
1 INTRODUCTION 
 
Managing large-scale construction projects has be-
come progressively complex, with surging demand 
in the construction sector and an ever-increasing 
number of guidelines, regulations, and building 
codes. Developing potential design options compli-
ant with all boundary conditions has so far been the 
task of engineers and architects, who do a majority 
of the work of manually developing the design while 
achieving regulation compliance. Engineers develop 
a potential design solution in today's design work-
flows and run various simulations and checks to val-
idate their draft against given criteria. If deficiencies 
are detected, the design is modified and fed into the 
entire checking pipeline again. Yet, the automation 
of these tasks promises a significant reduction in 
cost and overhead. 
The question of what approach should be chosen to 
achieve this algorithmic design is crucial. On the one 
hand, usable and recognizable structures that satisfy 
all requirements must be created. On the other hand, 
having an algorithm that explores all viable alterna-
tives within the realm of possibility during the plan-
ning process helps to single out designs that best suit 
the project's particular needs. However, its operation 
may be overwhelming for an end user. Graph rewrit-
ing systems (GRS) as a method of capturing and ap-
plying changes to a model have recently been ex-
plored (Vilgertshofer, 2022; Vilgertshofer, 2017) 
and provide the consistency mentioned above. 
While partial automation of the work necessary to 
produce the designs can help tremendously (Preidel, 
2020; Abualdenien et al., 2021), a complete algo-
rithm that not only aids the engineer/architect during 
planning but actively develops the designs by itself 
has yet to be achieved. Here, it is crucial to find a 

suitable balance between full-scale automation that 
may take on a larger set of tasks on the one hand and 
providing appropriate interfaces for the user to mod-
ify the design process on the other. “Black-Box” ap-
proaches that leave no option to influence the result 
or tune the behavior is generally undesirable due to 
decreased possibilities exposed to the user. There-
fore, this paper focuses on applying a graph rewrit-
ing system to encapsulate and apply engineering 
knowledge by representing it with the help of rewrit-
ing rules. In more detail, we explore if and how de-
sign procedures facilitating modular design of high-
rise precast structures can be represented and exe-
cuted upon with the help of graph rewriting rules. 
Additionally, the paper explores the conjunction of 
the rewriting system with a process model, which 
controls the application sequence of rules to achieve 
a desired construction layout. 

2 RELATED WORK 

2.1 Precast structures 

Precast structures use concrete modules cast in ad-
vance off-site and installed on-site without the need 
for any in-situ concreting. Modules reduce costs and 
overhead, especially during construction, and allow 
for the modules' adaptability. This is because of the 
more precise fabrication of modules in conditions 
independent of weather. Much research on precast 
structures is being conducted today (Chen et al., 
2024; Auer et al., 2023). The main disadvantage is 
knowing the precise dimensions and characteristics 
of the modules in advance, which is why a method is 
necessary to consistently determine these properties. 
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2.2 Graphs  

Many researchers have already explored the use of 
graph systems to represent design information in the 
Architecture, Engineering, and Construction (AEC) 
sector (Kolbeck et al., 2022). Generally, graphs are 
constructs consisting of vertices and edges that con-
nect said vertices (Diestel, 1996), with any intercon-
nected subset of the edges and vertices being called 
a subgraph. The interconnective nature of graphs al-
lows them to represent complex, interconnected in-
formation. 
Depending on the system chosen for storing and in-
teracting with such graphs, vertices and edges can be 
labeled, providing context information for the spe-
cific item. The vertices and edges can also carry ad-
ditional properties that specify the object or relation-
ship. A graph adhering to these concepts can also be 
called a Labeled Property Graph (LPG). To describe 
objects within the design of a built asset, it is crucial 
to be able to append further information to the verti-
ces. 
Graphs are powerful structures that can represent the 
relationships between entities and methods for mod-
eling the topology of geometric objects and finding 
patterns and subgraphs (Diestel, 1996). In conjunc-
tion with the semantics of LPGs, these capabilities 
provide the groundwork for modeling and represent-
ing the building model for our approach.  

2.3 Graph rewriting 

Algorithmic or automated design relies on being 
able to make certain changes to the design at certain 
stages of the design process. Graph rewriting pro-
vides such a method, originating from formal gram-
mar. Essentially, graph rewriting relies on the defini-
tion of rewriting rules (sometimes called 
transformation rules) that can delete, modify, and 
add vertices and edges to a graph. These rules are, at 
their core, defined by their left-hand-side (LHS) and 
their right-hand-side (RHS) (Rozenberg, 1997), as 
seen in Fig. 1. The LHS is a graph pattern that is 
searched for in the main graph. Should a matching 
subgraph be found, it is replaced with the RHS of 
the rewriting rule. Once this has happened, the re-
writing process is complete.  

 

 
Figure 1. An example of a graph rewriting rule. The LHS is 

matched in the main graph and is then replaced by the RHS. 

 

Critical here is the LHS with its graph pattern. It al-
lows us to precisely define the necessary context in 
which the change is supposed to happen. This pat-
tern matching allows us to ensure that changes only 
happen in specific parts of the model and conse-
quently encapsulate engineering and design 
knowledge (Vilgertshofer, 2022). Just as an engineer 
knows that a column needs a foundation (or some-
thing structurally similar) to stand on, a rewriting 
rule can be defined that expresses this fact. 
The usability of graph rewriting techniques in engi-
neering domains has already been greatly re-
searched, not only in the AEC domain (Campbell, 
2009; Sangelkar & McAdams, 2017; Wang et al., 
2020). A relevant selection will be explained in fur-
ther detail in the next subsection. 

2.4 Graphs and their applications to describe 
geometric shapes of built structures 

Various research has been conducted in the scope of 
graph rewriting rules that modify geometric repre-
sentations. Tessmann & Rossi (2019) introduced a 
method using modular units and topological inter-
locking to create structures. Their approach, imple-
mented through a Grasshopper plugin called WASP, 
aggregates parts by aligning them to constrain all 
degrees of freedom, enabling load-bearing capabili-
ties. This combinatorial design process sequentially 
combines basic parts into discrete assemblies, trans-
forming objects so their interface planes face each 
other. The method employs explicit sequence de-
scriptions, stochastic procedures, or gradient field-
driven aggregations to arrange parts. This approach 
yields reversible joint modular assemblies, challeng-
ing conventional parametric design by offering a 
more sequential workflow where instructions are 
continuously executed until achieving the desired 
form. 
Vilgertshofer & Borrmann (2017) utilize graph re-
writing rules to automate infrastructure project plan-
ning across multiple levels of detail (LoD). Different 
LoDs are employed in various planning stages and 
domains. To streamline changes across LoDs, they 
use the GrGen.NET framework to consistently apply 
modifications. Challenges include the complex and 
error-prone manual definition of dependencies be-
tween models within conventional parametric envi-
ronments (Vilgertshofer & Borrmann, 2017). Addi-
tionally, graph systems enable the independent 
representation of engineering knowledge regardless 
of CAD systems. 
Kolbeck et al. (2023) investigate the application of 
graph systems for modular bridge structures, focus-
ing on adaptable precast modules to enhance scale 
effects and mass customization for optimized pro-
duction and planning. Unlike the approach discussed 
here, they utilize graph transformation directly, by-
passing the need for rewriting rules. Changes in pa-



rameters are translated into graph transformations 
via a steering sketch, resembling conventional para-
metric modeling within a graph system framework. 
The authors suggest the feasibility of adapting graph 
grammar for their approach in future work.  
Esser et al. (2022) advocate for graph-based systems 
and graph rewriting to perform version control of 
Building Information Models (BIM) models based 
on their underlying object structures. They propose 
the interaction with BIM data represented in the IFC 
data model as a graph, allowing model changes to be 
reflected through graph alterations. By converting 
the file-based model representations into graphs be-
fore and after modifications, differences between 
both versions are analyzed to generate incremental 
patches. Like graph rewriting rules, these patches fa-
cilitate an asynchronous cooperative workflow ra-
ther than jointly collaborating in a central model ac-
cessible to all project stakeholders. This approach is 
particularly beneficial for large-scale projects in-
volving multiple contractors in the planning process 
and showcases the strengths of representing building 
models with a graph. 
Abualdenien & Borrmann (2021) utilize a Paramet-
ric Building Graph (PBG) to identify patterns in 
BIM models for potential application across pro-
jects. Objects, relationships, and contextual infor-
mation within a BIM authoring tool are captured to 
create rewriting/transformation rules. This enables 
the transformation of different projects into graph 
representations, facilitating pattern matching and 
deployment of architectural and engineering detail 
knowledge between projects. They highlight the sig-
nificant cost and performance impact of successfully 
transferring detailing changes from one model to an-
other.   

2.5 Research Gap 

The use of graph systems in the AEC domain has 
clearly identifiable advantages, as the previously 
mentioned scientific publications have detailed. The 
plethora of use cases enabled by the graph represen-
tations, graph rewriting, and transformations articu-
late the flexibility, interoperability, and scalability of 
using such systems.  
Tessmann & Rossi (2019) explicitly used interface-
based rewriting rules to algorithmically create their 
aggregations. Their methods of managing which and 
when rewriting rules are applied partially relied on 
explicit sequence definitions, meaning that the order 
in which the rules are to be applied is explicitly 
specified. Capturing and representing design proce-
dures in this manner has thus already been demon-
strated. Yet, their method does not allow for detailed 
control of intermediary and final results, i.e., the 
specification of fundamental parameters such as the 

number of levels or plot outline. This paper explores 
this method further by wrapping the sequence defini-
tions within a process model that regulates the flow 
of the rewriting algorithm and provides the ability to 
directly modify assembled components. This way, 
the fulfillment of necessary conditions can be en-
sured with greater reliability.  

3 METHOD 

Fig. 2 illustrates the overall approach. Structures can 

be created by the sequential application of transfor-

mation rules based on a predefined set of compo-

nents, rule definitions, and a process model. Our ap-

proach aims to result in an algorithm that can 

reliably and consistently produce models of built 

structures based on user-defined parameters. This is 

achieved by defining a component library with geo-

metric parameters and their respective connecting 

interfaces. Based on this library, a catalog of rewrit-

ing rules is created that specifies how the individual 

components assemble. The component library and 

the rule catalog are wrapped inside an algorithm fol-

lowing a process model where the start state is set; 

rule sequences are defined and executed upon. Final-

ly, the graph is interpreted to be read as a fully real-

ized 3D model. 

3.1 Component libraries 

Fundamentally, components are used as the core 
building blocks of the design. Since this approach is 
embedded within the context of modular precast 
structures, such basic components are suitable for 
defining the structure's modules. The used compo-
nents can be seen in Fig. 3: 

 
Figure 3. The component library consisting of a foundation, 

column, beam, and deck. Each component also carries geomet-

ric parameters as well as connecting surfaces (interfaces).  

 



 

Figure 2. General overview of the approach.  

 

The components include the necessary geometric in-

formation as well as geometric parameters that in-

fluence the dimensions of a component, such as 

length, width, and thickness. Furthermore, connec-

tion interfaces are defined for each of the compo-

nents that indicate surfaces to which other compo-

nents can connect, akin to what Tessmann & Rossi 

(2019) have done. A foundation, for example, may 

have its top surface defined as an interface where 

other components connect (such as a column) and so 

forth. For this approach, a small library of four parts 

was chosen to simplify the process and implementa-

tion as a whole. The selection of components still al-

lows us to create basic structures, as can be seen in 

Fig. 4: 

 

 
Figure 4. A basic modular structure made using the component 

library above (Fig. 3)  

3.2 Graph representation 

 

This approach uses an LPG to represent the various 

components and their connections with each other. 

Considering a structure like the one in Fig. 5, we can 

describe it through the means of a graph by creating 

a node for each component (e.g., for a column) and 

establishing relationships between the 

nodes/components that interface with each other for 

example, the column that stands on a foundation. A 

visualization of the graph representing the structure 

in Fig. 5 can be seen in Fig. 6. 

 

 
 

Figure 5. A simple structure consisting of two foundations, two 

columns, and a beam. 



 

 
Figure 6. The previous structure represented by a graph. The 

beam (B) is connected to two columns (C), which are each 

connected to a foundation (F). All relationships carry the label 

‘supports’. 

 
Semantically, the relationships between the nodes 
(or the components they represent) are labeled with 
‘supports’, indicating their structural dependency.  
Modular components within a model are suitable for 
being represented by nodes since their properties, 
such as their geometry and connectivity, can be ac-
curately depicted by nodes inside an LPG. As men-
tioned earlier, this approach also uses a component 
library for the modules, defining the amount and na-
ture of each component's interfaces. As previously 
discussed, the possible connections of a component 
were broken down into a certain number of specific 
interfaces. This allows us to model the graph’s struc-
ture more granularly by also representing these inter-
faces with their own nodes. While a component’s 
connection at its core is defined by the two compo-
nents it connects, we can modify that definition by 
postulating that the interfaces are connected to each 
other and that each interface can only be connected 
to one, and exactly, one other interface. The inter-
faces are a core part of the component and thus, the 
node. This definition of a connection between two 
components ensures that the type of connection is 
always known (since it is tied to a specific inter-
face). Since this changes the schema of our graph, an 
updated visualization can be seen in Fig. 7. 
Here, the additional nodes represent the interfaces of 
the components. Columns and foundations do not 
have a direct connection to each other but are indi-
rectly linked via their interfaces, the same as the 
beam. This way of increasing the granularity of the 
model and its graph representation allows us to 
make a more accurate description. Finding out 
which interfaces of a component are open or closed 
is easily done. It also offers us the groundwork to 
consistently and reliably apply changes to the graph 
by employing graph rewriting techniques. 
 

 
Figure 7. Two foundations (F1, F2) each connected with a col-

umn (C1, C2) via their respective interfaces (F1_IF, F2_IF, 

C1_IF, C2_IF). The connection from the columns to the beam 

(B, B_IF1/2) is analogous. 

3.3 Graph rewriting as a method of 
incrementally applying changes to the graph 

This approach makes use of graph rewriting as the 
primary technique to change the graph and, conse-
quently, the model. To address the previously men-
tioned fact that rewriting rules can encapsulate engi-
neering knowledge, let us look at the simple 
example in Fig. 8. 
When wanting to add a column to the model, the 
graph also changes accordingly. This can be ex-
pressed as a rewriting rule that precisely defines that 
a column interface with its respective column node 
should be added to an open interface of a founda-
tion. This rule is visualized in Fig. 9. This way, it 
can be ensured that a column may only connect to a 
foundation when this rule is applied. Further defin-
ing rules to include all possible connections the 
components can make, leads to a rule catalog that 
can express any possible design decision at any part 
of the project.  
 



 
Figure 8. A graph representation of the model only containing 

a foundation (and its interface), as well as a graph representa-

tion of a model also containing a column. 

 
This flexibility, consistency, and granularity of re-
writing systems make them a strong candidate for 
the basis of automated design and form the founda-
tion for this approach. With enough correctly de-
fined transformation rules that describe the engineer-
ing knowledge to an adequate degree, the 
groundwork for incrementally applying changes to a 
model is laid out. Yet, while useful as a unit of 
change, the rules themselves still need a framework 
that controls what rule is applied at which point dur-
ing the process. 

 
Figure 9. A rewriting rule that specifies a column (C) being 

added to a foundation (F) via their interfaces (C_IF, F_IF) 

 

3.4 Process modeling  

An explicit definition of the sequences in which the 
rewriting rules are applied is necessary to provide a 
method for users to interact with and understand the 
algorithm and ensure that the context for specific 

rules exists at a given point during the design pro-
cess. A subdivision of the design process into small-
er, more manageable parts can be achieved using a 
process model: Given a certain start state of the de-
sign (or start symbol to speak in graph terms), we 
can aggregate rule applications into packages that 
encapsulate certain steps during the design, as seen 
in Fig. 10:  
 

 
Figure 10. The process model begins with a defined start state 

and proceeds to process the various design phases. Design 

phases may loop, such as when more columns are placed upon 

the deck after it has been added to the model. 

 
For example, given a start state of four foundations 
in the model, placing a column on each can be ag-
gregated into one. This, in turn, provides us with the 
rule application sequence that takes place during this 
design phase. The placement of beams on these col-
umns, as well as the deck on top of those, can also 
be aggregated into these design phases. Since the 
placement of the beams using rewriting rules neces-
sitates columns with open interfaces, it is advisable 
to locate this design phase after the columns have 
been placed.  
Furthermore, encapsulating these steps gives us the 
ability to directly specify the components’ parame-
ters that we have defined in the library, all at once. 
For example, if the height of the first floor is sup-
posed to be 3 meters, the height parameters of all 
columns placed during their respective design phase 
can be set to 3 meters. This allows for greater con-
trol over the intermediary as well as the final results 
of the model, specifically to satisfy various geomet-
rical conditions. The process model also gives us a 
structure in which the start state can be easily de-
fined and set according to the user's wishes, e.g., a 
certain number of foundations. 

3.5 Geometrical and topological conditions 

Graphs, at their core, are purely topological con-
structs. This, in turn, means that rewriting rules only 
specify the topological context in which they can be 
applied. A rewriting rule may specify that a beam 
needs two columns, each with open interfaces to be 
placed. If successful, the resulting graph contains 
just that: A beam connected to two columns via its 
interfaces. Yet, one crucial condition has so far been 



ignored: The beam needs to have the correct length 
to be supported by the columns. A rewriting rule 
cannot explicitly articulate this since it only con-
cerns topological conditions. The geometrical condi-
tions need to be taken care of differently.  
During each design phase, the parameters of the 
components can be set to a specific value. By calcu-
lating the correct value in advance (pre-processing), 
the geometric condition can also be satisfied, with 
the beam having the correct length. 

3.6 Graph interpretation and conversion 

Once the various design phases have been processed 
and the final graph is finished, it needs to be inter-
preted and converted to a model. The model should 
contain the entire geometry of the placed compo-
nents as well as the information concerning the con-
nections between them. The latter is easily retrieved 
by investigating the relationships between the nodes 
inside the graph. If two interfaces share a relation-
ship they are connected. As for geometry, there are a 
multitude of ways to store it and retrieve it from the 
graph. Geometric representations carry a significant 
amount of complexity, and they could be represent-
ed by an entire subgraph attached to the node of a 
specific component. Alternatively, the node can 
store a reference to the geometric information that 
describes the component. This can, for example, be 
stored and manipulated inside its own geometric sys-
tem, such as a CAD program. This way, the modifi-
cation of the components’ geometry is offloaded to a 
different system so that the graph system only needs 
to consider the fulfillment of geometric conditions 
instead of the actual manipulation.  

4 PROTOTYPICAL IMPLEMENTATION 

To assert the viability of this approach, an imple-
mentation was developed using Rhino 7, Grasshop-
per, and the programming environment Microsoft 
.NET. Grasshopper and Rhino provide the necessary 
methods of visualizing, storing, and manipulating 
the model's geometries. Rhino offers an external 
compute library that can interface directly with 
.NET so that geometrical modifications can be made 
directly inside the program. At the same time, 
Grasshopper provides a visual computing language 
with which it is simple to create parametric geome-
tries and store them inside Grasshopper files. Grass-
hopper also defines the connecting surfaces of the 
components which are later used as interfaces.  
The program itself was developed using C# and 
.NET, with self-implemented classes representing 
the graph, nodes, and the process model. Inside the 
program, the rule catalog is defined, followed by the 
definition of the start state and the various design 
phases. Here, the various design phases are defined, 

each with a specific rule sequence as well as pa-
rameter setting. In the beam installation phase, for 
example, the rule of adding a beam to two columns 
is set to be executed a certain number of times, fol-
lowed by setting the length parameter accordingly. 
This is done for all phases, after which the rewriting 
process begins. Each phase is executed successively, 
with the rewriting algorithm being invoked accord-
ing to the rule sequence defined within. At the same 
time, the geometric parameters are changed within 
the grasshopper module. The graph can be converted 
to a model at the end of each phase, to check for 
consistency and errors.  
 

 
Figure 12. Overview of the algorithm. The rules and the start 

state are defined with the site parameters (plot size, etc.) and 

the grasshopper files (component definition). After parameters 

and rule sequences have been defined, the algorithm processes 

every design phase until there are none left. At this point, it in-

terprets the graph and converts it to a 3D model. 

5 RESULTS AND LIMITATIONS 

The implementation successfully produces simple 
yet recognizable and usable structures. The process 
model, which provides control over geometric pa-
rameters and the applied rules, contributes the nec-
essary framework so that the approach remains 
transparent and governable. A few resulting models 
of the algorithm can be seen in Fig. 13 below. 

 
Figure 13. Various example resulting models of the algorithm. 

With different plot dimensions, number of levels, and fields. 

The red lines between the components indicate an established 

connection. 

 



As for the limitations, the achieved geometric struc-
tures are of a low degree of detail. Issues may arise 
when especially the connections between the com-
ponents become more detailed. The geometric con-
ditions that need to be fulfilled for a proper joint, in-
cluding bolts and more, may become increasingly 
difficult to manage with the approach of pre-
processing the component's geometry. In general, 
the pre-processing step, while useful at first glance, 
does not fully describe the conditional geometric re-
lationship between the components. To briefly de-
scribe an alternative approach, one could define the 
parameter implicitly as opposed to imperatively: In-
stead of calculating the length of a beam in advance 
and then setting it accordingly, one could define the 
length of a beam to always be the same distance as 
the distance of the two columns it is supported by. 
This kind of condition could be expressed by predi-
cates and directives, a concept belonging to the sort-
al grammars (Stouffs, 2019), that can describe non-
topological conditions that have to be met on either 
side of the rewriting rule. 

6 CONCLUSION AND FINAL THOUGHTS 

Graph rewriting techniques have proven that they 
are a powerful method of expressing and applying 
changes to a model. Yet, exploring methods on how 
to best implement them for automation purposes in 
construction has shown that while they are useful as 
a unit of change/modification, a framework in which 
they are applied in a controlled and consistent man-
ner is necessary to achieve desirable outcomes, in 
this case, usable structures. At the same time, 
though, this framework also provides an interface 
for the user to directly influence the algorithm and 
maintain transparency and control over the final re-
sult, thus preventing a ‘black box’ with no transpar-
ency for the end-user.  
For precast and prebuilt structures the approach 
seems especially promising since modular architec-
ture is well suited to be represented by graphs, while 
their construction phases are easily represented by 
rewriting rules. Further development of this kind of 
approach may have significant implications for the 
prebuilt construction sector. 
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