

 – 1 –

Employing graph neural networks for construction drawing content

recognition

Andrea Carrara, M.Sc.1, Stavros Nousias., PhD.2 , and

André Borrmann, Prof. Dr.-Ing. 3
1 Ph.D. Candidate, Chair of Computational Modeling and Simulation Chair, Technical University

of Munich, e-mail: andrea.carrara@tum.de
2 Ph.D., Chair of Computational Modeling and Simulation Chair, Technical University of Munich,

e-mail: stavros.nousias@tum.de
3 Professor, Chair of Computational Modeling and Simulation Chair, Technical University of

Munich, e-mail: andre.borrmann@tum.de

ABSTRACT

In this paper, we present a novel method for automatically detecting and classifying lines in

technical drawings in PDF format. Our technique includes the processing of technical drawings in

vector format and the appropriate transformation to a graph representation facilitating the

generation of geometric design features. We achieve semantic segmentation at the line level by

leveraging graph neural networks with graph attention layers. The model's efficacy in reading and

classifying the delicate details of technical drawings is improved by optimizing hyperparameters

using Bayesian hyperparameter optimization.

INTRODUCTION

Despite the growing prevalence of Building Information Modeling (BIM), traditional technical

drawings remain the primary mode of communication between architects/engineers and

constructors. For many existing buildings, technical drawings serve as the sole source of geometric

and semantic information. This paper explores leveraging modern AI techniques to make this

content computationally accessible.

In today’s widespread practice, drawings are stored and exchanged via PDF, a standardized

format capable of transporting vector and pixel information. In the proposed approach, we extract

the vector data and reconstruct the semantic information at the line level creating an

interconnectivity graph and using Graph Neural Networks (GNN) to learn the relationship between

the vectors to recover semantic information of the drawing.

Since vectors are resolution-agnostic, achieving a prominent level of precision on the line

elements is the main advantage of using a vector representation directly for semantic segmentation.

In contrast, image-based neural networks face limitations such as fixed dimension patches and

reduced image-patch quality, impacting intra-image relationships.

A crucial problem with complex drawings is that different architectural parts cross over

and overlap with one another. These kinds of intricacies are easily filtered in layered formats, but

they are a major problem in the raw, unprocessed PDF format. In this case, choosing a pixel-based

mailto:andrea.carrara@tum.de
mailto:andrea.carrara@tum.de
mailto:andrea.carrara@tum.de

 – 2 –

methodology would decrease the precision of identifying these overlapping components,

highlighting the necessity of more advanced analytical techniques to preserve accuracy.

In our approach, the geometrical data is extracted for each element and transformed into

graph features. The drawings' vectors are connected by means of spatially inspired rules that

compute geometrical relationships for graph edge feature-based descriptors. The spatial vector

descriptor prepares the data for utilization within the GNN architecture. Specifically, we employ

a Graph Attention-based Network architecture that consists of two layers of graph attention

transformer layers that take as input the feature matrix, the adjacency matrix, and the edge features

matrix to perform semantic segmentations using the message passing mechanism in graphs.

We present experiments using real-world data including well-defined metrics for assessing

the performance of the developed approach.

RELATED WORK

Due to the information's complexities, automated technical drawing analysis is a particularly

complicated task. The intricacy resulting from overlapping elements and symbols, such as text,

measurement lines, and design features, and the ways that the same elements appear within the

drawings, add to this complexity. Initial approaches employed in academic research to tackle these

issues combined rule-based analysis of the drawings with the use of traditional computer vision

techniques (Macé et al. 2010), (Ahmed et al. 2011).

 Afterward, most of the research tackled the problem as a computer vision task of

vectorization and semantic segmentation (Kalervo et al. 2019), (Liu et al. 2017), (Dodge, Xu, &

Stenger 2017).

The attention has recently switched to using graph neural networks (GNNs) for element

detection and segmentation in technical drawings. The authors of "Generalizing Floor Plans Using

Graph Neural Network" (Simonsen et al., 2021) first extract floor plan graphs from CAD

primitives. They classify graph nodes using GNNs to differentiate between doors and non-doors.

to facilitate general room detection in office buildings. The authors show that employing a graph

neural network considerably improves performance over earlier techniques such as those from

Dodge, Xu, & Stenger (2017) or the Faster R-CNN (Girshick, R. 2015) baseline.

Fan et al. 2021 and 2022 propose graph neural networks for panoptic segmentation. In

addition to detecting countable objects like furniture, windows and doors in CAD drawings, these

works seek to establish the semantics of uncountable elements, for instance, walls. The authors

propose a novel algorithm that combines GNNs with CNNs (Convolutional Neural Networks) for

symbol spotting within the dataset.

Furthermore, Zheng et al. (2022) provide a symbol identification method called "GAT-

CADNet: Graph Attention Network for Panoptic Symbol Spotting in CAD Drawings" that

approaches the task as a subgraph search problem and leverages attention layers. However, it

should be noted that while the studies focus on the analysis of line semantics in CAD drawings

 – 3 –

using computer vision techniques, they often overlook the prevalent issue of processing the

technical drawing in the most popular formats.

Even though PDFs are the most often used format for sharing design data, problems related

to their data representation are typically left out of the research. Furthermore, only geometric data

from CAD is fed into the graph, hence excluding the potential of feature engineering using line

geometric comparisons. This oversight points to a big chance for more research and development

on graph neural networks in technical drawings.

METHODOLOGY

Objective. The objective is to automatically classify the elements of the floorplan drawings. The

drawing elements will be categorized into distinct classes: Wall, Filling Material, Opening,

Measurement Element, Symbol, and Other. For the Wall class, we focus exclusively on the external

contours of the architectural feature, while the internal fill material is classified separately. The

Opening class encompasses both doors and windows. Measurement Elements include lines

indicating dimensions and details pertaining to room layouts. Symbols represent various icons

found in technical drawings; in our specific analysis of the technical drawing, these primarily

included icons for ventilation, electrical, and sanitary fixtures. The Other category serves as a

catch-all for elements that do not align with the classes or those that appear only once across all

the segments.

Figure 1. Technical Drawing used for analysis. The black rectangle contains the patches

used for training.

 – 4 –

Figure 2. Diagram of conversion from PDF to SVG format

Conversion to SVG. To analyze the content of the technical drawings we developed a methodical

approach to obtain Scalable Vector Graphics (SVG) patches from Portable Document Format

(PDF) files, allowing for an efficient pipeline for graphics manipulation. The patches are small,

distinct sections of the drawing processed or analyzed separately to improve the performance of

the deep learning model. The initial phase involves the extraction of content from PDF file format

using a PDF library to create different sections. Following the extraction, the patches undergo a

transformation to SVG format for data extraction. In the last step, to ensure uniformity and

editability, vector components found in the previous phase are ungrouped and turned into

geometrical paths. The path is defined as a sequence of commands and attributes, mainly lines and

Bezier curves, to represent complex geometries and shapes; instead of being represented as pixels

each element is represented by the commands to recreate the geometry in the vector space.

The post-processing step is significant because it guarantees a simpler analysis of the

geometric data and simplifies the vector information. The output of PDF-to-SVG converters is

sub-optimal for our purposes, because they typically introduce structural complexities in the XML

format, such as path grouping and matrix multiplications, which hamper the analysis of the vectors.

To overcome this issue, we aim to create plain SVG. To this end, we obtain the plain SVG by

applying matrix multiplication for linear transformation to the pathways. Subsequently, any type

of lines grouping is removed from the data structure to simplify it and make it easier to process in

later stages. It is easier to identify individual elements and their spatial relationships within the

drawing when flat, ungrouped vector data is analyzed. The efficiency of our method depends on

this simplified representation, which establishes the groundwork for the later use of Graph Neural

Networks (GNN) for semantic segmentation.

 – 5 –

The path and attributes data required for the graph-based analysis were extracted from the

post-processed vector data. Each SVG path is converted to a node in the graph and linked to the

neighbors based on the Euclidean distance from the geometrical center of the path. This method is

augmented with a radius search that generates edges according to the path length of the nodes,

generating interconnectivity for lines of the same length. Similarly, a random sample adds edges

to the graph. This ensures that the graph is not only based on geometric proximity but also includes

a diversity of path interactions. The three edge generation methods improve the data structure for

the Graph Neural Network analysis.

Feature engineering. Feature engineering is an important step in our method. For each node, we

create an extensive feature vector that includes normalized coordinates, size of the bounding boxes,

and stylistic attributes (fill, stroke color, and stroke width) of the respective SVG element. This

information provides insight on the geometric and semantic features of each path and is derived

from the SVG style attributes. We additionally compute path closure at different points in area,

length, and curvature along the path. We append to the feature vector the SVG command

information converted to a fixed dimension tensor following the method defined in Carlier et al.

(2020). To fully capture the geometric details of the technical drawing, we compute the edge

interactions between the vectors that constitute the edge feature matrix of the graph. Among the

features evaluated are the Boolean determination of proximity within a given threshold, vector

congruence in length, and the minimum distance between the two pathways. We also assess the

paths' contiguity, intersection sites, and uniformity in SVG properties like color, width, and style.

We also analyze the inverse ratio of their lengths, the proportionality of their lengths, and the

normalized angle between pathways, providing a descriptor of their geometric relationship.

Figure 3. Example of graph from drawing, distinct colors of edges represent a different

type of connection.

 – 6 –

The drawing was segmented into 64 equally proportioned patches, of which 17 were selectively

utilized for training the neural network. This selection process strategically excluded sections of

the drawing that exhibited either a sparse concentration of lines or a redundancy in design patterns.

These patches contain from 100 to 2800 lines each, on average having 950 lines per patch. The

labelling of each training file has been carried out manually using Inkscape and associating each

line in a new layer in the SVG file corresponding to the class predicted by the neural network.

Unlike other datasets (Kalervo et al. 2019), (Liu et al. 2017), (Dodge, Xu, & Stenger 2017), this

training data's main purpose is to use complex representation used in industry standard technical

drawings.

Figure 4. Comparison of labelling between vector labelling and image-based object

detection.

 Graph Neural Network. The graph, enriched with detailed node and edge features, is then

processed using a Graph Neural Network. This network is trained to perform semantic

segmentation on the graph, classifying each path into categories based on the learned relationships.

The graph neural network algorithm learns the patterns in the graph structure and features. To feed

this process, the input data for the deep learning model is formatted specifically for graph-based

analysis. This data consists of a list of nodes with their corresponding attributes, an adjacency

matrix that describes the relationships between nodes, and feature vectors for each matrix that

represent the geometric relationships between nodes.

 The model is composed by a sequence of two blocks of Dropout layer combined with

Graph Attention v2 layers (Brody, Along & Yahav 2021). The Graph Attention Layer updates

 – 7 –

each node's features gathering information from its neighbors. This is weighted by adaptively

learned coefficients, allowing the network to learn to select the most important neighbors

following the formula:

𝐱𝑖
′ = 𝛼𝑖,𝑖𝚽𝑠𝐱𝑖 + ∑ 𝛼𝑖,𝑗𝚽𝑡𝐱𝑗

𝑗∈𝒩(𝑖)

 The node’s feature vector is defined by 𝐱𝑖
′ and this refinement is executed through

aggregation of data from adjacent nodes, employing aggregation weights defined by attention

coefficients.

 Considering a node i with its feature vector 𝐱𝑖
′. The node's intrinsic features undergo a

transformation via a learnable weight matrix 𝚽𝑠 , and are then scaled by its self-attention

coefficient 𝛼𝑖,𝑖 . Parallelly, the feature vectors 𝐱𝑖 of each adjacent node j are altered through a

distinct learnable weight matrix 𝚽𝑡 , and subsequently scaled by the attention coefficient 𝛼𝑖,𝑗 .

 The new feature vector 𝐱𝑖
′ is the result of the joint sum of these modified features together,

including the node and all its neighbors.

𝛼𝑖,𝑗 =
exp(𝐚⊤LeakyReLU(𝚽𝑠𝐱𝑖 + 𝚽𝑡𝐱𝑗 + 𝚽𝑒𝐞𝑖,𝑗))

∑ exp (𝐚⊤LeakyReLU(𝚽𝑠𝐱𝑖 + 𝚽𝑡𝐱𝑘 + 𝚽𝑒𝐞𝑖,𝑘]))
𝑘∈𝒩(𝑖)∪{𝑖}

The degree of influence that every neighbor, including the node itself, has on the updated

feature vector is determined mostly by the attention coefficients. Using the properties of both

nodes, the attention coefficient 𝛼𝑖,𝑗 is inferred for a pair of nodes, i and j. The weight matrices 𝚽𝑠

and 𝚽𝑡of node i and its neighbor j, respectively, initially alter its attributes. To add non-linearity,

these modified features are then combined and passed through a LeakyReLU activation function.

Furthermore, the edge characteristics between nodes i and j are considered by integrating an edge-

specific term 𝚽𝑒𝐞𝑖,𝑘. This combination is translated into a scalar value by a trainable vector a,

which is then exponentiated. Normalizing these exponentiated values across all the node i

neighbors (including i itself) generates the final attention coefficient, which ensures a cumulative

sum of 1.

Bayesian hyperparameter optimization. We perform a Bayesian hyperparameter optimization

(Wu et al. 2019), an optimization technique to obtain the best possible sets of parameters for our

machine learning task. This method converts the task of hyperparameter tuning into an

optimization problem, to find the optimal hyperparameters for the machine learning algorithm. It

uses accuracy results from prior hyperparameter definitions to direct the search and applies Bayes'

rule to predict performance based on hyperparameter combinations, utilizing a substitute model

that represents the probability of performance given the hyperparameters. Based on the predicted

improvement, it selects the next hyperparameters.

 We run the Bayesian optimization iteratively 350 times, defining priorly a custom set for

each individual hyperparameter in the deep learning model and for the optimizer. The objective of

 – 8 –

the optimization is to identify simultaneously the best model and optimizer parameters; the list is

composed of dropout probabilities, epochs, batch size, learning rate, number of input channels of

the first attention layer, weight decay and number of attention heads.

k-fold cross-validation. Given the limited size of our dataset for the extensive time

required for proper labeling, we adopted a complete analysis method involving k-fold cross-

validation. In each iteration of the process, the model is trained on k-1 folds, while the remaining

one-fold serves as the validation (or test) set. This cycle is repeated seventeen times (k), each time

selecting a different fold for validation, ensuring that every data segment is used exactly once as

the test set. We run the cross-validation using the optimal hyperparameters derived from the Bayes

Hyperparameters Optimization experiments.

Results

The linear relationship between a hyperparameter and accuracy is evaluated by correlation, an

increase in the hyperparameter value usually increases the metric and the reverse is true.

Nevertheless, when inputs vary in range (comparing probability and attention heads), it can be

difficult to capture complex interplays between them.

Table 1. Results of the Bayesian hyperparameter optimization sorted by “importance” metric

We compute a significance metric to supplement this. Using the metric as the response variable

and the hyperparameters as predictors, a random forest is trained to achieve this. The feature

important scores from this random forest are then examined, providing insight into the relative

influence.

The most important metrics to optimize are having a low dropout of probability as first

layer of the model, increasing the number of epochs and having a low batch size. From the

importance analysis the number of attention heads had the least influence on the accuracy metric.

We use the optimal parameters from the Bayesian hyperparameter optimization for training

the model.

Given the reduced dimension of the dataset we validate the results with k-fold validation,

in which each patch extracted from the technical drawing is used to test the model and the

remaining patches are used as training data. The model is trained 17 times in this way to validate

the learning capabilities. Qualitative results are presented training the model on all the patches

and predicting unseen patches.

Figure 5 shows results of the trained network prediction in an unseen patch. It is possible,

for example, to predict lines that are hidden beneath another one like the dot in 4.a that for image-

based networks would have been impossible to differentiate.

 – 9 –

Figure 5. Comparison of labelling between vector labelling and image-based object detection.

 Table 2. Results for k-fold-cross validation, k=17

The model demonstrates consistent performance in the line-wise classification task, with

an average accuracy of 0.968, precision of 0.97, recall of 0.968, and an F1 score of 0.967. The

precision, recall, and F1 score metrics are computed by averaging the results across individual

classes. By weighing the accuracies depending on the amounts of nodes per graph, we obtain the

following results for accuracy, precision, recall and F1 score: 0.938, 0.943, 0.937, 0.937.

CONCLUSION

In this paper, we presented a novel method that performs line-level segmentation on a technical

drawing from a construction project. From the PDF drawing, we convert to a standard flat SVG

format and create a graph extracting feature vectors for the drawing lines and edges connectivity

information that connects the elements. We use a deep learning model based on graph attention

transformer layers to perform semantic segmentation, fine-tuning the model parameters through

Bayes hyperparameter optimization. We validate the predictions with k-cross validation, obtaining

a mean accuracy above 0.95. These encouraging outcomes on a smaller dataset set the stage for

future research, where our next objective is to test the method efficacy on larger and more diverse

datasets. Some of the approach's limitations are the computationally intensive requirements for

 – 10 –

graph construction and the time-intensive and detail-oriented demands of dataset labelling. These

factors significantly diminish the scalability of the dataset and the achievement of enhanced

outcomes.

REFERENCES

Simonsen, C. P., Thiesson, F. M., Philipsen, M. P., & Moeslund, T. B. (2021). Generalizing floor plans using

graph neural networks. In 2021 IEEE International Conference on Image Processing (ICIP) (pp. 654-

658). IEEE.

Dodge, S., Xu, J., & Stenger, B. (2017). Parsing floor plan images. In Proceedings of the Fifteenth IAPR

International Conference on Machine Vision Applications (MVA) (pp. 358-361). IEEE.

Macé, S., Locteau, H., Valveny, E., & Tabbone, S. (2010). A system to detect rooms in architectural floor

plan images. In Proceedings of the 9th IAPR International Workshop on Document Analysis

Systems (pp. 167-174).

Ahmed, S., Liwicki, M., Weber, M., & Dengel, A. (2011). Improved automatic analysis of architectural floor

plans. In 2011 International conference on document analysis and recognition (pp. 864-869). IEEE.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision

(pp. 1440-1448).

Fan, Z., Zhu, L., Li, H., Chen, X., Zhu, S., & Tan, P. (2021). Floorplancad: A large-scale CAD drawing dataset

for panoptic symbol spotting. In Proceedings of the IEEE/CVF International Conference on

Computer Vision (pp. 10128-10137).

Fan, Z., Chen, T., Wang, P., & Wang, Z. (2022). Cadtransformer: Panoptic symbol spotting transformer for

CAD drawings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp. 10986-10996).

Zheng, Z., Li, J., Zhu, L., Li, H., Petzold, F., & Tan, P. (2022). GAT-CADNet: Graph attention network for

panoptic symbol spotting in CAD drawings. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (pp. 11747-11756).

Carlier, A., Danelljan, M., Alahi, A., & Timofte, R. (2020). Deepsvg: A hierarchical generative network for

vector graphics animation. Advances in Neural Information Processing Systems, 33, 16351-16361.

Kalervo, A., Ylioinas, J., Häikiö, M., Karhu, A., Kannala, J. (2019). CubiCasa5K: A Dataset and an Improved

Multi-task Model for Floorplan Image Analysis. In: Felsberg, M., Forssén, PE., Sintorn, IM., Unger,

J. (eds) Image Analysis. SCIA 2019. Lecture Notes in Computer Science(), vol 11482. Springer,

Cham. https://doi.org/10.1007/978-3-030-20205-7_3

Liu, C., Wu, J., Kohli, P., & Furukawa, Y. (2017). Raster-to-vector: Revisiting floorplan transformation. In

Proceedings of the IEEE International Conference on Computer Vision (pp. 2195-2203).

Brody, S., Alon, U., & Yahav, E. (2021). How attentive are graph attention networks?. arXiv preprint

arXiv:2105.14491.

Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter optimization for

machine learning models based on Bayesian optimization. Journal of Electronic Science and

Technology, 17(1), 26-40.

