 0.962 31.20 0.910
PromptIR [22] 33.98 0.933 31.31 0.888 28.06 0.799 36.37 0.972 30.58 0.974 32.06 0.913

Ours 34.02 0.934 31.35 0.889 28.08 0.799 38.15 0.980 29.66 0.975 32.25 0.915

TABLE XI
IMAGE DERAINING RESULTS ON THE RAIN100L [75] DATASET UNDER THE SINGLE-TASK SETTING.

Methods DIDMDN [85] UMR [86] SIRR [87] MSPFN [88] LPNet [83] AirNet [41] Restormer [1] PromptIR [22] Ours

PSNR↑ 23.79 32.39 32.37 33.50 33.61 34.90 36.74 37.04 39.05
SSIM↑ 0.773 0.921 0.926 0.948 0.958 0.977 0.978 0.979 0.985

TABLE XII
IMAGE DENOISING RESULTS ON THE URBAN100 [78] AND BSD68 [74] DATASETS UNDER THE SINGLE-TASK SETTING.

Urban100 [78] BSD68 [74]
σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 Average

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

CBM3D [89] 33.93 0.941 31.36 0.909 27.93 0.840 33.50 0.922 30.69 0.868 27.36 0.763 30.80 0.874
DnCNN [90] 32.98 0.931 30.81 0.902 27.59 0.833 33.89 0.930 31.23 0.883 27.92 0.789 30.74 0.878
IRCNN [91] 27.59 0.833 31.20 0.909 27.70 0.840 33.87 0.929 31.18 0.882 27.88 0.790 29.90 0.864
FFDNet [92] 33.83 0.942 31.40 0.912 28.05 0.848 33.87 0.929 31.21 0.882 27.96 0.789 31.05 0.884
BRDNet [82] 34.42 0.946 31.99 0.919 28.56 0.858 34.10 0.929 31.43 0.885 28.16 0.794 31.44 0.889
AirNet [41] 34.40 0.949 32.10 0.924 28.88 0.871 34.14 0.936 31.48 0.893 28.23 0.806 31.54 0.897
PromptIR [22] 34.77 0.952 32.49 0.929 29.39 0.881 34.34 0.938 31.71 0.897 28.49 0.813 31.87 0.902

Ours 34.92 0.953 32.69 0.931 29.65 0.884 34.34 0.938 31.71 0.897 28.48 0.812 31.97 0.903

TABLE XIII
COMPUTATION OVERHEAD COMPARISONS FOR ALL-IN-ONE ALGORITHMS.

Method AirNet [41] PromptIR [22] Ours

Params/M 8.93 35.59 31.24
FLOPs/G 311 158.4 143.21

sizes are set to 32 and 8, respectively, for the all-in-one and
single-task settings.

C. Three-Task Setting Results

The results for the three-task setting are presented in Ta-
ble X. Our method outperforms the recent state-of-the-art
PromptIR [22] on most metrics while using 12% fewer param-
eters and 10% lower complexity (see Table XIII). Specifically,
our model exhibits an improvement of 0.19 dB PSNR when
averaged across all degradations and levels. Notably, on the
deraining dataset of Rain100L [75], our method produces a
significant gain of 1.78 dB PSNR. The visual comparisons
are presented in Figure 12 and Figure 13. As illustrated, our
model is more effective than competing methods in restoring
image details and removing degradations.

24.12 dB

Input

PSNR

Target

33.50 dB

AirNet

40.03 dB

Ours

19.98 dB PSNR18.85 dB 31.50 dB

Fig. 14. Visual comparisons for image deraining on the Rain100L [75] dataset
under the single-task setting.

Furthermore, following [22], [41], we conduct experiments
by training distinct models for each task. The deraining results
are presented in Table XI. Our model achieves a notable
performance enhancement of 2.01 dB PSNR compared to the
all-in-one PromptIR [22] method. Moreover, Table XII shows
that our model outperforms PromptIR [22] by 0.1 dB PSNR
when averaging across two denoising datasets. In particular,
on Urban100 [78], which contains images of higher resolution
and quality than the BSD68 [74] dataset, the performance gain
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15.32 dB PSNR26.16 dB 26.41 dB

14.92 dB

Input

PSNR

Target

26.88 dB

AirNet

27.59 dB

Ours

Fig. 15. Visual comparisons for image denoising on the BSD68 [74] dataset
with σ = 50 under the single-task setting.

15.17 dB

Input

PSNR

Target

30.85 dB

AirNet

33.15 dB

Ours

15.15 dB PSNR29.42 dB 30.16 dB

Fig. 16. Visual comparisons for image denoising on the Urban100 [78]
dataset with σ = 50 under the single-task setting.

TABLE XIV
QUANTITATIVE COMPARISONS UNDER THE FIVE-TASK ALL-IN-ONE SETTING. THE FIRST AND SECOND SETS ARE GENERAL AND ALL-IN-ONE IMAGE

RESTORATION ALGORITHMS, RESPECTIVELY.

Dehazing on SOTS Deraining on Rain100L Denoising on BSD68 Deblurring on GoPro Low-Light on LOL Average
Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NAFNet [93] 25.23 0.939 35.56 0.967 31.02 0.883 26.53 0.808 20.49 0.809 27.76 0.881
HINet [94] 24.74 0.937 35.67 0.969 31.00 0.881 26.12 0.788 19.47 0.800 27.40 0.875
MPRNet [11] 24.27 0.937 38.16 0.981 31.35 0.889 26.87 0.823 20.84 0.824 28.27 0.890
DGUNet [95] 24.78 0.940 36.62 0.971 31.10 0.883 27.25 0.837 21.87 0.823 28.32 0.891
MIRNetV2 [96] 24.03 0.927 33.89 0.954 30.97 0.881 26.30 0.799 21.52 0.815 27.34 0.875
SwinIR [32] 21.50 0.891 30.78 0.923 30.59 0.868 24.52 0.773 17.81 0.723 25.04 0.835
Restormer [1] 24.09 0.927 34.81 0.962 31.49 0.884 27.22 0.829 20.41 0.806 27.60 0.881

DL [39] 20.54 0.826 21.96 0.762 23.09 0.745 19.86 0.672 19.83 0.712 21.05 0.743
Transweather [40] 21.32 0.885 29.43 0.905 29.00 0.841 25.12 0.757 21.21 0.792 25.22 0.836
TAPE [97] 22.16 0.861 29.67 0.904 30.18 0.855 24.47 0.763 18.97 0.621 25.09 0.801
AirNet [41] 21.04 0.884 32.98 0.951 30.91 0.882 24.35 0.781 18.18 0.735 25.49 0.846
IDR [23] 25.24 0.943 35.63 0.965 31.60 0.887 27.87 0.846 21.34 0.826 28.34 0.893

Ours 30.46 0.979 38.03 0.981 31.35 0.890 28.14 0.858 23.12 0.845 30.22 0.911

TABLE XV
IMAGE DENOISING COMPARISONS REGARDING PSNR UNDER DIFFERENT
NOISE LEVELS (15,25,50). THE RESULTS ARE GENERATED BY APPLYING

THE PRE-TRAINED MODEL UNDER THE FIVE-TASK SETTING TO TWO
DENOISING DATASETS. ‘-’ MEANS THAT THE DATA IS NOT AVAILABLE.

Urban100 [78] Kodak24 [98]
Methods 15 25 50 15 25 50 Average Memory

DL [39] 21.10 21.28 20.42 22.63 22.66 21.95 21.67 -
Transweather [40] 29.64 27.97 26.08 31.67 29.64 26.74 28.62 -
TAPE [97] 32.19 29.65 25.87 33.24 30.70 27.19 29.81 -
AirNet [41] 33.16 30.83 27.45 34.14 31.74 28.59 30.99 2.35G
IDR [23] 33.82 31.29 28.07 34.78 32.42 29.13 31.58 -
Restormer [1] 33.72 31.26 28.03 34.78 32.37 29.08 31.54 9.39G

Ours 34.01 31.35 28.07 34.88 32.38 29.21 31.65 8.45G

can be as large as 0.26 dB for σ = 50. Figure 14, Figure 15,
and Figure 16 illustrate that our model generates high-fidelity
results by removing different types of blurs.

D. Five-Task Setting Results

The results for the five-task setting are presented in Ta-
ble XIV. Our method demonstrates the most favorable perfor-
mance across the majority of metrics. On average, our model
exhibits a 1.88 dB PSNR advantage over the second-best
method. For image dehazing, our method achieves a notable
5.22 dB PSNR improvement over the IDR [23] algorithm.
Following [23], we evaluate the generalization ability of our

model by directly applying the pre-trained model under the
five-task setting to Urban100 [78] and Kodak24 [98]. Ta-
ble XV shows that our model outperforms IDR [23] by 0.07
dB PSNR in terms of average score. Moreover, our method
provides an average performance improvement of 0.11 dB over
Restormer [1] while utilizing a lower memory footprint.

E. Discussion
The experimental results confirm the efficacy of our OKM in

different all-in-one settings. The reasons for this effectiveness
are twofold. Firstly, our omni-kernel modulation enables the
model to capture perceptive fields of different scales, which are
essential for addressing degradations of different sizes within
a single task. Additionally, covering a wide range of receptive
fields is beneficial for addressing various types of degradations
using a unified model, as different types of degradations
impact images in different frequencies. Specifically, noise
primarily causes high-frequency blurring that corresponds to
local receptive fields, whereas low-light image enhancement
aims to modulate global illumination, which requires large-
scale perceptive fields. Secondly, the attention weights in the
global branch are learned from the inputs, enhancing the
adaptability of the model to deal with different degradations.

F. Ablation Studies
We perform ablation studies to investigate the impact of

different combinations of image restoration tasks on the final
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TABLE XVI
ABLATION STUDIES FOR THE COMBINATIONS OF DIFFERENT

DEGRADATION TYPES UNDER THE THREE-TASK SETTING. SCORES ARE
PRESENTED AS PSNR/SSIM.

Degradation Denoising on BSD68 Deraining Dehazing
NoiseRainHaze σ = 15 σ = 25 σ = 50 Rain100L SOTS

! 34.34/0.938 31.71/0.897 28.48/0.812 - -
! - - - 39.05/0.985 -

! - - - - 29.84/0.974

! ! 34.30/0.938 31.66/0.896 28.42/0.810 38.54/0.984 -
! ! 34.02/0.934 31.36/0.890 28.09/0.799 - 29.52/0.975

! ! - - - 37.47/0.979 29.39/0.975

! ! ! 34.02/0.934 31.35/0.889 28.08/0.799 38.15/0.980 29.66/0.975

performance. As shown in Table XVI, the best results are
mostly obtained under the single-task setting. It is worth
mentioning that when dehazing is combined with deraining
or denoising, dehazing has a more detrimental impact on
the combined task than the remaining one. This is possibly
because dehazing aims to restore low-frequency signals, while
the other two tasks target high frequencies. The model cannot
avoid interference between different tasks.

VI. CONCLUSION

This paper proposes an omni-kernel modulation module
that can capture global-to-local receptive fields for universal
image restoration. The module has three branches, namely
local, large, and global branches, to model local, large, and
global features, respectively. The large branch is designed by
exploring the unusually large regular and strip-based depth-
wise convolutions for image restoration. The novel global
branch utilizes dual-domain channel attention and frequency-
based spatial attention for modulating global representations.
Moreover, the lightweight local branch introduces locality to
the model. With our designs, the models achieve state-of-the-
art performance on 15 different benchmark datasets for general
image restoration tasks and perform favorably against state-of-
the-art algorithms under two all-in-one settings.
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