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Abstract—Non-orthogonal multiple access (NOMA) represents
a promising option for differentiating multiple transmitters using
only a single molecule type in a future diffusion-based molecular
communication (DBMC) network. This paper addresses the
bit error probability optimization of a DBMC-NOMA network
with bio-nano-machines incapable of complex computations for
classical optimization methods. We propose a pilot-symbol-based
algorithm to approximate the optimal detection threshold and
emitted number of transmitter molecules. Our solution is based
on two algorithms for the separate optimization of thresholds and
the number of molecules, which are applied alternatingly. Our
Monte-Carlo simulation results show that the algorithm reliably
approaches the global optimum parameter values regardless of
initial values and signaling-molecule-to-noise ratio. Since it is
composed of only a few basic operations, such as comparisons
and additions, there is potential for an implementation using
stochastic chemical reaction networks in future work.

Index Terms—Molecular communication, non-orthogonal mul-
tiple access, optimization, heuristic algorithm, error probability

I. INTRODUCTION

D IFFUSION-BASED molecular communication (DBMC)
is envisioned to play a significant role in nanoscale

and biological communication networks due to its advantages
over electromagnetic communication with respect to bio-
compatibility, size constraints, and energy efficiency. To enable
complex use cases such as targeted drug delivery and other
advanced medical applications in a future internet of bio-
nano-things (IoBNT) [1], bio-nano-machines (BNMs) must
be able to cooperate and communicate. Individual BNMs are
expected to perform only simple tasks such as emission of
and reaction to surrounding molecules [1]. One step towards
the communication between a large number of BNMs is
enabling multiple access (MA). Multiple approaches to MA for
DBMC have been investigated, such as time-division multiple
access (TDMA), molecule-division multiple access (MDMA),
and non-orthogonal multiple access (NOMA). NOMA based
on successive interference cancellation (SIC) was recently
proposed as an option for DBMC networks [2]. The motivation
to explore NOMA stems both from its use of only a single
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molecule type, limiting transmitter (TX) and receiver (RX)
complexity, and the option for all TXs to transmit simultane-
ously, increasing capacity [3]. TDMA and MDMA each lack
one of these two capabilities, simultaneous transmissions and
single-molecule-type operation, respectively.

DBMC-NOMA was shown to match the performance of
orthogonal schemes like MDMA for the optimal choice of
communication parameters [3]. Therefore, optimizing the sys-
tem to achieve the lowest possible bit error probability (BEP)
is crucial, but in [3], only an exhaustive search of the analytical
formula was considered.

On top of the potential advantages mentioned above, NOMA
is connected to several shortcomings and added complexities.
In [3], the need for an exponential increase in the emitted num-
ber of molecules, as the number of TXs grows, is highlighted.
Additionally, NOMA can only work in the case of appropriate
implementation and optimization of the SIC procedure to
separate the TXs at the RX, which could be difficult in the
highly constrained biological MC systems. Especially the latter
issue will be addressed in this work. The optimization of
parameters is relevant for various types of communication
schemes. NOMA simply is a prescient example, due to its
reliance on an optimized number of emitted molecules to
operate, which we showed in [3].

Related work on parameter optimization for DBMC net-
works exists, for example, focused on analytical solutions
[4], using global optimization algorithms like gradient de-
scent optimization [5], or data-driven machine learning (ML)
approaches [6]. While these methods reliably achieve the
optimum value, they could be infeasible in an IoBNT frame-
work, where we have to optimize parameters on low-capability
BNMs. Stochastic chemical reaction networks have been pro-
posed to capture the resulting constraints on possible com-
putation procedures in DBMC systems more accurately, and
implement simple heuristic methods based on pilot symbols
and thresholds [7].

In this paper, we propose a pilot-symbol-based heuristic
optimization algorithm targeted towards the BEP minimization
in a DBMC network using NOMA. In contrast to previous
work on NOMA for DBMC in [2], [3] that assumes accu-
rate channel estimation to facilitate SIC, we frame the SIC
procedure as threshold detection with multiple thresholds per
TX. This allows for simple systematic optimization without
explicit channel estimation. The presented algorithm alternat-
ingly adjusts the detection threshold and emitted number of
molecules per TX across multiple iterations based on decision
rules derived from the mechanisms behind NOMA in a DBMC
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Fig. 1. DBMC scenario with K point transmitters at distances d1, d2 ... dK
from a spherical receiver.

network found in [3]. The algorithm works without any knowl-
edge of initial values or the underlying analytical function
and its derivatives as opposed to analytical or gradient descent
methods in previous work [4], [5]. Additionally, considering
the limited capabilities of future BNMs, the algorithm uses
only elementary operations as opposed to ML methods, which
rely on large computational power [6]. We investigate the
convergence of the algorithm for different choices of initial
values and different levels of background noise. Lastly, we
investigate its robustness to changes in channel conditions
during run-time.

II. SYSTEM MODEL

Figure 1 depicts a communication scenario with K TXs
TXi at distances d1 ≤ d2 ≤ · · · ≤ dK from a central
spherical, passive RX with radius r. The TXs are modeled
as points emitting instantaneous pulses of molecules. The
received signal nRX(t) is the number of molecules within the
RX volume at time t. With NTX,i, the number of molecules
emitted by TXi per pulse, VRX, the RX volume, and the
diffusion coefficient D, the impulse response between one TXi

and the RX can be modeled as a Poisson-distributed random
variable nRX(t) ∼ P(λi(t)) [8] with time-varying mean

λi(t) =
NTX,iVRX

(4πDt)
3
2

exp

(
− d2i
4Dt

)
. (1)

Eq. (1) is valid under the uniform concentration assump-
tion [8], and if nRX(t) is sufficiently small in comparison to a
sufficiently large NTX,i [9]. If additionally λi(t) is sufficiently
large, the received signal can be further approximated by
a Gaussian distribution nRX(t) ∼ N (µi, σ

2
i ) with mean

µi(t) = λi(t) and variance σ2
i (t) = λi(t) [9].

The TXs use on-off-keying (OOK), where a pulse of NTX,i

molecules is emitted for a ’1’ and nothing for a ’0’ with both
symbols equally likely. The emitted number of molecules is
limited by a maximum molecule budget NTX,max per symbol
per TX. We assume that the system is fully synchronized
and that the symbol period T is sufficiently large such that
inter-symbol interference (ISI) is negligible. Therefore, we
consider only the current symbol, where all TXi send a pulse
of siNTX,i molecules at t = 0, with the symbol from TXi

denoted by si ∈ {0, 1}. For decoding, the RX takes one sample
per time slot at the peak time tp of the received signal.

In this paper, we implement the DBMC-NOMA scheme
described in [3]. Therefore, with respect to the current time
slot, all TXs transmit simultaneously using the same molecule
type. The overall received signal at tp is a sum of multiple
independent random variables. For Poisson and Gaussian
variables, the sum can be modeled as a single distribution with
combined mean and variance λNOMA = λn +

∑K
i=1 siλi(tp),

where λi(tp) represents the expected value of the contribution

Fig. 2. Diagram on the left shows the conventional description of the SIC
procedure based on subtracting the estimated component from TXi, λi, from
the sample. Equivalent procedure shown on the right using a set of thresholds
τ ŝi for each TX resulting in a binary tree structure for comparing the same
sample ns multiple times.

from TXi and λn is an additive noise term. The sample at the
RX is a realization of the distribution ns ∼ P(λNOMA) or
ns ∼ N (λNOMA, λNOMA).

A. Successive Interference Cancellation

To differentiate the symbols from each TXi at the RX,
successive interference cancellation (SIC) and simple detection
with thresholds τi is used. The detected symbol for TXi is de-
noted as ŝi. TXs are considered for detection by the RX one by
one from TX1 to TXK . We note, that through optimization of
the emitted number of molecules, the TXs will tend towards an
order from large to small expected signal contribution λi(tp).
Usually, for NOMA in classical communications as well as
for DBMC, it is assumed that the contribution of the currently
considered TX to the received signal is removed from the
sample value ns after each detection using channel estimation
information about each TX’s λi(tp) [3]. For example, after
comparing ns to τ1 and detecting ŝ1 = 1, the sample is
adjusted to ns−λ1(tp) before detecting the symbol from TX2,
as depicted on the left side of Figure 2.

In this paper, we propose to model SIC as threshold de-
tection with multiple thresholds per TX instead. To detect the
symbol sent by TXi, the RX employs threshold detection on
the sample ns with the decision rule

ŝi =

{
1 ns ≥ τ

ŝi−1

i

0 ns < τ
ŝi−1

i

, (2)

where ŝi−1 = [ŝ1, . . . , ŝi−1] is the vector of all pre-
viously detected symbols for the TXs up to and in-
cluding TXi−1. Thereby, we end up with a set Ti ={
τ0...000i , τ0...001i , τ0...010i , . . . , τ1...110i , τ1...111i

}
of 2i−1 differ-

ent possible thresholds for TXi. The procedure is depicted on
the right side of Figure 2 and compared to the conventional
model. Under our assumptions of threshold detection and
OOK, the two are exactly equivalent, if we set τ12 = τ02 + λ1

and similarly for the other thresholds. Generally, the second
model gives us the opportunity to freely optimize the set of
thresholds Ti without explicit channel estimation.

B. Evaluation Metric

We will evaluate the performance of the network using the
system bit error probability (BEP), i.e., the average BEP across
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all TXs, denoted as Pe,sys =
1
K

∑K
i=1 Pe,i, with the individual

BEP of TXi, Pe,i. For the sake of the scalability of our
Monte Carlo simulations (MCSs), we approximate the Poisson
distribution with the Gaussian as described at the beginning
of the section. Otherwise, the calculations are based on the
derivation in [3] and adapted for the specific assumptions in
this paper. We offer a detailed calculation of Pe,i in the sup-
plementary appendix. The final BEP expression incorporates
multiple access interference, which is a crucial aspect for
the DBMC-NOMA system with simultaneously transmitting
TXs. To introduce the notion of channel quality, we use the
signaling-molecule-to-noise ratio (SNR): SNR =

maxi λi(tp)
λn

.
The SNR is later used as an input value to the evaluation
representing the additive noise λn.

III. PILOT-SYMBOL-BASED BEP OPTIMIZATION

The BEP of a DBMC-NOMA system depends on many
different parameters. The detection thresholds and the emit-
ted number of molecules from each TX are two primary
factors due to their effect on the detection performance and
the received number of molecules, respectively, as shown in
[3]. Therefore, we will also focus on the optimal choice of
detection thresholds T ∗

i and the emitted number of molecules
N∗

TX,i, i.e., attempting to solve the optimization problem{
T ∗
i , N∗

TX,i

}K

i=1
= argmin

{Ti,NTX,i}K
i=1

Pe,sys (3)

s.t. NTX,i ≤ NTX,max∀i ∈ [1, . . . ,K].

Analytical solutions and global optimization algorithms [3]–
[5] often lead to the optimal values. However, these methods
require capabilities from the nodes in the network, such as
accurate channel estimation, storage of pre-computed solu-
tions, or computation of functions or their derivatives, for
example, for a gradient descent algorithm. Compared to the
current and even future capabilities of synthetic cells that
will act as BNMs in DBMC networks, these tasks are very
complex. Therefore, we aim to find possibly greedy heuristics
that rely on simpler operations1. Previously, pilot-symbol-
based approaches have been shown to work together with
stochastic chemical reaction networks to approximate a real-
world implementation of DBMC using simple operations like
threshold comparisons [7].

To approximate a solution of Eq. (3), we propose pilot-
symbol-based optimization algorithms, first separately for the
detection thresholds and the number of molecules. Ultimately,
we combine the two for a joint optimization of the BEP in
a DBMC-NOMA system. In the following, for the sake of
brevity and simplicity of the depicted algorithms, we will
assume a network with 2 TXs, i.e., K = 2.

A. Optimizing the Detection Thresholds

For the design of the algorithm optimizing the detection
thresholds, we assume that the number of molecules NTX,i is

1We note, that convexity of the objective function is an important property
for global algorithms and heuristic schemes alike. In line with the extensive
but inconclusive discussion of BEP convexity in MC systems in [5], a proof
of convexity of Pe,sys is beyond the scope of this paper, but remains as a
crucial topic of investigation.

static. The scheme is based on a sequence of pilot symbols
from Spilot = {s = [s1s2]; sj ∈ {0, 1}}, which is known to
both TXs and the RX. As with the DBMC-NOMA scheme,
all symbols in each pilot symbol vector s are sent simulta-
neously from all TXs. Starting from a set of initial values[
τ1,init, τ

0
2,init, τ

1
2,init

]
, the thresholds are adjusted after the

transmission, sampling, and decoding of a pilot symbol s as
defined in Section II. The detected symbols are then compared
to the correct symbols in the pilot sequence. If the symbol is
detected correctly, the threshold stays the same. If the symbol
is incorrectly detected as a ’1’, the threshold is increased to
make the detection of a ’0’ more likely. Consequently, the
threshold is decreased for a symbol incorrectly detected as
’0’. Note that for a certain pilot symbol vector s, only the
applicable threshold is altered for TX2, for example, τ12 in the
case s1 = 1. Importantly, we apply τs12 for the detection of
ŝ2 based on the pilot symbol s1, not the detected symbol ŝ1.
Thereby, for the purposes of the threshold optimization, we
assume correct detection for all previous TXs. The scheme is
described in detail in Algorithm 1.

Algorithm 1 Detection Threshold Optimization Algorithm
INPUT: τ1, τ02 , τ

1
2

for i = 1 to Npilot do
CHOOSE: s← [s1, s2] ∈ Spilot
TRANSMIT: TX1 → s1NTX,1, TX2 → s2NTX,2

RECEIVE: ns ← nRX(tp) ∼ N (λNOMA, λNOMA)
DECODE TX1 : Use τ1 to obtain ŝ1, Eq. (2)
if ŝ1 ̸= s1 AND s1 = 0 then

τ1 ← τ1 +∆τ
else if ŝ1 ̸= s1 AND s1 = 1 then

τ1 ← τ1 −∆τ
DECODE TX2 : Use τs12 to obtain ŝ2, Eq. (2)
if ŝ2 ̸= s2 AND s2 = 0 then

τs12 ← τs12 +∆τ
else if ŝ2 ̸= s2 AND s2 = 1 then

τs12 ← τs12 −∆τ
OUTPUT: τ1, τ02 , τ

1
2

B. Optimizing the Emitted Number of Molecules
Similarly to Algorithm 1, we now assume that the detec-

tion thresholds are static and the number of molecules is
adjusted based on the transmission, sampling, and decoding
of a pilot sequence known to both TXs and RX. Here, one
TX is randomly assigned NTX,max by the RX and denoted
as TX1. As a result, it is possible to assign the maximum
molecule budget per TX NTX,max as NTX,1 and focus on
optimizing NTX,2 relative to that maximum starting from an
initial value NTX,init. This works as long as the TXs distances
are sufficiently similar and the RX can send the change in
NTX,2 to the correct TX, as discussed later for the feedback
mechanism.

After detecting the symbols from both TXs, we propose
to use a set of decision rules determining the adjustment of
NTX,2. Firstly, there is only a reason for changing NTX,2,
if s2 = 1. Otherwise it stays the same. If s2 = 1, we will
now describe two example cases to illustrate the rationale
behind the decision rules. If ŝ1 ̸= s1 = 0, and ŝ2 = s2 = 1,
this means that we should decrease NTX,2 since we observed
enough molecules to classify s2 = 1, but there were too many
molecules such that we incorrectly crossed the threshold for
TX1. If ŝ1 = s1 = 0, and ŝ2 ̸= s2 = 1, it means that we should
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increase NTX,2 since we incorrectly did not observe enough
molecules to cross the threshold for TX2, but the detection for
TX1 is still not affected by too much interference from TX2.
For adapting NTX,2, we utilize a multiplicative model, i.e.,
NTX,2 ← NTX,2 · (1 ± αN), with the number of molecules
multiplier αN.

Additionally, there is a feedback mechanism from the RX
back to TX2 to communicate the necessary adjustment, for
example, via a separate control signaling molecule, which we
do not model in detail. The RX communicates two pieces
of information back to the TXs: which TX is targeted, and
how should this TX adapt NTX,i. We assume that this would
be encoded via orthogonal binary sequences and decoded via
correlation, and that therefore, a binary erasure channel with
either correct detection or loss of information is appropriate.
In case an adaptation to NTX,2 is sent from the RX side, the
subsequent change to NTX,2 at TX2 is modeled by

NTX,2 ←

{
NTX,2 with prob. pe,f

NTX,2 · (1± αN) else
, (4)

with the feedback erasure probability pe,f . If not otherwise
specified, we set pe,f = 0. More details of the optimization
scheme can be found in Algorithm 2.

Algorithm 2 Number of Molecules Optimization Algorithm
INPUT: NTX,2

for i = 1 to Npilot do
CHOOSE: s← [s1, s2] ∈ Spilot
TRANSMIT: TX1 → s1NTX,1, TX2 → s2NTX,2

RECEIVE: ns ← nRX(tp) ∼ N (λNOMA, λNOMA)
DECODE TX1 : Use τ1 to obtain ŝ1, Eq. (2)
DECODE TX2 : Use τs12 to obtain ŝ2, Eq. (2)
if s2 = 1 then

if s1 = 0 AND ŝ1 ̸= s1 AND ŝ2 = s2 then
NTX,2 ← NTX,2 · (1− αN ) with probability 1− pe,f

if [s1 = 0 AND ŝ1 = s1 AND ŝ2 ̸= s2]
OR [s1 = 1 AND ŝ1 ̸= s1 AND ŝ2 ̸= s2]
OR [s1 = 1 AND ŝ1 = s1 AND ŝ2 ̸= s2] then
NTX,2 ← NTX,2 · (1 + αN ) with probability 1− pe,f

OUTPUT: NTX,2

C. Alternating Joint Optimization Algorithm

Given Algorithm 1 and Algorithm 2, we need either knowl-
edge of the optimal number of molecules or detection thresh-
olds, respectively, to arrive at the joint optimal solution. There-
fore, we propose a joint BEP optimization scheme based on
alternating between Algorithms 1 and 2 using arbitrary initial
values for both detection thresholds and number of molecules.
Both partial optimization algorithms are run once for Npilot

pilot symbols, and this is repeated for Niter iterations. After
each set of pilot symbols, the threshold output of Algorithm
1 is used as the input for Algorithm 2 to optimize the number
of molecules and vice-versa.

IV. NUMERICAL RESULTS

In the following, the proposed algorithm will be evaluated
using Monte Carlo simulations (MCSs) based on the Gaussian
stochastic channel model described in Section II. The opti-
mization process with Niter iterations of the joint algorithm

TABLE I

Parameter Symbol Values (Default)
TX distances {d1, d2} {10, 11, 12} µm
RX radius r 1 µm
Diffusion coefficient D 10−9 m2 s−1

Signaling-molecule-to-noise ratio SNR {∞, 3.16}
Molecule budget per TX NTX,max 106 molecules
Number of pilot symbols Npilot 1000
Number of iterations Niter 1000
Threshold step ∆τ 1molecule
Number of molecules multiplier αN 0.1
Initial thresholds τinit [1, 1, 1] molecules
Initial number of molecules NTX,init {1, 106}molecules
Feedback erasure probability pe,f {0, 0.5, 0.9, 0.99}

Fig. 3. Performance of the joint algorithm for two choices of initial value
NTX,init. Median (bold line) and 5th–95th percentile (shaded area) of bit
error probability Pe,sys, detection thresholds τsi , and emitted number of
molecules from TX2 NTX,2 shown across 1000 iterations repeated 100 times.

in Section III-C is repeated 100 times. An overview of the
simulation parameters can be found in Table I.

Firstly, Figure 3 depicts the development of all parameters
for two choices of the initial number of molecules, either
NTX,init = 1 or NTX,init = NTX,max = 106. The results show
that the BEP is reliably optimized without any knowledge of
the current or optimal BEP itself. There is a convergence to-
wards the optimal parameters τsi

∗, N∗
TX,2 (obtained separately

via exhaustive search) and therefore also the optimal BEP,
P ∗
e,sys. Additionally, the difference for an initial value at either

end of the applicable spectrum is visible but does not disturb
the overall convergence. This shows the robustness of the
algorithm towards the choice of initial value. We also observe

Fig. 4. Performance of the joint algorithm for two different values of
SNR. Median (bold line) and 5th–95th percentile (shaded area) of bit error
probability Pe,sys, detection thresholds τsi , and emitted number of molecules
from TX2 NTX,2 shown across 1000 iterations repeated 100 times.
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Fig. 5. Median (bold line) and 5th–95th percentile (shaded area) of bit error
probability Pe,sys for 100 runs of 1000 iterations of the joint algorithm. After
333 and 666 iterations the distance of the TXs to the RX was changed from
10 µm to 12 µm and again to 11 µm, respectively.

that when the thresholds and NTX,i are far from the optimum
at the beginning, there are a lot of errors and, therefore, a
lot of adjustments to the values by the algorithm, causing
more drastic changes, followed by smaller adjustments as we
approach the optimum.

Secondly, in Figure 4, we also look at the performance
of the algorithm under varying levels of background noise,
comparing the results for SNR = ∞ to SNR ≈ 3. The plots
show that the optimization also works for the case with noise.
Crucially, the optimal values are significantly influenced by
the added noise, but the algorithm approximates them without
knowledge of the noise level. We can observe some increased
variability and jitter in the median and percentiles, and it seems
as if the algorithm slightly overestimates both the optimal
threshold and the number of molecules for the case of added
noise. A rigorous investigation of the underlying reasons is
left for further work.

Figure 5 evaluates the reaction of the algorithm to changes
in the channel conditions during run-time. The sequence of
1000 iterations is split into three parts, where after every 333
iterations, the distance of both TXs is changed from 10 µm
to 12 µm and subsequently to 11 µm. We can observe that
although the instantaneous BEP jumps up at the time of the
change, the subsequent speed of the optimization is quick.
Especially for the first few iterations after the change, the BEP
is reduced by orders of magnitude towards the optimum. This
shows the potential of this type of algorithm to work in a
running DBMC system.

Lastly, in Figure 6, the effect of the feedback channel model
in Eq. (4) from the RX to TX2 is investigated. On the left
side of the figure, several values of pe,f are compared. Effects
on the BEP only become visible for pe,f ≥ 50% signifying
robustness against feedback channel issues. While the overall
trajectory and especially the immediate BEP reduction at the
outset remain undisturbed even up to pe,f = 99%, the conver-
gence becomes significantly slower and the resulting BEP after
1000 iterations is one order of magnitude worse. However,
the right-hand-side of Figure 6 depicts the continuation of the
algorithm for a further 2000 iterations at pe,f = 99%. We can
clearly see that the BEP improvement continues towards the
optimum, albeit much slower.

V. CONCLUSION

In this paper, we proposed a BEP optimization algorithm for
a DBMC network using NOMA based on the transmission of
pilot symbols. We have shown that the algorithm can reliably

Fig. 6. Median bit error probability Pe,sys for 100 runs of the joint algorithm.
Left side compares different values of the feedback erasure probability pe,f
over 1000 iterations. Right side depicts the case of pe,f = 99% for a
continuation of the algorithm to 3000 iterations. Shaded area represents 5th–
95th percentile.

approximate the optimal values for the detection threshold
and the number of molecules in a system with 2 TXs and
1 RX, requiring no prior knowledge of the initial values.
This provides a promising perspective for the use of MA
schemes in a real MC network. Additionally, the algorithm
deliberately uses simple steps without the computation of more
complex functions. We plan to address the implementation
of the algorithm using stochastic chemical reaction networks
in future work. The promise of implementing such simple
algorithms or even basic neural network structures [10] using
chemical reactions could be the basis for many of the crucial
IoBNT use cases including disease detection, classification,
and targeted treatment inside an autonomous in-body network.
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