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KEY PO INT S

� Defective autophagy
in mesenchymal
progenitors associates
with BM hypocellularity
and mortality after
severe stress.

� A short 4-day pharma-
cological in vivo treat-
ment of mice to
attenuate CDC42 acti-
vation protects against
cytopenia and improves
survival.

The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and
the ability of this niche to support hematopoiesis upon stress remain elusive. We here
identify Wnt5a in Osterix1 mesenchymal progenitor and stem cells (MSPCs) as a critical
factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from
stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of
Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small
GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes,
thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM
failure states which share features of peripheral cytopenia and hypocellular BM, we find
similar defects in actin stress fiber orientation, reduced and incorrect colocalization of
autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacologi-
cal intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective
actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal
cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for

niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data
further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress
and in human diseases characterized by peripheral cytopenias and hypocellular BM.

Introduction
Declining niche homeostasis is an underlying defect contributing
to aging and the development of aging-related malignant
hematopoietic diseases.1 Functional changes in bone marrow
(BM)-derived mesenchymal stem and progenitor cells (MSPCs)
include deregulated osteogenic and adipogenic differentiation,
bone loss, and osteoporosis.1-3 Intriguingly, compromised niche
health in aging and malignant disease is associated with ineffec-
tive hematopoiesis and dysfunctional hematopoietic stem cells
(HSCs), resulting in cytopenias and progressive BM hypocellular-
ity. Thus, it is important to understand the mechanisms govern-
ing cellular health of niche cells.

Efforts studying HSC dysfunction have shown that intercon-
nected cellular maintenance mechanisms, such as mitochondrial
quality control,4 macroautophagy (autophagy),5 and lysosomal
lysis6,7 are critical for safeguarding HSC division and function.
Interestingly, dysfunctional HSCs further show altered noncanon-
ical WNT5A-CDC42 signaling with a loss of polarized cytoskele-
tal components,8-10 associated with activation of the small
GTPase CDC42 in both stem cells8,9 and mature cells.10 Since
the cytoskeleton guides autophagosome formation and lysoso-
mal fusion,11 as well as mitochondrial fission,12 correct assembly
and orientation of the cytoskeleton is pivotal for cellular
maintenance.
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In the present study, we wondered whether and how the
hematopoiesis-supportive function of the niche depends on
CDC42 activation and autophagy under intermittent stress con-
ditions. For this purpose, we studied hematopoiesis and niche
cells in mice lacking Wnt5a expression, specifically in MSPCs. In
addition, we studied whether similar molecular events operate
in MSPCs from human conditions characterized by hypocellular
BM and ineffective hematopoiesis. Such features are shared by
different hematologic diseases, such as Shwachman-Diamond
syndrome (SDS), hypocellular myelodysplastic syndrome (hypo-
cellular MDS), and severe aplastic anemia as well as therapeuti-
cally conditioned leukemia/lymphoma patients undergoing
allogeneic hematopoietic stem cell transplantation (HSCT).

We show that BM MSPCs from murine Wnt5a-deficient animals
poorly support hematopoiesis associated with CDC42 activation
and defective autophagy. Furthermore, MSPCs from the human
diseases studied show similar CDC42 activation with reduced
WNT5A expression and ineffective autophagy. More impor-
tantly, we show that pharmacological attenuation of RhoGDI/
CDC42 activation not only restores stromal F-actin organization
orientation and autophagy in mice but also protects from accel-
erated cytopenia and mortality after repeated cytotoxic stress.

Methods
Mice
Wnt5afl/fl mice13 were crossed with Osx-GFP::Cre mice14 (Osx-
Cre; The Jackson Laboratory, Bar Harbor, ME). Osx-Cre mice
express the CRE recombinase under the control of the Osterix
(Sp7) promotor. Although Sp7 is expressed in only a small sub-
population of osteoprogenitors, the numerous progenies of
these cells include all major mesenchymal populations.15 Litters
of Osx-Cre;Wnt5afl/1 mice were crossed with Wnt5afl/fl (5Afl/fl)
mice so that litters yielded controls (5Afl/fl and Osx-Cre [O5A1/

1]) as well as Wnt5a deleted mutants (O5AD/D). In all experi-
ments, the results from 5Afl/fl and O5A1/1 mice were combined
as controls since both express a functional Wnt5a gene. Details
about mouse models are summarized in supplemental Table 1,
available on the Blood Web site.

All animal experiments were approved by the Government of
Upper Bavaria and performed in accordance with ethical guide-
lines and approved protocols (Vet_02-14-112, and -17-124). All
animals were housed under specific pathogen-free conditions,
according to the Federation of Laboratory Animal Science Asso-
ciations and institutional recommendations. Mice used were 8 to
10 weeks old.

Human BM samples
Human BM samples were collected from 15 healthy individuals
and 6 hip replacement patients after written informed consent.
In the healthy samples aged over 60 years, the presence of
clonal hematopoiesis was excluded by targeted sequencing of
68 genes recurrently mutated in hematologic malignancies.16

Furthermore, BM samples were obtained from patients with dif-
ferent BM failure states, such as SDS, an inherited BM failure
syndrome, hypocellular MDS, or severe aplastic anemia. We
also included 3 samples from leukemia/lymphoma patients
undergoing allogeneic HSCT, 2 of which had received total
body irradiation as part of their conditioning regimen, which

may contribute to niche damage, and the third patient showed
incomplete BM reconstitution after transplant (likely due to
extensive pretreatment) (supplemental Table 2). The studies
TUM 538/16 (Klinikum rechts der Isar, Technical University
Munich, Munich, Germany) and P00020466 (Boston Children’s
Hospital, Boston, MA) were approved by the respective institu-
tional review boards in accordance with the Declaration of Hel-
sinki. Characteristics of healthy individuals and patients used in
this study are detailed in supplemental Table 2.

Flow cytometry analysis and cell sorting
Hematopoietic lineage- SCA11 KIT1 (LSK) cells and their HSC-
enriched CD34- CD48- CD1501 subpopulations (LT-HSCs) were
isolated and labeled as reported.10,17 Stromal subpopulations
were sorted or analyzed as nonhematopoietic (CD45- TER119-)
cells as described.10,18 All antibodies used in this study are listed
in supplemental Table 3, machines in supplemental Table 4,
and sorting schemes are shown in supplemental Figure 1.

Peripheral blood (PB) was analyzed by Animal Blood Cell Coun-
ter (Scil Vet Abc).

In vivo transplantation assay
Competitive repopulation was performed using transplantation
(Tx) of LT-HSCs into lethally irradiated 129Ly5.1 Wild-type (WT)-
recipient mice, as described previously.10 Peripheral engraft-
ment of donor cells was analyzed at regular intervals (4, 8, 12,
and 16 weeks posttransplant). Sixteen weeks after transplanta-
tion, recipient mice were sacrificed, and the hematopoietic
organs were analyzed by flow cytometry.

In vivo treatment with pharmacological
compounds
For induction of cytotoxic stress, 5-fluorouracil (5-FU) was admin-
istered intraperitoneal (IP, 150 mg/kg, Ribosepharm) on day 0 in
a single dose or in 2 doses at days 0 and 8, after which mice
were analyzed and MSPCs cultured. Animals were monitored
twice daily. Surviving O5AD/D animals were sacrificed at or prior
to day 14 due to severe stress.

In some in vivo experiments, the CDC42/RhoGDI inhibitor
CASIN (2.4 mg/kg, TOCRIS)19 was administered by IP every 24
hours for 4 consecutive days (days 5, 6, 7, and 8) post first 5-FU
treatment on day 0.

Whole-mount immunofluorescence staining
This procedure was performed as described previously.20 Anti-
bodies are listed in supplemental Table 3. For evaluation, fluo-
rescently labeled bone tissues were placed onto a m-slide 4 well
and covered in antifade or phosphate-buffered saline (PBS) to
prevent tissue desiccation. The preparations were examined
using a Leica TCS SP8 confocal microscope and analyzed with
the image analysis software Volocity (v6.2; Perkin Elmer) and
ImageJ. In addition, bone matrix and adipocytes were detected
using the TLD mode of the microscope. In analyses, the term
arteriole includes both arterial and arteriolar cells.

Stromal cell (MSPC) isolation and culture
Flushed long bones from mice were crushed and digested as
described.21 Sorted MSPCs or MSPCs from digested compact
bone were cultured on 0.1% gelatin-coated plates in MEM a
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(with ribosides and Glutamax, Invitrogen), supplemented with
fetal calf serum (FCS, 10%; PAA), antibiotics and 0.1% b-mer-
capto-ethanol (Invitrogen).

Human MSPCs were isolated from BM samples of healthy and
diseased individuals and cultured using pooled platelet lysate as
described previously.3

Cocultures of HSC and stromal cells
MSPCs were grown to confluence and irradiated (15 Gy). Freshly
sorted WT LT-HSCs were seeded to the stroma in long-term cul-
ture (LTC) medium (M5300; Stemcell Technologies, Vancouver,
Canada) with 1 mM hydrocortisone and incubated (37�C, 5%
CO2, .95% humidity). After 6 days, cultures were either
reseeded at 60 input LT-HSCs equivalents in MethoCult M3434
(Stemcell Technologies) or analyzed by flow cytometry. Hemato-
poietic colonies were counted using standard criteria.

Immunofluorescence staining (IF, confocal IF)
Hematopoietic cells were prepared and stained as described.10

For staining of stromal cells, either sorted cells were spotted, or
cultured MSPCs were reseeded on 0.1% gelatin-coated Super-
frost PlusTM slides (Thermo Fisher Scientific) and cultured over-
night in MSPC medium. Cells were fixed with 4% PFA for 5
minutes and staining was performed10 using the antibodies
listed in supplemental Table 3.

Pictures were taken using a Leica DM RBE microscope with Axi-
oVision software (Carl Zeiss) using standardized exposure and
diaphragm settings for all samples. Thirty randomly captured
cells per sample were imaged at a 100-fold magnification.

Confocal fluorescence microscopy and deconvolution of the
fluorescent images were performed on a Leica SP8 confocal
microscope as described earlier.22 Assessment of different
parameters is outlined in the supplemental Methods.

Assessment of mitochondrial function
To interrogate mitochondrial function, mitochondrial number
and diameter, reactive oxygen species (ROS) production, glycol-
ysis, and oxygen consumption were assessed. ROS was
detected by culturing fresh BM cells for 20 minutes at 37�C with
either CM-H2DCFDA or MitoTracker. Staining for the mitochon-
drial outer membrane receptor TOMM20 indicated the number
of mitochondria. Analysis of fluorescence intensity was per-
formed using ImageJ. The extracellular acidification rate (ECAR),
a measure of glycolysis, and oxygen consumption rate (OCR)
were determined using an XF96 Extracellular Flux Analyzer (Sea-
horse Bioscience) as described.23

Autophagic flux assessment using CytoID
To determine the autophagic flux, MSPCs were cultured at 80%
semiconfluence with rapamycin (1 mM), chloroquine (10 mM),
CASIN (5 mM), or the vehiculum 0.01% DMSO for 16 hours
(37�C, 5% CO2, .95% humidity). The next day, cells were
treated with Cyto-ID Autophagy Detection Kit as described by
the manufacturer (Enzo Life Science). Autophagic flux was deter-
mined as DMFI (5 MFIchloroquine 2 MFItest) and measured using
mean fluorescence intensity (MFI) on the CyAn ADP LxP8.

Statistics
The variance was similar between groups that were statistically
compared. To test for differences between 2 groups, a paired
Student's t test was used unless the data point distribution was
not normally distributed. In that case, the nonparametric Mann-
Whitney U test was used. All statistical analyses were performed
with the Prism software package.

Data
For original data, please contact the corresponding authors.

Results
Lack of Wnt5a in MSPCs impairs HSC function
upon cytotoxic myeloablation
Maintenance of HSC function depends on the expression of
Wnt5a in the environment.10 In mice, WNT5A protein expres-
sion is regulated by different stressors, particularly after 5-FU
treatment of WT MSPCs (supplemental Figure 2A). To test
whether Wnt5a expression in MSPCs is responsible for reduced
support of HSC function, we took advantage of a mouse model
in which the floxed Wnt5a gene13 was selectively deleted in
osteoprogenitors (O5AD/D).

In O5AD/D mice,Wnt5a is deleted in MSPCs and osteoblastic cells
(OBCs), but is still expressed by CD311 endothelial cells (ECs)
(supplemental Figure 2B-C), and is even elevated in LT-HSCs (sup-
plemental Figure 2D). Moreover, the number of ECs and MSPCs
was unchanged, but a relative increase in OBCs was noted (sup-
plemental Figure 2E).O5AD/Dmice showednormal hematopoiesis
in comparison with control littermates, except for a significant
decrease in LT-HSCs numbers. These LT-HSCs demonstrated a
normal repopulation activity (supplemental Figure 2F).

To determine how stress alters niche and HSC function in the
absence of stromal Wnt5a, mice were treated with 5-FU (Figure
1A), which selectively recruits quiescent HSCs through the
niche.20 Prior to 5-FU treatment, CDC42 activation, F-actin
expression, or CDC42-GTP polarization is unchanged in
LT-HSCs (supplemental Figure 2G-H). Eight days after 5-FU
treatment, the LT-HSC numbers remain similar in O5AD/D and
control animals (supplemental Figure 2I-K). However, treatment
with 5-FU in O5AD/D animals altered LT-HSCs to not only show
an elevation of WNT5A but also decreased F-actin with
increased levels of active and nonpolarized CDC42-GTP (Figure
1B; supplemental Figure 3A-C), suggestive of HSC dysfunction.8

In support of this observation, we found that LT-HSCs cocul-
tured with Wnt5a deleted MSPCs show strongly reduced main-
tenance of colony-forming cells (Figure 1C). Furthermore,
transplantation experiments demonstrated that LT-HSCs from 5-
FU-treated O5AD/D animals show reduced engraftment of both
mature and immature cell lineages compared with HSCs from
control mice (Figure 1D; supplemental Figure S3D-G), confirm-
ing dysfunction of LT-HSCs from 5-FU-treated O5AD/D mice (Fig-
ure 1E; supplemental Figure 3F).

Stress-induced niche remodeling in O5AD/D mice
To determine whether poor LT-HSC function associates with
remodeling of the BM in 5-FU-treated O5AD/D or control mice, we
performed whole-mount BM staining 30 days after 5-FU
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treatment, an endpoint for BM regeneration in WT mice20 (Figure
1F; supplemental Figure 3H). Our analyses show similar localiza-
tion of HSCs in O5AD/D and control BM to endosteal areas, mega-
karyocytes, or different types of vessels (supplemental Figure 3I-
K). However, we found a striking BM remodeling associated with
increased trabecular volume of the epiphysis/metaphysis of
O5AD/D mice compared with controls (Figure 1G), a near loss of
FABP4high adipocytes with big fat droplets (Figure 1H), and a rela-
tive increase in both MSPCs and ECs in flow cytometry, but not in
OBCs in the BM of O5AD/D mice (Figure 1I-J). Despite these
changes in BM anatomy and niche cell numbers in vivo, the fre-
quency of CFU-F and the osteo- and adipogenic potential in vitro
was unchanged in both freshly isolated and cultured MSPCs from
5-FU-treatedO5AD/D or controlmice (supplemental Figure 4A-D).

Intermittent cytotoxic stress causes BM failure
and mortality in O5AD/D mice
Repetitive 5-FU administration leads to HSC exhaustion and
death by BM failure.24 Considering impaired HSC function in 5-
FU-treated O5AD/D mice (Figure 1D-E), we wondered whether an
additional 5-FU treatment of O5AD/D mice would deplete HSCs
(Figure 2A-B). Strikingly, whereas most control mice (13/18, 72%)
survived 2 consecutive applications of 5-FU, few of the O5AD/D

mice (1/11, 9%) survived this treatment until day 14 (Figure 2C).
Diminished numbers of white and red blood cells (WBC and
RBC) in PB and BM cells indicated a PB and BM cytopenia in sur-
viving O5AD/D mice (Figure 2D-G; supplemental Figure 4E-F),
with a strong decline in mature CD411 CD42b1 megakaryocytes
and LT-HSCs in the BM (Figure 2H; supplemental Figure 4G).
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Figure 1. Stress-induced niche remodeling in O5AD/D mice. (A) Experimental design for IP injection of 5-Fluorouracil (5-FU) in coculture assay of MSPCs and LT-HSC.
The following genotypes were analyzed by flow cytometry and IF 8 days after treatment: Control (CTRL): O5A1/1, n 5 5, 5Afl/fl, n 5 7 and O5AD/D, n 5 10. (B) Protein
content and polarity of LT-HSCs stained for CDC42-GTP (n 5 30), measured by ImageJ software. (C) Number of colonies from 60 LT-HSCs after coculture for 6 days on
MSPCs isolated from 5-FU injected mice with the following genotype: (CTRL): O5A1/1, n 5 5, 5Afl/fl, n 5 5 and O5AD/D, n 5 10. (D) Primary transplantation (Tx) of 300
sorted LT-HSCs 8 days after 5-FU injection into lethally irradiated 129*Ly5.1 WT recipients. Experimental groups: CTRL: O5A1/1, n 5 5 and 5Afl/fl, n 5 4 and O5AD/D,
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shown in red, other hematopoietic markers (CD41, CD48, and lineage) are shown in gray. The dashed lines denote the endosteum. Scale bar, 100 mm; n 5 10 images
(n 5 6 images 5Afl/fl PBS) from 2 mice each group. The results represent 2 independent experiments. The graph showing the % of trabecular volume per BM volume.
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ECs, OBCs, and immature MSPCs; flow cytometry gating strategy in supplemental Figure 1. *P , .05 (nonparametric Mann-Whitney test: B-G,J). The results represent 2
to 3 independent experiments. Data are represented as dots per mouse or cell and the mean 6 SEM. Symbol legends as shown in Figure 1A.
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The loss of LT-HSC was, however, not caused by a relocation of
LT-HSCs to other tissues, such as the spleens (Figure 2I-J).

Defects in autophagolysosome formation in
MSPCs from O5AD/D mice
As it has been described that high WNT5A expression is
associated with increased autophagy in melanoma25 and
pneumonia26 and that, conversely, Wnt5a-deficient cells

show decreased autophagy,27 Wnt5a expression and
autophagy might be linked in MSPCs. While defects in
autophagy were shown to be harmful for HSCs,5,28-30 the
role of autophagy in maintaining MSPC niche function
remains to be established.

Thus, we stained MSPCs and observed strongly increased
levels of ATG7, LAMP1, LC3, and SQSTM1 in characteristic
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punctae, indicating autophagosome accumulation in both
freshly sorted and cultured MSPCs from 5-FU-treated O5AD/D

mice (Figure 3A-C; supplemental Figure 5A-C). In addition, accu-
mulation of LAMP11 lysosomeswith larger diameters and reduced
colocalization with LC3 in MSPCs from 5-FU-treated O5AD/D mice
indicates associated reduced lysosomal degradation of autopha-
gosomes (Figure 3D-E).

To assess autophagosome degradation, we performed autopha-
gosome labeling with Cyto-ID and the degradation inhibitor
chloroquine.31 Here, we found a strongly reduced autophagic
flux (DMFI) in MSPCs from 5-FU-treated O5AD/D mice (Figure
3F). Combined, these findings indicate that autophagosomes
and lysosomes form, but autophagy fails in MSPCs from 5-FU-
treated O5AD/D mice.
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n 5 5, 5Afl/fl n 5 7 and O5AD/D n 5 10. Analysis of cytoskeleton-associated proteins and autophagy in compact bone-derived MSPCs, isolated 8 days after 5-FU-treatment
and cultured until passage 4. (B) Fluorescent microscopy images of F-actin (Phalloidin/green) and DAPI (blue) staining. The graph shows the results of stress fiber formation
in pooled MSPCs of 3 independent experiments. (C) Fluorescent microscopy images of CDC42-GTP in MSPCs illustrated as relief image (Adobe Photoshop: v21.1.1/filter
relief). Graphs showing the total pixel intensity of CDC42-GTP (left panel) and the cell edge (right panel) as measured by ImageJ software. (D) Confocal images of CDC42-GTP
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LAMP1 (green, right) and LC3 (red, right) measured by ImageJ software. (G) Graphs showing the protein content of WNT5A (left) and CDC42-GTP (right). (H) Evaluation of the
orientation of F-actin stress fibers stained with phalloidin. Cells showing intermediate orientation (for instance, at the cell edge only) or no orientation were taken together (see
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Enhanced oxidative mitochondrial activity in
dysfunctional niche cells
Since damaged mitochondria are eliminated through autoph-
agy,32,33 we then studied whether mitochondria were altered in
O5AD/D MSPCs. Our experiments show that glycolysis, as mea-
sured by the extracellular acidification rate (ECAR), is not
affected. But the OCR is 1.7-fold higher in MSPCs from 5-FU-
treated O5AD/D mice compared with controls (Figure 4A-B). Ele-
vated OCR corresponded to high levels of ROS, not only in
O5AD/D MSPCs (Figure 4C), but also in ECs and OBCs (supple-
mental Figure 5D-F). Furthermore, cultured O5AD/D MSPCs
show alterations associated with oxidative stress, such as
increased DNA damage (supplemental Figure 5G). But, these
changes did not affect proliferation, apoptosis, or surface phe-
notype of MSPCs from 5-FU-treated O5AD/D mice (supplemental
Figure 5H-J).

We then assessed whether elevated OCR and ROS are associ-
ated with a defective mitochondrial clearance in MSPCs from
5-FU-treated O5AD/D mice. Our experiments showed that mito-
chondrial mass, number, as well as diameter, in MSPCs from
5-FU-treated O5AD/D mice were increased (Figure 4D-E). In
addition, staining for TOMM20 or the regulator of mitochondrial
fission DRP134 showed significant elongation of the mitochon-
drial network in O5AD/D MSPCs (Figure 4E; supplemental Figure
5K). This indicates accumulation of mitochondria, reduced mito-
chondrial fission, and clearance.

Incorrect positioning of critical components of
autophagy due to impaired F-actin stress-fiber
orientation in MSPCs
The cytoskeleton is critical for correct autophagy.11 Since dele-
tion of Wnt5a in the microenvironment deregulates the cytoskel-
eton in HSCs,10 we hypothesized that decreased autophagy is
associated with deregulated F-actin orientation (Figure 5A). In
addition, the GTPase CDC42 is an important regulator of cyto-
skeletal polymerization and polarization8,10,19 and CDC42 is
required for autophagy.35 In line with our hypothesis, we found
much less F-actin orientation and perinuclear localization in
MSPCs from 5-FU-treated O5AD/D mice compared with controls
(Figure 5B). Moreover, the expression of active GTP-binding
CDC42 was strongly increased. Furthermore, while CDC42-GTP
localized primarily to cell edges in control MSPCs, it localized
mainly to perinuclear regions in MSPCs from O5AD/D mice (Fig-
ure 5C). These results indicate deregulation of F-actin orienta-
tion as well as CDC42-GTP localization in MSPCs of 5-FU-
treated O5AD/D mice.

LC3 interacts with and regulates CDC42.36 Thus, we explored
whether LC3 colocalized with active CDC42-GTP and F-actin.
Confocal images revealed punctate LC3 in the perinuclear
regions of the O5AD/D MSPCs (Figure 3C). In O5AD/D MSPC, the
LC31 punctae are only marginally colocalized with either
CDC42-GTP or F-actin compared with the MSPCs from control

mice (Figure 5D-E), indicating diminished anchoring of LC31

autophagosomes to the F-actin-cytoskeleton in O5AD/D MSPCs.

CDC42 activation and autophagy defects in
MSPCs from human BM failure states
We then studied whether MSPCs from patients sharing features
of peripheral cytopenias and hypocellular BM with the twice-
5-FU-treated O5AD/D mice showed similar alterations in the cyto-
skeleton and autophagy. For this, MSPCs were cultured from
BM samples from patients with different BM failure states, such
as SDS, an inherited BM failure syndrome, hypocellular MDS, or
severe aplastic anemia. We also included 3 samples from leuke-
mia/lymphoma patients undergoing allogeneic HSCT. Two
patients had previously been conditioned with total body irradi-
ation, which may contribute to niche damage, and the third
patient showed incomplete BM reconstitution HSCT (likely due
to extensive pretreatment) (supplemental Table 2). Interrogation
of published gene expression data in freshly isolated mesenchy-
mal cells from MDS vs normal controls revealed that whereas all
control BM samples (10 of 10) express WNT5A, it is not
detected in 33 of 45 MDS BM samples, and some actin-
regulating intermediates are reduced (supplemental Figure
6A).37 In IF experiments, we subsequently found that expression
of WNT5A or CDC42-GTP and colocalization of LC3/LAMP1 is
similar in MSPCs from aged and young BM controls (supplemen-
tal Figure 6B), indicating their altered expression or colocaliza-
tion is not due to aging. In comparison, staining of MSPCs from
patients with the common features of peripheral cytopenia and
BM hypocellularity revealed a slight but significant reduction of
WNT5A, a clear increase of activated CDC42, and reduced
F-actin stress fiber orientation (Figure 5F-H). Furthermore,
LAMP1 is elevated with reduced LC3/LAMP1 colocalization (Fig-
ure 5I), indicative of cytoskeleton and autophagy defects.

Pharmacological attenuation of CDC42-GTP levels
in vitro restores autophagy in MSPCs
Our data imply that cytostatic stress causes sustained CDC42 acti-
vation associated with deregulation of cytoskeleton-associated
autophagy in MSPCs from cytopenic mice (Figure 5B-E). We con-
sequently reasoned that inhibiting CDC42 activation would
directly improve MSPC function. To test this hypothesis, we
treated mouse MSPCs in vitro with the RhoGDI/CDC42 activation
inhibitor CASIN (also described as Pirl1),8,38-41 or the allosteric
CDC42 inhibitor ML14142,43 (supplemental Figure 7A-B). Both
inhibitors reduced the cellular level of CDC42-GTP in O5AD/D

MSPCs equally well. However, only CASIN restored CDC42-GTP
localization at the cell edge and F-actin stress fibers in MSPCs
from5-FU-treatedO5AD/Dmice (supplemental Figure 7C-D).

To test whether CASIN improved autophagy, we compared
treatments with CASIN, rapamycin, a known autophagy inducer,
or chloroquine, a lysosomal lysis inhibitor (supplemental Figure
7E). These experiments showed that both rapamycin and CASIN
increase LC31 autophagosome formation without affecting
LAMP1 expression (supplemental Figure 7F-H). Importantly,

Figure 5 (continued) supplemental Methods). (I) LAMP1 staining (left) and colocalization pixels of LAMP1 and LC3 (right) in MSPCs (P2) from healthy young individuals, n5 7,
healthy aged individuals, n 5 7, samples from hypocellular BM patients (P_1-3; see supplemental Table 2 for details), n 5 3, SDS patients (P_7-9; see supplemental Table 2 for
details), n 5 3 and post-allo-HSCT patients (P_4-6; see supplemental Table 2 for details), n 5 3. Scale bars 10 mm. *P , .05 (nonparametric Mann-Whitney test: B-E,G-I). The
results represent 2 to 3 independent experiments. Data are represented as mean6 SEM. Symbol legends shown in Figure 5A and underneath Figure 5H-I.
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both rapamycin and CASIN increase colocalization of LC3 and
LAMP1 (supplemental Figure 7I), indicating CASIN directly stim-
ulates autophagy in MSPCs.

To determine whether the extrinsic WNT5A signal similarly
restores CDC42 activation, recombinant WNT5A was added to
MSPC cultures. These experiments show that rWNT5A reduces
both LC3 and LAMP1, as well as their colocalization (supplemen-
tal Figure S7J-M), indicating that rWNT5A also directly improves
autophagy.

Pharmacological attenuation of CDC42-GTP levels
in vivo protects against stress-induced mortality
To appraise whether attenuation of CDC42 activation also
restores niche function and hematopoiesis in vivo, we serially
treated O5AD/D and control mice with 5-FU on day 0 and day
8 and included an additional treatment with CASIN41 (Figure
6A; supplemental Figure 8A). Strikingly, the application of
CASIN protected O5AD/D mice from mortality induced by the
second 5-FU-treatment (Figure 6B). In addition, we did not
detect PB nor BM cytopenia with the rescue of both mature and
immature hematopoietic cells (Figure 6C-J), particularly of
LT-HSCs and BM T-cells (Figure 6E-G), in the CASIN-treated
O5AD/D mice.

To find out whether in vivo attenuation of CDC42 activation
maintains BM niche cell numbers and function, we found that
the relative number of MSPCs was reverted to control levels in
MSPCs from CASIN- and twice-5-FU-treated O5AD/D mice (sup-
plemental Figure 8B-C). In addition, we observed similar MSPC
differentiation in vitro (supplemental Figure 8D). In MSPCs from
O5AD/D mice treated twice with 5-FU, CASIN treatment restored
both CDC42-GTP localization to the cell edge and F-actin stress
fiber orientation (supplemental Figure 8E-F).

Rescue of actin-guided autophagy and
mitochondrial clearance in MSPCs
In experiments to determine whether in vivo attenuation of
CDC42 activation prevents the decline of the F-actin-anchored
autophagy in MSPCs prior to the second 5-FU treatment, we
found that in vivo CASIN treatment reduces the levels and peri-
nuclear localization of LC3 in O5AD/D MSPCs (Figure 7A-B) com-
pared with controls (Figure 3B-C). Moreover, LC3 colocalizes
with both CDC42-GTP and F-actin fibers (Figure 7C-D), indicat-
ing normalized cytoskeletal deregulation and actin cytoskeleton
anchoring in MSPCs from 5-FU-treated O5AD/D mice. In experi-
ments to determine whether the autophagy defects noted ear-
lier (Figure 3) were also normalized, we found that both LAMP1
content and lysosome diameters were restored (Figure 7E).
More importantly, LC3 and LAMP1 also colocalized (Figure 7F),
indicating restored autophagy in MSPCs from 5-FU-treated
O5AD/D mice. Indeed, we found that autophagic flux was sub-
stantially increased in MSPCs by prior in vivo CASIN treatment
(Figure 7G). In addition, both reduction in ROS and MitoTracker

Red levels and colocalization of LC3 and TOMM20 (Figure 7H;
supplemental Figure 9A-C) indicate improved mitophagy after
in vivo CASIN treatment.

Discussion
Understanding mechanisms involved in the hematopoiesis-
supportive function of MSPCs is crucial for developing new
treatments for debilitating hematologic diseases. Our present
study shows that autophagy controlled by CDC42 is a critical
factor for maintaining hematopoietic support by BM niche cells
during stress. Furthermore, without Wnt5a in osteoprogenitors,
CDC42 is constitutively active in MSPCs, which leads to second-
ary ineffective hematopoiesis and increased mortality after
severe stress.

Our experiments show that regulation of CDC42 directly modu-
lates F-actin and associated autophagic flux in niche cells. We
found that only the RhoGDI/CDC42 association inhibitor CASIN,
but not the allosteric inhibitor ML-141, restores cytoskeletal
defects and CDC42-GTP localization. Thus, only RhoGDI/
CDC42 attenuation effectively improves cellular processes result-
ing in healthier mice. Indeed, a similar 4-day treatment of aged
mice with CASIN shows not only improved mouse health, it also
extended their lifespan significantly.44

Interestingly, we found that similar changes in F-actin and
autophagy also occur in MSPCs from patients sharing features
of peripheral cytopenia and hypocellular BM, such as in different
BM failure states, suggesting a possible role in their pathogene-
sis. Our findings add to reports showing that MSPCs from these
diseases are defective in CFU-F content, show deregulated dif-
ferentiation,3,37,45,46 and demonstrate defects in maintaining
HSCs and progenitor cells.45,47-49 However, it remains elusive
why and how CDC42 signaling, the cytoskeleton, or autophagy
in MSPCs causes secondary ineffective hematopoiesis. Findings
from SDS and like diseases showed that mutated SBDS and
SRP54, which cause these syndromes, are both not only
expressed by niche cells,50 but these proteins also bind to
F-actin and deregulate small GTPase activation.51,52 Similar
deregulation of these pathways may occur in MSPCs, also from
other BM failure states. Alternatively, the processes mentioned
may be linked indirectly through reduced mitophagy, causing
oxidative injury33 or deregulation of autophagy-dependent
secretion of cytokines.53,54

In summary, autophagy, cytoskeletal orientation, and CDC42
activation in niche cells are possible targets for improving ineffi-
cient hematopoiesis after severe stress. Furthermore, we provide
a rationale for extending our findings in the O5AD/D mouse
model to human diseases featuring peripheral cytopenia and
hypocellular BM. In addition, our work offers attenuation of
CDC42 activation in vivo as a therapeutic strategy to improve
the homeostasis of the hematopoietic BM niche.

Figure 6 (continued) from 4 flushed long bones), and compact bone-derived MSPCs at day 14. (B) Percentage of mice survival after serial 5-FU treatment. Graph shows
the survival curve of CTRL and O5AD/D mice treated with CASIN (1) or vehicle (-). (C) Graph shows the total BM cell number (left) and relative number of LSK cells (mid-
dle) and MPs (right) at day 14 of CTRL mice with vehicle ([-]; O5A1/1 n 5 6, 5Afl/fl n 5 7), O5AD/D mice with vehicle ([-]; n 5 5, mice analyzed shortly before death) and
O5AD/D mice with CASIN ([1]; n 5 5). (D,F,H,J) Representative contour plots from BM populations. Graphs show relative number of LT-HSCs and ST-HSCs (E-F), T cells
and B cells (G-H), and Gr11 myeloid cells (I-J). *P , .05 (nonparametric Mann-Whitney test: C,E,G,I). The results represent 2 to 3 independent experiments. Data are
represented as mean 6 SEM. Symbol legend shown in Figure 6A.
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Figure 7. Attenuation of elevated CDC42 activity during auto/mitophagy. (A) IP injection of 5-FU in O5AD/D mice at day 0. Additional in vivo IP injection of vehicle
([-], n 5 5) or CASIN ([1], n 5 4) at day 5 through day 8. Rescue and analysis of autophagy relevant mechanisms in compact bone-derived MSPCs, isolated at day
8 and cultured until passage 4. (A-G) Shown are the results of O5AD/D mice with vehicle (-) and CASIN (1) treatment. CASIN-treated mice show the same phenotype as
the control groups 5Afl/fl and O5A1/1 (Figure 3). (B) Fluorescent microscopy images of LC3 (red) and DAPI (blue) staining. Graph shows the pixel intensity as measured
by ImageJ software. (C) Fluorescent microscopy image of CDC42-GTP (green), LC3 (red), and DAPI (blue) staining. The graph shows the percentage of MSPCs with
colocalization measured by ImageJ software (plugin colocalization) and visualized in white. (D) Fluorescent microscopy images of F-actin (Phalloidin/green) and LC3
(red) in MSPCs. Colocalization was measured by ImageJ software (plug-in colocalization) and visualized in white. The graph shows colocalization counted with ImageJ
software. (E) Fluorescent microscopy images of LAMP1 (green) and DAPI (blue) staining. The pixel intensity (left graph) and feret’s diameter (right graph) were measured
by ImageJ software. (F) Fluorescent microscopy images of LAMP1 (green), LC3 (red), and DAPI (blue) staining. Yellow arrows show colocalized vesicle staining, red
arrows depict LC31 vesicles that did not colocalize with green LAMP11 vesicles. Perinuclear colocalization of LAMP1 and LC3 measured by ImageJ software (plugin
colocalization, depicted in white). (G) Representative FACS plots and quantification (graph) of Cyto-ID dye levels (DMFI: Cyto-ID dye level chloroquine treated, Cyto-ID
dye level w/o treatment). (H) Fluorescent microscopy images of TOMM20 (green), LC3 (red), and DAPI (blue) staining. Colocalization was measured by ImageJ software
(plugin colocalization) and visualized in the bottom row in white. Scale bars, 10 mm. *P , .05 (2-sided parametric Student’s t test; B-H). The results represent 2 indepen-
dent experiments. Data are represented as mean 6 SEM. Symbol legend shown in Figure 7A.
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