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ABSTRACT:

Monitoring volcanic deformations allows us to track dynamic states of a volcano and to know where an eruptions could happen.
Spaceborne Synthetic Aperture Radar (SAR) and SAR interferometry (InSAR) techniques created an opportunity to track volcanoes
globally, even in inaccessible regions without ground measuring stations.This paper proposes a convolutional neural network (CNN)
for detection of volcanic deformations in InSAR velocity maps. We had only a small amount of velocity maps over the region of
central South American Andes, therefore the synthetic data are used to train the model from scratch. In the region of interest, the
velocity maps contain the patterns of salt lakes and slope induced signal which confuse CNN models trained on synthetic data.In
order to bridge the gap between the synthetic and real data, the hybrid synthetic-real data set is used for fine-tuning the model.
The hybrid set consists of the real background signal data and synthetic volcanic data. Four fine-tuning sets which were created by
different combinations of the original hybrid data, the filtered hybrid data, and simulated data have been used and compared with
each other. Besides, we compared four fine-tuning approaches to determine where and how to fine-tune the model. Results show
significant improvement in performance by majority of the approaches, and training the last or last two layers have given the best
results. In addition, using the FT1 (containing only hybrid set), and FT4 (containing all sets) improved the area under the curve
receiver operating characteristic (AUC ROC) from 55% to 86% and 88% respectively.

1. INTRODUCTION

The movement of the ground has been tracked for centuries,
often motivated by disaster prediction or mitigation of big cata-
clysmic events like earthquakes, volcanic eruptions or explo-
sions. Today we have sophisticated devices to follow such
events on the ground. Since relatively recently, we are able
to track such events from space using Synthetic Aperture Radar
Interferometry (InSAR) which enables us to track geophysical
events happening on the global level, even in regions without
ground stations. With this useful tool, time series processing
approaches like persistent scatterers interferometry (Ferretti et
al., 2000, Adam et al., 2003), allow even to detect millimeter
scale deformations with confidence.

With the rising number of spaceborne Synthetic Aperture Radar
(SAR) satellites, the data are constantly produced to approach
the idea of near-real-time Earth monitoring. To evaluate this
large amount of data in a timely manner, an automatic way of
detecting the signals is essential. Deep learning (DL) models,
which have been widely used for target detection, could be used
for checking the data and flagging it as deforming, or in ex-
treme cases sending early warnings. To this end, DL models
need to be trained on a significant data set that is large both in
number and variance. Since there is not much recorded data of
rare geophysical events like volcanic eruptions or earthquakes,
such a reliable and accurate automated model is challenging to
achieve.

In the field of DL for SAR volcanic deformations detection,
research is focusing on the detection of short and long-term
deformations. In (Anantrasirichai et al., 2018) it is demon-
strated that short-term large-scale volcanic deformations can be
∗ Corresponding author

detected using Alexnet architecture. Further, in (Anantrasiri-
chai et al., 2019b) the authors show that additional performance
can be extracted by using simulations for training the model.
(Valade et al., 2019) developed a complete multi-sensor sys-
tem for tracking the volcanic activity, among which Sentinel-1
is used for deformation detection using interferograms and a
CNNs. The architecture based on VGG16 was developed to
perform classification and detection tasks at the same time in
(Gaddes et al., 2021). The multiple combinations of input data
were also compared and wrapped data in all three channels gave
the best performance. The self-supervised techniques have been
utilized in (Bountos et al., 2021) in order to improve perform-
ance and robustness of the classification model.

The long term deformation detection using the time series gen-
erally focused on filtering the transient noise, and increasing
the signal-to-noise ratio (SNR). In (Gaddes et al., 2018), it is
done by separating independent components using Independent
Component Analysis (ICA) algorithm, and in (Gaddes et al.,
2019) the results are improved by developing the ICASAR al-
gorithm . An overwrapping approach has been tested in (Anan-
trasirichai et al., 2019a), in order to improve the sensitivity of
the model and to detect smaller deformations. There has also
been experiments using simulation data in (Sun et al., 2020) to
train an encoder-decoder architecture to tackle this task.

To the best of our knowledge, we are the first to utilize velocity
maps for long-term automatic detection of volcanic deforma-
tions. Velocity maps are created using a large interferometric
stack and processing them using persistent scatterers (Crosetto
et al., 2016) or distributed scatterers (Even and Schulz, 2018),
thus preserving high temporal stability and extracting the subtle
motions throughout the time period the data were obtained. The
product of these approaches is a velocity map, which shows
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the deformations in time [cm/year] during observation, able
to detect even orders of magnitude smaller deformations than
interferogram pairs (Parizzi et al., 2019). In this paper, the
state of the art method was used to reduce the error to mm
level, called Eigendecomposition-based Maximum-likelihood-
estimator of Interferometric phase (EMI) (Ansari et al., 2019).

The usage of velocity maps results in a smaller amount of data
as well as training samples, which makes the training of a DL
model more challenging. In the velocity maps most of the at-
mospheric phase screen (APS) is removed and the visibility of
subtle deformations on the surface is increased. These region
and data specific subtle deformations, of salt lakes and slope in-
duced signal, have not been accounted in previous work. These
patterns create a gap between the simulations and real data.

In this paper we propose an approach to train a DL model for
the detection of subtle volcanic deformations in a specific re-
gion of central South American Andes. The goal of the model
is to mark the images containing the patterns of volcanic de-
formations, and it is intended to be used in pipeline, flagging
volcanic deformations for later expert in-depth analysis. The
main challenge in training such a model arises from extremely
limited data, known as few shot learning problem. No real vol-
canic data can be used for training the models. To solve the
problem of little training data, the synthetic data sets of the re-
sidual atmospheric noise and volcanic deformations are created.
Residual atmospheric noise is simulated according to the Monte
Carlo approach (Gaddes et al., 2018), using the values extracted
from the modeled variograms of the real data interferograms.
The volcanic deformation simulations were created using com-
pound dislocation models (Nikkhoo et al., 2016).

The second encountered challenge arises from the low intensity
of volcanic deformations in the region and region-specific pat-
terns observed in long-term velocity maps. Even though the ve-
locity map processing almost eliminates the APS, the salt lakes
and slope-induced signal in this region constitute the noise that
the model needs to learn to handle. These patterns can confuse
the model which does not account for them, with their similar-
ity to volcanoes in patterns and intensity. The region and the
specific patterns can be seen in Figure 1. A fine-tuning step
using hybrid real-synthetic data are suggested in this work as
a solution for bridging the gap between the synthetic training
data and real data. Four different approaches of fine-tuning the
model and four approaches to creating the fine-tuning set are
applied on the model trained on synthetic data, and are tested
and compared.

2. DATA

2.1 Real data

The data used to test the models is based on Sentinel-1 SAR im-
agery obtained from 2014 to 2020 over South American central
Andes. The data are corrected for solid Earth tide, tropospheric
and ionospheric delay and preprocessed into velocity maps with
temporal baseline of 4.5-5.5 years based on about 160 time
series images per frame. The velocity maps were transformed
to cumulative deformations over the experimental period and
wrapped using the Sentinel-1 wavelength: ∼ 5.546 cm. The
scale of cumulative volcanic deformations is 2-9 cm over the
period of about 5 years, or about 0.4 - 1.8 cm/year.

The data are further cut into frames centered on known volca-
noes in the region. Frames had a size of 102.4 km by 102.4 km

and a resolution of 512 by 512 pixels, effectively giving spatial
resolution of 200m per pixel. The data are preselected to not
have more than 5% missing values. This resulted in 31 frames
centered over 24 different volcanoes and covering ∼ 46 volca-
noes in the region.

Since 512 pix images are too large to feed to CNN models, the
frames are patched into 256 by 256 pix, with step of 64 pixels,
meaning that there was 75% overlap between the patches. The
overlap is beneficial since the volcanoes can be of large size
and they need to be completely contained in a single patch for
detection because simulated training data does not account for
partial detection. The set created this way totaled 775 images.

This amount of data were limited and had highly imbalanced
classes with/without volcanic deformations. The patches with
present volcanic deformations are scarce and could not be
spared for training. This set is kept for final testing only.

2.2 Simulated data

To train the model, synthetic data were needed. The synthetic
data set is created to have equal part samples with volcanic de-
formations (deformation class) and without volcanic deforma-
tions (non deformation class). Residual atmospheric noise is
used in both classes as basis, but has been separately simulated
for ascending and descending track. Depending on the time
when the satellites of orbit arrive to the observed location, the
charge in the atmosphere changes (?). Over the observed re-
gion descending track arrived at time with less charge, giving
lower noise (4.6025±0.1719mm cumulative deformation over
5 years) than ascending tracks (8.299± 1.9365mm).

A side experiment showed the models making spurious correl-
ations and thus giving lower performance, if a fraction of the
volcanic deformation samples were obscured by atmospheric
noise. Therefore this possibility was excluded by making vol-
canic deformations larger than µ + 3σ of atmospheric noise.
23631 simulations of diverse volumetric source models cor-
responding to sill, dyke, pipe and other volcanic deformations
were created ranging in scale from 1.5 cm for ascending track
and 0.6 cm for descending track to 10 cm using compound dis-
location models (Nikkhoo et al., 2016). The simulations have
spatial extent of 51.2 km by 51.2 km, and spatial resolution of
200m, same as real data. The volcanic deformations were po-
sitioned at the center of the images. Because of overlapping
patching, position of volcano in the image should not matter,
but the model will not be trained for partial detections.

Since real data is corrected for tropospheric and ionsopheric
delays, assumption is made that stratified atmosphere (Gaddes
et al., 2018) is eliminated, and only residual turbulent atmo-
sphere needs simulation. The generation of residual atmo-
spheric noise was done using Monte Carlo approach from
(Gaddes et al., 2018), according to the extracted paramet-
ers from ∼ 10000 variograms calculated from the collected
Sentinel-1 data. The simulated atmospheric noise has been
separately generated for ascending and descending track as
the noise has significantly different intensity depending on the
track. With respect to volcanic deformation simulations the
double amount of residual atmospheric noise simulations have
been generated. Half to be used in deformation class and half
to use for non deformation class.

After the simulation data were created it needed to be projected
along appropriate satellites lines of sight. Each set of 47,262
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Figure 1. The region of interest in the central South American Andes with marked out locations of volcanoes and positions of the
frames used in the real test set. On the right are visible the patterns of salt lakes and slope induced signal which have been encountered

in the velocity map data.

samples, half with volcanic deformation and half without has
been projected using the one set of the extracted parameters.
The parameters were extracted from all of the used real data
frames. 7 sets of LOS parameters (east, north, and vertical dis-
placement components) were selected, 2 sets of ascending and
5 of descending tracks. To project the simulated data into these
7 sets of LOS parameters, for each set of parameters an inde-
pendently simulated set of data were created, totaling 330,834
samples.

This simulated data are used to train the convolutional neural
network (CNN) from scratch. The training set is created by
random selection of 90% of data, or 297,752 samples, and 10%
or 33,082 samples for the validation. Two examples in synthetic
set are shown in Figure 2.

3. METHODOLOGY

We use deep learning for binary classification to detect volcanic
deformation pattern in velocity maps. The expected output is a
probability that a patch is containing volcanic deformations. To
train such a model, usually a training set with large number
of high quality samples is needed. In our case, the number of
real velocity maps is limited, and they are reserved for testing
purpose, thus the synthetic set which was introduced in Section
2.2 is used to train the CNN. However, this synthetic data often
keeps some differences to the real data.

Fine-tuning the model with small hybrid synthetic-real data set
(referred as fine-tuning set in this paper) helps to learn the use-
ful patterns in the real data. It is performed by freezing the

model except last few layers, and modifying the last few layers
using small learning rate with fine-tuning set. This fine-tuning
method has been widely used in SAR applications such as im-
age generation (Song et al., 2017). In the following, the process
of fine-tuning set generation and comparison of different fine-
tuning approaches are presented.

Figure 2. Comparison of the sample images from different data
sets. It is visible that synthetic data are missing slope induced

signal, and contains only low pass patterns. The fine-tuning set
resembles the real data, although at a slightly lower intensity

overall. It should be noted that we use simulated volcanic
deformations instead of real ones in synthetic and fine-tuning

sets.
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3.1 Creation of fine-tuning set

To create it, data were extracted in Andes surrounding the
region of interest (mountainous area surrounding tested area
shown in Figure 1), but never overlapping it. The closeness
to the region of interest insures similarity of the patterns - spa-
tial correlation, but it is noticeable that the patterns extracted
around the region of interest are subtler than at the centers of
the mountains ridge and volcanoes.

The area extracted this way was split in patches without overlap,
checked for missing values, and only data with <30% missing
values has been used. The set was searched through, and ex-
amples with large salt lakes in the middle of an image have
been removed. This data set contained 836 patches, of slope in-
duced signal with several examples containing salt lakes. There
was no volcanic examples in this data set, as all the region with
potential volcanic deformations is kept for real test set.

Figure 3. The constituents of the four fine-tuning sets. The slope
induced signal set contains patterns extracted from real data in
the mountainous region surrounding but not overlapping the

region of interest; the filtered slope set uses slope induced signal
set with low-pass spatial filtering; and in the synthetic

atmospheric set, simulated atmospheric noise is used. All of the
volcanic class samples in the sets use simulated volcanic

deformations with addition of previous sets.

For fine-tuning, we needed to have the balanced set of two
classes: containing volcanic deformations (deformation class)
and without volcanic deformations (non deformation class). For
that reason, the volcanic simulations had to be included in the
fine-tuning set. The visual comparison of constituents of each
fine-tuning set can be seen in Figure 3. Four fine-tuning sets
have been created and tested:

• FT1 - Used only slope induced signal data set of 836
samples as the background noise, and half used for de-
formation and half for non deformation class. Deforma-
tion class used 418 randomly selected simulated volcanoes
of deformations larger than 1.5 cm added to the slope in-
duced signal and wrapped afterwards and non deformation
class used only 418 samples of slope induced signal data
set.

• FT2 - Contained the complete FT1 set, and added filtered
FT1 using low pass median filter with size of 20 pixels and
wrapped afterwards. It consisted of 1672 samples.

• FT3 - Used complete slope induced signal only as a non
deformation class, and for deformation class it uses 836

randomly selected examples of descending track simu-
lated volcanic deformations with simulated residual selec-
ted samples of simulated volcanic deformations with noise
of descending track (scale of deformations greater than 0.6
cm).This set includes 1672 samples.

• FT4 - was made using complete FT2 set and simulated
data in equal part. 836 samples of simulated atmospheric
noise was randomly extracted as non deformation class,
and same amount of simulated volcanic deformations ad-
ded with simulated atmospheric noise from a descending
track. This set totaled 3344 samples.

FT1 set was created to give a data set without repetition of the
background noise. It is the most concise, simplest and straight-
forward fine-tuning set.

FT2 had added filtered imagery to the FT1 set. The filtered
set was supposed to be more similar to the synthetic training
set, allowing for more generalization of the model, and possibly
more smooth training.

In FT3 we tried using the complete variance from the extracted
real background noise set for fine-tuning the non deformation
class. This was expected to reduce the number of false positive
detections. Since the deformation class includes only simulated
residual atmosphere as background noise, this opened a possib-
ility of distribution gap in real data for deformation class.

To increase the number of samples in the fine-tuning set and
to make more smooth fine-tuning process FT4 was created. It
includes both synthetic data from training data set and FT2 set
with all the real background noise in equal measure, which was
expected to allow for smoothest fine-tuning process and to in-
crease the generalization of the model.

3.2 Approaches to fine-tuning

Four different fine-tuning approaches were tested:

• [last] - fine-tuning only last dense layer, while rest of the
model is frozen.

• [-1last] - Freezing all the layers but second last dense
layer, and fine-tuning it for improved high level feature
representations.

• [last2] - fine-tuning last two layers together while the rest
of the model is frozen.

• [-1&last1] - Step fine-tuning - first fine-tuning last dense
layer while the rest of the model is frozen, then freezing
all the layers but second last dense layer, and finally again
last dense layer.

Freezing the model and fine-tuning only the last layer is a typ-
ical approach which also known as transfer learning (Pan and
Yang, 2009). It relies on the model having been thought to
identify the significant patterns and features before, which can
be used to detect the new classes. It requires the least data
among the selected approaches. This approach was used on
the model trained on synthetic data to try to teach it to separate
between the salt lakes and slope induced signal and volcanic
deformations.
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Figure 4. The four fine-tuning approaches on the convolutional neural network architecture. a) [last], b) [-1last], c) [last2], d)
[-1&last1]. *Dropout layer does not have any trainable weights, and it works only during training instead of inference stage. Also, it

should be noted that every module contains multiple operations

Since we were not completely confident that the synthetic
model managed to prepare all the tools to handle the slope in-
duced signal or salt lake patterns from the synthetic data set,
approaches which would allow some correction of identified
features were tested. First approach to this was only fine-tuning
the second last layer so we allow it to improve the high level
feature representations, and to feed the final dense layer better
input for discrimination. The second approach was fine-tuning
the last two layers simultaneously, and third step fine-tuning last
two layers independently.

Fine-tuning last two layers should allow some adjustment of ex-
tracted high level features as well as correction to how the class
probabilities were calculated. Step fine-tuning of last two lay-
ers was expected to give slightly better results given the small
fine-tuning sets. It would allow the classification layer to adjust
to the new data, then in second step to improve understanding
of high level features, and finally give the last adjustment to
classification using the newly improved features.

4. EXPERIMENT

InceptionResNet v2 architecture (Szegedy et al., 2016) is used
as the frontend network. It was selected after comparison of 6
models fully trained on the synthetic set, among which it gave
the best performance. The model was trained with early stop-
ping after 10 epochs when validation loss does not decrease any
more. The models were always trained to accuracy of 99.9+ %
and they also achieved similar results with synthetic test set. On
real test set the achieved area under the curve receiver operating
characteristic (AUC ROC) value of model was far lower than
expected, giving only 57.92 %. After exploring the results us-
ing Grad-CAM (Gradient-weighted Class Activation Mapping),
it was clear that the model was confused by patterns in real data
which have not been accounted in synthetic data (Song et al.,
2020): the patterns of salt lakes and slope induced signal. Re-
ducing this gap was performed by fine-tuning of the model on
hybrid synthetic-real set.

Two experiments have been performed. First one testing the

different approaches on FT1 fine-tuning set, and second one
using the best approach to test the performance of different hy-
brid sets. The results are compared to the baseline model which
was trained on synthetic data without fine-tuning.

As the real test set is highly imbalanced, the accuracy or preci-
sion cannot be used as representative metric. While F1 meas-
ure is often indicative of overall performance, it is also highly
skewed by imbalance. Here the primary goal is to detect all
of the volcanic deformations (true positive rate - TPR), and sec-
ondary to reduce the number of images that needs to be checked
(false positive rate - FPR). The metric which incorporates both
of these is receiver operating characteristic (ROC), which is also
unaffected by data skew (Jeni et al., 2013). ROC graphs need
to be visually analyzed, but area under the curve ROC (AUC
ROC) value can be used as numeric representation of the mod-
els performance.

The different frame level metrics, depending on how the patch
probabilities are merged, can be better suited to some models
and therefore misleading. For this reason the patch level metrics
are used. Beside the standard metrics, it is also checked if each
frame containing a volcanic deformation has at least one patch
marking it.

4.1 Effect of different fine-tuning approaches

The four fine-tuning approaches have been tested, and metrics
of the models extracted. For each case the base model trained
on synthetic data are used for fine-tuning. The model is frozen,
only the selected layers have been tuned.

The metrics of the results achieved by different approaches can
be seen in the Table 1.

From the results it can be noticed that the TPR rate is reduced in
all of the cases in comparison to synthetic baseline model, but
with significant improvements in FPR. Since the real test set
contains also many partial volcanic deformations, it is a ques-
tion which should be classified positively and which not. This
means that there is a lot of edge cases in the patch level results,
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Approach TPR FPR AUC ROC Accuracy Precision F1 Volcanoes
Synthetic 100.0 99.052 55.45 19.097 18.466 31.175 10/10
FT1 [last] 94.366 31.754 86.442 73.032 40.0 56.184 10/10

FT1 [−1last] 45.07 14.218 75.724 78.323 41.558 43.243 10/10
FT1 [last2] 56.338 8.057 84.849 85.419 61.069 58.608 10/10

FT1 [−1&last1] 0.0 0.0 26.549 81.677 0 0.0 0/10

Table 1. Results achieved on real test set using different
fine-tuning approaches.

and that perfect score is hardly reachable. The primary con-
cern of the model is that it detects the whole volcanic deform-
ations, so omission of the few partial deformations or having
small number of false positive detections is acceptable.

The first approach, FT1 [last], to fine-tuning by retraining only
the last layer has given the best results according to the TPR
and AUC ROC metrics and maintaining the detection of all of
the ten frames with presence of volcanic deformations, while
reducing FPR by three times, to 31.754 %. If the priority is to
keep high TPR on patch level, this would be the best model.

The second approach, FT1 [−1last], retraining only the second
last dense layer has given an improvement in the results in com-
parison to the baseline but it did not outperform the two best
models. This approach was limited by the last fully connected
layer, and it was to be expected to be outperformed by other
models.

FT1 [last2] gave many of the best performance metrics, but at
a cost of lower TPR. It still maintains the detection of all ten
volcanic deformations, while decreasing the FPR almost four
times bellow the value of the first approach, or 12 times bel-
low the baseline model. Here it is easily visible that tuning
more layers brings additional benefits. It is reasonable to ex-
pect greater improvements with larger fine-tuning sets.

Figure 5. The ROC curves on real test set of the models trained
on four tested fine-tuning approaches, and points showing the
models thresholds (50% probability of presence of volcanic

deformations).

Although both approaches of training individually the last or
second last layer, or both brought significant improvements,
FT1 [−1&last1] approach did not manage to converge to a
new optimum by step tuned layers.

The best TPR and AUC ROC result on the smallest fine-tuning
set was achieved by the FT1 [last] approach, which was to be
expected. By closer analysis of the ROC curve, in Figure 5, the

[last] approach gives the TPR above 90% the at the lowest FPR,
although at sub 10 % FPR [last2] model outperforms it.

4.2 Use of different fine-tuning sets

The four different fine-tuning sets have been compared using
the best performing approach according to ROC and TPR met-
rics: [last] - retraining only the last dense layer of the model,
while the rest of the model is frozen. This approach demands
the smallest size of the data set and therefore is less restrictive
to the smaller fine-tuning sets (FT1).

The metrics extracted from an InceptionResNet v2 model fine-
tuned on each of the fine-tuning sets can be seen in Table 2.

Data Set TPR FPR AUC ROC Accuracy Precision F1 Volcanoes
Synthetic 100.0 99.052 55.45 19.097 18.466 31.175 10/10
FT1 [last] 94.366 31.754 86.442 73.032 40.0 56.184 10/10
FT2 [last] 74.648 23.065 81.017 76.516 42.063 53.807 9/10
FT3 [last] 0.0 0.0 32.991 81.677 0 0.0 0/10
FT4 [last] 76.056 14.534 88.195 83.742 54.0 63.158 10/10

Table 2. Results achieved on real test set using the different
fine-tuning data sets.

FT2 set performed worse than FT1, even though it is double
the size and contains complete FT1 as well as filtered FT1.

FT3 has underperformed as we deemed probable. The negat-
ive class consisting of slope induced signal was always more
similar to the data as it constituted larger parts of the image.
Still the balanced, equally split subsets of data are necessary
for good fine-tuning performance.

FT4 gave positive results, because of its more numerous and
more diverse samples. FT2 which is completely used in cre-
ation of this set, along with synthetic data, underperformed.
The only difference between the FT2 and FT4 is the 1672
samples of synthetic data, which on its own did not manage
to produce a good model.

By analysing the ROC curve in Figure 6, it is visible that FT4

performed better by a margin than the FT1 set in the low FPR
region (¡18%), while FT1 is slightly better suited when higher
TPR is desired. FT4 gave better results than FT1 in every met-
ric except for TPR, where FT1 is better by 18%.

With exception of the FT3 the fine-tuning sets were grouped
together, but still show that well prepared fine-tuning set al-
lows for extraction of additional performance. By readjust-
ing the classification threshold, the models can take any of the
TPR/FPR performances which their ROC curve presents (for
this adjustment a real validation set would be needed), and the
best ROC values are given by the highest quality and most con-
cise FT1 and the largest and most diverse set FT4.

5. CONCLUSION

In this paper, it is shown how the velocity maps are used with
classification DL model to detect subtle volcanic deformations,
the challenges created by differences between the synthetic and
real data and real data unique patterns and it is demonstrated
how the fine-tuning adjusted the DL model to these patterns
present in the real velocity maps in order to decrease the model
sensitivity to background noise in real data. Due to the limited
number of real data, we used simulated velocity maps to ini-
tially train the network, and used a hybrid synthetic-real set to
fine-tune the last few layers. Different fine-tuning approaches
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Figure 6. The ROC curves on real test set of the models trained
on four tested fine-tuning sets, and points showing the models

thresholds (50% probability of presence of volcanic
deformations).

and set creation techniques have been tested. Seven fine-tuned
models have been created and compared on the important met-
rics and ROC curve. Results show significant improvements
over the initial synthetic approach, up to 12x decrease in FPR
and up to 33% increase in AUC ROC. The reduction of FPR
came at a cost of TPR, but maintained the detection of all of de-
forming volcanoes, achieving minimal detected deformation of
0.5 cm/year - an order of magnitude lower than previous work
achieved (Anantrasirichai et al., 2019a).

The approach of fine-tuning only the last dense layer and fine-
tuning last two dense layers gives the best results. Besides, the
fine-tuning set FT1 which consists only the extracted slope in-
duced signal and deformations, and the set FT4 which consists
of FT1, filtered FT1 and synthetic set, allow better perform-
ances.

While this work has been performed under assumption that the
PSI and InSAR processing of solid Earth tide, tropospheric and
ionospheric corrections eliminated the delays in the data com-
pletely, it is still present in the regions of very high elevation. It
has been shown that none of the tested global weather models
accurately captured tropospheric delays in a researched volcano
region (Stephens et al., 2020), and that used weather reana-
lysis (ERA5) performs better in the northern hemisphere, than
in southern (Yu et al., 2021). As the elevation is the highest at
the ridge of the mountains, along which all of the volcanoes can
be found, not many samples containing these patterns have been
included in fine-tuning set. This is the main reason why the FPR
is not completely minimized by fine-tuning. It is expected that
the synthetic and fine-tuning set and model performance can
be further improved by accounting for the residual topographic
component.
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