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Abstract. We explore the possibility of leveraging model explainability
methods for weakly supervised claim localization in scientific abstracts.
The resulting approaches require only abstract-level supervision, i.e.,
information about the general presence of a claim in a given abstract,
to extract spans of text that indicate this specific claim. We evaluate
our methods on the SciFact claim verification dataset, as well as on a
newly created dataset that contains expert-annotated evidence for sci-
entific hypotheses in paper abstracts from the field of invasion biology.
Our results suggest that significant performance in the claim localization
task can be achieved without any explicit supervision, which increases
the transferability to new domains with limited data availability. In the
course of our experiments, we additionally find that injecting information
from human evidence annotations into the training of a neural network
classifier can lead to a significant increase in classification performance.
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1 Introduction

A claim lies at the center of most scientific publications, as it constitutes the
core proposition that is put forth for consideration and is targeted by the pre-
sented evidence [19]. Detailed knowledge about these claims addressed in scien-
tific publications is essential for tasks like literature search and scientific claim
verification [40], leading to a variety of research targeted at the annotation,
recognition and localization of claims in scientific abstracts and full texts (see
Sect. 2.1). Despite significant progress being made, the reliance on direct super-
vision (e.g., [23,41]) often limits the potential of these approaches, since large
and high-quality datasets are uncommon in general and not present at all in
many specific domains, and since existing models struggle to generalize to differ-
ent domains [36]. Especially for the task of localizing evidence for claims within
a text, the annotation process for creating the dataset is very time-intensive
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and thus more costly, which naturally raises the question of whether a weaker
supervision signal, that could be quicker, easier and more consistent to annotate,
could be sufficient for solving this complex task.

In this study, we explore the possibility of using weak supervision for the
task of claim localization in scientific abstracts. The supervision signal is the
information about the general presence of a specific claim in a given abstract (i.e.,
a textual formulation of that claim or a discrete claim label). This information
is used to train a standard neural network classifier that is able to verify the
presence of such a semantically distinct claim in a given abstract. We then use
model explainability approaches to create a rationale for the classification, which
therefore selects spans or sentences from the input that constitute the evidence
for the given claim. This is, to our knowledge, the first study that explores the
sole use of weak supervision for solving this task.

To test our methods, we evaluate them on two datasets of scientific abstracts
with annotated evidence. The first one is the INAS dataset [3], a dataset con-
sisting of scientific abstracts from the field of invasion biology, annotated with
information about which hypothesis from the field is addressed. Since no evidence
annotations are provided by [3], we perform our own annotation study and anno-
tate 750 abstracts with span-level hypothesis evidence. The second dataset is the
SciFact dataset [35], which consists of hand-written claims for a set of scientific
abstracts, in combination with sentence-level evidence annotations.

To explore the limits of using explainability approaches for evidence local-
ization, we perform an experiment on injecting the information from evidence
annotations into the training process of neural network classifiers. A similar app-
roach has been explored by [38], but we are not aware of such techniques being
used for claim verification. In our testing, we find that our method is able to
drastically increase the classification performance of the resulting classifier.

The rest of our work is structured as follows: In Sect. 2 we provide background
knowledge about scientific claim detection as well as the concept of using input
optimization for model interpretability, while Sect.3 will describe the datasets
used in this study. Section4 then explains our approach for localizing claim
evidence as well as a method for injecting evidence information into a stan-
dard neural network classifier, while Sects. 5 and 6 will detail the corresponding
experiments and results. Section 7 concludes this work with final thoughts and
remarks.

The code for the experiments conducted in this study is available at
github.com/inas-argumentation/claim_localization.

2 Background

2.1 Scientific Claim Detection

Scientific claim detection has its root in the field of general argument mining,
which was formally introduced by [22] and is concerned with locating, classifying
and linking argumentative components (so-called argumentative discourse units)
in a given argumentative text. Based on the general theory of argumentation
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[8,22,34] determined the claim to be the center of an argument, as it is the
core proposition that is put forth for consideration. A claim, by its nature, is
not inherently true and requires further substantiation, which is provided by
premises, i.e., statements that are generally accepted to be true and do not
require further support [29].

As scientific texts are argumentative in nature, the field of argument min-
ing naturally extends to the scientific domain. Recognizing the argumentative
structure in a scientific text, as well as the main claim in particular, is essential
in tasks like literature search and scientific claim verification [40], leading to the
creation of a variety of annotation schemes and datasets [1,10,31,32], many of
which focus specifically on the scientific claim: [2] creates a detailed annotation
scheme that captures the variety of ways a claim can be formulated in a scientific
abstract, [35] create the scientific claim verification task by creating a dataset of
hand-written scientific claims and by annotating which sentences in a corpus of
scientific abstracts supports or refutes them, and [3] focus on a precise semantic
categorization of scientific claims by annotating and classifying claims according
to a domain-specific hypothesis network.

Given a specific claim, our study addresses the precise localization of evi-
dence for this exact claim in a given scientific abstract. While many approaches
have been proposed to solve similar tasks [2,13,23,41], these methods leverage
data annotated on sentence level for supervised learning, which can limit their
potential due to the rather small available datasets and the unavailability of any
annotated data in many domains. Reasons for this lack of data include the need
for expert annotators caused by the focus on the scientific domain, the time-
intensive annotation process, as well as the complexity of the annotation task
even for domain experts [11].

To our knowledge, no method exists that can reliably detect and locate claims
in scientific texts without access to a dataset of samples with explicit sentence-
level claim annotations, which can be a problem if a model shall be adapted to
a new domain without an existing dataset, as performance has been shown to
significantly decrease on out-of-domain samples [36]. Our study aims at closing
this gap by creating an approach that only requires weak supervision in the
form of abstract-level labels, thus drastically reducing the time and cost needed
to create a training set for a new domain.

2.2 Input Optimization for Model Interpretability

For many datasets, evidence annotations for specific claims constitute a ratio-
nale for a corresponding classification (e.g., for the claim verification task [35],
claim evidence is an explanation for an abstract-level validity label). This char-
acterization of claim evidence creates a natural connection to the field of model
interpretability, which is concerned with creating explanations for decisions (e.g.,
classifications) of black-box machine learning models like neural networks. In the
field of natural language processing, explanations for classifications often take
the form of individual scores assigned to each input token, with a higher score
indicating an increased significance of that token for the predicted score. While
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a variety of methods have been proposed [20], we will focus on a recent study
by [4], as their method called MaRC (Mask-based Rationale Creation) is specif-
ically designed to extract longer, consecutive spans of text as explanations, thus
making the explanations better aligned with human reasoning and annotations.

The MaRC approach relies on the concept of input optimization: As neural
networks are differentiable, it is possible to calculate the gradient of an objec-
tive function with respect to the input features. The MaRC approach uses this
concept to remove words from the input by gradually replacing them by PAD
tokens (in the case of BERT) in a way that maximizes the likelihood of the class
that is to be explained, meaning that the words that remain are highly indicative
of the respective class.

The MaRC approach assigns parameters w; and o; to each input word x;, to
calculate a mask A in the following way:

Wi—j = W; - €XP ( - @) (1)
Aj = sigmoid(z Wi—sj) (2)

7

The weight w; of a word x; is mainly responsible for its mask value A;, but each
weight w; also influences the mask values of the words around it: d(4, j) denotes
the distance between two words while w;_,; denotes the influence of weight w;
towards A;. This mask value ); is simply calculated by applying the sigmoid
to the sum of all influences onto this mask value. This parameterization of the
mask, together with an objective function that encourages large values of o, leads
to smooth masks with long consecutive spans of texts being selected. Using this
mask, two altered inputs are created:

F=Xa+(1-A\)-b (3)

F=(1—A)-z+A-b (4)

b is here an uninformative background (e.g., PAD tokens for BERT), meaning
that = is created by applying the mask to input x which removes low-scoring
words from the input, while ¢ applies the reverse mask. The actual objective
function that is optimized is the following:

arg min  — L(Z,¢) + L(Z¢) + 2\ + 25 (5)

w,ocER™

where we optimize our mask to maximize our class probability of desired class ¢
(given by L(Z,c)), meaning that we select words that indicate this class, while
minimizing this likelihood for the reverse mask, meaning that words indicative
of ¢ will not be masked. The additional regularizers enforce sparsity ({2)) and
smoothness ({2,) of the mask. For a more detailed description and derivation,
see [4].
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3 Datasets

3.1 The INAS Dataset

We evaluate our claim localization approach on the INAS dataset [3]. The dataset
consists of 954 paper titles and abstracts from the field of invasion biology, a field
concerned with the study of human-induced spread of species outside of their
native ranges, caused by factors like global transport and trade. The samples
are annotated with labels indicating which of the ten main hypotheses in the
field are addressed in a given paper, in combination with an even more fine-
grained categorization about specific sub-hypotheses addressed in them, based on
a hypothesis network created by [14]. We perform our own annotation study and
asked three experts in the field of invasion biology to annotate 750 samples with
span-level evidence. The task was to annotate all spans that, to the trained eye,
indicate which hypothesis is addressed in the given paper, even if the hypothesis
is not explicitly named or stated.

50 samples were annotated by all annotators and we achieved a rather low
F1 score of 0.389, indicating that this is a generally challenging annotation task
even for domain experts. This is in part caused by one annotator having much
lower agreement with the other two, indicating that annotation guidelines were
interpreted slightly differently, which, for such a complex task, can quickly reduce
agreement scores. The higher F'1 score of 0.579 between the other two annotators
shows that the general task is well-defined and thus suitable to be tackled by
neural networks.

3.2 The SciFact Dataset

We also evaluate our approach on the SciFact dataset [35]. It consists of 5,183
abstracts from a collection of well-regarded journals, in combination with a set
of 1,409 hand-written claims that are supported or rejected by papers from the
corpus. The papers that verify or reject a claim are annotated on sentence-level
with evidence for the respective classification, so that, in contrast to the span-
level annotations for the INAS dataset, each sentence completely belongs to the
evidence or not.

4 Method

4.1 Span-Level Claim Evidence Localization

We propose a method to perform weakly supervised span-level claim evidence
localization. In this setting, we assume the availability of a training set of
texts labeled with information indicating which claim (from a fixed set of
known claims) is addressed in each of them. Given a text consisting of words
T1,...,Tp, the task of weakly supervised claim localization is now to predict a
set I C {1,...,n} of indices of words that are part of the ground truth claim
evidence annotated by a human annotator. We propose to utilize the MaRC
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approach (see Sect. 2.2) to solve this task by first training a classifier to perform
the claim identification task using only abstract-level labels, which is a standard
text classification problem. Afterward, MaRC can be used to create an expla-
nation for the classification of a given sample to produce importance scores for
each word in the abstract.

For improved rationale predictions, we propose to perform the optimization
from Eq.5 with respect to several models, but for a single set of mask values.
Input optimization is known to overly adapt to the particularities of a given
model, which we hypothesize to be mitigated by optimizing with respect to
multiple models at once.

4.2 Sentence-Level Claim Evidence Localization

We also propose an approach for sentence-level claim evidence localization. The
precise task we consider slightly differs from the one described in the previous
section, as here we assume claims to be present in textual form, and to not
originate from a fixed set of known claims. Given a claim and an abstract, the
task is to predict one of the three labels {Supports, Refutes, Not Enough Info}.

We again start by training a standard text classification model, which now
receives the claim and abstract as inputs and predicts one of the three given
labels as output. While it would be possible to employ the same procedure
as described in Sect.4.1 and compute sentence scores from the scores for the
individual words, this could lead to uncertainties in the case of only very few
words in a sentence being selected, as these could be highly important (thus
making the whole sentence important) or simple artifacts caused by important
words from a neighboring sentence exerting influence.

For this reason, we directly optimize mask weights wy, ..., w,, with one value
being assigned to each input sentence s; € {s1,...,s,}, and define \; = o(w;)
as the mask value for the sentence. We also alter the interpretation of the mask
values \: Before, each input embedding was linearly blended towards an unin-
formative embedding, as the input embedding Z; of token ¢ was defined to be
Z; = N -x; + (1 — N;) - b;. Despite good performance of this approach [4], these
shifted embeddings constitute out-of-domain inputs as they are not encountered
during training, therefore potentially leading to unpredictable behavior of the
network. Therefore, we explore the possibility of treating A as a set of probabil-
ity distributions, with each A; being the parameter of a Bernoulli distribution
indicating the probability of sentence s; belonging to the input. This allows sam-
pling of inputs from this distribution, with each sentence being either completely
present or completely removed (replaced by [PAD] tokens) in a given sample. We
then optimize this distribution to increase the likelihood of samples with high
scores according to our objective, leading to the following optimization problem:

arg min E,, o [-L(Z,c) + L(Z, )] + 2 (6)
weR™

where T and Z€ are computed using the mask m sampled from A similarly to
Eq. 3 and Eqg. 4, but on sentence-level. This equation can not be optimized using
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standard gradient-descent, as it contains an expectation over a probability dis-
tribution. We therefore use the score function estimator [9]:

0

0
5 EmNp(-;)\) [f(m)] = EmNp(-;)\) f(m)i Ing(m; )‘) (7)

oA
The expectation on the right side can now be approximated by sampling a batch
of masks from A, with f(m) being our likelihood scores for mask m as defined
in Eq. 6.

For our specific task, only the sentences from the abstract are masked, while
the claim does not receive a mask value to be optimized. Again, we perform the
optimization with respect to multiple trained classifiers as further regularization.

4.3 Evidence Injection

While our general methods aim at using weak supervision only, we also explore
how far the results can be improved by using evidence annotations in the course
of the base classifier training. To do this, we develop a method to inject evi-
dence annotation information into the standard classifier training process. To
our knowledge, something remotely similar has only been explored for the case
of Support Vector Machines [38]. We test this method on the SciFact dataset
and therefore assume the presence of sentence-level evidence annotations.

The altered training paradigm works as follows: Given a training sample z,
this sample will be fed three times into the network (all in the same batch).
Once in its normal form, once with all evidence sentences removed, and once
with all evidence sentences present, but with some other sentences removed. We
then train the model to predict the correct label (Supports or Refutes) for the
first and third versions of the sample, but train it to predict the Not Enough
Info label for the second version. In this way, the classifier learns to differentiate
sentences that actually support the claim from sentences that only address the
same topic.

5 Experiments

5.1 Span-Level Claim Localization

Experimental Setup. We perform experiments on weakly-supervised span-
level evidence localization on the INAS dataset. Given a sample z consisting
of words x1,...,z,, the task is to predict a score s; for every word x;, such
that the words belonging to the ground truth evidence annotated by a human
annotator are assigned the highest scores. We perform our experiments in a
weakly supervised setting, meaning that no method will have access to samples
with actual evidence annotation. Instead, the supervision signal will solely be
the label indicating which hypothesis (from a set of 10 possible hypotheses) is
addressed in a given abstract. This information will be available during training
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and testing, as we explore the setting of localizing evidence for a claim that is
known in advance.

Our proposed method works by training a standard text classification model
to predict the correct hypothesis label for a given sample and to use the MaRC
method to extract an explanation for the given label of interest post hoc (see
Sect. 4.1 for a detailed description). We hypothesize that this method will out-
perform other interpretability methods, as it is explicitly designed to generate
human-like rationales in the form of consecutive spans of text. As we are not
aware of other methods for weakly supervised claim localization, we evaluate this
method against other explainability methods (see Appendix A for an overview)
as well as against a supervised baseline to allow for a relative performance com-
parison. For model and training details, see Appendix A.

We additionally employ a post-processing step in our prediction pipeline:
We split the abstract into individual sentences using ScispaCy [21] and set the
predicted scores of the last token of each sentence to 0. This additional step
improves span-matching performance, since claim evidence annotations in our
particular task do not cross sentence boundaries and do not include punctuation.

Evaluation. We evaluate different measures for the quality of the predicted
scores. To assess the quality of the scores assigned to the individual words (inde-
pendent of their belonging to a longer span of text) we evaluate the area under
the precision-recall-curve (AUC-PR).

We also evaluate the F1 score, which requires a binary prediction (i.e., each
word is either predicted to belong to the evidence or not). Since many methods
do not have an obvious way of determining a score threshold, we select the p-n
highest-scoring words and average over 19 values of p (0.05, 0.10, 0.15, ..., 0.95).

The same technique is used for the IoU-F1 score, which we propose as a
measure for determining the quality of predicted spans of text. Given a binary
prediction for each token, we determine predicted spans as continuous spans of
words that were selected as evidence and calculate the IoU between all pairs
of predicted and ground truth spans. As perfect matches are unlikely for this
challenging task, we define generalized versions of precision and recall that allow
for partial matches. To do so, we determine the highest IoU value of each span
(ground truth and predicted) with anyone from the other set, and define the
precision as the average of these highest values for the ground truth spans, which,
analogous to the usual precision, is a measure for how well the ground truth
spans have been recognized. Similarly, we define the recall as the average over
the highest values for the predicted spans, thus measuring how likely a predicted
span matches any of the ground truth spans. The F1 score is calculated from
these values as usual and is again averaged over all values of p.

The three scores described so far are well-suited for comparing different meth-
ods with each other. To give a better feeling for the absolute quality of the
predictions, we again use the F1 and IoU-F1 scores (now denoted as D-FI and
D-IoU-F1), but for a single selection of words: We select a threshold ¢ as the
score of the k-th highest-scoring word, with k£ being the number of words in the
ground truth evidence. As ground truth information is used, this is not an objec-
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filling in the gaps : Jgi inportant
Bomponen efforts . however , we cannot afford to
wait for complete information on the distribution and abundance of native and harmful invasive species . using information from counties well surveyed for plants across the usa ,
we developed models to fill data gaps in poorly surveyed areas by estimating the density ( number of species km ( - 2 ) ) of native and non - native plant species . here ]

in terms of non - native plant species densities , and that the central usa appears to have the greatest ratio of non - native to native
species . these large - scale)

Fig. 1. Exemplary prediction of the MaRC method for an abstract from the INAS
dataset for the Biotic Resistance Hypothesis label. Green text marks ground truth
annotations, red spans indicate predicted scores.

tive measure of quality, but it nevertheless provides a more interpretable score.
We additionally alter the IoU-F1 from the generalized, continuous version to a
discrete one used in [6]: A ground truth span is counted as correctly recognized
if any predicted span has an IoU of over 0.5, which allows for the calculation of
standard precision and recall scores.

5.2 Sentence-Level Claim Localization

Experimental Setup. We perform experiments on weakly-supervised sentence-
level evidence localization on the SciFact dataset, which is analogous to the task
defined in Sect. 5.1, with the difference that each sentence receives only a single
score. Since most explainability methods do not focus on complete sentences, we
instead focus on testing different versions of the approach described in Sect. 4.2
and compare them to a supervised baseline, which is a RoBERTa-large classifier
[18] that receives a textual claim and a sentence from the abstract and predicts
the likelihood of this sentence belonging to the evidence.

We explore different versions of our approach, which differ in the way the
base-classifier is trained: As a baseline, we test a classifier that is trained as usual
on the SciFact dataset only. We also test a version that is trained with added
spans of PAD tokens between sentences to align the input spaces present during
training and optimization. We also explore the effect of pretraining on five other
datasets (Fever [33], Evidencelnference [7,17], PubmedQA [15], HealthVer [26],
COVIDFact [25]), which has been shown to improve the classifier performance
[37]. Lastly, we also try a supervised version of our approach by employing the
procedure described in Sect. 4.3 during classifier training. For more details on
the training and evaluation, see Appendix A.

Evaluation. We again evaluate the AUC-PR as a holistic measure of the
assigned ranking between the sentences. As for more interpretable measures,
we provide the precision@k with k € {1, 2,3}, which is defined as the number of
ground truth sentences correctly placed among the top-k scoring sentences by
the classifier, divided by the maximum number possible (the minimum of the
number of available ground truth sentences and k).

For all trained base classifiers, we also provide the F1 score of the abstract-
level classification task (CIlf-F1) to display the effect the different training
paradigms have on the classifier performance.
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6 Results

6.1 Span-Level Evidence Localization

The results for the span-level evidence localization are displayed in Table 1, while
an exemplary output for the MaRC method is displayed in Fig. 1.

The MaRC method outperforms all other methods tested, both for scores
measuring token-level performance (AUC-PR, F1, D-F1) as well as for scores
evaluating span predictions (IoU-F1, D-IoU-F1). Especially with regards to the
span predictions, we see that the MaRC approach significantly outperforms all
other methods, which can be explained by it being explicitly designed to produce
rationales that mirror human reasoning. The difference to other methods is here,
that complete spans are selected as evidence, including words like “the”, “and”,
etc., if they are directly part of an important span. Other methods, in compar-
ison, mainly select the few rare words that are a more direct hint towards the
hypothesis label, but do therefore not match human-annotated spans. This phe-
nomenon also negatively affects token-level scores for other methods, since only
few words per span are recognized as important. For the occlusion method, we
produce a similar behavior by occluding longer spans of text at a time, leading
to smoothly varying scores and thus to the only method that remotely rivals the
MaRC method.

Notably, some methods barely outperform a random baseline (especially for
span prediction evaluations), thus making them unusable for claim localization.
As a possible explanation, [3] analyzed that classifiers for this task can make use
of individual words like species names or locations as hints for the hypothesis
if these names only occur in the context of this specific hypothesis. These will
not be annotated by the human annotators, though, as hypothesis evidence
(according to our definition) needs to clearly reference parts of the respective
hypothesis. Overall, this shows a limitation of the proposed approach of using
explainability methods for claim localization, as this approach relies on a high
overlap between spans considered by humans as hypothesis evidence and words
actually used by the classifier as the basis for the prediction, which is not always
given.

As is to be expected, though, all methods are outperformed significantly by
the supervised baseline. It is the only method that is explicitly trained to pre-
dict spans of the desired form, and the only method that has knowledge about
the type of information that is to be selected. For weakly supervised methods,
that do not have any of this information, predicting the precise span boundaries
is extremely difficult. This result suggests, that for a smaller prediction space
results could be improved, which we analyzed for the case of sentence-level evi-
dence localization.

6.2 Sentence-Level Evidence Localization

The results for the sentence-level evidence localization are displayed in
Table 2. Even though we altered the existing MaRC approach due to the dif-
ferences between the tasks, our proposed method is still denoted as “MaRC”.
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Table 1. Results for the span-level claim localization task on the INAS dataset.

Method AUC-PR | F1 IoU-F1 | D-F1 | D-IoU-F1
MaRC 0.357 0.331/0.210 | 0.350|0.151
Occlusion 0.310 0.288 |0.148 |0.310 |0.074

Saliency,, | 0.295 | 0.311 [0.094 |0.313  0.019
Saliencyg,,, | 0.241 | 0.265 0.070 |0.259 | 0.002
InXGradz, | 0.267 1 0.304 0.087 | 0.301  0.013
InXGradsu,m | 0.240 | 0.258 [0.070 | 0.248 | 0.002
Int. Gradsz, | 0.317 | 0.311 0.091 | 0.319 | 0.020
Int. Gradsgum  0.320 | 0.305 0.090 |0.322 |0.017

LIME 0.271 0.281 |0.072 |0.273 |0.004
Shapley 0.322 0.305 |0.086 |0.329 |0.016
Random 0.221 0.256 |0.067 |0.223 |0.003

Supervised 0.574 0.409 |0.231 |0.521 |0.288

Table 2. Results for the sentence-level claim localization task on the SciFact dataset.

gt | pad | pre | sup | Method | ClIf-F1 | AUC-PR | Prec@1 | Prec@2 | Prec@3
X MaRC |0.859 |0.546 0.524 |0.578 |0.659
MaRC |0.859 |0.581 0.534 |0.617 |0.741
X | X MaRC |0.842 | 0.632 0.612 |0.675 |0.710
X MaRC |0.842 | 0.655 0.641 |0.689 |0.736
XX |[X MaRC |0.877 | 0.696 0.718 |0.738 |0.786
X X MaRC |0.877 | 0.650 0.650 |0.699 |0.754
XX |[X |[X |MaRC [0.936 |0.720 0.757 0.772 |0.780
X |X |X |MaRC |0.936 |0.718 0.757 0.777 ]0.780
X | Sent-clf 0.882 0.883 |0.893 |0.905
X | X |Sent-clf 0.902 0.883 10.898 |0.951
X Sent-clf 0.664 0.650 |0.655 |0.778

The first four columns in Table 2 provide information about whether the model
had access to the ground truth label during optimization (column g¢t), whether
the base classifier was trained with added PAD tokens (column pad), whether
the classifier was pretrained (column pre) and whether the classifier was trained
using evidence supervision (column sup).

As, again, no previous study addressed our specific task of weakly supervised
claim localization, and since none of the standard explainability methods tested
on the INAS dataset proved particularly well-suited for the task at hand, we
focus in this section on a comparison of our method with a supervised baseline,
and analyze the challenges and solutions for mitigating the gap in performance.
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Our most basic version of the MaRC approach (rows 1 and 2) uses a classifier
trained without any changes to the standard training procedure. Even for this
case, we already see reasonable performance, as it ranks an evidence sentence at
the top in 52.4% of cases. Notably, if the optimization is done with respect to the
ground truth label (row 1), the performance decreases compared to optimizing
with respect to the predicted label (row 2), which is the case for the two lowest-
performing base classifiers (up to row 4). This suggests, that without pretraining,
the classifier is able to correctly identify the important sentences, but does not
have the necessary capabilities to correctly infer the correct label from them.

Our second base classifier (rows 3 and 4) is trained in the same way as before,
but receives samples with added PAD tokens during training, as these will be
common during optimization, leading to otherwise misaligned input spaces. We
see a significant improvement for the ground truth and the predicted label cases,
so that we train all upcoming classifiers in this way. For this setting, only with
access to the weak supervision labels on the SciFact dataset, the MaRC method
manages to identify an evidence sentence as the most important sentence in
64.1% of cases, which we already consider quite good performance.

For our next classifier, we added additional pretraining on five similar
datasets to the training procedure. This significantly improved the classifier
performance and also led to improved results for evidence localization. Notably,
from this point onward, having access to the ground truth label during optimiza-
tion does improve evidence localization performance, indicating that pretraining
increased the model’s capability of inferring the correct label from the given sen-
tences. Here, we also see the highest performance that we achieved using only
weak supervision, with an evidence sentence being correctly identified as most
important in 71.8% of cases.

Finally, we experiment with incorporating evidence supervision into the clas-
sifier training (as described in Sect. 4.3), to see how far the performance of our
method can be pushed in a supervised setting.

At first, we note a significant improvement in the model’s general classi-
fication performance, which even surpasses the improvement achieved by pre-
training. This shows that the evidence injection strategy helped the model with
actually understanding the rationale behind specific classifications, which seems
to drastically boost the generalization performance.

On the other hand, we also see a significant improvement in the evidence
localization results, which could be explained by the better general understand-
ing of the model. We also hypothesize, that this is caused by the general setting
of this task: Given an abstract and a claim, the model is supposed to predict
one of three labels: Supports, Refutes or Not Enough Info. This means, that
sentences that indicate that the general topic of the given abstract aligns with
the given claim are considered important (even if they do not directly support
or refute the claim) as they affect the likelihood of the Not Enough Info label.
This leads to these sentences being selected by the MaRC approach as well, as
it aims at maximizing the Supports or Refutes label. Our supervision approach
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mitigates this behavior, as it explicitly teaches the model to only take actual
evidence sentences into account for the classification.

As is to be expected, the supervised baseline models with access to supervi-
sion on the SciFact dataset (rows 9 and 10) significantly outperform the weakly
supervised models. For a more fair comparison, we also trained a supervised
model only on the pretraining datasets and applied it to the SciFact dataset
without any supervised training. In this case, the performance of the supervised
classifier actually lags behind the MaRC approach in a similar setting (row 5),
indicating that, if only abstract-level labels are present, the approach proposed
in this work is a valid choice.

In summary, we managed to highlight several problems for our method, rang-
ing from misaligned input spaces and insufficient understanding of the evidence
sentences to the selection of non-evidence sentences due to the particular setup
of the given task. Many problems can be mitigated by altering the training
paradigm of the base classifier, but closing the gap to supervised models still
proves to be a significant challenge.

7 Conclusion

In this work, we explored the possibility of using abstract-level labels about
the general presence of a claim in this abstract to localize corresponding claim
evidence. We proved that this is possible in both the span-level and sentence-level
localization settings, but found that the complexity of precise span prediction
makes achieving good performance challenging. For the sentence-level task, we
found that weakly supervised methods can achieve reasonable performance and
even be competitive in settings with only abstract-level labels available.

Since annotating a large number of samples with evidence annotations is
very time-intensive and costly, we believe this to be an interesting direction for
future research. Especially the fact that evidence supervision during classifier
training can improve the performance of explainability methods on this task
indicates, that creative changes to the training procedure of neural networks
might lead to a substantial improvement of weakly supervised methods, which
provides interesting possibilities for future research.

A Experimental Details

Model Details. We use PubMedBERT [12] and RoBERTa large [18] as the
classification models for the INAS dataset and SciFact dataset, respectively. We
train seven models, and keep the three best performing models with the highest
validation F1 score.

The pretraining for the SciFact model is done on five datasets: Fever [33], Evi-
dencelnference [7,17], PubmedQA [15], HealthVer [26], COVIDFact [25]. MaRC
Details. The optimization for the MaRC method is done with respect to all three
trained models. The parameters are set as described in [4], but we employ a new
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sparsity regularizer that actively forces a maximum average mask value. Similar
to [4], we use the following weight regularizer:

2
1 n
Q,\ = Q) |"ﬂ Z Ai]
i=1

but dynamically update a\ at each gradient descent step i using to following
formulas, to reach a maximum average mask value ¢ (set to 0.35):

Ay =m—1 —my
Atarget = (mi — t)/150

Here, m; is the current mask mean, 4; is the difference in mask means from
the current optimization step to the last, and Apge; is the desired value for
A;, which (if it is always optimal) ensures a steady but decelerating trajectory
towards the optimal mask value. We define

AAi,target = Az - Atarget

to be the difference between our current single-step mask mean difference and
the desired one, which we want to bring as close to 0 as possible. We then define
our update for o, at iteration ¢ as follows:

o =ai - (0.840.2-7)

_ 1 AAi,target
~ = max (O.?, 1—-0.9-tanh (0'002 ( 5 (A1 — A))

so that v > 1 leads to an increase in «, whereas v < 1 leads to a decrease. The
max operator prevents an overly steep decrease of a, while the tanh is used to
keep positive updates limited. The updates are mainly determined by Ax, target,
so that a increases when A; is smaller than Ayq.ger and vice versa. The term
(A;—1 — 4;) is a second-order statistic to prevent “overshooting” in the form of
changing ay further if A; is already approaching Aygrger (which might take a
while due to the momentum-based optimizer).

To give the optimization process the freedom to determine the optimal aver-
age mask value on its own after falling below ¢ + 0.1, we alter the process of
determining « in the following way:

Q) = 067;\_1 . (08 + 0.2- Ypred * ’yweight)

L(,c); L(z,¢c)o
L@ 0y 0.5 L0 1.1

Yweight = 1+ (mi - 03)

Vpred = min (
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Here, Ypreq pushes mask values further down if the model prediction for the
current masked input is more confident than the initial unmasked prediction
and the prediction for complement mask input is sufficiently less confident than
the initial unmasked prediction, which indicates that more information can be
removed. Yyeight pushes the average mask value to a value of 0.3, since values
far below that lead to most words having scores close to 0, and thus to no clear
ranking existing among them.

Comparison Methods. The other explainability methods are all used for each
of the three models individually, and the scores are averaged afterward. We make
use of the following methods and hyperparameter settings:

— Occlusion [39]: We chose to mask slightly larger spans of 5 tokens as this
produced smoother masks which resulted in higher IoU F1 scores. Occluded
parts were replaced by PAD-tokens.

— Saliency [28]: No hyperparameter settings required.

— InXGrad (Input times gradient [27]): No hyperparameter settings required.

— Int. Grads (Integrated Gradients [30]): We use a sequence of PAD-tokens as
background and do 50 gradient evaluation steps per sample.

— LIME [24]: We do 50 function evaluations per sample. In each evaluation, we
randomly select 5 — 13% of tokens and replace them as well as the next three
tokens with PAD-tokens. We train a linear classifier and use the resulting
weights as rationale.

— Shapley (Shapley value sampling [5]): We evaluate the token contributions for
15 feature permutations per sample. Removed tokens are replaced by PAD-
tokens.

We use the implementations provided by [16] for all methods. All methods have
access to the ground truth label. The InXGrad, Saliency and Int. Grads methods
all predict one score for each element of the embedding vector of a given word,
which is reduced to a single score by using the L2-norm or the sum.

We also compare against a supervised baseline. It is trained on 517 samples
from the INAS dataset annotated with span-level evidence, as well as on 204
samples without annotated evidence. To make use of the samples without evi-
dence annotations we train in a multi-task setting by also training to predict the
general hypothesis labels for the whole abstract.

INAS Evaluation. We evaluate all methods on a test set consisting of 141
samples that cover all ten possible classes. The test set contains all 50 samples
that were annotated by all three annotators, as well as 91 further samples that
were annotated by only one of the three annotators, with samples and annotators
being assigned randomly. For the samples that were annotated by all annotators,
we create a single ground truth by taking the intersection of the set of annotated
tokens between each pair of annotators, followed by the union between the three
resulting annotations of each pair.
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SciFact Evaluation. As the test labels for the SciFact dataset are not publicly
available, we create new splits with 50 claims for validation, 150 claims for testing
and the remaining claims for training. The actual samples for the splits can then
be created from the given claims and linked documents.

For evaluating the AUC-PR and Precision@k scores, we only take samples

from the Supports and Refutes classes into account, as they are the only classes
with corresponding evidence annotations.
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