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Magnetic nanoparticles have emerged as a promising approach to improving cancer treatment. However,
many nanoparticle designs fail in clinical trials due to a lack of understanding of how to overcome the in
vivo transport barriers. To address this shortcoming, we develop a computational model aimed at the study
of magnetic nanoparticles in vitro and in vivo. In this paper, we present an important building block for
this overall goal, namely an efficient computational model of the in-flow capture of magnetic nanoparticles
by a cylindrical permanent magnet in an idealized test setup. We use a continuum approach based on the
Smoluchowski advection-diffusion equation, combined with a simple approach to consider the capture at an
impenetrable boundary, and derive an analytical expression for the magnetic force of a cylindrical magnet of
finite length on the nanoparticles. This provides a simple and numerically efficient way to study different magnet
configurations and their influence on the nanoparticle distribution in three dimensions. Such an in silico model
can increase insight into the underlying physics, help to design prototypes, and serve as a precursor to more
complex systems in vivo and in silico.
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I. INTRODUCTION

Over the past three decades, nanoparticles have emerged as
a promising approach to improve the effectiveness of cancer
treatment because of their potential for sophisticated function-
alization and ability to accumulate in tumours [1]. Magnetic
nanoparticles are of particular interest because of their ability
to be controlled by an external magnetic field. To capture
the drug-loaded magnetic nanoparticles in the target region,
the applied magnetic force has to be strong enough to over-
come fluid forces due to the blood flow or the interstitial
fluid flow and further transport barriers, e.g., the extracellular
matrix, the blood vessel wall, which the nanoparticles must
cross, and different interfaces. However, this is often hard to
achieve because of the inherently weak magnetic forces pro-
duced by an applied magnetic field—especially deeper in the
body [2]. Because of those (and other) challenges, the design
and successful application of magnetic nanoparticle-based
cancer therapy is very demanding and almost hopeless purely
via trial-and-error approaches in experimental research. Here,
computational models can help by predicting the distribution
of nanoparticles depending on the applied magnetic field and
guide the design of prototypes.

On the way towards a comprehensive computational model
of the capture of magnetic nanoparticles, we here start with an
idealized test setup, illustrated in Fig. 1: a cylindrical perma-
nent magnet is placed below a channel to capture the magnetic
nanoparticles dispersed in the fluid flowing through the

*Contact author: barbara.wirthl@tum.de

channel. This setup, even though simplified, contains the es-
sential physics of the capture of magnetic nanoparticles: the
magnetic force exerted by the magnet combined with the
fluid flow, which is known to be a major transport barrier
in vivo [1]. The bottom wall of the domain is impenetra-
ble, so the captured nanoparticles accumulate at the wall.
Such an idealized test setup, including tumour spheroids in
the microfluidic channel, is typically used in experimental
research, e.g., Refs. [3–5], because it allows insight into the
fundamental physics of the capture of magnetic nanoparticles
and serves as a precursor to more complex in vivo systems.
The approaches and results of the current work are essential
for exactly modeling the experimental setup where tumour
spheroids are placed in the microfluidic channel [6].

To model the transport of magnetic nanoparticles, two
approaches are the most common in the literature [7]: the
first approach models the nanoparticles as discrete particles,
while the second approach assumes that the nanoparticles
behave as a continuum ferrofluid. The first approach consid-
ers the different forces acting on each particle individually,
and Newton’s second law then describes the movement of
each particle [8–11]. This allows investigating the aggregation
of the nanoparticles and the formation of particle clusters,
e.g., chains [10,11]. Nevertheless, when the system has a
size of millimetres or centimetres, the number of particles
in the domain is on the order of 109, which limits the ap-
plicability of this approach. Moreover, we are not interested
in the movement of each particle individually. The second
approach builds on the assumption that the nanoparticles have
an infinitely strong coupling with the base fluid, and this fluid-
particle mixture is described as a whole by the classical fluid
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FIG. 1. Idealized test setup. The magnetic nanoparticles are
dispersed in the fluid flowing through the channel. A cylindrical
permanent magnet is placed below the channel and exerts a magnetic
force on the magnetic nanoparticles to capture them at the bottom
wall, which is impenetrable.

equations, e.g., the Navier–Stokes equations [12–15]. Hence,
the magnetic force is part of the momentum balance equation.
This approach, however, does not allow the nanoparticles to
move relative to the fluid [15].

To overcome the limitations of both approaches, we take
a different approach here, similar to Ref. [16]: We model
the nanoparticles in a continuum sense but consider that the
nanoparticles can move relative to the advecting fluid due to
diffusion and the exerted magnetic force. We therefore use an
advection-diffusion equation to model the concentration of the
nanoparticles and include the magnetic force directly in this
equation. In this contribution, we address two specific chal-
lenges: the boundary condition at an impenetrable boundary
and the efficient evaluation of the magnetic force exerted by a
cylindrical magnet of finite length.

Concerning the first challenge (the boundary condition at
an impenetrable boundary), Ref. [15] states that most contri-
butions in the literature that study the transport of magnetic
nanoparticles in a continuum sense do not consider the bound-
ary condition at the impenetrable boundary, which results in
nanoparticles leaving the domain through the boundary. This
however would be questionable for our long-term goal, as
we also want to be able to model complex time-dependent
scenarios where we should not lose nanoparticles. Hence, we
present a simple approach to model the capture of magnetic
nanoparticles at an impenetrable boundary.

Concerning the second challenge (the efficient evaluation
of the magnetic force), we derive an analytical expression
for the magnetic force on magnetic nanoparticles exerted by
a cylindrical magnet of finite length. This presents a huge
advantage of our approach, as it allows us to evaluate the mag-
netic force on the nanoparticles with minimal computational
effort compared to numerically solving Maxwell’s equations.
At the same time, we can study different magnet orientations
in three dimensions—in contrast to two-dimensional models,

commonly used in the literature [2,16–20], which have the
severe limitation that they assume the magnet to be infinitely
long and oriented perpendicular to the two-dimensional
domain.

In the following, we first introduce the equations for
the advection-diffusion problem, including an impenetrable
boundary, in Sec. II A. We then present the analytical expres-
sion for the magnetic force on the nanoparticles in Sec. II B.
Section III presents and discusses numerical examples for
both and Sec. IV draws a conclusion.

II. METHODS

A. Transport of nanoparticles: Smoluchowski
advection-diffusion equation

We assume that the magnetic nanoparticles are dispersed
in the fluid in a stable colloidal suspension, so the particle
concentration φNP is small (φNP � 1). We therefore assume
that nanoparticles do not interact with each other, i.e., we
neglect the interparticle forces for now, and we assume that
the nanoparticles do not influence the fluid flow. Here, we
interpret φNP as the (dimensionless) mass fraction of the
nanoparticles in the fluid. In general, φ can be any intensive
quantity, e.g., mass concentration, volume concentration, or
molar concentration.

The concentration of the nanoparticles φNP is governed by
the mass balance equation

∂φNP

∂t
+ ∇ · qtot = 0, (1)

where qtot denotes the total flux. Here, we assume that neither
sources nor sinks are present. The total flux is the sum of three
contributions,

qtot = qdiff + qadv + qmag, (2)

arising from diffusion, advection, and the magnetic force,
respectively.

First, the diffusive flux qdiff arises from a local concentra-
tion gradient ∇φNP and is described by Fick’s first law,

qdiff = −D∇φNP, (3)

with the diffusion coefficient D. Second, the advective flux
qadv arises from the velocity vadv of the fluid advecting the
nanoparticles and is given by

qadv = vadvφ
NP.

The fluid velocity vadv might be given by solving the underly-
ing flow problem, e.g., the Navier–Stokes equations or Darcy
flow in a porous medium. For the sake of simplicity in this
paper, we here directly prescribe the velocity of the fluid.

When the nanoparticles are not only subjected to fluid flow
but additionally to a magnetic force, we include an additional
magnetophoretic flux qmag depending on the magnetic force
Fmag. Typically, the resulting magnetophoretic velocity vmag
is assumed to be directly proportional to the applied force,
e.g., see Refs. [16,21], resulting in a magnetophoretic flux of

qmag = vmag φNP with vmag = ζ−1Fmag, (4)

where ζ = 6πμ�RNP is the mobility of a particle of ra-
dius RNP in a fluid with dynamic viscosity μ�, based on
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Stokes’ law. Note that μ� denotes the dynamic viscosity of
the fluid by the superscript � (liquid) to distinguish it from the
magnetic vacuum permeability μ0 which we will introduce
in Sec. II B. Altogether, this results in the Smoluchowski
advection-diffusion equation [22]

∂φNP

∂t
− ∇ · (D∇φNP) + ∇ · (vadvφ

NP)

+ ∇ · (ζ−1Fmag φNP) = 0. (5)

Equation (4) assumes that the velocity is always directly
proportional to the applied force. Now consider an example of
a channel with an impenetrable wall and a force perpendicular
to the wall, as sketched in Fig. 1: The force results in a
velocity perpendicular to the wall, which in turn results in
the nanoparticles leaving the domain through the impenetrable
wall—which is obviously not physical.

We therefore introduce the mobility tensor M, which re-
lates the magnetophoretic velocity to the magnetic forces, i.e.,

vmag = MFmag, (6)

or more explicitly,⎡
⎣vx

vy

vz

⎤
⎦ =

⎡
⎣Mxx Mxy Mxz

Myx Myy Myz

Mzx Myz Mzz

⎤
⎦

⎡
⎣Fx

Fy

Fz

⎤
⎦, (7)

similar to Refs. [23,24] who used the same concept in a differ-
ent context. The mobility is a tensor field M(x) that depends
on the position x. Now, a force in a specific direction does
not necessarily result in a velocity in that direction, but only
if the particle can move in this direction, i.e., if the mobility
is nonzero. At an impenetrable wall, the nanoparticles cannot
move in the direction perpendicular to the wall, i.e., into the
wall, and thus the mobility is zero in this direction, resulting
also in zero velocity. All off-diagonal entries of the mobility
tensor M are also zero in our case: a force in one direction
only causes a velocity in the same direction and no “shear” ve-
locity. Inside the domain, Mxx = Myy = Mzz = ζ−1, which
reduces back to Eq. (4). At the impenetrable wall (at z = 0),
the diagonal entries tangential to the wall still equal the scalar
mobility, i.e., Mxx = Myy = ζ−1. However, the entry perpen-
dicular to the wall is zero Mzz = 0, as already mentioned
above. The mobility tensor at the impenetrable wall is thus
given by

Mwall =
⎡
⎣ζ−1 0 0

0 ζ−1 0
0 0 0

⎤
⎦. (8)

The key point here is that we employ the mobility as a tensor
field—as opposed to a scalar.

The final form of the Smoluchowski advection-diffusion
equation is then given by

∂φNP

∂t
− ∇ · (D∇φNP) + ∇ · (vadvφ

NP)

+ ∇ · (MFmagφ
NP) = 0. (9)

We solve this partial differential equation in time and
space for the concentration of the nanoparticles φNP. For time

discretization, we use the backward Euler method with a time
step size �t and initial conditions specified at t = 0. For spa-
tial discretization, we use the finite element method (FEM).
We first employ the standard Galerkin procedure to obtain the
weak form of Eq. (9), i.e., we multiply the strong form of
the equation by a test function and integrate over the domain.
We apply Gauss’ theorem to terms containing a second spatial
derivative, i.e., the diffusion term in our case, to decrease the
differentiability requirements of the solution function space.
We then discretize in space using linear shape functions, i.e.,
quadrilateral elements in two dimensions and hexahedral el-
ements in three dimensions. Finally, the resulting system of
equations is solved using one Newton–Raphson loop per time
step to obtain the solution at the nodes of the mesh. More
details on the concepts of FEM can be found in textbooks,
e.g., Refs. [25,26]. We use our in-house parallel multiphysics
research code 4C [27] as a computational framework.

Remark (Stabilization). In our case, Eq. (9) is dominated
by the two convective terms, which causes numerical instabil-
ities when using the standard Galerkin procedure. To stabilize
the equation, we use the streamline upwind Petrov–Galerkin
(SUPG) method [28], which introduces numerical diffusion
along streamlines in a consistent manner [29]. We choose the
stabilization parameter τ based on Ref. [30].

B. Magnetic force on the nanoparticles

Due to the permanent magnet, the magnetic nanoparticles
are subjected to a static nonhomogenous external magnetic
field H leading to a force Fmag. This force however does
not only depend on the magnetic field but also the magnetic
response of the particles.

Due to the small size of the particles, we assume that
they can be modeled as an equivalent point dipole lo-
cated at the center of the particle (effective dipole moment
approach [7,16,31]). Also, due to the small size, the nanopar-
ticles are superparamagnetic: They are magnetized with a
large magnetic susceptibility χNP when an external magnetic
field is applied but do not retain their magnetization after the
external magnetic field is removed. Hence, when a superpara-
magnetic nanoparticle is placed in an external magnetic field,
it magnetises, resulting in a magnetic moment mNP. The force
on the magnetic dipole induced in the nanoparticle is then
given by

Fmag = μ0(mNP · ∇)H, (10)

with the magnetic vacuum permeability μ0. Note that we
assume that the fluid (in our case, water) and air are
nonmagnetic, and thus assume that their permeability is
equal to the vacuum magnetic permeability, given by μ0 =
1.25663706212(19) × 10−6 N/ A2 [32]. The exact values for
water and air differ from the value for vacuum at the fifth
and seventh decimal places, respectively. Using the magneti-
zation MNP as the magnetic moment per volume, i.e., MNP =
mNP/V NP with V NP being the volume of the nanoparticle, the
force can be written as

Fmag = μ0V
NP(MNP · ∇)H. (11)

Thus, the force depends on the magnetization of the nanopar-
ticle and the derivatives of the applied magnetic field.

065309-3



WIRTHL, WIRTHL, AND WALL PHYSICAL REVIEW E 109, 065309 (2024)

FIG. 2. Magnetization curve for a superparamagnetic nanopar-
ticle with linear magnetization and saturation above an applied
magnetic field of Hsat, assuming a saturation magnetization of Msp =
478 kA m−1 [16] and magnetic susceptibility of χNP � 1 [16,36,37].

The magnetized nanoparticles also produce a magnetic
field, affecting the nearby nanoparticles. For now, we assume
that the magnetic force that the nanoparticles exert on each
other is negligible compared to the magnetic force exerted by
the external magnetic field—which is a valid assumption for
low concentrations of nanoparticles and hence large distances
between the nanoparticles [15,16,33–35]. We will investigate
and discuss the validity of this assumption in Sec. III C.

1. Magnetization model

To relate the magnetization of the nanoparticle to the ap-
plied magnetic field, we use a linear magnetization model with
saturation, given by

MNP = f (|H|)H, (12)

with

f (|H|) =
{

3χNP

3+χNP if |H| < Hsat,
Msp

|H| if |H| � Hsat,
(13)

with Msp being the saturation magnetization and Hsat the field
strength for which the particle reaches saturation, as presented
by Refs. [7,16,21]. An example of such a magnetization curve
is shown in Fig. 2. If the particle is below saturation, then its
magnetization is proportional to the applied magnetic field

MNP = 3χNP

3 + χNP
H, (14)

and the particle reaches saturation for

Hsat = χNP + 3

3χNP
Msp, (15)

which can be derived based on the effective dipole mo-
ment approach [16,31]. Above saturation, the magnetization
is equal to the saturation magnetization Msp,

MNP = Msp
H
|H| . (16)

The magnetization is always aligned with the applied mag-
netic field.

Finally, as discussed above, the particles are superparam-
agnetic: Their magnetic susceptibility is much higher than
the magnetic susceptibility of paramagnetic materials, i.e.,
χNP � 1 [16,36,37]. Equation (13) can then be simplified to

f (|H|) =
{

3 if |H| < 1
3 Msp,

Msp

|H| if |H| � 1
3 Msp.

(17)

In sum, the magnetic force on the nanoparticles is given by

Fmag = μ0V
NP f (|H|)(H · ∇)H, (18)

which shows that the magnetic force depends both on the
strength of the magnetic field and its derivatives.

2. Analytical expression for the magnetic field

Usually, the magnetic field H is obtained by solving
Maxwell’s equations numerically. Analytic expressions are
only well-known for some classic textbook cases: the mag-
netic field of point multipoles and infinitely long wires
carrying a current [38]. However, for a finite-length cylin-
drical magnet, which we have here, Derby and Olbert [39]
and Caciagli et al. [40] presented analytic expressions based
on the elliptic integrals. These analytic expressions are ben-
eficial because the magnetic quantities can be evaluated at
all coordinates with minimal computational effort compared
to numerically solving Maxwell’s equations, e.g., using the
FEM. In the following, we summarize the analytic expression
for the magnetic field, as presented by Refs. [39,40], and
then extend this by deriving the analytic expressions for the
magnetic force.

The cylindrical magnet is magnetized in the longitudinal
direction. The field components of the magnetic field H in
cylindrical coordinates (ρ, φ, z) are given by

Hρ (ρ, z) = MsRmag

π
[α+P1(k+) − α−P1(k−)] (19a)

and

Hz(ρ, z) = MsRmag

π (ρ + Rmag)
[β+P2(k+) − β−P2(k−)] (19b)

and Hφ = 0 due to the radial symmetry of the system [39,40].
Here, Ms denotes the magnetization of the cylindrical magnet
and Rmag its radius. The origin of the cylindrical coordinate
system is located at the center of the magnet. Equations (19)
are mathematically well-behaved except on the edge of the
magnet at ρ = ±Rmag and z = ± Lmag

2 [39]. The two auxiliary
functions P1 and P2 are defined as

P1(k) = K(1 − k2) − 2

1 − k2
[K(1 − k2) − E (1 − k2)],

(20a)

P2(k) = − γ

1 − γ 2
[�(1 − γ 2, 1 − k2) − K(1 − k2)]

− 1

1 − γ 2
[γ 2�(1 − γ 2, 1 − k2) − K(1 − k2)],

(20b)
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with the following auxiliary variables

ρ± = Rmag ± ρ, ζ± = Lmag

2
± z, α± = 1√

ζ 2± + ρ2+
,

β± = ζ±α±, γ = −ρ−
ρ+

, k± =
√

ζ 2± + ρ2−
ζ 2± + ρ2+

,

and Lmag being the length of the cylindrical magnet.
Equations (20) are based on the complete elliptic integrals

of the first, second, and third kind, which in Legendre’s nota-
tion are written as

K(m) =
∫ π/2

0

dθ√
1 − m sin2 θ

, (21a)

E (m) =
∫ π/2

0

√
1 − m sin2 θ dθ, (21b)

�(n, m) =
∫ π/2

0

dθ

(1 − n sin2 θ )
√

1 − m sin2 θ
. (21c)

All three kinds of elliptic integrals can be efficiently evaluated
using Carlson’s functions RF , FD, and RJ [41,42] as

K(m) = RF (0, 1 − m, 1), (22a)

E (m) = RF (0, 1 − m, 1) − m

3
RD(0, 1 − m, 1), (22b)

�(n, m) = RF (0, 1 − m, 1) + n

3
RJ (0, 1 − m, 1 − n). (22c)

Numerical Recipes [43] provides algorithms and source code
for evaluating Carlson’s functions, which are also imple-
mented in Mathematica [44] and SciPy [45].

Remark (Parameter and sign conventions in the elliptic
integrals). Note that Numerical Recipes [43, p. 315] uses a
different sign convention for the variable n in the third elliptic
integral, such that

�(n, m) =
∫ π/2

0

dθ

(1 + n sin2 θ )
√

1 − m sin2 θ

= RF (0, 1 − m, 1) − n

3
RJ (0, 1 − m, 1 + n).

FIG. 3. Magnetic field H (a) and magnetic force Fmag (b) on the
nanoparticles of a cylindrical magnet with radius Rmag = 2 mm and
length Lmag = 7 mm.

Additionally, Ref. [40] uses the convention with parameter
k, where m = k̃2 = √

1 − k2 in their Eq. (6) in Ref. [40].
Mathematica [44] and SciPy [45] however use the parameter
m, as presented here in Eqs. (21).

Figure 3(a) shows an example of the magnetic field H
of a cylindrical magnet with radius Rmag = 2 mm, length
Lmag = 7 mm and magnetization Ms = 1 × 106 Am−1. Inside
the magnet, the magnetic field is given by H = B

μ0
− Ms, with

the magnetic flux density B. For a longitudinally magnetized
magnet, the magnetization vector is Ms = Msez, with ez be-
ing the unit vector in z direction. The magnetization vector
is constant inside and zero outside the magnet. The result
for the magnetic field H in Fig. 3(a) is qualitatively well
known: the magnetic field lines start at one pole and end at
the other, forming fanned-out circular segments around the
magnet.

3. Analytical expression for the magnetic force

As discussed above, the magnetic force Fmag depends on
the magnetic field and its derivatives. Since the first deriva-
tives of the elliptic integrals are known analytically, we can
derive an analytical expression for the magnetic force Fmag.
Evaluating Eq. (18) for the analytical expression for the mag-
netic field, given by Eqs. (19), results in the force components
given by

Fρ (ρ, z) = μ0V NP f (|H|)M2
s

4π2ρ+ρ3a1a2a3a4

[(
a4c1ζ+E (ψ+)

α−
+ a3c2ζ−E (ψ−)

α+
− a3a4ζ+K(ψ+)

α−
− a3a4ζ−K(ψ−)

α+

)
ρ2Q2

+
(

a4
(
b2

1 + b3ρ
2
)
E (ψ+)

α−
− a3

(
b2

2 + b4ρ
2
)
E (ψ−)

α+
+ a3a4b2K(ψ−)

α+
− a3a4b1K(ψ+)

α−

)
ρ+Q1

]
(23a)

and

Fz(ρ, z) = μ0V NP f (|H|)M2
s

4π2a1a2a3a4

[(
a3a4ζ+K(ψ+)

α−
+ a3a4ζ−K(ψ−)

α+
− a4c1ζ+E (ψ+)

α−
− a3c2ζ−E (ψ−)

α+

)
Q1

ρ2

+
(

a3c4E (ψ−)

α+
− a4c3E (ψ+)

α−
+ a3a4K(ψ+)

α−
− a3a4K(ψ−)

α+

)
Q2

ρ+

]
, (23b)
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with two auxiliary functions Q1 and Q2 based on the elliptic
integrals

Q1(α+, α−, ψ+, ψ−, a1, a2, c1, c2)

= a2E (ψ−)

α+
− a1E (ψ+)

α−
+ c1K(ψ+)

α−
− c2K(ψ−)

α+
,

Q2(α+, α−, ψ+, ψ−, ρ+, ρ−, ζ+, ζ−, β )

= ρ+ζ+K(ψ+)

α−
+ ρ+ζ−K(ψ−)

α+
+ ρ−ζ+�(β,ψ+)

α−

+ ρ−ζ−�(β,ψ−)

α+
.

and the following auxiliary variables:

ρ± = Rmag ± ρ, ζ± = Lmag

2
± z, β = 4ρRmag

ρ2+
,

a1 = ρ2
+ + ζ 2

+, a2 = ρ2
+ + ζ 2

−, a3 = ρ2
− + ζ 2

+,

a4 = ρ2
− + ζ 2

−, α+ = 1√
a1

, α− = 1√
a2

,

ψ+ = 4ρRmag

a1
, ψ− = 4ρRmag

a2
, b1 = ζ 2

+ + R2
mag,

b2 = ζ 2
− + R2

mag, b3 = ζ 2
+ − R2

mag, b4 = ζ 2
− − R2

mag,

c1 = b1 + ρ2, c2 = b2 + ρ2, c3 = b3 + ρ2,

c4 = b4 + ρ2.

Note that Eqs. (23) are undefined at ρ = 0 and ρ = ±Rmag.
Outside the magnet, these singularities are removable and
Fmag is extendable.

The coordinate transformations from cylindrical coordi-
nates to cartesian coordinates are given by

Fx(x, y, z) = Fρ (ρ, z) cos(ϕ), (24a)

Fy(x, y, z) = Fρ (ρ, z) sin(ϕ), (24b)

Fz(x, y, z) = Fz(ρ, z), (24c)

with ρ =
√

x2 + y2 and ϕ = arctan(x/y). Note that most
programming languages provide a function arctan2(y,x),
which is defined for all x, y ∈ R and returns the correct angle
ϕ with respect to the quadrant of the point (x, y).

Figure 3(b) shows the magnetic force Fmag for a cylin-
drical magnet with radius Rmag = 2 mm and length Lmag =
7 mm. Calculating the magnetic force is only meaningful out-
side the magnet. The magnetic force is on the order of pN,
similar to the order of magnitude estimated in Ref. [11] for
a similar configuration. We also provide a Python implemen-
tation of the analytical expressions for the magnetic field and
force [46].

III. NUMERICAL EXAMPLES AND DISCUSSION

In the following, we present and discuss numerical exam-
ples to demonstrate the capabilities of the proposed model. In
Sec. III A, we start with a two-dimensional example where
we investigate the influence of the mobility tensor field on
the nanoparticle capture at the impenetrable wall. Next, in
Sec. III B, we investigate the nanoparticle distribution in

three dimensions for different positions and orientations of
a finite-length cylindrical magnet, leveraging the analytic ex-
pression for the magnetic force, which we derived. Finally, in
Sec. III C, using the analytical expressions for the magnetic
field and force, we examine the validity of the assumption
that the interparticle forces are negligible compared to the
magnetic force exerted by the external magnetic field.

A. Influence of the mobility tensor field

We first present a two-dimensional example where we in-
vestigate the influence of the mobility tensor field M(x) on
the distribution of the magnetic particles.

The computational setup is depicted in Fig. 4(a). We study
a two-dimensional slice in the XZ plane with a size of 9 mm ×
3.5 mm, which is discretized with 180 × 70 linear rectangular
elements. The time step size is �t = 1 s and the total sim-
ulation time is 150 s. For simplicity, we consider a constant
advective flow velocity vadv = 0.1 mms−1 along the x axis
and a constant magnetic force Fmag = 0.2 pN along the z axis,
which is a reasonable order of magnitude for the considered
cylindrical magnets [see Fig. 3(b)]. For a waterlike fluid with
a viscosity of μ� = 1 × 10−3 Pas and nanoparticles with a ra-
dius of RNP = 100 nm, this corresponds to a magnetophoretic
velocity of vmag ≈ 0.1 mms−1. We assume a diffusion coeffi-
cient of D = 3 × 10−3 mm2 s−1. On the in-flow boundary at
x = 0, we prescribe the concentration of nanoparticles as a
Dirichlet boundary condition given by a bell-shaped function
with a maximum value of φNP = 1.0 × 10−6. At the initial
time t = 0 s, the concentration of nanoparticles is zero in the
domain apart from the in-flow boundary where it is prescribed
by the same bell-shaped function used for the Dirichlet bound-
ary condition.

The wall at the bottom of the domain is impenetrable, and
we prescribe a Dirichlet boundary condition for the concen-
tration of nanoparticles given by φNP

DBC = 0. Additionally, the
z component of the mobility tensor field is zero at the bottom
wall, i.e., Mzz = 0. We compare the results for the nanoparti-
cle distribution given different functions for Mzz(z), as given
in Fig. 4(b). On the one hand, we consider the Heaviside
function Mzz(z) = H(z − δ), with δ being the boundary layer
thickness: this means that the mobility of the nanoparticles is
zero in the boundary layer. We choose δ so that the boundary
layer is two or three elements wide (given an element size
of 0.05). On the other hand, we consider different smooth
functions for Mzz(z), which have the value one inside the
domain and have different slopes towards the boundary.

Figure 4(c) presents the results given the different func-
tions for Mzz(z). In all cases, the nanoparticles accumulate
at the impenetrable wall at the bottom of the domain, which
was the primary motivation for introducing the mobility ten-
sor field. All functions lead to a similar distribution of the
nanoparticles, with the thickness of the layer of captured
nanoparticles depending on the function Mzz(z). However,
it shall be noted that the smooth functions are—as to be
expected—numerically better behaved than the Heaviside
function, which can cause convergence issues.

Defining a tensor field M(x) is a simple way to model
the accumulation of nanoparticles at an impenetrable wall.
It is worth noting that most similar studies in the literature,
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FIG. 4. Investigation of the influence of the mobility tensor field on the nanoparticle distribution (a) Computational setup. (b) Functions
for the z-component Mzz(z) of the mobility tensor field. (c) Results for the nanoparticle distributions at t = 150 s. The colorbar applies to all
plots.

e.g., Refs. [16,17,47], do not clarify and also seem to not
use appropriate boundary conditions for the nanoparticles
at the wall. This allows for studying the trajectories of the
nanoparticles in the bulk of the fluid, but it is impossible to
investigate the capture of the nanoparticles at a wall. Only
Khashan et al. [15] presented and discussed an approach for an
impermeability condition at the wall: They set the combined
advective-diffusive flux to zero,

φNP(vadv + vmag) · n − D∇φNP · n = 0. (25)

We can drop the advective velocity because any physically
plausible velocity field cannot have a component perpendic-
ular to an impermeable wall, either by directly imposing a
physically plausible velocity field (as we do here) or by pre-
scribing a no-slip boundary condition and solving the fluid
equations. Khashan et al. [15] subsequently set the normal
component of the magnetophoretic velocity at the wall also
to zero. Equation (25) then reduces to the classical Neumann
boundary condition D∇φNP · n = 0, which we also impose.
In sum, their boundary condition is hence equivalent to our
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TABLE I. Parameters for the magnetic nanoparticles, the magnet, and the fluid.

Symbol Parameter Value Units Ref.

Magnetic nanoparticles
RNP Radius of the nanoparticles 100 nm [16]
D Diffusion coefficient 3 × 10−3 mm2 s−1 Assumed
Msp Saturation magnetization 478 kAm−1 [16]

Magnet
Rmag Radius of the magnet 2.5 mm Assumed
Lmag Length of the magnet 5.0 mm Assumed
Ms Magnetization of the magnet 1 × 106 Am−1 [16]

Fluid (water)
μ� Dynamic viscosity 1 × 10−3 Pas Known

approach based on setting the normal component of the mo-
bility tensor to zero, i.e., Mzz = 0. Nevertheless, Khashan
et al. [15] also stated that their employed boundary condition
poses a numerical challenge due to the steep concentration
gradient at the wall. They solve this problem by prior grid
refinement adaptive to the magnetic field gradient. We circum-
vent it by setting the mobility to zero on several elements or
by using a smooth function.

B. Nanoparticle capture with a cylindrical magnet
of finite length

We now investigate a three-dimensional example with a
cylindrical magnet positioned below the fluid domain. The
analytical solution for the magnetic force enables us to effi-
ciently compare different orientations of the magnet.

The computational setup is the one sketched in Fig. 1. It
has a size of 9 mm × 4 mm × 3.5 mm, which is discretized
with 180 × 160 × 70 linear hexahedral elements. The time
step size is again �t = 1 s and the total simulated time
150 s. For simplicity, we also again assume a constant ad-
vective flow velocity of vadv = 0.1 mms−1. The parameters
for the magnetic nanoparticles, the magnet and the fluid
are given in Table I. The nanoparticle concentration on the
in-flow boundary is again prescribed as a bell-shaped func-
tion with a maximum value of φNP = 1.0 × 10−6. We use
a smooth function for the mobility tensor field, i.e., Func-
tion 4 shown in Fig. 4(b) and discussed in the previous
subsection. The cylindrical magnet has a radius of Rmag =
2.5 mm and a length of Lmag = 5.0 mm and is centered be-
low the domain with a distance of 0.2 mm to the bottom
wall.

In a first step, we compare three different orientations
of the magnet: (a) The magnet is oriented vertically (along
the z axis); (b) the magnet is oriented horizontally (along
the x axis); (c) the magnet is rotated 45 ◦ around the y
axis.

Figure 5 shows the concentration of the nanoparticles
for the three different magnet orientations. For the verti-
cal orientation, the nanoparticles are attracted to the magnet
and accumulate at the bottom wall in a circular shape di-
rectly above the magnet, similar to experimental results, e.g.,
presented by Ref. [5]. For the horizontal orientation, the
nanoparticles accumulate above the two ends of the magnet,
forming two ellipses. For the 45 ◦ orientation, the nanopar-

ticles form one ellipse above where the edge of the magnet
is closest to the bottom wall. Examples in the literature are
restricted to a single orientation of a cylindrical magnet of
infinite length, e.g., Refs. [2,16]. In contrast, we show that
the nanoparticles accumulate above the ends of the magnet—
which can obviously not be investigated with a magnet of
infinite length.

Further, we here leverage what Derby and Olbert [39]
and Caciagli et al. [40] stated: Their derived analytical ex-
pressions for the magnetic field of magnetized cylinders are
especially convenient for applications where magnetic forces
on magnetic dipoles are required—nanoparticles being one
such example. Our results for the magnetic force are restricted
to a cylindrical magnet of finite length with longitudinal mag-
netization. Similar analytical solutions for cylindrical magnets
with arbitrary magnetization can also be derived based on
the respective analytical expressions for the magnetic field
presented by Caciagli et al. [40]. However, if the magnet
is of an arbitrary shape, then the magnetic field and force
must be evaluated based on numerically solving Maxwell’s
equations.

Several studies in the literature, e.g., Refs. [2,16–20] re-
duced the setup to a two-dimensional problem in the XZ
plane and assumed the cylindrical magnet to be infinitely
long. In this case, the magnetic force can also be expressed
analytically, as derived in Ref. [16], and given by

Fx = −μ0V
NP f (|H|)M2

s R4
mag

x

2(x2 + z2)3 (26a)

and

Fz = −μ0V
NP f (|H|)M2

s R4
mag

z

2(x2 + z2)3 , (26b)

where the coordinate system is at the center of the magnet
and the longitudinal axis of the magnet is perpendicular to the
XZ plane. We now compare results based on this assumption
of an infinitely long magnet to the results for a finite-length
magnet, as derived in this contribution. In both cases, we
assume that the magnet has a radius of Rmag = 2.5 mm and
a distance of � = 0.2 mm to the bottom boundary of the
domain. The cylindrical magnet of finite length has a length
of Lmag = 5.0 mm, as used in the previous examples. For
simplicity, we here assume that f (|H|) = 1.0 = const in both
cases.
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FIG. 5. Results for the nanoparticle capture at t = 150 s with a cylindrical magnet of finite length positioned below the domain. (a) The
magnet is oriented vertically (along the z axis). (b) The magnet is oriented horizontally (along the x axis). (c) The magnet is rotated 45 ◦ around
the y axis. The colorbar applies to all plots.

Figure 6 shows the magnetic force and the resulting
nanoparticle distributions for the magnet of infinite length
compared to the finite-length magnet. As was also evident
in Fig. 3, the magnetic force of the finite-length magnet
varies along the longitudinal axis of the magnet, and so we
compare the force in different slices along the longitudinal
axis, in this case the y axis (but the z axis in Fig. 3). Fig-
ure 6 shows that the direction of the magnetic force is the

same in all cases, but the magnitude is significantly different.
For the cylindrical magnet of infinite length, the maximum
force in the domain is 0.72 pN. For the finite-length magnet,
the maximum force varies considerably depending on the
position of the slice: the maximum magnitude is 0.06 pN,
0.09 pN, 1.02 pN, and 1.65 pN for the slices at y = 0.0 mm,
1.0 mm, 2.3 mm, and 2.5 mm, respectively. Accordingly, the
nanoparticle distributions are also markedly different: The
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FIG. 6. Comparison of the magnetic force and the resulting nanoparticle distribution for a cylindrical magnet of (a) infinite length and
(b) finite length with Lmag = 5.0 mm.

nanoparticles accumulate in a higher concentration above the
ends of the finite-length magnet than along the infinitely long
magnet.

In sum, one has to be aware that the assumption of
an infinitely long magnet leads to significantly different

results than a finite-length magnet. The analytical solution
for the finite-length magnet—as derived in this contribution—
provides a simple and computationally efficient way to
investigate the transport of nanoparticles in a more realistic
setup.
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FIG. 7. Comparison of the force exerted by the permanent magnet to the interparticle forces (a) Setup of the investigated case. (b) Externally
applied force Fmag. (c) Interparticle force F12 between two nanoparticles with a distance r between their centers. Note the different orders of
magnitude of the forces, which are represented by the different colormaps used in the subfigures.

C. Comparison of the force exerted by the permanent magnet
to the interparticle forces

In this contribution, we only consider the external mag-
netic force the permanent magnet exerts on the nanoparti-
cles. However, the nanoparticles also exert forces on each
other, and thus the question arises when these interpar-
ticle forces are negligible compared to the force exerted
by the permanent magnet. So far in this contribution, we
have assumed that the low concentration of nanoparti-
cles ensures that the interparticle distance is large enough
for the interparticle forces to be negligible, similar to
Refs. [15,16,33–35].

The cutoff length of dipole-dipole interactions in nanopar-
ticle assemblies is about three particle diameters [48].
Assuming that the nanoparticles are more than three parti-
cle diameters apart seems reasonable for the nanoparticles
dissolved in the flowing fluid in our previous examples. How-
ever, when the nanoparticles accumulate at the bottom of the
domain, they come very close to each other, and thus the
interparticle forces might become relevant there. Therefore,

we compare the external magnetic force to the interparticle
forces. We use our analytical expressions for the magnetic
field and the external magnetic force and build on the force
comparison presented by Pálovics and Rencz [11], who in-
vestigated a similar setup.

We analyze a simplified example shown in Fig. 7(a): we
consider two nanoparticles 1© and 2© with a diameter of dNP =
200 nm and a distance r between their centers located at x1

and x2. The cylindrical magnet is positioned vertically below
the domain [see previous example in Fig. 5(a)]. We assume
that the two nanoparticles are aligned with the magnetic field
H such that r is parallel to H . We again assume f (|H|) =
1.0 = const for simplicity.

In the following, the nonbold symbols denote the magni-
tudes of the vectors, e.g., r = |r|, and a hat denotes the unit
vector in the given direction, e.g., r̂ = r/r.

As discussed in Sec. II B, the nanoparticles are modeled as
point dipoles, with the magnetic moment m1 of nanoparticle
1© given by

m1 = V NPH. (27)
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The magnetic moment of the nanoparticle is aligned with
the applied magnetic field. Since the nanoparticles are
much smaller than the computational domain, we assume
that H (x1) = H (x2) and hence m1 = m2. The magnetized
nanoparticle 1© generates a magnetic field H1 at the position r
of nanoparticle 2© given by Ref. [38] as

H1 = 1

4πr3
[3(m1r̂)r̂ − m1]. (28)

In our case, m1 ‖ r and Eq. (28) simplifies to

H1 = 1

2πr3
m1. (29)

Hence, the total magnetic field H∗
2 at the position r of nanopar-

ticle 2© is given by

H∗
2 = H + H1 (30)

and accordingly, the magnetic moment of nanoparticle 2© also
changes to

m∗
2 = V NPH∗

2. (31)

Thus, the magnetic moments of both particles increase due
to the cross-effects. We could substitute the new values for
the magnetic moments back into the previous equations to
calculate a second correction of the magnetic field and mag-
netic moments. In practice, this is not necessary, and we omit
it [11,34].

The force F12 between the two particles, i.e., the interpar-
ticle force, is given by Ref. [49] as

F12 = 3μ0m∗
1m∗

2

4πr4
[r̂(m̂∗

1m̂∗
2 ) + m̂∗

1(r̂m̂∗
2 )

+ m̂∗
2(r̂m̂∗

1 ) − 5r̂(r̂m̂∗
1 )(r̂m̂∗

2 )]

= −3μ0m∗
1m∗

2

2πr4
r̂. (32)

We evaluate the interparticle force F12 for differ-
ent distances r between the two nanoparticles: r ∈
{5dNP, 3dNP, 2dNP, dNP}. Figure 7(b) shows the force Fmag
exerted by the external magnet and Fig. 7(c) the interparticle
force F12. For a distance of five particle diameters, the forces
are on the same order of magnitude, namely pN. However, the
interparticle force strongly increases for smaller distances: for
a distance of one particle diameter, it is about three orders
of magnitude larger than the force of the external magnet,
especially for the particles at the bottom of the domain. This is
in good agreement with the results of Pálovics and Rencz [11].
The nanoparticles captured at the bottom of the domain may

thus interact with each other, making interparticle forces rel-
evant. Therefore, if one is interested in the behavior of these
captured nanoparticles and the precise profile at the bottom of
the domain, then it is necessary to consider the interparticle
forces. In this case, the continuum approach used in this
study might not be the best choice. Instead, a particle-based
approach, which calculates forces on each individual particle,
would be more appropriate. However, the focus of our study
is not on the fate of individual particles captured at the impen-
etrable wall or the exact concentration profile at the boundary.

These results underline that one cannot simply assume that
the interparticle forces are negligible but must carefully assess
whether they are relevant in the configuration studied with the
assumptions made.

IV. CONCLUSION

In this contribution, we presented a continuum approach
based on the Smoluchowski advection-diffusion equation to
model the capture of magnetic nanoparticles under the com-
bined effect of fluid flow and magnetic forces. We included a
simple and numerically stable way to consider an impenetra-
ble boundary where the nanoparticles are captured. Further,
the analytical expression for the magnetic force of a cylin-
drical magnet of finite length on the magnetic nanoparticles,
which we derived, provides an efficient way to model the
capture of magnetic nanoparticles in a more realistic setup in
three dimensions.

Since many nanoparticle designs fail in clinical trials, our
modeling efforts can help to gain insight into the behavior of
magnetic nanoparticles and help to design prototypes. While
our expression for the magnetic force is restricted to cylindri-
cal magnets, this is the configuration that is commonly used
in experiments, e.g., when studying magnetic nanoparticles in
fluidic devices [3–5]. Hence, such an in silco model can help
with experimental design to limit the number of experiments
and thus the costs to the most promising configurations. Fi-
nally, the presented model can serve as a precursor to more
complex models, e.g., including magnets of arbitrary shape
or considering complex biomechanical models coupling the
transport of the nanoparticles in the blood vessels with the
crossing of the vessel walls and the accumulation in the tu-
mour tissue—both in vivo and in silico [6,50,51].
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