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Abstract

The topic of climate change has dominated public discourse in recent decades, with the ad-

verse effects of rising temperatures, such as extreme weather events and rising sea levels, being

widespread. The scientific community agrees that carbon dioxide is one of the primary drivers of

climate change. To mitigate carbon emissions while maintaining economic growth, it is essential

to harness technological progress. This thesis, consisting of three essays, examines the global

energy transition dynamics through fuel switching, focusing on the power sector’s shift from

carbon-intensive fuels to reliable and lower carbon inputs.

The first essay introduces a new framework for estimating Elasticity of Substitution (ES) values

under the influence of biased technological change. The ES helps understand the current state

and future trends of energy transitions by measuring how the power mix changes in response

to technological advancements and relative input price shifts. Using data on the residual load

supplied by non-renewable sources in the US power sector from 1990 to 2019, the study confirms

that biased technological progress significantly impacts ES values and dynamics.

The second essay investigates the effects of the Regional Greenhouse Gas Initiative (RGGI), an

emission trading system implemented in the Northeastern US, alongside the surge in unconven-

tional natural gas production from the Marcellus shale play on the power generating sector. By

scrutinizing the outcomes of both phenomena, such as the carbon intensity of power production,

fuel switching, and power prices, the essay underscores the importance of considering commodity

prices when evaluating policy impacts. The study reveals that, in addition to policy, the low

prices of clean energy substitutes, especially natural gas, are powerful drivers of decarbonization.

The third essay integrates the insights from the first two essays, examining the differences in

energy price dynamics and policies worldwide, to estimate ES on a global level. Utilizing a novel

dataset of 28 OECD countries, the study employs a dynamic moving-time window approach to

ii
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uncover regional and temporal variations in ES values. It discovers a trend of decreasing ES

values, indicating a potential slowdown in future interfuel substitution.

Collectively, these essays emphasize the complex interplay between technology, policy, and energy

market dynamics in shaping energy transitions. They contribute by providing a novel framework

for estimating ES values influenced by changes in technology, input prices, and policies, offering

a global comparison of ES dynamics. Additionally, the second essay presents a unique approach

to disentangling the effects of co-occurring energy market phenomena, helping understand the

differing impacts of policy and energy price shocks on the power sector.
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1 | Introduction

1.1 Motivation and Background

Climate change is the biggest imminent threat to our societies in the near future. Its effects range

from increased extreme weather events and species extinction to rising sea levels (Cahill et al.,

2013, McBean, 2004, Michener et al., 1997). To prevent these effects and stay away from critical

tipping points that would lead to an acceleration of rising temperatures, it is imperative to limit

global warming to below 2°C (Armstrong McKay et al., 2022, IPCC et al., 2023). Identifying the

main driver of climate change, namely Greenhouse Gas (GHG) and specifically CO2 emissions,

the public discourse shifted its focus on mitigating carbon emissions.

It is essential to identify the sources of these emissions to better understand how to effectively

reduce carbon emissions. Carbon emissions primarily stem from burning fossil fuels like coal,

natural gas, and oil. These inputs differ significantly in their carbon intensities, with coal

emitting the highest amount of CO2 and other GHGs and natural gas being the least carbon-

intense of fossil fuels. In the last 30 years, the largest share of CO2 emissions globally is attributed

to power generation at around 34%, followed by the industrial sector at 24% (Lamb et al., 2021).

Despite the power sector having the highest share of global CO2 emissions, it also has the high-

est potential for decarbonization due to its ability to directly incorporate zero-carbon electricity

such as nuclear power or renewable energy sources. Reducing carbon emissions in other sectors,

e.g., transportation, is more challenging because of the sunk capital and existing infrastructure

of, e.g., oil-derived fuels (McNally, 2017). The power sector often influences the decarbonization

of other sectors, as can be seen with electric vehicles or fuel-cell cars. The potential to elec-

trify our economies, thus, emphasizes the increased importance of how we generate our power

(International Energy Agency, 2000, 2002, 2003, 2004, 2009).

1



1 Introduction 2

Figure 1.1: Carbon intensity reduction in the power sector from 2000 to 2020 (Ember Climate, 2023).

We thus need to analyze the mechanisms that help reduce the carbon intensity of power pro-

duction. The decrease may be achieved through strategies like fuel switching, as many regions’

power sectors still depend on highly polluting coal. Moreover, higher power generation efficien-

cies may also contribute to emission reduction. Additionally, policies have been introduced to

impose a cost on carbon emissions and establish an annual limit on the total amount of carbon

released. One of the earliest market mechanisms of this kind is the European Union Emission

Trading Scheme (EU ETS), leading the way for similar policies like the RGGI implemented in

the Northeastern United States (U.S.) in 2009 (European Parliament, Council of the European

Union., 2003).

Decarbonization efforts slightly increased after introducing the Kyoto Protocol in 1997 but

started accelerating rapidly with the Paris Agreement in 2015 (United Nations, 1997, 2015).

The efforts put into decarbonization depend drastically on a country’s socio-economic level, as

seen in the power sector in Figure 1.1. Developed economies introduced more sophisticated

regulations and policies aimed at mitigating carbon emissions. The Global South, however, is

still very dependent on high carbon inputs due to its power demand growth. In some cases,

e.g., in Latin America, population growth and a surge in power demand led to increased carbon

intensity in the power sector as cheaper fuels such as coal are deployed.

This thesis aims to investigate energy transitions in the context of the increasingly important
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power sector. Our first essay introduces a novel approach for estimating the Elasticity of Sub-

stitution, which measures the change in relative input use in response to variations in relative

prices. Our framework accounts for uneven changes in fossil fuel-fired generation efficiencies and

allows assessing the changes in ES values over time. The second essay investigates the effects of

the RGGI and energy price shocks on the power sector decarbonization in the U.S.. Its goal is

to distinguish and isolate the effects of each phenomenon and, hence, provide new insights into

the energy transition discussion. The third essay expands its focus to the evolution of the power

sector on the international level. It aims to identify regional shifts and differences in relative

fuel use in reaction to changes in relative input prices.

Next, we introduce the concept of fuel switching before proceeding with details on each essay,

marking the research questions and discussing the methodological contributions to the existing

literature.

1.2 Contribution and Methodology

1.2.1 Fundamentals of Fuel Switching

Economies employ a multitude of inputs, which could loosely be divided into capital, human

resources, materials, and energy, to support and sustain their activities. Traditionally, macroeco-

nomic literature has focused its analysis on capital and labor inputs, while energy and materials

have been included in micro-level models. However, given the rising economic importance of

energy and the need for decarbonization, energy has been suggested as a third input by several

studies, such as Frieling and Madlener (2016), Kemfert (1998), Papageorgiou et al. (2017) and

Zha and Zhou (2014). As decarbonization becomes more critical, governments must emphasize

which resources to deploy to support their economic activities while reducing carbon emissions.

The growing focus on resource allocation is particularly pertinent in the power generation sector.

This dissertation focuses on the power generation sector, whose relevance is expected to grow

in the coming decades due to the ongoing electrification of economies driven by the adoption of

low-carbon and clean energy technologies (International Energy Agency, 2000, 2002, 2003, 2004,

2009). According to the classical view, the sector’s cost structure consists primarily of capital

expenditure and fuel costs, with labor only being a marginal expense (Pindyck, 1979). Apart

from this, the long lifetime of power-generating assets, usually 30 or more years, suggests that
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for the electricity generation sector in its entirety in the long term, energy input costs play a

pivotal role in determining the generation utilization based on the supply curve and merit order

setting up the profits (Kumar et al., 2015, Rode et al., 2017). Besides influencing the use of the

generation capacities, the choice of energy inputs affects carbon emissions from burning fossil

fuels. Given the changes in energy input prices stemming from fuel availability, relative input

quantities adjust significantly in response to changes in input prices.

Assuming that input energy prices are exogenous to the power sector, determined by the global

markets, the sector’s operations can be characterized by the absolute and relative consumption of

individual inputs, Ei and Ei
Ej

, respectively, and their absolute and relative prices, pi and
pj
pi
. The

relationship between the relative fuel use and relative prices is captured by the concept of the

Elasticity of Substitution (ES), which has been introduced by John Hicks (1932), bringing the

idea into capital-labor economics. The ES measures the percentage change in relative quantities
Ei
Ej

in response to a one percent change in their relative price pj
pi
:

σij =
∂ ln(Ei/Ej)

∂ ln(pj/pi)
(1.1)

If the two inputs are perfect substitutes, then σ = ∞, in which case the production function

takes a linear form. If σ = 1, (1.2) converges to the Cobb-Douglas case while σ = 0 indicates

strict complementarity and a Leontieff production function. Generally, we consider two goods

as substitutes if σ > 1 and complements if σ < 1.

Consider a power sector whose demand is given externally by the other sectors. To satisfy the

external power demand, the power sector employs a variety of inputs whose quantity depends

on the input prices. This situation may be described by the Constant Elasticity of Substi-

tution (CES) production function, which is widely used in power sector analysis, with power

output/demand G, input quantities Ei, income shares αi, and technologies γi (Jo, 2020, Jo and

Miftakhova, 2022, Kemfert, 1998):

G(E) =
[
α1 (γ1E1)

σ−1
σ + α2 (γ2E2)

σ−1
σ

] σ
σ−1 (1.2)

In this context, the concept of ES can be a powerful tool for policymakers, providing valuable in-

sights into the long-term dynamics of input use in the power sector. A higher ES value indicates

more fuel switching for a given change in relative input price, increasing the chance of long-term
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low carbon growth in the power sector (Acemoglu et al., 2012, Klump and de La Grandville,

2000, Papageorgiou et al., 2017). The degree of substitutability between inputs directly char-

acterizes input demand. The relative prices of inputs and input productivity further influence

this relationship. Hypothesizing that for profit-maximizing utility companies, the marginal cost

of inputs reflects their marginal productivity, the combined First Order Conditions (FOCs) of

equation (1.2) illustrate the relationship between relative prices, input productivity, and input

demand:

pi
pj

=
αi
αj
·
(
γi
γj

)σ−1
σ

·
(
Ei
Ej

)− 1
σ

(1.3)

This term is similar to the expressions used by Acemoglu et al. (2012), Klump and de La Grandville

(2000), Papageorgiou et al. (2017) who found that to support "low carbon growth" in the power

sector, the ES between dirty inputs, such as coal, and clean inputs, like natural gas or renewables,

must be greater than one. Their studies verify this assumption by scrutinizing three conditions:

• No technical change and σ is greater than one: In this case, an increase in demand for

input i results in a smaller decrease in the relative price of i compared to complementarity,

improving i’s income (market) share (Klump and de La Grandville, 2000).

• Neutral technical change (γi and γj advance at the same pace) and σ is smaller than one:

Under these conditions, a relative increase in demand for i leads to a decrease in i’s income

(market) share due to significantly lower prices, which may result in an unsustainable

growth path (Acemoglu, 2008, Papageorgiou et al., 2017).

• Technical change favors the clean input i over the dirtier input j, and σ is greater than

one: If the inputs are complements, increasing the productivity of input i generates more

demand for input j, thereby raising j’s price and cost share. In the case of substitutability,

the increasing productivity of input i instead increases demand for input i, which, combined

with its slightly lower prices due to lower marginal productivity, increases its cost (market)

share αi (Acemoglu, 2002).

Based on these findings, Papageorgiou et al. (2017) analyze the ES between clean and dirty

inputs and find values significantly above unity, indicating the potential for long-term green

growth. However, like many other studies calculating the ES, their analysis overlooks biased

technological progress in the estimation procedure. This flaw is critical, as León-Ledesma et al.
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(2010a,b) show that misspecifying technological change can lead to significant bias in the ES

values estimated, potentially leading to the introduction of non-optimal policies. Many studies

assume "neutral" instead of "biased" technological change, which may lead to overestimated ES

values. This misinformation may induce policymakers to introduce policies that lack stringency.

Given the relevance of the ES for decarbonization and "green growth", it is imperative to estimate

reliable and unbiased ES values to optimally inform policymakers. The following chapter explains

the first essay, which adds a new perspective to ES estimates by considering biased technological

change in the power sector. The chapter describes the contribution and the changes in the

methodology implemented in the first and third essay.

1.2.2 The Influence of Technological Progress

Technological progress significantly influences the estimation of ES values, which measure the

shift in input use in response to changes in input prices, providing insights into the substi-

tutability of inputs. Despite a substantial body of literature on computing ES values across

countries, industries, and regions, estimates vary considerably and often assume neutral techno-

logical change, potentially leading to biased results (Considine, 1989b, Pindyck, 1979, Steinbuks,

2012, Stern, 2008, 2011, 2012).

The first essay challenges this assumption by introducing a novel methodology for estimating

ES values that incorporates biased technological change (Klump et al., 2007, León-Ledesma

et al., 2010b). Given the continuous changes in generation efficiencies in the power sector, which

often vary asymmetrically across inputs, this specification appears more robust. Generation

efficiencies usually depend not only on the technology itself but also on the utilization regime of

the respective technology. Our study also examines the effects of data aggregation and introduces

a moving time window analysis to uncover ES dynamics, testing the assumption of constant ES

values.

Based on the shortcomings of existing research, the essay aims to answer a set of interrelated

research questions: How do uneven shifts in technology and fuel use affect the Elasticity of

Substitution? How does data aggregation affect ES values? Can we detect changes in the ES

over time?
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Reflecting on the production function introduced in (1.2), the quantities of inputs used in the

power sector are determined by economic considerations such as input prices, carbon cost, and

generation efficiencies. The "merit order" employed in power markets dispatches plants based

on the marginal cost of producing one unit of power, determined by the generation efficiency ηi

and the input price pi. The marginal cost pi,total is calculated by dividing the input cost by the

generation efficiency.

Markets select the optimal combination of inputs to meet energy needs based on the varying

marginal costs to generate electricity from different inputs. As prices are volatile, pi,total may,

in some instances, be higher (lower) than pj,total, leading to a higher (lower) demand for input j

relative to input i. This reaction is captured by the ES, which measures the response of relative

input quantities to changes in relative input prices, ignoring the effect of generation efficiencies.

For coal and natural gas, the complex interplay between efficiencies and input prices increasingly

favored natural gas due to its price drop and efficiency increase (see Figure 1.2).

Figure 1.2: The dynamics of prices and efficiencies (International Energy Agency, 2024a).

Technological bias, such as the improvement in natural gas technology relative to coal technology,

has been difficult to account for in ES estimations in the past due to the "impossibility theorem"

(Diamond et al., 1978). The "impossibility theorem" states that, under the presence of techno-

logical bias of unknown nature, the ES and the individual productivities can not be estimated

simultaneously. We thus introduce a novel, multi-equation estimation method that overcomes
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the "impossibility theorem", developed by Klump et al. (2007), that has been shown to perform

well under the presence of technological bias by León-Ledesma et al. (2010b). This method

does not only model (1.2) to estimate the ES but also considers (1.3), leading to more precise

estimates. Given our ability to incorporate technological change in the estimation procedure,

the essay aims to investigate how changes in technology affect ES values over time.

Papers investigating and estimating the ES, e.g., Frieling and Madlener (2016), Jones (1995),

Kemfert (1998), typically assume constant ES values throughout the entire observation period.

We challenge this assumption, following Arrow et al. (1961), who stated that "the process

of economic development itself might shift the over-all [sic!] elasticity of substitution". The

ongoing energy transitions lead to shifts in power generation patterns, which, together with the

retirement of, e.g., coal capacity, may significantly influence the dynamics of the ES. In the

essay, we split the timeframe from 1990 to 2019 into smaller, 22-year windows to analyze the

changes and dynamics in the ES over time.

Our study also examines the impact of data aggregation. Existing research, e.g., Fuss (1977),

Pindyck (1979), Serletis et al. (2010a), often relies on country-level data, which, in the case of

the U.S. implies that the consumption-weighted averages of state-level consumption and prices

represent prices and quantities. In the U.S., power distribution may be scrutinized on either the

country level or within regional grids (e.g., ERCOT, MISO, PJM, SPP); data aggregation thus

may lead to bias estimates since the actual dynamics of power generation depends on balancing

the individual grids (EIA, 2012). Our essay analyzes the effects of data aggregation using a

dataset that covers the U.S. as a whole and the individual states by calculating the ES on the

country level and comparing it to the estimates found using state-level data.

The methodology developed in our research demonstrates that technology significantly affects

deployment decisions and, if omitted, overstates the effect of relative input prices on relative

input quantities. By considering different levels of data aggregation, we add an additional layer

of complexity to the estimation of ES in the power sector, addressing potential biases. Finally,

our dynamic time-window analysis reveals previously ignored ES dynamics, offering valuable

insights for addressing energy transition challenges. Following the focus on fuel switching, the

second essay investigates the effect that changes in policy and input prices have on the power

generation mix.
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1.2.3 The Effects of Policy and Input Prices

Emission trading systems emerged in the early 2000s, with the EU ETS being the first policy of

its kind (Bayer and Aklin, 2020, Marin et al., 2018). The cap-and-trade mechanism at the core of

Emission Trading Scheme (ETS) limits total annual emissions for regions and/or industries while

implementing a market for emission allowances. The intended effect of such policies relates to

increasing the marginal cost of high-carbon electricity. ETS increase the marginal cost of inputs

with low generation efficiency and high carbon intensity to a greater extent than cleaner and

more efficient alternatives and, thus, may induce fuel switching to lower carbon fuels (Kim and

Kim, 2016). Bringing this type of policy to the U.S., the RGGI was implemented by ten states

in the Northeastern part of the country in 2009.

Existing studies found that the introduction of the RGGI led to an increase (decrease) in the

share of natural gas (coal) in the power mix (Cullen and Mansur, 2017, Johnsen et al., 2019, Kim

and Kim, 2016, Knittel et al., 2015, Linn and Muehlenbachs, 2018) while potentially motivating

states to outsource their electricity generation to states without carbon policies (Chan and

Morrow, 2019, Chen, 2009, Fell and Kaffine, 2018, Lee and Melstrom, 2018). Previous literature

aims to scrutinize the efficacy of the RGGI and ETS in general, but little emphasis has been put

on co-occurring phenomena that may influence the outcomes of such policies. Moreover, most

of these studies focus on individual outcomes, such as power prices, fuel switching, or impacts

on Gross Domestic Product (GDP). The only notable exception is Yan (2021), which analyzes

various outcomes in the context of implementing the RGGI. This raises important questions

about the broader impacts of market changes on policy interventions.

The second essay considers the uptick in unconventional natural gas resource production in the

Marcellus shale play from 2009 onwards as a co-occurring phenomenon to the introduction of

the RGGI. The decrease in natural gas prices resulting from the increase in unconventional

natural gas production significantly impacted the power generation mix in the Northeastern

U.S. (Lueken et al., 2016). Influencing the total marginal cost of natural gas generated power,

this event may also contribute to reducing carbon emissions through the dynamics shown in

Graph 1.2. The higher generation efficiency of natural gas-fired power plants and the reduced

cost led to a market situation in which natural gas could suddenly compete with the marginal

costs of coal-fired electricity generation, taking a higher share in the power mix (Pacsi et al.,

2013). Both phenomena significantly influence the marginal cost of power production, which,
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given the geographic proximity of the regions, suggests possible interference, which we intend to

verify by scrutinizing both interventions separately.

Considering these two events, our study addresses the following key questions: How have both the

RGGI and the reduction in natural gas prices impacted the carbon intensity of power generation?

Did the Marcellus shale boom significantly contribute to the effects assigned to the RGGI? What

are the implications of both phenomena for the power generation mix and economic performance

in the Northeastern U.S.?

Understanding these dynamics is crucial for policymakers to design effective climate policies. Our

study contributes by using a combination of traditional Difference-in-Differences (DD) frame-

works and the Synthetic Control (SC) method. We scrutinize various outcomes to uncover the

channels and effects through which both concurrent interventions influenced the power sector

(Upton and Snyder, 2017). The study investigates the carbon intensity of power generation,

the power generation mix, power demand and prices, and economic performance to provide a

nuanced understanding of the underlying dynamics while controlling for exogenous effects by

including falsification outcomes (Yan, 2021). By examining both treatments individually, we

aim to discover whether some of the effects attributed to the RGGI in existing literature may

stem from the decrease in absolute and relative (to coal) gas prices through increased production

of unconventional natural gas.

Our study finds that the decrease in natural gas prices due to the uptick in unconventional

natural gas production in the Marcellus shale play at least partially contributed to the effects

of the RGGI. The generally lower natural gas prices in the U.S. as a result of the fracking

boom increase the efficacy of ETS by leveraging the effect certificate prices have on the marginal

cost of power production. Additionally, we show that the shale boom led to similar Carbon-

Dioxide (CO2) intensity reductions in Marcellus shale play states despite not implementing a

cap-and-trade mechanism. Investigating power prices and demand, our study discovers that

power prices in the Marcellus states decreased while they increased in RGGI states, leading to

a more favorable economic environment. The favorable economic conditions led to a smaller

decrease in the GDP per capita in manufacturing in Marcellus states compared to RGGI states,

likely to be attributed to lower power prices. By separating the analysis of both co-occurring

phenomena, our study is able to identify the effects and channels through which the effects occur,

offering a new methodology for the analysis of concurrent interventions. Adding to the existing

literature, our study shows how accounting for these concurrent market shocks may influence
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the efficacy assigned to either of the two phenomena. Given the identified effects that policies

and input prices have on fuel switching, the third essay scrutinizes regional differences in ES

values induced by diverging policies and resource availability.

1.2.4 International Policies

The third essay investigates the ES on an international level to dynamically assess regional

differences in ES values stemming from dissimilar resource availability and policies around the

world. Introducing an extensive international dataset covering the power sector of 28 OECD

countries, our study scrutinizes the regional differences in resource availability, carbon reduction

efforts, and policy interventions. The individual regions differ significantly in terms of the

adoption of climate policies. Europe is known to have some of the most stringent climate policies,

which contrasts the relatively low efforts that countries in the Asia-Pacific region display. This

divergence in local and regional policies motivates us to investigate how countries and regions

differ in terms of ES values. We compute country-level ES estimates and compare them to the

regional ES that grows in importance given the increased interconnectedness of electricity grids.

Given the drastic changes in residual demand due to the increase in adoption of renewable power

sources and the switch from coal to natural gas, we conclude our study by implementing a moving

time-window analysis that uncovers the dynamics brought to the power sector by policies and

shifts in input availability.

International ES comparisons have been a part of academic research since the late 1970s (Pindyck,

1979) to explain and uncover the varying behavior of countries in energy consumption. Studies

of this type have again risen in popularity in the 2010s due to the global focus on decarbonization

efforts but were limited to smaller sets of 10 to 15 countries or unbalanced panel data (Serletis

et al., 2010b, 2011, Steinbuks and Narayanan, 2015).

The paper addresses three research questions: Are there differences in ES values across countries

and regions? Do regional ES values change in response to resource availability, policy, and

technology? What are the implications of ES values with respect to energy transitions?

To calculate ES, data on fuel consumption and fuel prices are paramount. The limiting factor for

ES estimates on an international level has been the availability of consistent and complete fuel

price data. Our study relies on fuel consumption and price data from the International Energy

Agency (2024a,b). While some of the fuel price data is still incomplete, we were able to attribute
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missing data points following Sato (2019) and used random forest machine learning algorithms

to complete the dataset where necessary. The overall panel spans 28 OECD countries grouped

into six regions.

Our study calculates and analyzes the ES for each of the individual 28 OECD countries in the

sample. This exercise may help compare differences in decarbonization pathways and inform

policymakers about the current state and future path of energy transitions. Higher ES values

may support lower carbon growth and, thus, help countries decarbonize their power sectors in

the long term. We supplement the country-level analysis by grouping the individual countries

into six regions, which allows us to identify how interconnected grids change substitution prefer-

ences. Our study concludes by estimating the regional ES, using a 20-year moving time-window

procedure analogous to Section 1.2.2 to test whether and in which direction energy transitions

affect the ES.

The study’s main contribution is the estimation of local and regional ES values that enable

us to identify whether policies affect fuel-switching. Estimating the ES values for 28 OECD

countries helps reveal regional differences and changes over time in ES values and explore how

policies affect ES estimates. We find significant variation in country- and regional-level ES

estimates that stem from differences in resource availability and policy adoption. Gaining new

insights on regional differences in fuel switching, the study provides a robust foundation for

future research. Investigating changes in the ES over time, the study reveals mostly constant

ES values, contrasted by a decreasing ES between coal and gas in Northern America. The

results highlight the dynamics of policy adoption and resource availability, which both influence

fuel-switching decisions.

1.3 Structure of the Thesis

This thesis consists of three independent studies that coincide in their focus on low-carbon fuel

switching. Being submitted to different scientific journals, the studies may exhibit similarities

in some aspects, e.g., their introductions, concepts, and definitions. As such, the papers should

be read and evaluated individually.

The remainder of this thesis is structured as follows. Chapter 2 introduces a new method

for estimating ES under biased technological change. It starts by explaining the foundations
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of the novel approach before estimating ES values that highlight the effects of misspecifying

technological change and data aggregation. In the following, the study introduces a moving time-

window analysis to capture changes in ES values over time before concluding with a sensitivity

analysis that highlights how and why market participants deviate from optimality. Chapter 3

scrutinizes the introduction of the RGGI, an emission trading system, and the rising production

of unconventional natural gas resources from the Marcellus shale play in their ability to reduce

carbon emissions. The essay explains the two co-occurring phenomena, the analyzed outcomes,

and their relevance in evaluating the policy’s efficacy. It then introduces the methodology used

to create counterfactuals and isolate the effects of both phenomena. The essay concludes by

presenting and interpreting the results that reveal the effects of both interventions and channels

through which their effects are achieved. Chapter 4 uses the methodology developed in the first

chapter by applying it to the international level. It investigates trends in global power markets

and estimates ES values on the country- and regional level. Revealing changes in ES values over

time, the moving time-window analysis uncovers the dynamics of energy transitions. Chapter 5

concludes this thesis by synthesizing its main findings and indications. The Appendix contains

additional details on each essay, such as formulae, graphs, and tables. The Appendices are

enumerated from A to C and correspond to Essays 1 to 3, respectively.



2 | Estimating the Interfuel Substitu-

tion Under Technological Bias

by Daniel Gatscher, Svetlana Ikonnikova

Decarbonization, radical shifts in the availability of energy resources, and accelerating adop-

tion of energy-efficiency-altering innovations shake energy prices in national and global markets,

triggering fuel switching. In this context, an accurate assessment of the Elasticity of Substitu-

tion (ES), measuring how the energy mix would change in response to relative prices, becomes

particularly critical for budgeting and managing the energy transition. Investigating the reasons

for the past disagreements in ES estimates, this study highlights the limitations imposed by

the traditional neutral technological change assumption and offers instead a model allowing for

biased technological change.

Adopting a macroeconomic approach, we develop an econometric procedure featuring a normal-

ized nested Constant Elasticity of Substitution (CES) production function with two or more

inputs. Inspired by the evidence of biased technological change in U.S. electricity generation

efficiencies from 1990 through 2019, we test our model by estimating the substitution among

fossil fuels, including coal, natural gas, and oil products. We show that the technological neu-

trality assumption leads to overestimated ES values, whereas aggregating data on the national

level, instead of using state or regional data, results in lower ES values. To analyze historical

sample-based differences, we use a moving time window and examine the evolution of the ES

during the past three decades, marking the gradual reduction in the substitutability between

natural gas and coal. Finally, taking a closer look at the estimation errors, we compare the

optimal (model-based) fuel-switching with the actual dispatch data, offering new insights and

ideas for further research.

14
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2.1 Introduction

Climate change has compelled countries around the world to reconsider their energy use, exam-

ining possible pathways for the transition to energy sources with lower GHG, especially carbon

emissions. To induce the needed shift in the energy mix, governments propose and impose regu-

lations making the consumption of "dirty" fuels with high carbon content more expensive rela-

tive to "cleaner" alternatives. The fast-growing International Energy Agency’s Policy Database

contains numerous documents disincentivizing the use of fossil fuels such as coal and oil (and

oil-based products) across many sectors and industries, particularly in electricity generation.

In this context, it becomes imperative to accurately assess the interfuel Elasticity of Substitu-

tion (ES), measuring the shift in the use of one energy resource relative to the other in response

to changes in the respective relative energy prices. Used in macroeconomic growth models (Fuss,

1977, Jo, 2020, Kemfert, 1998, Papageorgiou et al., 2017), industry studies (Gilmore et al., 2023,

Lilliestam et al., 2021, Victoria et al., 2020), and microeconomic consumption research (Varian,

1992), the ES informs decarbonization policies, supports transition budgeting, and helps manage

environmental targets. Although the body of empirical research offering (country and sector-

specific) ES estimates is large, the lack of consensus in previous assessments has been calling for

further research (Acemoglu et al., 2012, Bacon, 1992, Papageorgiou et al., 2017, Stern, 2012).

Among the key reasons for discrepancies in the ES results is the assumption of neutral or equal

change in technological efficiencies across fuels. Technological progress plays a prominent role

in the energy transition and decarbonization processes. Advances in existing technologies and

innovations supporting emission reductions keep improving energy efficiencies and transforming

fuel consumption patterns. However, despite the recognized importance, technological change

has not been well apprehended by empirical works focused on the ES due to computational

limitations (Hossain and Serletis, 2017). The "impossibility theorem", by Diamond et al. (1978),

asserted that in the case of the non-unitary ES, it is impossible to estimate the ES and (unequal)

parameters of technological change simultaneously. As a result, empirical ES assessments were

forced either to assume neutral technological change or adopt peculiar production function forms

(Serletis et al., 2011, Stern, 2012). Such a modeling shortcut has long been criticized in the

theoretical literature, warning of the likely biases in the resultant ES estimates (Blackorby

and Russell, 1981, Boddy and Gort, 1971, Sato, 1977). Addressing the “impossibility”, León-

Ledesma et al. (2010b) proposed a novel method that allows for calculating the ES even when
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the technological change is biased. In the macroeconomic context, they proved to overcome

the long-standing problem, offering a promising tool for energy economics research (Klump and

de La Grandville, 2000, Klump et al., 2012, Papageorgiou et al., 2017).

The primary purpose of this study is to present a comprehensive methodology for developing

interfuel ES assessments in which the change in technological efficiencies across multiple (energy)

inputs may be biased. We develop and demonstrate an econometric procedure to analyze the

competition between fossil fuels, including coal, natural gas, and oil products, in the U.S. power

sector from 1990-2019.

Following León-Ledesma et al. (2010b), we base our ES estimation procedure on the generalized

solution for the production profit maximization problem and the corresponding FOCs character-

izing it. In contrast to the widely accepted approach employing a single cost-minimizing FOC,

the presented model employs all the conditions forming a system of equations sufficient for cal-

culating the ES simultaneously with the technological change parameters. Besides, the solution

in its entirety determines the input quantities, along with the optimal output, and hence, over-

comes the drawback of the considerable body of literature neglecting the effect of the energy

mix change on the output (Stern, 2012, Hossain and Serletis, 2017).

In the macroeconomic study presenting the original approach, the ES procedure was offered

for the case of only two inputs: labor and capital. The following energy-oriented studies kept

the two-input setup, grouping energy inputs into "dirty" and "clean", when investigating the

potential for "green growth" (Jo, 2020, Papageorgiou et al., 2017). We revise the procedure by

introducing a class of generalized nested CES production functions to capture more complex

production processes or a broader diversity of energy and non-energy inputs. The cases of

two, three, and four1 inputs are used for the ES calculations to gain a better understanding of

interfuel substitutability. The nested models reveal how the ES for a given fuel changes when

the substitution to one other fuel or a bundle of fuels is considered. That exercise appears

especially useful considering the reduction or, in some regions, complete retirement of some

types of generation, such as coal.2

1To test the procedure and examine the ES for other fuels used for the power generation, we ran the model
including nuclear generation, providing the results in the Appendix.

2Referring to the currently prevailing power market mechanisms, we made a simplifying assumption and con-
sidered the analyzed dispatch as the residual load left after renewable and nuclear energy are dispatched. The
sensitivity exercises performed in this regard led us to discuss possible further research.
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Relaxing the assumption on the nature of technological change helps us avoid the neutral techno-

logical change assumption required in the case of the one-equation procedure (Klump et al., 2007,

León-Ledesma et al., 2010b, Thompson, 2006) and also permits for cross-sectional along with

time series analyses critical in revealing possible estimation biases (Stern, 2012, Considine, 1989a,

Jones, 1995, Serletis et al., 2010a). Addressing the past critique, our secondary goal is to examine

possible variations in the ES estimates. We compiled a database with state-level statistics on the

primary energy3 used, annual electricity generated, and individual fuel-related expenditures to

calculate the benchmark ES values. For comparison, we computed the corresponding ES using:

(1) the model assuming a neutral technological change, (2) the data aggregated on a national

level, (3) the subset of states employing nuclear generation, and (4) the data from the last two

decades only. Cross-value comparison helps reveal ES discrepancies receiving little attention in

individual studies.

The results of the last exercise inspired us to expand our study and analyze the ES evolution

with the moving time window procedure. Adding to the rich body of research on the interfuel

ES (Considine, 1989b, Pindyck, 1979, Steinbuks, 2012, Stern, 2008, 2011, 2012), we focus on

the electricity sector to update the past findings. Developments in the energy industry and

environmental regulations suggest some structural shifts in the energy markets, echoing those

in the power sector energy mix. In this context, our work on the ES evolution is instrumental

in tracking how the advances in carbon-reduction-oriented technologies interplay with the price

(and cost) shocks altering fossil fuel usage (Berndt, 1990, Chun et al., 2022, Debertin et al., 1990,

Markandya et al., 2006, Saunders, 2013, Wing, 2006, Zhu et al., 2021). Offering a CES-alternative

to the translog production function-based approaches, we also suggest an alternative view of

technological change (Atkinson and Halvorsen, 1976, Bopp and Costello, 1990, Christensen et al.,

1975, Christensen and Greene, 1976, Considine, 1989b, Ko and Dahl, 2001). Apart from that, we

revisit the question of whether the (economically) optimal fuel-switching behavior assumption

is valid given the ongoing energy transition, dramatic shifts in oil and natural gas supply, and

environmental regulations. Checking the gap between the model-suggested optimal and the

actual individual state fuel choices, we explore the boundaries of the presented tool and raise

awareness of the estimate biases important for energy market participants and policymakers

navigating decarbonization.
3We also collected data on other energy sources, such as nuclear fuel, used for electricity generation and conducted
the corresponding ES analysis. However, given the technical limitations in the substitutability, we treat that
exercise as a thought experiment, reporting its results in the Appendix.
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Our paper is organized as follows. Section 2 reviews the theoretical foundation for the ES,

highlighting the role of the biased technological change. Then, we provide the evidence for

asymmetric progress in the U.S. power sector energy efficiencies, presenting our data and its

exploratory analysis in Section 3. Next, the econometric procedure with all the necessary details

is explained in Section 4, followed by our Results in Section 5. Section 6 presents our key insights

and suggestions for further research.

2.2 Theoretical Foundations

We start by reviewing the theoretical underpinnings highlighting the two widely accepted defini-

tions of Hicks’ and Morishima’s ES. Discussing the fundamentals, we emphasize the limitations

of the former, being only applicable to the two-input case but widely used in macroeconomics

models due to its simplicity and the advantages of the latter, allowing for multiple inputs. For-

mulating the ES, we turn to the profit maximization problem and its solution, which helps us

explain the framework for estimating the ES under asymmetric technological change. In this

section, we focus on the theoretical setup, leaving details on the econometric procedure in the

Section 2.4.

2.2.1 Definitions of the Elasticity of Substitution

The original ES concept, derived by John Hicks (Hicks, 1932), captured the idea that the price

of an input factor of production, such as labor, is determined not only by the factor demand

and supply but also by production efficiency and substitutability (and/or complementarity) with

other inputs, for instance, capital. So, Hicks’ ES has become known as the measure linking the

change in the relative factor quantities to the technical rate of substitution (Varian, 1992).4 To

formulate Hicks’ ES, consider a producer of some uniform output Y characterized by the twice

differentiable production function:5

4Around the same time, Robinson (1933) came up with a similar but a more tractable formulation of the ES,
defining it as the percentage change in the factor ratio and their marginal productivities. Hicks’ and Robinson’s
definitions are shown to be equivalent for two input factor cases Knoblach and Stöckl (2020).

5This formalization is general enough and is used in both micro- as well as macroeconomic literature and helps
to ensure the existence of the production optimization solution(Fuss, 1977, Kemfert, 1998, Papageorgiou et al.,
2017).
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Y = Y (X,E, z) (2.1)

With the power sector in mind, we distinguish two major groups of inputs: energy E = {.., Ei, ..}

and non-energy X = {.., Xk, ..}, adding argument z as an overarching technology factor. As-

suming positive dependence between the output and each factor of production, we allow for the

same level of supply to be achieved with a variety of E and X combinations by analogy with

the power sector, where the same level of dispatch can be reached through different generation

profiles.

All the combinations of inputs for which the output level is the same form a so-called isoquant.

Moving along the isoquant, one may measure how much of one factor, e.g., Ei, is needed to

compensate for a reduction in another one, say Ej , determining the isoquant’s curvature, also

known as the marginal rate of substitution:

MRSij =
∂Y/∂Ei
∂Y/∂Ej

=
yi
yj

(2.2)

The MRS, defined as the ratio of the marginal productivities, lies at the basis of the classical

Hicks ES expressed as:

σHij =
∂ ln(Ei/Ej)

∂ ln(yj/yi)
. (2.3)

Notably, linking the change in input quantities to the relative factor productivity, σH focuses

on only one pair of inputs, ignoring possible changes in other inputs or output technology.

Criticizing that neglect, other ES concepts have emerged to correct for that and to ensure the

dynamics in multiple inputs are captured.

From a producer’s perspective, e.g., considering a utility with various generation-type capacities,

the choice of optimal input factor quantities heavily depends on the cost and profit implications.

Those considerations led to the alternative ES featuring the relative input prices.

Assume that in the short-term, the prices for individual inputs, pi, and the output, pY , are

exogenous6 and that the production costs are separable in terms of non-energy and energy
6We refer to the EIA (2012) study and assume that prices of non-energy inputs, including labor and capital,
along with the renewable energy generation, are exogenous and have little effect on the interfuel substitutability.
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expenses. Then, the total costs are given by:

TC = C(X,E,pX ,pE)

= Cx(X,pX) + Ce(E,pE)

= Cx(X,pX) +
∑
i

pi · Ei (2.4)

and the producer’s optimization problem can be formulated as:

max
X,E

[
pY · Y (X,E, z)−

∑
i: E

pi · Ei − Cx(X,pX)

]
(2.5)

Choosing the input quantities to maximize profit, the producer solves (2.5) and defines demand

for each input as a function of input and output prices. Therewith, the optimal output and a

relationship between the total cost, energy cost Ce(Y,pE), and Y are also uniquely determined

and depend on pi. This framework and its results led Morishima (1967) to the modification of

σH for the multi-input cases:7

σMij =
∂ ln(cei (Y,pE)/cej(Y,pE))

∂ ln(pj/pi)
=
∂ ln(Ei/Ej)

∂ ln(pj/pi)
(2.6)

The Morishima Elasticity of Substitution (MES) relates the change in the relative input quanti-

ties to a change in the relative input prices pj/pi relying on Shepard’s Lemma that equates the

cost derivative ∂Ce(Y,pE)
∂pi

= cei to the input demands satisfying the cost-minimization condition.

Blackorby and Russell (1981) and Blackorby and Russell (1989) proved the equivalency of the

different elasticity definitions, including the Hicks’ ES, in the case of two inputs and highlighted

the advantage of the MES over other definitions, particularly Allen-Uzawa, owing to its inherent

asymmetry and usability with the non-Cobb-Douglas (CD) CES production functions.

Traditionally, empirical studies use either σH or σM to measure the degree of substitutability or

complementarity between pairs of inputs, preferring the second one when more than two factors

are used. Most econometric procedures used for elasticity estimations are built on the one FOC –

cost minimization, examining changes in relative input price ratios ignoring their possible effect

on other FOCs determining the profit maximization (Mundlak, 1968). A particular shortcoming

of this approach is its inability to handle technological change and, therefore, the application
7Here we present the pruned expression for the Morishima elasticity rather than the complete form given by
σMij =

pj ·(ceij(Y,pE)·cej (Y,pE)−cejj(Y,pE)·cei (Y,pE))

cei (Y,pE)·cej (Y,pE)
, following Blackorby and Russell (1981).
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in time series analysis. Next, we introduce a non-homothetic production function and provide

further details on the solution for the profit optimization problem to derive the multiple FOCs

required to formulate the interfuel Elasticity of Substitution suitable for estimations of ES with

time series data revealing a biased technological change.

2.2.2 Production Function and the ES

In economic literature, the choice of a production function form is often justified by analytical

convenience and functional properties and/or by the desire to capture a particular produc-

tion technique and input-augmenting technological change (Jones, 2005). Standing out in both

macro- and microeconomics is a class of generalized Constant Elasticity of Substitution (CES)

functions. It is widely accepted and used in production theory, industrial economics, and eco-

nomic growth theories because of its flexibility in mapping a wide range of input ratios, asym-

metry in the direction of technological change, and capability to incorporate multiple (beyond

two) input factors (Kemfert, 1998, Frieling and Madlener, 2016, Papageorgiou et al., 2017). As

marked by (Sato, 1977) and (León-Ledesma et al., 2011), CES functions are particularly useful

as they allow for nesting multiple groups of inputs and for a non-unitary ES. In contrast, al-

ternatives such as Cobb-Douglas and Leontief functions lack the necessary properties (Pindyck,

1979, Considine, 1989b, Jones, 1995, Serletis et al., 2010a).

Embracing a wide range of macro- to microeconomics applications, we denote our output function

associating the non-energy input bundle X with capital K and labor L, for instance, used to

service and run the generation facilities. The second input bundle represents a portfolio of energy

fuels. Given technological differences, the energy-driven part of the output is nested, generating

a separate component in the generalized CES function:

Y (X,E, z) = z
{
φF [F (K,L)]

κ−1
κ + φG [G(E)]

κ−1
κ

} κ
κ−1 (2.7)

G(E) =
{
ρ1 [G1(E1)]

θ−1
θ + ρ2 [G2(E2)]

θ−1
θ

} θ
θ−1 (2.8)

The separability of X and E supports further possible nesting of multiple (groups) energy sources

and enables us to find:

• the individual input (group) income shares distinguishing, e.g., energy and non-energy φ

shares, along with importance of different fuel sets captured by ρi, and
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• the degree of substitutability between the individual factor pairs or groups, calculating

the outer elasticity κ measuring the switching between X and E and the inner elasticity θ

characterizing the competition between E1 and E2 energy groups.

Furthermore, with such a representation of production, we can isolate and focus on the interfuel

ES analyzing G(E) and the respective costs CE(E,pE). For illustrative simplicity, we continue

with a two-energy-input case and E = {E1, E2}, posting the derivations for a more general case

with multiple nests in the Appendix A1.8 We simplify (2.8) and redefine the corresponding

functions Gi as:

G(E) =
[
α1 (γ1 · E1)

σ−1
σ + α2 (γ2 · E2)

σ−1
σ

] σ
σ−1 (2.9)

The function features parameters αi, interpreted as the fuel-specific income shares, and γi,

representing input-specific productivity. Distinguishing individual productivity parameters, we

enhance the production model, allowing asymmetric efficiencies and, through that, in dynamics,

a biased technological change as opposed to the symmetric case and technological neutrality

implying γ1 = γ2.

For two inputs, σ, can be seen as Hicks’ or Morishima’s elasticity. We refer to it as MES to

remind the reader of the possibility of expanding the function through nesting to more than two

inputs. The presented expression poses a computational challenge when γ values differ. Adding

the productivity parameters increases the number of parameters to estimate and, thus, would

require more equations. Further equations would be found if one reviews the solution for the

profit maximization problem. Klump et al. (2007) and León-Ledesma et al. (2010b) point out

that the FOCs form a system of marginal productivity conditions that can be used to address

the issue:

∂G(E)

∂Ei
= G

1
σ αiE

− 1
σ

i γ
σ−1
σ

i =
pi
pG

(2.10)

Combining those conditions to exclude the loosely specified price pG, we obtain expressions

containing the relative price pi
pj
:

αi
αj
·
(
Ej
Ei

) 1
σ

·
(
γi
γj

)σ−1
σ

=
pi
pj

(2.11)

8In our approach to modeling production function with multiple nests, we follow Sato (1967).
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Together (2.9) and (2.11) provide a sufficient number of equations to estimate elasticity σ while

keeping a possibility to analyze technological efficiencies and their change with the γi
γj

term.

Note that an increase in the number of inputs, e.g., when (2.8) is nested, will automatically

translate into an increase in the number of FOC equations. Hence, the capability to calculate

the elasticities of inner and outer nests and the individual fuel efficiencies, biased or symmetric,

will remain.

The defined system of equations, however useful, represents a static situation, whereas to examine

technological change and analyze time series data, we need to add a time dimension to the

above. We complete our approach by adding time dynamics into our framework, accompanied

by the normalization tackling computational stability and interpretability questions raised by

De La Grandville (1997), Klump and de La Grandville (2000), and Klump et al. (2007).

2.2.3 Technological Change and the ES

The approach presented so far is static and, hence, is suitable only for cross-section data analysis.

To compute the elasticity on the historical Eit and input price data and gain the opportunity

to explore the effect of technological change on energy use, we rewrite (2.9):

Gt =
[
α1,t (Γ1,t · E1,t)

σ−1
σ + α2,t (Γ2,t · E2,t)

σ−1
σ

] σ
σ−1 (2.12)

Since the technological change measures the shift in efficiencies over some period of time, a base

point t is needed for comparison. Then, the progression in efficiencies is captured by the so-called

normalized factor productivities:

Γi,t =
γi,t
γi,t

(2.13)

Applying normalization, we switch to the relative terms and may now track and compare the

changes across the fuels, disregarding the measurement units. Substituting the normalized values

into the FOC equations, we derive the normalized version of (2.11):

(
p1,tE1,t α2,t

p2,tE2,t α1,t

)
·
(
E2,t

E1,t

)σ−1
σ

=

(
Γ1,t

Γ2,t

)σ−1
σ

(2.14)
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We regroup the expression to isolate the term reflecting the technological change. By definition,

the relative change is neutral when the efficiency change for i and j is the same, i.e., Γ1,t = Γ2,t

and the right-hand side of the equation boils down to 1. Yet, it is important to remember that

for two substitutable inputs σ > 1, whereas 0 < σ−1
σ < 1 and hence, the right-hand side of (2.14)

may take values greater, smaller, or even equal to one even if Γ1,t

Γ2,t
6= 1.9

Formulated this way, the obtained equation allows us to simulate a neutral change. Forcing the

relative technological change to one, we may test its effect on the elasticity values. Denoting the

elasticity in the case of neutrality by σn, we rewrite the above condition:

(
p1,tE1,t α2,t

p2,tE2,t α1,t

)
·
(
E2,t

E1,t

)σn−1
σn

=

(
Γ1,t

Γ2,t

)σn−1
σn

= 1
σn−1
σn (2.15)

Together, expressions (2.14) and (2.15) provide a testable hypothesis for unit or neutral techno-

logical change. With the first multiplier, combining prices, quantities, and income shares, being

the same in both equalities, the difference between the two equations comes from the right-hand

side, given that there is no difference in input data.

For Γ1,t

Γ2,t
, > 1, one finds σ to be lower than σn, confirming that the neutral technological change

assumption may lead to an overestimated ES when the technological change is biased. Hence, in

the time series analysis, it is critical to avoid using the neutrality assumption when calculating

ES values unless it is supported by empirical evidence. In the following section, we verify that

the technological change in the U.S. power sector from 1990 through 2019 was biased, justifying

the application of the above-developed approach.

2.3 Data

Climate change and the urgent need to reduce GHG, especially carbon emissions, brought sci-

entists’ attention to the world’s largest polluters. Among these, the United States of America

ranks second IEA (2024) after China. Electricity generation in the U.S. stands second after

the country’s transportation sector, specifically its associated carbon emissions, calling for close

scrutiny of questions of interfuel substitution. Tracking the evolution of fuel efficiencies, along

with the fuel switching driven by fuel prices along with other factors, such as changes in the
9The closer the value for σ nears ∞, the closer the quotient gets to 1. As the value for σ approaches unity, the
quotient becomes closer to zero.
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generation fleet, national and state agencies collect comprehensive energy statistics. That data

collection helps inform industry leaders, policymakers, and scientists and gives us an opportunity

for in-depth ES analysis.

This section reviews the database we compiled to test our methodology and explains the details

important to the econometric analysis. In particular, we analyze the nature of technological

change, explore state differences related to energy costs, and highlight the dynamics in other

variables, laying the foundation for the discussion in our Results section.

2.3.1 Variables for the ES Analysis

The framework presented in the previous section sets the data requirements for estimating the

ES and the change in technological efficiencies. We find that for the U.S., the Energy Information

Agency (EIA) and its State Energy Data System (SEDS) contain all the information needed to

characterize the power generation and perform the ES analysis.

Exploring the databases, however, we note that whereas records on some variables are available

from 1960 until the year before the present, on others, for instance, the net power generation,

the data are available only from 1990 onward. Hence, to compile a balanced panel, we set the

lower bound of the historical period considered to 1990 EIA (2022). Moreover, the granularity

or data frequency is not uniform, which forced us to conduct our study on an annual rather

than a monthly or quarterly basis. Such a temporal resolution precludes us from making a

comprehensive analysis of the shocks brought by the COVID-19 pandemic and the Russia-

Ukraine war. So the following discussion and ES estimations are based on 1990-2019 data.

We collect state-level data, including individual fuel consumption Ei, resultant generation Qi,

and expenses associated with each energy input (EIA, 2020). The information available includes

fossil and nonfossil energy statistics. But referring to the merit order, according to which renew-

able and nuclear generation is dispatched first, we limit our model to the residual demand met

by coal, natural gas, and oil-based products, i ∈ {C,NG,O}, respectively.10

10Another reason for excluding renewable energy from our analysis is to avoid additional complexity related to
the environmental policies and special market mechanisms often applied to renewables. In the Results section,
we discuss the possible effect of renewable energy penetration on the calculated elasticities. We perform the
ES calculations for nuclear energy. Still, as reported in the Appendix, the resulting values reflect the rigidity
in nuclear generation ramping up and down and, hence, present little interest.
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Using the net power output Qi,t,s, we calculate the final output or G for the respective portfolio

of analyzed fuels as:

Gt,s =

n∑
i=1

Qi,t,s (2.16)

Besides the time dimension, we emphasize the geographical granularity or association of values

with individual state s.

Next, we examine the relationship between the primary energy inputs and generation, calculating

the effective average technological efficiencies with the annual and state resolution:

γi,t,s =
Qi,t,s
Ei,t,s

(2.17)

Those values are seemingly easy to calculate and vital for analyzing technological change and

inter-fuel substitution. Another critical variable that distinguishes our analysis is the unit input

cost. We derive the effective input prices pei,t,s using individual fuel-associated expenditures

reported by the SEDS. The market energy prices might not coincide or reflect the per-unit

energy spending, for example, neglecting hedging costs, volume discounts, and other factors. In

an attempt to correct for that and to make more accurate ES estimates, we use inflation-adjusted

effective input costs.

The effective price exercise helps us find another essential element of the energy cost: payment

associated with carbon emissions. Regulations, such as an Emission Trading Scheme (ETS)

brought by the RGGI, add extra costs to be considered by utilities in their bidding and generation

decisions. To account for that, we adjust the originally calculated pei,t,s for 11 states, including

Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode

Island, and Vermont,11 computing the price that will ultimately be used in our econometric

analysis:

pi,t,s

[
$

MMBtu

]
= pei,t,s

[
$

MMBtu

]
+ ct

[
$

tCO2

]
· ψi,t

[
tCO2

MMBtu

]
(2.18)

In our calculations, we apply the emission factors ψ provided by EIA (2021a) and emissions

certificate cost ct assigned every three years by the ETS bidding process.
11New Jersey has been part of RGGI from 2009 onward but paused its participation from 2012 to 2018; thus, the
adjustment for that state is limited to the mentioned years. Virginia has also joined RGGI, yet only starting
in 2020, which is beyond our analysis.
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The compiled state-level time series database differentiates our work from numerous previous

studies primarily focused on nationwide or individual state ES. With the data granularity often

marked as the underlying cause of the ES estimate divergence (e.g., see Considine (1989b),

Hochman and Timilsina (2017), Jones (1995), Khalid and Jalil (2019), Pindyck (1979)), we have

a unique opportunity to investigate how data aggregation or subsetting may translate into the

ES differences. A notable study that inspired our analysis, EIA (2012), showed how elasticity

values may differ on a regional basis. We update and expand this assessment by analyzing the

ES evolution and checking for possible biases related to the technological neutrality assumption.

2.3.2 Exploratory Data Analysis

Constraints on time series-based ES analysis have limited the sector evolution discussions, par-

ticularly concerning technological efficiencies. To address this shortage and to understand the

implications of technological advances, we look at the dynamics of technical efficiencies and other

relevant variables, such as the effective energy costs. In doing so, we verify the necessity for the

additional complexity of the proposed methodology.

The U.S. shale revolution untapped abundant natural gas and oil resources, causing major energy

price shakeups. In 2008, the fast growth in natural gas supply manifested in a multifold price

drop, prices that never fully recovered to previous levels. A surge in production resulted in

oil price collapses in 2014 and 2016 and increased price volatility. We depict these dynamics

by plotting the U.S. state-consumption-weighted average effective energy costs computed with

(2.18) in Figure 2.1.

The distribution of values also reflects energy-price differences and associated supply-cost differ-

entiation associated with infrastructure bottlenecks and other factors.

Radical shifts in the U.S. energy supply, prices, and decarbonization efforts have accelerated fuel

switching. The U.S. power generation mix has undergone an unprecedented transformation, as

shown in Figure 2.2. Although the combined share of coal- and natural gas-fueled electricity

generation has remained fairly constant, at about 65%, the share of natural gas-based generation

has been steadily growing, from around 10% to nearly 40% during the past three decades,

displacing coal, whose share shrank from around 55% to less than 25%.
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Figure 2.1: The U.S. state-consumption-weighted average effective energy costs. Bars mark the highest and
lowest values across the states each year (EIA, 2022, 2020).

Figure 2.2: Relative production shares in the U.S. power sector (EIA, 2022, 2020).

We recognize that changes in the dispatched energy mix might be driven by factors other than

energy prices and technological change. But considering the two listed as the most influential,

we look at the technical efficiencies next. Plotting the calculated efficiencies in Figure 2.3,
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we highlight the visible changes in natural gas generation efficiencies. The increasing absolute

and relative γNG values confirm the need to account for the biased technological change. The

dynamics across γi,t values also suggest an analysis of the ESs evolution.

Figure 2.3: Dynamics of the electric efficiencies in the U.S. power sector (EIA, 2022, 2020).

Looking into another recognized source of bias in the ES, the divergence in estimates stemming

from data aggregation, we examine the correlations in the key variables on the national or

aggregate level and state-level data. Results reported in Figure 2.4 reveal that whereas the signs

of the correlation stay the same, the strength may significantly vary, implying that the ES values

calculated on the aggregate versus state-level data are likely to differ. The presented exercise

merely suggests a possible aggregation bias, whereas other arguments may be brought to defend

or discard the aggregation. However, considering this result, we calculate the ES varying the

data aggregation level.

It is worth mentioning that not all U.S. states have generation capacities using all three fossil

fuels, just as not all the states have nuclear power. Ignoring that fact may deepen aggregation-

brought biases. To address that issue, we selected the states that do have the fuels identified in

the respective model and ES calculations.12

12Complete information on the states included in the respective model, together with further data analysis
insights, can be found in the Appendix A3.
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(a) Correlation (Aggregate). (b) Correlation (State).

Figure 2.4: Correlations among the key variables characterizing the U.S. power sector, reporting values with
over 1% significance (EIA, 2022, 2020).

2.4 Econometric Estimation

Confirming the necessity for the expanded ES approach that accommodates a technological bias,

we now proceed with details on the econometric model. We translate the theoretical derivations

into estimation procedure steps, continuing with the two-input model for simplicity, presenting

the generalization for three or more inputs in the Appendix A1. We start by expanding the

normalization critical for interpreting the results. Then, we take a closer look at the optimality

conditions and show how they can also be used to analyze the power sector behavior optimality.

To conclude, we briefly discuss the choice of the estimation method.

2.4.1 Normalizing the Production Function

In terms of our study, normalization is a procedure applied to the terms in the production

function and the FOC equations to resolve possible dimensionality and interpretability issues.

In a nutshell, the output and individual input values are divided by corresponding base values.

In Section 2, we have already introduced parameter Γi,t, the normalized unitless productivity, to

define the technological shifts across the inputs and over time. Here, we apply the normalization

to other variables, marking the base values with the subscript zero and FOCs used in the

econometric calculations.
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Adopting the approach implemented in the multi-sectoral data analysis by Kreuser et al. (2015),

we introduce individual state-level Normalization Constants ξs and state-specific base values

Ei,0,s and G0,s. Then, following the expressions (2.9) and (2.10), we rewrite the normalized

Constant Elasticity of Substitution production function and the associated FOCs:13

Gt,s
G0,s

= ξs

[
α1,s

(
E1,t,s

E1,0,s
Γ1,t,s

)σ−1
σ

+ α2,s

(
E2,t,s

E2,0,s
Γ2,t,s

)σ−1
σ

] σ
σ−1

(2.19)

∂Gt,s
∂Ei,t,s

=

(
αi,sG0,s

Ei,0,s

) (
Gt,s
G0,s

) 1
σ
(
Ei,t,s
Ei,0,s

)− 1
σ

(ξs Γi,t,s)
σ−1
σ =

pi,t,s
pY,t,s

(2.20)

Note that the presented system contains three equations in the two-input case, with i ∈ {1, 2}

and (2.20) specified for each input. Used for estimating the elasticity σ, the system in such a

formulation also accounts for the fixed effects.

However, term pY,t,s in the right-hand side of (2.20) is vaguely specified, raising questions about

proper measurement. To avoid the related issues, we divide the FOCs by each other to exclude

the output price:

p1,t,sE1,t,s α2,s

p2,t,sE2,t,s α1,s
=

(
E2,0,sE1,t,s Γ1,t,s

E1,0,sE2,t,s Γ2,t,s

)σ−1
σ

(2.21)

Recall that our data allow for computing γi,t,s and, thereby, estimating Γi,t,s, so the obtained

expression does not bring any issues for parameter estimations. In contrast, the above result

provides two benefits: the reduced number of equations suggests both improved computational

efficiency and greater accuracy.

2.4.2 The Benchmarks for Normalization

With normalization defined, we turn to a discussion of the base values. In general, they could

be associated with a specific year, or they could be defined as sample averages. Choice of the

base values is dictated by the purposes of the analysis (León-Ledesma et al., 2010b). In search

of the most appropriate base, we examine the time series and the distributions for output values,

input quantities, prices, and efficiencies. The observed trends and long tails of the distributions

suggest the use of the geometric averages for the first three of the listed variables and the median
13Assuming that capital and labor expenses do not change significantly, we see them as embedded into the
productivity and technology parameters.
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time t̄ for productivity. Thus, we follow the conventional approach to the base value choice in

the time-varying variables and define the normalization bases as:

G0,s = exp

(∑tmax
tmin

lnGt,s

n

)
; Ei,0,s = exp

(∑tmax
tmin

lnEi,t,s

n

)
;

pi,0,s = exp

(∑tmax
tmin

ln pi,t,s

n

)
and Γi,t,s =

γi,t,s
γi,t,s

. (2.22)

In contrast, views on the normalization of income shares diverge. We employ the procedure

applied in a similar setting by León-Ledesma et al. (2011). According to that study, we specify:

α1,s =
E1,0,s p1,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s
; α2,s =

E2,0,s p2,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s
(2.23)

We tested other normalization options, conducting the sensitivity analysis, but we found little

effect on the final ES estimations.14 As a result, we find the above base values acceptable and

suitable for the purposes of our analysis.

2.4.3 The Optimality Conditions

Reviewing the FOCs, we realized that our estimations provide grounds for further analysis of

the power sector’s behavior. Computing the ES, we estimated the production model parameters

and calculated the optimal input use and output levels. With that, we obtained a possibility

for verifying how close the observed relative fuel use is to the optimal levels determined by First

Order Conditions. Performing such a thought experiment, we may obtain insights into the power

sector’s operational optimality. To pursue this line of investigation, we rewrote (2.21), isolating

the term with the relative fuel quantities, and solved it for the optimal ratio of E1 and E2:(
E1,t,s

E2,t,s

)∗
=

(
E2,0,s Γ1,t,s

E1,0,s Γ2,t,s

)σ−1(p2,t,s α1,s

p1,t,s α2,s

)σ
(2.24)

This optimal fuel ratio allows us to (1) analyze whether and to what degree a certain fuel is

“overused” and (2) track the adjustments in fuel use over time. We define the misuse of input i
14We present the results in tables in the Appendix A4.
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over j relative to the optimal use as:

Oj,t,s =

(
Ei,t,s
Ej,t,s

)∗
Ei,t,s
Ej,t,s

=
E∗i,t,s
Ei,t,s

· Ej,t,s
E∗j,t,s,

; (2.25)

Strictly speaking, the misuse values may lead to erroneous conclusions since expression (2.25)

ignores the effect of possible binding constraints. Viewed with caution, however, the results of

this experiment may provide some interesting new insights into the delay in reaching optimality

and the ability to rely on the FOC.

2.4.4 Estimation Method

To solve the system of equations characterizing the ES and the technological change, we follow

the traditional approach and apply logarithms to linearize equations. Then arises the ques-

tion of a choice of computation method. The applied econometrics literature offers a variety of

approaches: for instance, Herrendorf et al. (2015) used the three-stage least squares method,

whereas Frieling and Madlener (2016) demonstrated the powerful capabilities of the Generalized

Method of Moments (GMM), inspiring our analysis, Klump et al. (2007) and León-Ledesma

et al. (2010b) applied Non-Linear Seemingly Unrelated Regressions (NLSURs). The last op-

tion presents itself as particularly attractive because of the open source NLSUR-package in R

software.

However, warned by Luoma and Luoto (2011) of the internal inconsistency of estimators problem,

we decided on the Iterative Feasible Generalized Non-Linear Least Squares (IFGNLS) method

proposed by Kreuser et al. (2015). Based on a maximum log-likelihood, this approach overcomes

the bias toward unity criticized by Luoma and Luoto (2011) and generates results similar to

NLSUR when correlated errors are not an issue. Possible drawbacks of the selected method

include its higher computational requirements and convergence issues. The latter, however, may

also emerge with another method. The NLSUR packages available in R and Stata help the

reproducibility of our results and usability of the model in other applications.
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2.5 Results

Applying the developed econometric procedure, we compute the interfuel ES varying the as-

sumption on the nature of technological change, the set of inputs considered, and the data

samples. First, we demonstrate our approach with the two- and three-input (nested) models,

applied to the aggregate U.S. and state-level data sets. Examining the differences among all

estimations, we label the three-input state model as a benchmark. Then, we look at the power

sector dynamics, analyzing the evolution of the ES and fuel-switching behavior across the states.

We conclude with new insights and ideas for further needed research.

2.5.1 State vs. National ES

The ES studies differ in their choice of energy inputs and regional granularity. Our data set is

rich enough to support comparative analysis of various model setups and to explore by what

methods and how ES values are affected. We start by comparing the results of the two- and

three-input models using the country aggregate versus state data, given in Tables 2.1 and 2.2.

Table 2.1: Two-input substitution elasticities in the U.S. electricity sector (1990-2019).

NG - C NG - O C - O
agg state agg state agg state

σ 1.05∗∗∗ 15.90∗∗∗ 2.42∗∗∗ 2.69∗∗∗ 2.12∗∗∗ 2.72∗∗∗

(0.08) (1.95) (0.21) (0.05) (0.36) (0.10)

N 30 1260 30 1260 30 1260
R2(G) 0.65 0.87 0.98 0.98 0.96 0.98
R2(FOC) 0.08 0.85 0.87 0.86 0.55 0.61

σ - ES; ∗∗∗ p<0.01; (Strd. Error)

First, we mark the statistical significance of all the computed values and satisfactory R2 for the

estimated equations, with the exception of low R2 for the FOC of the NG−C pair in both the

two-input and the three-input models. This issue, however, arises only in the aggregate but not

in the state cases, suggesting better stability and robustness of the latter.15

15We believe that the low R2 values are symptomatic of the computational convergence problem associated with
the aggregation or the inherent asymmetry of the MES. In our calculations, we set the substitution of coal with
natural gas and switching from natural gas to coal to be the same, thus forcing symmetry on the MES. It may
not be the case, considering the decarbonization and incentives for coal retirement. Even though our approach
allows for asymmetric MES estimations, we leave that computationally complex problem for further research.
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Table 2.2: Three-input substitution elasticities in the U.S. electricity sector (1990-2019).

(NG - C) - O (NG - O) - C (C - O) - NG
agg state agg state agg state

σ 2.10∗∗∗ 2.54∗∗∗ 1.09∗∗∗ 4.95∗∗∗ 1.29∗∗∗ 4.07∗∗∗

(0.15) (0.05) (0.08) (0.21) (0.08) (0.11)

η 1.16∗∗∗ 4.74∗∗∗ 1.74∗∗∗ 2.93∗∗∗ 2.36∗∗∗ 2.32∗∗∗

(0.08) (0.16) (0.08) (0.06) (0.34) (0.06)

N 30 1260 30 1260 30 1260
R2(G) 0.84 0.89 0.85 0.89 0.84 0.89
R2(FOC Nest) 0.2 0.86 0.84 0.86 0.54 0.61
R2(FOC Outer) 0.68 0.47 0.43 0.38 0.62 0.48

σ - outer ES; η - inner nest ES; ∗∗∗ p<0.01; (Strd. Error)

Furthermore, although we find the substitutability across all the fuel combinations to be greater

than one, pointing to the elastic response or high sensitivity to changes in fuel costs, the aggregate

ES values are consistently lower than the counterpart state values. That suggests that state

responses balance out nationally, hiding the severity of fuel changes in some states behind the

insensitivity in others. The difference in the estimations is especially large in the coal to natural

gas substitution (and C − O): a 10% change in the relative costs is expected to cause a 10.5-

11.6% change in the aggregate relative fuel use versus a radical more than 40% change projected

by the state data. Appearing to be similar, the ES values for the NG − O pair, 2.42 for the

aggregate and 2.69 for the state cases, also diverge with the addition of coal: the inner and the

outer elasticities move in opposite directions, to 1.74 and 2.93 for (NG − O) − C and to 1.29

versus 4.07 for (C −O)−NG, respectively.

The increased gap in the three-input model, state vs. aggregate, estimations, and the direction

of the ES values change between the two- and three-input cases led us to the conclusion that

the higher the granularity in the inputs and data, the more visible the reactions to the change

in the relative fuel cost are. Hence, data disaggregation helps uncover the dynamics concealed

otherwise, whereas aggregation is prone to mask it with lower ES values, suggesting milder

sensitivity. Monitoring the progress of energy transition, it is critical to detect the signs of

structural changes. So, we conclude that even though the two- and three-input approaches may

lead to somewhat similar assessment results, nesting, and data disaggregation provide a deeper

and more comprehensive view of fuel substitution. In addition, our method helps avoid possible
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convergence and stability issues. Therefore, we continue our analysis, referring to the three-input

state model and its outcome as a benchmark.

2.5.2 Possible ES Biases

The effect of data aggregation and input choice led us to investigate other factors that may

influence the ES. Following the theoretical discussion, we use our benchmark model to show the

bias from the neutral technological change assumption. Calculating the neutral ES, we aim to

verify the importance of our approach, offering flexibility concerning the nature of technological

change. Next, the conclusion that ES accuracy improves with the expanded list of inputs leads

us to the analysis of the data sample, including only the states with nuclear generation, the

primary base-load substitute for coal, and the key alternative to fossils along with renewables.16

At present (2024), nuclear generation is used in 28 states, but we focus on 26 that used all 3

fossil fuels in the period considered, referring to the case as NS 26 (Table 2.3). Finally, the

trends in energy efficiency and structural shifts in the residual demand inspired our historical

bias analysis, for which we apply our benchmark model to the last two decades of data. The

reduced sample size causes stability issues, so we stretched the time window to 22 years and

name the last case ’97 - ’19.

Table 2.3: The three-input ES cross-model comparison.

η σ

state neutral NS 26 ’97 -’19 state neutral NS 26 ’97 -’19

(NG - C) - O 4.74 6.98 3.65 3.17 2.54 2.72 2.61 2.64
(NG - O) - C 2.93 3.37 2.76 2.73 4.95 8.48 3.78 3.05
(C - O) - NG 2.32 2.45 2.49 2.60 4.07 5.67 3.59 2.87

σ - outer ES η - inner nest ES; NS 26 - states with nuclear generation

Looking at the elasticity calculated under the assumption of neutral technological progress, we

confirmed the positive bias, finding all the values to be higher than the benchmark results. The

difference is exceptionally large for the pairs with natural gas technologies, which have been

advancing the most (Fig. 2.3). Thus, a 10% change in coal to natural gas relative cost suggests

an almost 70% change in the relative fuel usage under the neutrality assumption versus 47% in
16Note that in the course of our study, we analyzed the two-, three-, and four-input models, the latter distin-
guishing nuclear generation. Yet, to keep the discussion focused on fossil fuel energy, we include the four-input
model’s results in the Appendix A4.
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the benchmark case, accounting for a bias toward natural gas technological change. In contrast,

neutral and benchmark values are fairly close for the inner ES of (C − O) and outer ES of

(NG− C)−O, with coal and oil generation efficiencies barely changing.17

Next, we analyzed a sample highlighting the effects of nuclear generation. The U.S. nuclear

plants participate in the wholesale power trade, along with natural gas generators, who often

set the price for electricity according to the merit of order. Historically, an increase in natural

gas prices created incentives for expanding the relatively cheaper nuclear and coal generation,

whereas plummeting natural gas prices brought a wave of retirements for both nuclear and

coal-fired plants. In line with that, our estimations show lower NS 26 ES values in the pairs

particularly affected by the availability of the nuclear option, such as inner (NG − O) and

(NG−C). We call this effect "substitution dilution" as the reaction to a change in, e.g., natural

gas price, is split between the paired fossil fuel (bundle) and implicitly nuclear. The four-input

model, including nuclear to the set of inputs, supports our conclusions (see Appendix A3).

Although the variations in the ES values may result from other sample-specific characteristics,

for instance, regulations and demand properties, they emphasize the importance of alternative

sources of power generation or changes in residual demand. The past two decades mark the fast

growth in renewable energy generation.

To verify its effect, we use a reduced historical sample in our calculations. The ES in columns

headed ’97 -’19 signifies the change in fuel competition within the past two decades. Inner elas-

ticity changes in the same direction as in the NS 26 case. We attribute that to the similarity

in renewables’ and nuclear generations’ positions in the power supply curve: with low marginal

costs, both traditionally precede any fossil fuel. Hence, adding renewables weakens the reaction

to the change in natural gas prices, appearing last in the supply curve. At the same time, compe-

tition between coal and oil-derived products becomes fiercer. To explain the increased elasticity

for oil, we recall that oil products are often used in backup, black-start, or emergency generation,

competing with renewable generation combined with battery technologies. Penetration of those

technologies exposes fossil fuels to further competition, justifying an increase in the ES.

In sum, we confirm that the neutrality assumption introduces ES bias, but along with that, we

conclude that our ES results may reflect population and historical-sample biases. Leaving the
17With all the ES values’ statistical significance p < 0.05 and the standard error not exceeding 10%, we simplify
the table view and report only estimated values.
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investigation of the former for further research, we focus on the latter to examine the evolution

of the ES.

2.5.3 The ES Evolution

We developed a "moving time-window" procedure to analyze how the ES values have changed

over time (Figure 2.5). Applying it, we compute the ES for each designated time window,

tracking how the calculated values change as the window moves.

Year1990 1993 1996 1999 2002 2005 2008 2011 2014 2017

Period 1

Period 2

Figure 2.5: Example of a 22-year moving-time window.

We plot the 22-year window results in Figure 2.6. With the notable shrinkage in the 95% confi-

dence intervals indicated by the error bars, the plots show a striking decrease in substitutability

between natural gas and coal over time. The corresponding inner and outer ES values drop to

a third between the first window of 1990-2012 and the last covering the period of 1997-2019. In

contrast, the substitutability with respect to oil products hardly changes.

We believe several co-occurring phenomena help to explain the uncovered trends in the ES: the

unbundling of natural gas supply that ended in 1992; the Shale Revolution that started in the

late 2000s and brought an abundant supply of natural gas and oil to the U.S. market; and the

energy transition inducing the retirement of the aged coal-based generation and the penetration

of renewable energy in the U.S., accelerating in the 2010s. This historical context suggests

that besides the changes in relative energy costs, domestic resource availability and regulations

impacted fuel substitutability, especially of natural gas.18

Resource availability could explain investments in technology and the deployment of new capac-

ities, allowing for more flexibility in price reactions in the power sector. Adding more efficient,

combined-cycle natural gas plants while retiring coal generation and adding back-up and peak-

shaving diesel generators would mean increasing reliance on natural gas and limiting gas to

coal switching. On the other hand, adopting renewables reduced the demand left for natu-

ral gas, pushing the elasticity back to lower numbers. The battle between the two effects, in
18In this context, we also realize the limitations set by the assumption on the ES symmetry. We mark that
weakness in the Discussion section, suggesting further research directions to address it.
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(a) Inner and outer ES for (NG− C)−O. (b) Inner and outer ES for (NG−O)− C.

(c) Inner and outer ES for (C −O)−NG.

Figure 2.6: The evolution of ES, based on the 22-year moving time-window exercise.

part, explains the high ranges of ES values, but the last two decades indicate convergence and

stabilization across all the ES values.

Hence, though the ES can be seen as constant over shorter time windows in times of technological

and regulatory turmoil, having a dynamic analysis is crucial to ensure that the estimations

represent the sector responsiveness to energy-cost shocks. Industry restructuring, due to the

regulatory environment, could change the fuel substitutability dramatically, and hence, power-

sector planners and agents must consider the direction of the ES evolution. In view of this, we

complete our analysis by investigating the error terms or deviation of the observed ES from the

modeled one.
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2.5.4 Model vs. Reality

The derived ES relies heavily on the optimality assumption captured by the First Order Con-

ditions. As reported above, the explanatory power of our models for the inner and outer FOC

is lower than that for the production function G(E). Lower R2 values bring us to examine the

error term or the difference between what our calibrated model predicts should have been the

energy substitution and what was observed in reality. We refer to the methodology in Section

2.4.3 to compare the actual relative use of fuel i over j with the modeled, plotting the weighted

average annual overuse based on our benchmark model (2.7). In that exercise, we mark the

number of states with the overuse of a particular fuel to address possible sample biases.

To analyze and interpret the plots, one should realize that the optimality condition holds when

the weighted average overuse value equals 1.19 Looking at the severity of overuse and its spread

across the states, we make several observations. First, we see that the relative use of coal over oil-

based products is balanced out, with the "overuse" lines fluctuating around 1. The corresponding

number of overuse states heavily fluctuates, supporting this argument and showing how, for many

states, it takes more than one year to adjust its oil use in response to the oil price shocks.

Next, we find that natural gas has been drastically overused between 2000 and 2008 compared

to all other inputs. The overuse is especially pronounced in its pairing with coal. We suspect

that the pressure on coal use and the need for more natural gas to manage the intermittency

of renewables have induced the power sector to expand its reliance on natural gas while the

supply was still tight and natural gas prices were high. Later, the availability of shale gas, drop

in natural gas prices, and demand shrinkage under the global financial crisis have resulted in

adjustments that appear to return to more rational and balanced behavior, bringing the overuse

values closer to 1.

Overall, even though the U.S. power sector shows visible deviation from optimality conditions

across most of the states during economically unstable times, the sector is prone to return to

optimal behavior, as the model dictates, once the shocks are over. This phenomenon implies the

validity of our approach but highlights that certain events may induce ES value deviations and

fluctuations in the short term.

19One should, however, be careful with this interpretation, noting that with half of the states overusing one fuel
and the other half overusing (by the same amount) the paired fuel, the overuse is equal to 1, and optimality
also holds. That is why we analyze the overuse together with the number of overusing states.
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(a) Fuel overuse in (C −O) pair. (b) Number of states overusing coal relative to oil prod-
ucts.

(c) Fuel overuse in (NG−O) pair. (d) Number of states overusing natural gas relative to oil
products.

(e) Fuel overuse in (NG− C) pair. (f) Number of states overusing natural gas relative to coal.

Figure 2.7: Modelled versus actual U.S. power sector interfuel substitution.
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2.6 Discussion

Technological innovation is a driving force of decarbonization, supporting the energy-mix trans-

formation and the transition to a low and net zero carbon energy mix. So, it is essential for

interfuel substitution, a measure of the energy use responsiveness to the changes in relative

fuel costs and a critical indicator of transition progress, to account for and reflect technological

change. We present and demonstrate a novel method for estimating ES, allowing for a biased

change in efficiencies across energy fuels. In so doing, we confront the key weakness of tradi-

tional empirical approaches featuring the assumption of neutral technological change and offer

the flexibility needed to capture developments associated with decarbonization.

We confirm that technological change in the U.S. power sector is uneven and biased toward

natural gas-fired generation, and we apply our model to estimate ES across fossil fuels. We

validate the importance of the biased technological change assumption by showing that results

from the neutrality-based model suggest a much higher degree of substitutability between fuels.

The degree of ES overestimations caused by the technological neutrality assumption underscores

the value of the presented approach.

In the course of conducting our analysis, we also uncovered disparities in the estimated elastic-

ities stemming from data aggregation and production-function specification. Our calculations

suggest that disaggregated data enhance the model’s ability to capture the variance in fuel sub-

stitutability and elicit useful insights into shifts related to energy transition. Employing a nested

production function with multiple (more than two) competing fuels helps us develop a further

understanding of how a generation portfolio may affect interfuel substitutability. For instance,

growth in the first merit order energy sources, such as nuclear power or renewables, reduces the

ES for natural gas, the key marginal fuel responding to changes in power demand.

Furthermore, examining our estimations of historical biases, we found a significant difference in

the ES values derived from the entire data set and the last two decades of data. That finding

inspired us to study ES evolution using a moving time-window procedure. Results showed

a gradual reduction in the ES between coal and natural gas, which we attribute to energy-

transition processes, namely the penetration of renewable energy and expansion of natural gas

generation caused by the abundance of unconventional resources.
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Finally, global and U.S. energy market turmoils, caused by financial crises, the shale revolution,

and intensified regulatory interference, led us to question the validity of our approach based on

optimality conditions. So, we completed our study by examining how well the calibrated model

explains real-world observations. To confirm the validity of the profit-maximization assumption

and the optimality conditions, we compared the actual versus model-predicted fuel use. We

found that even though, in the short term, the energy use may not comply with the optimality

conditions, in equilibrium, energy use returns to the levels suggested by the model and aligns

with optimality. Another explanation for some of the deviations from optimal fuel use may

be the effects of capital allocation, implicitly captured by our model. Additionally, capital

efficiency, policy preferences, and the policy-driven support of capacities (e.g., in renewables

and/or nuclear power) may have influenced the outcomes. Further research may, thus, also

incorporate a measure of capital and capital efficiencies.

In summary, our approach illuminates the complexities within the U.S. power sector and estab-

lishes a sturdy platform for further investigations into energy transitions. Yet, drawing from

the results of our study, the following topics deserve further research: (1) a nuanced analysis

involving diverse data subsamples to scrutinize the impact of nuclear power and the adoption of

renewable energy on power-sector elasticities; (2) a more comprehensive investigation using finer-

grained data in the moving time-window analysis; (3) the exploration of alternative functional

forms in the multi-equation framework, potentially necessitating alterations and adaptations in

the application methodology, and (4) an extension of the approach that allows for the calcula-

tion of asymmetric ES in the case of panel data. Despite the identified limitations and prospects

for refinement, the present work facilitates a more sophisticated comprehension of energy-mix

dynamics, offering pathways to enhance predictive models and furnish improved guidance for

making policy decisions in an ever-evolving energy landscape.



3 | Re-assessing the Impact of the Re-

gional Greenhouse Gas Initiative:

The Effect of Low Natural Gas Prices

on the U.S. Power Generation

by Daniel Gatscher, Svetlana Ikonnikova

This study re-evaluates the efficacy of the RGGI designed to reduce carbon intensity in the

northeastern U.S. power sector. The program’s start coincided with the discovery of the Mar-

cellus Shale play and the rapid growth of natural gas production that led to a dramatic drop in

regional energy prices. We contribute to the debate on the extent to which each phenomenon,

the RGGI and the Marcellus natural gas supply boom, has provoked decarbonization in the

power sectors of the affected states.

Using panel data on economic, political, and other relevant characteristics, we aim to isolate the

effects of energy prices and carbon policy. We apply a combination of Synthetic Control (SC)

and Difference-in-Differences (DD) methods and study the dynamics of CO2 intensity in the

RGGI participating states, the Marcellus region, and a placebo "control" group. Our results

reveal that besides the RGGI, the reduction in energy prices had a sizable contribution to the

observed decarbonization of the power sector in the northeastern U.S.. Moreover, in some non-

RGGI states, the drop in energy prices led to an emission drop equivalent to that in the RGGI

region. Our findings mark the critical interplay between the energy market dynamics and policy

success.

44
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3.1 Introduction

Climate change has emerged as a preeminent topic in the public discourse, compelling govern-

ments around the world to develop and implement diverse policies, regulations, and programs

aimed at mitigating global warming. A pioneering and most notable initiative in this regard

was the EU ETS, a cap-and-trade mechanism established in 2005. Designed to curtail CO2

emissions, the primary driver of global warming, the program gained widespread acclaim for its

efficacy, inducing other regions to adopt analogous initiatives (Bayer and Aklin, 2020, Marin

et al., 2018). Among these is the RGGI launched in 2009 in the northeastern United States,

which seeks to decrease the emission intensity of the power sector in participating states.

Despite the projected positive outcomes, programs such as the RGGI and EU ETS face criticism,

implying that other instruments or market forces might be more efficient or complementary to

those employed. For instance, the growth of unconventional resource production in Texas and

other U.S. states is cited as an example of how decarbonization can be driven by the availability

and affordability of "cleaner" fuels. This is the case for natural gas, which increasingly replaces

coal (Pacsi et al., 2013). The discovery and rapid production growth of the Marcellus shale

play, adjacent to the RGGI states, raises similar questions: was the coincidental shale boom

rather than the ETS the major contributor to the reduction of emissions in the region over the

past decade (EIA, 2021b)? Plummeting natural gas prices, both in absolute terms and relative

to coal, have been suggested as a primary cause for the shift in the power sector energy mix

(Lueken et al., 2016).

The purpose of our study is to synthesize the evidence on decarbonization in the northeastern

U.S. power sector and to resolve the debate on the effects of the RGGI and the Marcellus shale gas

boom. Considering the competing hypotheses on the drivers for carbon intensity reduction, we

suggest an approach for disentangling and evaluating the impacts of co-occurring interventions

or so-called "treatments". We apply the developed model to quantify the effects of the RGGI

and the drop in natural gas prices on carbon emissions. With the intent to provide a nuanced

understanding of the complex relationships between policy instruments and market forces, we

offer a tool for more accurate and comprehensive policy analysis and a new perspective on the

energy transition.
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Focusing on the RGGI, our study contributes to the strand of research analyzing the efficiency

of regulatory instruments incentivizing the transition to carbon neutrality (Stephenson et al.,

2021). A diversity of approaches have been suggested for the policy analysis, but recent studies

highlight two, the Synthetic Control (SC) and the Difference-in-Differences (DD) methods, as

the most promising (Abadie and Gardeazabal, 2003, Donald and Lang, 2007, Arkhangelsky

et al., 2021). The SC method uses balanced panel data with a long pre-treatment history and a

small number of exposed units, in our case, the states, to construct counterfactuals and, thereby,

deduct the effect of a considered treatment. DD heavily relies on a substantial number of units,

e.g., states, exposed to the treatment to allow for estimating time and unit-specific fixed effects.

Due to the data requirements, the two methods are often seen as mutually distinct alternatives

for measuring the impact of a particular policy or an intervention (Chen et al., 2022, Kim and

Kim, 2016, Sims et al., 1982, Yu et al., 2021). However, Arkhangelsky et al. (2021) suggested

that, if data allow, the SC and DD may be combined to improve robustness in results.

Compiling a rich database characterizing the last thirty years of power sector dynamics, individ-

ual states’ economic performance, and other aspects relevant to decarbonization across the U.S.,

we gain an opportunity to integrate DD and SC models. In contrast to previous studies, we face

the challenge of studying the causal impacts of multiple co-occurring treatments, namely the

RGGI and Marcellus boom. By analogy with Arkhangelsky et al. (2021), we aim to develop a

procedure that provides robust conclusions and addresses possible unit selection and parameter

estimation endogeneity issues.

Past research dedicated to assessing the RGGI, including CERES (2016) and Murray and

Maniloff (2015), established that the initiative prompted a shift between coal and natural gas-

fired generation (Cullen and Mansur, 2017, Johnsen et al., 2019, Kim and Kim, 2016, Knittel

et al., 2015, Linn and Muehlenbachs, 2018). Yet, the studies disagree on the electricity price

effect being positive (CERES, 2016) or negative (Stevenson, 2018), especially compared to the

non-participating states. Recognizing the fuel price and substitution effects on electricity gen-

eration (Bailey, 2020) and marking positive state economy outcomes (Hibbard et al. (2018)),

most of the literature remains silent on co-occurring events singling out a particular interven-

tion. Exceptions, such as Yan (2021), while testing a combination of the variables, withdraw

from analyzing market (supply) shocks and policy.

Addressing this gap in the literature, we enhance the previous analyses in several ways. First,

we include a variety of outcome variables besides CO2 emissions into our analysis to help the
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accuracy of assessments. Second, following Upton and Snyder (2017) and Rose et al. (2022), we

propose a novel approach integrating SC and DD estimations. Studying the two co-occurring

interventions, we build counterfactuals while, in parallel, analyzing the before and after differ-

ences across the outcome variables. By doing so, we develop more rigorous impact assessments

addressing potential biases. Finally, using balanced panel data on the selected states of the

continental U.S. covering the period of 1995 to 2019, we provide an update on developments

within the RGGI.

In what follows, we start with the details of our database, highlighting the variety of outcome

variables employed in the analysis and discussing their importance. In section 3.3, we proceed

with the methodology, providing the basics for constructing counterfactuals with SC and apply-

ing the DD estimators. Finally, section 3.4 presents the results and the discussion of the complex

interactions between policy interventions and market dynamics in the context of decarboniza-

tion. In the Conclusion section, we summarize the insights into the ongoing discourse on climate

policy effectiveness and suggest an alley for further research.

3.2 Data

Inspired by the conflicting views on the drivers for emission intensity reductions in the northeast-

ern U.S., we start our investigation by identifying the geographical boundaries for the analysis

and the variables for quantifying the effects of the RGGI and Marcellus. The statistical proce-

dures for SC and DD require us to select outcome variables and covariates, which may explain

their behaviors. Outcome variables serve to assess the effects of the RGGI and the Marcellus

boom. Covariates are used to construct counterfactuals replicating the investigated regions’

characteristics before treatment. Apart from these, considering the historical dynamics, we shall

identify attributes for normalization and falsification purposes. So, in this section, we introduce

a compiled database justifying the selection of variables and dimensions while also introducing

the terminology used in the following sections for those unfamiliar with the methods.

Treatment groups The Regional Greenhouse Gas Initiative, the first emission trading system

in the United States, was established in 2009 to reduce carbon pollution in the power sector

in the participating states. This market-based program regulates CO2 budgets for fossil fuel

power plants in the participating states. Originally, Connecticut, Delaware, Maine, Maryland,
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Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont joined

the RGGI. Yet, soon after signing the cooperative agreement, New Jersey withdrew from the

program in 2011 and, therefore, is excluded from our analysis.20 All the other listed states form

the first treatment group of our study.21

In 2004, when the RGGI was shaping up, the Marcellus unconventional shale gas play was

discovered in the northeastern U.S.. A few years later, when the RGGI program was launched,

promising environmental improvements and economic gains through the transition to renewable

energy, the neighboring Marcellus states took an alternative path. Accelerating the production

of natural gas after 2009, the Appalachian region strove to bring financial and environmental

benefits by supplying cleaner, in comparison to coal, and more affordable fuel. The Marcellus

geologic formation spreads across New York, Ohio, Pennsylvania, Virginia, and West Virginia.

Even though shale drilling is primarily located in the territory of Pennsylvania andWest Virginia,

the proximity to the infrastructure and trading hubs allows adjacent states to benefit from the

development. So, we include into the second treatment group Ohio, Pennsylvania, Virginia, and

West Virginia. We exclude the New York state from the group, considering its moratorium on

"fracking" and participation in RGGI. Yet, recognizing that it may experience the influence of

both treatment effects, investigate its behavior with extra scrutiny.

Isolating the two treatment groups, we are left with the rest of the U.S. as the "donor pool"

from which candidates to generate the counterfactuals shall be selected. Upon further review,

we also drop Alaska, Hawaii, and California from the list of remaining states. The first two are

removed due to their geographical location outside the contiguous United States and the specifics

of their energy mix stemming from their geographical rather than economic position. California

is dropped due to its distinct policies and the launch of its own, independent of the RGGI, cap-

and-trade program in 2013. The resultant "donor" group of states is also the so-called placebo

group, given their role in the investigation.

Variables For all the considered states, we collect a balanced panel dataset characterizing

power generation in the period from 1995 to 2019. We first identify a group of outcome variables

to explore the interventions, the RGGI and the fast growth of Marcellus shale gas supply, which
20New Jersey has rejoined the initiative in 2021, which is outside our time range.
21We also do not consider Virginia, which faced major headwinds when considering joining the program. Virginia
planned to join the RGGI in 2021 but has withdrawn its participation. Similarly, Pennsylvania tried to join the
project in 2020 but could not reach a common agreement and, as of 2024, has been in a new round of repealing
the RGGI.
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we also refer to as treatments. Following the discussions on the changes that affordable natural

gas and emission-driven policies may bring, we select fourteen variables (see Table 3.1). The key

outcome, also extensively analyzed by the previous studies, is carbon intensity. Complementary

to it, according to the "merit order curve", are energy efficiencies and the shares of generation

by fuel type.

In addition, we include variables characterizing the demand side to control carbon leakage as

suggested by studies, e.g., on California’s cap-and-trade system (Caron et al., 2015, Lessmann

and Kramer, 2024). Along with the electricity demand, we analyze net power imports and

capture natural gas supply bottlenecks by scrutinizing the pipeline capacities, all measured in

per capita units.

Given that the debates on the causal relationship between energy and economic growth have

not been settled, suggesting that it may be bi-directional and changing over time, we use GDP

both as an outcome and covariate variable (Belloumi, 2009, Jaiyesimi et al., 2017, Ozturk and

Acaravci, 2011). Similarly, we treat energy input prices and generation shares.

Finally, we add to the list of covariates attributes reflecting the political mood of the individual

states. The discussion on the role of political will and population preferences in the success and

acceptance of a particular policy or market development leads us to the inclusion of political

indicators, such as the dominance of democrats (D) or republicans (R) in the State Senate and

the State House and the political affiliation of the state governor (Thonig et al., 2021, Tvinnereim

and Mehling, 2018).

We summarize the list of variables and provide the data sources in Table 3.1. Focusing on a

relatively long historical period, we normalize the variables to support the pre-treatment period

analysis and examine the post-treatment dynamics. We do so by adjusting for economic and

demographic trends, choosing the GDP deflator and population for that purpose.

At last, we introduce variables used as falsification outcomes to examine confounding effects.

Following Upton and Snyder (2017), we take Cooling Degree Days (CDD) and gasoline demand

to ensure that there are no drastic changes in climate and general energy consumption patterns.

We scrutinize the generation capacity share and generation capacity per capita for conventional

inputs as falsification outcomes. If we were to find effects on either of the variables, our results

may be significantly biased by capacity constraints. In the next section, we establish how all the

variables presented in this section are used in our analysis.
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Variable Type Unit Source

Carbon Intensity Outcome kgCO2

kWhel
EIA (2023e)

Coal and Gas Efficiencies Outcome % EIA (2023d)

Electricity Prices Outcome $
MMBTU EIA (2023d)

Electricity Demand Outcome kWh
Capita EIA (2023d)

Electricity Net Imports Outcome kWh
Capita EIA (2023d)

Pipeline Capacities Outcome cf
d capita EIA (2023b)

Coal and Natural Gas Prices Outcome/Covariate $
MMBTU EIA (2023d)

Generation Share of Coal, Natural Gas, Outcome/Covariate % EIA (2023a)
Nuclear, Renewables

Gross Domestic Product Outcome/Covariate $ 1000
Capita BEA (2023)

Gross Domestic Product in Manufacturing Covariate $ 1000
Capita BEA (2023)

Party of the Incumbent Governor Covariate 1=D, 0=R Klarner (2013)

Share of Democrats Covariate % Klarner (2013)
in the State Senate

Capacity of Coal, Natural Gas, Falsification KW
capita EIA (2023a)

Nuclear, Renewables

Capacity Share of Coal, Natural Gas, Falsification % EIA (2023a)
Nuclear, Renewables

CDD Falsification Days EIA (2023d)

Gasoline Demand Falsification Gallons
CapitaDay EIA (2023c)

GDP Deflator Normalization % Bank (2023)

Population Normalization Capita Bureau (2023)

Table 3.1: Sources for the individual variables.
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3.3 Methodology

The Regional Greenhouse Gas Initiative (RGGI) and the increasing production of unconven-

tional natural gas resources in the Marcellus region constitute significant interventions. Both

the SC method and the DD approach provide hypothetical scenarios assumed to have occurred

without any interventions, allowing us to test and verify the mechanisms and rationale behind

the shifts in electricity production mix dynamics and changes adopted by states. Each of the

methods has shortcomings, with the SC method not allowing for statistical inference and the

DD often suffering from biases due to the non-compliance with the "parallel-trends" assump-

tion and endogeneity due to policy adoption not being random. Moreover, they both do not

allow for any conclusion with regard to causality. Combining both methods to overcome their

imperfections and analyzing a variety of outcome variables, we may assess whether the states

participating in the RGGI program have been impacted by the availability of affordable uncon-

ventional gas resources and which of the two events, either the RGGI or the influence of cheap

unconventional gas resources, holds greater potential in addressing the challenges associated

with decarbonization.

First, we introduce a baseline DD estimator that relies on a standard DD framework. As this

estimator is likely to suffer from biases through endogeneity (non-random policy adoption), we

then develop a two-step framework that creates SC units to create counterfactuals that account

for self-selection into policy and second quantifies the Average Treatment Effect (ATE) using

the original outcomes and SC units through a DD estimator.

3.3.1 Baseline Difference-In-Differences Estimation

We start by establishing a baseline Difference-in-Differences (DD) model designed to compare

the post-treatment behavior of outcomes between treated and untreated states in a conventional

DD framework:

Yit = α+ δ ·DTrtmnt + γi + ηt + εit (3.1)

In this equation, Yit represents the values for the respective outcome variable in state i and year

t. The binary variable DTrtmnt serves as a treatment indicator, equaling 1 for treated states
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after the year 2008 and 0 in all other cases. As such, δ quantifies the treatment effect, while

γi and ηt are state and year fixed effects. The panel data does not include covariates, as the

model aims to capture the difference in outcomes between treated and untreated states in the

post-treatment period, yielding the treatment effect δ.

We estimate the baseline treatment effects for each outcome variable Y and each considered

intervention separately, using only the respective treatment group and the donor pool. Thus,

the sample for the first estimate includes the nine RGGI states and the 33 untreated donor states.

In comparison, the second estimate consists of the four Marcellus states and the 33 untreated

donor states (the estimates will be presented in the first row of columns RGGI and Marcellus in

our results tables). The outcomes only distinguish between treated and untreated units, using

the observations of the donor pool as a counterfactual.

We emphasize that the baseline results thus do not account for endogeneity, in this case through

self-selection into treatment, and only serve as a reference point for our analysis. Whether to

adopt the RGGI policy or provide the legal framework for producing unconventional natural gas

resources depends on the state’s political preferences, economic condition, and current power

generation mix. Blue states with an already low carbon-intense power generation, e.g., Rhode

Island, could be more likely to adopt the RGGI policy. In contrast, red states, whose economies

critically depend on the export of natural resources, like West Virginia, may be more likely to

set a legal framework that allows for fracking. The SC method, in contrast, is able to account

for possible issues regarding endogeneity.

The SC method is known for its ability to construct counterfactuals based on pre-treatment

characteristics, while the DDmethod is a powerful tool to quantify the treatment effects. Thus, in

the following chapter, we develop an SC method-based DD estimator to create more appropriate

counterfactuals that replicate the treated states’ pre-treatment characteristics in political and

economic indicators and the power generation mix to account for these possible biases.

3.3.2 The Synthetic Control Method

The Synthetic Control (SC) method offers a powerful solution to unraveling the effects of in-

terventions such as the RGGI and the supply shock brought by the Marcellus natural gas.

Its ability to construct and investigate counterfactual scenarios (without treatment) for treated

states is central to our research. The SC method creates a counterfactual for each of our 13
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treated units using the untreated donor pool. Each counterfactual is constructed by choosing a

weighted combination of the j donor pool units, ensuring similarity between the treated unit and

counterfactual across the k covariates in the pre-treatment period. As policy adoption is likely

endogenous, we chose covariates that may best account for the adoption of policies (economic

and political indicators, existing power generation mix, and price levels). We split our panel data

into a covariate matrix Xk,i,t and an outcome matrix for CO2 intensity Yi,t with k covariates, i

observations and t periods.22

In the first step of our combined estimator, we create SC units that work as counterfactuals for

each treated state individually within the RGGI and Marcellus regions. Using our third,

untreated group of states (donors) and the second set of variables (covariates), we minimize

equation (3.2). Here, (j x 1) vector W informs us about the importance of each donor while the

positive semidefinite and symmetric (k x k) matrix V captures the relevance of the covariates

in creating the counterfactual. Equation (3.2) serves to find the best combination of donors and

covariates to replicate the pre-treatment covariate levels of the treated state ((k x 1) vector X1)

using the same covariates from the donor states ((k x j) matrix X0). It is essential to mention

that the time dimension is irrelevant in this context, meaning that for each n ∈ {j} and each

treated unit, there are k rows representing the geometric average of the pre-treatment period

per covariate.23 Throughout the paper, we will use the index 1 to denote the vector of a treated

state, whereas the index 0 denotes the matrices of the donors.

Mathematically, the problem is formulated as follows:

min (X1 −X0W)′V(X1 −X0W) (3.2)

In this paper, we estimate the values for V, employing a Fixed Effects (FE) model, following

Kuosmanen et al. (2021).24 The approach offers transparency in selecting weights V which

determine the importance of each covariate k in Xk,i,t in predicting the outcome variable CO2

22i consists of j = 33 donors and 13 treated units, t consists of the pre-treatment period Tpre from 1995 to 2008
and the post-treatment period Tpost from 2009 to 2019.

23The matrix X is represented by the second group of variables: shares of coal, natural gas, and carbon-neutral
electricity production, coal, and natural gas prices, GDP per capita, GDP per capita in the manufacturing
sector, the representation of Democrats within the state’s legislative bodies, and the political affiliation of the
incumbent governor. X1 and X0 represent the geometric mean of the respective variable in the pre-treatment
period. Notably, both V and W sum to unity.

24It is noteworthy that while the Synth package developed by Abadie et al. (2010) has been commonly utilized in
previous studies, recent research conducted by Klößner et al. (2018) and Kuosmanen et al. (2021) has uncovered
numerical instability in the results produced by the Synth algorithm.
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intensity in the pre-treatment period (Y pre
it ). In contrast to (3.2), the time dimension does play

a role in this context. Here, the subscript i and t denote the state and year while γi and ηt are

the state and time Fixed Effects. We estimate a FE model to receive the (k x 1) vector β with

coefficients βk for each covariate k allowing us to calculate the covariate weights vk:

Y pre
it = α+ X′

it β + γi + ηt + εit (3.3)

vk =
|βk|∑K
j=1 |βj |

(3.4)

V = diag(v1, . . . , vk) (3.5)

Based on the computed covariate weights vk, we create the diagonal matrix V. Then, an

algorithm developed by Kuosmanen et al. (2021) estimates the donor weights W that minimize

equation (3.2).

Next, we generate the untreated and de-biased SC unit (YU
1 ), a (t x 1) vector used as a coun-

terfactual. De-biasing adjusts for the state effects γi from (3.3), improving the fit of the coun-

terfactual (Ben-Michael et al., 2021, Ferman et al., 2020). YU
1 serves to project what would

have happened without treatment, combining information from the donor pool’s (t x j) outcome

matrix (Y0) (which are assumed not to be influenced by treatment) and (1 x j) state fixed effects

vector γ0 from (3.3).:

YU
1 = Y0W + (γ1 − γ0W) (3.6)

We create counterfactuals for the treated states focusing on the CO2 intensity as the outcome

variable (Y ). It is regressed on the k covariates X following (3.3).25 We then calculate V to

substitute into and solve equation (3.2), obtaining W. Combining W with the state FEs γi

and donor pool outcome variable matrix Y0, we compute the de-biased counterfactual values

for CO2 intensity for each treated state following (3.6).

We utilize the CO2-intensity-derived weights W for all the remaining outcome variables, em-

ploying a simplified FE model to de-bias the outcomes using state fixed effects γi. We then
25The covariates are the shares of coal, natural gas, and carbon-neutral electricity production, coal, and natural
gas prices, GDP per capita, GDP per capita in the manufacturing sector, the representation of Democrats
within the state’s legislative bodies, and the political affiliation of the incumbent governor.
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create the SC units using (3.6).26

We estimate W once, allowing us to compare all outcome variables for state i against one

consistent SC unit that serves as the counterfactual. In contrast, Upton and Snyder (2017)

estimate distinct W values for each outcome variable receiving differently composed SC units.

Our results demonstrate that our approach does not adversely affect the model fit.

Combined with the actual observed outcomes, the SC units allow us to calculate the ATE.

Building on the SC method methodology explained thus far, the following subchapter explains

the Difference-in-Differences (DD) framework brought to derive meaningful insights into the

effects of these interventions.

3.3.3 SCM-based Difference-In-Differences Estimation

The second part of our combined estimator builds upon the DD framework presented in (3.1) and

the counterfactual outcomes created in Section 3.3.2. The estimation econometrically follows

(3.1), but changes the underlying dataset. As policy adoption is likely non-random, the donor

pool may not be the most appropriate counterfactual; we overcome this limitation by introducing

the synthetic control unit outcomes as alternative counterfactuals that account for endogenous

policy adoption, assuming that in the pre-treatment period, the underlying covariates, which

may influence the decision to implement policies, are similar (Upton and Snyder, 2017).

We do so by pooling the observed outcomes and the SC units per treatment group (RGGI,

Marcellus, Donor pool) and outcome variable individually, creating datasets that provide more

suitable counterfactuals. These datasets are then employed to estimate (3.1), yielding the ATE.

The estimates of the baseline- and the SC method-based DD model may exhibit similarities,

depending on the extent of endogeneity in the decision to implement either policy (RGGI or

allowing for hydraulic fracturing). If the estimates between the baseline DD do not differ from

the estimates of our SC method-based DD estimator, there is an indication for little to no

endogeneity in the decision to adopt the policy. Large differences would suggest the opposite:

politics, the economy, and the current power mix play a major role in policy adoption.
26As discussed in Chapter 3.2, there is some overlap between the outcome variables and (covariates). Conse-
quently, the second FE model for de-biasing the other outcome variables exclusively employs covariates that
do not exhibit this overlap, namely GDP per capita and political indicators. The de-biasing process may result
in values falling below 0% or exceeding 100% for variables representing shares. We have manually constrained
such values to 0% or 100%, respectively.
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We would also like to mention that the values of δ estimated for each treatment group and

variable measure the ATE per treatment group over the entire post-treatment period (from 2009

to 2019). As the effects may differ between states, B1 explains the methodology for computing

the treatment effects at the state level. The results should coincide with the ATE of our pooled

DD model when calculating the group mean.27 Consequently, these findings will be selectively

employed as supplementary information in our analysis as needed.

The statistical methods used allow us to conduct a thorough analysis of the outcome variables.

Creating reliable counterfactuals using the SC method, however, relies on the values for V and

W. To ensure the reliability of the results, we implement sensitivity and falsification tests, which

will be explained in the following subchapter.

3.3.4 Sensitivity and Falsification Testing

We conduct a series of tests to verify the robustness of our ATE estimates. Our tests scrutinize

V and, consequently, W, generate SC units for the donor pool, establishing a placebo group,

and examine falsification outcomes.

We create alternative SC units to address the propensity of the counterfactuals generated by the

SC method to exhibit sensitivity to changes in V and W. Assigning equal weights V to each

covariate, we receive a differently composed W and, thereby, YU
1 . This serves (1) to ensure that

there is no under- or over-weighting of any individual covariate, and (2) to compare the original

pooled ATE against a second pooled ATE using a distinct set of W values, thereby safeguarding

estimates against alternative or unobserved treatments in states within the donor pool.28 We

present these alternative results alongside our SC method-based estimates for comprehensive

evaluation.

Next, we investigate the placebo group by generating SC units for each state within the donor

pool. Following Abadie et al. (2010), we simulate the "assignment" of treatment to every state

within the donor pool.29 The SC units of this placebo group are expected to coincide with the

actual observed values of the donor pool state, indicating the absence of treatment effects. This
27This is due to the concurrent application of treatment.
28Note that the de-biasing process remains contingent on the individual FE estimated in equation (3.3).
29Here, the donor pool encompasses both the untreated states and the specific treated state currently analyzed.
Consequently, each donor pool state has thirteen potential SC units to consider (nine states from the RGGI
and four from the Marcellus group). To facilitate statistical inference, we compute the average of these SC
units.
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is based on the assumption that states incorporated into the donor pool remain unaffected from

the introduction of the RGGI and the increase in unconventional natural gas from the Marcellus

shale play.

Additionally, we explore falsification outcomes, namely Cooling Degree Days (CDD), gasoline

consumption, and generation capacity. Assuming that both treatments cannot influence the

climate on a larger scale, they should not lead to significant changes in CDD. Moreover, if

we were to observe significant changes in CDD after the year 2009, any effects attributed to

treatment may possibly stem from the changes in climate. Additionally, we expect gasoline sales

per capita and day to remain unaffected by treatment. Deviations from this expectation would

suggest a broader change in energy consumption patterns across the states under consideration,

rendering our estimates biased. Last, we control for generation capacity per capita and the

generation capacity share per input. Changes in those variables for any input may stem from

power plant retirements or additions that would directly influence power generation shares, the

merit order curve, and thus input and output prices. Controlling for falsification outcomes thus

allows us to infer causality, as we may assume that the dynamics discovered in this study actually

stem from the analyzed treatments.

Finally, we also include Synthetic Difference-in-Differences (SDID) results based on Arkhangelsky

et al. (2021) in Table B2.12 in Appendix B2. Their method does not account for underlying

covariates but focuses exclusively on the respective outcome variable and usually provides a

lower boundary of estimates when compared to the SC method or DD.

In the following chapter, we evaluate the effects that both treatments have (or do not have) on

the power sector, relying on the estimates of the three models.
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3.4 Results and Discussion

In this section, we first scrutinize the impacts on CO2 intensity and its determinants within the

power sector, focusing on the electricity generation composition. We examine the influence of

low-cost natural gas resources from the Marcellus region on the composition of power generation

within both treatment groups, analyzing natural gas prices and potential constraints within the

pipeline network. Along with that, we analyze import/export dynamics, market prices, and,

consequently, the overall demand for electric power for each region. Finally, we investigate

additional factors, including GDP per capita in the manufacturing sector, expected to remain

relatively unaffected by the RGGI program and technical efficiencies, which significantly influence

carbon emissions.

3.4.1 Carbon Intensity

The primary objective of the Regional Greenhouse Gas Initiative is the reduction of carbon

emissions in the power sector. This reduction may be achieved through a lower carbon inten-

sity instead of lower electricity consumption since the latter may indicate decreasing economic

activity.

Each column in Table 3.2 includes three estimates for the respective treatment group (RGGI,

Marcellus, or the donor pool/placebo group). Based on the conventional DD approach, the first

value of each column is the baseline DD estimate. The second estimate comes from pooling the

actual observations with their SC units per treatment group in the DD framework, while the

third value originates from the pooled SC method-approach with equally (Eq.) weighted (in V)

covariates as a sensitivity measure.

The RGGI states achieved a marked reduction in carbon intensity, ranging from 20 to 38 g
kWh .

To provide context, before the implementation of the RGGI program, the average CO2 intensity

in those states stood at 427 g
kWh , implying a substantial decrease of 5 to 10% from the original

value. The state-level effects illustrate a considerable variation in the treatment effect across the

RGGI states, although, in most cases, a trend toward reduced carbon intensity is evident (see

Table B2.10).

In contrast, examining the Marcellus region does not reveal any significant effect. However, it

is crucial to acknowledge that the effect for the Marcellus region is substantially biased through
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Table 3.2: Change in carbon intensity
kgCO2
kWh

RGGI Marcellus Placebo Marcellus w/o WV

Baseline DD ATE -0.020∗∗ 0.007 - -0.028∗∗

SE (0.009) (0.012) (-) (0.013)
N 1050 925 - 900

Pooled SCM ATE -0.038∗∗∗ 0.018∗ -0.0004 -0.026∗∗∗

SE (0.010) (0.009) (0.004) (0.007)
N 450 200 1650 150

Eq. Pooled SCM ATE -0.023∗∗ 0.010 0.001 -0.012∗

SE (0.010) (0.010) (0.004) (0.007)
N 450 200 1650 150

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

West Virginia (WV).30 When excluding WV from the analysis, the Marcellus region also displays

a notable reduction in carbon intensity, ranging from 12 to 28 g
kWh or 2-4%. For the placebo

group, as anticipated, we observe no significant impact (see Table B2.10).

Overall, we find a significant effect of the RGGI program on CO2 intensity, and a similar effect

is observed within the Marcellus states when WV is excluded. In the following, we analyze the

mechanisms by which the regions accomplished this reduction.

30We will later demonstrate that WV emerges as a general outlier within this group.
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3.4.2 Production Shares

Reducing carbon intensity can be attained through a variety of means, including transitioning

from higher carbon-intensity fuels, such as coal or oil (≈ 1100 g
kWh), to lower carbon alternatives

like natural gas (420 g
kWh) or renewables/nuclear power (0 g

kWh).31 Consequently, our analysis

explores shifts in generation shares and their role in achieving these reductions.

Table 3.3: Change in coal & natural gas Share

Coal Share: Gas Share:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE 1.740∗ -4.230∗∗∗ - 4.340∗∗∗ 7.400∗∗∗ -
SE (1.040) (1.340) (-) (1.270) (1.430) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE -3.260∗∗ -1.970 -1.080∗∗ 0.550 7.460∗∗∗ 1.670∗∗∗

SE (1.300) (1.320) (0.463) (1.850) (1.590) (0.469)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE -2.820∗∗ -4.160∗∗∗ -0.309 3.740∗∗ 7.980∗∗∗ -0.075
SE (1.350) (1.350) (0.464) (1.860) (1.480) (0.464)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

One of the strongest mechanisms contributing to CO2 reductions in the U.S. is the coal-to-gas

substitution driven by changes in relative prices, primarily attributable to the fracking boom

experienced in many states. Across the nation, coal is gradually being replaced by natural gas.

However, in both treatment groups, a more substantial reduction in coal usage is evident, offset

by an increase in natural gas-based power generation compared to untreated states.

The increasing natural gas share in the RGGI region has been investigated in several prior

studies.32 Table 3.3 shows an increase in natural gas-fired power generation by approximately

4%, while coal’s generation share decreases by around 3% after the introduction of the RGGI.

Notably, we observe the most substantial reductions in CO2 emissions within the RGGI states,
31Given that oil products contribute negligibly to power production in the U.S., they are excluded from our
analysis.

32Cullen and Mansur (2017), Johnsen et al. (2019), Kim and Kim (2016), Knittel et al. (2015), Linn and Muehlen-
bachs (2018).
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especially Connecticut, Delaware, and Massachusetts, being achieved through a more pronounced

coal-to-gas substitution (refer to Table B2.10).33

In general, this substitution phenomenon appears to be stronger in the states of the Marcellus

Region. We find a reduction of 4% in coal-fired generation, while the share of natural gas

increases by 7.5-8%.34 As expected, the placebo group experiences little to no effect.

Table 3.4: Change in renewable share

RGGI Marcellus Placebo RGGI w/o ME&VT

Baseline DD ATE 1.020 -4.220∗∗∗ - -3.729∗∗∗

SE (0.918) (1.070) (-) (0.810)
N 1050 925 - 1000

Pooled SCM ATE 4.710∗∗∗ -4.830∗∗∗ -0.941∗∗ -1.750∗∗∗

SE (1.260) (0.487) (0.373) (0.507)
N 450 200 1650 350

Eq. Pooled SCM ATE 2.680∗∗ -5.080∗∗∗ 1.070∗∗∗ -3.960∗∗∗

SE (1.220) (0.395) (0.369) (0.432)
N 450 200 1650 350

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Some studies have reported that implementing the RGGI contributed to an increase in the

proportion of renewable power generation (Fell and Kaffine, 2018). Our findings confirm that

the RGGI has, to some extent, increased the share of renewable energy sources. However, the

state-level results reveal a particular bias due to the influence of Maine and Vermont, both

affected by unrelated events (Table B2.10). Maine has adopted stricter policies for renewables

through its Renewable Portfolio Standards (RPS). At the same time, Vermont significantly

increased its renewable generation share following the retirement of its largest nuclear power

station in 2014, previously accounting for over 50% of the state’s electricity production. In

contrast, we observe that the substantial increase in the natural gas share in the Marcellus

states has negatively influenced their transition to renewable energy sources, slowing down their

adoption by around 4-5%.

Given that both treatment groups have increased their reliance on natural gas, it raises questions

about whether adopting the cap-and-trade system or the availability of cheap natural gas is the
33We have considered the possibility that capacity constraints, such as the retirement of coal-fired power plants,
may change the generation shares. Our results show no sign of such constraints within the RGGI (Table B2.2).
We also do not find any significant changes in the capacity shares (Table B2.3).

34When examining the Marcellus region excluding WV (as in Table 3.2), the increase in natural gas production has
contributed to a 10.5-13.5% increase in natural gas’s generation share while reducing coal’s share by 7.5-9.5%.
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primary driver behind this transition. Therefore, the following chapter analyzes the natural gas

markets.

3.4.3 Price Signals

Both regions are increasingly shifting their power generation from coal to natural gas. Aside from

environmental considerations, one of the primary drivers assumed to cause this transition is the

change in relative prices, rendering electricity generation with natural gas a more cost-effective

alternative compared to coal-fired generation.

In this section, we will analyze the natural gas prices and explore how these are interrelated with

the capacities of natural gas pipelines.

Table 3.5: Change in the natural gas price in the power sector $
MMBTU

RGGI Marcellus Placebo

Baseline DD ATE 0.111 -1.310∗∗∗ -
SE (0.157) (0.226) (-)
N 1050 925 -

Pooled SCM ATE 0.136 -1.140∗∗∗ -0.018
SE (0.125) (0.190) (0.077)
N 450 200 1650

Eq. Pooled SCM ATE 0.058 -1.250∗∗∗ 0.002
SE (0.117) (0.172) (0.076)
N 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Our findings indicate that, on average, the states participating in the Regional Greenhouse Gas

Initiative do not experience reduced natural gas prices after 2008 despite their geographical

proximity to the Marcellus region. The only exceptions are Delaware, Maryland, New York, and

Vermont, with the former three sharing borders with Marcellus states, making the transmission

of lower natural gas prices a probable source for the effects (see Table B2.10).

However, the increased production of unconventional gas resources has significantly driven down

prices throughout the entire Marcellus region, with our estimates ranging from 1.14 to 1.31
$

MMBTU . Once again, our analysis reveals no impact on the placebo group.35

35We do find similar outcomes for the natural gas prices in the residential and industrial sectors (see Table B2.4).
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Why do the states within the RGGI not benefit from these lower natural gas prices? A possible

explanation are constraints within the natural gas pipeline infrastructure. Compared to their

untreated peers, RGGI states have expanded their import and export pipeline capacities for

natural gas at a slower pace since implementing the cap-and-trade system.

Table 3.6: Change in natural gas pipeline capacity cf
d capita

Import: Export:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE -2055∗∗∗ 497 - -2230∗∗∗ 2560∗∗∗ -
SE (262) (396) (-) (269) (435) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE -2309∗∗∗ 1405∗∗∗ 271∗∗ -1908∗∗∗ 3548∗∗∗ -290∗∗

SE (254) (293) (134) (234) (485) (138)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE -3276∗∗∗ 1216∗∗∗ -341∗∗ -2745∗∗∗ 2862∗∗∗ -54
SE (283) (289) (135) (165) (470) (138)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The RGGI states, therefore, may derive comparatively fewer benefits from the lower natural gas

prices due to constraints within their network. These constraints could be attributed to spatial

limitations, but they may also stem from uncertainties about future developments, given the

long-term emissions reduction objectives that challenge the role of natural gas in their energy

portfolio.

On the contrary, states within the Marcellus region have shown a notable increase in their import

capacities while their export capacities have increased to an even greater extent. This overall

expansion in net export capacity indicates an increased level of interconnectivity among these

states, facilitating the distribution of surplus natural gas to neighboring regions. Consequently,

Marcellus region states are positioned to reap the benefits of lower natural gas prices and dis-

tribute them among each other. This is particularly advantageous for states with lower natural

gas production, namely Ohio and Virginia. Their geographical proximity allows them to access

regionally sourced natural gas at an affordable rate.

Our findings highlight divergent implications associated with the transition to natural gas within

the two treatment groups. States engaged in the cap-and-trade system exhibit a noteworthy shift

towards natural gas, even though its cost-efficiency does not align with that in the Marcellus
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region, possibly resulting in higher electricity prices. Furthermore, RGGI states increasingly

rely on renewable energy sources, which may introduce challenges related to the intermittency

of electricity supply. Consequently, the following chapter will be focused on electricity imports,

pricing dynamics, and demand patterns across the regions.

3.4.4 Electricity Market Dynamics

The transition towards cleaner energy sources and the influence of low-cost natural gas from the

Marcellus region has triggered a shift in the electricity market. Here, we scrutinize the electricity

market dynamics, exploring electricity imports, power demand, and pricing.

The growing reliance on electricity imports is a recurring trend in regions transitioning towards

more renewable power production as they face difficulties balancing their grids. Numerous stud-

ies have shown that RGGI states, in particular, have progressively "outsourced" their electricity

generation.36 Our results confirm that states within the RGGI framework increased their net

electricity imports by approximately 500 kWh
Capita as a consequence of the policy (see Table 3.7).

Table 3.7: Change in net electricity imports kWh
Capita

RGGI Marcellus Placebo Marcellus w/o WV

Baseline DD ATE 220 2445∗∗∗ - -333
SE (270) (414) (-) (422)
N 1050 925 - 900

Pooled SCM ATE 469∗ 1218∗ 113 -1015∗∗∗

SE (261) (636) (126) (252)
N 450 200 1650 150

Eq. Pooled SCM ATE 588∗∗ 2170∗∗∗ 254∗∗ -939∗∗∗

SE (282) (627) (126) (269)
N 450 200 1650 150

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

When examining the Marcellus states, there appears to be a similar trend towards surging import

dependence, with estimates ranging from 1200 to 2500 kWh
Capita . However, it is crucial to note that

these findings are significantly influenced by the presence of WV. The state was previously

one of the largest electricity exporters due to its cheap coal-fired generation. Over the past

decade, WV has substantially reduced its electricity generation and, consequently, its exports,
36Chan and Morrow (2019), Chen (2009), Fell and Maniloff (2018), Lee and Melstrom (2018).
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thereby introducing bias into the results. Upon excluding WV, we observe that the emergence

of unconventional gas resources led to a decrease in net imports by approximately 1000 kWh
Capita

in Marcellus states, meaning that they either import less electricity or increased their electricity

exports.

Furthermore, our results indicate that RGGI states have experienced an increase in electricity

prices by approximately 1.4 to 2.5 $
MMBTU , corresponding to an additional cost of 0.4 to 0.8

cents per kWh. For an average state with a carbon intensity of 280 g
kWh (post-RGGI), the added

fee attributed to certificates amounts to around 0.4 cents, meaning that the expenses associated

with the cap-and-trade system may be directly passed on to consumers. Any further price may

result from the more expensive gas used during peak production, grid enhancements to enable

cross-border flows, and/or renewable energy integration. This price may have contributed to a

reduction of roughly 600 kWh
capita in power consumption, which could partially explain the lower-

than-expected import dependency.

Table 3.8: Change in electricity price $
MMBTU

and demand kWh
Capita

Price: Demand:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE 0.418 -0.255 - -707∗∗∗ -12 -
SE (0.363) (0.398) (-) (169) (253) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE 1.370∗∗∗ -1.140∗∗∗ 0.144 -57.40 -235 339∗∗∗

SE (0.494) (0.329) (0.133) (110) (485) (86.8)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE 2.460∗∗∗ -0.750∗∗ 0.074 -635∗∗∗ -299∗ 338∗∗∗

SE (0.501) (0.329) (0.135) (97.4) (174) (87.1)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In comparison, in the Marcellus region, the reduction in natural gas prices has driven down

electricity prices by 0.75 to 1.15 $
MMBTU or 0.25 to 0.4 cents per kWh. However, we did not

observe any significant impact on electricity demand in the Marcellus region.37

Our findings concur with earlier research, indicating that RGGI states have increased their

electricity imports, potentially leading to carbon leakage. These imports may come from nearby

Marcellus states, primarily engaged in fossil fuel-based electricity generation. However, the
37These price effects are consistent over different types of demand. We study industrial and residential electricity
prices in Table B2.5
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extent of carbon leakage is expected to diminish as Marcellus states progressively shift from coal

towards natural gas.38 In addition, RGGI states have faced increased electricity prices that may

surpass carbon-related expenses, reducing electricity consumption. Conversely, Marcellus states

previously reliant on imports are moving towards energy independence, capable of providing

their residents with more affordable electricity than before.

3.4.5 Further Considerations

A significant factor contributing to the acceptance of the Regional Greenhouse Gas Initiative

has been the argument that the system does not negatively influence economic performance. We

thus analyze the GDP per capita within the manufacturing sector.

Notably, the northeastern region of the United States experienced a general decline in manufac-

turing GDP after the 2008 financial crisis, which may have triggered shifts between economic

sectors. Our estimates for the RGGI region range from a reduction of approximately 800 to 1100
$

Capita . In the Marcellus region, the negative effect spans from 500 to 800 $
Capita , respectively.

The difference between the smallest and highest values across the groups suggests that the actual

economic consequences of the cap-and-trade system could amount to approximately 300 $
Capita .

This argument is supported by the fact that the reduction in electricity demand in the RGGI

region (see Table 3.8), can be mostly attributed to a demand reduction in the industrial sector

(see Table B2.6). We do not find similar outcomes for the Marcellus states.39

Next, we observe that the RGGI did not have a negative impact on the efficiency of coal-fired

power plants.40 For natural gas, efficiency decreases by 1.5% to 1.9%. These results align with

those estimated by Yan (2021), who examined heat rates as a measure of efficiency.41

In contrast, Marcellus states exhibit a 0.64% to 1% lower efficiency in coal-fired power production.

This reduction may be attributed to the shift towards natural gas, leading to lower capacity
38An intriguing aspect of our study is the observation that carbon leakage is not exclusive to the movement
from RGGI to non-RGGI states but also may occur within the RGGI region itself. Remarkably, less carbon-
intensive RGGI states, such as Maine and Vermont, are losing ground to fossil-fueled producers like Connecticut
and Delaware (see Table B2.10). Moreover, we note that Canada supplies a substantial portion of Vermont’s
imports, although we lack information on how this electricity is generated.

39It is worth noting that this metric exclusively pertains to the manufacturing sector and may not account for
the overall economic outcomes. On a related note, another study by Hibbard et al. (2018) found an overall
positive economic impact.

40However, it’s essential to note that these results might be significantly biased due to the states of Maine (+17%),
Rhode Island, and Vermont. Rhode Island and Vermont, for instance, do not utilize coal, leading to an efficiency
of 0 and potentially distorting the overall findings. State-level estimates range from 0 to -7%.

41He found that the heat rate for coal increased by 7.6% (efficiency decrease of approximately 7%). Additionally,
he finds a decrease in the heat rate for natural gas at 3.6% (reduction in efficiency by 3.5%).
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Table 3.9: Change in GDP per capita in manufacturing $ 1000
Capita

RGGI Marcellus Placebo

Baseline DD ATE -0.808∗∗∗ -0.617∗∗∗ -
SE (0.135) (0.186) (-)
N 1050 925 -

Pooled SCM ATE -0.905∗∗∗ -0.521∗∗∗ -0.005
SE (0.148) (0.117) (0.064)
N 450 200 1650

Eq. Pooled SCM ATE -1.090∗∗∗ -0.784∗∗∗ -0.005
SE (0.170) (-0.107) (0.066)
N 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

utilization, which may result in a minor increase in CO2 emissions from coal-generated electricity.

There is no observed effect on natural gas efficiency in the Marcellus region.

Table 3.10: Change in coal and gas electrical efficiency %

Coal: Gas:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE -0.248 -0.638∗∗∗ - -1.750 -0.241 -
SE (0.483) (0.152) (-) (1.360) (2.000) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE 0.087 -0.724∗∗∗ 0.027 -1.500∗∗ -1.260 0.581
SE (0.907) (0.122) (0.052) (0.684) (1.890) (0.686)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE -0.059 -1.000∗∗∗ 0.143∗∗∗ -1.880∗∗∗ -1.610 -0.068
SE (0.908) (0.130) (0.052) (0.663) (1.390) (0.688)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Examining the falsification outcomes in Table B2.7 in B2 reveals that the treatment did not

significantly impact the falsification variables. Additionally, the placebo group, serving as a con-

trol for treatment effects, consistently demonstrated insignificant effects throughout the study,

supporting the robustness of our methodology in assessing the outcomes of the interventions.

Finally, our results indicate a high level of consistency between the effects estimated using the

standard DD approach and the two SC method-based models, underscoring the reliability and

effectiveness of our approach in estimating treatment effects.
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3.5 Conclusion

In this study, we investigate the effects of two co-occurring interventions, that is, the Regional

Greenhouse Gas Initiative and the increasing production of unconventional natural gas resources

in the Marcellus formation, on various outcome variables. States subject to either of the treat-

ments faced significant changes in their power mix, energy prices, and energy consumption

patterns since 2009.

Consistent with prior research, our findings corroborate that implementing the RGGI cap-and-

trade system reduced carbon intensity, while the uprise in the production of affordable uncon-

ventional gas resources in the Marcellus region led to a comparable outcome. The decline in

carbon intensity in both regions may be primarily attributed to the coal-to-gas transition in

power generation, which partially impeded the widespread adoption of renewable power sources.

Our results also suggest that changes in generation patterns within the RGGI region may only

partially be attributed to the lower natural gas prices stemming from the increased production

in the nearby Marcellus region due to lower capacity within the pipeline network. In contrast,

we find that lower natural gas prices accelerate the transition from coal to natural gas within

the Marcellus region.

In line with existing research, we find evidence of increased electricity imports to the RGGI region

following the implementation of the cap-and-trade system, suggesting carbon leakage. This

import surge coincides with higher electricity prices and a decrease in electricity demand. The

price rise may be due to the direct transfer of emission certificate costs to consumers. Meanwhile,

the Marcellus region experienced a reduction in net imports, except for coal-dependent West

Virginia, which is paralleled with a decrease in electricity prices of 0.25 to 0.4 cents per kWh

without significant effects on electricity demand.

Furthermore, our analysis indicates a decline in GDP within the manufacturing sector across the

entire northeastern region of the United States, including both the RGGI and Marcellus groups.

The impact within the RGGI region appears to be more pronounced, which, combined with the

electricity demand reduction from the industrial sector, suggests that the introduction of the

cap-and-trade system indeed has had a negative influence on the economic performance of the

region.
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In summary, the RGGI appears to be making significant progress toward achieving its carbon

reduction objectives. This explains why several states are joining the initiative or establishing

their own cap-and-trade systems. However, the question remains whether the policy’s negative

repercussions, particularly concerning electricity prices and GDP, are an acceptable trade-off,

especially given the outcomes achieved in the Marcellus states. After the conclusion of our

observation period, two states within the Marcellus region, namely Pennsylvania and Virginia,

have decided to join the RGGI. It remains to be seen whether their adoption of the cap-and-trade

program will alter their pathway toward a lower carbon future.
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by Daniel Gatscher

This paper investigates the interfuel Elasticity of Substitution (ES) within the power sector

across various regions in the OECD, focusing on the period between 1995 and 2020. Employing

a novel multi-equation approach to account for biased technological progress, as well as changes

in fuel use and prices, our study explores the substitutability of inputs in power markets. We

assess how interfuel ES have evolved over time, particularly in the context of policy changes and

uneven technological progress in power generation. The study analyzes the ES for the country

and regional level to uncover location-specific differences in energy transitions. For a long-run

path towards lower carbon fuels, the ES between fuels needs to be greater than unity so that

fuel switching can occur. We find that the ES between low-carbon natural gas and coal is above

unity for the entire sample with decreasing ES values in some regions. Our findings indicate

significant regional variations and demonstrate that ES values fluctuate, highlighting that static

models only partially capture the nuanced dynamics of energy transitions. The results emphasize

the necessity for energy policies to be tailored to specific regional conditions to effectively support

transitions towards less carbon-intensive power generation. Our study contributes to a deeper

understanding of the complex interplay between economic considerations and policy in energy

transitions, offering valuable insights for policymakers and researchers engaged in shaping a

sustainable future.

70
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4.1 Introduction

Throughout the last two decades, discussions about climate change have intensified, demanding

effective policy measures to reduce GHG emissions. The emerging public pressure created by

climate change discussions motivated governments to ratify international treaties like the Kyoto

Protocol and the Paris Agreement. While the countries participating in the treaties agree on the

overarching objective of reducing GHG emissions, the specifics regarding how and when these

goals will be achieved have remained unclear, leading to diverging policies and energy transition

progress across the globe. This discrepancy in policy is also reflected by the relatively slow

progress in reducing GHG emissions, with the most notable results in the past decade coinciding

with increased public discourse on climate change issues (Fouquet, 2010).

Reducing the most prominent of GHG emissions, CO2, may be achieved through a variety

of means, which include, but are not limited to, demand reduction, electrification of sectors,

increases in efficiency, or switching from carbon-intense inputs to lower-carbon inputs, referred

to as substitution. Increasing generation efficiencies and substitution have been taken advantage

of to varying extents in the energy transitions of countries, with significant disparities across

regions influenced by resource availability, fuel costs, and energy security concerns. The progress

of the energy transitions may be tracked by Elasticities of Substitution (ES), informing about

the change in relative fuel use as a response to changes in relative prices and thereby measuring

the substitutability between fuels.

This paper analyzes the ES in the power sector, which has been growing predominantly and

fairly consistently, though not uniformly, across all regions, both in absolute energy terms and

relative to other sectors, across 28 OECD countries between 1995 and 2020. The past quarter-

century is particularly relevant, as it includes the impact of international climate agreements

and technological advancements in power production, providing a comprehensive foundation for

understanding changes in interfuel ES. Given the regional differences and ever-changing pace

of energy transitions, we compare the levels and dynamics of the ES across regions and identify

changes in the ES over time.

Since the introduction of the ES by Hicks (1932), there has been a steady flow of research,

calculating Elasticities of Substitution for different sectors, regions, and periods. We base our

analysis on this rich body of literature while introducing new dynamics. Based on the drastic
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acceleration of energy transitions in the last decade, we assume that the ES will be constant

for relatively short time intervals (Jo and Miftakhova, 2022). This contrasts existing literature,

which considers the ES to be constant throughout the observation period (Christensen et al.,

1975, Considine, 1989b, Fuss, 1977, Jones, 1995). Splitting the timeframe into smaller subsets

that we shift across time, in which the ES is presumed to be constant, we are able to evaluate

its variation over time and, with it, the dynamics of energy transitions.

Estimating reliable ES values can help provide crucial information on the current and future

dynamics of energy transitions to policymakers by measuring shifts in relative input use in

response to changes in relative input prices. Acemoglu (2002) and Acemoglu et al. (2012, 2023)

have shown that the ES may be interpreted as a driver toward a lower carbon future as it directly

influences relative input prices in favor of low-carbon inputs, thereby accelerating the substitution

dynamics. However, the accelerating effect of relative input prices depends fundamentally on

ES values remaining above unity for the respective fuel bundle (Klump and de La Grandville,

2000). We contribute by estimating the Elasticity of Substitution to measure the progress in

the energy transition while relying on state-of-the-art estimation methods, as the discussions

by Acemoglu et al. (2012) and Klump and de La Grandville (2000) only rely on an analytical

approach to analyze changes in generation efficiencies and ES. Similar to our study, Papageorgiou

et al. (2017) estimate the ES between clean and dirty inputs in the power sector to be around

2, finding evidence supporting long-term green growth. Their paper, however, ignores biased

technological change and thus possibly overestimates the ES.

Our study accounts for dynamic changes in fuel use, technologies, and input prices by implement-

ing a novel multi-equation approach for ES estimation. Given the rapid increase in generation

efficiencies of certain technologies, e.g., natural gas Combined Cycle Gas Turbine (CCGT) power

plants, the method can account for uneven changes in generation efficiencies, known as biased

technological change, which significantly influence fuel switching decisions. This approach devel-

oped by Klump et al. (2007) and brought to the energy sector by Gatscher and Ikonnikova (2024)

has been tested and used in macroeconomic studies (Frieling and Madlener, 2016, Jo, 2020, Kan-

der and Stern, 2014, Klump et al., 2012, León-Ledesma et al., 2011). It overcomes the limitations

of assuming neutral technological change by integrating multiple optimality conditions into the

analysis.

While our application utilizes the widely employed CES production function, the approach is

flexible enough to support a range of different functional forms. In contrast, previous studies
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calculating the ES for a diverse set of countries and regions like Pindyck (1979), Serletis et al.

(2010b, 2011), Steinbuks and Narayanan (2015) rely on static methods based on single equation

cost functions limited to neutral technological change.42

In the following, we introduce our data and present changes in the power mix over the last two

decades. We then develop our econometric model for the calculation of interfuel Elasticities of

Substitution (ES) before presenting our results.

4.2 Data

Our study is based on a balanced panel dataset containing 28 countries in the OECD that

span six regions from 1995 to 2020. The dataset is unique as it is the most extensive balanced

panel used to calculate Elasticities of Substitution on the country and regional level to this

moment. Previous studies relied on unbalanced panels or a smaller sample size of a maximum

of 15 countries due to data limitations (Serletis et al., 2011, Steinbuks and Narayanan, 2015).

Both of these studies scrutinize energy consumption as a whole, making it challenging to identify

the impact of individual shocks (such as energy price shocks or policy interventions) on energy

transitions. Additionally, higher levels of data aggregation bias results toward lower ES estimates

(Gatscher and Ikonnikova, 2024, Papageorgiou et al., 2017).

In contrast, our dataset focuses on the power sector, whose relevance to decarbonization increased

in the last decades, given the ongoing electrification of other sectors, e.g., the transport sector

(see Figure C1.1, C1). Moreover, the power sector has a substantial potential for decarbonization

due to its ability to incorporate zero-carbon power sources, such as nuclear and renewable power

(International Energy Agency, 2000). Finally, the power sector’s aptitude to switch between fuels

(substitutability) and respond to advances in technology (in this case, generation efficiencies)

make it a common target of climate policies, such as the EU ETS and the RGGI, that influence

the ES.

While early 2000s reports from the International Energy Association (IEA) highlighted the need

for increased capacity in the rapidly growing (in energy terms) global power sector, with a

slight preference for natural gas capacity, later reports emphasized the urgency for countries

to accelerate decarbonization by expanding renewable capacity. Apart from capacity concerns,
42Neutral technological change means generation efficiencies across fuels are increasing at the same pace.
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the IEA also highlights the need for a switch in input consumption, e.g., from high-carbon coal

to lower-carbon power sources such as renewables and natural gas. This shift in objectives

can be seen in the dynamics of the power mix across regions, which displayed only moderate

adjustments from 1995 to 2010 and a drastic switch toward lower carbon-intensity fuels, e.g.,

natural gas and renewables, from 2010 to 2020 (see Figure 4.1). This dynamic is one of the

primary motivators of our analysis, with the increasing use of renewable power and natural

gas evident in Northern America and Western Europe. In contrast, the Asia-Pacific region

(excluding China) still relies on high-carbon fuels, which may be attributed to the Fukushima

incident leading to a temporary shutdown of nuclear power in Japan and Australia’s role as one

of the globe’s biggest coal producers.

The changing power mix is evident in the predominantly decreased carbon intensities within the

power sector (refer to Figure 4.2). The most significant decline in carbon intensity is observed in

Denmark and Greece. Conversely, there is minimal change in the already mostly decarbonized

power sectors of France, Norway, Sweden, and Switzerland, which primarily rely on hydropower

and/or nuclear power. Japan is the sole country displaying an actual increase in CO2 intensity,

likely attributed once again to the repercussions of the Fukushima incident. Unsurprisingly,

European countries consistently exhibit the most notable reduction in carbon intensity, owing

to their gradual phasing out of fossil fuels from the power mix.

Apart from the rising popularity of renewables, coal-to-gas substitution is one of the most preva-

lent mechanisms for reducing carbon intensity in the power sector. This mechanism has also been

observed and mentioned by the IEA in their World Energy Outlook from 2010, in which they

refer to the time from 2010 to 2035 as the "Golden Age of Gas", as it will have the most extensive

demand growth in all of their considered consumption scenarios (International Energy Agency,

2010, 2011). Switching from coal to natural gas may be partially motivated by environmental

concerns; however, as profit-driven entities operate most power plants, economic considerations

still play a central role in deployment decisions. Combined with the falling prices of natural

gas, generation efficiencies, among which natural gas with its CCGT technology saw the most

significant increase, contributed to natural gas’ rising economic viability. This is because higher

generation efficiencies lead to lower fuel demand and, therefore, lower expenditure and lower

CO2 emissions for the same amount of power produced. The influence of efficiencies on fuel

switching points toward one of the main shortcomings in existing methodologies estimating the

ES: the assumption of neutral technological change.
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Figure 4.1: Composition of the power mix across regions from 1995 to 2020 (International Energy Agency,
2024a).

Figure 4.2: Carbon intensity reduction from 2000 to 2020 (Ember Climate, 2023).

To quantify the substitution effect with the ES, we gathered balanced country-level data per

input i from the IEA on fuel prices pi, fuel consumption Ei, and power production Qi from 1995

to 2020 (see Table 4.1).43 Variables Ei and Qi enable us to calculate the generation efficiencies
43Please note that we do not discount the prices to a base-year, since our methodology relies on the relative prices
between fuels, which are insensitive to discount rates. Moreover, we have been missing data points on pi, which
have been imputed using random forest machine learning algorithms based on Ei and Qi.
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(a) Generation efficiencies. (b) Input prices.

Figure 4.3: The changes in generation efficiencies and input prices are the two main drivers for coal to natural
gas substitution (International Energy Agency, 2024a,b).

ηi (see Equation (4.2)). The resulting generation efficiency values show a drastic increase in

natural gas efficiency compared to other inputs, motivating us to challenge the assumption of

neutral technological change used in previous studies (see Figure 4.3). To account for biased

technological change, updated methodologies are necessary.

Our methodology, shown in Section 4.3, is based on a marginal cost approach, encouraging us

to exclude carbon-neutral sources such as renewables, hydropower, and nuclear power. We omit

these carbon-neutral inputs due to their intransparent input prices, e.g., subsidies and a marginal

cost of zero in the case of renewable- and hydropower. Moreover, nuclear power takes a unique

position given its uncommon market mechanisms, like the prioritized dispatch in the merit order

and its requirement for a minimum load at all times for security reasons.

We assume that the increasing supply from carbon-neutral sources corresponds to an effective
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Table 4.1: Sources of data.

Variable Variable Symbol Unit Source

Power Generation Qi,t,s kTOE International Energy Agency (2024a)

Input Quantities Ei,t,s kTOE International Energy Agency (2024a)

Input Prices pi,t,s
$

kTOE International Energy Agency (2024b)

Technical Efficiency γi,t,s % Own calculations.

"demand reduction" of fossils, leading to the so-called "residual load". The residual load has a

special task in today’s power markets, given its function as a backup in times of low renewable

power output. In this paper, we are primarily interested in how the growth of carbon-neutral

power sources and their implicit influence change the substitution preferences between fossils,

especially coal and natural gas.

Based on the collected data, we calculate the value of the total residual power output Y :

Yt,s =

n∑
i=1

Qi,t,s (4.1)

Please note that apart from inputs i ∈ {C,NG,O} and the time dimension t, this variable is

also specific to country s. Moreover, we compute the average operational efficiency per country

and year:

γi,t,s =
Qi,t,s
Ei,t,s

(4.2)

Finally, we extend the methodology introduced by Gatscher and Ikonnikova (2024) with the

average price of the fossil fuel intermediate product pY , allowing us to rely entirely on relative

prices:

pY,t,s =

∑I
i pi,t,sEi,t,s∑I
i Qi,t,s

(4.3)

In the following chapter, we show how the gathered data is used in our econometric model to

calculate the ES between our fossil fuels, including coal, natural gas, and oil.
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4.3 Methodology

The selection of the econometric model in this paper was guided by its ability to accommodate

dynamic changes in technology and market conditions, offering a more nuanced understanding

of interfuel substitution compared to single equation approaches. In the following, we model

the residual power demand Y using a CES production function with three fossil fuel inputs

i ∈ {C,NG,O}. Based on the model, we derive the commonly used Morishima Elasticity of

Substitution (MES), which informs us about the substitutability of two fuels (bundles) in the

case of multiple inputs. We start by elaborating on the foundational aspects of the model, such

as the framework that accommodates multiple energy inputs and allows for biased technological

change. Subsequently, within this framework, we explain the econometric estimation approach

employed for determining the ES based on a multi-equation system. Finally, we provide more

information on applying our dataset within the framework’s context, leading to a dynamic

"moving-time-window" analysis.

4.3.1 Model Framework

The Constant Elasticity of Substitution production function is traditionally used in capital-

labor-macroeconomics and is limited to two inputs. This limitation has been overcome by

Sato (1967), who extended the CES function by replacing individual inputs with another CES

function, the so-called nesting. In doing so, the model may be extended to n, or in our case, three

inputs. Apart from the nesting, our model differs from standard implementations of the CES

by considering the individual productivity γi instead of relying on an overarching technology z,

which would limit us to the case of neutral technological change. Moreover, we exclude labor

in the production function, as we assume the share of labor income to be negligible and not

substitutable. By implicitly assuming a fixed ratio between capital and fuel input, we are also

able to exclude capital from the production function (Papageorgiou et al., 2017).

We model the residual power demand Y as:

Y (E) =

{
π1

[
α1 (γ1E1 )

η−1
η + α2 (γ2E2 )

η−1
η

] η
η−1

σ−1
σ

+ π2 [γ3E3 ]
σ−1
σ

} σ
σ−1

(4.4)

In the model, Ei are the input quantities, γi the productivity/efficiency for fuel i, and αi and πi

the income shares of the respective fuel or fuel bundle. Most importantly, the outer elasticity σ
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measures the substitutability between the fuel bundle E1/E2 and input E3, whereas the inner

elasticity η represents the ES between E1 and E2.

Given the residual demand Y and the productivity of the generation fleet per fuel γi, the producer

chooses the best combination of input quantities Ei, as a response to the (relative) prices pi to

maximize profits:44

max
E

[
pY · Y (E, γ)−

∑
i: E

pi · Ei

]
(4.5)

Based on the profit maximization problem, Morishima (1967) and Blackorby and Russell (1981)

developed the MES, a n-input generalization of the original Hicks Elasticity of Substitution

(HES) which is frequently used for the CES production function, but limited to two inputs

(Hicks, 1932). The MES achieves this generalization by holding the output quantity and all

input prices constant while letting all inputs adjust to their optimal quantities. The approach

sets the cost derivative ∂Ce(Y,pE)
∂pi

= cei equal to the individual input demands under the cost-

minimization objective. Using Shepard’s Lemma allows us to evaluate the change in the relative

input quantities as a response to a change in relative input prices:

σMij =
∂ ln(cei (Y,pE)/cej(Y,pE))

∂ ln(pj/pi)
=
∂ ln(Ei/Ej)

∂ ln(pj/pi)
(4.6)

Given its ability to incorporate multiple inputs, the MES is the optimal measure for fuel sub-

stitutability in the context of power markets. It considers input demand, input prices, and

productivities (efficiencies) to provide information on how relative quantities change, given a

change in relative prices. Due to the so-called "impossibility theorem" (Diamond et al., 1978),

it used to be unrealizable to calculate the ES while also determining technological progress,

thereby limiting the application of the CES production function in the fuel substitution context.

In the following, we present our econometric approach that relies on a multi-equation system

and normalization procedures to overcome this limitation, following Klump et al. (2007) and

León-Ledesma et al. (2010b).

44Please note, that given (4.3), the average producer does not make a profit, but breaks even. This is similar to
reality, where the fringe producers offer prices equal to their marginal cost.
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4.3.2 Econometric Approach

Our econometric model modifies the CES production function by introducing normalization

parameters and a set of FOCs. Normalization helps the precise estimation and interpretability

of the model by introducing a "common benchmark point", usually sample averages (León-

Ledesma et al., 2010b).45 In addition to the index i ∈ {1, 2, 3}, which identifies each fuel type,

we use the index t to represent the corresponding year and the index s to denote the specific

country involved. As such, t = 0 corresponds to the normalized values (see (4.8)). Moreover,

we introduce ξ, a normalization constant expected to take a value close to 1. It measures the

extent to which sample averages align with the predetermined benchmark point.

log(
Yt,s
Y0,s

) = log(ξs) +
σ

σ − 1
log


π1,s

[
α1,s

(
E1,t,s

E1,0,s
Γ1,t,s

) η−1
η

+ α2,s

(
E2,t,s

E2,0,s
Γ2,t,s

) η−1
η

] η
η−1

σ−1
σ

+

π2,s

[
E3,t,s

E3,0,s
Γ3,t,s

]σ−1
σ


(4.7)

Since our variables vary significantly throughout the observation period, we use geometric aver-

ages to find the normalization points for the residual power demand Y , input demand Ei, and

prices pi (Herrendorf et al., 2015). The normalized value for the productivity γi is calculated in

relation to its value at median time t̄:

Y0,s = exp

(∑tmax
tmin

ln Yt,s

n

)
; Ei,0,s = exp

(∑tmax
tmin

lnEi,t,s

n

)
;

pi,0,s = exp

(∑tmax
tmin

ln pi,t,s

n

)
and Γi,t,s =

γi,t,s
γi,t,s

. (4.8)

Given the normalized values, we calculate the normalized income shares for the outer function

(πi) and the inner function (αi):46

α1,s =
E1,0,s p1,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s
; α2,s = 1− α1,s

π1,s =
E1,0,s p1,0,s + E2,0,s p2,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s + E3,0,s p3,0,s
; π2,s = 1− π1,s

(4.9)

45Normalization takes place at the country level for all nestings considered.
46We provide alternative income share normalization points in Appendix A2.
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Moreover, our approach diverges from traditional methods by including one FOC for each input.

This procedure coincides with the cost-derivative equalling the factor demand, laying the ground

for the MES. To simplify the estimation, we combine the FOCs of inputs 1 and 2 within the

inner CES function, while relying on the original FOC for input 3:

η − 1

η
log

(
E2,0,sE1,t,s Γ1,t,s

E1,0,sE2,t,s Γ2,t,s

)
= log

(
p1,t,sE1,t,s α2,s

p2,t,sE2,t,s α1,s

)

log

(
p3,t,s

pY,t,s

)
= log

(
α3,s Y0,s

E3,0,s

)
+

1

σ
log

(
Yt,s
Y0,s

)
− 1

σ
log

(
E3,t,s

E3,0,s

)
+
σ − 1

σ
log (ξs Γ3,t,s)

(4.10)

The combined FOC of inputs 1 and 2 reduces computational complexity and demonstrates the

unique relationship between relative prices and relative fuel consumption at the foundation of

the Elasticity of Substitution. It also shows how the ES does not only rely on relative prices

and input quantities but depends on the relative technological progress Γ1
Γ2
, demonstrating how

omitting technological progress may bias the ES estimates. The econometric model allows us to

implement different types of analysis to the dataset, which we present in the following chapter.

4.3.3 Application

We apply the econometric approach to our dataset, which covers 28 OECD countries, in three

ways. Our first analysis estimates static country-level ES values. Next, we group countries into

six regions, supposing a static and common ES within the group before considering dynamic

changes in the regional ES values.

First, we start by performing a static calculation on the country level, covering the entire time-

frame from 1995 to 2020. The static ES is calculated for the three different nesting specifications,

offering valuable insights. We do so by re-assigning which inputs are part of the inner nesting,

with the remaining input being substituted against the bundle within the nest. Comparing the

results of the three possible nestings allows us to observe similarities and differences between

the nests and helps us better understand the individual countries’ power sectors. Due to data

limitations and, in some cases, non-use of certain fuels, which would bias our results, we exclude

Belgium, Denmark, France, New Zealand, Norway, and Switzerland from the sample.47

47Norway and New Zealand do not use oil in certain years. Switzerland does not use coal. Belgium and France
do not converge, probably due to their reliance on nuclear power. Similarly, Denmark does also not converge.
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Second, applying the identical procedure, we group the individual countries into six regions,

assuming a common ES per region. The countries are grouped following Table 4.2. Notably,

we exclude the same set of countries as in the first model due to data limitations but are able

to add Denmark to the Northern European region. The analysis is targeted at identifying a

region’s ability to substitute. If, for example, Germany has difficulties replacing natural gas-

generated electricity with coal-fueled power following an increase in natural gas prices, another

country, e.g., the Netherlands, may export its coal-generated electricity to Germany. Similarly,

the analysis enables the identification of regional differences that may stem from policy interven-

tions and/or resource availability. Regional differences are becoming more relevant as the global

energy landscape transforms, e.g., the United States’ transition to become an energy exporter,

motivating us to perform a more dynamic analysis.

Table 4.2: Regional scope of the analysis.

Europe

Asia Pacific Northern America Central/Eastern Northern Southern Western

Australia Canada Czech Republic (Denmark) Greece Austria
Japan Mexico Hungary Finland Italy (Belgium)
Korea US Poland (Norway) Portugal (France)

(New Zealand) Slovak Republic Sweden Spain Germany
Turkiye Ireland

Netherlands
(Switzerland)

UK

Third, given the acceleration of energy transitions and regional changes in energy production

and consumption patterns, we use the regional model to analyze how the ES changes over time.

We do so by dividing the timeframe into smaller 20-year windows and tracking how the values

change as the window is moved (see 4.4). This procedure offers six observations per region,

allowing us to evaluate the changes in the ES and to test the hypotheses of a constant ES

on the regional level. Changes in the ES over time may stem from introducing new policies,

such as ETSs, or the market entry of relatively cheap energy sources, like Northern America’s

unconventional natural gas resources. Analyzing if and how these events influence the ES may

help researchers choose the correct model specifications (constant or variable ES) in the future

and provides valuable insights into the measures selected to increase the ES values that enable

low carbon growth.
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Year1995 1998 2001 2004 2007 2010 2013 2016 2019

Period 1

Period 2

Figure 4.4: Example of a 20-year moving-time window.

In the following chapter, we present the results of our analysis of the three different model

specifications.



4 Interfuel Elasticities in Flux: Regional Variations and their Evolution 84

4.4 Results and Discussion

We compute the ES for the three different model specifications by applying the econometric

procedure to our sample. First, we calculate the country level ES for the three nesting variants.

Next, considering the similarities across countries within the same region, we develop a regional

ES for six OECD regions. Last, we examine the change of the ES for the (Coal - NG) - Oil

nesting over time to analyze how the acceleration of the energy transition may be quantified.

4.4.1 Country-level Estimates

Usually, the ES differs between fuels and fuel bundles, meaning that oil, e.g., might be a good

substitute for input i but could act as a complement for input j. Therefore, analyzing all three

possible nestings offers valuable insights into power sector dynamics globally.

The MES indicates substitutability between inputs for ES values above one, while values below

one indicate complementarity; that is, both fuels are essential within the country’s power sector.

In the case of values above one, higher values point to better substitutability, whereas in the case

of values below one, lower values denote more substantial complementarity. In the context of

Klump and de La Grandville (2000) and Acemoglu et al. (2012), ES values above unity related

to natural gas would support long-run low carbon transitions towards natural gas. Interestingly,

our results indicate substitutability in most cases, with the only notable outliers hinting at

complementarity being Germany, Japan, Korea, and Mexico.

The first column of Table 4.3 shows the countries’ names grouped by region; columns two to

four display the three nestings’ outcomes. Please note that some nestings for certain countries

do not contain values, which may be explained by computational complexities inside the model.

Values of zero indicate insignificant results (p>10%); the remaining values are significant to the

1% level if not stated otherwise.

Our ES results, such as 6.77 for coal-gas substitution in Australia, thus indicate high substi-

tutability. Returning to (4.6), the value suggests that a 1% increase in the relative price of

coal to natural gas leads to an increase of 6.77% in relative natural gas to coal consumption.

Given the strong response of the power sector to this change in relative prices, the Australian

power sector can easily substitute coal-fired power production with natural-gas-fueled electricity

generation.
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It is also important to note that, ideally, the results among the nestings are consistent for each

country to ensure the internal validity of the results. The Slovak Republic is a prime example

of this behavior: the ES between coal and natural gas is measured at 1.2, while the ES between

the (Coal - Oil) bundle and natural gas stands at around 1.06, and the ES between the (Natural

Gas - Oil) bundle and coal is 1.13. Given the relatively low use of oil in the Slovak Republic, the

last two values are mainly driven by the coal-to-natural-gas relationship and, thus, consistent

with the other nestings. Moreover, the results indicate that the consumption adjustment for,

e.g., coal and natural gas, in response to a relative price change is more than five times stronger

in Australia (6.77) compared to the Slovak Republic (1.2).

We find relatively high substitutability in Northern and Southern Europe, while the substi-

tutability in Northern America seems to be comparably low. Moreover, complementarity is only

present in Asian countries, as well as Mexico and Germany. These countries, facing complemen-

tarity, are known for their solid industrial and manufacturing sectors; thus, relatively high power

demand should ideally be met at a comparatively low cost. This fact is particularly concerning

since, in the case of complementarity, low-carbon energy transitions are more challenging. The

low ES values for Germany, Japan, Korea, and Mexico thus emphasize the need for tailored

energy policy to support decarbonization, depending on the needs of the country, to maintain

ES values above unity.

Currently, Germany is attempting to reduce its carbon emissions in the power sector by partic-

ipating in the EU ETS. Policies, like the EU ETS, and resource availability affect substitution

dynamics across a variety of countries, prompting us to consider regional ES variations, which

we investigate in the following chapter.

4.4.2 Region-level Estimates

The ES on the regional level is becoming more relevant given the increasing importance of re-

gional policy, balancing regional grids through the use of renewables and, with it, cross-border

power trading. Our results indicate that most regions can overcome the "problem" of comple-

mentarity once we consider them in a group.

We observe consistent estimates across the nestings for all regions, pointing to the internal

validity of our approach. Nevertheless, we want to emphasize the (Coal - NG) - Oil model,

which best represents modern power grids. Coal is exclusively dispatched as a base load, given
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Table 4.3: Country level ES.

(Coal - NG) - Oil (Coal - Oil) - NG (NG - Oil) - Coal
State Inner (η) Outer (σ) Inner (η) Outer (σ) Inner (η) Outer (σ)

Asia Pacific
Australia 6.77 2.84 1.83 1.78 − −
Japan 0.32 2.97 0 1.34 − −
Korea − − 1.85 6.37 9.8 0.55

Eastern Europe
Czech Republic 1.51 3.32 3.32 2.23 2.97 1.64
Hungary − − 4.01 0 − −
Poland − − − − 3.78 2.11
Slovak Republic 1.2 1.99∗ 0 1.06 1.44 1.13

Northern America
Canada 1.07 1.54 1.06 1.22 − −
Mexico − − − − 29.81∗∗ 0.83
United States 1.28 2.47 2.66∗∗ 1.27 1.48 1.49

Northern Europe
Finland 4.09 1.79 2.16 3.84 1.5 6.11∗

Sweden 1.49 2.58 3.61 1.94 − −

Southern Europe
Greece − − 1.18 0 17.13 2.34
Italy 3.29 1.89 1.23 3.99 − −
Portugal 3.63 0 − − 6.58 1.74
Spain − − 1.98 0 − −
Turkiye − − 2.28 0 − −

Western Europe
Austria 1.81 2.19 2.75 1.75 2.2 1.89
Germany 0.9 1.92 2.54 0.92 − −
Ireland 1.34 5.57 − − 5.24 1.25
Netherlands 2.42 1.36 1.25 0 − −
United Kingdom 5.71 4.06 − − 5.34 6.25

Note: All values significant to the 1% except ∗p<0.1; ∗∗p<0.05; 0 = insignificant

its traditionally low marginal cost and relatively slow response to changes in load. On the

contrary, oil-fueled plants are mainly used as emergency peak-load products. Natural gas may

be used for both base and peak load. Given the dramatic reduction in natural gas prices since

2008, which helped natural gas compete with coal-fired generation even as a base load, and our

interest in coal-gas substitution, the nesting appears to be the most relevant.

Our results indicate coal-gas substitution to be around 2 to 7.5, with the extremely high ES in

Central/Eastern Europe standing out. Given relative price changes, these results suggest that it
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is comparatively easy for Central/Eastern European countries to switch from one fuel to another.

In contrast, Northern America has the lowest coal-gas ES. Overall, the response of relative inputs

consumption in response to relative price changes is 16 times higher in Eastern Europe compared

to Northern America. The finding may be explained by factors like, e.g., the competitive energy

landscape, in which only the most economical power plants survive, leading to a comparatively

low spare capacity that would allow for fuel-switching in Northern America. Alternatively, the

effect may stem from the low range of relative price changes, given the relatively similar level

of coal and natural gas prices in the U.S.. A small absolute price change in either of the two

goods would lead to a significant percentage change in relative prices, which, given that the

relative price change functions as a divisor, could neutralize major adjustments in relative input

quantities. Looking at the relatively small variance in input prices in the United States, the

relative price effect seems to be the driving force behind the low values (see 4.3b). Our findings

indicate that policymakers in Northern America may want to introduce policies to increase the

ES between coal and natural gas by, e.g., implementing emission trading systems, such as in

Europe, to ensure long-run growth in relatively low-carbon natural gas-fueled generation.

Table 4.4: Region level ES.

(Coal - NG) - Oil (Coal - Oil) - NG (NG - Oil) - Coal
Region Inner (η) Outer (σ) Inner (η) Outer (σ) Inner (η) Outer (σ)

Asia Pacific 4.14 3.88 5.31 3.96 − −
Eastern Europe 18.07∗ 6.37 4.46 22∗∗ − −
Northern America 1.14 3.91 2.22 3.96 3.1 0.99
Northern Europe 2.13 2.63 2.55 2.65 − −
Southern Europe 7.36 5.56 5.92 6.82 6.21 4.08
Western Europe 3.43 3.88 8.03 4.12 4.52 4.06

Note: All values significant to the 1% except ∗p<0.1; ∗∗p<0.05; 0 = insignificant

Moreover, oil-powered generation appears to carry out its task, namely substitution, in times of

extremely high power consumption. On average, it has the highest ES values related to either

input or bundle. The fuel is a substitute in all nestings and regions, making it suitable for

"shaving off" peak load.

In summary, our findings indicate ES values concerning natural gas to be above unity, supporting

a lower carbon energy transition with the help of natural gas. There is a lot of potential for

substituting coal with natural gas, with the only case close to complementarity being Northern

America. This indicates that the Northern American power sector, in some cases, still treats
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coal as an essential input that has to be in the power mix to satisfy demand. Given that natural

gas is a substitute for coal in most regions, we aim to determine whether this situation has been

different or will change in the future. In the following chapter, we divide the timeframe into

smaller windows that we move across time to determine whether there have been changes in the

ES over time.

4.4.3 Dynamic Region-level Estimates

Traditional literature on the ES, especially in the CES framework, suggests elasticities to be

constant over long periods. Considering the acceleration of energy transitions and the increased

retirement rate of coal capacity, this assumption may be questioned. We analyze the ES dynamics

for the (Coal - NG) - Oil nesting over time. The nesting is especially relevant when related to

the "Golden Age of Natural Gas" and the substitution of coal-fired generation with renewables

and natural gas due to decarbonization efforts (International Energy Agency, 2010, 2011). We

follow the framework presented in Figure 4.4.

Our results show that while in some regions, such as Northern and Western Europe, ES appear

to be relatively constant, there are significant regional differences in ES trends. Constant ES

values between coal and gas indicate that the energy transition is still underway at a steady

rate and that there is no acceleration/deceleration to be expected. With ES values above unity,

this development supports long-run decarbonization of the power sector in these regions, as fuel

switching may favor lower-carbon natural gas in the long term.

Conversely, coal/gas substitution is decreasing significantly in Southern Europe, coming from

a value of around 10 to a value of around 3.5. Similar developments can be seen in Northern

America, where the ES between coal and gas decreased from 3.75 to 1.25. This decrease in

Northern America is problematic, as lower ES values make the transition from coal and oil to

natural gas more complex. Northern America may thus want to try to increase the ES again

by introducing policies, such as carbon prices, that could possibly help intensify fuel switching

values in the future.

In Central/Eastern Europe, our model did not converge for the first periods but showed a

significant decline through the later time windows. With this trend also observable in Southern

Europe and Northern America, we interpret this as a sign that the substitution between coal

and gas became more challenging. It is difficult to conclude whether this development is positive
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or negative in the short term. It could stem from the fact that a lot of coal has already been

substituted by natural gas; the energy transitions achieved their goals and are now slowing down.

The effect may also be influenced by higher substitution away from coal due to the implicit

impact of renewable power integration that partially substitutes coal-powered generation. The

decreasing values also suggest that energy transitions may have achieved a temporary limit, in

which natural gas plants cannot effectively replace the remaining coal in the energy systems.

Policies are needed to re-accelerate the transition away from coal. Relating to Table 4.4, Northern

America may have reached the point where the substitutability transitions to complementarity.

Remarkably, we find that there is a positive trend for oil-related substitution. The ES between

oil and the coal/gas bundle is increasing in almost all regions. This trend may indicate the

rising importance of local oil-powered generation in times of increasingly intermittent power

production through renewables as a backup tool or in emergencies.

In summary, we find that the assumption of constant ES holds through the entire observation

period in some regions. However, it is essential to mention that relying on a static framework

for calculating ES poses significant risks, as can be seen in the cases of coal/gas substitution

in Central/Eastern Europe, Northern America, and Southern Europe. Mis-specifying the na-

ture of the ES and the omission of biased technological change may significantly influence the

applicability and validity of the results.
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(a) Inner and outer ES for Asia Pacific. (b) Inner and outer ES for Central/Eastern Europe.

(c) Inner and outer ES for Northern America. (d) Inner and outer ES for Northern Europe.

(e) Inner and outer ES for Southern Europe. (f) Inner and outer ES for Western Europe.

Figure 4.5: The evolution of ES, based on the (C −NG)−O 20-year moving time-window exercise.
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4.5 Conclusion

In concluding this comprehensive study on interfuel elasticities of substitution across various

regions and their evolution over time, it is imperative to highlight the findings and their broader

implications on energy policy and economic modeling. Our analysis, covering 28 OECD countries

across six regions from 1995 to 2020, underscores interfuel substitution’s nuanced and dynamic

nature in response to evolving economic and technological landscapes.

The calculated interfuel Elasticity of Substitution provides evidence of considerable regional

variations and shifts over the entire period. Our novel multi-equation approach, which accom-

modates changes in fuel usage, technologies, and input prices, reveals that the elasticity is not

static but fluctuates across time and regions. This finding challenges the traditional assump-

tion of constant ES and underscores the importance of adopting flexible models that reflect the

temporal dynamics in energy markets.

Moreover, the study’s application of a multi-equation methodology has successfully captured the

biased technological changes influencing fuel-switching decisions, a critical aspect often oversim-

plified in previous models. By integrating these factors into our analysis, our study enhances

the accuracy of ES estimates. It provides a more realistic depiction of the energy sector’s re-

sponsiveness to economic and technological signals.

Our findings also have significant implications for policy-making and energy modeling. Values of

the ES for natural gas-related bundles are usually above unity but, in some cases, declining. This

finding indicates a negative development, as long-run carbon reduction of the residual load may

be unachievable in some regions. The regional differences observed suggest that energy policies

must be tailored to specific regional dynamics to effectively support the transition towards less

carbon-intensive energy systems. For instance, some regions’ high substitutability between coal

and natural gas indicates potential pathways for reducing carbon emissions through strategic fuel

switching, supported by appropriate policy incentives. Based on our findings, we recommend

policymakers focus on designing targeted subsidies and tax incentives that leverage the specific

interfuel elasticities identified in this study to accelerate the transition towards less carbon-

intensive energy sources.

In conclusion, this study contributes to a deeper understanding of the complex interplay between

economic factors and energy transitions. It highlights the critical role of adaptable econometric
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models in capturing the essence of these transitions. It provides a robust foundation for future

research and policy formulation to achieve sustainable energy systems. This work extends the

academic discourse on interfuel elasticities and offers practical insights for policymakers striving

to balance economic growth with environmental sustainability.



5 | Conclusion

This dissertation aims to comprehensively analyze the complex interplay between interfuel sub-

stitution, carbon pricing, price shocks, and energy policy. By examining these factors, this study

seeks to deepen our understanding of how regional energy policies, market forces, and techno-

logical advancements shape energy transitions and environmental outcomes. The Elasticity of

Substitution (ES) serves as a valuable tool for quantifying and analyzing the dynamics of energy

transitions. Carbon pricing and price shocks, such as the surge in unconventional natural gas

production, exert significant influence on market participants’ decisions to switch from high-

carbon inputs to lower-carbon alternatives. Given the global differences in resource availability,

it is essential to assess regional differences in ES values and dynamics to evaluate the necessity

and impacts of energy policy.

The first essay in this work presents a novel methodology for estimating ES under biased tech-

nological progress. Our study reveals that technological progress has favored natural gas-fired

power generation in the past two decades. By estimating ES values, we show that neglecting

this bias in technological change leads to significantly overestimated ES values, indicating that

some of the substitution attributed to changes in relative prices is actually due to technological

progress. Overestimated ES values would make energy transitions appear more robust than they

are. As ES may inform policymakers about the current state of energy transitions, this finding

highlights the importance of our multi-equation framework. It may help us understand the sig-

nificance of selecting the correct model specifications. Furthermore, our analysis demonstrates

that disaggregated data improves the model’s ability to capture variance in fuel substitution and

provides better insights into the underlying dynamics of interfuel substitution. We test different

nesting specifications and find that substitution primarily occurs between coal and natural gas,

while oil-fueled power generation serves as a backup. By separating our sample into smaller

time windows that we shift across time, our study suggests that estimates may also suffer from
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significant bias when considering historical data. While the assumption of a constant Elasticity

of Substitution may hold in the short term, our results show that the ES significantly changes

over time. The declining ES between coal and natural gas is a concerning indicator of a slow-

down in the U.S.’ energy transitions. Lastly, comparing the model-suggested relative fuel use

to real-world observations, we conclude that market participants may deviate from optimality

conditions in the short term but return to optimal behavior in the long run. One of the shocks

leading to this phenomenon is the fracking boom that inspired the second essay.

The second essay in this work investigates the impact of the Regional Greenhouse Gas Initiative

(RGGI) and the surging production of unconventional natural gas in the Marcellus shale on

CO2 emissions and energy market dynamics. We consider both events occurring in 2009 as

concurrent treatments, aiming to determine whether the increase in natural gas production

affected the adjacent states subject to the RGGI. The analysis considers various outcomes to

untangle the channels and effects of both treatments on power generation and consumption.

While different in their cause, both treatments significantly reduced the CO2 intensity of power

production. The reduction has been achieved by a shift from coal-fired generation to natural

gas-fueled power generation in both regions. This switch has been more intense in states subject

to the increasing natural gas production. In contrast, the RGGI led to a more substantial

adoption of renewable power. At the same time, the drastic coal-to-gas shift in the Marcellus

shale play region slowed the adoption of renewables. To test the hypothesis that the surging

production of unconventional gas influenced the outcomes of the RGGI, we scrutinized natural

gas prices. This approach helps us to identify the driver behind the coal-to-gas transition. Our

findings contradict our initial expectations. The decrease in natural gas prices resulting from the

increased supply in the Marcellus shale region did not translate to the adjacent RGGI states,

suggesting that the coal-to-gas substitution in the RGGI region is driven by the Emission Trading

Scheme (ETS). Our analysis of natural gas pipeline capacities reveals that limited pipeline

capacity hinders the transmission of price signals from the Marcellus region to the RGGI states.

In addition, our study shows that adopting the RGGI led to increased power imports. At the

same time, the lower cost of natural gas encouraged the export of electricity in Marcellus shale

play states. Potentially resulting from the increased costs of importing power and obtaining

emissions certificates, we find higher power prices in the RGGI states, significantly reducing

power consumption. This decline in demand is primarily due to industrial consumers, who,

along with the decrease in GDP per capita in the manufacturing sector, indicate severe negative

economic consequences of the policy. On the other hand, the lower natural gas prices reduced
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power prices for Marcellus shale states without affecting power demand or GDP. Both treatments

have substantially reduced CO2 emissions in the power sector. Our study indicates that the

effectiveness of the RGGI has not been affected by the lower natural gas prices in the Marcellus

shale region. By examining various outcomes, the study offers an in-depth understanding of

the dynamics of the ETS and price shocks. This information may be useful for policymakers

in establishing the appropriate legislative framework to facilitate energy transitions, considering

the availability of local resources.

The third essay concludes by scrutinizing the ES on an international scale. Our compiled dataset

consists of 28 OECD countries, allowing us to explore global patterns of interfuel ES and their

evolution over time. By calculating the ES values at the country level for three different nestings,

our results reveal that economies with a strong manufacturing sector may face challenges in

achieving long-term decarbonization. These economies exhibit complementarity rather than

substitutability, making energy transitions contingent on technological progress. However, most

economies exhibit strong tendencies toward substitutability, enabling them to phase out coal

in the long run. We estimate regional ES values by grouping individual countries into six

regions, taking into account network effects such as the interconnectedness of the electricity

grid and commodity trading. The impact of such network effects is reflected in the significantly

higher ES estimates that now indicate substitutability across all regions. By employing the

moving time-window analysis of the first essay, we confirm that the elasticity of substitution

is not static, varying significantly across regions and periods. This variability is influenced by

changing economic conditions, technological advancements, and policy interventions. The study

emphasizes the critical role of adaptable econometric models in accurately capturing the complex

interactions in energy markets. It provides a robust foundation for future research and policy

formulation to achieve sustainable energy systems.

Together, these studies contribute to a deeper understanding of the multifaceted nature of en-

ergy transitions. They demonstrate the pivotal role of policy interventions, market forces, and

technological innovation in shaping the future of energy systems. The insights gained from this

research offer valuable guidance for policymakers and stakeholders striving to balance economic

growth with environmental sustainability. As the energy landscape continues to evolve, the find-

ings of this thesis underscore the necessity of flexible and region-specific approaches to effectively

navigate the challenges and opportunities of the energy transition.
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A1 Extension to the n-Input Case

Since the the method only allows for up to two inputs, we refer to León-Ledesma et al. (2011)

who extend the model based on Sato (1967) to four inputs. We use this model to include all

conventional fuels (coal, gas, petroleum and nuclear) in energy production. This results in the

following equation:
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(A1.1)

where Gt,s is the output quantity, G0,s is normalized output, ξs is the Normalization Constant

(NC), αi,s are the income shares for the first nest, βi,s are the income shares for the second nest,

and πi,s are the income shares between the nests, Ei,t,s are the input quantities, Ei,0,s are their

normalization, Γi,t,s is the normalized productivity measure, η is the elasticity of substitution

of the first nest, ζ is the elasticity of substitution of the second nest and σ is the elasticity of

substitution between the nests.

Already combining the FOCs for inputs 1 & 2 in (A1.2) and inputs 3 & 4 in (A1.3) concludes

the four input model:
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p3,t,sE3,t,s β2,s
p4,t,sE4,t,s β1,s

=

(
E4,0,sE3,t,s Γ3,t,s
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(A1.3)

where pi,t are input prices.
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Last, as seen in many papers that analyze the electricity sector, like Serletis et al. (2010a), we

also try to model fossil fueled power production (3 inputs).
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where in contrast to (A1.1) the value of σ is now the elasticity of substitution between input

three and the first nest.

The FOCs for inputs 1 & 2 is exactly the same as (A1.2). For input 3 however, we need a similar

adjustment as mentioned for the other FOCs:
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The Point of Normalization for n-Inputs

For both cases :

α1,s =
E1,0,s p1,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s
; α2,s =

E2,0,s p2,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s

For the three input case :

π1,s =
E1,0,s p1,0,s + E2,0,s p2,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s + E3,0,s p3,0,s

π2,s =
E3,0,s p3,0,s

E1,0,s p1,0,s + E2,0,s p2,0,s + E3,0,s p3,0,s

For the four input case :
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(A1.6)
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A2 Alternative Income Share Normalization

Alternative income shares at any point of time can be defined as:

For all cases :
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(A2.1)

Based on the values from (2.23), León-Ledesma et al. (2010b) and Klump et al. (2007) advocate

the usage of the average income shares for the normalization points. This is because in capital-

labor income shares are usually constant, so that the mean best represents the behaviour of the

sample over time. We call this normalization point S = 0
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n
;
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αi,s = 1
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n
;

2∑
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πi,s = 1

(A2.2)

A second choice for the normalization of income shares may be geometric averages. Herrendorf
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et al. (2015) argue that this procedure allows for values further away from the point of normal-

ization due to the exponential behaviour of factor shares. This normalization will be defined as

S = 1
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Appendix 100

A3 Graphs & Figures

Figure A3.1: Electricity generation cost per fuel (EIA, 2020, 2022).

Commencing in 2008, producing electricity through natural gas emerged as a cost-competitive

alternative to coal-based generation. Nuclear power maintains its position as the most cost-

effective producer, whereas petroleum, despite its higher expense, persists in its utilization as a

producer during peak demand periods.

Figure A3.2: Total input quantity per fuel (EIA, 2022).

A noticeable decline in coal utilization emerged in the late 2000s in the electric power sector.

Conversely, there has been a consistent and marked upsurge in the consumption of natural gas,
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particularly following a surge in adoption around 2008, coinciding with the moment when elec-

tricity generation via natural gas attained cost competitiveness (refer to Fig. A3.1). However,

the upsurge in natural gas consumption registers a smaller magnitude than the decline in coal us-

age. This discrepancy can be attributed to natural gas’s inherently superior generation efficiency

characteristic.

Figure A3.3: Income share per fuel (EIA, 2020, 2022).

From the late 1990s onward, natural gas experienced a consistent rise in its market share within

the energy income spectrum. Predominantly, this escalation stems from the decline observed in

coal’s share. An evident substitution effect becomes apparent upon analyzing the cumulative

income shares of coal and natural gas, exhibiting constancy over this period. Concurrently, the

proportion of income attributed to petroleum-fired generation exhibited a gradual and steady

decrease.
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Figure A3.4: States per model.
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(a) 24-Year Window for (G− C)−O.

(b) 26-Year Window for (G− C)−O.

(c) 28-Year Window for (G− C)−O.

Figure A3.5: Reducing the window size leads to the ES trending to the mean values for the (G−C)−O model.
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A4 Tables

Table A4.1: Two-input ES in the US electricity sector (1990-2019),
S = 2, N = 42, common NC

Model:

NG - C NG - O C - O

σ 4.82∗∗∗ 2.52∗∗∗ 2.57∗∗∗

(0.18) (0.04) (0.08)

ξ 0.93∗∗∗ 0.94∗∗∗ 0.99∗∗∗

(0.004) (0.01) (0.002)

N 1260 1260 1260
R2(G) 0.76 0.96 0.98
R2(FOC ′s) 0.87 0.85 0.61

σ - outer ES; ξ - NC; ∗∗∗ p<0.01; (Strd. Error)

Table A4.2: Three-input ES in the US electricity sector (1990-2019),
S = 2, N = 42, common NC

Model:

(NG - C) - O (NG - O) - C (C - O) - NG

σ 2.19∗∗∗ 4.67∗∗∗ 3.18∗∗∗

(0.04) (0.21) (0.08)

η 4.13∗∗∗ 2.57∗∗∗ 2.34∗∗∗

(0.14) (0.04) (0.07)

ξ 0.92∗∗∗ 0.92∗∗∗ 0.92∗∗∗

(0.004) (0.004) (0.004)

N 1260 1260 1260
R2(G) 0.67 0.66 0.63
R2(FOC(Nest)) 0.86 0.86 0.61
R2(FOC(Outer)) 0.47 0.39 0.49

σ - outer ES; η - inner nest ES; ξ - NC; ∗∗∗ p<0.01; (Strd. Error)



Appendix 105

Table A4.3: Three-input ES in the US electricity sector (1990-2019),
S = 1, N = 42, individual NC

Dependent variable:

(NG - C) - O (NG - O) - C (C - O) - NG

σ 2.44∗∗∗ 5.73∗∗∗ 4.11∗∗∗

(0.04) (0.30) (0.11)

η 4.85∗∗∗ 2.90∗∗∗ 2.28∗∗∗

(0.16) (0.05) (0.06)

N 1260 1260 1260
R2(G) 0.9 0.89 0.89
R2(FOC(Nest)) 0.87 0.86 0.61
R2(FOC(Outer)) 0.48 0.39 0.48

σ - outer ES; η - inner nest ES; ∗∗∗ p<0.01; (Strd. Error)

Table A4.4: Two-input ES in the US electricity sector (1990-2019),
S = 2, N = 26, individual NC

Model:

NG - C NG - O C - O O - N NG - N C - N

σ 3.48∗∗∗ 2.65∗∗∗ 2.45∗∗∗ 2.34∗∗∗ 15.00∗∗∗ 13.20∗∗∗

(0.10) (0.05) (0.09) (0.09) (3.82) (3.18)

N 780 780 780 780 780 780
R2(G) 0.9 0.99 0.98 -0.43 0.18 0.54
R2(FOC) 0.85 0.87 0.66 0.62 0.77 0.72

σ - outer ES; ∗∗∗ p<0.01; (Strd. Error)
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Table A4.5: Four-input ES in the US electricity sector (1990-2019),
S = 2, N = 26, individual NC

Model:

(NG - O) - (C - N) (C - O) - (NG - N)

σ 4.33∗∗∗ 3.60∗∗∗

(0.38) (0.29)

η 2.66∗∗∗ 2.61∗∗∗

(0.06) (0.10)

ζ 5.94∗∗∗ 5.88∗∗∗

(0.64) (0.54)

N 780 780
R2(G) 0.78 0.78
R2(FOC(Nest1)) 0.87 0.66
R2(FOC(Nest2)) 0.72 0.77

σ - outer ES; η - nest1 ES; ζ - nest2 ES; ∗∗∗ p<0.01; (Strd. Error)

Table A4.6: Four-input ES in the US electricity sector (1990-2019),
S = 2, N = 26, common NC

Model:

(NG - C) - (O - N) (NG - O) - (C - N) (C - O) - (NG - N)

σ 1.62∗∗∗ 2.90∗∗∗ 2.22∗∗∗

(0.29) (0.20) (0.12)

η 3.59∗∗∗ 2.65∗∗∗ 2.56∗∗∗

(0.11) (0.06) (0.09)

ζ 2.38∗∗∗ 5.87∗∗∗ 5.35∗∗∗

(0.08) (0.63) (0.45)

ξ 0.94∗∗∗ 0.94∗∗∗ 0.95∗∗∗

(0.003) (0.004) (0.004)

N 780 780 780
R2(G) 0.65 0.65 0.66
R2(FOC(Nest1)) 0.85 0.87 0.66
R2(FOC(Nest2)) 0.62 0.72 0.77

σ - outer ES; η - nest1 ES; ζ - nest2 ES; ξ - NC; ∗∗∗ p<0.01; (Strd. Error)
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Table A4.7: Three-input ES in the US electricity sector (1990-2019),
S = 2, N = 42, individual NC, neutral technology

Model:

(NG - C) - O (NG - O) - C (C - O) - NG

σ 2.72∗∗∗ 8.48∗∗∗ 5.67∗∗∗

(0.06) (0.68) (0.24)

η 6.98∗∗∗ 3.37∗∗∗ 2.45∗∗∗

(0.38) (0.08) (0.07)

N 1260 1260 1260
R2(G) 0.88 0.89 0.89
R2(FOC(Nest)) 0.87 0.87 0.63
R2(FOC(Outer)) 0.51 0.43 0.52

σ - outer ES; η - inner nest ES; ∗∗∗ p<0.01; (Strd. Error)

Table A4.8: Three-input ES in the US electricity sector (1990-2019),
S = 2, N = 26, individual NC, neutral technology

Model:

(NG - C) - O (NG - O) - C (C - O) - NG

σ 2.55∗∗∗ 6.49∗∗∗ 5.11∗∗∗

(0.07) (0.42) (0.22)

η 5.87∗∗∗ 3.10∗∗∗ 2.37∗∗∗

(0.30) (0.07) (0.08)

N 780 780 780
R2(G) 0.91 0.91 0.91
R2(FOC(Nest)) 0.85 0.88 0.65
R2(FOC(Outer)) 0.61 0.47 0.6

σ - outer ES; η - inner nest ES; ∗∗∗ p<0.01; (Strd. Error)
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Table A4.9: Three-input ES in the US electricity sector (1990-2019),
S = 2, aggregate US, neutral technology

Model:

(NG - C) - O (NG - O) - C (C - O) - NG

σ 2.23∗∗∗ 1.55∗∗∗ 1.77∗∗∗

(0.18) (0.18) (0.17)

η 1.66∗∗∗ 2.08∗∗∗ 2.40∗∗∗

(0.18) (0.13) (0.33)

ξ 0.98∗∗∗ 0.98∗∗∗ 0.98∗∗∗

(0.003) (0.003) (0.003)

N 30 30 30
R2(G) 0.98 0.96 0.98
R2(FOC(Nest)) 0.35 0.83 0.53
R2(FOC(Outer)) 0.72 0.5 0.72

σ - outer ES; η - inner nest ES; ξ - NC; ∗∗∗ p<0.01; (Strd. Error)
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B1 State-level Treatment Effects

To address potential confounding factors stemming from other state-level events, we have under-

taken an additional step in our analysis by calculating treatment effects at the state level. In this

endeavor, we draw inspiration from the approach proposed by Upton and Snyder (2017), lever-

aging their DD estimator to facilitate the computation of state-level effects that can augment

the interpretation of our findings. The model formulates as:

Yit = α+ δ ·DTrtmnt + γ ·DTrtmentUnt + η ·DPreTrtmnt + εit (B1.1)

In this equation, Yit represents the values for the outcome variables, while the binary variable

DTrtmnt serves as an indicator for treatment, taking the value of 1 for treated states after 2008

and 0 otherwise. Consequently, δ quantifies the treatment effect. Additionally, DTrtmentUnt

denotes the original outcomes, and DPreTrtmnt designates the pre-treatment periods, with γ and

η representing their respective effects. In our analysis, we focus solely on the values of δ as they

will complement and enrich the interpretation of our results.
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B2 Additional Tables

Table B2.1: Change in nuclear share

RGGI Marcellus Placebo

Baseline DD ATE 0.751 1.020∗ -
SE (0.903) (0.559) (-)
N 1050 925 -

Pooled SCM ATE -0.597 0.876∗ -0.433∗∗

SE (1.610) (0.461) (0.188)
N 450 200 1650

Eq. Pooled SCM ATE -0.546 1.150∗∗ -0.814∗∗∗

SE (1.610) (0.449) (0.188)
N 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B2.2: Change in coal & natural gas capacity per capita KW
capita

Coal Capacity: Gas Capacity:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE 0.120∗∗∗ -0.178∗∗∗ - -0.036 0.023 -
SE (0.024) (0.035) (-) (0.042) (0.057) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE 0.039∗ -0.052∗ -0.029∗∗ 0.001 -0.018 0.079∗∗∗

SE (0.020) (0.030) (0.012) (0.042) (0.034) (0.020)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE 0.018 -0.168∗∗∗ 0.026∗∗ 0.021 -0.006 -0.019
SE (0.020) (0.031) (0.012) (0.045) (0.037) (0.020)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B2.3: Change in coal & natural gas capacity shares

Coal Capacity Share: Gas Capacity Share:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE 6.540∗∗∗ -1.450 - 4.010∗∗∗ 5.040∗∗∗ -
SE (0.754) (1.060) (-) (0.956) (1.110) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE 0.469 2.800∗∗∗ -0.572 3.530∗∗ 2.470∗∗ 0.634∗

SE (0.660) (0.929) (0.371) (1.380) (1.220) (0.370)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE 1.780∗∗ 0.208 -0.814∗∗ 5.520∗∗∗ 3.320∗∗∗ -0.734∗∗

SE (0.726) (0.836) (0.369) (1.360) (1.140) (0.369)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B2.4: Change in natural gas prices $
MMBTU

Industrial Sector: Residential Sector:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE 1.150∗∗∗ -0.402∗∗ - 0.347∗∗ -1.000∗∗∗ -
SE (0.144) (0.181) (-) (0.149) (0.190) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE 1.200∗∗∗ -0.218 -0.002 0.025 -0.862∗∗∗ 0.059
SE (0.175) (0.180) (0.060) (0.180) (0.162) (0.065)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE 1.080∗∗∗ -0.378∗∗ 0.065 0.451∗∗∗ -0.813∗∗∗ -0.059
SE (0.176) (0.177) (0.060) (0.172) (0.158) (0.362)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B2.5: Change in electricity prices $
MMBTU

Industrial sector: Residential sector:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE 0.393 0.521 - 0.193 0.028 -
SE (0.372) (0.403) (-) (0.415) (0.449) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE 1.020∗∗ -0.598∗ 0.020 1.320∗∗ -0.589∗ 0.144
SE (0.498) (0.337) (0.135) (0.583) (0.322) (0.151)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE 2.270∗∗∗ -0.495 0.327∗∗ 2.050∗∗∗ -0.038 -0.256∗

SE (0.511) (0.338) (0.136) (0.583) (0.332) (0.153)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B2.6: Change in electricity demand in the industrial sector kWh
Capita

RGGI Marcellus Placebo

Baseline DD ATE -496∗∗∗ -177 -
SE (122) (178) (-)
N 1050 925 -

Pooled SCM ATE -277∗∗∗ -176 129∗∗

SE (85.6) (174) (60.6)
N 450 200 1650

Eq. Pooled SCM ATE -484∗∗∗ -101 241∗∗∗

SE (84.9) (130) (60.9)
N 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B2.7: Change in CDD and gasoline demand Gallons
CapitaDay

CDD: Gasoline:

RGGI Marcellus Placebo RGGI Marcellus Placebo

Baseline DD ATE 13.700 32.400 - 0.017 -0.048∗∗ -
SE (17.000) (24.600) (-) (0.015) (0.020) (-)
N 1050 925 - 1050 925 -

Pooled SCM ATE -49.300∗∗∗ 25.400 -14.300∗ 0.029 -0.015 0.027∗∗∗

SE (16.900) (15.500) (8.390) (0.018) (0.026) (0.006)
N 450 200 1650 450 200 1650

Eq. Pooled SCM ATE 4.090 43.700∗∗∗ -2.870 -0.008 -0.009 0.002
SE (14.500) (15.400) (8.320) (0.018) (0.026) (0.006)
N 450 200 1650 450 200 1650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B2.8: Weight matrix
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Table B2.9: Weight matrix equal V
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Table B2.10: Individual treatment effects
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Table B2.11: Individual treatment effects equal V
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Variable RGGI Marcellus
Estimate SE Estimate SE

CO2 Intensity -0.009 0.029 0.002 0.039
Coal Generation Share -0.914 3.186 -4.662 4.884
Natural Gas Generation Share 2.711 2.756 9.149 3.794
Nuclear Generation Share -1.877 1.002 0.288 1.306
Renewable Generation Share -0.187 3.010 -4.734 3.846

Coal Capacity per Capita 0.050 0.087 -0.200 0.116
Natural Gas Capacity per Capita 0.113 0.082 0.142 0.102
Coal Capacity Share 0.355 1.770 -2.474 2.325
Natural Gas Capacity Share 4.938 1.855 6.500 2.513
Natural Gas Price 0.146 0.314 -1.355 0.412

Pipeline Export Capacity per Capita -877.118 840.796 3198.282 1279.456
Pipeline Import Capacity per Capita -683.049 847.695 1432.709 1380.741
Natural Gas Price Industry 0.445 0.301 -0.577 0.410
Natural Gas Price Residential 0.069 0.318 -1.075 0.448
Electricity Net Imports per Capita 817.401 707.070 1796.675 870.844

Electricity Price 2.272 0.890 -0.182 0.996
Electricity Consumption per Capita 214.155 501.882 -307.488 669.907
Electricity Price Industry 2.591 0.927 0.133 1.236
Electricity Price Residential 1.168 0.929 0.297 1.221
GDP in Manufacturing per Capita -0.514 0.244 0.004 0.381

Natural Gas Generation Efficiency -2.199 1.497 0.765 1.955
Coal Generation Efficiency -1.975 0.295 -0.325 0.429
Electricity Consumption Industry per Capita 105.436 369.173 -399.772 470.822
Gasoline Consumption per Capita 0.000 0.023 -0.081 0.033
CDD 55.989 23.786 32.148 33.557

Table B2.12: SDID results.
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C1 Additional Tables

Figure C1.1: Energy consumption share of the power sector in selected regions from 1995 to 2020 (International
Energy Agency, 2024a).
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