
Generating Robot Capability Maps
with Neural Fields

Xinyu Chen
Technical University of Munich

xinyu-lucy.chen@tum.de

Jonathan Külz
Technical University of Munich

jonathan.kuelz@tum.de

Matthias Althoff
Technical University of Munich

althoff@tum.de

Abstract—Many robotic applications, such as manipulation
and human-robot interaction, require accurate knowledge about
the workspace of a manipulator. Further, an abstraction of
the capabilities of a robot arm within its workspace, often
modeled by so-called capability maps, is important for grasp
and task planning. Unfortunately, existing methods to identify
the capabilities of a manipulator are time-consuming and data-
intensive. This work proposes generating robot capability maps
directly in task space leveraging neural fields trained entirely
on synthetically generated data. In numerical experiments, we
show that our approach generalizes over various morphologies
and produces accurate capability maps within milliseconds.

I. INTRODUCTION

The workspace of a manipulator – defined as the set of all
positions it can reach – is an essential aspect in determining its
operational suitability for a given task. For many applications,
it is interesting to generate so-called capability maps by assign-
ing a capability measure to every position in the workspace,
such as the manipulability index proposed by Yoshikawa [29].
Capability maps contribute to many subsequent tasks, such as
motion planning [30, 20, 24], localization [21, 23], human-
robot interaction [25, 31], and hardware design [14]. Gen-
erating accurate capability maps with traditional approaches
takes hours to compute [30, 20]. Especially in scenarios where
the robot morphology is subject to change, such as in the
context of modular robots [27, 1] or robot design [7, 12],
the computational complexity thus drastically restricts the
applicability of capability maps.

This work uses neural fields [26] to efficiently generate
capability maps for diverse serial manipulators. In numerical
experiments, we show that accurate capability maps with more
than 300,000 query positions can be created in less than
0.05s on average. Furthermore, we show that our approach
generalizes to out-of-distribution samples.

II. RELATED WORK

To generate capability maps, conventional approaches dis-
cretize the task space, estimate the reachability of each dis-
crete position, and compute a capability measure whenever a
position is reachable. This usually requires solving the inverse
kinematics repeatedly, resulting in long runtimes [30, 25, 14,
24]. Porges et al. [20] propose a more efficient method to
generate capability maps by sampling random joint angles,
computing the forward kinematics, and eventually refining the
capability maps by inverse kinematics computations. However,

Fig. 1. Two modular robots with three (left) and six (right) degrees of
freedom and samples from their workspaces. Link modules are shown in
grey, and joint modules are shown in orange. The colored dots represent end
effector poses sampled by computing the forward kinematics for random joint
angles. Blue dots indicate a low manipulability measure, while the orange ones
represent positions at which the robot is locally more capable.

following their approach, even the coarsest map takes 15
seconds to generate, while more precise maps can take a
couple of minutes to more than a day.

One application of capability maps is the efficient gener-
ation of heuristics to evaluate the performance of different
robot morphologies, e.g., to optimize compositions of modular
reconfigurable robots [4, 28, 17]. However, this often requires
evaluating millions of robots [16], rendering the aforemen-
tioned methods for capability map computation infeasible.
Jamone et al. [10] and Boanta and Brisan [2] use neural
networks to estimate the workspace of a robot. However, the
work of Jamone et al. [10] assumes that the robot has a fixed
morphology, while the method of Boanta and Brisan [2] can
not capture the workspace geometry and only predicts the
workspace volume.

Neural Fields [26] have recently attracted significant atten-
tion as representations for temporal and spatial data. Existing
works use neural fields to represent scenes or distance-to-
collision functions in robot joint space [11, 15, 22]. Related to
our approach, Park et al. [19] use a signed distance function
to represent various shapes, while Mescheder et al. [18] train
a binary occupancy classifier. Both works create a conditional
neural field [26] to reconstruct various 3D shapes by providing
a latent vector that represents object features.



Fig. 2. Model architecture: The orange block represents an LSTM
embedding robot features in a latent vector c. The purple block represents
the mapper that predicts the capability measure s based on query position
p. The normalization parameters γi and βi (yellow) for the CBN in the
CResNetBlocks are computed by passing the latent vector c to fully connected
layers. There are five CResNetBlocks in the model.

III. APPROACH

We define the positional workspace W ⊂ R3 of a manipu-
lator as the set of all end effector positions over all possible
joint angles in its joint space Q. For a capability function
m : Q → R, the manipulator capability map f : R3 → R is

f(p) =

 max
FKp(q)=p

m(q) , if p ∈ W

ν , otherwise ,
(1)

where FKp(·) is the positional forward kinematics, i.e., the
position of the end effector for joint angles q. The special
value ν ∈ R indicates that position p is not reachable and
can be chosen according to the used capability function.
In this work, we use a conditional neural field to learn an
approximation of the capability map, given an encoding of
the robot morphology.

A. Learning Pipeline

Figure 2 shows our model architecture. We encode modular
robots composed of m modules in an n-dimensional vector per
module and stack these encodings in the morphology matrix
X ∈ Rm×n. A long short-term memory (LSTM) [9] embeds
X in the latent vector c. Conditioned by the latent vector c,
a mapper predicts a capability measure s for query position
p. The learnable parameters of the encoder and the mapper
are given by θ1 and θ2, respectively. The mapper is based
on the work of Mescheder et al. [18]. A CResNetBlock is a
pre-activation ResNet block [8] equipped with two conditional
batch-normalization (CBN) layers [6]. The CBN parameters γi
and βi are predicted by fully connected layers with input c.

B. Training

The prediction of a capability map for a manipulator re-
quires accurate knowledge about its workspace. We account
for this fact by first training a model with four CResNetblocks
to predict binary reachability maps

f̃(p) =

{
1, if p ∈ W
0, otherwise.

(2)

Afterward, we build a more sophisticated capability model
on top of the pre-trained reachability model. To this end,
we freeze the four trained CResNetBlocks and append an
additional CResNetBlock.

For every training step, we randomly sample n positions
and capability measures (pi, ŝi) for a single robot from our
training data and compute the loss as the mean-squared error

1

n

∑
i

(f(θ1,θ2)(pi,X)− ŝi)
2 . (3)

For the evaluation of model outputs si, we compute the
coefficient of determination [5]

R2 = 1−
∑n

i=1(si − ŝi)
2∑n

i=1(si −
1
n

∑n
j=1 ŝj)

2
. (4)

The advantage of this coefficient is that it considers both the
absolute errors and the variance of the ground truth values.
For a perfect model that accurately predicts the ground truth,
R2 = 1. If the model simply maps all inputs to the average
of the ground truth, R2 = 0.

IV. DATA GENERATION

We use Timor-Python [13] to generate various manipulators
from a set of robot modules. We combine five different types
of modules – base (B), rotational joint (J), I-shaped link (I), L-
shaped link (L), and end effector (EEF). While base, joint, and
end effector modules are unique, we discretely parametrize the
sizes of I and L-links. We sample the length of I-modules from
{0.1, 0.2, 0.3, 0.4, 0.5} and proximal and distal lengths of L-
modules from {(0.1, 0.3), (0.5, 0.5), (0.8, 0.4)}. Every module
is encoded by a seven-dimensional vector, where we use a
one-hot index vector to encode the five different module types
and concatenate it with two values indicating the module
size parameters. To generate a robot, we randomly sample
sequences of modules while ensuring that there are at most
two links between two consecutive joints.

Next, we collect workspace data for every randomly gen-
erated robot. We repeatedly sample random joint angles
and compute the corresponding end effector poses in the
workspace (see Figure 1). In the second step, we find a tight
over-approximation of the workspace W ⊃ W and discretize
it. For every position in W , we compute the distance to the
closest of the previously generated samples; if it exceeds a
threshold distance dt, we use a numeric inverse kinematics
solver to check if it can be reached. If the inverse kinematics
solver converges, we compute the corresponding capability
measure, otherwise, we set it to the special value s = ν.
Finally, we add the new positions to the initial dataset.



Fig. 3. Evaluation results of 1,239 test robots: The blue box plot presents
the overall results, and the other boxes demonstrate the results according to
the number of joints. The sample numbers in each group are 247, 263, 315,
and 414 corresponding to the number of joints from three to six.

V. NUMERICAL EXPERIMENTS

We generate a training set with 6,162 robots and a test set
with 1,239 robots. To account for the inherent complexity
of robots with more degrees of freedom, the distribution of
robots with three, four, five, and six joints is 2 : 2 : 3 : 4 in
both sets, respectively. We use the translational manipulability
index [29] as our capability measure for reachable positions.
To distinguish singularities with a manipulability index of zero
from unreachable points, we set ν = −1.

Figure 3 shows the overall distribution of R2 for the test
set. The mean R2 over all test samples is 0.8734. For robots
with three to six degrees of freedom (DOF), the mean R2 is
0.7588, 0.9067, 0.9169, and 0.8873, respectively.

Figure 4 visualizes slices of the 3D capability maps for
four samples selected from the test set. These results visually
underline the results from Figure 3, showcasing how the model
is able to capture different workspace shapes and capability
distributions. The inference time is 0.035 seconds for more
than 350, 000 query positions.

However, the evaluation results presented Figure 3 also
show that there are still a few outliers. After manual inspection,
we hypothesize that this can be attributed to capability maps
with a low variance of manipulability indices, such as for
manipulators with a planar workspace. Nevertheless, only
0.97% of the test samples have an R2 below zero.

Besides the test samples, we also evaluate the model on sev-
eral out-of-distribution samples. Figure 5 shows the resulting
maps for three variations of the six-DOF robot demonstrated
in Figure 4. The first robot contains modules with new link
lengths not present during training, while the following two
robots consist of module chains not included in the generated
dataset. For the first sample, we set the link size to 0.25 for
the I-link and the proximal and distal lengths to 0.12 and 0.48,
respectively, for the L-link. For the second one, we switch the
first joint-link pair (J,I) in the chain with a novel combination
(J,I,L,I) consisting of a joint and three links. Finally, for the

Fig. 4. Slices of capability maps with x ∈ [−0.03, 0.03] for four
different robots. The left side shows the ground truth, and the right side
shows the generated capability maps. The color of a point indicates the
corresponding manipulability measure, and grey points indicate positions
labeled as “unreachable”.

last sample, we add an additional joint to the beginning of the
kinematic chain, creating a seven-DOF robot.

The first sample yields a high R2 of 0.8589 despite con-
sisting of unfamiliar I-links and L-links. For the two samples
with novel module chains, the model achieves an R2 value
of 0.8536 and 0.8515, respectively. These results indicate that
our approach can extrapolate to manipulators that significantly
differ from those it is trained on. This includes robots with
more degrees of freedom than those in the training set.

VI. CONCLUSION AND FUTURE WORK

We have developed an approach based on neural fields to
efficiently generate high-quality capability maps of diverse
robotic manipulators. Our experiments show that the trained



Fig. 5. Visualization of capability maps for out-of-distribution samples: We
create three variations of the six-joint sample shown in Figure 4. The first
one corresponds to robots consisting of previously unseen modules, and the
next two correspond to previously unseen assemblies of modules. The left side
shows the ground truth, and the right side shows the generated capability maps.
The color of a point indicates the corresponding manipulability measure, and
grey points indicate positions labeled as “unreachable”.

model learns to accurately predict robot capability maps and
can also extrapolate to kinematics built from module sequences
not seen during training. Our approach works for arbitrary
capability measures, such as the global measure proposed by
Leibrandt et al. [14] and is only limited by the data that can
be generated. A current limitation of our approach is that we
currently do not account for self-collisions in the data gener-
ation process. In future work, we will extend the approach
to workspaces in SE(3), i.e., considering the manipulator
orientation. Besides, the model could be combined with other
algorithms, such as the work of Caverly et al. [3], to enable
online self-calibration.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support by the
Horizon 2020 EU Framework Project CONCERT under grant
101016007.

REFERENCES

[1] M. Althoff, A. Giusti, S. B. Liu, and A. Pereira. Effort-
less creation of safe robots from modules through self-
programming and self-verification. Science Robotics, 4
(31), 2019.

[2] Catalin Boanta and Cornel Brisan. Estimation of the
kinematics and workspace of a robot using artificial
neural networks. Sensors, 22(21):8356–8356, 2022.

[3] Ryan Caverly, Sze Kwan Cheah, Keegan R. Bunker,
Samir Patel, Niko Sexton, and Vinh L. Nguyen. On-
line self-calibration of cable-driven parallel robots using
covariance-based data quality assessment metrics. Jour-
nal of Mechanisms and Robotics, 17(1), 2025. in press.

[4] I.-Ming Chen. Theory and Applications of Modular
Reconfigurable Robotic Systems. PhD thesis, 1994.

[5] Davide Chicco, Matthijs J. Warrens, and Giuseppe Ju-
rman. The coefficient of determination R-squared is
more informative than SMAPE, MAE, MAPE, MSE and
RMSE in regression analysis evaluation. Peerj computer
science, 7, 2021.

[6] Harm de Vries, Florian Strub, Jérémie Mary,
H. Larochelle, Olivier Pietquin, and Aaron C. Courville.
Modulating early visual processing by language. In
Proc. of the Int. Conf. on Neural Information Processing
Systems (NeurIPS), volume 30, 2017.

[7] Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung
Kim, and Katsu Yamane. Computational co-optimization
of design parameters and motion trajectories for robotic
systems. The International Journal of Robotics Research,
37(13–14):1521–1536, 2018.

[8] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2015.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Computation, 9(8):1735–1780,
1997.

[10] Lorenzo Jamone, Martim Brandao, Lorenzo Natale,
Kenji Hashimoto, Giulio Sandini, and Atsuo Takanishi.
Autonomous online generation of a motor representation
of the workspace for intelligent whole-body reaching.
Robotics and Autonomous Systems, 62(4):556–567, 2014.

[11] Mikhail Koptev, Nadia Figueroa, and Aude Billard. Neu-
ral joint space implicit signed distance functions for
reactive robot manipulator control. IEEE Robotics and
Automation Letters, 8(2):480–487, 2023.

[12] Jonathan Külz and Matthias Althoff. Optimizing modular
robot composition: A lexicographic genetic algorithm
approach. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2024. in press.

[13] Jonathan Külz, Matthias Mayer, and Matthias Althoff.
Timor Python: A toolbox for industrial modular robotics.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), pages 424–431, 2023.

[14] Konrad Leibrandt, Lyndon da Cruz, and Christos Berge-



les. Designing robots for reachability and dexterity:
Continuum surgical robots as a pretext application. IEEE
Transactions on Robotics, 39(4):2989–3007, 2023.

[15] S. Lionar, Lukas Maximilian Schmid, César Cadena,
Roland Y. Siegwart, and Andrei Cramariuc. Neuralblox:
Real-time neural representation fusion for robust volu-
metric mapping. 2021 International Conference on 3D
Vision (3DV), pages 1279–1289, 2021.

[16] Jinguo Liu, Xin Zhang, and Guangbo Hao. Survey
on research and development of reconfigurable modular
robots. Advances in Mechanical Engineering, 8(8), 2016.

[17] Stefan B. Liu and Matthias Althoff. Optimizing perfor-
mance in automation through modular robots. In Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 4044–4050, 2020.

[18] Lars M. Mescheder, Michael Oechsle, Michael
Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3D reconstruction in
function space. Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR),
pages 4455–4465, 2018.

[19] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape represen-
tation. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 165–174,
2019.

[20] Oliver Porges, Theodoros Stouraitis, Christoph Borst, and
Maximo A. Roa. Reachability and capability analysis
for manipulation tasks. In Proc. of the Iberian Robotics
Conference (ROBOT), pages 703–718, 2014.

[21] Oliver Porges, Roberto Lampariello, Jordi Artigas, Armin
Wedler, Christoph Borst, and Maximo A. Roa. Reacha-
bility and dexterity: Analysis and applications for space
robotics. In Proc. of the Workshop on Advanced Space
Technologies for Robotics and Automation (ASTRA),
2015.

[22] Lennart Schulze and Hod Lipson. High-degrees-of-
freedom dynamic neural fields for robot self-modeling
and motion planning. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2024. in press.

[23] Amir Trabelsi, Juan Sandoval, Abdelfattah Mlika, Samir
Lahouar, Said Zeghloul, Jérôme Cau, and Med Amine
Laribi. Optimal multi-robot placement based on capabil-
ity map for medical applications. In Advances in Service
and Industrial Robotics, pages 333–342, 2022.

[24] Nikolaus Vahrenkamp, Tamim Asfour, Giorgio Metta,
Giulio Sandini, and Rüdiger Dillmann. Manipulability
analysis. In Proc. of the IEEE-RAS Int. Conf. on
Humanoid Robots (Humanoids), pages 568–573, 2012.

[25] Nikolaus Vahrenkamp, Harry Arnst, Mirko Wächter,
David Schiebener, Panagiotis Sotiropoulos, Michal
Kowalik, and Tamim Asfour. Workspace analysis for
planning human-robot interaction tasks. In Proc. of the
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
pages 1298–1303, 2016.

[26] Yiheng Xie, Towaki Takikawa, Shunsuke Saito,
Or Litany, Shiqin Yan, Numair Khan, Federico Tombari,
James Tompkin, Vincent Sitzmann, and Srinath Sridhar.
Neural fields in visual computing and beyond. Computer
Graphics Forum, 41(2):641–676, 2021.

[27] Mark Yim, Wei-Min Shen, Benham Salemi, Daniela Rus,
Mark Moll, Hod Lipson, Eric Klavins, and Gregory S.
Chirikjian. Modular self-reconfigurable robot systems
[grand challenges of robotics]. IEEE Robotics and
Automation Magazine, 14(1):43–52, 2007.

[28] Mark H. Yim, David Duff, and Kimon Roufas. PolyBot:
a modular reconfigurable robot. Symposia Proc. of the
Millenium IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 514–520, 2000.

[29] T. Yoshikawa. Manipulability and redundancy control
of robotic mechanisms. In Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), pages 1004–1009,
1985.

[30] Franziska Zacharias, Christoph Borst, and Gerd
Hirzinger. Capturing robot workspace structure:
representing robot capabilities. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS),
pages 3229–3236, 2007.

[31] Heng Zhang, Qiankun Sheng, Jiawei Hu, Xinjun Sheng,
Zhenhua Xiong, and Xiangyang Zhu. Cooperative trans-
portation with mobile manipulator: A capability map-
based framework for physical human–robot collabora-
tion. IEEE/ASME Transactions on Mechatronics, 27(6):
4396–4405, 2022.


	Introduction
	Related Work
	Approach
	Learning Pipeline
	Training

	Data Generation
	Numerical Experiments
	Conclusion and Future Work

