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Abstract

Information on the phase structure of strongly interacting matter at high baryon densities
can be gained from observations of neutron stars and their detailed analysis. In the present
work, Bayesian inference methods are used to set constraints on the speed of sound and
hence the equation of state of neutron star matter based on recent multimessenger data in
combination with limiting conditions from theoretical calculations. In view of the strong
constraints imposed by the heaviest known pulsars, the speed of sound must increase rapidly
to ensure the stability of these extreme objects. This required stiffness limits the possible
appearance of strong phase transitions in neutron star cores, which are characterized
by low sound speeds and extended phase coexistence regions. Given these data-based
constraints, much discussed issues such as the quest for a phase transition towards restored
chiral symmetry and the active degrees of freedom in cold and dense baryonic matter are
reexamined. Furthermore, we develop a novel methodology that can infer the equation of
state directly from detector observations without a previously necessary intermediate step.
This method relies on the use of neural simulation-based inference methods to learn the
analytically unavailable likelihood of the neutron star data. Our novel approach reduces
the numerical cost of including additional observations, allowing the inference to scale with
the anticipated surge of neutron star data in the coming years.

Zusammenfassung

Informationen über die Phasenstruktur von stark wechselwirkender Materie bei hohen
Baryonendichten können aus Neutronensternbeobachtungen und deren detaillierter Ana-
lyse gewonnen werden. In dieser Arbeit wird die Schallgeschwindigkeit und somit die
Zustandsgleichung von Neutronensternmaterie durch Bayes’sche Inferenzmethoden auf der
Basis aktueller Multimessenger-Daten in Kombination mit limitierenden Ergebnissen aus
theoretischen Berechnungen eingeschränkt. Für die Stabilität der schwersten bekannten
Pulsare ist ein rapider Anstieg der Schallgeschwindigkeit erforderlich. Diese notwendige
Rigidität der Zustandsgleichung beschränkt das mögliche Auftreten von starken Phasen-
übergänge mit niedrigen Schallgeschwindigkeiten und ausgedehnten Koexistenzregionen
in Neutronensternkernen. In Anbetracht dieser Einschränkungen durch die verfügbaren
Daten werden viel diskutierte Themen, wie die Frage nach einem Phasenübergang der zur
Wiederherstellung der chiralen Symmetrie führt und die aktiven Freiheitsgrade in kalter
und dichter baryonischer Materie, untersucht. Zudem entwickeln wir eine neue Methode
mit der die Zustandsgleichung direkt aus Detektorbeobachtungen abgeleitet werden kann
ohne einen zuvor erforderlichen Zwischenschritt. In dieser Methode wird die analytisch
nicht verfügbare Likelihood der Neutronensterndaten durch neuronale simulationsbasierte
Inferenzmethoden erlernt. Durch die hieraus resultierende numerische Kostenreduktion
für die Einbeziehung zusätzlicher Beobachtungen kann die Inferenz mit dem erwarteten
Anstieg an Neutronensterndaten in den kommenden Jahren skalieren.





All the remaining information in Fig. 1 [a sketch show-
ing possible phases of QCD] is based at best on educated
conjecture and at worst on wild speculation.

- Larry McLerran [1], 2020
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1
Introduction

Neutron stars are among the most extreme objects in the universe. The densities inside
their cores far exceed those reachable in terrestrial experiments, so that they provide
a unique window into the physics of strongly interacting matter under extreme density
conditions [2–6].

Just before the neutron was discovered in 1934, Lev Landau introduced the notion of
compact, dense stars that resemble giant atomic nuclei [7]. Only two years later, Walter
Baade and Fritz Zwicky advanced the idea that neutron-rich stars could form from the
remnants of supernovae following core collapse, coining the term ‘neutron stars’ [8]. In 1939
Richard Tolman [9] and, separately, Robert Oppenheimer and George Volkoff [10] derived
the system of differential equations describing the internal structure of neutron stars from
the general theory of relativity, now known as the Tolman–Oppenheimer–Volkoff equations.
Three decades later, the first observational evidence of a neutron star was discovered by
Jocelyn Bell and Antony Hewish [11].

For a long time the composition of neutron star interiors has been subject to speculation.
Under the extreme density conditions realized in their cores, matter could exist in various
exotic states [12], such as baryons in the form of hyperons and ∆ isobars [13–17], deconfined
quarks [18–21], color superconducting phases [22–24], quarkyonic matter [25, 26], or possibly
meson condensates [27–31]. The situation changed drastically when, via pulsar timing of
general relativistic Shapiro time delays, several heavy neutron stars with masses around two
times the mass of the sun were discovered [32–37]. These observations set severe constraints
on the neutron star matter equation of state (EoS), i.e., the relationship between pressure
and energy density, since the pressure inside the stars must be sufficiently high to stabilize
such heavy objects against gravitational collapse. Some previously discussed simple forms
of exotic matter could, therefore, be excluded when their corresponding EoSs turned out
to be too soft. Further important information came from the gravitational wave signals of
binary neutron star mergers observed by the LIGO and Virgo Collaborations [38, 39], with
resulting constraints on their tidal deformabilities. Moreover, the NICER telescope on
board the International Space Station measured pulse profiles of hot spots on the surfaces
of rapidly rotating pulsars. From those, the combined mass and radius of the corresponding
two neutron stars could be inferred [40–43]. This database has recently been extended by
the black widow pulsar PSR J0952-0607 [44], which is the heaviest neutron star found so
far and also one of the fastest rotating pulsars. A second recently reported object is the
supernova remnant HESS J1731-347 [45] with an unusually small mass and radius. The
most recent addition to the database is PSR J0437-4715, the third neutron star measured
by the NICER telescope, for which preliminary results have only very recently become
available [46]. Many more multimessenger observations are expected in the future.
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2 INTRODUCTION

In principle the physics of dense matter in the core of neutron stars is governed by
Quantum Chromodynamics (QCD), the theory of the strong interaction. At asymptotically
high baryon densities far beyond those encountered in neutron stars, weakly interacting
quarks and gluons are the relevant active degrees of freedom, and perturbative QCD
(pQCD) computations become feasible [47–49]. The opposite, low-density limit is accessible
by chiral effective field theory (ChEFT) as the low-energy realization of QCD. ChEFT
provides a systematic framework with controllable uncertainties for dealing with nuclear
many-body systems [50, 51]. This approach gives satisfactory descriptions of nuclear and
neutron matter [52] in a range of validity up to densities n ∼ 1− 2n0, with n0 ≃ 0.16 fm−3

the equilibrium density of nuclear matter. Between these extremes, the nature and location
of the transition from cold dense nuclear or neutron matter to quark and gluon degrees of
freedom is still largely unknown. With the ab-initio method of numerically solving QCD on
a lattice at non-zero baryon densities severely hindered by the sign problem of the fermionic
determinant [53], theoretical calculations extending from n ∼ 2n0 to high densities are
mostly based on models [54]. Various hypotheses have been discussed in the literature,
ranging from a first-order (chiral) phase transition to a continuous hadron-quark crossover
[25, 26, 47, 50, 55–58]. All possible scenarios for phase transitions or crossovers in dense
matter would leave their characteristic signatures in the speed of sound, c2

s = ∂P (ε)/∂ε.
This motivates an investigation of constraints on the behavior of the sound speed in
neutrons stars based on the presently available data [59].

In this work we translate the recently collected exterior neutron star observables, together
with nuclear physics constraints at low densities from ChEFT [60, 61] and constraints
from pQCD at asymptotically high densities [49, 62], into restrictions for interior neutron
star properties using Bayesian inference, an approach which has been used extensively in
the literature [2, 63–107]. There has been a growing interest in complementary methods
based on machine learning [108–128]. Alternative approaches simply remove equations of
state that do not reproduce neutron star properties within the credible intervals of the
astrophysical observables [129–137]. In our analysis we pay particular attention to the
speed of sound inside neutron stars. It is modeled using multiple general representations
that can describe a variety of different phase structures depending on their parameters
[67, 130, 131, 138]. A comparison of inference results with different functional forms as
input gives an impression of the model dependence caused by possible biases in the choices
of parametrizations. We investigate the roles of low- and high-density constraints from
ChEFT and pQCD in detail. From the inferred behavior of the sound speed and the
equation of state we can deduce implications regarding the likelihood of phase transitions
inside neutron stars. Special emphasis is put on the additional impact of the heaviest
known pulsar, PSR J0952-0607, in comparison with previously available data. Part of this
discussion also concerns the possible range of validity for a description of neutron star
matter in terms of conventional baryonic degrees of freedom. In view of the constraints
emerging from the analysis of the observational data, we discuss implications for the
structure and composition of dense matter in neutron star cores. We address the quest for
a chiral phase transition, quark-hadron continuity and its realization as a soft crossover
and a Fermi liquid approach to neutron star matter.

Inferring the equation of state of neutron star matter directly from astrophysical multi-
messenger detector data is not numerically feasible using conventional Bayesian methods.
Therefore, in our inference analysis we follow the traditional approach to carry out the
inference in two steps [139, 140]. In a first step, exterior neutron star properties, such
as the mass, radius and tidal deformability, are inferred from the observed detector data.
Then, the EoS is inferred from a set of exterior neutron star properties in a second step,
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introducing additional assumptions. Recent works have shown promise in directly inferring
the EoS from detector data in a single step [127, 128]. These studies analyzed spectro-
scopic measurements of thermal surface emissions from quiescent low-mass X-ray binaries
(qLMXBs) [141] using deep learning methods, where artificial neural networks are trained to
model complex non-linear relationships. Similar techniques have successfully been applied
to study strongly interacting matter under extreme conditions [142, 143]. While these
approaches offer a direct EoS prediction from observed telescope spectra, their high com-
putational cost limits access to the full posterior distribution. This work presents a novel
method that addresses the limitations of previous approaches. We employ neural likelihood
estimation (NLE) [144], a recently developed simulation-based inference technique that
utilizes normalizing flows, a class of neural networks capable of modeling high-dimensional
probability distributions [145, 146]. Once trained, the evaluation of normalizing flows
is computationally inexpensive, allowing for the calculation of the posterior across the
high-dimensional parameter space for inference, marginalization, profiling, or visualization.
Since neural networks are, by design, differentiable functions, we can efficiently sample
the posterior using state-of-the-art sampling methods, such as Hamiltonian Monte Carlo
(HMC) [147, 148]. This approach naturally scales to the anticipated increase in neutron
star observations in the future, as it does not require retraining to apply to larger data
sets.

This thesis is organized as follows: chapter 2 reviews the theoretical background relevant
for inferring the neutron star EoS. We discuss the formation and properties of neutron
stars, review the theory of gravity necessary for deriving the Tolman–Oppenheimer–Volkoff
equations, and provide an introduction to Quantum Chromodynamics and the possible
phases of strongly interacting matter at finite temperatures and chemical potentials. Finally,
we introduce neural networks and their training, focusing specifically on normalizing flows.
In chapter 3, we introduce the parametrizations used to model the speed of sound in
neutron stars and explain the statistical procedures employed to infer constraints on
neutron star properties. This chapter details both the conventional two-step method as
well as our novel simulation-based inference approach. We also provide an overview of the
currently available multimessenger observations of neutron stars. Chapter 4 presents the
results of our inference. We examine the evidence for (or against) a strong first-order phase
transition within neutron stars and discuss implications for the phenomenology of neutron
star matter. Lastly, we show the performance of our novel one-step inference method on a
test set of simulated data. The final chapter 5 provides a summary of the key findings and
concludes this thesis.

Throughout this work, we will be working in natural units, in which both the reduced
Planck constant ℏ and the speed of light c are set to unity.





2
Background

In this chapter, we introduce the theoretical background necessary for the inference
of the neutron star matter equation of state. We begin by discussing the formation of
neutron stars in core-collapse supernovae and explain typical ranges for their macroscopic
properties. We briefly introduce the theory of gravity necessary to derive the Tolman–
Oppenheimer–Volkoff equations. These equations can be solved for a given neutron star
equation of state, or alternatively a given speed of sound, to determine the possible
values for the masses and radii of neutron stars. Additional equations can be solved
to obtain the tidal deformability, which quantifies the response of a star to an external
gravitational field. In order to understand the physics of neutron star matter which
determines the equation of state, we review the theory of the strong interaction, Quantum
Chromodynamics (QCD). We discuss the fundamental symmetries of strongly interacting
matter and introduce computational frameworks available at different density regimes;
chiral effective field theory at low densities and perturbative QCD at asymptotically high
densities. Furthermore, we provide an overview of the possible phases of strongly interacting
matter at finite temperatures and chemical potentials. At the end of this chapter, we
introduce fundamental concepts of deep learning, focusing on how artificial neural networks
are trained to approximate non-parametric functions. We specifically discuss normalizing
flows, a class of neural networks designed to model complex probability distributions.

2.1 Neutron stars

2.1.1 Formation & properties

Neutron stars are one of the last stages in the stellar evolution of massive stars with a
mass exceeding eight solar masses, M > 8M⊙ [149]. The sequential stages culminating
in the formation of a neutron star are sketched in Fig. 2.1. Stars remain stable through
thermonuclear fusion within their central cores, where thermal and radiation pressure
counterbalance gravitational forces. The fusion of hydrogen into helium and subsequently
heavier elements continues until the creation of iron, marking the endpoint of exothermic
nuclear fusion reactions. Consequently, stellar nucleosynthesis results in the formation of
an iron-rich core, which is supported by electron degeneracy pressure. The surrounding
shell continues fusion, adding further mass to the core.

When the core mass surpasses the Chandrasekhar limit, M ≳ 1.4M⊙, gravitational
forces overcome electron degeneracy pressure, prompting core collapse [151]. The collapse
leads to a rapid increase in temperature, enabling the creation of neutrons through electron
capture, p+ e− → n+ νe, which releases a large amount of neutrinos. At some point, the

5



6 BACKGROUND

FIG. 2.1. Stages in the stellar evolution of massive stars: through stellar nucleosynthesis an iron-rich
core forms in a supergiant star. When the core mass exceeds 1.4 solar masses, it collapses. The
implosion is halted by strong force repulsion and neutron degeneracy pressure, and bounces back into
a supernova. After most of the material has been ejected, the remaining collapsed core forms either a
black hole or a neutron star, depending on its mass [images created with DALL·E, openAI [150]].

contraction is impeded by the repulsion of strong nuclear forces and neutron degeneracy
pressure, leading to a rebound and outward bounce. The resultant shock wave combined
with the released neutrinos triggers a supernova explosion that expels most of the star’s
material, leaving behind only the collapsed core. Depending on its mass, the remnant
forms either a neutron star or a black hole. Neutron stars can also originate from white
dwarfs that collapsed following mass accretion from a companion or through a merger.

Because the angular momentum of the initial star is conserved, but its radius is dramati-
cally reduced in the collapse, the remaining neutron star has a greatly increased rotational
speed. The fastest observed neutron stars have orbital periods of only 1.4 ms [44, 152] and
correspondingly large angular velocities ω of 4.5× 103 rotations per second. The velocity
at the surface of the neutron star must be less than or equal to the speed of light c,

vsurf = ωR ≤ c . (2.1)

This shows that with the increase of ω due to the collapse, the radius R reduces from
the star’s initial value of about 106 km to only R ∼ 10 km. Conservation of the magnetic
flux, ϕ = BπR2, implies that the magnetic field strength B must increase considerably
with the drastic reduction of the radius. Consequently, neutron stars exhibit some of the
most intense magnetic fields observed in the universe, reaching values up to 1015 G at their
surfaces [153]. These strong magnetic fields accelerate particles, leading to the emission
of synchrotron radiation. If the star’s magnetic- and rotation axis are not aligned, the
double cone of emitted radiation rotates with the frequency of the neutron star. If earth
lies within this radiation path, we can observe regularly recurring signals from this pulsar.
This is how neutron stars were first discovered in 1967 [11]. Since then several thousand
pulsar sources have been detected [154, 155]. Over time, pulsars gradually spin down due
to the conversion of their rotational energy into emitted electromagnetic radiation [4].

For the stars to maintain stability, the gravitational force acting on a test mass m at
their surface must be equal or greater than the outwards directed centrifugal force,

GN
Mm

R2 = mω2R , (2.2)



2.1. NEUTRON STARS 7

where GN is the gravitational constant. This stability condition indicates that the masses
of neutron stars are of the order of the sun’s mass, M ∼ M⊙. In fact, stellar evolu-
tion calculations of core-collapse supernovae predict a minimum neutron star mass of
1.17M⊙ [156], while the maximum mass for neutron stars is expected to be in the range
Mmax ∼ 2− 2.5M⊙. Their extreme masses and small radii result in neutron stars having
densities up to six times the equilibrium density of nuclear matter, n0 = 0.16 fm−3. These
densities far surpass those reachable in terrestrial experiments [157], such that neutron
stars provide a unique window to study physics at extremely high densities. At birth in a
supernova, neutron stars have temperatures of 1011 − 1012 K [149, 158], rapidly cooling to
less than 106 K through neutrino emission [159]. This temperature is much smaller than
the large Fermi temperature of nucleons in neutron stars, which can reach values up to
∼ 1012 K, so that we can consider neutron stars to be cold.

The structure of neutron stars is depicted in Fig. 2.2. They are believed to possess a thin
gaseous atmosphere extending up to several centimeters [160] which is primarily composed
of ionized hydrogen, with the potential inclusion of helium or carbon. While its mass is
negligible, the atmosphere influences thermal emission emitted from the neutron star’s
surface [161]. Beneath the surface lies the neutron star crust, reaching a depth of around 1
kilometer [160]. The outer crust is comprised of ionized atoms, forming a lattice of iron
nuclei surrounded by a degenerate relativistic gas of electrons. As the density increases,
the electron Fermi energy rises, making electron capture energetically favorable and leading
to the formation of increasingly neutron-rich nuclei. Around a neutron drip density of
approximately 2× 10−3 n0, neutrons start dripping out from the nuclei, forming clusters
of nuclear matter in the inner crust [3]. With a further increase of density, these clusters
cannot retain their spherical form due to the interplay between nuclear and electromagnetic
forces, such that they take complex shapes commonly referred to as ‘nuclear pasta’ [161].
The neutron star crust extends to a density of around 0.5n0, before transitioning to a
state of pure nuclear matter in the neutron star core [160]. This core, constituting the
majority of the neutron star’s mass, is predominantly composed of neutrons, which are in
beta equilibrium with a small fraction of protons and electrons to ensure charge neutrality.
Muons begin to appear when their chemical potential equals that of the electrons. The
innermost core of neutron stars may potentially exhibit exotic degrees of freedom as detailed
in Sec. 2.2.4.

Outer core

outer core

inner
core

outer crust

inner crust

atmosphere

~ 11~ 0.5

~ 4

~ 10−3

~ 12

FIG. 2.2. Schematic cross-section of a neutron star. With decreasing radius r the baryon density
n inside the neutron star (in units of the nuclear saturation density, n0 = 0.16 fm−3) increases. The
radii are not true to scale.
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2.1.2 Tolman–Oppenheimer–Volkoff equations

The theory of general relativity, developed by Albert Einstein [162], provides a geometric
framework for understanding gravitation as the curvature of four-dimensional spacetime
induced by mass and energy. Objects move on curved paths influenced by the geometry of
spacetime, leading to phenomena such as the bending of light by massive objects apparent
from gravitational lensing. This theory is needed to understand the internal structure of
neutron stars, where extreme conditions of density and gravity necessitate a departure
from classical Newtonian gravity. In this section we briefly introduce the theory of gravity
necessary for the derivation of the Tolman–Oppenheimer–Volkoff equations1, for more
details see, e.g., Refs. [164, 165].

Let us denote a general spacetime coordinate as xµ. The curvature of spacetime can be
represented via a metric gµν , allowing the definition of an invariant distance as

ds2 = gµνdx
µdxν . (2.3)

The fundamental field equation of general relativity is Einstein’s equation:

Gµν = 8πGNTµν , (2.4)

where the Einstein tensor Gµν , derived from the metric tensor gµν and its derivatives,
characterizes the spacetime curvature. In flat spaces without gravity, i.e., in the absence
of masses, the Einstein tensor becomes zero. For finite masses, it is proportional to the
symmetric energy-momentum tensor Tµν , which adheres to energy-momentum conversation,

∇µT
µν = 0 . (2.5)

In the presence of a spherically symmetric and static source, such as a neutron star, the
metric takes the following form:

ds2 = α(r)dt2 − β(r)dr2 − r2dΩ , (2.6)

where the radius-dependent functions α(r) and β(r) can be determined by taking the New-
tonian limit of small masses and weak gravity. Outside the source, the energy momentum
tensor vanishes and the metric takes the form of the Schwarzschild solution. Assuming
matter inside the neutron star can be described as an ideal fluid with isotropic pressure P ,
four-velocity uµ and energy density ε, the energy momentum tensor takes the following
form:

Tµν = (ε+ P )uµuν − P · gµν . (2.7)

By matching to the exterior Schwarzschild solution, one can derive the coupled system of
differential equations called the Tolman–Oppenheimer–Volkoff (TOV) equations [9, 10]

∂P (r)
∂r

= −GN

r2
[
ε(r) + P (r)

] [
m(r) + 4πr3P (r)

](
1− 2GN m(r)

r

)−1

, (2.8)

∂m(r)
∂r

= 4πr2ε(r) . (2.9)

Given a relationship between pressure and energy density, P (ε), commonly referred to as
the equation of state, this coupled system of differential equations can be solved with the
boundary condition m(r = 0) = 0 and a given central pressure P (r = 0) = Pc.
1 Parts of the text in this section have been adapted from Refs. [96, 163].
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The total mass of the star can be computed by integrating the second TOV equation
M = m(R) = 4π

∫ R
0 dr r2ε(r), while the star’s radius R is determined as the point at which

the pressure vanishes, i.e., P (R) = 0. Directly solving to find the pressure vanishing point
is not convenient for numerical solutions. Instead, following [166], an approach based on
the effective enthalpy h =

∫ P
0 dP ′ (ε(P ′) + P ′)−1 can be employed, see Appendix A for

more details. The TOV equations describe non-rotating neutron stars, with the impact of
rotation on M and R expected to become only relevant for very high pulsar spin frequencies
[161, 167]. Numerical solutions of the TOV equations for various central pressures yield
possible combinations of M and R, forming the mass-radius relation. Stability of a sequence
of masses and radii is guaranteed only when the neutron star masses increase with the
central pressures,

dM
dPc

> 0 , (2.10)

generally culminating in a maximum supported mass Mmax, beyond which no stable
solutions exists. This endpoint of the mass-radius relation is linked to a maximum central
pressure, Pc,max, and a corresponding maximum energy density, εc,max, reached in the star’s
center. In general, stiffer equations of state reaching higher pressures at smaller energy
densities tend to support larger maximum masses. Extended first-order phase transitions
can lead to disconnected mass-radius relations, where the endpoint of the (M,R)-sequence
does not necessarily correspond to the maximum supported mass.

Matter in the interior of a neutron star can be described in terms of the squared adiabatic
speed of sound,

c2
s(ε) = ∂P (ε)

∂ε
≥ 0 , (2.11)

from which the equation of state can be determined via

P (ε) =
∫ ε

0
dε′ c2

s(ε′) . (2.12)

Causality demands that the speed of sound must always remain smaller than or equal to
the speed of light, i.e., cs ≤ 1 in units where c is set to unity. In addition, thermodynamic
stability of the star dictates that the derivative ∂P/∂ε must be non-negative. As a measure
of the coupling strength of matter, the behavior of the sound speed c2

s is a prime indicator
for the phase structure realized inside neutron stars, as will be explained in more detail in
Sec. 2.2.4.

2.1.3 Tidal deformability

In addition to its mass and radius, we can also gain insights into the internal structure of
a neutron star by probing its response to the gravitational field of a nearby massive body,
e.g., a second neutron star. In such binary systems, the external quadrupolar tidal field of
the companion star εij induces a quadrupole moment in the neutron star Qij [168, 169],

Qij = −λεij . (2.13)

Here, λ is the tidal deformability, which is related to the l = 2 tidal Love number
k2 = 3/2λR−5 that quantifies the susceptibility of a celestial body to deform under
the influence of external tidal forces (to leading order in spherical harmonics). The external
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tidal field εij and the star’s quadrupole moment Qij are defined as coefficients in an asymp-
totic multipole expansion of the metric at large distances. In the Newtonian limit εij is
equivalent to the second spatial derivative of the external gravitational potential [160, 170].

The change from equilibrium due to an external quadrupolar field can be modeled via
a linear static metric perturbation gµν = g

(0)
µν + hµν in the Einstein equation (2.4). The

components of the perturbation hµν can be expressed in terms of a function H(r) [169].
This results in the following system of coupled differential equations that have to be solved
simultaneously with the TOV equations (2.8 - 2.9):

∂H

∂r
= β , (2.14)

∂β

∂r
= 2β

r

(
1− 2m

r

)−1 {
−1 + m

r
+ 2πr2(ε− P )

}
+ 2

(
1− 2m

r

)−1
H

×

−2π
[
5ε+ 9P + (ε+ P ) ∂ε

∂P

]
+ 3
r2 + 2

(
1− 2m

r

)−1 (m
r2 + 4πrP

)2
 .

(2.15)

This system has to be integrated outwards starting just outside the center using the
expansion H = a0r

2 and β = 2a0r for small radii r [171]. The constant a0 can be chosen
arbitrarily as it cancels out in the later expression for k2. After defining the function
y(R) = R β(R)/H(R) as well as the compactness C = M/R, the l = 2 tidal Love number
can be determined from:

k2 =8C5

5 (1− 2C2)(2 + 2C(y − 1)− y)
{

2C
[
6− 3y + 3C(5y − 8)

]
+4C3

[
13− 11y + C(3y − 2) + 2C2(1 + y)

]
+ 3(1− 2C)2

×
[
2− y + 2C(y − 1)

]
log(1− 2C)

}−1
. (2.16)

From k2 we can compute the dimensionless tidal deformability2 [171]

Λ = 2
3k2

(
R

M

)5

. (2.17)

With the outlined procedure, for a given neutron star equation of state the corresponding
tidal deformability can be computed together with the mass-radius relation. This is
illustrated in Fig. 2.3 for one example EoS. Here, we use the LALSuite library for a fast
numerical solution of the full system of coupled differential equations [172].
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FIG. 2.3. Numerically solving the TOV equations (2.8 - 2.9) together with Eqs. (2.14) and (2.15)
for various central pressures yields the mass-radius relation (M,R) as well as the tidal deformability
Λ for a given equation of state, P (ε), illustrated here for one example EoS.
2 In the following, we will just use the term ‘tidal deformability’ to refer to the dimensionless tidal

deformability Λ.
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2.2 Quantum Chromodynamics
In this section we give a brief introduction to the theory of the strong interaction, which
has been formulated on the basis of the fundamental symmetries that govern the dynamics
between quarks and gluons3. One important aspect of the strong interaction is its approx-
imate chiral symmetry, which serves as a guiding principle for a systematic low-energy
description via chiral effective field theory. In contrast, the behavior at high energies can be
understood through perturbative quantum field theory calculations. Strongly interacting
matter is characterized by a complex phase structure at finite temperatures and chemical
potentials. The primary degrees of freedom at high densities are still unknown, but insights
can be gained from the study of neutron stars.

2.2.1 Fundamental symmetries

The standard model of particle physics stands as the preeminent theoretical framework
describing the fundamental constituents of matter and their interactions, excluding the
gravitational force (which is described by the theory of general relativity, see Sec. 2.1.2). A
central part of this model is Quantum Chromodynamics (QCD), the quantum field theory
of the strong interaction that describes the dynamics between quarks and gluons [173].

Quarks are fermionic particles with a spin of 1/2 whereas gluons are massless bosons
with a spin of 1. There are six different flavors of quarks — up, down, charm, strange, top,
and bottom — each endowed with distinct masses [174]. The strong interactions between
quarks and gluons are responsible for the formation and processes of hadrons, composite
particles made of two or more quarks. The discovery of hadrons like ∆++ and Ω− baryons
that appear to consist of three quarks with the same quantum numbers was historically
important for the development of QCD. This apparent violation of the Pauli exclusion
principle necessitated the introduction of a novel quantum number: color.

Color, in the context of QCD, is an attribute similar to the electric charge, albeit with
three different manifestations: red, green, and blue, as well as their anti-colors. With this
additional quantum number to distinguish quarks, the apparent paradox of same-flavor
baryons could be resolved. Unlike the electromagnetic force, wherein charge neutral photons
mediate interactions, gluons, as carriers of the strong force, carry color charges. This
characteristic manifests in self-interactions among gluons. Both gluon self-interactions and
the interactions between quarks and gluons exhibit invariance under SU(3)c rotations in
color space. Guided by this fundamental gauge symmetry the Lagrangian of Quantum
Chromodynamics (QCD) has been constructed, providing a mathematical description of
the underlying dynamics of strong interactions:

LQCD =
∑

f

q̄f (iDµγ
µ −mf )qf −

1
4F

a
µνF

aµν . (2.18)

Here, qf represents the quark fields, while mf signifies the corresponding masses for each
quark flavor f , and γµ are the Dirac gamma matrices. The covariant derivative Dµ is given
by

Dµ = ∂µ + igAa
µ(x)T a . (2.19)

In addition to the kinetic term of the quarks, this characterizes the interaction of quarks
with gluons, with Aa

µ representing the gluonic fields, g being the strong coupling constant,
3 Parts of the text in this section have been adapted from Refs. [96, 163].
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and T a denoting the generators of the SU(3)c group. The latter can be explicitly represented
in terms of the Gell-Mann matrices, T a = λa/2. The gluon field-strength tensors F a

µν are
defined as:

F a
µν = ∂µA

a
ν(x)− ∂νA

a
µ(x)− gAb

µ(x)Ac
ν(x)fabc . (2.20)

Here, fabc are the totally antisymmetric structure constants associated with the Lie algebra
formed by the generators, [T a, T b] = ifabcT c.

Due to the three- and a four-gluon self-interactions, which arise from the product of
the two field-strength tensors in the Yang–Mills term in Eq. (2.18), we do not observe any
isolated color-charged particles. Quarks and gluons are always contained in color-neutral
composite objects such as hadrons. This phenomenon, referred to as confinement, is
manifest in the coupling constant of the strong interaction, which becomes increasingly
large at small energies. Consequently, perturbative expansions in the coupling constant,
which have been very successful in computing electroweak interactions, are not feasible for
quark and gluon interactions in this energy regime.

Instead, in a strategy known as lattice QCD, observables can be numerically computed
using Monte Carlo methods [175]. At large baryon densities and small temperatures this
approach is severely hindered by the sign problem [53]; for non-zero chemical potentials the
fermionic determinant acquires a complex phase, so that it can no longer be interpreted
as a probability weight in the Monte Carlo procedure. Alternatively, non-perturbative
techniques, including Dyson–Schwinger equations and functional renormalization group
methods, have been developed [176, 177]. Beyond these approaches, low-energy descriptions
capturing the relevant degrees of freedom, i.e., baryons and mesons, can be employed
to describe strongly interacting matter in this energy regime, see Sec. 2.2.2. The strong
coupling decreases at higher energies, making perturbative calculations of QCD feasible
under conditions of extremely high temperatures or densities, as explained in Sec. 2.2.3.
This behavior is termed asymptotic freedom.

An important characteristic of the QCD Lagrangian lies in its approximate chiral
symmetry. This becomes evident through the projection of quark fields onto their left-
and right-handed components, denoted as qL/R = PL/Rq, with projectors PL/R = 1

2(1∓ γ5)
employing the Dirac gamma matrix γ5. Under these projections, the QCD Lagrangian
takes the following form:

LQCD = q̄LiD
µγµqL + q̄RiD

µγµqR − q̄LmqR − q̄RmqL −
1
4F

a
µνF

aµν . (2.21)

This reformulation reveals that only the mass terms couple left- and right-handed fields.
This is of some consequence since the masses of the three lightest quarks (up, down and
strange) are small enough to be neglected under most circumstances [174]. In the chiral
limit of vanishing light quark masses, the QCD Lagrangian of the light flavors becomes
invariant under separate unitary transformations to the left- and right-handed quark fields.
This symmetry can be further decomposed into:

U(3)L ×U(3)R
∼= SU(3)L × SU(3)R ×U(1)L ×U(1)R . (2.22)

According to Noether’s theorem, continuous symmetries yield conserved currents. For
the above symmetries, we can combine the conserved left- and right-handed currents into
vector (V = L + R) and axial (A = L− R) currents,

V a
µ = q̄γµT

aq , Aa
µ = q̄γµγ5T

aq , (2.23)
Vµ = q̄γµq , Aµ = q̄γµγ5q . (2.24)
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The singlet axial current Aµ is not conserved due to the anomalous breaking of the U(1)A
symmetry in QCD, which is evident from the observed decay of neutral pions into two
photons. On the other hand, the singlet vector current Vµ always remains conserved and is
linked to baryon number conservation.

The absence of parity doublets in the observed particle spectrum indicates that the
axial symmetry, corresponding to the current Aa

µ, is not present in the ground state of
the theory. This indicates that the chiral symmetry SU(3)L × SU(3)R is spontaneously
broken to SU(3)V. Goldstone’s theorem states that there exits one corresponding massless
Nambu–Goldstone boson for each generator of a spontaneously broken symmetry. In the
context of spontaneously broken chiral symmetry, the eight massless Goldstone bosons can
be identified with the lightest mesons; the three pions (π±, π0), the four kaons (K±, K0,
K̄0) and the eta meson (η). The non-vanishing masses of the three lightest quarks — mu,
md and ms — explicitly break chiral symmetry, such that the lightest mesons possess finite
masses instead of being massless. Since the mass of the strange quark is much larger than
the up and down quark masses, kaons and eta mesons are heavier than pions [174]. In
the limit mu = md ̸= 0 the QCD Lagrangian remains invariant under the reduced vector
symmetry SU(2)V corresponding to isospin symmetry.

2.2.2 Chiral effective field theory

Guided by the symmetry properties of QCD discussed in the preceding section, we can con-
vert the highly non-perturbative structure of the theory into a more transparent framework.
Chiral effective field theory (ChEFT) provides a systematic ansatz to describe low-energy
QCD dynamics, particularly the behavior of light mesons, based on the spontaneously
broken chiral symmetry [50, 178, 179]. To construct this effective field theory, Steven
Weinberg suggested to formulate the most general Lagrangian consistent with the present
symmetries [180]. This entails ensuring that the Lagrangian is invariant under chiral
symmetry SU(3)L × SU(3)R while its ground state must remain invariant under the vector
symmetry SU(3)V.

Note that the Goldstone bosons transform non-linearly under chiral transformations.
Therefore, to construct a chirally invariant Lagrangian, we employ instead the unitary
matrix U(x) = exp(iϕ(x)/f0) as the central building block, where the Goldstone bosons are
collected into the matrix ϕ(x). This unitary matrix transforms under chiral transformations
as U(x) → RU(x)L†, where (L,R) ∈ SU(3)L × SU(3)R. The Lagrangian can then be
constructed based on combinations of the field U(x) and its derivatives, with Lorentz
invariance allowing only even numbers of derivatives. Expanding in the order of derivatives
yields the following effective Lagrangian:

Leff = δLM + L2 + L4 + . . . . (2.25)

Here the constant zeroth-order term L0 was omitted. The contribution δLM accounts for the
explicit symmetry breaking and is linear in the quark mass matrix M = diag(mu,md,ms),
transforming as M → RML† under chiral transformation. At leading order, the Lagrangian
takes the following form:

LLO
eff = δLM + L2

= f2
0
2 vTr[MU † + UM †] + f2

0
4 Tr[∂µU∂

µU †] . (2.26)
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Through matching to QCD matrix elements, the constant f0 is identified as the pion
decay constant fπ in the chiral limit, while the constant v is related to the chiral quark
condensate.

According to the Lagrangian Leff, couplings between Goldstone bosons inherently involve
derivatives. Consequently, both higher-order terms with more derivatives and loop correc-
tions that introduce additional vertices depend on the squared momenta of the Goldstone
bosons. At low energies, these momenta are of order of the Goldstone boson masses,
which are small compared to the chiral scale, Λχ ∼ 1 GeV. Thus, chiral effective field
theory provides a systematic perturbative expansion in the squared momenta and masses
of the Goldstone bosons. One can estimate the magnitude of the missing contributions
from higher orders using these expansion parameters. When going to higher orders, it
becomes necessary to match further low-energy constants that parameterize unresolved
short-distance dynamics to experimental data or lattice QCD calculations.

The extension of the effective Lagrangian to include baryons can be done similarly guided
by the spontaneously broken chiral symmetry [178, 179]. However, due to the sizable
baryon masses of the same order of magnitude as the chiral scale, a revision of the naive
power counting of the perturbative series is necessary [181, 182]. The low-energy constants
of this effective field theory are fitted to a large amount of empirical nucleon-nucleon and
pion-nucleon interaction data. The nuclear two- and three-body forces computed within
the ChEFT framework can be combined with many-body methods for an extension to
finite densities [51, 183, 184]. These many-body calculations yield compelling results for
low-density nuclear phenomenology, i.e., reproducing key features such as the location of
the critical point of the nuclear liquid-gas phase transition of symmetric nuclear matter in
close agreement with empirical values [52, 185].

At its current state of development ChEFT is believed to be applicable up to densities of
approximately n ∼ 1− 2n0. The results obtained for symmetric nuclear and pure neutron
matter within this framework can be extrapolated to neutron star matter by including beta
equilibrium conditions [129]. In recent works a novel ansatz has been introduced based
on a Gaussian process to derive combined uncertainties from many-body approximations
and from missing higher order terms beyond next-to-next-to-next-to-leading chiral order
(N3LO) [186–188]. In this way posterior credible bands could be derived for the squared
speed of sound, c2

s(n), as a function of density up to two times nuclear saturation density,
n = 2n0 [60, 61], which are depicted in Fig. 2.4. These credible bands also agree with the
results found independently by another group [189]. The ChEFT results serve as a rigorous
constraint on the equation of state for neutron star matter at low densities [60, 183, 184,
190]. In Sec. 3.4.5 we outline the implementation of this constraint in our inference analysis.
Note that these calculations do not include hyperons, i.e., baryons containing one or more
strange quarks, or ∆ baryons which might become relevant at higher densities.

2.2.3 Perturbative QCD

At extremely high densities and temperatures, the coupling constant of the strong interaction
decreases due to asymptotic freedom, such that a perturbative weak-coupling expansion of
QCD becomes feasible. To incorporate finite temperatures and chemical potentials, one
can employ a thermal field theory approach [191]. In the static case of thermal equilibrium,
the pressure can be computed from the grand-canonical partition function,

Z = Tr[e−β(H−µN)] , (2.27)
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FIG. 2.4. Squared sound speed in neutron star matter from N3LO ChEFT results displayed as a
function of baryon density n in units of the nuclear saturation density, n0 = 0.16 fm−3. Correlated
uncertainty bands are given at the 1σ (dashed) and 2σ (dotted) levels. Figure adapted from [61].

where H is the QCD Hamiltonian, N is the particle number operator, β = 1/T is the inverse
temperature, and µ is the chemical potential ensuring particle number conservation. Central
to this approach is the Matsubara formalism, which recognizes the resemblance between
Z and the standard QCD partition function, if one identifies the inverse temperature β
with an imaginary time −iτ , effectively performing a Wick rotation from Minkowski to
Euclidean space. The partition function can be transformed into a path integral over
bosonic (ϕ) and fermionic (ψ) fields:

Z =
∫
D[ψ,ψ†, ϕ] exp

(
−
∫ β

0
dτ

∫
d3x[LE − µN ]

)
, (2.28)

where LE is the QCD Lagrangian of Eq. (2.18) in Euclidean space. This formalism
compactifies the imaginary time dimension τ onto a circle, with periodic and anti-periodic
boundary conditions for bosons and fermions, respectively. In the limit of zero temperature,
the τ dimension becomes infinite again.

The leading-order term of the pressure derived from this partition function corresponds
to that of a relativistic quark gas, i.e., P ∝ µ4. However, a naive loop expansion of the
pressure is hindered by infrared divergences [192]. In the medium, gluons become screened
and acquire a finite mass through self-energy corrections. Consequently, soft contributions
in the gluon propagator need to be resummed to compute the gluon self-energy. This
resummation, dominated by the high-momentum behavior of loop corrections, is termed
hard thermal loops (HTL) [193] and yields contributions logarithmic in the coupling
constant. In an HTL effective theory, instead of a naive power expansion in the coupling
constant, diagrams are categorized based on their momentum regions, distinguishing
between hard modes (p ≳ µ), soft modes (p ≲ gµ), and their interactions within the
HTL framework, along with mixed terms from interactions between soft and hard modes.
The next-to-next-to-leading-order (N2LO) results at zero temperature and finite density
were computed in 1977 for massless quarks [194, 195] and were later extended to include
effects of the strange quark mass [196] (see also Ref. [197] for a simplified fit to these
results). More recently, utilizing the hard thermal loop prescription, computations have
been extended to include soft [49, 198] and mixed [199] contributions at N3LO, although
substantial efforts are still necessary to compute the four-loop Feynman diagrams of the
hard contributions.
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The results obtained at partial N3LO are depicted in Fig. 2.5. The pressure still depends
on a scale parameter X = 3Λ̄/2µ, proportional to the energy scale Λ̄ where renormalization
conditions are assigned to remove ultraviolet divergences. X is typically allowed to vary
within the range of [1/2, 2]. The applicability of pQCD results is generally limited to
chemical potentials above µ ∼ 2.4 − 2.6 GeV, corresponding to densities n ≳ 40n0 well
beyond those encountered in neutron stars. Below this threshold, the uncertainty stemming
from the indeterminate renormalization scale becomes prohibitively large. As pointed
out recently [62, 86], even though pQCD is applicable only at extremely high densities,
demanding that any valid EoS should be casually connected to the asymptotic pQCD
results can lead to constraints at much lower densities. We include the constraint from
pQCD in our inference procedure following the prescription of these works, see Sec. 3.4.5
for more details.
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FIG. 2.5. Perturbative QCD pressure from N2LO results including N3LO soft contributions
displayed as a function of baryon chemical potential µ. The shaded region shows a renormalization
scale variation of X ∈ [1/2, 2], while the solid line corresponds to X = 1. Figure adapted from [49,
62, 86].

In particular, the pQCD results imply that at asymptotic densities the squared speed of
sound approaches the conformal bound,

c2
s → 1/3 , (2.29)

from below [197]. This limit can be derived from naive dimensional analysis and asymptotic
freedom [200]. In fact it is expected that this bound holds in all conformal theories, i.e., field
theories in which the trace of the energy-momentum tensor vanishes [138, 201]. However,
recent analyses based on astrophysical observables suggest that this conformal bound can
be violated inside neutron stars [71, 72, 74, 86, 132, 202]. Squared sound velocities with
c2

s > 1/3 were also found in recent lattice QCD computations for Nc = 2 [203] or at finite
isospin chemical potentials [204, 205], where no sign problems are encountered. A possible
mechanism for the violation of this bound, based on the trace anomaly in strongly coupled
matter, is discussed in Ref. [206]. In that context it is interesting that hard dense loop
resummation methods (resumming both the quark and the gluon sector) indicate that the
conformal limit may be approached asymptotically from above, with c2

s > 1/3 [207]. In a
later section (4.1.5) we shall examine whether this changed asymptotic behavior has an
impact on the sound speed at neutron star core densities.
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2.2.4 Phases of strongly interacting matter

Strongly interacting matter exhibits a rich phase structure at finite temperatures and
baryon chemical potentials [47, 208]. Despite considerable theoretical and experimental
efforts, many of the intricacies of the QCD phase diagram, especially at large chemical
potentials, are still unresolved. The current state of knowledge is sketched in Fig. 2.6.
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vacuum
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colour
superconductor

nuclear
matter

liquid-gas phase
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neutron stars
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QCD phase diagram

FIG. 2.6. Schematic view of a hypothetical QCD phase diagram. The blue question mark
indicates the unknown phase structure at high densities.

At high temperatures and small baryon chemical potentials the phase structure of the
strong interaction is well understood from lattice QCD [209, 210] and from high-energy
heavy ion collisions [211, 212]. At vanishing baryon chemical potential a continuous
crossover proceeds from the hadronic to the quark-gluon phase around a pseudocritical
temperature of about 155 MeV. This behavior is reflected in the speed of sound which
grows rapidly with increasing temperature in the hadronic phase and then decreases along
the crossover transition. At asymptotically high temperatures c2

s increases again to reach
the asymptotic value of the conformal limit from below (see Fig. 3.3 in Ref. [213]).

At low baryon densities it is quite well established that the thermodynamics of (isospin
symmetric) nuclear matter features a first-order liquid-gas phase transition, with a
critical point located empirically [185] at a temperature Tcrit ≃ 18 MeV and density
ncrit ≃ n0/3. When viewed in a (T, µ) phase diagram, the first-order liquid-gas transition
line starting at the critical point reaches the T = 0 axis at a baryon chemical potential
µ = mN −B ≃ 923 MeV corresponding to the binding energy per particle B ≃ 16 MeV of
symmetric nuclear matter. With an empirical symmetry energy S ≃ 32 MeV, this phase
transition is absent in pure neutron matter.

At asymptotically high densities and small temperatures, quark and gluon degrees of
freedom take over in a color superconducting phase [22, 24, 48, 214]. Due to the attractive
force between quarks with different colors, quark degrees of freedom near the Fermi
surface pair up into diquarks. These diquarks, analogous to Cooper pairs in conventional
superconductors, form a condensate which spontaneously breaks SU(3)c symmetry and leads
to finite gluon masses. It is believed that the color-flavor locked (CFL) superconducting
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phase represents the energetically favored ground state for systems with three quark flavors
at extremely high chemical potentials [23, 47]. At lower densities, where the strange quark
mass can no longer be neglected, other less symmetrically paired forms of quark matter
may predominate [23, 215].

The detailed nature and density range of the transition from nuclear to quark matter
is still unknown, as illustrated by the blue question mark in Fig. 2.6. Many models have
been designed, with a variety of hypotheses predicting different active degrees of freedom
in this intermediate region. With their low temperatures and core densities well above
the nuclear saturation density, neutron stars are the objects of choice to gain information
about this speculative region of the phase diagram.

Studies based on Nambu–Jona-Lasinio type models in mean-field approximation have
commonly found a first-order chiral phase transition at quite moderate baryon densities for
T = 0 [25]. A first-order phase transition with Maxwell construction is characterized by a
region of constant pressure over an interval of density (or energy density) in which two phases
coexist [216]. Between the lower and upper endpoints of this phase coexistence interval,
the squared sound velocity c2

s = ∂P/∂ε jumps to zero and back. This is schematically
illustrated in Fig. 2.7, which shows typical patterns of phase transitions as they would
show up in the sound speed. Sufficiently strong first-order phase transitions can lead to
mass-radius relations with a disconnected third-family branch of compact stars containing
exotic matter, commonly referred to as twin stars [217]. In a first-order phase transition
with Gibbs construction, the pressure in the mixed phase is not constant, but ∂P/∂ε
still changes discontinuously [218], resulting in a non-zero sound speed. Investigations
using non-perturbative functional renormalization group techniques [219–221] found that
fluctuations tend to convert the first-order chiral transition present in mean-field studies
into a crossover shifted to much higher baryon densities, even beyond those realized in
neutron star cores (see the discussion in Sec. 4.2.3 for more details). In any case, to support
the observed heavy neutron stars with masses M ∼ 2M⊙, a transition to quark matter in
neutron stars at relatively low densities is possible only if the quark EoS is extremely stiff,
or otherwise the transition has to take place at high densities leading to small quark cores
[57, 222].

A possible first-order phase transition at large chemical potentials would need to have
a critical endpoint (CEP) to be consistent with the crossover at zero chemical potential
and finite temperatures. Extensive efforts are underway in heavy-ion collision experiments
to search for signs of such a critical endpoint [157, 223]. Lattice QCD calculations are
restricted at finite chemical potentials due to the fermionic sign problem. However, they
can be extended to µ/T ≲ 2 − 3 by employing Taylor expansions of physical quantities
around µ = 0 and through analytic continuations of numerical simulations at imaginary
chemical potentials. In this constrained domain, no evidence of criticality is observed
[224, 225]. Non-perturbative analyses using Dyson–Schwinger equations and functional
renormalization group methods agree with lattice results at small chemical potentials but
both predict a critical endpoint within a vicinity around (TCEP, µCEP) ∼ (110, 600) MeV
[226–229]. Holographic QCD calculations predict similar critical endpoint values [230, 231].
A scenario is also conceivable in which the first-order line starting from the CEP ends in a
second critical endpoint at low temperatures and high chemical potentials.

Models proposing a continuous crossover from hadronic to quark matter are often referred
to under the key word quark-hadron continuity. Such models describe the low-density part
of the EoS in agreement with ChEFT calculations but still provide the necessary stiffness
to support heavy neutron stars, usually by introducing strongly repulsive correlations
in the quark sector [3, 232–235]. A continuous crossover might be realized through an
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FIG. 2.7. Characteristic behaviors of the squared sound speed in the presence of a first-order
phase transition or a crossover.

intermediate phase of quarkyonic matter [1, 26, 55], a combined phase of quarks and
nucleons derived from large Nc considerations [47, 236]. This phase is characterized by a
distinct Fermi sea containing both baryons and quarks [26, 99]. At high densities, the Fermi
momentum of the baryons increases substantially. Consequently, intermediate momentum
states are Pauli blocked, such that particle-hole excitations originating from deep inside
the Fermi distribution require substantial energy and momentum transfer. As the strong
coupling decreases at large momenta, these degrees of freedom are weakly interacting,
pointing to the presence of asymptotically free quarks [99]. Conversely, excitations near
the Fermi surface require only small momentum transfers resulting in strong confining
forces, so that we might identify these degrees of freedom with baryons. The continuous
transition from baryonic to quarks degrees of freedom may be visible as a maximum in the
speed of sound as a function of energy density [26, 237], which differs from purely nucleonic
descriptions where the sound speed monotonically increases as illustrated in Fig. 2.7.

At sufficiently high densities in neutron stars, the formation of hyperons through
electroweak processes may become energetically favorable [13]. It was frequently argued,
however, that the additional degrees of freedom introduced via the hyperons lead to a
softening of the equation of state such that heavy neutron stars with M ∼ 2M⊙ cannot
be supported against gravitational collapse [56, 238]. This disparity is referred to as the
‘hyperon puzzle’. Introducing repulsive hyperon-nuclear three-body forces is a possible way
to inhibit the appearance of hyperons in neutron stars altogether [239–241]. An alternative
picture [242] couples baryons (including hyperons) to a density-dependent non-linear scalar
field that effectively represents repulsive many-body correlations, such that the required
stiffness of the EoS can be maintained even in the presence of hyperons in the neutron star
core. A characteristic feature of this model is a sharply dropping speed of sound at the
onset density for the appearance of hyperons.

2.3 Deep learning
In the subfield of machine learning called deep learning, artificial neural networks are
trained to model complicated non-linear relationships. This technique has proved very
successful in recent years at solving complex problems across various scientific domains.
Motivated by the successes of deep learning methods, there has been a growing interest to
employ such techniques to study dense matter and neutron stars [143]. One particular class
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of neural networks, normalizing flows, can be used to represent complicated probability
distributions in high dimensions [145]. In this section we provide a brief overview of the
fundamental ideas of deep learning4, for more details see, e.g., Refs. [244, 245].

2.3.1 Artificial neural networks

The general objective of deep learning is to fit a non-parametric function fΦ based on
the data {xi} to optimize a task-specific cost function. The non-parametric function is
represented using artificial neural networks (ANNs), computational structures inspired
by the neural architecture of the human brain. ANNs consist of interconnected layers of
‘neurons’. The first layer receives the input data, with each neuron representing a feature
or attribute of the input, and the last layer provides the network’s output.

input
hidden

output

FIG. 2.8. Schematic illustration of a feed-forward neural network with two hidden layers.

In practice, it is advantageous to include intermediate ‘hidden’ layers between the
input and output layers. In the most basic architecture of a feed-forward neural network
(sometimes also called a multilayer perceptron) depicted in Fig. 2.8, each neuron receives
inputs from the previous layer, processes them, and produces an output signal that is
passed on to the next layer. More specifically, the output of a neuron in the lth layer,
a

(l)
i , is given by a transformation of the neurons in the previous layer, a(l−1)

j , involving an
activation function σ(z) along with adjustable weights ω(l)

ij and biases b(l)
i :

a
(l)
i = σ

(
ω

(l)
ij a

(l−1)
j + b

(l)
i

)
. (2.30)

The activation functions introduce crucial non-linearity to the neural network, allowing it
to approximate complex functions. In fact, the universal approximation theorem states
that a sufficiently large feed-forward neural network, endowed with appropriate activation
functions, can approximate any continuous function on a compact subset of its input space
to arbitrary precision [246]. Common activation functions include the sigmoid function,
the hyperbolic tangent, and the rectified linear unit (ReLU), σ(z) = max{0, z}. Beyond
feed-forward neural networks, more complex architectures such as convolutional or recurrent
neural networks have been designed for specific data modalities like image or sequential
input data.

2.3.2 Training

The parameters Φ = {ω, b} of a neural network are trained to minimize a predefined cost
function C (sometimes also called loss function), chosen for the specific problem at hand.
Common choices include a mean squared error for regression or a cross-entropy loss for
4 Parts of the text in this section have been adapted from Ref. [243].
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classification problems. To avoid overfitting, i.e., the neural network learning the noise of
the available data at the expense of poor generalization to unseen data, the data set is
divided into training, validation and test sets. The training data, {xi}Ni=0, is used to train
the parameters of the neural network. The total cost function is given by the average over
all training samples, 1/N

∑N
i=0C(Φ, xi).

The parameters Φ are optimized using gradient descent. To compute the necessary
gradients of the cost function with respect to the weights, ∇ΦC(Φ, xi), the chain rule is
applied iteratively backwards through the layers of the network, starting from the output
layer and moving towards the input layer in a procedure called backpropagation. Using
gradient descent, the network parameters are updated with a learning rate α

Φt+1 = Φt − α
1
N

N∑
i=0
∇ΦC(Φ, xi) . (2.31)

In scenarios with massive data sets, computing the gradients of the entire training set
can become computationally expensive as well as memory intensive. Stochastic gradient
descent addresses these issues by computing the gradient using only a small subset of
the training data at each iteration t. A commonly used optimization algorithm to make
the training more robust and efficient is adaptive moment estimation (Adam), where the
learning rate is adaptively adjusted for each parameter [247].

The validation set is used to evaluate the performance of the model during training and
to tune hyperparameters, i.e., settings that are not learned from the data but affect the
learning process such as the learning rate α or the number of hidden layers in the neural
network. The test set serves as a completely independent data set that the model has
not seen during training or validation, such that it can be used to provide an unbiased
evaluation of the final model after it has been tuned and trained.

2.3.3 Normalizing flows

Normalizing flows (NFs) are a class of generative models that focus on learning a bijective
mapping between a simple base distribution π(u) (usually chosen to be a Gaussian distri-
bution) and a more complex, target distribution p(x) [145, 146]. The main idea, illustrated
in Fig. 2.9, is to model p(x) by transforming the base distribution π(u) through a series of
invertible and differentiable transformations fΦ with trainable parameters Φ.

Given N transformations, fΦ = fΦ1 ◦ · · · ◦ fΦN
, we can easily generate samples x from

p(x) by transforming the samples u of π(u):

u ∼ π(u) , (2.32)
x = fΦ(u) = fΦN

(. . . (fΦ1(u))) . (2.33)

From the change of variables law for probability distributions, we can compute the proba-
bility density of the target distribution:

p(x) = π
(
f−1

Φ (x)
) ∣∣∣∣∣ det

(
∂f−1

Φ
∂x

) ∣∣∣∣∣ = π
(
f−1

Φ1
(. . . (f−1

ΦN
(x)))

) N∏
i=1

∣∣∣∣∣∣ det

∂f−1
Φi

∂x

 ∣∣∣∣∣∣ .
(2.34)

Consequently, for a fast numerical evaluation of the probability density, the transformations
fΦ should be chosen such that they are easy to invert and have a Jacobian whose determinant
is fast to compute.
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normalizing
flow

𝑓Φ𝑁
(… (𝑓Φ1

𝑢 ))

FIG. 2.9. Schematic illustration of the working principle of a normalizing flow in one dimension.

One popular choice are Masked Autoregressive Flows (MAFs) [248], where each dimension
xd of the samples, x = (x1, . . . , xd, . . . , xD), is sequentially transformed conditioned on
the previous dimensions, x1:d−1 = x1, . . . , xd−1. In autoregressive models the complex
probability distribution p(x) is decomposed into a product of one-dimensional conditional
densities:

p(x) =
D∏

d=1
p(xd|x1:d−1) . (2.35)

A common choice for the conditional densities are Gaussian marginals,

p(xd|x1:d−1) = N (xd|µd, σd) , (2.36)

whose mean and standard deviations are computed by neural networks based on the
previous dimensions:

µd = fµd
(x1:d−1) , (2.37)

σd = fσd
(x1:d−1) . (2.38)

We can sample from this conditional distribution by scaling and shifting the samples ud

from a standard Gaussian

xd = µd + σdud , (2.39)
ud ∼ N (0, 1) . (2.40)

Accordingly, autoregressive models can be interpreted as a transformation fΦi of the base
distribution π(u) = N (0, 1) [249]. We can stack multiple autoregressive transformations
into one deep normalizing flow fΦ. Usually the ordering of dimensions x1, . . . , xD is changed
for each bijector in the flow. Computing the inverse transformation f−1

Φi
does not require

us to invert the functions fµd
or fσd

, since

ud = xd − µd

σd
. (2.41)

This allows us to use non-linear activation functions in the neural networks fµd
and fσd

.
Due to the autoregressive structure, the Jacobian of f−1

Φi
is triangular by design and its

determinant is easy to compute,∣∣∣∣∣∣ det

∂f−1
Φi

∂x

 ∣∣∣∣∣∣ =
D∏

d=1
σ−1

d . (2.42)
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With suitably constructed binary masks, we can use a single feed-forward neural network
to output all values of µd and σd, while retaining the autoregressive property [250]. Since
the conditional likelihoods in Eq. (2.35) can be computed in parallel, it is possible to
recover all values of ud from all values of xd with a single pass through the neural network,
making MAFs very efficient in computing the probability density p(x). On the other
hand, generating new samples, x ∼ p(x), is less efficient because all previous x1:d−1 must
be computed before computing xd. MAFs have been used to model complex probability
distributions in various scientific applications [251–253].





3
Inference of the equation of state

In this chapter, we introduce the methodology necessary to infer the neutron star matter
equation of state. As discussed in the previous chapter, the phase structure of strongly
interacting matter and thus the EoS at the high densities realized inside neutron stars is
still unknown. Therefore, we adopt various general parametrizations of the equation of
state, each capable of modeling various phase scenarios depending on their parameters.
We then introduce Bayesian inference methods to derive the posterior probabilities of these
EoS parameters based on astrophysical neutron star data and theoretical constraints at
low and high densities. Bayesian statistics further allow us to compute posterior credible
bands for neutron star properties and to conduct hypothesis testing using Bayes factors.
Additionally, this chapter reviews the available multimessenger neutron star data and their
implementation in the inference procedure. The conventional Bayesian inference of the
neutron star matter EoS is carried out based on a set of exterior neutron star properties,
such as masses, radii, or tidal deformabilities, previously inferred from observational
detector data. At the end of this chapter, we introduce a novel approach that employs
recently developed neural simulation-based inference techniques to infer the EoS parameters
directly from detector data, without the traditionally required intermediate step via the
exterior neutron star properties.

3.1 Equation of state parametrizations
A variety of parametrizations has been introduced to represent the equation of state in
neutron stars, among the most prominent ones are piecewise polytropes [254] or spectral
representations [255]. As discussed in Sec. 2.2.4, various theories predict different phase
structures at high densities including phase transitions or crossovers, which are reflected
in the behavior of the speed of sound [136, 256]. In the present analysis we employ three
different parametrizations for c2

s(ε) inside neutron stars: a skewed Gaussian function,
piecewise segmented linear interpolations and a spectral expansion1. Parametrizations of
P (ε) such as piecewise polytropes can cause unphysical discontinuous effects in the speed
of sound. In contrast, the parametrizations employed here are continuous in c2

s(ε).
The Gaussian and Segments parametrizations used in our conventional Bayesian inference

analysis depend on sets of either six or eight parameters θ. A comparative study using these
two different forms will give an impression of possible systematic uncertainties induced by
the choice of parametrization. This is accompanied by an improvement in the generality
of the Segments parametrization, which increases the number of free parameters to ten.
At very low densities, n ≤ 0.5n0, the speed of sound is matched to the neutron star crust
1 Parts of the text in this section have been adapted from Refs. [96, 97].
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modeled by the time-honored Baym–Pethick–Sutherland (BPS) parametrization [257]. The
effect of the neutron star crust on observables studied in this work is expected to be small,
for the potential impact of the crust on macroscopic neutron star properties see Refs. [258,
259].

3.1.1 Gaussian

Based on Refs. [67, 138] we can represent the squared speed of sound in neutron star matter
at zero temperature as a function of energy density by a skewed Gaussian. A logistic
function is added such that the parametrization reaches the conformal limit c2

s → 1/3 at
asymptotically high energy densities. With x = ε/(mNn0), where mN is the free nucleon
mass, the squared speed of sound is represented as:

c2
s(x, θ) = a1exp

[
−1

2
(x− a2)2

a2
3

]1 + erf
[
a6√

2
x− a2
a3

]+ 1/3− a7
1 + exp

[
−a5(x− a4)

]
+a7 , (3.43)

with erf(z) = 2√
π

∫ z
0 dt e

−t2 the conventional error function. The parameter a7 is determined
such that the transition to the neutron star crust is continuous. Hence, six free parameters
θ = (a1, . . . , a6) remain. When c2

s(x, θ) becomes negative, violating thermodynamic stability
of the star, we set c2

s = 0. In this way the Gaussian parametrization can describe arbitrarily
strong phase transitions. The combination of the Gaussian and logistic function can also
account for variable crossovers. As argued in Sec. 2.2.4, a local maximum in the speed of
sound could indicate a transition from baryonic to quark dynamics [3, 200, 234] or the
onset of hyperonic degrees of freedom [242].

3.1.2 Segments

The Gaussian parametrization assumes a specific functional form of the sound speed
inside neutron stars. At the present stage the empirical database is still limited, so that
inference procedures can depend sensitively on prior choices including the functional form
of the parametrization [68, 76]. For an alternative test, results of broader generality
can be produced using a more universal parametrization of the speed of sound based on
segment-wise linear interpolations, similar to Refs. [130, 131].

This parametrization is represented by a set of N + 1 points θ = (c2
s,i, εi). The squared

speed of sound c2
s(ε, θ) is modeled as a linear interpolation between these points, i.e., for

ε ∈ [εi, εi+1] with i = 0, . . . , N one has:

c2
s(ε, θ) =

(εi+1 − ε)c2
s,i + (ε− εi)c2

s,i+1
εi+1 − εi

. (3.44)

The i = 0 point is the transition point to the neutron star crust (c2
s,0, ε0) = (c2

s,crust, εcrust).
Beyond the last point, ε > εN , the speed of sound becomes constant, c2

s(ε, θ) = c2
s,N .

In the ‘basic’ version of the Segments parametrization the last point is chosen such that
the conformal limit is reached at very high energy densities (c2

s,N , εN ) = (1/3, 10 GeV fm−3).
We have checked that the results do not depend on the specific choice of εN as long as
its value is large enough. The asymptotic end point at εN = 10 GeV fm−3 corresponds
to a baryon chemical potential of µ ∼ 2.4 GeV in the pQCD results from Ref. [49]. The
asymptotic conformal limit is approached from below, which is realized by restricting the
last speed-of-sound value before the end point to c2

s,N−1 < 1/3.
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Here we choose N = 5, corresponding to a total of eight free parameters and five free
segments, which turns out to be enough for a representation of c2

s. Ref. [132] uses a similar
parametrization based on piecewise segments. There it is found that five segments are
sufficient to avoid numerical artifacts, namely that for a larger number of segments the
results do not change significantly any more. An equivalent or smaller number of segments is
used to interpolate over the full range between ChEFT and pQCD constraints in Refs. [130,
131]. It was found in Ref. [91] that four segments are already sufficient to describe the
current astrophysical data and lead to results comparable to those of a non-parametric
Gaussian process. We nevertheless study whether increasing the number of segments in the
parametrization produces notably different results. The Segments parametrization can also
incorporate a variety of phase transitions or crossovers. In contrast to the representation
in terms of a skewed Gaussian it can also accommodate possible steep rises as well as
plateaus in the speed of sound.

Improved Segments parametrization

We can increase the generality of the parametrization by not assuming the asymptotic
behavior of the sound velocity a priori. Thus, in an ‘improved’ version of the Segments
parametrization, the last point (i = N) is no longer fixed to reproduce the asymptotic
conformal limit, and the second-to-last sound speed is no longer limited to c2

s,N−1 < 1/3.
The pQCD constraint at asymptotic densities is still systematically implemented through
a pQCD likelihood (see Sec. 3.4.5). With the parameters of the last point (c2

s,N , εN ) not
assumed to take the value of the conformal limit, the number of free parameters of the
Segments parametrization increases to ten and the number of free segments increases by
one. Thus, the improved version also allows us to test whether the posterior results are
stable with respect to an increase in the number of segments. At the same time, we keep
the basic version of the Segments parametrization to allow a more direct comparison with
the Gaussian parametrization with the same asymptotic behavior.

A central focus of the present work is the possible occurrence of a first-order phase
transition in neutron star matter. In the EoS this corresponds to a jump in energy density,
i.e., the appearance of two successive discontinuities in the speed of sound. For instance,
in a Maxwell construction a phase coexistence region of constant pressure emerges along a
density interval ∆n. At the lower end of this interval the sound velocity drops to zero while
at the upper end it jumps back to a finite value, see Fig. 2.7. This and similar kinds of
scenarios can be represented in the Segments parametrization of Eq. (3.44) when one of the
interpolation points reaches a small sound speed, c2

s,i ∼ 0, while the two adjacent points
remain at finite values. This condition as such is not sufficient to identify a first-order
phase transition. However, in combination with a detailed quantitative inspection of ∆n/n
as a measure for the extension of a phase coexistence region that can possibly develop
within the posterior credible bands, it serves to set constraints on the appearance of a
strong first-order transition. We refer to a first-order transition as ‘strong’ if ∆n/n > 1
(where n is the density at which the coexistence interval ends). In contrast a ‘weakly’
first-order transition has ∆n/n small compared to one.

3.1.3 Spectral

For the neural simulation-based inference conducted later in this work, we use a spectral
expansion of the speed of sound depending only on two parameters to make our results
directly comparable to previous approaches [127, 128].
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In the spectral approach, a representation of the equation of state is expanded in a series
of basis functions. One popular choice is to represent the equation of state in terms of the
adiabatic index [255]

Γ(P ) = ε(P ) + P

P

dP

dε
. (3.45)

If Γ(P ) is non-negative, the EoS remains thermodynamically stable, but can become
acausal. Therefore, we choose an alternative representation of the equation of state in
terms of a function of the squared speed of sound c2

s [260]

Υ(P ) = 1− c2
s

c2
s

, (3.46)

which, if larger than zero, is causal by construction. Υ(P ) can be parametrized via an
expansion in the pressure. However, since the numerical solution of the TOV equations
is more convenient in terms of the effective enthalpy h, as explained in Appendix A, it is
preferable to expand the sound speed function in this quantity instead:

Υ(h) = exp

∑
k

λkΦk(h)

 . (3.47)

Here, Φk(h) can be any complete set of basis functions. The most commonly used choice
is Φk = [log(h/h0)]k, where h0 is the matching point to the low-density crust. For given
expansion coefficients λk, pressure and energy density can be determined via enthalpy
integrations over the sound speed function. A spectral expansion with only two coefficients
is already sufficient to describe a variety of different equations of state [254] with error
residuals below 10% [127, 255]. Note, however, that spectral parametrizations are less well
suited to describe extended first-order phase transitions [260].

3.2 Bayesian inference
Making use of a set of available neutron star data, we aim to constrain the free parameters θ
of the parametrizations described in the previous section. For that purpose we use Bayesian
inference, similar to Refs. [2, 63–107], and follow Refs. [139, 140]2. More specifically, Bayes’
theorem allows us to compute the probability distribution for the parameters θ based
on the available data. To include the information from astrophysical observations in the
inference procedure we need to employ kernel density estimation techniques. From the
probability distribution of the parameters we can compute marginal credible bands to
constrain the equation of state. Moreover, using Bayesian statistics we can compare the
evidence for two competing hypotheses using Bayes factors.

3.2.1 Bayes’ theorem

For given data D, the posterior probability distribution for the parameters θ can be computed
using Bayes’ theorem:

p(θ|D) = p(D|θ) p(θ)
p(D) . (3.48)

2 Parts of the text in this section have been adapted from Refs. [96, 97].
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For the sake of readability, we have neglected here the conditional dependence on the model
M which includes all implicit assumptions, such as the parametrization choice, etc., and is
sometimes made explicit in the literature. The probability distribution p(θ) for the EoS
parameters is denoted the prior and given by the chosen parameter distributions for each
parametrization. The probability p(D|θ) for the data D to occur, given the parameters θ,
is usually referred to as the likelihood.

To compute the likelihood of the neutron star data for a given EoS characterized by
parameters θ, we have to consider all possible neutron stars supported by this particular
EoS. This means we have to marginalize over all central pressures Pc (or, alternatively,
central energy densities εc) possibly realized inside neutron stars,

p(D|θ) =
∫
dPc p(D|θ, Pc)p(Pc(θ)) . (3.49)

This is weighted by a prior probability distribution for the central pressures, p(Pc(θ)),
which allows to take the distribution of the neutron star population into account. The prior
distribution of the central pressures depends on θ because the maximum central pressure
leading to a stable solution, Pc,max, is different for each set of parameters. By numerically
solving the coupled system of TOV equations and the equations for the tidal deformability
in Sec. 2.1, a set of parameters θ and central pressures Pc is deterministically linked to a
mass-radius relation (M,R) and tidal deformabilities Λ. Therefore, we can write:

p(D|θ, Pc) = p(D|M,R,Λ) . (3.50)

Similarly, with the radius and tidal deformability available as functions of the mass, R(M, θ)
and Λ(M, θ) after solving the differential equations in Sec. 2.1 for given θ, the central
pressure prior p(Pc(θ)) defines a mass prior p(M(θ)). The likelihood p(D|M,R,Λ) is usually
analytically unavailable, therefore we have to resort to a two-step inference approach [67,
139], i.e., for computational feasibility we have to assume that we can use the posterior
distributions from the analyses of neutron star observables as likelihoods for exterior
neutron star parameters:

p(D|M,R,Λ) ∝ p(M,R,Λ|D) . (3.51)

This is valid if the prior of (M,R,Λ) used in the inference analyses of the observational
data is sufficiently uninformative, which is the case for the majority of the data analyzed
in this work as argued in Ref. [70]. Later in Sec. 3.5, we introduce an single-step approach
for the inference directly based on the data D using deep learning techniques. For now, in
the conventional two-step approach, the likelihood can be evaluated based on the inferred
posterior constraints as

p(D|θ) ∝
∫
dM p(M,R,Λ|D)p(M(θ)) , (3.52)

where the radius and tidal deformability are given by the functions R(M, θ) and Λ(M, θ)
for given θ. We introduce the parameter priors, p(θ), as well as the mass prior, p(M(θ)),
used in our Bayesian analysis in Sec. 3.3 and give an overview over the currently available
neutron star data in Sec. 3.4.

The probability distribution p(D) in the denominator of Eq. (3.48) is usually referred
to as the evidence or marginal likelihood. It is determined by the normalization of the
posterior:

p(D) =
∫
dθ p(D|θ) p(θ) . (3.53)
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Depending on the number of parameters this may be a high-dimensional integral which can
be difficult to solve numerically. Therefore, in Bayesian inference sampling algorithms such
as Markov Chain Monte Carlo (MCMC) or nested sampling are frequently employed. For
a sufficiently low-dimensional parameter space, samples from the prior, p(θ), weighted with
the likelihood, p(D|θ), yield the posterior probability distribution up to a multiplicative
constant. In this case it needs to be checked whether the number of samples is large enough
such that sufficient probability mass of the posterior has been covered. Similar importance
sampling techniques have frequently been employed in Bayesian analyses of neutron stars
(see for example Refs. [91, 261]).

3.2.2 Kernel density estimation

The posterior distributions inferred from the neutron star observations, p(M,R,Λ|D), are
usually available only as samples. We can determine the underlying probability distributions
using kernel density estimation, which is a non-parametric method to determine the
probability density function of a given data set. Assume a set of N points, (x1, . . . , xN ),
which are independent and identically distributed according to the unknown density
function p(x). The kernel density estimator (KDE) of this underlying density function is

KDE(x) = 1
Nh

N∑
i=1

K

(
x− xi

h

)
, (3.54)

where h is a smoothing parameter called the bandwidth and K is a kernel function. This
kernel function must integrate to one and be symmetric and non-negative. There is a
range of possible kernel functions, e.g., uniform, linear or exponential and here we use a
normalized Gaussian kernel:

K(z) = 1√
2π

exp(−z2/2) . (3.55)

The choice of the bandwidth h is done such that a proper balance is achieved between
maintaining important features in the density function and smoothing over irrelevant fine
structure in the estimator. To find an appropriate value for h we use the rule of thumb
developed by Silverman [262]. The above approach can be straightforwardly generalized to
the case with data on a higher dimensional space.

3.2.3 Credible bands

To transform the posterior distribution on the parameters θ to the EoS space, we follow
Ref. [67] in discretizing energy densities on a grid {εi}. For each posterior sample the
pressure is determined at each discrete energy density P (εi, θ), up to the maximum central
energy density εc,max, corresponding to the endpoint Mmax of the mass-radius relation. In
this way we obtain the marginal posterior distribution for the pressure p(P |εi,D) at each
energy density. We can then determine the credible interval [a, b] at the levels α = 68% or
95% as

α =
∫ b

a
dP p(P |εi,D) . (3.56)

In principle, there is an infinite amount of possible intervals [a, b] for a given α. Here,
we choose to use highest density credible intervals, which correspond to the narrowest
interval leading to the probability α. Combining the credible intervals at each εi gives a
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posterior credible band for P (ε). Similarly we can find credible bands for c2
s(ε), R(M),

Λ(M), etc.. In contrast, displaying neutron star properties such as the EoS, P (ε), via a
two-dimensional credible region depends on the chosen prior in ε, so that different prior
choices can lead to different results. Hence in the literature, with few exceptions, the
procedure in terms of credible bands is favored [67–70, 72, 74, 88]. Note that each EoS
characterized by parameters θ is only used up to the maximum central energy density
εc,max, the one corresponding to the maximum TOV mass Mmax supported by that EoS.
The latter statement applies unless the EoS leads to more than one stable branch in
the mass-radius relation. At higher energy densities (or masses), the credible intervals
computed via Eq. (3.56) are determined on the basis of correspondingly fewer equations of
state. This loss of expressive power at higher energy densities and masses is not reflected
in the credible bands.

3.2.4 Bayes factors

With Bayes factors one can compare two competing hypotheses H0 and H1 and quantify
the evidence for one hypothesis over the other. Given a data set D, the Bayes factor is
defined as the quotient of the marginal likelihoods:

BH1
H0

= p(D|H1)
p(D|H0) . (3.57)

The marginal likelihood for a general hypothesis H is given by the integral over all parameter
sets that support this hypothesis, θ ∈ ΘH :

p(D|H) =
∫

θ∈ΘH

dθ p(D|θ)p(θ) , (3.58)

which we can approximate using Monte-Carlo integration,

p(D|H) ≈ 1
Nθ∈ΘH

∑
θ∈ΘH

p(D|θ) , (3.59)

if we sum over parameter sets which are sampled from the prior, θ ∼ p(θ). Nθ∈ΘH
denotes

the number of parameter sets that support the hypothesis H. This holds only if the number
of samples is large enough to approximate the integration over the multidimensional
parameter space by a sum. To interpret the resulting Bayes factors we use the established
evidence classification of Ref. [263, 264] listed in Table 3.1.

3.3 Priors

To compute the posterior probability distribution (3.48), prior distributions for the EoS
parameters p(θ) and for the mass distribution of neutron stars p(M(θ)) must be chosen,
which will be specified in this section3. The prior for the spectral parametrization follows
previous work [127]. In addition, we also introduce a test prior for a restrictive scenario
with monotonically rising sound velocity to investigate a purely hadronic composition of
neutron star matter.
3 Parts of the text in this section have been adapted from Refs. [96, 97, 243].
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BH1
H0

Interpretation

> 100 Extreme evidence for H1

30 - 100 Very strong evidence for H1

10 - 30 Strong evidence for H1

3 - 10 Moderate evidence for H1

1 - 3 Anecdotal evidence for H1

1 No evidence
1/3 - 1 Anecdotal evidence for H0

1/10 - 1/3 Moderate evidence for H0

1/30 - 1/10 Strong evidence for H0

1/100 - 1/30 Very strong evidence for H0

< 1/100 Extreme evidence for H0

TABLE 3.1. Interpretation of Bayes factors for comparing the evidence for hypotheses H0 and
H1 according to the evidence classification in Ref. [263] with the updated terminology of Ref. [264].

3.3.1 Parameter priors

In order to ensure maximum generality of the results we choose very broad parameter
ranges for all parametrizations, covering most of the speed-of-sound space. However, for
the Gaussian and Segments parametrization with fixed asymptotic behavior we follow
previous work [68–70] to discard parameter sets that lead to multiple disconnected stable
mass-radius relations. To obtain even more general results, we choose no longer to reject
parameter sets that lead to disconnected branches for the improved version of the Segments
parametrization, so that this prior set includes the possibility of twin-star scenarios and
even cases with more than two disconnected branches in the mass-radius relation.

Gaussian

The six free parameters of the Gaussian parametrization (referred to in the following
as version G) are sampled from uniform intervals listed in Table 3.2. These parameter
ranges were chosen guided by previous studies [67, 138]. The resulting functions cover the
speed-of-sound space sufficiently well. Only those combinations of parameters are kept
that lead to causal EoS, i.e., c2

s(ε) < 1 for all energy densities. In our default version G
the asymptotic conformal limit, c2

s = 1/3, is approached from below as in standard pQCD
[197], implying that the derivative of the speed of sound must be positive, ∂c2

s/∂ε > 0, at
very high energy densities. In practice this onset of asymptotic behavior is imposed at
three different values, ε = 4, 8 and 16 GeV fm−3. We have checked that this specific choice
does not affect the inference results as long as these energy densities are sufficiently large.

Segments

The ‘basic’ version of the segment-wise parametrization with fixed asymptotic behavior (re-
ferred to in the following as version S) depends on four speeds of sound and energy densities
(c2

s,i, εi). The number of parameters increases to ten for the more general variant (which we
will refer to as version S’). In both cases the energy densities are sampled logarithmically
from εi ∈ [εcrust, 4 GeV fm−3], where εcrust refers to the endpoint of the neutron star crust.
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Parameter Range
a1 [0.2, 3]
a2 [0.5, 12]

a3/a2 [0.05, 10]
a4 [0.1, 15]
a5 [0.1, 5]
a6 [-15, 15]

TABLE 3.2. Prior ranges for the six parameters of the Gaussian parametrization of the speed of
sound inside neutron stars given in Eq. (3.43).

With this sampling the large multitude of EoSs in the prior is represented, on average,
by three to four free segments. The speed-of-sound values are collected from logarithmic
intervals c2

s,i ∈ [0, 1], so they are causal by construction and at the same time open to
the possible occurrence of phase transitions. Note that the last speed-of-sound value
before the end point is restricted to c2

s,N−1 < 1/3 in the S version so that the asymptotic
conformal limit is approached from below. With at least two more parameters and a more
general functional form, the Segments parametrization allows, in principle, to describe
more complex structures compared to the Gaussian parametrization. As a stability test we
have checked that shifting the upper limit of the logarithmic interval downward from its
value εi,max = 4 GeV fm−3 induces small changes in the prior but does not affect the final
posterior results.

The prior credible bands for both G and S parametrizations are depicted in Fig. 3.1. The
bands are very broad in both interior and exterior parameter spaces. Because the ChEFT
constraint is employed as likelihood and hence not present in the priors (see Sec. 3.4.5),
there is prior support for rapidly increasing speeds of sound at low densities, leading to
large neutron star radii. Hence the prior credible bands have strong weights both at small
sound speeds and large radii.

The parameter ranges are chosen to minimize any possible restrictions, such that the
posterior distribution has maximum freedom to be governed by the empirical data. The
prior probability distributions of the G and S versions differ because of the different
functional forms and chosen parameter ranges. This permits an assessment of the impact
of different prior choices on the inference results. If the results for versions G and S turn
out to be very similar, we can conclude that the inference procedure is robust against
variations in the functional form of the prior. The prior probability distribution for c2

s(ε) in
the S’ version is displayed in Fig. 3.2. The prior credible bands looks similar to those of the
basic version of the Segments parametrization in Fig. 3.1, although they extend to slightly
smaller values. By comparing the inference outputs for the S and S’ versions, we can access
the impact of increasing the number of free segments and changing the asymptotic sound
speed behavior on the posterior results.

All priors at the 95% level support very small speeds of sound, c2
s ≲ 0.05. In fact the

68% credible band of the G version reaches down to c2
s = 0. Accordingly, every fourth EoS

in the Gaussian parametrization potentially has a first-order phase transition in the sense
that the minimum speed of sound becomes smaller than c2

s,min ≤ 0.1, whereas 15% to 20%
of the EoSs in the priors of both versions of the Segments parametrization feature such a
phase transition. In contrast, each EoS in the (later determined) posterior credible bands
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FIG. 3.1. Marginal prior probability distributions at the 95% and 68% level of the squared speed
of sound c2

s and pressure P as a function of energy density ε for the Gaussian (left) and the basic
version of the Segments parametrization (right). Also shown is the prior for the mass-radius relation
and the tidal deformability, Λ, as a function of neutron star mass M in units of the solar mass M⊙.
At each ε or M , there exist 95% and 68% prior credible intervals for c2

s(ε), P (ε) or R(M), Λ(M).
These intervals are connected to obtain the prior credible bands. Similarly, the medians of the prior
probability distributions at each ε or M are connected (solid lines). For the speed of sound the
dashed black line indicates the value of the conformal bound. Figure taken from Ref. [96].
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FIG. 3.2. Similar to Fig. 3.1: median and prior credible bands for the squared speed of sound,
c2

s, as a function of energy density, ε, are displayed for the improved version of the Segments
parametrization without assumed asymptotic behavior and two more free parameters. Figure taken
from Ref. [97].

is constrained by astrophysical data and thus limited by its emerging maximum central
energy density, εc,max. The mass-radius trajectory deduced from each given EoS, with
or without a phase transition, terminates at this point. An EoS’s mass-radius sequence
normally ends after a first-order phase transition. As a consequence small sound speeds
appear with lower weight in the posteriors than in the priors.

3.3.2 Mass prior

Each EoS characterized by a parameter set θ supports neutron star masses between some
minimum mass Mmin and a respective maximum mass Mmax(θ). We follow Ref. [72] and
assume a flat prior distribution between Mmin and Mmax(θ):

p(M(θ)) =


1

Mmax(θ)−Mmin
if M ∈ [Mmin,Mmax(θ)] ,

0 else ,
(3.60)

with a minimum mass of Mmin = 0.5M⊙. This introduces an Occam factor penalizing
EoSs that involve extreme masses beyond those supported by the astrophysical data.

The employment of a uniform mass prior differs from some previous works [67, 96, 140]
where a central pressure prior was used instead. In Ref. [86] the authors found just a
marginal distinction between a flat mass prior and a central pressures prior. However, the
uniform mass prior has the advantage that it permits a more direct comparison of our
results with other recent works (for example Refs. [72–74, 82, 84–86, 92–94]). Furthermore,
for future developments it offers the possibility of easily incorporating the mass population
of neutron stars. When the number of available data increases, failing to account for the
correct population model may cause a bias in the resulting posterior distribution [265],
such that the neutron star population may have to be inferred together with the posterior
[266]. Note that this would also allow to estimate the maximum supported mass Mmax
from the mass distribution of neutron stars [102].

3.3.3 Spectral parametrization

Following Ref. [127], to generate samples for our simulation-based inference analysis, we
start from the relativistic mean-field model GM1L [267], which describes neutron star
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matter as a collection of baryons interacting through effective meson exchanges. The
coupling constants of the model are fitted to reproduce empirical saturation properties of
nuclear matter (see for example Ref. [243] for more details). The sound velocity of the
GM1L model is represented by a second-order spectral expansion using the process outlined
in Sec. 3.1.3. Thus, the full EoS can be succinctly described by the expansion coefficients,
which we refer to as λ1 and λ2. The coefficients describing the GM1L EoS are then used to
generate many EoS scenarios by varying the parameters around the original values. This
process was repeated to create around 103 different EoS models, each represented by a
unique set of spectral coefficients λ1 and λ2. Following this process, the two parameters
are uniformly distributed in the intervals λ1 ∈ [4.75, 5.25] and λ2 ∈ [−2.05,−1.85]. The
TOV equations are numerically solved to produce mass-radius relations which are sampled
to generate the mass M and radius R for ∼100 stars per EoS sample. For the sampling of
stars we follow Ref. [127] to choose a log-uniform distribution of central enthalpies [166] for
the boundary condition to solve the stellar structure equations in Appendix A. In contrast
to the uniform mass distribution in Eq. (3.60), this leads to a higher weighting of larger
masses close to the maximum supported mass in the distribution of stars for each EoS.

3.3.4 Monotonically rising speed of sound

The previous, general choice of priors is open, in principle, to possible phase transitions
in the EoS if the data suggest such an option. At the same time we also, additionally,
wish to investigate a more restrictive case, namely the hypothesis that neutron star matter
is composed of conventional hadronic (nucleon and meson) degrees of freedom, with
spontaneously broken chiral symmetry intact and no complex phase structure. A successful
historical example of this kind is the Akmal–Pandharipande–Ravenhall (APR) equation of
state [268]. Another example, which we will discuss in more detail in Sec. 4.2.3, is a model
based on chiral nucleon-meson field theory treated non-perturbatively using functional
renormalization group methods [219, 220].

With the aim of studying whether such a picture is compatible with the empirical
database, the additional prior assumption is implemented that neutron star matter displays
no phase transition or crossover up to a given transition density ntr. This is equivalent to
the speed of sound rising monotonically up to ntr:

∂c2
s

∂ε
> 0 for n < ntr . (3.61)

For densities n > ntr, the system is allowed any freedom to undergo transitions or changes
of degrees freedom. In practice, based on the findings in [221], we vary the transition
density in the range ntr = 2− 5n0.

3.4 Data & likelihoods
In order to compute the posterior probability distribution in Eq. (3.48) it is necessary to
compute likelihoods for the different types of data. In this section a brief account is given
of the sets of empirical data used in the inference procedure4. This includes measurements
of neutron star masses, radii and tidal deformabilities, as well low-density constraints from
nuclear theory and high-density constraints from perturbative QCD. For detailed reviews
on the current (and upcoming) multimessenger measurements of neutron stars see Refs. [2,
4 Parts of the text in this section have been adapted from Refs. [96, 97].
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160, 269], as well as Ref. [103] for a detailed examination of the observational impacts on
the neutron star matter EoS.

3.4.1 Mass measurements

Shapiro time delay measurements

The most precise mass measurements are available for neutron stars in binary systems
with companion stars. Using Kepler’s third law, we can derive the binary mass function,
which establishes a lower bound for the mass M1 of the neutron star:

f(M1,M2) = M3
1 sin3 i

(M1 +M2)2 = K3
2Porb

2πGN
(1− e2)3/2 , (3.62)

where M2 represents the mass of the companion and i is the inclination angle of the orbital
plane relative to our line of sight, i.e., an inclination of i ∼ 90◦ indicates an edge-on viewing
perspective on the binary orbit.

The right-hand side of the expression in Eq. (3.62) consists of observable quantities such
as the companion’s radial velocity K2, the orbital period Porb, and the orbital eccentricity
e. For a pulsar companion these parameters can be measured through radio timing, or
alternatively, by optical spectroscopy in the case of white dwarf or non-compact stellar
companions [160]. In order to overcome the degeneracy of the neutron star’s mass with
the companion mass and the inclination angle on the left-hand side of the binary mass
function, at least two additional properties of the system must be determined.

This can be achieved by measuring relativistic effects beyond the predictions of Newtonian
gravity that influence the pulsar signal. One such effect is the Shapiro time delay, a
periodic variation in the arrival time of signals caused by the photons passing through the
gravitational field of the companion star. The magnitude of this delay depends on the
mass of the companion star, while its shape depends on the system’s inclination [270, 271].
Consequently, this phenomenon is most pronounced in systems that are observed edge-on.
Once these parameters have been determined, the neutron star mass can be extracted with
high precision.

The most interesting measurements are those of the heaviest neutron stars as this sets
a lower limit on the maximum mass that the neutron star EoS has to support. Through
Shapiro time delay measurements several neutron stars with masses around twice the solar
mass were established, namely PSR J1614–2230 [32–34], PSR J0348+0432 [35] and PSR
J0740+6620 [36, 37], with masses evaluated at the 68% level:

PSR J1614–2230 M = 1.908± 0.016M⊙ , (3.63)
PSR J0348+0432 M = 2.01± 0.04M⊙ , (3.64)
PSR J0740+6620 M = 2.08± 0.07M⊙ . (3.65)

To compute the respective likelihoods we follow previous analyses [69, 70, 78] and assume
that the mass measurements based on the Shapiro time delay are distributed as Gaussians,
N
(
M, ⟨M⟩, σM

)
= 1/

√
2πσ2 exp[−1/2 (M − ⟨M⟩)2/σ2

M ] with mean values ⟨M⟩ and stan-
dard deviations σM . For a given set of parameters θ the solution of the TOV Eqs. (2.8
- 2.9) yields the maximum supported mass Mmax(θ) for this respective EoS. Then, the
likelihood is equivalent to the integral over the Gaussian probability distribution, weighted
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with the mass prior in Eq. (3.60):

p
(
DMass

∣∣∣M(θ)
)

=
∫ Mmax(θ)

Mmin
dM N

(
M, ⟨M⟩, σM

)
p(M(θ))

≈ 1
2

1 + erf
(
Mmax(θ)− ⟨M⟩√

2σM

) p(M(θ)) . (3.66)

The total likelihood for all Shapiro time delay measurements is given by the product of the
individual likelihoods.

Black widow pulsars

Optical light curve modeling can be used to determine the mass of so-called ‘spiders’, a
class of rapidly rotating pulsars with very low-mass companions. Such binary systems are
typically formed when a star evolves into a red giant and its material is accreted by an
accompanying neutron star. The neutron star’s rotation is sped up due to the accretion
process, and the accelerated pulsar emits a stream of high-energy particles that heat and
gradually evaporate the donor star. Pulsars paired with companions weighing around
0.01M⊙ are classified ‘black widows’, whereas those with companion masses of the order
of 0.1M⊙ are termed ‘redbacks’ [160].

In these systems, the tidally locked companion is deformed and heated on the side facing
the pulsar. This affects the companion’s optical light curve depending on the inclination of
the system. Once the inclination has been determined from these effects, the mass of the
neutron star can be derived from the radial velocities of the pulsar and the companion
by dividing the binary mass functions (3.62) of the two stars. Note that it is necessary
to adjust the spectroscopic measurements of the companion used to determine its radial
velocity to account for the asymmetric heating that shifts the center of light away from
the geometric center of the star.

Using this technique the heaviest neutron star observed so far was recently reported
in Ref. [44]. The black-widow pulsar PSR J0952-0607 is estimated to have a total mass
M = 2.35± 0.17M⊙, significantly larger than previously observed masses based on Shapiro
time delays, but with a relatively large uncertainty. For this object a simple direct heating
model provided the best fit and the results were robust to the inclusion of more complex
heating effects. With a rotational frequency ν = 709 Hz, PSR J0952-0607 is also among the
fastest-spinning pulsars. Therefore, rotation corrections have to be considered as they can
effectively increase the maximum mass that a given EoS can support. We use the radius-
dependent rotation adjustment provided in Ref. [272], where the authors find approximately
universal relations between stationary and rotating masses and radii. They fit empirical
formulas, independent of the EoS, to derive the mass and radius corrections induced by a
rotation with frequency ν. We have collected the results of their fit in Appendix B. The
resulting radius-dependent rotation correction of the PSR J0952-0607 mass is illustrated in
Fig. 3.3. This adjustment is quite strongly radius-dependent, with a significant difference
between rotating and non-rotating mass at larger radii. The uncertainty in the correction
as reported in Ref. [272] is smaller than the uncertainty in the heavy-mass measurement
itself. At a neutron star radius of R = 12 km the rotating mass Mrot = 2.35M⊙ decreases
by 3% to an equivalent non-rotating mass of M ≃ 2.28M⊙.

In order to compute the black-widow likelihood for a given set of parameters θ, we first
determine the TOV maximum non-rotating mass Mmax(θ) as well as the corresponding
radius R(Mmax, θ). With the formulas derived in Ref. [272] (see Appendix B) we can
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FIG. 3.3. PSR J0952-0607 mass measurement with 68% uncertainty [44] compared to the static
case (without the ν ≃ 709 Hz rotation) computed using the prescription in Ref. [272] that is
summarized in Appendix B. Figure taken from Ref. [97].

then compute the rotation-adjusted maximum mass Mrot,max(θ). Assuming that the mass
distribution of PSR J0952-0607 is Gaussian, its likelihood can be computed in a way similar
to the Shapiro time delay likelihood in Eq. (3.66), with the non-rotating maximum mass
replaced by Mrot,max(θ).

In addition to PSR J0952-0607 there exist further massive spiders, such as PSR
J2215+5135, a redback pulsar with a reported mass of M = 2.15± 0.10M⊙ [273]. How-
ever, like other spider pulsars, this object required a more complex heating model which
introduces a larger systematic uncertainty [44, 273–275]. It is therefore not included in the
present analysis.

3.4.2 Mass-radius measurements

Pulse profile modeling

The mass and radius of neutron stars can be extracted by modeling the thermal X-ray
emissions from hot spots that form on their surfaces. For rotation powered, non-accreting
pulsars, these hot spots originate from return currents in the pulsar magnetosphere that
deposit energy in the surface layers at the magnetic polar caps [276]. The emitted soft
X-rays have very stable pulse profiles that vary periodically with the rotation of the star.
As these photons traverse the curved spacetime surrounding the neutron star, they are
affected by relativistic effects such as gravitational light bending. Due to this effect hot
spots remain visible even when they face away from the observer, so that the amplitude
of the pulsations is modified by the star’s compactness M/R [277, 278]. In addition, the
rotation of the star induces a Doppler effect, leading to an asymmetry in the rise and fall
times of the pulsations. Neutron stars with larger radii have higher surface velocities for a
given angular velocity, leading to more pronounced Doppler boosts [160]. In order to put
tight constraints on the radius, it is therefore advantageous to investigate rapidly rotating
sources where the Doppler effects are more prominent.

Using a model of the hot spots and the neutron star atmosphere, Bayesian posterior
distributions for the mass and radius can be inferred from X-ray profiles measured by
the Neutron Star Interior Composition ExploreR (NICER) on board the International
Space Station. So far two neutron stars were measured and subsequently analyzed by two
independent groups.
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Here, we use the results of Riley et al. [40, 41] for masses and radii at the 68% level:

PSR J0030+0451 R = 12.71+1.14
−1.19 km ,

M = 1.34+0.15
−0.16M⊙ , (3.67)

PSR J0740+6620 R = 12.39+1.30
−0.98 km ,

M = 2.072+0.067
−0.066M⊙ . (3.68)

The complementary NICER data analysis by Miller et al. found slightly different results
[42, 43]:

PSR J0030+0451 R = 13.02+1.24
−1.06 km ,

M = 1.44+0.15
−0.14M⊙ , (3.69)

PSR J0740+6620 R = 13.7+2.6
−1.5 km ,

M = 2.08± 0.07M⊙ , (3.70)

but they are consistent within uncertainties. Based on previous studies we expect the
choice between these two analyses to have only little influence on the conclusions [74].
The posterior probabilities for the mass and radius data are available as samples and we
can approximate the underlying distributions using kernel density estimation (KDE), see
Sec. 3.2.2. For a given EoS characterized by parameters θ, we solve the TOV equations
to obtain R(M, θ). The likelihood is then computed as the mass integral over the KDE
evaluated at the radius given by the mass-radius relation:

p
(
DMass-radius

∣∣∣(M,R)(θ)
)

=
∫ Mmax(θ)

Mmin
dM KDE

(
M,R(M, θ)

)
p(M(θ)) . (3.71)

This is again weighted with the mass prior in Eq. (3.60). In the case of PSR J0740+6620,
the analysis of the NICER measurement includes the Shapiro delay result in Eq. (3.65). In
this case we do not include the Shapiro mass data in the total likelihood to avoid double
counting.

Recently, a new analysis of PSR J0030+0451 that employed an updated instrument
response and additionally included XMM-Newton data was carried out in Ref. [279].
In this analysis, the preferred hot spot geometry changed significantly leading to very
different posterior mass and radius values, M ∼ 1.7M⊙ and R ∼ 14.5 km, compared to the
previously reported results in Refs. [40, 42]. However, the authors emphasized that their
results are not yet robust due to computational limitations and, as explained in Ref. [103],
the inclusion of XMM-Newton data could introduce systematic biases. In contrast, a
reanalysis of PSR J0740+6620 based on more NICER data [280, 281] found consistent
results with the previous findings in Refs. [41, 43].

Very recently, preliminary results have been reported from an analysis of the latest
NICER measurements of the pulsar PSR J0437-4715 [46]. This pulsar, the brightest
object observed by the NICER telescope so far, is located near an even more luminous
active galactic nucleus. The object forms a binary system with a white dwarf companion,
facilitating the use of an accurate mass prior based on Shapiro time delay measurements
[282]. The following preliminary masses and radii were reported at the 68% level:

PSR J0437-4715 R = 11.36+0.95
−0.63 km ,

M = 1.418± 0.037M⊙ . (3.72)
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The inferred mass of PSR J0437-4715 is comparable to that of PSR J0030+0451 as reported
in Refs. [40, 42], although the newly measured radius is quite smaller. Nevertheless, both
measurements are consistent within their 68% credible intervals5. The posterior samples
from this analysis are not yet publicly available, therefore we model the two-dimensional
mass-radius distribution using a product of two skewed Gaussian distributions:

p(M,R|D) ∝ Nskew(M,aM , µM , σM )Nskew(R, aR, µR, σR) , (3.73)

where the distributionNskew(x, a, µ, σ) corresponds to a combination of a standard Gaussian
with the conventional error function:

Nskew(x, a, µ, σ) = N (x, µ, σ)

1 + erf
[
a√
2
x− µ
σ

] . (3.74)

The parameters for the mean µ, standard deviation σ, and skewness a are adjusted to
match the reported marginal values in Eq. (3.72). This approximation yields credible
levels similar to those reported in Ref. [46]. The likelihood can then be computed using
Eq. (3.71), replacing the kernel density estimate with Eq. (3.73). With only preliminary
results available so far, we will analyze the impact of the mass-radius measurement of
PSR J0437-4715 separately from the other data. As we will later see, while this further
refines the inference results, the inclusion of the newest NICER measurement still leads to
a consistent picture with the other neutron star data.

A number of other objects are set to be measured by the NICER telescope [67, 276, 283].
Even more sources will be measured by the future missions eXTP [284] and STROBE-X
[285], which will be sensitive enough to allow pulse profile modeling for accretion-powered
pulsars and thermonuclear burst oscillations [276].

Quiescent low-mass X-ray binaries

Low-mass X-ray binaries in quiescence are binary star systems composed of a low-mass
donor star transferring material onto a neutron star, which, during periods of low accretion
activity, emits minimal X-ray radiation [269, 271]. These binaries are identified in globular
clusters where distances, ages, and reddening are relatively well-known [286].

Thermal emissions from quiescent low-mass X-ray binaries (qLMXBs) can be used to
determine their masses and radii. The luminosity of a source is given by its distance d and
the bolometric flux F :

L = 4πd2F . (3.75)

At low temperatures the flux is strongly affected by its passage through the interstellar
medium due to photoelectric absorption by electrons. The amount of the absorption depends
on the column density of hydrogen atoms along the line of sight, NH . In the quiescent
state, assuming the accretion-heated neutron star surface has a uniform temperature, the
luminosity follows the Stefan–Boltzmann law:

L = 4πR2σSBT
4
eff , (3.76)

where σSB is the Stefan–Boltzmann constant and Teff the effective surface temperature
of the source, which can be extracted by spectral analysis of the X-ray emissions using
5 Note that a possible, although less preferred, hot spot configuration in the reanalysis of PSR J0030+0451

[279] obtained very similar mass and radius values as those reported for PSR J0437-4715.
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neutron star atmosphere models. Combining Eqs. (3.75) and (3.76), the radius can be
determined from

R =
√

d2F

σSBT 4
eff
. (3.77)

This needs to be corrected to account for the gravitational redshift as well as the light-
bending of the thermal photons, both of which depend on the compactness and thus the
mass of the neutron star.

In Ref. [141] the information from eight qLMXBs in globular clusters were combined to
determine the radius of a neutron star with a characteristic mass of M = 1.4M⊙. In their
baseline scenario the authors reported a 68% confidence interval of:

R(1.4M⊙) = 11.4− 13.1 km . (3.78)

The assumption of a uniform surface temperature is often motivated by the absence
of pulsations in the observed spectra. Temperature inhomogeneities like hot spots would
lead to periodic variations in the X-ray flux. However, the absence of pulsations does not
guarantee a uniform temperature, as similar behavior could arise from favorable geometries,
such as either hot spots or the line of sight being aligned with the rotation axis [160, 287].
Moreover, the assumed atmospheric composition can introduce systematic uncertainty in
the thermal X-ray spectra analysis. Hydrogen and helium atmospheres generally provide
equally good fits but can yield vastly different radii [269, 271]. Some information about the
atmospheric composition can, however, be inferred from the donor star, as the previously
accreted matter determines the neutron star’s atmospheric ingredients [103, 141].

Thermonuclear bursters

In certain binary star systems containing a neutron star, observations show recurrent bursts
of X-ray radiation. These bursts are believed to be triggered by runaway thermonuclear
fusion on the accreted envelope of the neutron star due to transfer of hydrogen-rich material
from its companion [288]. During the most energetic of these thermonuclear X-ray bursts,
the luminosity of the neutron star can exceed the Eddington limit, which represents the
theoretical maximum luminosity a star can sustain before radiation pressure overcomes
gravity:

LEdd = 4πGNM

κ
. (3.79)

Here, κ denotes the radiative opacity that is primarily caused by Thomson scattering.
When the Eddington limit is surpassed, the photosphere, i.e., the visible emitting surface
of the star, becomes unbound and undergoes a rapid expansion. The photospheric radius
expansion leads to a decrease in temperature until the photosphere collapses back onto the
neutron star’s surface. The collapse triggers a subsequent heating phase, resulting in a
characteristic double-peaked structure in the observed burst spectra [289]. The moment
when the photosphere collapses back onto the surface is referred to as the ‘touchdown’, and
it is hypothesized that the luminosity takes the value of the Eddington limit [271, 290]. By
analyzing the subsequent cooling phase and comparing it to theoretical models of passively
cooling neutron star atmospheres, it is possible to extract information about the neutron
star’s mass and radius.
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Ref. [291] employed this ‘cooling tail method’ to thermonuclear X-ray bursts of the
pulsar 4U 1702-429, leading to the following 68% mass and radius credible intervals:

R = 12.4± 0.4 km , (3.80)
M = 1.9± 0.3M⊙ . (3.81)

Note that this analysis assumed a uniformly emitting and slowly rotating neutron star
[291]. Moreover, the composition of the star’s atmosphere can impact the opacity of the
star leading to different radius values.

In several previous studies measurements from quiescent low-mass X-ray binaries and
thermonuclear bursters were included in the Bayesian inference [2, 63–65, 91]. However, as
discussed above, these data involve lots of specific model features (see also the discussions
in Refs. [103, 160]). Therefore, we do not include them in our Bayesian analysis.

Central Compact Objects

The observation of a neutron star with an unusually small mass, a central compact object
within the supernova remnant HESS J1731-347, was recently reported [45]. Such central
compact objects have weak magnetic fields and nearly constant thermal X-ray emission.
Hence, if the star’s distance is determined via parallax, their mass and radius can be
extracted from their spectral emissions similar to qLMXBs. In their analysis, the authors
found a mass of only M = 0.77+0.20

−0.17M⊙ as well as a small radius, R = 10.4+0.86
−0.78 km [45].

This low mass is remarkable because it is not clear how neutron stars with masses lower
than around 1.17M⊙ form based on known neutron star evolution mechanisms that involve
supernovae [156]. The previously known lightest neutron star is compatible with this low
mass constraint [292]. This in combination with the object’s small radius led the authors
to speculate that HESS J1731-347 might be a possible strange star. Because of the absence
of pulsations in the measured spectra, the authors assumed a uniform surface temperature
as well as a carbon atmosphere. In addition, they assumed that the stellar magnetic field
has no surface effects. However, other authors have suggested a non-uniform emission
for similar kinds of central compact objects [293]. In that case larger masses and radii
might be possible for HESS J1731-347. Despite such obvious model dependence in the
interpretation of the data, it is instructive to add HESS J1731-347 as a separate item in
our inference analysis, just in order to explore what its impact would be on the overall
picture. The mass-radius posterior from Ref. [45] is again available as samples, so we can
compute the likelihood in a way similar to the NICER analyses in Eq. (3.71).

3.4.3 Tidal deformability measurements

Gravitational waves

The acceleration of massive objects results in distortions of spacetime known as gravitational
waves which propagate at the speed of light. Coalescing binary neutron stars are a potent
source of gravitational waves, due to the strong acceleration of their masses during the
inspiral. Employing laser interferometry techniques, the ground-based detectors of the
LIGO and Virgo Scientific Collaborations are capable of measuring the exceedingly small
distance changes caused by gravitational waves

The inspiral and coalescence of two compact objects are well described by general
relativity. Theoretical waveforms for binary neutron star merger events can be derived
from Einstein’s equation through a post-Newtonian expansion [170, 294]. During the
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early stages of the inspiral, the time evolution of the gravitational wave frequency is
predominantly determined by the chirp mass, Mchirp = (M1M2)3/5(M1 + M2)−1/5 [295].
As the orbital separation between the two compact objects decreases, the gravitational
wave frequency increases and relativistic effects depending on the mass ratio, M2/M1,
become more important. As discussed in Sec. 2.1.3, the intense gravitational fields cause
the neutron stars to tidally deform, thereby accelerating the coalescence. At fifth-order in
the post-Newtonian expansion, the gravitational waveform depends on a mass-weighted
combination of the tidal deformabilities of the two neutron stars:

Λ̄ = 16
13

(M1 + 12M2)M4
1 Λ1 + (M2 + 12M1)M4

2 Λ2
(M1 +M2)5 . (3.82)

Hence from gravitational wave measurements a Bayesian posterior for the masses (M1,M2)
and tidal deformabilities (Λ1,Λ2) can be inferred. Higher order terms in the gravitational
waveform would allow to extract the tidal deformabilities of each star individually. They
are, however, unlikely to be detected given the sensitivity of the current detectors [160].
So far, two possible binary neutron star merger events, GW170817 [38] and GW190425
[39], were detected, yielding the following constraints at the 90% level:

GW170817 Λ̄ = 300+420
−230 , (3.83)

GW190425 Λ̄ ≤ 600 . (3.84)

Notice that different analyses of the gravitational wave data produced slightly changed
results [296]. The first one of these events (GW170817) was further evaluated together
with electromagnetic signals [70, 297, 298]. The following masses and tidal deformabilities
of the individual neutron stars in the binary were extracted in Ref. [298] at the 90% level:

M1 = 1.46+0.13
−0.09M⊙ Λ1 = 255+416

−171 ,

M2 = 1.26+0.09
−0.12M⊙ Λ2 = 661+858

−375 . (3.85)

Using universal relations in Ref. [295] the tidal deformability of a 1.4M⊙ neutron star was
extracted based on the information from the merger event GW170817 (90% level):

Λ(1.4M⊙) = 190+390
−120 . (3.86)

We can again approximate the underlying probability distribution of the available
posterior samples via kernel density estimation. For a given set of parameters θ, solving
the TOV equations in combination with the equations for the tidal deformability yields the
relationship Λ(M, θ). Masses larger than the maximum mass of a given EoS, M > Mmax(θ),
correspond to black holes, in which case Λ(M, θ) is set to zero. The likelihood is given by
the integral over both neutron star masses, with the tidal deformabilities given by Λ(M, θ):

Pr
(
DMass-tidal

∣∣∣(M,Λ)(θ)
)

=
∫

dM1

∫
dM2 KDE

(
M1,M2,Λ(M1, θ),Λ(M2, θ)

)
.

(3.87)

Following Ref. [72] we do not use the mass prior here, as we cannot start a priori from
assuming the events to be neutron star-neutron star mergers, but should also allow for the
principal possibility of neutron star-black hole binaries.

The chirp mass of the GW170817 event inferred in Ref. [38] has a very small uncer-
tainty, Mchirp = 1.186 ± 0.001M⊙, hence some analyses assumed it to be fixed. For a
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given M1 this allows to determine M2 and effectively removes one of the integrations.
However, this does not work for GW190425 where the chirp mass has a larger uncertainty,
Mchirp = 1.44±0.02M⊙. Moreover, determining M2 via Mchirp neglects the M1 dependence
of the chirp mass. We perform the double integration in Eq. (3.87) over both M1 and M2
without resorting to a fixed chirp mass.

Together with the neutron star merger event GW170817 the short gamma-ray burst
GRB170817A and the kilonova AT2017gfo were detected [299]. The gamma-ray burst
is believed to originate from the launch of a relativistic jet, whose interaction with the
interstellar medium produced a long afterglow [300]. The material ejected during the
merger is highly neutron-rich, creating favorable conditions for rapid neutron capture
(r-process) nucleosynthesis. The heavy elements formed in this way undergo radioactive
decay, heating the ejected material and causing it to emit electromagnetic radiation visible
as a kilonova [301]. Some recent Bayesian analyses include information about this kilonova
[70, 78, 80, 88], which however introduces a series of model assumptions and consequently
raises the systematic uncertainties. For example, in Ref. [103] two different kilonova models
led to quite different posterior results. Accordingly, we do not include information from
the electromagnetic counterparts of GW170817 in our Bayesian analysis.

The sensitivity of laser interferometric gravitational wave detectors decreases at higher
frequencies, which prohibited the extraction of gravitational wave signals from the merger
product produced in the GW170817 event. Nevertheless, theoretical models of short
gamma-ray burst emission from binary neutron star mergers suggest a subsequent collapse
into a black hole [302]. However, the observed properties of the red and blue kilonova ejecta
indicate that the collapse did not occur immediately. Instead, it seems likely that the post-
merger object could have been a hyper-massive neutron star that was temporarily stabilized
against gravitational collapse by differential rotation [302–304]. If this interpretation is
valid, it implies a lower upper bound on the maximum mass of non-rotating neutron stars.

Additional merger events will hopefully be detected during the fourth and fifth observation
runs of LIGO, Virgo and KAGRA [72, 305]. Furthermore, the next generation of ground-
based detectors, i.e., the Einstein telescope [306] and Cosmic Explorer [307], promises a
substantial enhancement in the sensitivity of gravitational wave detections. These future
facilities are projected to detect multiple binary neutron star mergers daily [308]. In addition,
future detectors could enable the observation of gravitational waves from damped oscillations
within neutron stars, known as quasi-normal modes (see, e.g., Refs. [309, 310] and references
within), which are highly sensitive to internal discontinuities potentially caused by phase
transitions [311]. Moreover, these next-generation instruments are anticipated to detect
continuous gravitational waves from rotating neutron stars, facilitating the determination
of their moment of inertia [160, 312], a quantity which is sensitive to the neutron star
equation of state. Note that the first moment of inertia measurement of a neutron star
is expected to become available in the coming years through radio timing observations
of the neutron star PSR J0737-3039A in a double pulsar system (see, e.g., Ref. [313] and
references therein).

3.4.4 Nuclear data

Elastic scattering of polarized electrons off heavy nuclei can be used to measure the
parity-violating asymmetry, which is sensitive to the interference between electromagnetic
interactions via photon exchanges and weak interactions mediated by Z boson exchanges
[314]. These interactions differ significantly between protons and neutrons, due to the
neutrons’ neutral electric charge and the protons’ small weak charge. Consequently, the
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magnitude of the parity-violating asymmetry depends on the spatial distributions of protons
and neutrons within the nuclei, enabling the determination of the difference between the
radii of neutron and proton distributions called the neutron skin thickness. This parameter
is strongly correlated with the equation of state around nuclear saturation density, n ∼ n0,
which influences the radius of a typical 1.4M⊙ neutron star [315].

The thick neutron skin thickness of 208Pb extracted in the PREX II measurement [314]
suggests a stiff equation of state at small densities [82, 315, 316]. This is in tension
with other laboratory probes [315] including the thin neutron skin thickness of 48Ca, as
determined by the CREX collaboration [317], which implies a softer EoS in agreement with
ChEFT predictions [318]. The tension between these measurements may indicate potential
systematic uncertainties in deriving the EoS from the parity-violating asymmetry [103].
Therefore, we do not include these measurements in the total likelihood.

Properties of nuclear matter under extreme density conditions can also be probed through
heavy-ion collisions [88, 157, 319]. In these experiments, the collision of ions traveling at
relativistic speeds creates a fireball of highly compressed and extremely hot matter that
undergoes rapid expansion and emits fast-moving particles. A key observable in these
experiments is the elliptic flow, which quantifies the anisotropy of the emitted particles
and is particularly sensitive to the early stages of the system’s evolution. Notably, at
the FOPI [320] and ASY-EOS [321] experiments, gold nuclei were collided at relativistic
energies in the range of 0.4−1.5 GeV per nucleon. The compressibility of symmetric nuclear
matter could be deduced by comparing the elliptic flow data from the FOPI experiment
with predictions from theoretical transport models [320]. These models simulate the non-
equilibrium evolution of nuclear matter from the initial impact through the various stages
of the collision [157]. In the ASY-EOS experiment, differences in the elliptic flow between
neutrons and charged particles (consisting mainly of protons) allowed the determination
of the nuclear symmetry energy, which reflects the energy required to convert protons
into neutrons in nuclear matter, up to densities about 2n0 [321]. These insights from
heavy-ion collisions have led to constraints on the pressure of neutron star matter that
are comparable to those derived from ChEFT [88, 103]. However, because of the model
dependence of the theoretical transport descriptions we do not include information from
heavy-ion collisions in our Bayesian analysis.

3.4.5 Theory constraints

Low-density constraint from chiral effective field theory

In many other recent Bayesian studies, the ChEFT constraints introduced in Sec. 2.2.2 were
implemented as a prior. However, the ChEFT framework with its low-energy constants
and uncertainty measures should be considered as representing a large variety of empirical
nuclear physics data, in the same general category as the astrophysical data. There is, in
principle, no reason to trust the uncertainty estimates of ChEFT more than those of the
astrophysical data. Therefore, we employ the ChEFT information as a likelihood instead
of a prior. The likelihood treatment permits a balancing between the constraints from
nuclear physics and astrophysics and allows for a rigorous and statistically consistent Bayes
factor analysis.

With the Gaussian process used in Refs. [60, 61], the speed of sound displayed in Fig. 2.4
is normally distributed at each density n with mean value ⟨c2

s(n)⟩ and standard deviation
σ(n). We employ the ChEFT results at discrete densities ni starting from the BPS
crust and extending up to a maximum density for the applicability of the effective field
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theory, ni ∈ [0.5n0, nChEFT]. The ChEFT likelihood is then computed via Bayesian linear
regression, that is the total likelihood is given by the product of the Gaussian likelihoods
at each ni:

p
(
DChEFT

∣∣∣c2
s(n, θ)

)
∝
∏

i

exp

−1
2

(
⟨c2

s(ni)⟩ − c2
s(ni, θ)

σ(ni)

)2


= exp

−1
2
∑

i

(
⟨c2

s(ni)⟩ − c2
s(ni, θ)

σ(ni)

)2
 , (3.88)

where we assign each density the same prior weight. The speed-of-sound constraint of
Refs. [60, 61] is continuous in n. Therefore, we choose to replace the sum by an integral:

p
(
DChEFT

∣∣∣c2
s(n, θ)

)
∝ exp

−1
2

∫ nChEFT

0.5 n0
dn

(
⟨c2

s(n)⟩ − c2
s(n, θ)

σ(n)

)2
 . (3.89)

We have checked that this likelihood leads to posterior credible bands for the sound velocity
that are very similar to those in Refs. [60, 61]. Following the results of the analysis in
Ref. [73], we choose a conservative maximum density for the applicability of ChEFT as
nChEFT = 1.3n0. At higher densities the N2LO and N3LO results become increasingly
different, hinting towards possible convergence issues. We will examine the impact of this
choice in the later analysis.

High-density matching to perturbative QCD

As described in Sec. 2.2.3, at asymptotically high densities, pQCD provides a constraint
to be matched in extrapolations far beyond the conditions realized in neutron star cores.
Here, we use the likelihood introduced in Refs. [62, 86] to include this matching in our
inference analysis. The partial N3LO pQCD results of Ref. [49] depicted in Fig. 2.5 are
taken to be valid at the chemical potential µpQCD = 2.6 GeV, with corresponding density
npQCD and pressure PpQCD. For any point of a given equation of state, nNS, PNS and
µNS, it must be possible to connect to the asymptotic pQCD constraint via a causal and
thermodynamically stable interpolation. Because the squared speed of sound (derived in
the grand canonical approach from P (µ)) is causally limited,

c2
s =

(
µ

n

∂n

∂µ

)−1

≤ 1 , (3.90)

a minimal slope of the function n(µ) is determined for any specific EoS:

∂n

∂µ
≥ n

µ
. (3.91)

Demanding that it should be possible to connect a point in the neutron star range,
(µNS, nNS, PNS)(θ), to µpQCD, npQCD and PpQCD leads to the integral constraint∫ µpQCD

µNS
dµ n(µ) = PpQCD − PNS = ∆P . (3.92)
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It was shown in Ref. [62] that the requirements of causality and thermodynamic stability
imply the following minimum and maximum values for ∆P :

∆Pmin =
µ2

pQCD − µ2
NS

2µNS
nNS , (3.93)

∆Pmax =
µ2

pQCD − µ2
NS

2µpQCD
npQCD . (3.94)

Accordingly, the pQCD likelihood is equal to one if the difference ∆P is within these two
values and zero otherwise:

p
(
DpQCD

∣∣∣∆P (θ)
)

=


1 if ∆P (θ) ∈ [∆Pmin(θ),∆Pmax(θ)]

0 else
. (3.95)

The pQCD results still depend on the renormalization scale X. We follow Refs. [62, 86]
and take the logarithmic average over X ∈ [1/2, 2]. Each EoS is constrained by neutron
star data only up to the respective maximum central chemical potential µc,max, density
nc,max and pressure Pc,max. As in Refs. [94, 137] we verify at that point, (µNS, nNS, PNS) =
(µc,max, nc,max, Pc,max), whether a causal and thermodynamic interpolation to the asymp-
totic pQCD constraint exists. Note that the authors of Refs. [62, 86] chose nNS = 10n0
instead, together with the corresponding chemical potential and pressure, well above the
central densities reached in neutron stars. We will analyze the impact of this choice in the
later analysis.

Total likelihood

Summarizing the preceding sections, the full procedure to obtain posterior credible bands
for neutron star properties consists of the following steps: first a set of parameters θ is
sampled from the prior p(θ). We need up to 900, 000 samples (with less samples necessary
for parametrizations with fewer parameters) in order to generate statistically solid results
that cover enough probability mass such that they remain stable after a further increase in
the number of samples. For this sampled set of parameters we compute the speed of sound
for the respective parametrization and then the EoS, P (ε, θ), using Eq. (2.12). Given the
equation of state we can numerically solve the coupled system of differential equations
introduced in Secs. 2.1.2 and 2.1.3 for (M,R,Λ)(θ). The total likelihood can then be
determined as the product of the individual likelihoods for the different measurements and
constraints:

p(D|θ) ∝ p
(
DMass

∣∣∣M(θ)
)
p
(
DMass-radius

∣∣∣(M,R)(θ)
)
p
(
DMass-tidal

∣∣∣(M,Λ)(θ)
)

× p
(
DChEFT

∣∣∣c2
s(n, θ)

)
p
(
DpQCD

∣∣∣∆P (θ)
)
. (3.96)

The prior probability distribution weighted with the above likelihood yields the posterior
probability distribution, p(θ|D), for the parameters. We can then marginalize over this
posterior probability distribution to compute the median as well as the highest density
credible intervals at the 68% and 95% level for different neutron star properties, as well as
the credible bands at different levels as explained in Sec. 3.2.

The set consisting of Shapiro time delay data, NICER measurements and the information
from gravitational wave events, together with ChEFT and pQCD constraints, is denoted
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‘Previous’ in the following. This serves to study the impact of the three new observations,
i.e., the black widow (BW) mass, the supernova remnant (HESS) and the newest NICER
(NN) mass-radius data. This nomenclature is also displayed in Table 3.3, where we
summarize all data used in the conventional Bayesian analysis.

Data and constraints
PSR J1614–2230 M = 1.908± 0.016M⊙ [34]
PSR J0348+0432 M = 2.01± 0.04M⊙ [35]
PSR J0030+0451 M = 1.34+0.15

−0.16 M⊙

R = 12.71+1.14
−1.19 km [40]

PSR J0740+6620 M = 2.072+0.067
−0.066 M⊙

Previous R = 12.39+1.30
−0.98 km [41]

GW170817 Λ̄ = 300+420
−230 [38]

GW190425 Λ̄ ≤ 600 [39]
ChEFT [60, 61]
pQCD [49, 62, 86]

BW PSR J0952-0607 M = 2.35± 0.17M⊙ [44]

HESS HESS J1731-347 M = 0.77+0.20
−0.17 M⊙

R = 10.4+0.86
−0.78 km [45]

NN PSR J0437-4715 M = 1.418± 0.037M⊙

R = 11.36+0.95
−0.63 km [46]

TABLE 3.3. Data and constraints used in the conventional Bayesian inference analysis. We
examine the impact of the new black widow (BW), supernova remnant (HESS) and NICER (NN)
data separately from the previously available data (Previous). All listed results are at the 68% level
except for the Λ̄ results based on the gravitational wave measurements which are at the 90% level.

3.5 Simulation-based inference
As explained in Sec. 3.2.1, the likelihoods for the equation of state parameters given the
observed detector data p(θ|D) are not analytically available. Therefore, in our conventional
Bayesian analysis described in the previous sections we follow the traditional approach
to carry out the inference in two steps, where first exterior neutron star properties are
extracted from observed astrophysical detector data, followed by EoS inference from a
set of stellar masses, radii and tidal deformabilities [139, 140]. This two-step procedure
requires additional assumptions including the assumption that the posteriors derived from
the detector observations can be used as likelihoods (see Eq. (3.51)) and that the posterior
probability distributions can be represented using kernel density estimates or Gaussians.
Recently it has been demonstrated that a single-step inference is possible while fully
propagating uncertainties [127, 128]. In their studies, the authors inferred the neutron
star equation of state directly based on spectroscopic measurements from the thermal
surface emission of low-mass X-ray binaries in quiescence. As explained in Sec. 3.4.2, the
emitted stellar spectra depend on the star’s mass and radius, and are also affected by the
stellar distance, hydrogen column, and effective surface temperature. Uncertainties on
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these nuisance parameters must be accounted for when making a robust estimation of the
equation of state. While the advancements of Refs. [127, 128] allow access to the posterior
of the EoS parameters by marginalizing nuisance parameters, the computational expense
involved has hindered access to the full posterior.

In this section, we introduce a novel method that provides access to the full posterior
distribution of the equation of state and the nuisance parameters directly from telescope
spectra of quiescent low mass X-ray binaries6. For that we employ a recently developed
simulation-based inference technique known as neural likelihood estimation (NLE) [144]
in which normalizing flows use samples of simulated X-ray telescope spectra to learn the
likelihood of an observation as a function of the EoS and nuisance parameters. The direct
inference of the neutron star EoS from telescope spectra via neural likelihood estimation
in contrast to the traditional two-step inference is shown schematically in Fig. 3.4.

1st inference

step

{𝑀 ⅈ , 𝑅 ⅈ }

nuisance parameters

{𝑁𝐻
ⅈ
, 𝑑 ⅈ , log 𝑇eff

ⅈ }

parameters

𝜆1, 𝜆2 TOV equations

2nd inference step

neural likelihood estimation

FIG. 3.4. Traditional inference of EoS parameters (left) from telescope spectra (right) is done by
first inferring intermediate mass-radius constraints (green arrows), involving additional implicit
assumptions. In contrast, neural likelihood estimation allows for inference of the EoS directly
from telescope spectra (orange arrow), robustly accounting for uncertainties. Figure taken from
Ref. [243].

3.5.1 Simulated neutron stars

Samples of simulated neutron stars with varying values of EoS and nuisance parameters are
prepared for training the normalizing flows and evaluation of their performance. Samples
from Refs. [127, 128], generated using a spectral parametrization with two parameters
θ = (λ1, λ2) according to the prior in Sec. 3.3.3, are used to facilitate direct comparison to
previous methods.

Modeling X-ray spectra with xspec

Traditional statistical methods infer macroscopic neutron star properties from the emitted
X-ray spectra of quiescent low-mass X-ray binaries by fitting the observed spectrum to
well-motivated theoretical models, which make assumptions about the source like its
atmospheric composition, magnetic field, or temperature [269, 271, 322]. The open-source
software xspec contains many such models and is widely regarded as the state-of-the-art
for spectral fitting [323] and can additionally be used in the generation of simulated
spectra. The spectra used in this study were generated using the NSATMOS model in
6 As discussed in Sec. 3.4.2, the analysis of qLMXBs involves some model assumptions. We nevertheless

focus on thermal X-ray spectra in our analysis to demonstrate the feasibility of the approach and to
facilitate a direct comparison with previous works [127, 128]. As discussed later, simulation-based
inference methods can, in principle, be similarly applied to other astrophysical data with less systematics,
e.g., from NICER or gravitational waves. This section closely follows Ref. [243].
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xspec, a hydrogen atmospheric model that includes effects of thermal conduction by
electrons and self-irradiation due to the gravitational bending of photons [322]. Beyond the
stellar mass and radius, this model also depends on three additional nuisance parameters,
described in the next section. The simulated spectra are subjected to the Chandra telescope
response function corresponding to the instrument ACIS-S [65, 322] and to Poisson noise
corresponding to an observation time of 100 ks.

Nuisance parameters

Each simulated X-ray spectrum from the NSATMOS model depends on the stellar mass,
radius, and three additional parameters: the effective temperature of the surface, Teff , the
distance to the star, d, and the hydrogen column, NH , which parametrizes the reddening
of the spectrum by the interstellar medium. These additional neutron star properties are
deemed nuisance parameters as they are not directly related to the properties of matter
inside the cores of neutron stars but can still greatly impact the observed (and simulated)
spectra (see Sec. 3.4.2 for more details on how to extract the masses and radii of qLMXBs).
Values for the nuisance parameters are sampled from ranges with distributions motivated
by observation as described in Refs. [141, 324]; details of each range are given in Table 3.4.

Parameter Distribution Range
EoS λ1 uniform [4.75, 5.25]

λ2 uniform [-2.05, -1.85]
nuisance d uniform [2.3, 12.3] kpc

NH log uniform [0.01, 3.16] 1021 cm−2

Teff exponential [1, 2]106 K 1

1This corresponds to a uniform distribution of log(Teff) in the range [6, 6.3].

TABLE 3.4. Distributions and ranges of the equation of state parameters (λ1 and λ2) and
nuisance parameters (NH , d, and log Teff) used to generate the samples of simulated neutron stars.
See text for parameter definitions.

The values of nuisance parameters can be informed by independent observations, which
can vary significantly from star to star and provide prior information. For example, by
measuring the redshift of nearby stars one can get an estimate for the distance d of a
neutron star to the telescope. We consider three scenarios for nuisance parameter priors,
referred to as ‘true’, ‘tight’, and ‘loose’ [127, 128]. In the ‘true’ scenario, the nuisance
parameters are known exactly, while the ‘tight’ and ‘loose’ scenarios have narrow or wide
Gaussian priors, respectively; see Table 3.5 for a description of the prior widths for the
three scenarios.

Parameter true tight loose
d exact 5% 20%
NH exact 30% 50%
log(Teff) exact ±0.1 ±0.2

TABLE 3.5. Prior distributions on nuisance parameters under three scenarios, ‘true’, ‘tight’, and
‘loose’. Shown are the widths of the Gaussian priors.
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3.5.2 Previous work

As discussed in Sec. 3.2, the likelihood, p(s|θ), of the spectra s given the EoS parameters θ
is not analytically known. Traditional methods that infer the EoS from telescope spectra
approximate the unknown likelihood in a two-step method [139, 140], first inferring pos-
terior distributions p(M,R|s) for the stellar mass and radius from an observed spectrum.
Uncertainties on the nuisance parameters can produce non-trivial [127], occasionally multi-
modal [141] contours in the posterior probabilities of stellar mass and radius. Subsequently,
these posterior distributions, approximated with a kernel density estimator, are used as
likelihoods in a second step to infer the EoS parameters similar to Eq. (3.71). This is valid
only if the (M,R) priors used in the inference are sufficiently flat [70, 139].

Some previous machine learning (ML) approaches infer the EoS by focusing only on the
second of the two steps, starting directly from the posterior probabilities of mass and radius.
In Refs. [108–110], neural networks are used to perform regression of EoS parameters
from a fixed number of stars described by their masses and radii, where the posterior
probabilities are simplified as uncorrelated Gaussians. The neural network architecture also
assumes a fixed number of neutron stars and is not guaranteed to be permutation invariant.
Consequently, when new measurements become available, the neural network will need
to be retrained. Several other machine learning methods follow a similar approach with
varying architectures [111–126]. Thus, they are subject to the same simplifying assumptions.
The mass and radius standard deviations can be estimated directly from xspec by varying
the nuisance parameters [127]; a neural network approach that regresses EoS parameters
from the resulting mass, radius and uncertainties is referred to below as ‘NN(M,R via
xspec)’.

However, deep neural networks are capable of analyzing high-dimensional inputs,
allowing instead for regression of the EoS parameters directly from a set of stellar
spectra [127] and effectively removing the intermediate step in the two-step approach. This
method, referred to below as ‘NN(Spectra)’, uses an uncertainty-aware and permutation-
invariant neural network and captures the complex correlations between uncertainties,
but only produces a point-estimate rather than the full posterior as a function of the EoS
and nuisance parameters. Calculation of the full likelihood is intractable, but Ref. [128]
showed that two neural networks can be used to replace the unavailable elements, granting
access to the likelihood of the expected spectra given stellar mass, radius, and nuisance
parameters, p(s|M,R, ν). While this method, referred to as ‘ML-LikelihoodEOS’, succeeds
in obtaining a posterior in EoS, it is computationally expensive to run. This makes it
a prohibitively expensive method if access to the nuisance parameter posteriors is also
desired. These three approaches are used for comparison in this work, and they are
summarized below:

1. NN(M, R via XSPEC): xspec itself is used to predict the M and R of neutron
stars. It is run repeatedly for the same star with random nuisance parameters sampled
from the prior, to obtain the standard deviations in the predictions of M and R,
∆M and ∆R. A feed-forward neural network is then trained on these four quantities
for ten stars to regress the EoS parameters.

2. NN(Spectra): An uncertainty-aware and permutation-invariant network is trained
to regress EoS parameters directly from the X-ray spectrum and assumed nuisance
parameters. These nuisance parameters are sampled randomly from their respective
priors to quantify the uncertainty of the regressed EoS parameters.
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3. ML-LikelihoodEOS: Intractable elements in the relationship between the neutron
star’s EoS to the observed spectra are replaced with two neural networks to compute
the EoS posterior, marginalizing over nuisance parameters.

3.5.3 Bayesian inference with neural likelihood estimation

We introduce a single-step approach, which uses neural likelihood estimation to directly
learn the likelihood of telescope spectra (s) as a function of the EoS parameters (θ) and the
nuisance parameters (ν) for a star, p(s|θ, ν). This extends the strategy in Ref. [128], which
learned p(s|M,R, ν), but avoids needing to integrate over the M -R plane to achieve a
connection to the EoS parameters, saving significant computational complexity. In addition,
we apply a Hamiltonian Monte Carlo (HMC) method to efficiently draw samples from the
posterior distribution, p(θ, ν|s).

Neural likelihood estimation

Neural likelihood estimation (NLE) [144] is a type of simulation-based inference [325,
326] technique, successfully used for inference with gravitational waves [327–329], particle
physics [330–332] and cosmology [333–337] when the likelihood of the observed data are
not analytically available but must be estimated from samples of simulated data.

In this approach a neural density estimator (qΦ, with parameters Φ) approximates the
likelihood:

qΦ(s|θ, ν) ≈ p(s|θ, ν) . (3.97)

Normalizing flows, as introduced in Sec. 2.3.3, are used as the density estimator. Once
trained, NFs can easily generate new samples as well as estimate the likelihood of a given
sample. Specifically, a Masked Autoregressive Flow (MAF) [248] is used for the density
estimator qΦ. MAFs are well suited for our purposes because they are very efficient in
computing the probability density, but less efficient in generating samples.

The Kullback–Leibler (KL) divergence, DKL, is a measure of the statistical distance
between two probability distributions, i.e., it becomes zero if the distributions are identical.
Consequently, to approximate a likelihood distribution, p(s|θ, ν), we can fit the parameters
Φ of a normalizing flow, qΦ(s|θ, ν), to minimize the KL divergence between the likelihood
and the approximate distribution

arg min
Φ
DKL

(
p(s|θ, ν)

∣∣∣∣∣∣qΦ(s|θ, ν)
)

= arg min
Φ

∫
ds p(s|θ, ν) [log p(s|θ, ν)− log qΦ(s|θ, ν)]

≈ arg min
Φ

∑
si∼p(s|θi,νi)

log p(si|θi, νi)− log qΦ(si|θi, νi)

= arg min
Φ

∑
si∼p(s|θi,νi)

− log qΦ(si|θi, νi)

= arg max
Φ

∑
si∼p(s|θi,νi)

log qΦ(si|θi, νi) , (3.98)

where the second line is the Monte Carlo estimator of the integral in the definition of the
KL divergence in the first line. The first term in the second line can be dropped as it is
constant with respect to the parameters Φ of the density estimator. The key realization
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of simulation-based inference is that, while the likelihood p(s|θ, ν) may not be tractable,
it is implicitly defined by both the TOV equations and xspec. The simulated spectra si

for given EoS and nuisance parameters, (θi, νi), are sampled from this exact likelihood
distribution:

si ∼ p(s|θi, νi) . (3.99)

Thus, according to Eq. (3.98), to learn the likelihood distribution, training the density
estimator to minimize the KL divergence is equivalent to maximizing the log-probability
of the sampled spectra. With the training samples si generated using the prescription in
Sec. 3.5.1, the sbi package [338] is used to train the MAF as a neural likelihood estimator.
To make our analysis robust to stochasticities in training the neural network, we perform
a hyperparameter search by training 100 different MAFs with different architectures.
After training, we use an ensemble average [339] over the N = 5 best-performing density
estimators such that the log-likelihood of any given telescope spectrum s0 is

log p(s0|θ, ν) ≈ 1
N

∑
j

log qΦj (s0|θ, ν) . (3.100)

Posterior sampling with Hamiltonian Monte Carlo

The posterior distribution can be built from the estimated likelihood and prior distributions:

p(θ, ν|s) ∝ p(s|θ, ν)p(θ)p(ν) . (3.101)

The prior distribution on the nuisance parameters, p(ν), is given in Table 3.5, while the
prior on the EoS parameters, p(θ), is taken to be uniform in the intervals λ1 ∈ [4.75, 5.25]
and λ2 ∈ [−2.05,−1.85], the same as the distribution of training samples described in
Table 3.4.

To draw samples from the posterior distribution, methods like importance sampling,
Markov Chain Monte Carlo (MCMC) or nested sampling can be employed. Given that the
normalizing flows, priors and, consequently, the full posterior distribution are differentiable,
we draw samples from the posterior using Hamiltonian Monte Carlo (HMC) [147, 148]
sampling, which can use the gradient information and scales much more efficiently to high
dimensional parameter spaces. For a brief introduction to HMC and our implementation
details, see Appendix E.

Unlike standard approaches, our methodology allows for the simultaneous inference
of EoS parameters θ and nuisance parameters ν, which minimizes assumptions made
about these parameters and therefore makes the approach more robust. Additionally, any
supplemental information on these parameters coming from other observations can be
naturally included in the analysis through the prior distribution p(ν) without retraining
the neural density estimators.

Scaling to multiple observations

The estimation of the per-star likelihood as a function of the EoS parameters, p(s|θ, ν),
makes the calculation of the joint likelihood for J stars straightforward:

p(s1...J |θ, ν1...J) =
∏
j

p(sj |θ, νj) . (3.102)
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Each star has a specific set of nuisance parameters, νj , such that the posterior is

p(θ, ν1...J |s1...J) ∝

∏
j

p(sj |θ, νj)p(νj)

 p(θ) . (3.103)

Scaling to multiple observations is straightforward for several reasons. Estimation of
the likelihood in the EoS parameters rather than M and R, means that no additional
integration over the M -R plane is required. In addition, the likelihood itself is estimated,
rather than posteriors which cannot be trivially combined [340–343]. Learning the likelihood
conditioned on the nuisance parameters for each star rather than implicitly marginalizing
over them allows for the joint likelihood to be simply a product of the individual stellar
likelihoods.

A consequence of these choices is that we infer not only the equation of state parameters
but also the nuisance parameters corresponding to every star. The stellar nuisance
parameter priors are independent and can encode prior information for each star separately,
for maximum flexibility and robustness. While this increases the dimensionality of the
problem, the availability of gradients of the posterior distribution enables the use of powerful
algorithms like HMC, ensuring that the inference remains computationally tractable.





4
Results and Discussion

In this chapter, we present the results obtained from the inference procedures introduced
in the previous chapter. We begin with a detailed analysis of the posterior results from
the conventional Bayesian inference based on the currently available astrophysical data.
We then discuss the implications of these empirical results for our understanding of the
structure and composition of dense matter. Finally, we present the outcomes of our novel
simulation-based inference method, where the EoS is inferred directly from (simulated)
telescope spectra.

4.1 Conventional Bayesian inference
This section starts with a presentation of the posterior credible bands (for the sound
speed, the EoS, the mass-radius relation and the tidal deformability) as well as the inferred
properties of typical neutron stars1. This is done first based on the ‘Previous’ database
specified in Table 3.3. A comparison of the inference results for the different parametriza-
tions introduced in the previous chapter reveals the extent of the prior dependence on
the functional form of the chosen EoS parametrization. We then further incorporate the
‘new’ black widow PSR J0952-0607 mass information. Thereafter, we focus on detailed
Bayes factor investigations, with special emphasis on low sound speeds in combination
with extended phase coexistence regions in neutron star matter. Further issues are the
assessment of a twin star scenario and the compatibility of a purely hadronic description
of neutron star matter with the data. Next, we discuss the trace anomaly measure with
the related question for a possible onset of condensation in dense matter. The impacts of
the low-density (ChEFT) and high-density (pQCD) constraints on the inference procedure
are carefully examined. The section ends with comments on possible effects on the overall
systematics induced by the ultralight HESS J1731-347 supernova remnant and the newest
NICER measurement of PSR J0437-4715.

4.1.1 Parametrization dependence

Gaussian versus Segments parametrization

By combining the likelihoods for the Shapiro time delay, NICER and gravitational wave
data with the constraints from ChEFT and pQCD introduced in Sec. 3.4, we compute the
total likelihood (3.96) and, using Eq. (3.48), the posterior probability distribution for the
parameters θ.
1 Parts of the text in this section have been adapted from Refs. [96, 97, 163, 344].
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The resulting marginal posterior credible bands for the squared speed of sound, c2
s(ε),

and for the pressure P (ε) are displayed in Fig. 4.1 for both the skewed Gaussian as well
as the ‘basic’ version of the Segments parametrization with fixed asymptotic behavior
introduced in Sec. 3.1. Compared to the prior credible bands in Fig. 3.1, we can see how
the posterior bands have become much narrower because of the constraints implied by
the observational data. The inferred speed of sound shows the same qualitative behavior
for both parametrizations, although with tighter credible bands for the G version. Due
to the ChEFT likelihood of Eq. (3.89), the sound velocity remains small at low energy
densities, ε ≲ 200 MeV fm−3. Given that the low-density behavior is constrained up
to nChEFT = 1.3n0, unlike some previous setups that used nChEFT = 2n0 [60, 96], a
steep increase of c2

s is possible at densities around twice n0, i.e., from energy densities
ε ∼ 250− 300 MeV fm−3 onward. According to Fig. 4.1, the credible bands of the Segments
parametrization extend to smaller sound speeds at low ε and then rise to higher speeds of
sound, as this parametrization allows for steeper slopes.

In both parametrizations, the median of c2
s(ε) exceeds the conformal limit, c2

s = 1/3,
around ε ∼ 400 − 450 MeV fm−3. We can quantify the evidence for a violation of the
conformal bound by computing the Bayes factor Bc2

s,max>1/3
c2

s,max≤1/3 which compares equations of
state with maximum squared speed of sound larger than 1/3 to EoSs with maximum squared
sound speed below 1/3. With Bayes factors of well over 103 for both parametrizations,
there is extreme evidence that c2

s exceeds the conformal bound inside neutron stars. This
is consistent with other recent studies [71, 72, 74, 86, 132, 202]. As in Refs. [67–70, 86]
we implemented the transition to the neutron star crust discontinuously. This is visible
in the speed-of-sound credible bands at very low energy densities but of no quantitative
significance.

Going to higher energy densities, the 68% credible bands stay above the conformal
limit, whereas the 95% bands allow for sound speeds below this bound, but with very low
probability. At intermediate energy densities around 650 MeV fm−3, the 68% credible band
for the S version starts to form a plateau that extends up to higher energy densities. With
the functional form that is assumed a priori, the G version is not able to form an extended
plateau. Instead, its 68% credible band continues rising up to higher energy densities
ε ∼ 900 MeV fm−3, before it turns downwards again.

Due to the integrated nature of the pressure (2.12), the differences between the two
parametrizations are less prominently visible compared to those in the speed of sound.
Nevertheless, the credibility bands of the Gaussian parametrization are again noticeably
narrower. At energy densities ε ∼ 300− 750 MeV fm−3, the inferred equations of state turn
out to be stiffer than the APR EoS [268]2, whereas at higher energy densities P (ε) increases
more slowly as compared to APR. It is a known feature that the APR equation of state
becomes too stiff and even violates causality at the highest energy densities. The credible
bands of the pressure at an energy density of ε = 1 GeV fm−3 agree within uncertainties
with the softer EoS extrapolated from pQCD in Ref. [86].

The plateau in c2
s observed in the Segments parametrization corresponds to an approxi-

mately linear rise of the pressure with increasing energy density. In a double logarithmic
depiction of P (ε) the onset of this behavior is reminiscent of the ‘kink’ noted in Ref. [130].
It is then apparent that such a ‘kink’ is not necessarily a signal of a pronounced softening
of the EoS but may just reflect the formation of a plateau in the squared sound velocity.

Using the method described in Sec. 3.2.4, we can compute the Bayes factor comparing

2 Available via the CompOSE library [345, 346].
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FIG. 4.1. Marginal posterior probability distributions at the 95% and 68% level for the Gaussian
(left) and ‘basic’ version of the Segments parametrization (right) for the squared speed of sound c2

s

and pressure P as a function of energy density ε, inferred from the Shapiro time delay, NICER,
ChEFT, pQCD and gravitational wave data listed as ‘Previous’ in Table 3.3. At each ε, there
exist 95% and 68% posterior credible intervals for c2

s(ε) and P (ε). These intervals are connected to
obtain the posterior credible bands. Similarly, the medians of the marginal posterior probability
distributions at each ε are connected (solid lines). Grey bars mark the 68% credible intervals of the
central energy densities of neutron stars with masses M = 1.4M⊙ and 2.1M⊙ in each figure. The
dashed black line indicates the value of the conformal bound for the speed of sound and the APR
EoS [268] for the pressure.

the evidence for the Gaussian and the Segments parametrization, with the result:

BGaussian
Segments = 1.70 , (4.104)

which indicates that neither parametrization is significantly preferred by the data following
the classification in Table 3.1.

The posterior credible bands for the mass-radius relation and the tidal deformability are
shown in Fig. 4.2. In the credible bands representation there is no natural ending criterion
for the bands. Therefore the results for the mass-radius relation are often just cut after
the upper 95% interval of the maximum possible mass [41, 74, 83, 84, 86, 88]. We choose
to instead limit the R(M) and Λ(M) median by the median of Mmax, and the credible
bands by the upper 68% and 95% credible intervals of the maximum mass. As explained in
Sec. 3.2.3, we display credible bands instead of two-dimensional credible regions, because
the former are independent of the priors on the variables ε and M .

The results for both parametrizations show a similar trend, with the credible bands for the
S version again wider than the G version. The Segments parametrization leads to a maximum
mass of Mmax = 2.17+0.09

−0.16M⊙ and a maximum central density of nc,max = 6.2+0.9
−0.6 n0 at
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the 68% level, while the Gaussian parametrization leads to a slightly smaller maximum
supported mass, 2.13+0.08

−0.10M⊙, and larger maximum central density, 6.6+0.8
−0.6 n0. (If not stated

otherwise, from here on we always report medians and 68% credible intervals in the text.)
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FIG. 4.2. Marginal posterior probability distributions at the 95% and 68% level for the Gaussian
(left) and ‘basic’ version of the Segments parametrization (right) for the radius R and tidal
deformability Λ as a function of mass M , inferred from the Shapiro time delay, NICER, ChEFT,
pQCD and gravitational wave data listed as ‘Previous’ in Table 3.3. At each M , there exist 95% and
68% posterior credible intervals for R(M) and Λ(M). These intervals are connected to obtain the
posterior credible bands. Similarly, the medians of the marginal posterior probability distributions
at each M are connected (solid lines). The R(M) and Λ(M) median and credible bands are plotted
until the median, upper 68% or 95% interval of the maximum mass. The mass-radius relation is
compared to the marginalized intervals at the 68% level from the NICER data analyses by Riley et
al. (black) [40, 41] of PSR J0030+0451 and PSR J0740+6620. In addition the 68% mass-radius
credible intervals of the thermonuclear burster 4U 1702-429 [291] are displayed as well as the 68%
credible interval of R(1.4M⊙) extracted from quiescent low-mass X-ray binaries [141] (blue), both
of which are not included in the Bayesian analysis. Λ(M) is compared to the masses and tidal
deformabilities inferred in Ref. [298] for the two neutron stars in the merger event GW170817 at
the 90% level (black) as well as Λ(1.4M⊙) at the 90% level extracted from GW170817 [295] (blue).

The posterior mass-radius credible bands are in good agreement with the marginalized
68% credible intervals inferred from the NICER measurements of PSR J0030+0451 and
PSR J0740+6620. The R(M) credible band is slightly shifted to smaller radii compared to
the NICER data, especially in comparison to the heavier pulsar, because the gravitational
wave event GW170817 prefers such smaller radii [66]. Here the balancing between different
observables and theoretical constraints becomes visible which requires a statistically well-
defined analysis in contrast to simple cuts used, e.g., in Refs. [130–132, 136]. Furthermore,
the NICER analyses chose to use central credible intervals. If instead, as in the present
work, highest density intervals were used, these intervals would reach to smaller radii.
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The 68% credible intervals for the radius of a neutron star with mass M = 1.4M⊙
agrees well with the radius in Eq. (3.78) extracted from quiescent low-mass X-ray binaries
in Ref. [141]. Moreover, the 68% mass and radius credible intervals of 4U 1702-429 in
Eq. (3.81) extracted from thermonuclear X-ray bursts in Ref. [291] lie well within the 68%
mass-radius credible band. Notably both of these observations were not used as input in
the Bayesian inference procedure. We mention that in Ref. [87] quiescent low-mass X-ray
binaries and sources of thermonuclear bursts were also found to fit into an overall picture
that is consistent with the gravitational wave and NICER data. Finally, if we use the
NICER data analyses by Miller et al. for the inference procedure instead of the ones by
Riley et al., we find very similar results, in the same way as Ref. [74]. So we can restrict
ourselves to the latter.

The 90% credible intervals for the tidal deformabilities and masses of the two neutron
stars in the merger event GW170817 in Eq. (3.85) extracted in Ref. [298] agree well with
the posterior credible band of Λ(M) displayed in Fig. 4.2. The 90% credible interval for the
tidal deformability of a 1.4M⊙ neutron star in Eq. (3.86) extracted based on the information
from the merger event GW170817 in Ref. [295] does agree with the posterior credible bands
of Λ(M) at M = 1.4M⊙, which lie, however, at slightly larger tidal deformabilities.

Table 4.1 shows medians and credible intervals for selected properties of neutron stars
with characteristic masses M = 1.4M⊙ or 2.1M⊙, including the central density, the energy
density and pressure as well as the radius and tidal deformability. Again these numbers
demonstrate agreement within uncertainties between the two parametrizations. The inferred
properties for relatively light neutron stars are very similar in both parametrizations.
However, the differences become more pronounced for heavy neutron stars with a mass
of 2.1M⊙. In this case, both parametrizations yield very similar radii, but the values for
the central density and pressure are more different. Nevertheless, they are still consistent
within the inferred 68% credible intervals.

At the 68% level the inferred radius of a 1.4M⊙ neutron star, R = 12.4±0.5 km for the S
version, agrees with the values found in Ref. [70] for a piecewise polytrope parametrization
and a speed of sound model similar to our Gaussian parametrization, while the authors
additionally included constraints from modeling of the kilonova AT2017gfo. The 68%
credible intervals of the radius and tidal deformability of a 1.4M⊙ neutron star listed in
Table 4.1 agree within uncertainties with the results in Ref. [82] which include a theory
prediction and the PREX II measurement of the 208Pb neutron skin thickness. Our result
for the 1.4M⊙ radius also agrees with the value found in Ref. [88], where the authors
additionally incorporated constraints on the EoS deduced from relativistic heavy-ion
collisions.

With the ‘Previous’ data set and the Segments parametrization we find nc = 4.3+0.8
−1.1 n0

for the central density of a 2.1M⊙ neutron star, comparable to the value for a 2.0M⊙
neutron star reported in Ref. [74]. For the G version we find again a slightly larger central
density, nc = 4.7 ± 1.0n0. The radius of a 2.1M⊙ neutron star, R = 11.7 ± 0.6 km in
the S version, and very similar in the G version, 11.6± 0.6 km , agrees with the value for
R(M = 2.0M⊙) reported in Ref. [132]. In the Bayesian analysis of Ref. [43], no ChEFT
constraint was included at low densities. Their prediction for the radius of a neutron star
with mass M = 1.4M⊙, based on multiple different parametrizations, agrees nonetheless
with our result at the 68% level. Their result for the radius of the 2.08M⊙ neutron star is
larger compared to our result for the radius of a generic 2.1M⊙ neutron star. However,
within the 68% credible intervals the two results are still consistent and the differences can
be accounted for by the ChEFT constraint.
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Gaussian Segments

95% 68 % 95% 68%

nc/n0 2.8± 0.6 ±0.3 2.8± 0.7 ±0.3

εc [MeV fm−3] 461+106
−102

+48
−51 461+124

−114
+46
−59

1.4M⊙ Pc [MeV fm−3] 63+23
−17

+9
−10 63+30

−19
+10
−13

R [km] 12.5+0.7
−0.8

+0.4
−0.3 12.4+0.7

−1.1 ±0.5

Λ 439+180
−178

+94
−90 427+181

−212
+110
−113

nc/n0 4.7+1.6
−1.9 ±1.0 4.3+1.9

−1.6
+0.8
−1.1

εc [MeV fm−3] 865+398
−409

+178
−278 769+464

−335
+189
−228

2.1M⊙ Pc [MeV fm−3] 299+254
−201

+79
−164 254+276

−153
+87
−117

R [km] 11.6+1.3
−1.1 ±0.6 11.7+1.3

−1.2 ±0.6

Λ 15+26
−10

+5
−9 18+28

−12
+6
−11

TABLE 4.1. Median, 95% and 68% credible intervals for selected neutron star properties for
the Gaussian and ‘basic’ version of the Segments parametrizations given the data set ‘Previous’
from Table 3.3. These are computed from the one-dimensional posterior probability distributions
marginalized over all other parameters. Listed are the central density, energy density, pressure,
radius and tidal deformability of neutron stars with masses M = 1.4M⊙ and 2.1M⊙.

At the current state of investigations with a limited neutron star database and corre-
spondingly large uncertainties, it is still justified to use parametric functional forms as long
as they are sufficiently general. In Ref. [89] the authors compare different parametriza-
tions and argue that inferred neutron star results depend on the chosen parametrization.
However, in their comparison the primary differences in the inferred equations of state
occur at small densities, mainly because of different implementations of the neutron star
crust, and in the high density regime not constrained by data. In the intermediate region,
n ∼ 1.5− 6n0, the different parametrizations agree within their uncertainties. One excep-
tion is a Gaussian parametrization which, unlike our G version, does not allow skewed
Gaussians and is therefore not sufficiently general to reproduce the current astrophysical
data, a feature that is already visible from its prior. Our point regarding the stability of
inference results with respect to different parametrizations is further supported by the
work of Ref. [88] where very similar neutron star properties are found for two qualitatively
different parametrizations, namely a Segments parametrization similar to our S version and
a piecewise polytrope representation. In the future many more neutron star observations
are expected (as explained in Sec. 3.4), which will lead to more precise constraints on the
speed of sound. Then, a non-parametric description of the EoS in terms of a Gaussian
process [71, 72, 74, 89] or neural network [79, 92] might become preferable.

Conformal limit reached from above

A recent analysis based on hard dense loop resummation techniques found that, in contrast
to standard perturbative QCD results, the speed of sound reaches the conformal limit
from above at asymptotically high baryon densities [207], similar to the situation at large
isospin densities [205, 347]. To analyze the impact of this assumed alternative asymptotic
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behavior, we repeat our analysis with the same steps as before, but now modified such
that the squared speed of sound reaches the conformal limit, c2

s → 1/3, from above and
without including the pQCD likelihood introduced in Sec. 3.4.5 to compute the posterior.
We restrict ourselves to the Segments parametrization since the descriptive power of the
Gaussian parametrization is severely hindered with the changed asymptotic behavior. The
resulting posterior credible bands are displayed in Fig. 4.3. Compared to the case with
c2

s → 1/3 reached from below in Figs. 4.1 and 4.2, the sound velocities remain relatively
unchanged up to energy densities ε ≲ 500 MeV fm−3, implying that both asymptotic
behaviors lead to M = 1.4M⊙ neutron stars with almost exactly the same properties as in
Table 4.1. Even at higher energy densities the 68% credible bands look similar. However,
when the conformal limit is reached from above, the lower limit of the 95% credible band
lies at higher sound speeds. The similarity in the speed of sound translates into the credible
bands for P (ε), R(M) and Λ(M). However, the 68% credible R(M) band extends to
slightly larger masses. For a 2.1M⊙ neutron star, when the conformal limit is reached from
above, we find a central density nc = 4.3+1.0

−1.1 n0, a central pressure Pc = 260+96
−125 MeV fm−3,

a central energy density εc = 765+192
−252 MeV fm−3, a radius R = 11.6+0.7

−0.5 km and a tidal
deformability Λ = 17+7

−11, again very similar to the previous results in Table 4.2. This means
that the description of neutron stars at all mass ranges is to large extent independent of
the high density asymptotic behavior as long as the speed of sound is causally connected
to the conformal limit.
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FIG. 4.3. Similar to Figs. 4.1 and 4.2: posterior 95% and 68% credible bands and median for the
Segments parametrization with the conformal limit reached asymptotically from above and without
including the pQCD likelihood. Shown are the squared speed of sound, c2

s and the pressure P as a
function of energy density ε, as well as the mass-radius relation R(M) and the tidal deformability
Λ(M). The credible bands are compared to the same data as in Fig. 4.2.
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Improved parametrization

In the previous sections we saw that posterior neutron star properties inferred with the
Gaussian and the ’basic’ version of the Segments parametrization agree within the uncer-
tainties associated with the still limited amount and accuracy of the available astrophysical
data. However, the Segments parametrization turns out to be preferred as it leads to
slightly larger posterior credible bands, indicative of a less restrictive functional form.
Moreover, changing the assumed asymptotic behavior of the sound speed has only a minor
impact on the properties of neutron stars. Therefore, in the following we continue with
the improved S’ version of the Segments parametrization with two more free parameters
and the more general asymptotic behavior introduced in Sec. 3.1. Asymptotically the
speed of sound still reaches the conformal limit through the pQCD likelihood introduced
in Sec. 3.4.5.

The posterior credible bands inferred from the ‘Previous’ data in Table 3.3, consisting of
the Shapiro time delay, NICER, ChEFT, pQCD and gravitational wave data, for the S’
version are displayed in Fig. 4.4. There is a close agreement to the previously employed
‘basic’ version of the Segments parametrization with some minor changes resulting from
the altered asymptotic behavior and enhanced functional flexibility. After the ChEFT
constraint at small energy densities, the S’ version’s 95% posterior credible bands for the
speed of sound allow both for steeper slopes and smaller values than those displayed in
Fig. 4.1. Stiffer sound velocities lead to larger radii, as can be seen compared to the S
version’s mass-radius credible bands in Fig. 4.2. A comparison of Bayes factors indicates
similar evidence for the improved Segments parametrization compared to the S and G
versions used in the previous sections.

The minor modifications to the speed of sound also affect the median and credible
intervals of the inferred properties of neutron stars with masses of M = 1.4M⊙ and
2.1M⊙ collected in Table 4.2. However, these changes are negligible in comparison to
the inferred uncertainties, indicating that the inference results are stable with respect to
an increase in the number of free segments and to changes in the asymptotic behavior
of the parametrization (as already concluded in the previous section). Marginalizing the
posterior based on the ‘Previous’ data set with respect to the maximum mass Mmax, we
find median and 68% credible interval values of Mmax = 2.20+0.10

−0.16M⊙ for the improved
Segments parametrization. The corresponding probability distribution is displayed in
Fig. 4.5. The 68% credible interval of Mmax has slightly increased compared to the previous
parametrizations because the S’ version allows for steeper slopes in the speed sound, see
Fig. 4.4. Recent studies find similarly large maximum masses [74, 86]. The maximum
central neutron star density turns out to be slightly smaller with nc,max = 6.0+0.7

−0.8 n0.

4.1.2 Impact of PSR J0952-0607

Including the new mass information of the black widow pulsar PSR J0952-0607 in
the database, the maximum non-rotating neutron star mass increases significantly to
Mmax = 2.31+0.14

−0.17M⊙, as displayed in Fig. 4.5. The median and the 68% credible interval
extend to masses lower than that of the PSR J0952-0607 mass, 2.35± 0.17M⊙. This is
due to the large mass uncertainty and the rotation correction that we have applied in the
analysis. To support such higher masses the sound speed needs to increase more rapidly,
implying a stiffer EoS which in turn leads to smaller central densities in the neutron star
core. Accordingly, the maximum central density decreases to nc,max = 5.6± 0.7n0 with
inclusion of the new heavy-mass data.
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FIG. 4.4. Similar to Figs. 4.1 and 4.2: posterior credible bands are displayed for the squared
speed of sound, c2

s, and the pressure, P , as a function of energy density ε, and the mass-radius
relation R(M) and tidal deformability Λ(M), inferred from the ‘Previous’ data in Table 3.3, but
now using the improved Segments parametrization with two more free parameters and a more
general asymptotic behavior. Figure (partly) taken from Ref. [97].
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FIG. 4.5. Marginal posterior probability distributions of the maximum neutron star mass Mmax.
The nomenclature ‘Previous’ refers to the Shapiro time delay, NICER, ChEFT, pQCD and grav-
itational wave data listed in Table 3.3. The shift induced by adding the (non-rotating) mass
information from the black widow pulsar PSR J0952-0607 (BW) is also shown. The prior distribu-
tion is nearly uniform over a wide mass range. Figure taken from Ref. [97].

The inclusion of the new information from PSR J0952-0607 has only a marginal impact
on the properties of neutron stars with relatively small masses, see Table 4.2. However, for
a 2.1M⊙ neutron star, the inclusion of the heavy mass information reduces the central
density significantly to nc = 3.6 ± 0.7n0. Similarly, the central energy density εc and
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Previous Previous + BW

95% 68 % 95% 68 %

nc/n0 2.8+0.8
−0.7 ±0.4 2.6± 0.7 +0.3

−0.4

εc [MeV fm−3] 451+133
−123

+62
−71 423+118

−116
+56
−67

1.4M⊙ Pc [MeV fm−3] 64+30
−23

+12
−16 60+28

−20
+11
−14

R [km] 12.2+0.9
−1.0 ±0.5 12.3+0.8

−1.0 ±0.5

Λ 396+226
−197

+107
−127 421+236

−200
+114
−124

nc/n0 4.1+1.9
−1.5

+0.8
−0.9 3.6+1.6

−1.3 ±0.7

εc [MeV fm−3] 716+416
−326

+162
−213 628+357

−251
+149
−146

2.1M⊙ Pc [MeV fm−3] 225+239
−134

+62
−110 186+184

−104
+52
−80

R [km] 11.9± 1.3 ±0.7 12.1+1.3
−1.2

+0.6
−0.8

Λ 21+30
−15

+9
−13 26+30

−20
+10
−14

TABLE 4.2. Similar to Table 4.1: median, 95% and 68% credible intervals for selected neutron
star properties for the improved Segments parametrization given the previously available data and
the new information from the black widow (BW) pulsar.

central pressure Pc are reduced, while the radius R and the tidal deformability Λ are
slightly increased. A very similar impact is seen for the G and S versions.

With the heaviest observed pulsar in mind, Table 4.3 displays inferred properties of a
neutron star with mass M = 2.3M⊙. For such a heavy-mass object the central density is
still only nc = 3.8+0.7

−0.8 n0, comparable to that of a 2.1M⊙ neutron star in Table 4.2. This
result is of some significance because it indicates that the baryon densities in the cores of
even the heaviest neutron stars are not expected to reach extreme values. We will discuss
the implications of this for the composition of neutron star matter later in Sec. 4.2.

Previous + BW

95% 68 %

nc/n0 3.8+1.6
−1.3

+0.7
−0.8

εc [MeV fm−3] 673+363
−268

+140
−180

2.3M⊙ Pc [MeV fm−3] 237+226
−134

+69
−104

R [km] 12.3± 1.2 +0.7
−0.6

Λ 14+17
−10

+4
−9

TABLE 4.3. Same as Table 4.2, but median and credible intervals for a neutron star with mass
M = 2.3M⊙ are displayed given the previously available data plus new information from the black
widow (BW) pulsar PSR J0952-0607.

In Fig. 4.6 the posterior credible bands are displayed for an inference with the new
information from PSR J0952-0607. At first sight the comparison between Figs. 4.4 and 4.6
appears to reveal only marginal differences. But with a more focused view the condition to
reach the high mass of the black widow pulsar implies that the speed of sound increases
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more stiffly at low energy densities, ε ≲ 500 MeV fm−3. Accordingly, the conformal bound
is exceeded at smaller energy densities, and higher speeds of sound are reached earlier
compared to the case without the heavy mass data in Fig. 4.4. With inclusion of the new
data larger radii are necessary for heavy neutron stars with M ∼ 2.1M⊙, such that the
mass-radius relation in Fig. 4.6 features an almost constant radius R ∼ 12.3 km over the
whole mass range. For practical applications, the median values of the squared sound
velocity c2

s as a function of energy density, as shown in Figs. 4.4 and 4.6, are listed in
Appendix C.
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FIG. 4.6. Similar to Fig. 4.4: posterior credible bands are displayed for the improved Segments
parametrization for the squared speed of sound, c2

s, and the pressure, P , as a function of energy
density ε, and the mass-radius relation R(M) and tidal deformability Λ(M), but now using the
‘Previous + BW’ data in Table 3.3 including the new PSR J0952-0607 (BW) information. Grey
bars mark the 68% credible intervals of the central energy densities of neutron stars with masses
M = 1.4M⊙ and 2.3M⊙, respectively. Figure taken from Ref. [97].

To give an impression of the matter distribution inside neutron stars, the density profiles
of objects with masses M = 1.4M⊙ and M = 2.1M⊙ are displayed in Fig. 4.7. These
profiles are computed using the median of P (ε) based on the previously available data
together with the new information from the black widow pulsar. On the axes of Fig. 4.7
the 68% credible intervals of the central densities and radii of 1.4 and 2.1M⊙ neutron
stars listed in Table 4.2 are indicated for comparison. The skewness of the posterior
probability distribution makes the central densities and radii in Fig. 4.7 deviate slightly
from the median values listed in Table 4.2. As in Fig. 4.6 both neutron stars with masses
M = 1.4M⊙ and 2.1M⊙ have almost equal radii. The density profiles smoothly decrease
towards small densities in the outer regions of the stars. In this regime the EoS is governed
by the ChEFT constraint.
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FIG. 4.7. Density profiles of neutron stars with masses of M = 1.4M⊙ and M = 2.1M⊙. The
employed equation of state corresponds to the median of the posterior in Fig. 4.6, i.e., using the
previously available and the new data from the black widow pulsar. The bars indicate the 68%
credible intervals of the central densities and radii of neutron stars with mass M = 1.4M⊙ (blue)
and 2.1M⊙ (orange), as listed in Table 4.2. Figure taken from Ref. [97]

Thermodynamic properties

In Fig. 4.8 posterior credible bands for the baryon density n as a function of energy density
ε based on the previously available data together with the new information from the black
widow pulsar are displayed. The energy per particle can be computed as

E

A
= ε

n
−mN , (4.105)

which is displayed in Fig. 4.8 as a function of baryon density. Here we take mN ∼ 939.5 MeV,
the neutron mass with minor adjustment for a small proton fraction of ∼ 10% as in the
APR EoS.
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FIG. 4.8. Posterior 95% and 68% credible bands and medians for the baryon density n, in units
of the nuclear saturation density n0 = 0.16 fm−3, as a function of energy density ε (left) and the
energy per particle E/A = ε/n−mN as function of baryon density (right)..

A further quantity of interest is the chemical potential associated with the conserved
baryon number,

µ(n) = ∂ε(n)
∂n

= P + ε

n
, (4.106)

where the latter equality is the Gibbs–Duhem relation at zero temperature. The resulting
µ(n) bands in Fig. 4.9 show a steep rise at baryon densities of n > 2n0, indicating that
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strongly repulsive forces are at work. The agnostic approach for the inference of the sound
speed on which these results are based does not permit distinction between different species
of constituents inside neutron stars, so µ represents the total chemical potential from
all active degrees of freedom carrying baryon number: µ =

∑
i xiµi, where xi = ni/n is

the fraction corresponding to each baryonic species i. However, irrespective of whether
these species are nucleons, other baryonic composites, or quarks, the empirically inferred
behavior of µ demonstrates that these degrees of freedom must be correlated by strongly
repulsive forces as the density increases in order to build up the necessary high pressure
in the cores of neutron stars to support two solar masses and beyond. We return to this
discussion again at a later stage.
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FIG. 4.9. Posterior 95% and 68% credible bands and median for the baryon chemical potential µ
as a function of baryon density n in units of the nuclear saturation density, n0 = 0.16 fm−3. Figure
taken from Ref. [97].

4.1.3 Evidence for (or against) a strong first-order phase transition

A sufficient condition for a first-order phase transition is an equation of state that features
a domain of phase coexistence within which a Maxwell construction implies a region of
constant pressure. The width of this domain, characterized by ∆n/n (where n is the
density at which the coexistence interval ends), is a measure of the ‘strength’ of the phase
transition, i.e., the amount of surface tension between the two coexisting phases. For
guidance and comparison, an example of a ‘strong’ first-order transition is the liquid-gas
phase transition in symmetric nuclear matter. There, at low temperatures (T < 15 MeV),
the phase coexistence region obtained through a Maxwell construction has a typical width
∆n/n ≥ 1 [221, 348, 349].

Starting from a given EoS, P (ε), the Gibbs–Duhem relation is used to reexpress pressure
as a function of density, P (n). The border lines of the 68% and 95% posterior credible
bands for P (n) constrain the maximum possible phase coexistence intervals, (∆n/n)max,
at the corresponding credibility levels. An example is shown in Fig. 4.10. The results in
Fig. 4.11 based on the previously available data together with the new information from
the black widow pulsar show that these maximum possible coexistence regions are narrow:
(∆n/n)max ≃ 0.2 (0.3) at the 68% (95%) level3. In fact it turns out that (∆n/n)max
is nearly constant as a function of the baryon density n taken at the end point of the
possible phase coexistence region. This observation holds throughout the regime relevant
3 For different choices of n, either as the mean density or as the starting point of the phase coexistence

interval, ∆n/n is still ≲ 0.2 within the inferred 68% posterior credible bands.
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for neutron stars. We conclude that only weak phase transitions with ∆n/n ≤ (∆n/n)max
can still be realized inside neutron stars within the inferred posterior credible bands.
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FIG. 4.10. Illustration of the constraint on the maximum width of a Maxwell-constructed
coexistence region for a first-order phase transition within the 68% posterior credible band of
P (n) with an end density of n = 5.6n0, in units of the nuclear saturation density, n0 = 0.16 fm−3,
resulting in a constraint (∆n/n)max = 0.17 at this density. The posterior credible bands are derived
based on the previously available data together with the new information from the black widow
pulsar for the improved version of the Segments parametrization.
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FIG. 4.11. Maximum possible phase coexistence interval (∆n/n)max of constant pressure (where
n is the density at which the interval ends) extracted from the 68% and 95% posterior credible bands
of P (n) in Fig. 4.10 based on the previously available data together with the new information from
the black widow pulsar for the improved version of the Segments parametrization. (∆n/n)max is
displayed as a function of baryon density n in units of the nuclear saturation density, n0 = 0.16 fm−3.
Figure taken from Ref. [97].

We note that the study performed in [86] also discussed restrictive constraints on strong
first-order phase transitions but did not include the NICER and J0952-0607 black widow
pulsar data. Even with this much more limited database, the authors found possible phase
coexistence intervals of only ∆n/n ≲ 0.5 for first-order phase transitions within neutron
stars. As can be expected, the additional radius constraints imposed by the NICER
data constrain the maximum extension of the phase coexistence region even further. In
addition, in Ref. [105], without inclusion of the black-widow pulsar data and different
implementations of the ChEFT and pQCD constraints, the author found possible phase
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coexistence intervals ∆n/n ≲ 0.4 for first-order phase transitions that can take place within
neutron stars, i.e., do no destabilize the mass-radius sequence.

The detailed behavior of the squared speed of sound is to be seen in a related context.
Figs. 4.4 and 4.6 show indications of a shallow maximum, c2

s,max. At the 68% level this
maximum takes a value c2

s,max = 0.78+0.18
−0.11 at a baryon density n(c2

s,max) = 3.2+0.8
−1.2 n0. The

peak in c2
s found in Ref. [90] has a similar magnitude and location, although a pronounced

peak structure is not seen in our posterior result. In contrast we find that the sound
velocity forms a plateau at higher densities. There is no indication of a softening. Still, at
the 95% level small sound speeds are not entirely excluded, though the probability of their
occurrence is low. Nevertheless, at asymptotically high densities pQCD dictates that the
speed of sound reaches the conformal bound c2

s = 1/3 from below. This implies that at
some density beyond the plateau, the speed of sound must turn downward again and reach
a minimum, c2

s,min, at some higher density. A fast drop in c2
s could potentially indicate the

occurrence of a phase transition. The question is whether such a decrease still takes place
within the density range of neutron star cores.

To answer this question we specifically perform a Bayes factor analysis to quantify the
evidence for a rapid variation of energy density with pressure, corresponding to a low
averaged sound speed over the relevant pressure interval. With this aim Bayes factors
B

c2
s,min>0.1

c2
s,min≤0.1 are computed, comparing the evidence for EoSs with a minimum speed of sound

larger than c2
s,min > 0.1 over EoSs with small c2

s,min ≤ 0.1, the latter possibly indicating a
strong first-order phase transition. It is assumed that this minimum is positioned above
the maximum located at lower densities, n(c2

s,min) > n(c2
s,max). These Bayes factors are

shown in Fig. 4.12, calculated for a given maximum mass, i.e., the minimum speed of
sound up to the corresponding M is used in the likelihood computation. There is extreme
or very strong evidence against small sound speeds inside neutron stars with masses up
to M ≤ 2M⊙. The Bayes factors increase further with the inclusion of the black widow
(BW) pulsar information. With this new data, there is strong evidence against small sound
speeds, c2

s,min < 0.1, inside neutron stars with masses even up to M ≤ 2.1M⊙.
In Refs. [91, 133], the authors also found sound speeds larger than c2

s > 0.1 at the 95%
level for neutron stars with mass M = 2M⊙. In their analyses the authors used different
parametrizations and accordingly different prior distributions. With that much consistent
evidence it is safe to say that a strong first-order phase transition in the core of neutron
stars with mass M ≤ 2.0M⊙ is fairly unlikely based on the current data. With the new
information from the black widow pulsar PSR J0952-0607 the Bayes factors in Fig. 4.12
further increase such that the evidence against small sound speeds inside even heavier
neutron stars with masses up to M ≤ 2.1M⊙ becomes strong. The Bayes factors feature
a plateau at extreme evidence for maximum masses smaller than M ≲ 1.9M⊙, because
all relevant EoSs must support these masses in order to fulfill the Shapiro and NICER
constraints. Numerical values of the Bayes factors B

c2
s,min>0.1

c2
s,min≤0.1 for different maximum masses

can be found in Table 4.4. The Bayes factors corresponding to a stronger criterion of
smaller minimum speeds of sound, B

c2
s,min>0.05

c2
s,min≤0.05, collected in Appendix D lead to similar

evidence classifications.
We find similar Bayes factors with the less general G and S versions compared in Sec. 4.1.1,

see Appendix D for tabulated values. This indicates that our results are not influenced by
details of the parametrization. Moreover, it turns out that just four segments are sufficient
to cover the entire set of astrophysical data and theory constraints, in agreement with the
findings of Refs. [91, 132]. With up to two more free segments available, the improved
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FIG. 4.12. Bayes factors Bc2
s,min>0.1

c2
s,min≤0.1 comparing EoS samples with the following competing

scenarios: a) minimum squared speed of sound (following a maximum), with c2
s,min larger than 0.1,

excluding a strong first-order phase transition with a Maxwell construction; versus b) EoS samples
with c2

s,min ≤ 0.1. The Bayes factors are calculated for a given maximum neutron star mass M , i.e.,
the minimum speed of sound up to the corresponding mass is used. For illustration the evidence
classification from Refs. [263, 264] is indicated by dashed grey lines and annotated on the right
hand side. Figure taken from Ref. [97].

Segments parametrization employed in the present work has sufficient flexibility to describe
additional features such as phase transitions, if these can occur within the given range of
uncertainties.

In addition to setting constraints for a strong first-order phase transition in the core of
neutron stars, the Bayes factors in Fig. 4.12 also limit the likelihood for the appearance of
a continuous crossover with c2

s ≤ 0.1. A softer crossover with c2
s > 0.1 is still possible in

neutron stars with masses up to M ≲ 2.1M⊙ and beyond. This includes EoSs featuring
quark-hadron continuity [3, 235] or percolation scenarios [233], which will be discussed later
in more detail. Moreover, small sound speeds c2

s < 0.1 in the cores of neutron stars with
even higher masses, M ≳ 2.2M⊙, less constrained by the currently available astrophysical
data, cannot be firmly excluded. Similarly, a phase transition with a Gibbs (rather than a
Maxwell) construction [218] does not necessarily result in a drop of the sound speed to
c2

s ∼ 0 and can also not be ruled out.

By analyzing minima occurring at densities beyond the maximum of the speed of sound,
n(c2

s,min) > n(c2
s,max), we are restricting ourselves to setting constraints for strong first-order

phase transitions in the deep core of neutron stars. From the behavior of the sound speed
in Fig. 4.6, a minimum appearing at a density lower than that of the maximum seems to be
only conceivable at small energy densities, ε ∼ 250−350 MeV fm−3, i.e., at baryon densities
n ≲ 2n0. With this in mind, we proceed in the next section to quantify the evidence
for the possible occurrence of a phase transition strong enough to lead to a disconnected
mass-radius relation.
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Bc2
s,min>0.1

c2
s,min≤0.1

M/M⊙ Previous Previous + BW
1.9 201.02 500.86
2.0 46.26 229.80
2.1 4.55 15.00
2.2 1.88 3.63
2.3 1.45 2.16

TABLE 4.4. Bayes factors Bc2
s,min>0.1

c2
s,min≤0.1 comparing EoS samples with the following competing

scenarios: a) minimum squared speed of sound (following a maximum), with c2
s,min larger than

0.1, excluding a strong first-order phase transition with Maxwell construction; versus b) EoS with
c2

s,min ≤ 0.1. The Bayes factors are calculated for a given maximum neutron star mass M , i.e., the
minimum speed of sound up to the corresponding maximum mass is used in the computation.

Twin-star scenarios

Among the multitude of possible equations of state in the prior of the S’ version, 3.5% have
a disconnected mass-radius relation with more than one stable branch and hence represent
a possible twin-star scenario. To quantify the evidence for such a scenario, we compute
Bayes factors BNbranches=1

Nbranches>1 comparing the marginalized likelihoods of EoSs with a single
connected mass-radius relation to EoSs with multiple stable branches. The resulting Bayes
factor of well over 900 demonstrates extreme evidence against a disconnected mass-radius
relation with multiple stable branches. This value further increases with the inclusion
of the new data from the black widow pulsar. The conclusion agrees well with that of
Ref. [135] where the authors found only an extremely small possible parameter space for a
twin-star scenario that is consistent with the low-density constraint from ChEFT and the
astrophysical data. Furthermore, the authors already noted that the observation of a still
more massive neutron star beyond M ≃ 2M⊙ would make a twin-star scenario even more
unlikely. Moreover, in Ref. [105] the author also found extreme evidence that twin stars
are disfavored by the current neutron star data.

If the low-density constraint involving likelihood from ChEFT is ignored, the pertinent
Bayes factor decreases to BNbranches=1

Nbranches>1 = 11.8, providing still strong evidence against a
scenario with multiple disconnected branches. In comparison, the Bayesian analyses in
Refs. [74, 93], where the authors did not employ ChEFT information found only moderate
evidence. This difference may be traced to the different treatment of the neutron star crust.
It appears that the only possibility for a twin-star scenario, given the astrophysical database
as a constraint, is through a phase transition that takes place at very low energy densities
shortly above those in the neutron star crust, which was also noted in Ref. [93]. Accordingly,
the mass at which the mass-radius branches become disconnected is as low as M ∼ 0.8M⊙.
(Note that in our analysis similar to Ref. [93], we do not consider disconnected branches
below the assumed minimum neutron star mass, Mmin = 0.5M⊙.)

The additional inclusion of the new information from HESS J1731-347 further strengthens
the evidence against a twin-star scenario, even in the absence of ChEFT constraints: the
evidence now becomes very strong with a Bayes factor of BNbranches=1

Nbranches>1 ≃ 35. This is quite
interesting as some authors considered the unusually light HESS supernova remnant as a
hint in favor of a twin-star scenario [350].
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Monotonically rising speed of sound

With priors prepared in broad generality and unrestricted initialization of the speed
of sound, the previous inference results pointed out that only a weak first-order phase
transition with a mixed-phase width ∆n/n ≤ 0.2 in a Maxwell construction can be realized
inside neutron stars within the posterior credible bands of the inferred equation of state. A
strong first-order phase transition is, thus, very unlikely to occur. It is worth pointing out
that this conclusion is entirely based on the analysis of observational data, independent
of any specific EoS model4. As will be discussed later, this rules out some relativistic
mean-field models that suggested the occurrence of a strong (chiral) first-order phase
transition already at densities below those encountered in neutron star cores. On the other
hand, the empirical uncertainty bands still leave room for a continuous transition, such
as a hadron-to-quark crossover [26, 232, 233, 235]. The possibility of a purely baryonic
equation of state also seems feasible. One expects that such a scenario is characterized by
a monotonically increasing c2

s as function of baryon density n, with no phase transition in
the neutron star core. It is then instructive to investigate whether or not this picture is
compatible with the existing empirical data.

Following Sec. 3.3.4, related insights can be gained by examining a restrictive scenario
in which c2

s is assumed to increase monotonically up to a given transition density, ntr. No
phase transition or crossover occurs at baryon densities n ≤ ntr, while freedom for phase
changes or the appearance of new degrees of freedom exists at densities n > ntr, within the
constraints provided by the empirical data. For the preparation of a corresponding Bayes
factor analysis, we introduce a generic density, n−, characterized by the slope ∂c2

s/∂ε < 0
being negative at that density, i.e., the counter example to a continuously increasing
sound velocity. (For n− exceeding neutron star central densities, i.e., in the range not
constrained by data, we assume that the corresponding equation of state P(ε) continues
rising.) Consider now the following two scenarios: hypothesis H0 corresponds to the case
n− > ntr, i.e., the sound velocity increases monotonically at densities up to ntr. The sound
speed may then change its slope and decrease at some higher density, n−. The counter
hypothesis, H1, assumes that this change of slope in c2

s occurs at a lower density instead,
n− ≤ ntr, in which case ntr simply acts as a density scale for comparison with the opposite
hypothesis H0. The Bayes factors Bn−≤ntr

n−>ntr then ask for the likelihoods of the competing
hypotheses and quantify the evidence of H1 over H0 for given values of ntr. In Table 4.5
these Bayes factors are listed for different values of ntr. There is strong evidence that
ntr = 2n0 is preferred by the data. This means that an EoS with monotonically rising
sound speed, ∂c2

s/∂ε > 0 up to n ≲ ntr = 2n0, is on average more likely than an EoS
where the speed of sound starts to decrease in this regime, indicating that a crossover or
phase transition below this transition density is unlikely. Given the previously available
data there is no evidence for or against larger transition densities, which implies that a
description of neutron stars in terms of nucleonic matter up to n ∼ 5n0, characterized by
a monotonically rising speed of sound [351], cannot be excluded.

However, the inclusion of the heavy-mass measurement of the black widow pulsar
PSR J0952-0607 leads to moderate evidence against a monotonically rising sound speed
∂c2

s/∂ε > 0 up to n ≲ ntr = 5n0. This means equations of state are more likely where the
speed of sound drops before this transition density, hinting toward a more complex phase
structure possibly with a transition to different degrees of freedom. Note that such densities
4 If we modify the asymptotic behavior such that the conformal limit is reached from above, there is less

support for small speeds of sound, see Fig. 4.3, which makes strong first-order phase transitions inside
neutron stars even more unlikely.
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Bn−≤ntr
n−>ntr

ntr/n0 Previous Previous + BW
2 0.09 0.10
3 0.40 0.59
4 1.12 1.75
5 2.11 3.16

TABLE 4.5. Bayes factors Bn−≤ntr
n−>ntr comparing EoSs in which the derivative of the squared sound

velocity, ∂c2
s/∂ε, turns negative at a density n− below the transition density ntr, versus EoSs with

n− > ntr. There is strong evidence that ∂c2
s/∂ε > 0 at least up to ntr = 2n0. The inclusion of the

heavy-mass black widow pulsar leads to moderate evidence against the speed of sound monotonically
increasing up to ntr = 5n0.

are only reached in extremely heavy neutron stars. This evidence would further increase
given a future measurement of a heavy neutron star with smaller uncertainty compared to
the PSR J0952-0607 observation [96]. In this context the ongoing speculations about a very
heavy neutron star based on the recent observation of gravitational wave signals from a
black hole merger with a compact object of mass 2.6M⊙ [352] are worth mentioning. Note,
however, if the binary merger product produced in GW170817 was indeed a hyper-massive
neutron star, as suggested by the measured electromagnetic counterparts [302–304], then a
reduced upper limit is likely for the maximum possible mass of non-rotating neutron stars.

According to Tab. 4.5, a description of neutron star matter in terms of nucleonic degrees
of freedom up to densities as high as ntr = 4n0 cannot be ruled out by the current
astrophysical data, even with the inclusion of the heavy mass measurement of the black-
widow pulsar. In Fig. 4.13 the 68% and 95% posterior credible bands of c2

s(ε) are displayed
for ntr = 4n0. The credible bands at low energy densities ε ≲ 350 MeV fm−3 differ very
little from those with ntr = 0 shown in Fig. 4.6, most likely because the data indeed prefer
equations of state that rise continuously with positive curvature at least up to ∼ 2n0,
as explained above. At higher energy densities the differences to the ntr = 0 scenario
become more apparent. Where in Fig. 4.6 the speed of sound starts forming a plateau after
its rapid increase at low energy densities, for ntr = 4n0 the increase is less pronounced
but continues up to higher energy densities, reminiscent of the posterior results for the
Gaussian parametrization in Fig. 4.1. This behavior of the sound speed is also reflected in
the posterior credible bands for the mass-radius relation plotted in Fig. 4.13. A restrictive
prior choice of large transition densities leads to a decrease of the maximum supported
mass and an increase of the central densities reached in neutron stars.

4.1.4 Trace anomaly measure

Based on the equation of state P (ε) the trace anomaly measure ∆ can be computed, given
by the normalized trace of the energy momentum tensor Tµν :

∆ = gµνT
µν

3ε = 1
3 −

P

ε
. (4.107)

Causality and thermodynamic stability dictate that the trace anomaly measure has to
be within the range −2/3 ≤ ∆ ≤ 1/3. Moreover, ∆ → 0 for conformal matter realized
at high densities. The posterior credible bands for the trace anomaly measure are shown
in Fig. 4.14. Starting with a value ∆ = 1/3 at zero density, the trace anomaly measure
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FIG. 4.13. Similar to Fig. 4.6: posterior credible bands for the squared speed of sound, c2
s, as a

function of energy density ε, and mass-radius relation R(M) based on the previous data as well as
the new information from the black-widow pulsar (BW). Here, however, for the restrictive prior
case from Sec. 3.3.4 with an assumed transition density, ntr = 4n0, up to which the speed of sound
is preconditioned to rise monotonically.

decreases with increasing energy density until ε ∼ 700 MeV fm−3, where the median of ∆
turns negative. At even higher energy densities, ε ≳ 900 MeV fm−3, encountered only in
extremely heavy neutron stars, the 68% credible band becomes altogether negative.

In order to access the evidence for a negative trace anomaly measure we compute Bayes
factors B∆<0

∆≥0, comparing the likelihood for EoSs with negative trace anomaly, ∆ < 0, up
to εc,max versus EoSs with positive ∆. Given only the previously available data with a
resulting Bayes factor B∆<0

∆≥0 = 6.32, there is moderate evidence that ∆ becomes negative
within neutron stars. The Bayes factor further increases to B∆<0

∆≥0 = 8.11 with the inclusion
of the new information from PSR J0952-0607. These results are consistent with the
deduced empirical bands for ∆ in Refs. [109, 206], which also start turning negative around
ε ∼ 700 MeV fm−3. At the same time, the authors of Ref. [206] motivated a scenario with
positive trace anomaly measure ∆ ≥ 0, which is in light contrast to our Bayes factor
analysis.
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FIG. 4.14. Posterior 95% and 68% credible bands and median for the trace anomaly measure
∆ = 1/3− P/ε as a function of energy density ε. Figure taken from Ref. [97].

Lattice QCD calculations suggest that the trace anomaly measure always stays larger than
zero at finite temperatures and vanishing baryon chemical potential [209, 210]. However, in
two-color QCD the trace anomaly can become negative at finite chemical potentials [203,
353]. In addition, a negative trace anomaly appears at large isospin chemical potentials
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[205]. Other recent Bayesian studies have also found a negative trace anomaly measure
at high baryon densities [90, 91, 94] or in extremely heavy neutron stars [134]. At much
higher energy densities beyond those displayed in Fig. 4.14, the asymptotic pQCD limit
does imply a switch back to positive ∆ in the approach to ∆→ 0.

With the density and the energy density given by

n = ∂P

∂µ
, ε = −P + µn , (4.108)

the trace of the energy-momentum tensor can be expressed as

gµνT
µν = ε− 3P = µ5 ∂

∂µ

(
P

µ4

)
. (4.109)

Thus, a negative trace anomaly measure could be a hint towards (positive) corrections to
the pressure quadratic in the chemical potential, P ∝ µ2. To make this more explicit, we
depict the posterior credible bands for P/µ4 as a function of µ in Fig. 4.15 and compare
them to a phenomenological parametrization of the equation of state, developed originally
for quark matter [354]:

P

µ4 = − a

µ4 + b

µ2 + c , (4.110)

where the coefficient a corresponds to the vacuum pressure, the quadratic coefficient b
corresponds to non-perturbative power corrections to the pressure, stemming, e.g., from
finite quark masses or condensates, and c corresponds to the Fermi gas contribution plus
perturbative corrections, for which P ∝ µ4 see Sec. 2.2.3. Fitting the phenomenologi-
cal parametrization to the inferred median in Fig. 4.15 in the chemical potential range
µ ∈ (950, 2000) MeV (at smaller chemical potentials the neutron star crust takes over)
yields the following values:

a = 129 MeV fm−3 , b = 897 MeV2 , c = 1.71 · 10−4 . (4.111)

As displayed in Fig. 4.15, the fitted phenomenological parametrization correctly reproduces
the features of the empirical pressure divided by the fourth power of the chemical potential.
The value of a1/4 ∼ 180 MeV is reminiscent of simplified models that describe the in-medium
nucleon as a bag of quarks [355–358].

As expected from the negative trace anomaly measure, we indeed obtain a finite con-
tribution b to the pressure quadratic in the chemical potential. Its value is much larger
than the possible contributions from finite quark masses which would be proportional to
−m2

f . If this contribution instead results from a finite condensate, P ∝ 3/π2 µ2
q∆2

gap [354],
this would indicate a gap parameter of the order of |∆gap| ≈

√
3π2b ∼ 160 MeV. Such an

interpretation is reminiscent of the situation at finite isospin chemical potentials, where
the condensation of pions leads to a negative trace anomaly [347, 359]. At finite baryon
chemical potentials the condensation of pions is unlikely [208, 360], but a recent study found
that color-superconducting gaps of this magnitude are still well possible given the current
neutron star data [361]. In the literature, the magnitude of the color-superconducting gap
is typically given around |∆gap| ∼ 100 MeV [214, 215, 362]. Regarding these conclusions, it
should be kept in mind that the phenomenological parametrization (4.110) was originally
developed for quark matter and does not contain contributions from nucleon interactions,
which will certainly be very relevant for neutron star matter.
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FIG. 4.15. Posterior 95% and 68% credible bands and median for the pressure divided by
the fourth power of the chemical potential, P/µ4, as a function of chemical potential µ. The
phenomenological parametrization in Eq. (4.110) fitted to the empirical data is displayed as the
dashed black line. This figure will appear in Ref. [344].

4.1.5 Impact of theory constraints

Impact of low-density ChEFT constraint

The low-density conditioning of the EoS must incorporate the breadth of well-known
empirical facts from nuclear physics. Chiral effective field theory is an established framework
for this purpose. We recall that we are taking a conservative position here, terminating
the applicability range of ChEFT at nChEFT = 1.3n0.

The ChEFT constraints do indeed provide an important limiting window for the evolution
of the EoS to higher densities. It is thus of interest to analyze the impact of the ChEFT
likelihood in the inference procedure. We do this by comparing the posterior credible bands
of the speed of sound as they emerge in our approach, to the ChEFT constrained results
from Refs. [60, 61] which extend up to nChEFT = 2.0n0 (see Figure 4.16). Two important
findings concerning the ChEFT impact in relation to constraints from astrophysical data
become apparent from this figure. First, at small energy densities the c2

s posterior has
extra support at small sound speeds below the ChEFT constraint, because small c2

s are
preferred by the gravitational wave event GW170817. Lowering the ChEFT constraint
density to nChEFT = 1.1n0 therefore changes the posterior credible bands only marginally,
see Fig. 4.17. However, at energy densities n > nChEFT = 1.3n0, the c2

s posterior bands
increase more rapidly compared to the ChEFT constraint which remains at softer sound
velocities. Accordingly, choosing nChEFT = 2.0n0 has a huge impact on the description
of neutron stars: the posterior credible bands in Fig. 4.17 become more tight and the
stiffening of the speed of sound is delayed to energy densities ε ≳ 300 MeV fm−3. With this
change the central density of a 2.1M⊙ neutron star is increased to nc = 3.9+0.6

−0.8 n0. The
softening seen in the ChEFT results around n ∼ 2n0 is in opposition to the apparent trend
inferred from current astrophysical data. Even though there remain uncertainties about
the convergence of ChEFT at higher densities, there is no indication of a steep rise in the
sound speed at small densities in different ChEFT analyses [190, 363, 364]. This slight
tension was already noted in Ref. [73]. There it was suggested that the range of ChEFT
applicability be left as a free parameter in the range nChEFT ∼ 1.1− 2.0n0, to be sampled
together with the other parameters of the EoS and then marginalized in the end [92].

It thus appears that the EoS resulting from ChEFT at densities around twice n0 has a
tendency of becoming too soft in comparison with the conditions provided by astrophysical
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FIG. 4.16. Posterior credible bands for the squared speed of sound, c2
s, as a function of energy

density ε. The inference includes previous data as well as the new information from the black-widow
pulsar (BW). The low density behavior of the posterior credible bands (orange) is compared to the
N3LO ChEFT results from Refs. [60, 61] (grey). Figure taken from Ref. [97].

data. Heavy ion collisions at intermediate energies probing the density region n ∼ 2− 3n0
may help to further clarify this situation [59, 157]. As discussed in Sec. 3.4.4, an analysis of
data from the FOPI and ASY-EOS experiments led to pressure constraints similar to those
derived from ChEFT [88]. On the other hand, the PREX II measurement of the 208Pb
neutron skin thickness suggests a stiffer EoS [82, 315]. Further insights can be expected
from continuing developments in the near future.
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FIG. 4.17. Posterior credible bands for the squared speed of sound, c2
s, as a function of energy

density ε. The inference includes previous data as well as the new information from the black-widow
pulsar (BW). Here, however, the ChEFT likelihood (3.89) is applied up to different densities
nChEFT = 1.1n0 (left) or 2.0n0 (right) instead of nChEFT = 1.3n0 suggested by Ref. [73] and used
in Fig. 4.6.

Impact of asymptotic pQCD constraint

Fig. 4.18 shows the posterior credible bands of c2
s(ε) using a different implementation of

the asymptotic pQCD constraint: we shift the matching condition at which it is verified
whether the asymptotic pQCD requirement can be met in a causal and thermodynamically
stable fashion, from εNS = εc,max to a fixed point, nNS = 10n0. This is how the pQCD
likelihood was implemented in Refs. [62, 86, 91]. It is obvious that this choice leads to
strong, even qualitative changes in the speed-of-sound credible bands. While at energy
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densities ε ≲ 500 MeV fm−3, the posterior credible bands look similar to those in Fig. 4.6,
at higher energy densities the speed of sound falls off and reaches significantly smaller
values of c2

s. The Bayes factors in Table 4.5 increase, resulting in strong evidence against
monotonically rising sound speeds up to densities ntr = 5n0. This test case behavior agrees
well with the findings in Refs. [62, 86, 91]. The differences resulting from the two pQCD
implementations have already been pointed out in Refs. [93, 137].

0 250 500 750 1000
ε [MeV fm−3]

0.00

0.25

0.50

0.75

1.00

c2 s

1.4M�

2.3M�

Previous + BW + nNS = 10n0

10 12 14
R [km]

1.0

1.5

2.0

2.5

M
[M
�

]

Previous + BW + nNS = 10n0

FIG. 4.18. Similar to Fig. 4.6: posterior credible bands for the squared speed of sound, c2
s, as a

function of energy density ε, and mass-radius relation R(M) based on the previous data as well
as the new information from the black-widow (BW) pulsar. Here, however, the integral pQCD
likelihood is implemented, as in Refs. [62, 86, 91], at nNS = 10n0 instead of εNS = εc,max. Figure
taken from Ref. [97].

If the integral pQCD likelihood of Eq. (3.95) is imposed at densities as high as nNS = 10n0,
EoSs featuring large sound speeds at energy densities ε < 1200 MeV fm−3 are in fact not
excluded, but they become much less likely. In order to fulfill the integral pQCD constraint
at higher densities, EoSs with large sound speeds must decrease to smaller c2

s, whereas
small sound speeds have more freedom to gain support in the analysis. In fact, imposing
the integral pQCD likelihood at nNS = 10n0 makes large speeds of sound unlikely all the
way down to ε ∼ 0. This softening does, however, depend sensitively on the specific choice
of nNS. For example, an alternative scenario with nNS = 8n0 which is also far beyond
the central densities of most neutron stars, leads to a much less pronounced softening in
c2

s. Despite these drastic changes, in our analysis as in Refs. [86, 134], the mass-radius
relation is only weakly affected. Small modifications are seen only for the most massive
neutron stars, M > 2.1M⊙, which are no longer constrained by radius measurements.
In fact, even the properties of a 2.3M⊙ neutron star depicted in Table 4.3 change only
slightly, see Table 4.6. The strong evidence against small sound speeds in the cores of
neutron stars with masses M ≤ 2.0M⊙ persists (see Table D.3 in Appendix D) and the
maximum possible phase coexistence region within the inferred 68% posterior credible
band stays below ∆n/n ≤ 0.2. Already in the analysis in Sec. 4.1.1 where the conformal
limit is reached from above, we could conclude that the asymptotic behavior of the speed
of sound has only a small influence on the properties of most neutron stars.

Because the EoSs beyond εc,max are no longer constrained by astrophysical data but
merely interpolated up to high densities, we believe that εNS = εc,max is the better (i.e., more
conservative) choice. Selecting a higher matching density may lead to an overestimation of
the pQCD impact. With such a higher matching density beyond the range of control by data
the impact is expected to depend sensitively on the choice of priors in the unconstrained
interpolation region [93]. With the conservative choice employed in the present work, the
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Previous + BW + nNS = 10n0

95% 68%

nc/n0 3.7+1.5
−1.1

+0.6
−0.7

εc [MeV fm−3] 661+338
−241

+118
−142

2.3M⊙ Pc [MeV fm−3] 223+190
−114

+61
−73

R [km] 12.4+1.1
−1.2

+0.4
−0.7

Λ 16+16
−10

+5
−7

TABLE 4.6. Same as Table 4.3: median and credible intervals for a neutron star with mass
M = 2.3M⊙ are displayed given the previously available data as well as the new information from
the black-widow (BW) pulsar. Here, however, the integral pQCD likelihood is implemented, as in
Refs. [62, 86, 91], at nNS = 10n0 instead of εNS = εc,max.

integral pQCD likelihood of Eq. (3.95) has a negligible influence on the sound speed and
related properties of neutron stars. This corresponds well to the conclusions drawn in
Ref. [137] where the authors also found only a very small impact of the pQCD integral
constraint imposed at εc,max.

Following our results on the impact of the pQCD likelihood depending sensitively on the
choice of the matching density, nNS, that were published in Ref. [97], subsequent analyses
found that an implementation of the pQCD integral constraint at εNS = εc,max implies
that the EoS has to undergo an abrupt softening after εc,max to still be compatible with
the pQCD results at asymptotic densities [102, 261]. Such a behavior can, of course, not
be excluded a priori. This observation led to the development of a new pQCD likelihood,
that marginalizes over a Gaussian process additionally conditioned on the sound speed
computed in pQCD [261]. In this way, the likelihood becomes independent of the specific
choice of nNS at the cost of an increased model dependence on the hyper-parameters of the
Gaussian process. Regarding these questions, we want to reiterate the small impact seen
of the more restrictive pQCD likelihood at nNS = 10n0 even on heavy neutron stars with
a mass as high as 2.3M⊙ as noted in Table 4.6. Thus, in all cases the pQCD likelihood
only affects the properties of extremely heavy neutron stars not constrained by any current
astrophysical data.

Note that perturbative QCD calculations generally assume a trivial unpaired ground
state. However, as explained in Sec. 2.2.4, due to the attractive gluonic force between
quarks a color superconductor with quark Cooper pairs is expected to be the true ground
state at asymptotically large chemical potentials. Recent analyses [215, 365] found that
the resulting finite gap in the quark excitation spectrum could increase the sound velocity
and pressure at large densities beyond the values for unpaired quark matter, reminiscent
of the impact of pion condensation at large isospin chemical potentials [204, 205, 347].

Some authors recently claimed evidence for a possible phase transition to a new state of
matter near the maximum neutron star mass, Mmax [91, 92], based on inferred values for
the sound speed [95, 134], the polytrope index [130] or the behavior of the trace anomaly
measure at densities corresponding to Mmax. In these analyses the authors use the approach
with fixed matching density to implement the asymptotic pQCD constraint, which, as we
discussed, is strongly prior dependent. In addition, the central densities reached inside
the most massive neutron stars with masses close to Mmax are, similar to our analysis,
much higher than the central density of a 2.1M⊙ neutron star. This high density regime is,
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however, only loosely constrained by the current astrophysical data. Therefore, analyses of
properties of the most massive stars should require a particularly detailed assessment of
the prior dependence induced by the interpolation to high densities. In contrast, in our
analysis we claim evidence only for neutron stars with masses ≲ 2.1M⊙, which are still in
the density regime that is well-constrained by the current astrophysical data.

A further note concerns selected recent analyses which saw a pronounced softening of
the sound velocity and equation of state at high energy densities [90–92, 95, 132]. Apart
from a different implementation of the pQCD likelihood, as discussed above, this may be
due to differences in presentation. As pointed out, in computing credibility bands we follow
Refs. [67, 70] and employ each equation of state only up to their respective maximum
central energy density εc,max corresponding to the respective maximum mass. Similarly, in
the computation of the credible bands for the radius as a function of mass we consider each
EoS only up to their respective maximum mass Mmax, as higher masses do not correspond
to stable neutron stars. In contrast, Refs. [90–92, 95, 132] among others use each EoS up
to arbitrarily high energy densities. We decided against this approach because it generates
an uncontrolled mix of information from EoSs constrained by astrophysical data and EoSs
beyond empirical limits. If we also use each equation of state up to arbitrary ε, we do
indeed observe a slight softening in Fig. 4.6. However, this behavior is not based on the
empirical data but merely on the interpolation extending up to the pQCD constraint at
asymptotic densities.

4.1.6 Further measurements

Possible impact of HESS J1731-347

Next, we analyze the impact of including the mass-radius estimate for the very light central
compact object HESS J1731-347 reported in Ref. [45]5. The updated posterior credible
bands including this additional information are collected in Fig. 4.19. To reach small radii,
the speed of sound has to increase more rapidly at densities above the ChEFT constraint
at nChEFT = 1.3n0. With the new information, the credible bands are much more tightly
constrained compared to Fig. 4.6. The inclusion of the supernova remnant in the Bayesian
analysis shifts the radii at all masses to lower values. The radius of a 1.4M⊙ neutron star
reduces to R = 11.8+0.5

−0.4 km at the 68% level, similar to the value R = 11.7±0.5 km reported
in Ref. [45] at the 90% level. In addition to HESS J1731-347 and the previously available
data listed in Table 3.3, the latter estimate includes additional information from the X-ray
burster 4U 1702-429 and from the rotation limit for the radio pulsar PSR J1748-2446ad.
There is visibly some tension between the radius estimate at lower masses based on the
current data, most importantly from PSR J0030+0451, and HESS J1731-347, as already
noted in Ref. [95, 103]. As a consequence of this tension the posterior credible band for
R(M) agrees with the credible intervals of the supernova remnant only marginally at the
95% level. However, as also noted in Sec. 3.4.2, the analysis of HESS J1731-347 involves
more systematic uncertainties compared to other data including NICER.

In Table 4.7 we show inferred properties of neutron stars with mass M = 0.77M⊙. The
central density of a 0.77M⊙ neutron star is low, only nc = 2.2± 0.3n0. As an additional
output, the Bayes factor B∆<0

∆≥0 with the inclusion of the HESS supernova remnant increases
from about 8 to B∆<0

∆≥0 ≃ 11, so that the evidence for a negative trace anomaly measure
inside neutron stars turns from moderate to strong.
5 Note that due to the inclusion of a neutron star crust in our EoS parametrizations, we cannot analyze a

hypothetical strange star scenario in our analysis [366].
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FIG. 4.19. Similar to Fig. 4.6: posterior credible bands for the squared speed of sound, c2
s, as a

function of energy density ε, and mass-radius relation R(M), but now including the information
from the supernova remnant HESS J1731-34 in addition to the black-widow (BW) pulsar PSR
J0952-0607. The resulting mass-radius relation is also compared to the marginalized intervals at
the 68% level from the analysis of HESS J1731-34 [45] (green). Figure taken from Ref. [97].

Previous + BW + HESS

95% 68%

nc/n0 2.2+0.6
−0.5 ±0.3

εc [MeV fm−3] 352+81
−87

+38
−52

0.77M⊙ Pc [MeV fm−3] 25+9
−7 ±4

R [km] 11.8+0.9
−1.0

+0.5
−0.4

Λ 7911+3979
−3352

+1799
−1827

TABLE 4.7. Same as Table 4.2, but median and credible intervals for a neutron star with mass
M = 0.77M⊙ are displayed, given the previously available data, the mass measurement of the black
widow pulsar (BW) and the mass-radius data of the supernova remnant HESS J1731-347.

Impact of PSR J0437-4715

Finally, we examine the implications of incorporating the preliminary mass-radius estimate
for PSR J0437-4715 obtained from the newest NICER (NN) measurement. Fig. 4.20
displays the updated posterior credible bands for the sound velocity and the mass-radius
relation. With the integration of the new mass-radius data, which has the lowest uncertainty
of all NICER data to date, the posterior bands are more tightly constrained. Similar to the
impact of the supernova remnant HESS J1731-347 depicted in Fig. 4.19, the sound speed
must increase more rapidly to accommodate for the pulsar’s small radius. Consequently,
this shifts the mass-radius relation towards lower radii, leading to median values around
∼ 12.0 km, similar to the inference results seen in Refs. [106, 107].

Table 4.8 collects properties of neutron stars witch characteristic masses M = 1.4M⊙
and 2.1M⊙. The radius and tidal deformability of a 1.4M⊙ neutron star reported in
Ref. [107] align closely with our results. When compared to the values listed in Table 4.2,
it becomes apparent that the latest NICER measurement not only reduces the estimated
radii of neutron stars, but also leads to higher internal central densities. Nevertheless, even
at a mass of 2.3M⊙ the central densities remain below five times nuclear saturation density
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FIG. 4.20. Similar to Fig. 4.6: posterior credible bands for the squared speed of sound, c2
s, as a

function of energy density ε, and mass-radius relation R(M), but now including the information
from the newest NICER (NN) measurement of PSR J0437-4715 in addition to the black-widow (BW)
pulsar PSR J0952-0607. The resulting mass-radius relation is also compared to the marginalized
intervals at the 68% level from the preliminary analysis of PSR J0437-4715 [46] (red).

at the 68% level, nc(2.3,M⊙) = 4.1+0.7
−0.8 n0. Similar to the low-radius constraint from HESS

J1731-347, including the information from the newest NICER measurement leads to strong
evidence for a negative trace anomaly measure inside neutron stars, possibly caused by a
finite condensate as discussed in Sec. 4.1.4. Future data from the NICER telescope will
help to refine the posterior credible bands even further.

Previous + BW + NN

95% 68%

nc/n0 2.8± 0.7 +0.3
−0.4

εc [MeV fm−3] 454+117
−119

+58
−66

1.4M⊙ Pc [MeV fm−3] 68+28
−23

+11
−16

R [km] 12.0± 0.9 +0.4
−0.5

Λ 356+223
−150

+80
−114

nc/n0 3.9+1.6
−1.4

+0.6
−0.8

εc [MeV fm−3] 677+364
−271

+121
−174

2.1M⊙ Pc [MeV fm−3] 215+195
−122

+57
−84

R [km] 11.8+1.2
−1.1 ±0.6

Λ 21+24
−16

+8
−11

TABLE 4.8. Similar to Table 4.2: median and credible intervals for neutron stars with masses
M = 1.4M⊙ and 2.1 are displayed, but now including the information from the newest NICER
(NN) measurement of PSR J0437-4715 in addition to the previously available data and the black
widow (BW) pulsar PSR J0952-0607.
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4.2 Phenomenology and models
The previous sections have shown how present and forthcoming neutron star data (masses,
radii, and tidal deformabilities) provide constraints for the equation of state and for
possible phase transitions in cold, dense baryonic matter. The enhanced stiffness of
the EoS at high baryon densities is a necessary feature; sufficiently high pressures are
required to support neutron stars with masses around and beyond 2M⊙ at relatively large
radii (R ≃ 11 - 13 km). The central core densities are not as extreme as was previously
imagined. Even in the core of a 2.3 M⊙ neutron star, the baryon density at its center
stays below five times the equilibrium density of nuclear matter (at the 68% credible
level; see Table 4.3). The upper border of the 95% credible interval of the inferred central
density nc(2.3M⊙) = 3.8+1.6

−1.3 n0 lies slightly above 5n0, but with a very low probability.
Very similar credible intervals are found for the G and S versions compared in Sec. 4.1.1.
This observation has consequences for the interpretation of the possible structure and
composition of neutron star matter, which we discuss in the following6.

4.2.1 Low-energy nucleon structure

Spontaneously broken chiral symmetry, as the long-wavelength manifestation of QCD,
governs the low-energy structure and dynamics of hadrons, including nucleons and pions.
As chiral Nambu–Goldstone bosons, pions play a distinguished role in this context. Models
based on chiral symmetry often view the nucleon as a complex system of two scales [367]:
a compact hard core that hosts the three valence quarks and, thus, encloses the baryon
number and a surrounding quark-antiquark cloud in which pions figure prominently as the
‘soft’ degrees of freedom.

Such a two-scale scenario is manifested in empirical form factors and sizes of nucleons
[163, 368]. Consider, for example, the proton and neutron electromagnetic form factors
and their slopes at zero momentum transfer, which determine the corresponding mean
square radii. The empirical r.m.s. proton charge radius, ⟨r2

p⟩1/2 = 0.840± 0.003± 0.002 fm
[369], combined with the neutron charge radius, ⟨r2

n⟩ = −0.105 ± 0.006 fm2 [370], gives
the isoscalar and isovector mean square radii of the nucleon, ⟨r2

S,V ⟩ = ⟨r2
p⟩ ± ⟨r2

n⟩, with the
following resulting values:√

⟨r2
S⟩ ≃ 0.78 fm ,

√
⟨r2

V ⟩ ≃ 0.90 fm . (4.112)

Each of the nucleon form factors Gi(q2) related to a current with index i has a representation
in terms of a once-subtracted dispersion relation,

Gi(q2) = Gi(0) + q2

π

∫ ∞

t0
dt

ImGi(t)
t(t− q2 − iϵ) , (4.113)

with the squared four-momentum transfer q2 = q2
0 − q⃗ 2. The mean square radii are given

as

⟨r2
i ⟩ = 6

Gi(0)
dGi(q2)
dq2

∣∣∣∣
q2=0

= 6
π

∫ ∞

t0

dt

t2
Si(t) , (4.114)

where the distribution Si(t) = ImGi(t)/Gi(0) represents the spectrum of intermediate
hadronic states through which the external probing field couples to the respective nucleon
current. For example, the isovector charge radius reflects the interacting two-pion cloud
6 This section closely follows Ref. [163].
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of the nucleon governed by the ρ meson and a low-mass tail extending down to the ππ
threshold, t0 = 4m2

π. The isoscalar charge radius is related to the three-pion spectrum,
which is strongly dominated by the narrow ω meson [371] and starts at t0 = 9m2

π. The
isoscalar charge form factor of the nucleon, GE

S (q2) (with GE
S (0) = 1), is particularly

suitable for discussing a delineation between the ‘core’ and ‘cloud’ parts of the nucleon [372,
373]. The vector meson dominance principle implies, in its simplest version, a representation
of the form

GE
S (q2) = FB(q2)

1 + |q2|/m2
ω

. (4.115)

The form factor FB(q2) of the baryon number distribution in the nucleon core acts as a
source for the ω field that propagates with its mass mω. Introducing the mean square
radius of the baryon core, ⟨r2

B⟩ = 6dFB(q2)
dq2 |q2=0, the mean square isoscalar charge radius

becomes

⟨r2
S⟩ = ⟨r2

B⟩+ 6
m2

ω

. (4.116)

Using mω = 783 MeV, the estimated baryonic core radius is√
⟨r2

B⟩ ≃ 0.47 fm . (4.117)

A nucleon core size of about 1/2 fm is characteristic of chiral ‘core + cloud’ models. It also
holds up in more detailed treatments of the spectral distributions governing the nucleon
form factors [369]. The inclusion of additional ϕ meson and πρ continuum contributions in
the spectral function of GE

S (q2) moves the core radius to just slightly larger values [368].
Consider as another example the form factor associated with the axial vector current of

the nucleon. The corresponding mean-square axial radius deduced from neutrino-deuteron
scattering data is reported as [374]

⟨r2
A⟩ = (0.46± 0.22) fm2 . (4.118)

A schematic axial vector dominance picture would assign a dominant part of the ‘cloud’
contribution to this form factor through the spectrum of the a1(1260) meson with its large
width. If an approximate scale of this ‘cloud’ part is identified with δ⟨r2

A⟩ ∼ 6/m2
a using

the physical a1 mass, ma ≃ 1.23 GeV, one finds√
⟨r2

A⟩core
= [⟨r2

A⟩ − δ⟨r2
A⟩]1/2 ≃ 0.55 fm , (4.119)

with an estimated uncertainty of about 25%.
Yet another interesting piece of information is the mass radius of the proton deduced

from J/Ψ photoproduction data [375]. It involves the form factor of the trace, Tµ
µ , of the

nucleon’s energy-momentum tensor and is supposed to be dominated by gluon dynamics at
the center of the nucleon. Low-mass (e.g., two-pion and -kaon) components are suppressed
[368]. The result quoted in [375],

⟨r2⟩1/2
mass = (0.55± 0.03) fm , (4.120)

is, once again, remarkably close to an assumed ‘core’ size scale of ∼ 1/2 fm.
These empirical considerations motivate a picture of the nucleon as containing a compact

‘hard’ core in which the valence quarks and their baryon number are confined, and a ‘soft’
surface of quark-antiquark pairs forming a mesonic cloud. This structure has implications



4.2. PHENOMENOLOGY AND MODELS 87

for the behavior of nucleons in dense baryonic matter. With a core size of Rcore ∼ 1/2 fm
and a cloud range given, e.g., by the proton charge radius, Rcloud ∼ 0.84 fm, there is a
significant separation of volume scales in vacuum: (Rcloud/Rcore)3 ∼ 5.

This scale separation is expected to increase further in dense baryonic matter for
the following reasons. The properties of the soft multi-pion cloud are closely tied to
spontaneously broken chiral symmetry and the approximate Nambu–Goldstone boson
nature of the pion. The size of this cloud is expected to increase with density, along
with the decreasing in-medium pion decay constant, f∗

π(n), which acts as a chiral order
parameter. The baryonic core, on the other hand, is governed by gluon dynamics, without
a leading connection to chiral symmetry in QCD. This core is, therefore, expected to be
quite stable against changes from increasing density up until the compact hard cores begin
to touch and overlap. What arises in this way is a two-scale scenario for dense baryonic
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baryon density high

FIG. 4.21. Sketch of low- and high-density baryonic matter. Baryons (e.g., nucleons) are viewed
as valence quark cores surrounded by clouds of quark-antiquark pairs (e.g., chiral meson clouds).
At densities of n ≳ 2− 3n0, the percolation of quark-antiquark pairs over larger distances starts,
as indicated. Valence quark cores begin to touch and overlap at baryon densities n ≳ 5n0. Figure
taken from Ref. [163].

matter, as described in [233] and sketched in Figure 4.21. At n ≃ n0, the tails of the meson
clouds of nucleon pairs overlap, resulting in two-body exchange forces. As the average
distance between nucleons decreases with increasing density, around n ≳ 2− 3n0, the soft
clouds of qq̄ pairs start to be delocalized. Their mobility expands over larger distances in
a percolation process involving larger numbers of nucleons. In the terms of conventional
nuclear physics, this corresponds to the emergence of many-body forces, the strength of
which grows with increasing density. At that stage, the baryonic cores are still separated
but subject to increasingly repulsive Pauli principle effects. The cores begin to touch
and overlap at average nucleon-nucleon distances of d ≲ 1 fm, corresponding to densities
n ≳ 5n0. Further compression of baryonic matter would still have to overcome the strongly
repulsive hard core in the nucleon-nucleon interaction. Recalling the inferred credible
intervals of the central densities in heavy neutron stars in Table 4.3, one concludes that a
phase transition to valence quark deconfinement does not seem likely in a two-scale picture
and under the conditions in the cores of neutron stars unless they are extremely heavy.

An interesting and closely related result emerges from a detailed analysis of y-scaling
in electron-nucleus scattering at large momentum transfers (|q⃗| ≳ 1 GeV) and low energy
transfers [376]. The persistently observed y-scaling under these kinematical conditions
implies that the electrons still scatter from strongly correlated pairs of nucleons, rather than
quarks, at short distances. The conclusion drawn in [376] is that at local densities as large as
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five times n0, nuclear matter still appears to behave as a collection of nucleons. As discussed
in Sec. 4.1.3, such a picture is still well compatible with the data set consisting of Shapiro
time delay, NICER, ChEFT, pQCD and gravitational wave data. On the other hand,
the heavy-mass measurement of the black-widow pulsar hints towards a non-monotonic
behavior of the speed of sound at densities n > 4n0 (see Tab. 4.5).

4.2.2 Quark-hadron continuity

While a strong first-order phase transition in neutron star matter seems unlikely based
on the current empirical observations, a continuous crossover from hadrons to quarks is
still possible within the present data-driven constraints. Such a scenario is realized, for
example, in the QHC21 equation of state [235]. It features a smooth interpolation between
low and high densities from nuclear to quark matter regimes. The quark matter phase
is described by a three-flavor Nambu–Jona-Lasinio (NJL) model that includes pairing
(diquark) degrees of freedom and a strongly repulsive vector coupling between quarks. In
order to build up the necessary pressure at high densities, this vector coupling must be
comparable to or larger than the strength of the standard scalar-pseudoscalar interaction
in the NJL model. The density at which the interpolated turnover to quark matter takes
place in the QHC21 EoS is chosen as n ≳ 3.5n0, within the range of central densities that
can be reached in M ≳ 2M⊙ neutron stars. A crossover from hadrons to quarks could also
involve an intermediate phase of quarkyonic matter as explained in Sec. 2.2.4.

4.2.3 Chiral symmetry restoration

The quest for chiral symmetry restoration at high baryon densities – a transition from
the spontaneously broken Nambu–Goldstone realization to the unbroken Wigner–Weyl
mode – has been a persistent issue for a long time. A possible first-order chiral phase
transition and the existence of a corresponding critical endpoint in the QCD phase diagram
have always been topics of prime interest [377–379]. As discussed in Sec. 2.2.4, early
hypotheses concerning the occurrence of a first-order phase transition were frequently based
on Nambu–Jona-Lasinio (NJL)-type models in mean-field approximation [380–382], which
were later extended by incorporating confinement aspects through added Polyakov-loop
degrees of freedom [383–385].

The empirical constraints on strong first-order phase transitions in dense neutron star
matter, as described in Sec. 4.1.3, are strikingly at variance with previous mean-field
(e.g., NJL model) predictions. These suggested that a first-order chiral phase transition
should already appear at relatively low baryon densities around n ∼ 2− 3n0. A possible
explanation for this discrepancy can be found in [220, 221], where a chiral nucleon-meson
(ChNM) field theory was used to explore the effects of fluctuations beyond mean-field
(MF) approximation. The starting point was a relativistic chiral Lagrangian, L(Ψ;π, σ; vµ),
shaped around a linear sigma model with nucleons (Ψ), pions (π), and a scalar (σ) field.
Short-range dynamics were parametrized in terms of heavy isoscalar and isovector vector
fields (vµ). The expectation value ⟨σ⟩ of the scalar field acted as a chiral order parameter
normalized in the vacuum to the pion decay constant, fπ ≃ 92 MeV. Two classes of
fluctuations beyond MF were then systematically studied: first, vacuum fluctuations that
introduced an additional term proportional to σ4 ln(σ/fπ) in the MF partition function;
secondly, fluctuations involving pion loops and nucleon particle-hole excitations. The
vacuum fluctuations can be included in an extended mean-field (EMF) approximation [386].
Fluctuations involving pion and nucleon loops are computed using non-perturbative func-
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tional renormalization group (FRG) methods. The parameters of the ChNM model – in
particular, those related to short-distance dynamics – are fixed to reproduce empirical
nuclear physics data [220, 221].

Fig. 4.22 demonstrates the important role of fluctuations beyond the mean-field approxi-
mation for the chiral order parameter ⟨σ⟩. In symmetric nuclear matter, the mean-field
approximation of the ChNM model correctly reproduces the first-order liquid-gas phase
transition at low density. However, the chiral order parameter also displays a strong
first-order chiral phase transition with a Maxwell-constructed phase coexistence region
starting already below 2n0. For neutron matter, which has no liquid-gas phase transition,
the MF approximation nevertheless predicts a first-order chiral phase transition at densities
around n ∼ 3n0, which is well within the range of densities realized in neutron stars. How-
ever, in both nuclear and neutron matter, the inclusion of fermionic vacuum fluctuations
(i.e., the effect of the ground state zero-point energy) in the extended mean-field (EMF)
approximation converts the first-order chiral phase transition into a smooth crossover
and shifts it to densities of n > 5n0. This effect is further enhanced by the additional
fluctuations included in the full FRG calculation, as demonstrated in Fig. 4.22. As a result,
the restoration of chiral symmetry is relegated to very high baryon densities beyond the
inferred core densities in even the heaviest neutron stars (see Table 4.3). A comparable
impact of fluctuations on the phase structure is seen in alternative chiral models [387, 388].

Another approach based on chiral symmetry is the parity-doublet model. In this model,
the active coupled baryonic degrees of freedom are the nucleon with spin-parity 1/2+ and
its chiral partner with spin-parity 1/2−, where the latter is identified with the N∗(1535)
resonance. Spontaneous chiral symmetry breaking in vacuum manifests itself in the mass
splitting of these two states, while the in-medium restoration pattern of this symmetry is
signaled by the N and N* masses becoming degenerate. A recent detailed analysis [389] of
the chiral order parameter in this model using extended mean-field approximation found a
chiral phase transition in nuclear matter, but at extremely high densities (n > 10n0) that
are far beyond the density scales reached in neutron stars.

4.2.4 Fermi liquid picture

According to Sec. 4.1.3, the constraints on the equation of state inferred from the current
empirical data still permit an interpretation of neutron star core matter in terms of baryonic
degrees of freedom, such as a system dominated by neutrons [268] with small fractions
of protons and perhaps hyperons [238, 240, 390]. The inferred baryon chemical potential
µ(n) = ∂ε(n)/∂n shown in Fig. 4.9 does not distinguish between different species of baryons.
Its behavior nonetheless displays increasingly strong correlations at high densities. It is
instructive to analyze the gross properties of this state of matter using the Landau theory of
relativistic Fermi liquids [391], which describes a relativistic many-body system of strongly
interacting fermions at low temperatures. In this theory, the ground state is represented
by a filled Fermi sea of quasiparticles. These quasiparticles can be understood as free
fermions dressed by the strong interactions with the surrounding medium. Quasiparticles
above the Fermi surface and quasiholes below it correspond to low-lying excitations [392].
Here, we perform a schematic study assuming ‘neutron-like’ quasiparticles [351] with a
baryon number of B = 1 and a density-dependent mass of m(n) while ignoring other small
admixtures in the composition of the dense medium. The quasiparticles are characterized
by their (relativistic) Landau effective mass m∗

L at a Fermi momentum of pF = (3π2 n)1/3,

m∗
L(n) =

√
p2

F +m2(n) , (4.121)
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Fig. 5 Chiral order parameters in symmetric nuclear matter using
the ChNM model as described in the text. Shown is in particular the
behaviour at high baryon densities (in units of n0 = 0.16 fm−3) for the
EMF and FRG scenarios. Dotted lines at densities n ≤ n0 describe the
first-order liquid-gas phase transition

Fig. 6 Energy per particle of pure neutron matter as a function of neu-
tron density. Curves show results of calculations based on the ChNM
model: EMF as described in the text and FRG with reference to [28].
The light-shaded band shows for comparison the E/A (including uncer-
tainties) obtained with a chiral N 3 L O nucleon-nucleon interaction plus
three- and four-body interaction terms [82]

3.2 Neutron matter

As a prerequisite before entering the discussion of chiral
phases in neutron matter, Fig. 6 shows the energy per particle
at low density calculated using the EMF and FRG schemes,
in comparison with results of calculations based on a chiral
N 3L O nucleon-nucleon interaction with inclusion of three-
and four-body contributions [82] (see also [83]). The ChNM
model combined with FRG closely resembles state-of-the-art
results of N 3L O chiral effective field theory at low densi-
ties within uncertainties, so that one can proceed to higher
density with some confidence.

Apart from the liquid-gas transition, the chiral order
parameter in neutron matter shows a qualitatively similar

Fig. 7 Chiral order parameters for pure neutron matter at temperature
T = 0 as a function of neutron density. Legends of the curves are the
same as in Fig. 3

Fig. 8 Chiral order parameters in neutron matter using the ChNM
model as described in the text. Shown in particular is the behaviour
at high neutron density (in units of n0 = 0.16 fm−3) for the EMF and
FRG scenarios as indicated

behaviour as in symmetric nuclear matter. In the MF limit
there would be a first-order chiral phase transition starting
from a density slightly below 3 n0. As a function of neu-
tron chemical potential this first-order transition occurs at
µn # 1.2 GeV. In neutron matter this breakdown of the
theory in MF approximation takes place at a slightly higher
density than in symmetric nuclear matter, indicating the dif-
ferences between nuclear matter as a self-bound system and
neutron matter which is unbound at all densities. Adding
vacuum fluctuations in the EMF scheme stabilizes the sys-
tem and induces a smooth behaviour of 〈σ 〉. The full FRG
calculation with its repulsive loop corrections provides fur-
ther stabilization and moves the transition to chiral symmetry
restoration in the form of a crossover to densities way beyond
6 n0, as illustrated in Figs. 7 and 8.

It is instructive to underline the importance of vacuum
fluctuations by comparing the MF and EMF results for the
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µn # 1.2 GeV. In neutron matter this breakdown of the
theory in MF approximation takes place at a slightly higher
density than in symmetric nuclear matter, indicating the dif-
ferences between nuclear matter as a self-bound system and
neutron matter which is unbound at all densities. Adding
vacuum fluctuations in the EMF scheme stabilizes the sys-
tem and induces a smooth behaviour of 〈σ 〉. The full FRG
calculation with its repulsive loop corrections provides fur-
ther stabilization and moves the transition to chiral symmetry
restoration in the form of a crossover to densities way beyond
6 n0, as illustrated in Figs. 7 and 8.

It is instructive to underline the importance of vacuum
fluctuations by comparing the MF and EMF results for the
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realistic initialization of the ChNM model and further extrap-
olations. This first-order phase transition leaves its signature
as well in the chiral order parameter for symmetric nuclear
matter, as shown in Fig. 3 as a function of baryon density.
A first instructive step is the comparison between the MF
case (mean-field approximation without vacuum fluctuation
terms), using !

(0)
M F of Eq. (19), and its EMF extension (with

inclusion of vacuum terms), using !E M F of Eq. (15). The
MF approximation would suggest a first-order chiral phase
transition starting already at a density as low as n ! 1.5 n0,
with a coexistence region extending up to n ! 3 n0 at which
chiral symmetry is fully restored. This is clearly an unphysi-
cal situation. Such a qualitative phase change would already
have been noticeable in the empirical nuclear phenomenol-
ogy and in heavy-ion collisions. With inclusion of vacuum
terms as a minimally added condition, this chiral first-order
transition at low density disappears indeed and shifts to high
densities far beyond 3 n0.

Figure 4 shows the corresponding picture as a function
of baryon chemical potential. A sudden jump from the vac-
uum expectation value 〈σ 〉 = fπ takes place at µ0 = 923
MeV due to the liquid-gas phase transition. In the MF case
a chiral first-order phase transition would appear not much
further up, at µc = 945 MeV, above which the nucleon mass,
M = g〈σ 〉, would vanish. In the extended EMF scheme with
inclusion of the vacuum term (zero point energy density), this
is evidently not the case any more. The chiral order parame-
ter as well as the nucleon mass stays non-zero over a much
wider range of chemical potentials.

The breakdown of predictive power already at densi-
ties below 2 n0 is a characteristic feature of the chiral
nucleon-meson models when treated in the simplest mean-
field approximation [29], and a similar behaviour is found
for the chiral quark-meson model [56]. This emphasizes the
importance of loop effects beyond mean-field. The necessary
first step beyond MF is the inclusion of fermionic vacuum
fluctuations in the EMF extension of the model.

The stabilisation of the chiral order parameter by fluctua-
tions is further enhanced in the full FRG scenario [28,29] as
indicated by the corresponding curves in Figs. 3 and 4. With
the input parameters (42) reproducing nuclear matter ground
state properties, the pattern of the liquid-gas phase transi-
tion in the FRG approach turns out to be close to the one in
the EMF scheme. Marginal differences occur in the critical
temperature (Tcrit = 18.3 MeV (FRG) vs. Tcrit = 17.5 MeV
(EMF)). The exact values depend on the selected parametri-
sation which includes a certain amount of freedom.

As already pointed out the FRG framework is richer in
dynamical content than EMF. Beyond nucleonic zero-point
energies it includes loop effects from pions, sigma bosons
and nucleons on the chiral potential U (0)

k=0. These mechanisms
shift the chiral transition to even higher densities.

Fig. 3 Chiral order parameters in symmetric nuclear matter at temper-
ature T = 0 as a function of baryon density n in units of nuclear ground
state equilibrium density, n0 = 0.16 fm−3. Dotted lines: liquid-gas
phase transition; dashed line: first-order chiral phase transition. Plotted
are the results from basic mean-field (MF) and extended mean-field
approximations (EMF, with inclusion of vacuum fluctuations). Also
shown is the curve resulting from a functional renormalisation group
(FRG) computation based on the same ChNM model [28]

Fig. 4 Chiral order parameters in symmetric nuclear matter at T = 0
as a function of baryon chemical potential µ. Legends are the same as
in Fig. 3

The high-density behaviour of 〈σ 〉, shown for the EMF and
FRG scenarios in Fig. 5, suggests a smooth chiral crossover
around n ∼ 6 n0 for EMF and at even much higher densities
for FRG. Of course, at such high densities nucleons sup-
posedly overlap and release their quark contents. Also, the
ChNM model was adjusted to reproduce properties of the
liquid-gas phase transition and the potential was expanded
around χ0 = 1/2 f 2

π . Hence, if 〈σ 〉 becomes too small the
model reaches its limit of applicability. However, the qual-
itative feature of a chiral crossover induced by fluctuations,
instead of a first-order chiral phase transition, is expected to
persist.
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realistic initialization of the ChNM model and further extrap-
olations. This first-order phase transition leaves its signature
as well in the chiral order parameter for symmetric nuclear
matter, as shown in Fig. 3 as a function of baryon density.
A first instructive step is the comparison between the MF
case (mean-field approximation without vacuum fluctuation
terms), using !

(0)
M F of Eq. (19), and its EMF extension (with

inclusion of vacuum terms), using !E M F of Eq. (15). The
MF approximation would suggest a first-order chiral phase
transition starting already at a density as low as n ! 1.5 n0,
with a coexistence region extending up to n ! 3 n0 at which
chiral symmetry is fully restored. This is clearly an unphysi-
cal situation. Such a qualitative phase change would already
have been noticeable in the empirical nuclear phenomenol-
ogy and in heavy-ion collisions. With inclusion of vacuum
terms as a minimally added condition, this chiral first-order
transition at low density disappears indeed and shifts to high
densities far beyond 3 n0.

Figure 4 shows the corresponding picture as a function
of baryon chemical potential. A sudden jump from the vac-
uum expectation value 〈σ 〉 = fπ takes place at µ0 = 923
MeV due to the liquid-gas phase transition. In the MF case
a chiral first-order phase transition would appear not much
further up, at µc = 945 MeV, above which the nucleon mass,
M = g〈σ 〉, would vanish. In the extended EMF scheme with
inclusion of the vacuum term (zero point energy density), this
is evidently not the case any more. The chiral order parame-
ter as well as the nucleon mass stays non-zero over a much
wider range of chemical potentials.

The breakdown of predictive power already at densi-
ties below 2 n0 is a characteristic feature of the chiral
nucleon-meson models when treated in the simplest mean-
field approximation [29], and a similar behaviour is found
for the chiral quark-meson model [56]. This emphasizes the
importance of loop effects beyond mean-field. The necessary
first step beyond MF is the inclusion of fermionic vacuum
fluctuations in the EMF extension of the model.

The stabilisation of the chiral order parameter by fluctua-
tions is further enhanced in the full FRG scenario [28,29] as
indicated by the corresponding curves in Figs. 3 and 4. With
the input parameters (42) reproducing nuclear matter ground
state properties, the pattern of the liquid-gas phase transi-
tion in the FRG approach turns out to be close to the one in
the EMF scheme. Marginal differences occur in the critical
temperature (Tcrit = 18.3 MeV (FRG) vs. Tcrit = 17.5 MeV
(EMF)). The exact values depend on the selected parametri-
sation which includes a certain amount of freedom.

As already pointed out the FRG framework is richer in
dynamical content than EMF. Beyond nucleonic zero-point
energies it includes loop effects from pions, sigma bosons
and nucleons on the chiral potential U (0)

k=0. These mechanisms
shift the chiral transition to even higher densities.

Fig. 3 Chiral order parameters in symmetric nuclear matter at temper-
ature T = 0 as a function of baryon density n in units of nuclear ground
state equilibrium density, n0 = 0.16 fm−3. Dotted lines: liquid-gas
phase transition; dashed line: first-order chiral phase transition. Plotted
are the results from basic mean-field (MF) and extended mean-field
approximations (EMF, with inclusion of vacuum fluctuations). Also
shown is the curve resulting from a functional renormalisation group
(FRG) computation based on the same ChNM model [28]

Fig. 4 Chiral order parameters in symmetric nuclear matter at T = 0
as a function of baryon chemical potential µ. Legends are the same as
in Fig. 3

The high-density behaviour of 〈σ 〉, shown for the EMF and
FRG scenarios in Fig. 5, suggests a smooth chiral crossover
around n ∼ 6 n0 for EMF and at even much higher densities
for FRG. Of course, at such high densities nucleons sup-
posedly overlap and release their quark contents. Also, the
ChNM model was adjusted to reproduce properties of the
liquid-gas phase transition and the potential was expanded
around χ0 = 1/2 f 2

π . Hence, if 〈σ 〉 becomes too small the
model reaches its limit of applicability. However, the qual-
itative feature of a chiral crossover induced by fluctuations,
instead of a first-order chiral phase transition, is expected to
persist.
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Fig. 5 Chiral order parameters in symmetric nuclear matter using
the ChNM model as described in the text. Shown is in particular the
behaviour at high baryon densities (in units of n0 = 0.16 fm−3) for the
EMF and FRG scenarios. Dotted lines at densities n ≤ n0 describe the
first-order liquid-gas phase transition

Fig. 6 Energy per particle of pure neutron matter as a function of neu-
tron density. Curves show results of calculations based on the ChNM
model: EMF as described in the text and FRG with reference to [28].
The light-shaded band shows for comparison the E/A (including uncer-
tainties) obtained with a chiral N 3 L O nucleon-nucleon interaction plus
three- and four-body interaction terms [82]

3.2 Neutron matter

As a prerequisite before entering the discussion of chiral
phases in neutron matter, Fig. 6 shows the energy per particle
at low density calculated using the EMF and FRG schemes,
in comparison with results of calculations based on a chiral
N 3L O nucleon-nucleon interaction with inclusion of three-
and four-body contributions [82] (see also [83]). The ChNM
model combined with FRG closely resembles state-of-the-art
results of N 3L O chiral effective field theory at low densi-
ties within uncertainties, so that one can proceed to higher
density with some confidence.

Apart from the liquid-gas transition, the chiral order
parameter in neutron matter shows a qualitatively similar

Fig. 7 Chiral order parameters for pure neutron matter at temperature
T = 0 as a function of neutron density. Legends of the curves are the
same as in Fig. 3

Fig. 8 Chiral order parameters in neutron matter using the ChNM
model as described in the text. Shown in particular is the behaviour
at high neutron density (in units of n0 = 0.16 fm−3) for the EMF and
FRG scenarios as indicated

behaviour as in symmetric nuclear matter. In the MF limit
there would be a first-order chiral phase transition starting
from a density slightly below 3 n0. As a function of neu-
tron chemical potential this first-order transition occurs at
µn # 1.2 GeV. In neutron matter this breakdown of the
theory in MF approximation takes place at a slightly higher
density than in symmetric nuclear matter, indicating the dif-
ferences between nuclear matter as a self-bound system and
neutron matter which is unbound at all densities. Adding
vacuum fluctuations in the EMF scheme stabilizes the sys-
tem and induces a smooth behaviour of 〈σ 〉. The full FRG
calculation with its repulsive loop corrections provides fur-
ther stabilization and moves the transition to chiral symmetry
restoration in the form of a crossover to densities way beyond
6 n0, as illustrated in Figs. 7 and 8.

It is instructive to underline the importance of vacuum
fluctuations by comparing the MF and EMF results for the
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realistic initialization of the ChNM model and further extrap-
olations. This first-order phase transition leaves its signature
as well in the chiral order parameter for symmetric nuclear
matter, as shown in Fig. 3 as a function of baryon density.
A first instructive step is the comparison between the MF
case (mean-field approximation without vacuum fluctuation
terms), using !

(0)
M F of Eq. (19), and its EMF extension (with

inclusion of vacuum terms), using !E M F of Eq. (15). The
MF approximation would suggest a first-order chiral phase
transition starting already at a density as low as n ! 1.5 n0,
with a coexistence region extending up to n ! 3 n0 at which
chiral symmetry is fully restored. This is clearly an unphysi-
cal situation. Such a qualitative phase change would already
have been noticeable in the empirical nuclear phenomenol-
ogy and in heavy-ion collisions. With inclusion of vacuum
terms as a minimally added condition, this chiral first-order
transition at low density disappears indeed and shifts to high
densities far beyond 3 n0.

Figure 4 shows the corresponding picture as a function
of baryon chemical potential. A sudden jump from the vac-
uum expectation value 〈σ 〉 = fπ takes place at µ0 = 923
MeV due to the liquid-gas phase transition. In the MF case
a chiral first-order phase transition would appear not much
further up, at µc = 945 MeV, above which the nucleon mass,
M = g〈σ 〉, would vanish. In the extended EMF scheme with
inclusion of the vacuum term (zero point energy density), this
is evidently not the case any more. The chiral order parame-
ter as well as the nucleon mass stays non-zero over a much
wider range of chemical potentials.

The breakdown of predictive power already at densi-
ties below 2 n0 is a characteristic feature of the chiral
nucleon-meson models when treated in the simplest mean-
field approximation [29], and a similar behaviour is found
for the chiral quark-meson model [56]. This emphasizes the
importance of loop effects beyond mean-field. The necessary
first step beyond MF is the inclusion of fermionic vacuum
fluctuations in the EMF extension of the model.

The stabilisation of the chiral order parameter by fluctua-
tions is further enhanced in the full FRG scenario [28,29] as
indicated by the corresponding curves in Figs. 3 and 4. With
the input parameters (42) reproducing nuclear matter ground
state properties, the pattern of the liquid-gas phase transi-
tion in the FRG approach turns out to be close to the one in
the EMF scheme. Marginal differences occur in the critical
temperature (Tcrit = 18.3 MeV (FRG) vs. Tcrit = 17.5 MeV
(EMF)). The exact values depend on the selected parametri-
sation which includes a certain amount of freedom.

As already pointed out the FRG framework is richer in
dynamical content than EMF. Beyond nucleonic zero-point
energies it includes loop effects from pions, sigma bosons
and nucleons on the chiral potential U (0)

k=0. These mechanisms
shift the chiral transition to even higher densities.

Fig. 3 Chiral order parameters in symmetric nuclear matter at temper-
ature T = 0 as a function of baryon density n in units of nuclear ground
state equilibrium density, n0 = 0.16 fm−3. Dotted lines: liquid-gas
phase transition; dashed line: first-order chiral phase transition. Plotted
are the results from basic mean-field (MF) and extended mean-field
approximations (EMF, with inclusion of vacuum fluctuations). Also
shown is the curve resulting from a functional renormalisation group
(FRG) computation based on the same ChNM model [28]

Fig. 4 Chiral order parameters in symmetric nuclear matter at T = 0
as a function of baryon chemical potential µ. Legends are the same as
in Fig. 3

The high-density behaviour of 〈σ 〉, shown for the EMF and
FRG scenarios in Fig. 5, suggests a smooth chiral crossover
around n ∼ 6 n0 for EMF and at even much higher densities
for FRG. Of course, at such high densities nucleons sup-
posedly overlap and release their quark contents. Also, the
ChNM model was adjusted to reproduce properties of the
liquid-gas phase transition and the potential was expanded
around χ0 = 1/2 f 2

π . Hence, if 〈σ 〉 becomes too small the
model reaches its limit of applicability. However, the qual-
itative feature of a chiral crossover induced by fluctuations,
instead of a first-order chiral phase transition, is expected to
persist.
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fπ

.

.

..<latexit sha1_base64="bGi+rKM5mM/A0Ma6XuS0ejrKX0E=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBC8GHYlqMeABxU8RDAPSEKYnfQmQ2Zn15lZISz5CS8eFPHq73jzb5wke9DEgoaiqpvuLj8WXBvX/XaWlldW19ZzG/nNre2d3cLefl1HiWJYY5GIVNOnGgWXWDPcCGzGCmnoC2z4w6uJ33hCpXkkH8woxk5I+5IHnFFjpWbbD9K70+txt1B0S+4UZJF4GSlChmq38NXuRSwJURomqNYtz41NJ6XKcCZwnG8nGmPKhrSPLUslDVF30um9Y3JslR4JImVLGjJVf0+kNNR6FPq2M6RmoOe9ifif10pMcNlJuYwTg5LNFgWJICYik+dJjytkRowsoUxxeythA6ooMzaivA3Bm395kdTPSt55qXxfLlZuszhycAhHcAIeXEAFbqAKNWAg4Ble4c15dF6cd+dj1rrkZDMH8AfO5w+Xwo+2</latexit>

L − G

<latexit sha1_base64="/7lxR/iP2vzPETFtpV2YlEcSepM=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh4LguhBqGA/oF1KNs22odlkTbJCWfonvHhQxKt/x5v/xmy7B219MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUvLRBHaJJJL1QmwppwJ2jTMcNqJFcVRwGk7GF9lfvuJKs2keDCTmPoRHgoWMoKNlTq9IEzvrqelfrniVt0Z0DLxclKBHI1++as3kCSJqDCEY627nhsbP8XKMMLptNRLNI0xGeMh7VoqcES1n87unaITqwxQKJUtYdBM/T2R4kjrSRTYzgibkV70MvE/r5uY8NJPmYgTQwWZLwoTjoxE2fNowBQlhk8swUQxeysiI6wwMTaiLARv8eVl0jqreufV2n2tUr/N4yjCERzDKXhwAXW4gQY0gQCHZ3iFN+fReXHenY95a8HJZw7hD5zPH2Mhj5M=</latexit>

MF

<latexit sha1_base64="nTGkp7+3Hyu3NRfanA4yE6KN100=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVQmqgLESC2xFog+piSLHdVKrjh3ZDlIV9QdY+BUWBhBiZWfjb3DTDNByJUvH59xz7XvClFGlHefbqqysrq1vVDdrW9s7u3v2/kFXiUxi0sGCCdkPkSKMctLRVDPSTyVBSchILxxfz/TeA5GKCn6vJynxExRzGlGMtKEC+yTPPYZ4zIinaJwgTxaXqSeMK48CL6XTaWDXnYZTFFwGbgnqoKx2YH95Q4GzhHCNGVJq4Dqp9nMkNcVmeM3LFEkRHqOYDAzkKCHKz4ttpvDUMEMYCWkO17BgfztylCg1SULTmSA9UovajPxPG2Q6uvJzytNME47nD0UZg1rAWTRwSCXBmk0MQFhS81eIR0girE2ANROCu7jyMuieN9yLRvOuWW/dlnFUwRE4BmfABZegBW5AG3QABo/gGbyCN+vJerHerY95a8UqPYfgT1mfP5L8nS4=</latexit>〈σ〉
fπ

<latexit sha1_base64="thiwOWxSMB/YqPK+DCGwg65uB0Y=">AAACDnicbVC7SgNBFJ31GeMrammzGAIWIexKUMuAjXYRzAOyS5id3CRDZmeXmbtiWPIFNv6KjYUittZ2/o2TZAtNPDBwOPcx554gFlyj43xbK6tr6xubua389s7u3n7h4LCpo0QxaLBIRKodUA2CS2ggRwHtWAENAwGtYHQ1rbfuQWkeyTscx+CHdCB5nzOKRuoWSh7CA6Z6HIaAijOv7JVlwgRQNaUhRQQ16RaKTsWZwV4mbkaKJEO9W/jyehFLQpDIBNW64zox+ilVyM3uSd5LNMSUjegAOoZKGoL209k5E7tklJ7dj5R5Eu2Z+nsipaE2hgPTafwN9WJtKv5X6yTYv/RTLuMEQbL5R/1E2BjZ02zsHlfAUIwNoUxx49VmQ6ooMxnovAnBXTx5mTTPKu55pXpbLdZusjhy5JickFPikgtSI9ekThqEkUfyTF7Jm/VkvVjv1se8dcXKZo7IH1ifP//anLo=</latexit>

symmetric nuclear matter

<latexit sha1_base64="wKi0hjeI+GbDAss6554Vpnpk1IQ=">AAACAXicbVBNS8NAEN34WetX1YvgJVgED6UkUtRjwYveKtgPaELZbCft0s0m7E7EEurFv+LFgyJe/Rfe/DduPw7a+mDg8d4MM/OCRHCNjvNtLS2vrK6t5zbym1vbO7uFvf2GjlPFoM5iEatWQDUILqGOHAW0EgU0CgQ0g8HV2G/eg9I8lnc4TMCPaE/ykDOKRuoUDj2EB8wkpKhi6ZW8UkQRQY06haJTdiawF4k7I0UyQ61T+PK6MUsjkMgE1brtOgn6GVXImYBR3ks1JJQNaA/ahkoagfazyQcj+8QoXTuMlSmJ9kT9PZHRSOthFJhOc19fz3tj8T+vnWJ46WdcJimCZNNFYSpsjO1xHHaXK2AohoZQpri51WZ9qigzGei8CcGdf3mRNM7K7nm5clspVm9mceTIETkmp8QlF6RKrkmN1Akjj+SZvJI368l6sd6tj2nrkjWbOSB/YH3+ADwIl2w=</latexit>

neutron matter

<latexit sha1_base64="BAUjUjVnzVkcn+mo7N08MyBCC/E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU01EqseiF48VTFtoQ9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SjGacYxHQgecQZNVby5YXsub1yxa26c5BV4uWkAjkavfJXt5+wLEZpmKBadzw3NcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmx07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqKbYMJlmhmUbLEoygQxCZl9TvpcITNibAllittbCRtSRZmx+ZRsCN7yy6ukeVn1atXaw1WlfpvHUYQTOIVz8OAa6nAPDfCBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kDOJyOUQ==</latexit>

n/n0

FIG. 4.22. Chiral order parameters in symmetric nuclear matter and neutron matter at a
temperature of T = 0 as a function of baryon density in units of nuclear ground state equilibrium
density, n0 = 0.16 fm−3. Dotted lines: liquid-gas phase transition (L-G) in symmetric nuclear
matter. Dashed lines: first-order chiral phase transitions emerging from the mean-field (MF)
approximation of a relativistic chiral nucleon-meson (ChNM) field-theoretical model. Solid lines
show the results of extended mean-field (EMF) calculations (with the inclusion of fermionic vacuum
fluctuations) and functional renormalization group (FRG) calculations based on the same ChNM
model. Figures taken from Ref. [163], where they were adapted from Refs. [220, 221].

together with an effective potential, U(n), so that the baryon chemical potential can be
written as [351]

µ(n) = m∗
L(n) + U(n) . (4.122)

The median of the µ(n) posterior credible bands in Fig. 4.9 is now taken as a guiding starting
point to extract the baryonic quasiparticle properties. With an educated ansatz for m(n),
the density dependence of the potential U(n) can then be deduced and further discussed.
One possible choice is to take m(n) (with m(0) = 939 MeV) from the non-perturbative
FRG calculation employing the chiral nucleon-meson field-theoretical model [220] discussed
in Sec. 4.2.1. The resulting Landau effective mass m∗

L(n) is shown in Fig. 4.23 together
with the potential U(n) = µ(n) − m∗

L(n). The 95% credible band of µ(n) in Fig. 4.9
leads to an uncertainty of about 15% for U at high densities. It is instructive to fit the
resulting quasiparticle potential by a series in powers of baryon density for n ≲ 5n0 (with
n0 = 0.16 fm−3, as before):

U(n) =
∑

n

un

(
n

n0

)n

. (4.123)

The coefficients fitted to the median of µ(n) are

u1 = 90.9 MeV, u2 = 15.3 MeV, u3 = 3.2 MeV, u4 = −0.4 MeV . (4.124)

This pattern reflects a hierarchy of many-body correlations, recalling that the term linear in
density represents two-body interactions, the term of order n2 corresponds to short-range
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three-body forces, and so forth. The role of the repulsive N -body terms with N > 2 is
quite significant; at n ≃ 4n0, corresponding to an average distance of about 1 fm between
the baryonic quasiparticles, these terms contribute as much as the two-body forces to
the potential U and generate the strong pressure to support heavy neutron stars. Of
course, these statements rely on the ansatz for the density-dependent mass m(n), which
is guided by the FRG calculations of pure neutron matter. A small fraction of protons
in beta-equilibrated matter will not substantially change this picture. However, neutron
star core compositions that qualitatively deviate from this simplified picture may lead to
different conclusions.

Finally, consider the dimensionless Fermi liquid parameters, F0 and F1, of the spin-
averaged quasiparticle interaction. In terms of the quasiparticle mass and potential, they
are given as [351]

F0(n) = pF

π2

[
m(n)∂m

∂n
+m∗

L(n)∂U
∂n

]
, F1(n) = −3U(n)

µ(n) . (4.125)

Further useful relations are 1 + F0 = N(0)(∂µ/∂n) with the density of quasiparticle states
at the Fermi surface, N(0) = m∗

LpF /π
2, and 1 + F1/3 = 1− U/µ = m∗

L/µ.

<latexit sha1_base64="JAW+ESmOKnKkQVy77er5oBGaD+s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lErMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHmqu2y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5V9fL+slK/y+Mowgmcwjl4UIM63EIDmsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wdktY0/</latexit>

700

<latexit sha1_base64="1QSl8rVGnSLUp4TUdCgQJPjOabw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKNB4DXvQW0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh+ql2yuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqaF2Xvqly5r5Rqd1kceTiBUzgHD6pQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AbE6NRA==</latexit>

750

<latexit sha1_base64="XrGBhPR9Zv1LrTFMi/AY0yw+F1k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHmqu2y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw5qfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+qenl/Wanf5XEU4QRO4Rw8uIY63EIDmsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wdmO41A</latexit>

800

<latexit sha1_base64="Eih9D9VGMWWyKjtrt1/eWSHh6t4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexK1BwDXvQW0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh+ql2yuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi7J3Va7cV0q1uyyOPJzAKZyDB9dQg1uoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AbdSNRQ==</latexit>

850

<latexit sha1_base64="hB/JrH6tI4YLJ3fmKKC3a+J7q4w=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvOgtonlAsoTZyWwyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuChIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Gbqt564NiJWjzhOuB/RgRKhYBSt9HDtur1yxa26M5Bl4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9mp07IiVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo36QvNGcqxJZRpYW8lbEg1ZWjTKdkQvMWXl0nzrOpdVM/vzyu1uzyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/gfP4AZ8GNQQ==</latexit>

900

<latexit sha1_base64="orAY9Ic1LX9N4RJ048Bjko90XKk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfN0CXvQW0TwgWcLsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zSeujYjUI45j7od0oERfMIpWerg+d7vFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0zsreRblyXylV77I48nAEx3AKHlxCFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kDb1qNRg==</latexit>

950

<latexit sha1_base64="vUySpNJ8EnP1qukdXubtcj5uqVw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FL3qraGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMr2f+4xMqzWP5YCYJ+hEdSh5yRo2V7muu2y9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1fpdvdK4zeMowgmcwjl4cAkNuIEmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w9dF406</latexit>

200

<latexit sha1_base64="V2bmLqg6wxVoY162hVpf6rpdplc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHmqu2y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuqt5ltXZfq9Tv8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNgI408</latexit>

400

<latexit sha1_base64="QomOglkiBaDqw3NSmzKhJeN2/D8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHmqu2y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuql6tenl/Wanf5XEU4QRO4Rw8uII63EIDmsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wdjL40+</latexit>

600

<latexit sha1_base64="XrGBhPR9Zv1LrTFMi/AY0yw+F1k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHmqu2y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw5qfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+qenl/Wanf5XEU4QRO4Rw8uIY63EIDmsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wdmO41A</latexit>

800

<latexit sha1_base64="1GgvCErC+Yq5/jyvomOPATJ9dWQ=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU8mKqMeCF71VsB/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8MBHcWIy/vdLa+sbmVnm7srO7t39QPTxqmzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNObnO/88S04bF6tNOEBZKMFI84JTaXfIzxoFrDdTwHWiV+QWpQoDmofvWHMU0lU5YKYkzPx4kNMqItp4LNKv3UsITQCRmxnqOKSGaCbH7rDJ05ZYiiWLtSFs3V3xMZkcZMZeg6JbFjs+zl4n9eL7XRTZBxlaSWKbpYFKUC2Rjlj6Mh14xaMXWEUM3drYiOiSbUungqLgR/+eVV0r6o+1f1y4fLWuO+iKMMJ3AK5+DDNTTgDprQAgpjeIZXePOk9+K9ex+L1pJXzBzDH3ifP8nKjXM=</latexit>

1000

<latexit sha1_base64="8paT6eMGxtYIyQJHFWp/6FlH1II=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF721YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2Vml6/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6zWmrVK/S6PowgncArn4MEV1OEWGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/f6aMxQ==</latexit>

1
<latexit sha1_base64="tT78AOvQDOkK1rFZZZ1XxDa7nxw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXvSWgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjUq/WHLL7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5rwxp9ymaQGJVsuClNBTEzmX5MBV8iMmFhCmeL2VsJGVFFmbDYFG4K3+vI6aVXK3lW52qiWavdZHHk4g3O4BA+uoQZ3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AYEqjMY=</latexit>

2
<latexit sha1_base64="0vg5JCqHRNLGjdY+O9myacsj0eY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqUI8BL3pLwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+mWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvatypV4pVe+zOPJwAqdwDh5cQxXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A4KujMc=</latexit>

3
<latexit sha1_base64="3TlNjMEOF0se7EhpQsBj8YfYWmM=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp6rHgRW8V7Ae0oWy2k3btZhN2N0IJ/QVePChe/U3e/Ddu2xy09cHA470ZZuaFqeDaeN63U9rY3NreKe+6e/sHh0cV97itk0wxbLFEJKobUo2CS2wZbgR2U4U0DgV2wsnt3O88o9I8kY9mmmIQ05HkEWfUWOmhPqhUvZq3AFknfkGqUKA5qHz1hwnLYpSGCap1z/dSE+RUGc4Eztx+pjGlbEJH2LNU0hh1kC8OnZFzqwxJlChb0pCF+nsip7HW0zi0nTE1Y73qzcX/vF5mopsg5zLNDEq2XBRlgpiEzL8mQ66QGTG1hDLF7a2EjamizNhsXBuCv/ryOmlf1vyrWr3auC/CKMMpnMEF+HANDbiDJrSAAcILvMG78+S8Oh/LxpJTTJzAHzifPxmqi54=</latexit>

4
<latexit sha1_base64="9VlA0FcVxDR/myYkTTvVz+fWLIY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDXvSWgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd+6wmV5rF8MOME/YgOJA85o8ZK9cteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwoe1flSr1Sqt5nceThBE7hHDy4hircQQ0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB4W2jMk=</latexit>

5
<latexit sha1_base64="sUePjHJLSKKgBllDQClTn0OmBuU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF721YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2Vmm6/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6zWmrVK/S6PowgncArn4MEV1OEWGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/fiKMxA==</latexit>

0

<latexit sha1_base64="sUePjHJLSKKgBllDQClTn0OmBuU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF721YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2Vmm6/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVu6zWmrVK/S6PowgncArn4MEV1OEWGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/fiKMxA==</latexit>

0

<latexit sha1_base64="IgMuC2ukG7I5TnqqpI9Amp5QJV8=">AAAB9HicbVBNSwMxEM36WetX1aOXYBHEQ9mVoh4LXhQ8VLAf0K4lm2bb0CS7JrPFsvR3ePGgiFd/jDf/jWm7B219MPB4b4aZeUEsuAHX/XaWlldW19ZzG/nNre2d3cLeft1EiaasRiMR6WZADBNcsRpwEKwZa0ZkIFgjGFxN/MaQacMjdQ+jmPmS9BQPOSVgJT9tA3sCLDu3D6fjTqHoltwp8CLxMlJEGaqdwle7G9FEMgVUEGNanhuDnxINnAo2zrcTw2JCB6THWpYqIpnx0+nRY3xslS4OI21LAZ6qvydSIo0ZycB2SgJ9M+9NxP+8VgLhpZ9yFSfAFJ0tChOBIcKTBHCXa0ZBjCwhVHN7K6Z9ogkFm1PehuDNv7xI6mcl77xUvisXKzdZHDl0iI7QCfLQBaqga1RFNUTRI3pGr+jNGTovzrvzMWtdcrKZA/QHzucPaOGR5Q==</latexit>

m∗
L

<latexit sha1_base64="6aFgmYv0YWlJ2stYpYTUt23AWOA=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPBi94qmLbShrLZTtulu0nYnYgl9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgorq2vrG8XN0tb2zu5eef+gYeJUc/B5LGPdCpkBKSLwUaCEVqKBqVBCMxxdT/3mI2gj4ugexwkEig0i0RecoZUesg7CE1J/0i1X3Ko7A10mXk4qJEe9W/7q9GKeKoiQS2ZM23MTDDKmUXAJk1InNZAwPmIDaFsaMQUmyGYHT+iJVXq0H2tbEdKZ+nsiY8qYsQptp2I4NIveVPzPa6fYvwoyESUpQsTni/qppBjT6fe0JzRwlGNLGNfC3kr5kGnG0WZUsiF4iy8vk8ZZ1buont+dV2q3eRxFckSOySnxyCWpkRtSJz7hRJFn8kreHO28OO/Ox7y14OQzh+QPnM8fzyqQcg==</latexit>

U<latexit sha1_base64="hAwB+jj8k2w/CJTlJRE/LZssVGk=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqMeAFz0IEcwDNkuYnfQmQ2YfzvQGw5Lv8OJBEa9+jDf/xkmyB00saCiquunu8hMpNNr2t1VYWV1b3yhulra2d3b3yvsHTR2nikODxzJWbZ9pkCKCBgqU0E4UsNCX0PKH11O/NQKlRRw94DgBL2T9SASCMzSSR90OwhNmd9CceN1yxa7aM9Bl4uSkQnLUu+WvTi/maQgRcsm0dh07QS9jCgWXMCl1Ug0J40PWB9fQiIWgvWx29ISeGKVHg1iZipDO1N8TGQu1Hoe+6QwZDvSiNxX/89wUgysvE1GSIkR8vihIJcWYThOgPaGAoxwbwrgS5lbKB0wxjiankgnBWXx5mTTPqs5F9fz+vFK7zeMokiNyTE6JQy5JjdyQOmkQTh7JM3klb9bIerHerY95a8HKZw7JH1ifP5axkgU=</latexit>

[MeV]
<latexit sha1_base64="hAwB+jj8k2w/CJTlJRE/LZssVGk=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqMeAFz0IEcwDNkuYnfQmQ2YfzvQGw5Lv8OJBEa9+jDf/xkmyB00saCiquunu8hMpNNr2t1VYWV1b3yhulra2d3b3yvsHTR2nikODxzJWbZ9pkCKCBgqU0E4UsNCX0PKH11O/NQKlRRw94DgBL2T9SASCMzSSR90OwhNmd9CceN1yxa7aM9Bl4uSkQnLUu+WvTi/maQgRcsm0dh07QS9jCgWXMCl1Ug0J40PWB9fQiIWgvWx29ISeGKVHg1iZipDO1N8TGQu1Hoe+6QwZDvSiNxX/89wUgysvE1GSIkR8vihIJcWYThOgPaGAoxwbwrgS5lbKB0wxjiankgnBWXx5mTTPqs5F9fz+vFK7zeMokiNyTE6JQy5JjdyQOmkQTh7JM3klb9bIerHerY95a8HKZw7JH1ifP5axkgU=</latexit>

[MeV]

<latexit sha1_base64="6aFgmYv0YWlJ2stYpYTUt23AWOA=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPBi94qmLbShrLZTtulu0nYnYgl9Fd48aCIV3+ON/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgorq2vrG8XN0tb2zu5eef+gYeJUc/B5LGPdCpkBKSLwUaCEVqKBqVBCMxxdT/3mI2gj4ugexwkEig0i0RecoZUesg7CE1J/0i1X3Ko7A10mXk4qJEe9W/7q9GKeKoiQS2ZM23MTDDKmUXAJk1InNZAwPmIDaFsaMQUmyGYHT+iJVXq0H2tbEdKZ+nsiY8qYsQptp2I4NIveVPzPa6fYvwoyESUpQsTni/qppBjT6fe0JzRwlGNLGNfC3kr5kGnG0WZUsiF4iy8vk8ZZ1buont+dV2q3eRxFckSOySnxyCWpkRtSJz7hRJFn8kreHO28OO/Ox7y14OQzh+QPnM8fzyqQcg==</latexit>

U
<latexit sha1_base64="IgMuC2ukG7I5TnqqpI9Amp5QJV8=">AAAB9HicbVBNSwMxEM36WetX1aOXYBHEQ9mVoh4LXhQ8VLAf0K4lm2bb0CS7JrPFsvR3ePGgiFd/jDf/jWm7B219MPB4b4aZeUEsuAHX/XaWlldW19ZzG/nNre2d3cLeft1EiaasRiMR6WZADBNcsRpwEKwZa0ZkIFgjGFxN/MaQacMjdQ+jmPmS9BQPOSVgJT9tA3sCLDu3D6fjTqHoltwp8CLxMlJEGaqdwle7G9FEMgVUEGNanhuDnxINnAo2zrcTw2JCB6THWpYqIpnx0+nRY3xslS4OI21LAZ6qvydSIo0ZycB2SgJ9M+9NxP+8VgLhpZ9yFSfAFJ0tChOBIcKTBHCXa0ZBjCwhVHN7K6Z9ogkFm1PehuDNv7xI6mcl77xUvisXKzdZHDl0iI7QCfLQBaqga1RFNUTRI3pGr+jNGTovzrvzMWtdcrKZA/QHzucPaOGR5Q==</latexit>

m∗
L

<latexit sha1_base64="YUTv8dlgiDxopWLQ9hBWuWP7C2o=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqs5IUZcFN7qrYB8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcSDufcy733hAln2rjut1NaW9/Y3CpvV3Z29/YPqodHHS1TRWibSC5VL8SaciZo2zDDaS9RFMchp91wcpv73SeqNJPi0UwTGsR4JFjECDZW8vtqLC/yb+AOqjW37s6BVolXkBoUaA2qX/2hJGlMhSEca+17bmKCDCvDCKezSj/VNMFkgkfUt1TgmOogm688Q2dWGaJIKvuEQXP1d0eGY62ncWgrY2zGetnLxf88PzXRTZAxkaSGCrIYFKUcGYny+9GQKUoMn1qCiWJ2V0TGWGFibEoVG4K3fPIq6VzWvat646FRa94XcZThBE7hHDy4hibcQQvaQEDCM7zCm2OcF+fd+ViUlpyi5xj+wPn8AdgzkQA=</latexit>

ρ/ρ0

<latexit sha1_base64="BAUjUjVnzVkcn+mo7N08MyBCC/E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU01EqseiF48VTFtoQ9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SjGacYxHQgecQZNVby5YXsub1yxa26c5BV4uWkAjkavfJXt5+wLEZpmKBadzw3NcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmx07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqKbYMJlmhmUbLEoygQxCZl9TvpcITNibAllittbCRtSRZmx+ZRsCN7yy6ukeVn1atXaw1WlfpvHUYQTOIVz8OAa6nAPDfCBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kDOJyOUQ==</latexit>

n/n0

FIG. 4.23. The Landau effective massm∗
L(n) =

√
p2

F +m2(n) and potential U(n) of quasiparticles
representing the median of the posterior distribution of the baryon chemical potential µ(n) (see
Fig. 4.9). Figure taken from Ref. [163].

The result in Fig. 4.24 shows a strongly increasing F0 at high densities. This reflects
once again the growing importance of many-body correlations as matter becomes more
and more compact. Such repulsive correlations are responsible for the increase in the
sound velocity beyond its canonical conformal limit, c2

s > 1/3, as seen in Fig. 4.6. The
Fermi liquid parameter F1 is smaller in magnitude and has a negative slope, indicating
the decreasing effective mass at higher densities. The Landau parameter F0 displays the
typical behavior of a strongly correlated Fermi system. However, it is interesting to observe
that, in comparison with the leading Landau parameters in liquid 3He, the correlations in
neutron star core matter are not extraordinarily strong. Values of F0 ≈ 9.3 were reported
for 3He at zero pressure, and F0 ≈ 68.2 at a pressure of 27 bar [393]. Accordingly, the
Fermi liquid parameters for matter in the density range that is reached inside even the
heaviest neutron stars, n ≲ 5n0, are significantly smaller. From this perspective, the dense
baryonic medium encountered in the center of neutron stars is perhaps not as extreme as
often imagined.
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<latexit sha1_base64="YUTv8dlgiDxopWLQ9hBWuWP7C2o=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqs5IUZcFN7qrYB8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcSDufcy733hAln2rjut1NaW9/Y3CpvV3Z29/YPqodHHS1TRWibSC5VL8SaciZo2zDDaS9RFMchp91wcpv73SeqNJPi0UwTGsR4JFjECDZW8vtqLC/yb+AOqjW37s6BVolXkBoUaA2qX/2hJGlMhSEca+17bmKCDCvDCKezSj/VNMFkgkfUt1TgmOogm688Q2dWGaJIKvuEQXP1d0eGY62ncWgrY2zGetnLxf88PzXRTZAxkaSGCrIYFKUcGYny+9GQKUoMn1qCiWJ2V0TGWGFibEoVG4K3fPIq6VzWvat646FRa94XcZThBE7hHDy4hibcQQvaQEDCM7zCm2OcF+fd+ViUlpyi5xj+wPn8AdgzkQA=</latexit>

ρ/ρ0

<latexit sha1_base64="rDtmujrKHXQt84P1DMhEyB831fk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF0/Sgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvpn5D0+oNI/lvZkk6Ed0KHnIGTVWarr9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9bs8jiKcwCmcgwdXUIdbaEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AH+jjMk=</latexit>

0

<latexit sha1_base64="rDtmujrKHXQt84P1DMhEyB831fk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF0/Sgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvpn5D0+oNI/lvZkk6Ed0KHnIGTVWarr9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9bs8jiKcwCmcgwdXUIdbaEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AH+jjMk=</latexit>

0

<latexit sha1_base64="6Feh1pXlrykIl5mqqowwGE1tfbI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF0/Sgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvpn5D0+oNI/lvZkk6Ed0KHnIGTVWanr9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9bs8jiKcwCmcgwdXUIdbaEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AIEnjMo=</latexit>

1
<latexit sha1_base64="OD8w/wmWbEYgT023Nk3+hQdRAAg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp377SdUmsfywUwS9CM6lDzkjBorNSr9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCG3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFUpe1flaqNaqt1nceThDM7hEjy4hhrcQR2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB4KrjMs=</latexit>

2
<latexit sha1_base64="yedo+mHldwJ86iIkg/xhxIGb2B0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqUI8BL54kAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5YMYJ+hEdSB5yRo2V6pe9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlR9q7KlXqlVL3P4sjDCZzCOXhwDVW4gxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD4QvjMw=</latexit>

3
<latexit sha1_base64="dB/h/NQaHMWnMwESbENShDxHnmw=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp6rHgxZNUsB/QhrLZTtq1m03Y3Qgl9Bd48aB49Td589+4bXPQ1gcDj/dmmJkXpoJr43nfTmljc2t7p7zr7u0fHB5V3OO2TjLFsMUSkahuSDUKLrFluBHYTRXSOBTYCSe3c7/zjErzRD6aaYpBTEeSR5xRY6WH+qBS9WreAmSd+AWpQoHmoPLVHyYsi1EaJqjWPd9LTZBTZTgTOHP7mcaUsgkdYc9SSWPUQb44dEbOrTIkUaJsSUMW6u+JnMZaT+PQdsbUjPWqNxf/83qZiW6CnMs0MyjZclGUCWISMv+aDLlCZsTUEsoUt7cSNqaKMmOzcW0I/urL66R9WfOvavVq474IowyncAYX4MM1NOAOmtACBggv8AbvzpPz6nwsG0tOMXECf+B8/gAbIYuj</latexit>
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FIG. 4.24. The Landau Fermi liquid parameters derived from quasiparticle properties that are
based on the median of the data-inferred baryon chemical potential µ (see Fig. 4.9). Figure taken
from Ref. [163].

4.3 Inference directly from telescope spectra
In the previous sections, we presented and discussed posterior results obtained using
the traditional two-step inference approach, i.e, based on a set of exterior neutron star
properties that were inferred from observed detector data in a previous step. With the
simulation-based inference method introduced in Sec. 3.5, inference of the full posterior
distribution of neutron star EoS and nuisance parameters directly from telescope spectra
of quiescent low-mass binaries is now feasible7. Following Refs. [127, 128], we apply the
method to a set of ten simulated neutron stars for a given point in EoS space, each with
three independent nuisance parameters defined in Sec. 3.5.1. The complete parameter
space comprises two parameters of interest and thirty nuisance parameters. Results are
shown for a single representative EoS point, we then demonstrate the scaling of the neural
likelihood estimation approach to more observations and finally present a comparison with
previous approaches by evaluating the average performance over 100 randomly sampled
test points in EoS space.

4.3.1 Example posterior distribution

An example of the posterior distributions marginalized to one and two dimensions is shown
in the corner plot in Fig. 4.25. The figure depicts both EoS parameters, λ1 and λ2, and
the nuisance parameters for the first neutron star, N (1)

H , d(1) and log(Teff)(1). While the
marginalized posteriors of the nuisance parameters for the other nine stars are also available,
they are not shown here. In all three nuisance parameter scenarios from Table 3.5, the EoS
parameters are strongly correlated, similar to the log-likelihoods computed in Ref. [128].
The marginal posterior distribution of λ1 is relatively tight compared to its prior range,
while for the second parameter λ2 it is not as well constrained compared to the parameter’s
prior range specified in Sec. 3.3.1.

As expected, in the true scenario where the nuisance parameters are exactly known, the
marginal posterior distributions are sharply centered around the ground-truth values. In
the tight scenario, the uncertainty in the nuisance parameter distributions leads to wider
7 This section closely follows Ref. [243].
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FIG. 4.25. Corner plot depicting the posterior distribution of the parameters λ1 and λ2 of one
example EoS as well as the first 3 (of 30) nuisance parameters N (1)

H , d(1) and log(Teff)(1). The
posterior is computed based on the simulated spectra of 10 stars with the nuisance parameters
known exactly in the true scenario (green), and known with the uncertainties in Table 3.5 in the
tight (orange) and loose (blue) scenarios. The ground-truth parameter values are depicted as black
crosses/lines. The marginal posterior distributions of the nuisance parameters are compared to the
respective priors (dotted) of the tight and loose scenarios. Figure taken from Ref. [243].

distributions for the EoS parameters. This is further pronounced for the loose case, where
less prior information on the nuisance parameters is available. Fig. 4.25 illustrates that the
hydrogen column NH as well as the logarithm of the effective surface temperature log(Teff)
can be significantly constrained from the spectrum data compared to their prior ranges. In
the tight scenario, the marginal posterior for the distance d is almost indistinguishable from
the prior, indicating that the telescope spectra do not contribute any more information for
this parameter over the tight priors. However, in the loose case, the marginal posterior
distribution of d becomes tighter than the loose prior, which implies that we can indeed
extract information about the distance of a neutron star from its X-ray spectrum8.

8 The same holds true for the nuisance parameters of the other nine neutron stars not shown here.
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We can transform the posterior distribution for the EoS parameters λ1 and λ2 into 95%
posterior credible bands for the pressure as a function of energy density as depicted in
Fig. 4.26. As before, the constraints are much tighter in the true scenario and become
increasingly broader in the tight and loose cases. By solving the TOV equations, we can
translate the EoS into mass-radius constraints. The 95% posterior credible bands for the
radius as a function of mass are depicted in Fig. 4.26. Focusing only on the tight case in
Fig. 4.27, there is a very close agreement of the inferred median for P (ε) and R(M) to
the ground-truth values. Note that for this particular example, the mass of one of the
simulated stars is very close to the respective maximum supported mass such that a good
reconstruction even of the high-density part for this particular EoS is possible. In other
cases, the reconstruction might be worse.
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FIG. 4.26. Posterior 95% credible bands for the pressure as a function of energy density and
the radius as a function of mass for the three (true, tight, loose) scenarios. Similar to Fig. 4.25,
the posterior is derived based on the simulated spectra of 10 stars. The ground-truth value for the
equation of state and the corresponding mass-radius relation is depicted as a dashed black line.
Black dots indicate ground-truth mass-radius values of the 10 simulated stars. Figure taken from
Ref. [243].
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FIG. 4.27. Similar to Fig. 4.26, but only for the tight scenario the median and the 68% and 95%
posterior credible bands are shown for the pressure as a function of energy density and the radius
as a function of mass. The ground-truth value for the equation of state and the corresponding
mass-radius relation is depicted as a dashed black line. Black dots indicate the mass-radius values
of the 10 simulated stars. Figure taken from Ref. [243].
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4.3.2 Increasing the number of observations

With an anticipated surge in the number of available neutron star observations in the
upcoming years (see Sec. 3.4), the inference method must be able to scale to a large set of
data. In our novel approach, normalizing flows approximate the likelihood p(s|θ, ν) per
observed star. These likelihoods are then combined to obtain the total likelihood for a set
of neutron stars, see Eq. (3.102). Consequently, the method does not need to assume a
fixed number of observed neutron stars, nor a particular ordering of the stars, and works
out-of-the-box for a growing set of observed neutron stars without the need for retraining
any networks. To demonstrate this, we present the marginal posterior distributions for
one example EoS in Fig. 4.28, for 5, 10, and 20 observed neutron stars, and with loose
uncertainties on the nuisance parameters.
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FIG. 4.28. Corner plot depicting the posterior distribution of the parameters λ1 and λ2 of one
example EoS. The posterior is computed based on the simulated spectra of 5 (olive), 10 (blue), or
20 (purple) stars with the nuisance parameters known with the uncertainties in Table 3.5 of the
loose scenario. The ground-truth parameter values are depicted as black crosses/lines. Figure taken
from Ref. [243].

The figure illustrates that the increase of available spectra significantly refines the inference
of the EoS parameters. Notably, the transition from 5 to 10 observed spectra has a substantial
impact on the posterior constraints, reducing the standard deviation of λ1 by 23% from 0.061
to 0.047, while further increasing the number of measurements to 20 shows a comparatively
smaller reduction in the standard deviation by only 6.4% to 0.044 for the given example.
For λ2 the increase in accuracy from 10 to 20 observations is even smaller. It is worth noting
that in the numerical implementation of HMC for posterior sampling, the computation time
is predominantly consumed by the evaluation of the likelihood and its gradient. While the
availability of more observations increases the per-iteration computational time in sampling
the posterior, it also speeds up the convergence of the algorithm. Furthermore, HMC
algorithms can easily be scaled to thousands of dimensions, hence we do not anticipate the
dimensionality to be a limiting factor in the scaling of our approach.
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4.3.3 Average performance on test set

After discussing one example EoS, now we turn to the average performance of NLE
with a test set of simulated data from 100 different equations of states. To compare
the average performance to the previous machine learning (ML) approaches that infer
the neutron star EoS directly from telescope spectra described in Sec. 3.5.2, we use the
same accuracy measure as Refs. [127, 128]. For each EoS in the test set, we simulate 10
spectra with random nuisance parameters. Based on the spectra and the prior nuisance
parameter information, we then sample the posterior using the methodology outlined in
Sec. 3.5.3. From the marginal posterior distributions, similar to the example in Fig. 4.25,
we determine the maximum-a-posteriori estimates (MAP)9 for the two EoS parameters
(λ1,pred, λ2,pred) and compare them to the ground-truth values (λ1,truth, λ2,truth). The
distributions of the differences between the marginal MAP estimates and the ground-truth
values, (λ1,pred − λ1,truth, λ2,pred − λ2,truth), on the test data set are depicted in Fig. 4.29.
As before, the equation of state parameters can be maximally constrained in the true
nuisance parameter scenario. In all three scenarios, the distributions are centered around
zero, indicating that there is no systematic bias in the posterior prediction. Compared to
the previous ML analyses in Refs. [127, 128], the distributions of λ1 are much narrower in
the tight and loose scenarios (see for example Fig. 8 in [128]).
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FIG. 4.29. Distribution of the predicted maximum-a-posteriori estimates versus the ground-truth
values for the two equation of state parameters λ1 and λ2. In the true scenario, the nuisance
parameters are fixed to their exact values; in the tight and loose cases, they are drawn from the
narrow or wide priors in Table 3.5. Figure taken from Ref. [243].

To quantitatively compare these distributions to the previous ML analyses, we compute
the mean µ and standard deviation σ of the distribution of differences in Fig. 4.29. We
can combine both standard deviations into

σtot =
√
σ2

λ1
+ σ2

λ2
. (4.126)

The resulting values are listed in Table 4.9 and illustrated in Fig. 4.30. The mean µ
of the difference between the posterior prediction of λ1 and its ground-truth value is
much smaller in the NLE approach compared to previous approaches in all three prior
distributions considered in Table 3.5. In the true case, the NLE approach performs better
than ML-LikelihoodEOS from Ref. [128] and NN(Spectra) from Ref. [127] (see Sec. 3.5.2
for more details about these methods). For realistic scenarios of nuisance parameters
(loose and tight), NLE outperforms all other methods as quantified by σtot, while for the
9 Note that this is the maximum-a-posteriori estimate of the marginal and not of the full posterior.
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true scenario, it outperforms all methods besides NN(M,R via xspec), which uses xspec
itself for part of the inference and involves simplifying assumptions about the mass-radius
uncertainties. Interestingly, from Table 4.9 it becomes clear that the NLE approach is
better than all other approaches to constrain the first EoS parameter λ1, while for λ2 the
accuracy of the xspec based two-step approach, with its simplifying assumptions regarding
the impact of nuisance parameters, is always much better than all other approaches. Note
that the central enthalpies used to solve the stellar structure equations are sampled from
log-uniform intervals, such that the masses near the maximum supported mass are weighted
more heavily for each EoS. Consequently, for each equation of state in the test set, the
largest of the ten randomly selected masses is close to the respective maximum supported
mass. This is also true for the previous approaches with which we compare our results.

λ1,pred − λ1,truth λ2,pred − λ2,truth Combined
p(ν) Method µ σ µ σ σtot

true ML-LikelihoodEOS -0.02 0.066 0.01 0.070 0.096
NN(Spectra) -0.02 0.066 0.01 0.075 0.099
NN(M,R via xspec) -0.03 0.065 0.01 0.055 0.085
NLE 0.00 0.056 -0.01 0.070 0.090

tight ML-LikelihoodEOS -0.02 0.078 0.03 0.081 0.112
NN(Spectra) 0.02 0.085 -0.02 0.077 0.115
NN(M,R via xspec) -0.03 0.081 0.01 0.056 0.098
NLE 0.00 0.066 -0.02 0.071 0.097

loose ML-LikelihoodEOS -0.04 0.089 0.03 0.081 0.120
NN(Spectra) -0.03 0.131 -0.01 0.078 0.152
NN(M,R via xspec) -0.03 0.123 0.01 0.058 0.136
NLE 0.00 0.085 -0.01 0.074 0.113

TABLE 4.9. Average accuracy for the prediction of neutron star EoS parameters λ1 and λ2. Shown
are the means (µ) and standard deviations (σ) of the distributions in Fig. 4.29, i.e., of the differences
between the predicted MAP and ground-truth values. Both standard deviations are combined to
σtot according to Eq. (4.126). The neural likelihood estimation (NLE) approach is compared to three
previous approaches; neural networks that regress the EoS parameters from the spectra (NN(Spectra))
and from M,R estimates by xspec (NN(M,R via xspec)), both from Ref. [127], as well as an
approach using an approximate likelihood that incorporates two neural networks, ML-LikelihoodEOS,
from [128]. In the true scenario, the nuisance parameters are fixed to their exact values; in the tight
and loose cases, they are drawn from the narrow or wide priors in Table 3.5.

With our neural likelihood estimation approach, we can now, for the first time, infer the
posterior for nuisance parameters. The means and standard deviations of the differences
between the marginal MAP estimates and the ground-truth values on the test data are
listed in Table 4.10. While we obtain excellent constraints on the hydrogen fraction NH

and the effective surface temperature log(Teff), our ability to constrain the distance d from
the spectra is limited. When going from the tight to the loose scenario, the inference on
the distance estimates suffers the most, indicating that these constraints are primarily
driven by the prior in the tight case, as seen in Fig. 4.25. However, this is not as limiting
as it might seem because it is much easier to obtain precise constraints on the distance of
a neutron star from external measurements than it is for the other nuisance parameters.
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FIG. 4.30. Illustrated mean and standard deviation of the difference between the predicted
maximum-a-posteriori values to the ground-truth values for the three different scenarios from
Table 4.9. Figure taken from Ref. [243].

NH,pred −NH,truth dpred − dtruth log(Teff)pred − log(Teff)truth

Method p(ν) µ σ µ σ µ σ

NLE tight 0.00 0.063 -0.06 0.419 0.00 0.034
loose 0.01 0.070 -0.26 1.149 -0.01 0.047

TABLE 4.10. Similar to Table 4.9, but with mean and standard deviation of the predicted
maximum-a-posteriori estimates versus the ground-truth values for the three nuisance parameters.

4.3.4 Discussion & outlook

In addition to the performance gains seen in the preceding sections, the NLE+HMC
approach has several advantages relative to previous work.

(i) The single-step estimation of the likelihood in terms of the EoS avoids collapsing
the information into the mass-radius plane as an intermediate step. EoS-dependent
quantities like temperature inhomogeneities [287] can impact a star’s spectrum but are
not captured by the mass and radius. Uncertainties from nuisance parameters can also
be more accurately propagated by using the full high-dimensional data. In addition,
this avoids assuming the mass-radius posteriors can be used as a likelihood, making
simplifying approximations regarding the nature of the intermediate likelihood, or
integrating over the M -R plane.

(ii) Neural likelihood estimation allows for amortization; after training the neural density
estimators once, the inclusion of additional observations is straightforward, see
Sec. 4.3.2. In addition, extending to additional stars is inexpensive relative to other
methods, which require integrating over estimated mass-radius posteriors to construct
likelihoods [97, 103], such as with kernel density estimation techniques (see, e.g.,
Eq. (3.71)).

(iii) Learning the likelihood instead of the posterior allows combination with likelihoods
from other data [394], e.g., the neutron star data introduced in Sec. 3.4. If these
likelihoods are computed by traditional methods, they may not be differentiable,
which precludes the use of HMC sampling methods, however it may be worthwhile
extending simulation-based inference techniques also to these cases.
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(iv) Application of HMC allows for robust exploration of the high-dimensional space of
nuisance parameters, which can be of interest in other astrophysical studies.

(v) These techniques can be extended to NICER or gravitational wave data [395]10. Many
more gravitational wave events from binary neutron star mergers will be detected
in future runs of LIGO, Virgo, and KAGRA. In addition, the gravitational wave
database will increase dramatically with the next generation of gravitational wave
detectors as explained in Sec. 3.4. For such a large number of expected observations,
it is not numerically feasible to compute the likelihood by integrating KDEs as in
Eqs. (3.71) and (3.87) [120, 394, 396]. Neural simulation-based inference techniques
promise to provide a cost-efficient alternative [328, 397].

(vi) This approach can help guide decisions about future observations. Sec. 4.3.2 demon-
strated our method can easily be used to study the impact of additional measurements
on the final EoS constraints. It can therefore be used to estimate the relative value
of future measurements of one star compared to another, using simulations. Through
the assessment of the constraining power of multiple simulated test spectra, we can
anticipate which stars provide the most useful additional information required to fur-
ther constrain the equation of state, thereby guiding decisions for future experimental
endeavors.

Before applying neural likelihood estimation to real observed telescope spectra improve-
ments to the method could be pursued in several directions. To prevent degradation of
performance near the borders of the training data, additional simulated samples could
be included beyond the current borders. Another potential improvement may be to ad-
ditionally condition the inference on the masses M of the neutron stars, approximating
p(s|θ, ν,M) rather than p(s|θ, ν), to further enhance the interpretability and accuracy
of the method. In this way, we could infer the neutron star masses and, by solving the
TOV equations, radii simultaneously with the EoS. Moreover, to combine the information
from different observational instruments for the same neutron star, it becomes essential
to compute the likelihood as a function of the neutron star mass. Such situations arise
regularly, see, e.g., [41, 45, 141, 398, 399]. Preliminary results show, however, that the
mass distributions can become multimodal, as also seen in [141], which makes sampling
the posterior difficult. Future work may extend our method to effectively include the mass
as a nuisance parameter.

In addition, one could explore alternative parametrizations of the EoS, such as the
Segments parametrization introduced in Sec. 3.1.2, which can describe more complicated
phase structures possibly realized inside neutron stars like crossovers of first-order phase
transitions. Our novel simulation-based inference approach is conducive to the use of a
more complex EoS parametrization with more parameters.

10 For the analysis of NICER and gravitational waves, the detector data is much larger compared to the
qLMXBs analyzed here. In that case, it might become necessary to use an additional embedding net to
learn summary statistics [338].





5
Summary and conclusions

In this thesis, we have used Bayesian inference methods to translate empirical multimes-
senger data of neutron stars into constraints on the neutron star matter equation of state
(EoS). Here, the likelihoods for the astrophysical detector data are analytically unavailable.
Therefore, we first followed previous work to infer the EoS from a set of masses, radii and
tidal deformabilities previously extracted from observed detector data.

A primary aim is to tighten the conclusions about possible phase transitions in the cores
of neutron stars. A key quantity to address these issues is the squared speed of sound,
c2

s = ∂P/∂ε. We have modeled c2
s using two generic parametrizations, a skewed Gaussian

in combination with a logistic function, and a more general form based on piecewise linear
segments. We used a multimessenger data set consisting of Shapiro time delay observations
of selected pulsars, NICER X-ray measurements and gravitational wave signals from binary
neutron star mergers. The asymptotic behavior of the squared sound speed is matched to
perturbative QCD calculations. At low baryon densities, nuclear physics constraints from
chiral effective field theory, treated as a likelihood rather than a prior, are incorporated
up to a conservative window of baryon densities of n ≤ 1.3n0, with n0 = 0.16 fm−3 the
equilibrium density of normal nuclear matter.

Good agreement is found between the output posteriors for both parametrizations, as
well as for versions with a changed asymptotic behavior and an increased number of free
segments. Nevertheless, the Segments parametrization leads to slightly larger posterior
credible bands due to its less restrictive functional form. The overall conclusion is that the
Bayesian inference approach generates results that are stable with respect to variations in
the functional form of the prior if the initial parametrization is chosen sufficiently general.
In the energy density range ε ∼ 0.3− 0.5 GeV fm−3 the squared speed of sound rises rapidly
beyond c2

s = 1/3 and develops a plateau at larger energy densities. Moderate tension exists
between ChEFT extrapolations of c2

s up to n ≃ 2n0 and the trend towards a stiffer EoS
implied by the astrophysical data. Matching the neutron star EoS to asymptotic pQCD
requires an extrapolation from densities reached in neutron star cores, nNS, to the extreme
densities at which perturbative QCD methods can be applied. If instead a matching density
is chosen at a value far beyond the density range controlled by empirical observations, the
impact of the pQCD constraint on the EoS for neutron stars depends sensitively on this prior
choice. In all cases, we find only very little impact of the asymptotic pQCD constraint on the
properties of neutron stars with masses M ≲ 2.3M⊙. Furthermore, a Bayes factor analysis
suggests moderate evidence for a negative trace anomaly measure, ∆ = 1/3− P/ε, in heavy
neutron stars (M ≳ 2M⊙). The evidence increases to strong after including preliminary
results from the newest NICER measurement. This could be a hint for a possible finite
condensate at high baryon densities, reminiscent of the situation at finite isospin densities.
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The incorporation of the heaviest neutron star observed so far, the black widow pulsar
PSR J0952-0607, with rotation corrections properly applied, results in a further stiffening
of the EoS. This leads to the remarkable feature that the median of the mass-radius relation
is at an almost constant radius (R ≃ 12.3 km) for all masses above M ≥ 0.7M⊙. As
a consequence of the stiffer EoS, the central core densities of neutron stars are reduced
to nc < 5n0 even for masses as high as M ≃ 2.3M⊙ (at 68% credibility). In a baryon-
dominated system, such densities correspond to average distances between any two baryons
of 1 fm or larger. Chiral model descriptions of the nucleon suggest a scale separation
between a compact valence quark core and a mesonic cloud, so the nucleonic cores with
radii of about 1/2 fm would begin to touch and overlap only in the deep interior of
extremely heavy neutron stars. The appearance of a strong first-order phase transition
becomes unlikely under such conditions. This is consistent with the empirical results:
within the inferred 68% posterior credible bands, possible phase coexistence regions, i.e.,
domains of constant pressure in a Maxwell construction, are restricted to a maximal width
of ∆n/n ≤ (∆n/n)max ≃ 0.2. Moreover, the inclusion of the heavy black-widow pulsar
increases the evidence against small sound speeds inside neutron star cores. A corresponding
Bayes factor investigation demonstrates strong evidence against minimum squared sound
speeds smaller than c2

s,min ≤ 0.1, indicative of a possible strong first-order phase transition,
in neutron stars with masses up to M ≤ 2.1M⊙. On the other hand, a continuous hadron-
to-quark crossover scenario – or alternatively, baryonic matter as a strongly correlated
relativistic Fermi liquid – remains possible within the inferred data-driven constraints.

Finally, we have developed a novel approach based on recently established simulation-
based inference methods that can infer the EoS parameters directly from astrophysical
detector data in a single step. In neural likelihood estimation (NLE), normalizing flows are
trained on samples of simulated detector observations to learn the analytically unavailable
likelihoods of the neutron star data. This allows the usage of Hamiltonian Monte Carlo
(HMC) methods, which use derivatives to sample more efficiently from the resulting posterior
distribution. We have inferred the parameters of a spectral EoS parametrization based on
simulated thermal X-ray spectra of quiescent low-mass binaries. The telescope spectra of
these emissions depend on the mass and radius of the star and are also affected by stellar
nuisance parameters, which are not always well-constrained. Using NLE in conjunction
with HMC methods, we can, for the first time, infer the full posterior distribution of both
the equation of state and nuisance parameters directly from telescope observations. In
realistic scenarios for nuisance parameter priors, this method outperforms all state-of-the-
art methods in terms of prediction accuracy. Our approach improves the interpretability of
the results by providing access to the full posterior distribution, and naturally scales to the
growing number of neutron star observations expected from the next generation of X-ray
and gravitational wave detectors. As the number of available neutron star data increases,
conventional Bayesian methods with their expensive integrations become impractical,
whereas neural likelihood estimation techniques could provide a computationally efficient
alternative.

With an increase of the quantity and quality of observational data, coupled with progress
in more efficient inference methods, we are looking forward to more rigorous constraints on
the EoS and the phase structure of dense matter in the future.



A
Effective enthalpy

Instead of numerically solving the Tolman–Oppenheimer–Volkoff equations (2.8) and
(2.9) for P (r) and m(r), following Ref. [166] we can use a different approach based on the
effective enthalpy defined as:

h(P ) =
∫ P

0

dP ′

ε(P ′) + P ′ . (A.127)

In neutron stars h(r) is monotonically decreasing from the center until it vanishes at
the star’s surface. For a given equation of state, P (ε), pressure and energy density can
be determined in terms of the effective enthalpy, i.e., P (h) and ε(h), using the above
expression. With the derivative of h given by

∂h

∂r
= ∂h

∂P

∂P

∂r
= −m+ 4πr3P (h)

r(r − 2m) , (A.128)

we can rewrite the TOV equations in terms of the effective enthalpy:

∂m

∂h
= −4πε(h)r3(r − 2m)

m+ 4πr3P (h) , (A.129)

∂r

∂h
= − r(r − 2m)

m+ 4πr3P (h) . (A.130)

This set of differential equations can be numerically integrated for a given central enthalpy
h(r = 0) = hc. The total mass and radius of the star can then be determined from
M = m(h = 0) and R = r(h = 0). Note that in the star’s center where r and m equal
zero, the above differential equations become singular. Therefore, we have to determine
the boundary conditions for a given central enthalpy from a series expansion for r(h) and
m(h) near h = hc [400]

r(h) = r1(hc − h)1/2 + r3(hc − h)3/2 +O(hc − h)5/2 , (A.131)
m(h) = m3(hc − h)3/2 +m5(hc − h)5/2 +O(hc − h)7/2 , (A.132)

with the following coefficients:

r1 =
[

3
2π(εc + 3Pc)

]1/2

, r3 = − r1
4(εc + 3Pc)

εc − 3Pc −
3
5

(
∂ε

∂h

)
c

 ,

m3 = 4π
3 εcr

3
1 , m5 = 4πr3

1

r3εc

r1
− 1

5

(
∂ε

∂h

)
c

 , (A.133)
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and the central energy density and pressure given by εc = ε(hc) and Pc = P (hc). Solving
Eqs. (A.129) and (A.130) with the above boundary conditions for different central enthalpies
hc yields the mass-radius relation (M,R) for a given neutron star EoS. Similarly, the
differential equations for the tidal deformability in Sec. 2.1.3 can be reexpressed in terms
of the effective enthalpy [400].



B
Rotation Correction

In Sec. 2.1.2, we briefly reviewed the derivation the TOV equations from the theory
of general relativity for spherically symmetric, static sources. More complex differential
equations can be derived for uniformly rotating neutron stars [401]. They are, however,
too numerically expensive to be employed in Bayesian inference analyses which require
mass-radius sequences for a large amount of equations of state. It is therefore beneficial
to instead use universal relations that relate properties of static stars to their rotating
counterparts. Here, we summarize the empirical formulas derived in Ref. [272] to determine
the mass Mrot and equatorial radius Rrot of a star uniformly rotating with an angular
velocity Ω = 2πν from the mass M and radius R of a non-rotating star.

In their work, the authors first derived an empirical formula to determine the angular
velocity of a star spinning at the Kepler limit, i.e., the maximum spin-rate for a neutron
star before mass-shedding at the equator occurs (see Eq. (2.2)), based on the dimensionless
compactness of the non-rotating star, C = M/R km/M⊙:

ΩK = Ω∗

4∑
i=0

aiC
i , (B.134)

with the normalization constant Ω∗ =
√
GNM/R3. The authors found that the mass and

radius including rotation effects can be determined from the dimensionless compactness C
and the angular velocity normalized to the Kepler frequency Ωn = Ω/ΩK :

Mrot
M

= 1 +
(
eAmΩ2

n − 1
) 4∑

i=0
am,iC

i

 , (B.135)

Rrot
R

= 1 +

eArΩ2
n − 1 +Br

log

1−
(

Ωn

1.1

)4



2

1 +

5∑
i=1

ar,iC
i

 . (B.136)

These empirical formulas were fitted to a set of equations of state sampled from a piecewise
polytrope and a skewed Gaussian parametrization. The resulting values for the parameters
(Am, Ar, Br, ai, am,i, ar,i) are listed in Table B.1. For stars rotating slower than the Kepler
limit the authors found deviations of less than 5% for the mass and radius of a rotating star
determined using the above empirical formulas. This is much smaller than the uncertainty
of the mass measurement of PSR J0952-0607, M = 2.35± 0.17M⊙, to which the universal
formulas are applied.
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a0 a1 a2 a3 a4 a5 A B

ΩK 0.552 3.304 -35.211 180.61 -326.48
Rrot/R -15.496 442.60 -4945.62 23458.06 -40544.25 0.203 0.1611
Mrot/M -0.0160 3.123 -20.721 41.202 -6.464 1.127

TABLE B.1. Empirical coefficients for the formulas (B.134 - B.136) derived in Ref. [272] to
compute the Kepler frequency, ΩK , as well as the mass, Mrot, and radius, Rrot, of rotating neutron
stars.



C
EoS tables

For practical purposes and applications, the median values of the squared sound velocity
as a function of energy density, as shown in Fig. 4.4, are listed in Table C.1, using
the ‘Previous’ data set consisting of the Shapiro time delay, NICER, ChEFT, pQCD
and gravitational wave data1. Based on these values the pressure P is computed using
Eq. (2.11), as well as the baryon density n and the chemical potential µ with Eq. (4.106).
The asymmetry of the posterior distribution causes small insignificant deviations between
the pressure computed from the integral of the sound velocity and the median of P in
Fig. 4.4. Similarly, the median values of c2

s(ε) including the new information from the
black-widow pulsar depicted in Fig. 4.6 are listed in Table C.2. A comparison between
both tables is instructive as it underlines the significant stiffening of the EoS that emerges
when the new PSR J0952-0607 data are incorporated.

Previous
ε [GeV fm−3] c2

s P [MeV fm−3] n/n0 µ [GeV]
0.1 0.02 0.8 0.66 0.96
0.2 0.07 5.5 1.31 0.98
0.3 0.18 17.4 1.93 1.03
0.4 0.36 43.8 2.51 1.11
0.5 0.50 87.7 3.05 1.20
0.6 0.57 142.0 3.55 1.31
0.7 0.60 200.7 4.01 1.40
0.8 0.60 260.3 4.45 1.49
0.9 0.59 319.5 4.86 1.57
1.0 0.58 377.7 5.24 1.64
1.1 0.58 435.5 5.61 1.71
1.2 0.59 493.8 5.97 1.77

TABLE C.1. Tabulated values of the median for the squared sound velocity, c2
s, as a function of

energy density ε as shown in Fig. 4.4, i.e., inferred from the Shapiro time delay, NICER, ChEFT,
pQCD and gravitational wave data listed as ‘Previous’ in Table 3.3. Based on these values the
pressure is computed as well as the baryon density n (in units of the nuclear saturation density n0)
and the baryon chemical potential µ.

1 Parts of the text in this appendix have been adapted from Ref. [97].
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Previous + BW
ε [GeV fm−3] c2

s P [MeV fm−3] n/n0 µ [GeV]
0.1 0.02 0.8 0.66 0.96
0.2 0.07 5.4 1.31 0.98
0.3 0.20 17.4 1.93 1.03
0.4 0.44 49.0 2.50 1.12
0.5 0.59 101.3 3.03 1.24
0.6 0.64 163.0 3.52 1.35
0.7 0.64 226.8 3.97 1.46
0.8 0.62 289.8 4.39 1.55
0.9 0.60 350.9 4.78 1.64
1.0 0.59 410.6 5.15 1.71
1.1 0.60 470.4 5.50 1.78
1.2 0.61 531.1 5.84 1.85

TABLE C.2. Similar to Table C.1: tabulated values of the median for c2
s(ε), but now including

the new information from PSR J0952-0607 in addition to the previously available data as depicted
in Fig. 4.6. Based on the median we again compute the pressure P , density n and chemical potential
µ.



D
Bayes factors

A key result of the present work is the systematics of the Bayes factor B
c2

s,min>0.1
c2

s,min≤0.1,
quantifying the evidence against a dropping of the squared sound speed to values below
c2

s,min ≤ 0.1, as a function of the maximum mass in neutron stars displayed in Fig. 4.12
and Table 4.41. For a further documentation of these results tables of numerical values for
additional scenarios are useful to underscore the increase of this evidence with the inclusion
of the new information from the heavy mass measurement of PSR J0952-0607.

First, in Table D.1 we display the Bayes factors for the Gaussian and ‘basic’ version of
the Segments parametrization with fixed asymptotic behavior. For both parametrizations
we find even larger Bayes factors compared to the S’ version discussed in the main text.
Nevertheless, the Bayes factors result in a similar evidence classification, i.e., there is
strong evidence that c2

s,min does not become smaller than 0.1 in neutron stars with mass
M ≤ 2.0M⊙. With the new empirical information from the black widow pulsar the Bayes
factors further increase and there is strong evidence against small sound speeds c2

s,min < 0.1
inside neutron stars even up to masses M ≤ 2.1M⊙ for both parametrizations. This
illustrates that the constraints on strong first-order phase transitions are driven by the
data and do not depend on the chosen functional form.

Bc2
s,min>0.1

c2
s,min≤0.1

Previous Previous + BW
M/M⊙ Gaussian Segments Gaussian Segments

1.9 1.03 ×104 2.05 ×105 4.13×104 6.71×105

2.0 74.06 74.26 388.78 317.08
2.1 6.12 4.67 16.32 18.65
2.2 3.08 2.32 4.95 5.96
2.3 2.70 1.67 3.42 2.51

TABLE D.1. Bayes factors Bc2
s,min>0.1

c2
s,min≤0.1 comparing EoS samples with the following competing

scenarios: a) minimum squared speed of sound (following a maximum), with c2
s,min larger than 0.1,

excluding a first-order phase transition; versus b) EoS with c2
s,min ≤ 0.1. The Bayes factors are

calculated for a given maximum neutron star mass M , i.e., the minimum speed of sound up to the
corresponding mass is used.

1 Parts of the text in this appendix have been adapted from Ref. [97].
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In Table D.2 we display Bayes factors corresponding to a stronger criterion of smaller
minimum speeds of sound, c2

s,min ≤ 0.05, for the improved Segments parametrization.
Although there are some minor modifications compared to the Bayes factors that consider
minimum sound speeds smaller or equal to c2

s,min ≤ 0.1 listed in Table 4.4, both cases yield
the same evidence classification against small sound velocities in the cores of neutron stars.

Bc2
s,min>0.05

c2
s,min≤0.05

M/M⊙ Previous Previous + BW
1.9 259.81 416.14
2.0 48.86 220.60
2.1 4.50 14.47
2.2 2.13 4.42
2.3 1.52 2.20

TABLE D.2. Similar to Table 4.4: Bayes factors Bc2
s,min>0.05

c2
s,min≤0.05, quantifying the evidence against a

dropping of the squared sound speed to values below c2
s,min ≤ 0.05 in neutron stars, as a function

of the maximum mass.

Finally, in Table D.3 we display the Bayes factors B
c2

s,min>0.1
c2

s,min≤0.1 using a different imple-
mentation of the asymptotic pQCD constraint, i.e., shifting the matching condition from
εNS = εc,max to nNS = 10n0 as in Refs. [62, 86, 91]. With this changed asymptotic behavior
the Bayes factors decrease, but there is still strong evidence against small minimum sound
speeds in the cores of neutron stars with masses up to ≤ 2.0M⊙, and the Bayes factors
increase again significantly with the inclusion of the heavy-mass measurement. Despite
the softening seen in the speed of sound at high energy densities in Fig. 4.18, there is no
significant preference for small c2

s,min even in neutron stars as heavy as 2.3M⊙.

Bc2
s,min>0.1

c2
s,min≤0.1

M/M⊙ Previous + nNS = 10n0 Previous + BW + nNS = 10n0

1.9 101.01 211.62
2.0 23.45 93.49
2.1 2.16 5.82
2.2 0.84 1.32
2.3 0.64 0.76

TABLE D.3. Similar to Table 4.4: Bayes factors Bc2
s,min>0.1

c2
s,min≤0.1, quantifying the evidence against a

dropping of the squared sound speed to values below c2
s,min ≤ 0.1 in neutron stars, as a function of

the maximum mass. Here, however, the integral pQCD likelihood is implemented, as in Refs. [62,
86, 91], at nNS = 10n0 instead of εNS = εc,max.



E
Hamiltonian Monte Carlo

Let x ∈ Rn denote the state (random variable) in a continuous state space. Our goal
is to generate samples from a target probability distribution function π(x). We assume
the normalization

∫
dxπ(x) = 1, although all MCMC methods only require unnormalized

densities1.

Metropolis–Hastings
Given the target distribution π and the current state x, the random-walk Metropolis–
Hastings algorithm constructs a Markov chain by sampling a proposal y from a transition
function (proposal distribution) t(x, y). The simplest example of such a proposal distribu-
tion is a Gaussian distribution centered on x with some width σ, i.e., y ∼ N (x, σ). The
proposal is then accepted with some probability α(x, y), in which case the next state is
y, otherwise it remains x. We need to identify this acceptance probability to ensure that
asymptotically this Markov chain generates samples from the target distribution, x, y ∼ π.
This is equivalent to ensuring that the target distribution π is invariant under this Markov
chain, for example by maintaining detailed balance conditions when accepting the proposed
stage:

π(x)t(x, y)α(x, y) = π(y)t(y, x)α(y, x) . (E.137)

Detailed balance means ensuring that the function π(x)t(x, y)α(x, y) is symmetric in
exchanging x and y (x↔ y). This equation enforces that the probability of being in the
state x, proposing a transition to state y and accepting this transition (x→ y) is the same
as making the reverse transition (y → x).

If t(x, y) is positive everywhere, the above condition is satisfied by the standard
Metropolis–Hastings acceptance formula for x, y ∈ Rn,

α(x, y) = min
(
π(y) t(y, x)
π(x) t(x, y) , 1

)
, (E.138)

where the denominator is never zero given the above assumptions on π and t. For each
x, y ∈ Rn, either α(x, y) or α(y, x) is 1. There are other formulae for α obeying Eq. (E.137),
but with lower acceptance rates, meaning they lead to an undesirable higher asymptotic
variance for estimated expectations.

1 This appendix closely follows Ref. [243].
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Classical Hamiltonian Monte Carlo
In high dimensions, random walk Metropolis–Hastings as described in the previous section
often leads to diffusive behavior and can be extremely inefficient. In this section, we
outline the Hamiltonian Monte Carlo (HMC) sampling algorithm which overcomes this by
designing more efficient proposal kernels, t(x, y), that utilize gradient information [147, 148].
Following standard notation for Hamiltonian dynamics, q ∈ Rn denotes the parameter
of interest that is to be sampled. The target density, π, is assumed to be continuous,
differentiable, and positive everywhere. To draw samples q from π(q), HMC reinterprets
the parameters of interest as a position vector with associated potential energy function
U(q) = − log π(q). We introduce an auxiliary momentum vector p ∈ Rn, which contributes
a kinetic energy term K(p) = 1

2p
TM−1p, where M is some symmetric positive definite

mass matrix that we take as fixed. Then the Hamiltonian H : R2n → R gives the total
energy for the state x := (q, p),

H(x) = H(q, p) = U(q) + 1
2p

TM−1p . (E.139)

The state space S = R2n is called phase space. The dynamical evolution of particles under
this Hamiltonian is called Hamiltonian flow and can be simulated by solving Hamiltonian
equations.

HMC uses a Markov chain to generate samples x from the canonical distribution π̃
defined by H, namely

π̃(x) := Z−1 e−H(x) = Z−1 e−U(q) e− 1
2 pT M−1p = Z−1 π(q) e− 1

2 pT M−1p , (E.140)

where Z =
∫

R2n dx e−H(x) = (2π)n/2√detM is a normalizing constant. Since H is the sum
of potential and kinetic terms, in the Gibbs density q and p are independent, with the
q-marginal of π̃(x) being the target density π(q). Thus, extracting the first n coordinates
of samples x(i) from π̃, one obtains samples from π.

HMC constructs a Markov chain to generate samples from this distribution. Given a
current state x(i) := (q(i), p(i)), the Markov update comprises two steps:
Step 1. Gibbs sampling: Resample the momentum p(i) from its Gaussian marginal distri-

bution p ∼ N (0,M), without changing q(i). This randomization step is needed to
mix efficiently between different H values (corresponding to energy level-sets).

Step 2. Metropolis update: Given the momentum p(i), generate a new Metropolis–Hastings
proposal via a deterministic map y = F (x) which approximates the Hamiltonian flow
in Eq. (E.139) over a certain time T , starting from the initial point x = (q(i), p(i))
and is followed by negation of the final momentum2. This map defines the transition
kernel t. This proposal is then accepted with the probability α(x, y).

The most commonly used dynamics for the map F approximating the Hamiltonian flow,
i.e., solving the Hamiltonian equations, is the leapfrog (Verlet) integrator. Each leapfrog
step, written (q′, p′) = Lϵ(q, p), comprises three substeps:

p̄← p− ϵ

2∇U(q) ,

q′ ← q + ϵM−1p̄ ,

p′ ← p̄− ϵ

2∇U(q′) . (E.141)

2 This negation of momentum maintains the invertibility of every step as is necessary for detailed balance,
but is not necessary in practice for HMC as it is followed with a Gibbs momentum refresh step.
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where ϵ is the step-size. We compose n = T/ϵ such steps, (Lϵ)n, to integrate the Hamiltonian
flow for time T . With the momentum-flip operator P (q, p) := (q,−p), F = (Lϵ)nP (recalling
that operators act left to right) is volume-preserving because each of the three substeps is
a shear transformation3, and F is an involution4 because Lϵ(q′,−p′) = (q,−p), which can
be verified by reversing the order of the substeps, so LϵPLϵ = P and ((Lϵ)nP )2 = I. In
this case, the transition described in Step 2 preserves detailed balance when

α(x, y) = min
(
π̃(y)
π̃(x) , 1

)
, (E.142)

so that the distribution π̃ is invariant under Step 2. Since π̃ is also invariant under the
Gibbs sampling in Step 1, π̃ is invariant under their composition of both steps, i.e., under
each HMC update. Note that failure to approximate well the Hamiltonian flow by the
leapfrog integrator does not impact detailed balance, although it can drastically reduce the
mixing of the Markov chain, and hence the efficiency of the algorithm.

Implementation
To draw posterior samples with HMC, we run 16 chains of 2000 samples each. The leapfrog
integration in each chain is performed for 40 steps to generate new proposals, with a
step-size that is dynamically determined using dual averaging for 300 burn-in steps to
achieve an average acceptance probability of 0.65. The mass matrix used in this work is
diagonal, except for negative off-diagonal elements between the EoS parameters. In this
work, we tuned these values manually based on few initial runs, but in the future this can
be automated using variational approximations to the target distribution [402]. We use an
importance sampling step to determine initial values for each chain [326].

3 A shear is a map of the form (q, p) 7→ (q + G(p), p) or (q, p + G(q)), and it is easy to check that the
determinant of the 2n × 2n Jacobian derivative matrix is 1.

4 Involution means F −1 = F , i.e., it is time reversible
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