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Abstract

This dissertation is a compilation of three publications aimed at advancing the

scientific understanding of running analysis by using sensor data for the detection

of athletes’ movements. The research progresses through three key stages: first,

validating the technology; second, developing a methodology for data collection

in real-world scenarios; and third, leveraging the collected data for performance

analysis (PA). In addition, two co-authored publications covering these topics are

integrated.

The first study, "Validation of Player and Ball Tracking with a Local Positioning

System" evaluates the accuracy of LPSs in tracking players and balls in sports

settings. By comparing positional data, speed, acceleration and distance mea-

sures against an infra-red motion capturing system as criterion reference, the

study investigates tracking accuracy and, ultimately, the error margins of result-

ing Performance Indicators (PIs). The study’s results show a positional error

(RMSE) of ≈8cm and ≈15cm for player and ball tracking in a small-sided game

scenario.

The second study, "Detection of Ground Contact Times with Inertial Sensors

in Elite 100-m Sprints under Competitive Field Conditions" explores the use of

IMUs to accurately measure PIs, such as Ground Contact Time (GCT), in sprint-

ing movements. This study was conducted in a field setting with German elite

sprinters as participants to demonstrate practical applicability and relevance. The

findings show that IMUs can reliably capture detailed temporal data on perfor-

mance, indicating parameters essential for understanding sprint mechanics and

optimizing performance variations.

The third study, "A Pilot Study in Sensor Instrumented Training (SIT) - Ground

Contact Time for Monitoring Fatigue and Curve Running Technique," examines

the possibilities of SIT in enhancing mid-distance running sessions. This re-

search investigates GCT variations between straight and curved running as well
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as the use of GCT as a fatigue indicator in interval training. This study’s findings

illustrate the potential of SIT in mid-distance running for the practical use case of

refining running technique and monitoring fatigue based on GCT measurement.

The ability to capture granular kinematic data offers coaches and athletes a

data-driven approach to enhance training regimens and optimize performance.

SIT represents an advancement in the application of sports technology, enabling

more tailored and effective training methodologies in the near future.

Two co-authored studies, "Drone-Based Position Detection in Sports: Valida-

tion and Applications" and "Simulating Defensive Trajectories in American Foot-

ball for Predicting League Average Defensive Movements" further expand on run-

ning analysis using positional tracking data. The former study demonstrates how

drone-based systems can capture detailed positional running data, enhancing

traditional methods of sports analysis. The second study shows the integration

of imitation learning algorithms, a variant of reinforcement learning, as a possible

analysis tool in sports. This makes running data, for example, a promising asset

for real-time performance monitoring and strategic planning.

The dissertation contributes to the current scientific development of PA and

sports informatics and provides insights for coaches, athletes and researchers. It

also demonstrates the potential of advanced tracking systems to enhance train-

ing methodologies and improve athletic performance.
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1 Introduction

1.1 Technology and Sports

Technological support can be frequently found in almost all areas of modern

life. Every day, we can recognize the improvement of ordinary products by im-

plementing technology to form new achievements. This progress also includes

not-so-prominent use cases like sports. The implementation and analysis of data

has gained more and more importance for various stakeholders (Link, 2018). In

this intersection of sports and technology, the evolution of sensor-based diag-

nostics provides new methods for understanding and enhancing athletic perfor-

mance (Baca et al., 2022). Different Position Detection (PD) methods, like Global

Positioning System (GPS) or Local Positioning System (LPS), work with sensors

attached to the athlete (Buchheit & Simpson, 2017). The integration of Inertial

Measurement Units (IMUs) sensors can help to understand human motion and,

ultimately, an athlete’s performance. The exploration of this field needs scientific

support on the way from theoretical understanding to the practical application of

sensor technologies.

Running, a fundamental element in most sports, requires understanding vari-

ous areas, such as biomechanics, human physiology and performance metrics.

Sensor technology’s applicability has promised a beneficial development in this

domain, offering objective insights into athletes’ movements. Robertson et al.

(2023) describe that technology in sports should be integrated with care. This in-

cludes the assessment of the accuracy of a new technology, e.g. by validation of

a methodology (pillar A & B: Quality Assurance & Measurement and Established

Benefit). In pillar C & D (Ethics & Security and User Experience), the feasibil-

ity of an implementation is highlighted. Pillar D & E (User Experience and Data

Management) provide guidance for the integration into training. Therefore, the
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journey from a technological concept to a practical diagnostic tool involves chal-

lenges, including validating accuracy, determining the feasibility of implementa-

tion and integrating it into athletes’ training programs.

Using this guideline, in the first step, the adequateness of different sensor-

based systems needs to be evaluated. Commonly used systems include LPS

and IMU. The findings from these initial investigations provide a scientific ba-

sis for selecting appropriate technologies and highlight the complexities involved

in accurately capturing and interpreting athletic movement. Afterward, such a

system can support athletes and coaches by providing data for Performance

Analysis (PA). Ultimately, all sensor systems need to be integrated into athletes’

daily training and monitoring regimes. This includes examining user-friendliness,

data interpretation and the ability of these systems to provide interoperatabil-

ity (Robertson et al., 2023) for athletes and coaches. This integration leads to

various assessments of different measurement data, which can be combined to

provide a more holistic understanding of the movements.

2
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1.2 Motivation

This dissertation examines sensor-based technologies and their application in

running diagnostics. Ultimately, the project aims to advance the field of PA and

guides the way towards Sensor Instrumented Training (SIT). It not only con-

tributes to the theoretical understanding of sports but also has practical impli-

cations for athletes and coaches in competitions, as well as for everyday training

and competition.

Identification and Validation of Sensor-Based Position Detection Methods

The first aim of this thesis is to identify and validate a sensor-based PD method

for accurately measuring running performance components. The outcome of this

aim should be the adequate usage of scientific validation methodology that can

serve as the foundation for research and practice in the following parts. Ensuring

accurate and reliable measurements is critical for the development of further an-

alytical techniques and for building confidence in the use of these technologies in

various sports settings. Therefore, every technology that is used afterward (e.g.,

for PA) needs to be validated in this setting.

Integration of Sensor-Based Analysis Methods in Real-World Running Scenarios

The second aim focuses on the integration of a sensor-based analysis method

in real-world running scenarios. Beyond the development of an appropriate

method, it is crucial to validate this method within the context of its intended

use case (Luteberget & Gilgien, 2020). This involves testing the method in actual

sports environments to demonstrate its usability (Robertson et al., 2023) and,

ultimately, effectiveness. The successful integration of the assessment method

into sports practice should illustrate its applicability and utility for further PA.

Demonstration of Sensor-Instrumented Training

The final aim is to combine and showcase different methods as a demonstration

for SIT in the context of running. This aim should highlight the advantages of SIT,

exploring its potential as a powerful tool in sports science and PA. By showcasing

3
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the benefits of integrating various sensor-based methods (Baca, 2015), this dis-

sertation aims to illustrate how SIT can enhance performance analysis, optimize

training regimens, and provide valuable insights for athletes and coaches.

4
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2 Context of Sports Science and Informatics

2.1 Training Science

Training Science (TS) is a discipline within sports science, characterized by its

scientific approach to optimizing actions in sports (Lames, 2023). It incorpo-

rates principles from the sports variation of disciplines like medicine, psychology,

biomechanics, sociology and pedagogy (Hohmann et al., 2020). From the per-

spective of sports science, this work focuses on the field of TS.

As the scientific books of Hohmann et al. (2020) and also Lames (2023) de-

scribe, TS investigates the interplay of training, competition and capabilities (Fig-

ure 2.1). The sections of training and competition refer to the process of prepar-

ing for and participating in sports events. Capabilities denote the attributes of

athletes necessary for successful performance in competition, which can be en-

hanced through training. Its prerequisites include all personal attributes affecting

performance, such as inherent capabilities and untrainable factors (e.g. arm/leg

length). Environmental factors and performance prerequisites can be seen as

the basis of a pyramid with its top in competition results. Thus, the ultimate goal

is to maximize performance in competition (Hohmann et al., 2020). The results of

a performance can be measured with Performance Indicators (PIs). A PI is a sin-

gle or combined variable that describes parts or all determinants of performance

(M. D. Hughes & Bartlett, 2002; Lames, 2023).
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Figure 2.1 The interplay between training, competition and capabilities. Taken from Hohmann et al. (2020) with
permission of Limpert-Verlag. Translated after Lames (2023).

Within this framework, PA is placed:

“Performance analysis (PA) is the assessment of competition, parts of compe-

tition, and performance prerequisites with different methods for different pur-

poses.” (Lames, 2023).

This rather broad concept of PA can be further divided into Theoretical Perfor-

mance Analysis (TPA) and Practical Performance Analysis (PPA), which have

evolved, encompassing theoretical and practical approaches (Lames & McGarry,

2007). The following gives a quick overview of both categories. Afterward, a

short section will deal with distinguishing both concepts.

Theoretical Performance Analysis

TPA aims to uncover general laws that assess behavior in different sports con-

texts, utilizing various methodologies from behavioral research and, increasingly,

computational approaches like machine learning. This sub-discipline is dedi-

cated to measuring the influence of various determinants on competition results,

like losing or winning (Lames, 2023). TPA aims to distill complex sports per-

formances into relationships and models to provide a profound, law-like under-

6
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standing of the dynamics in sports. Through statistical analysis and the search

for appropriate models, TPA offers a scientific foundation to sports, which often

shows unpredictable and emerging behavior (Lames, 2023).

Practical Performance Analysis

In contrast to TPA, PPA aims at clearly supporting practitioners like coaches and

athletes. The practical usefulness of the research is one of the primary objec-

tives (Lames, 2023). However, the provision of short- or real-time feedback is no

primary aim of PPA. Tools such as PD systems (Linke, Link, Weber, et al., 2018),

wearable sensors and action detection methods enable the measurement and

analysis of various performance metrics or PIs. These include parameters like

speed, acceleration, number of occurrences, or combined evaluations of these.

This data-driven approach allows for an objective and quantifiable assessment

of performance, facilitating adapted training programs that address athletes’ spe-

cific needs and goals.

Difference between Theoretical Performance Analysis and Practical Performance Analysis

From the short descriptions follows that TPA is not always designed for creating

actionable insights. This void is filled by PPA. There are big methodological differ-

ences like sample size, statistical methodology or research design between both

disciplines. Therefore, clearly distinguishing between TPA and PPA may be seen

as a solution to the dilemma. Nevertheless, both disciplines are not completely

independent, as TPA can often give a broader framework for PPA (Lames, 2023).

Integration of Technology in Performance Analysis

Integrating technology in PA represents a continuing process in TS. From its

classical roots, e.g. notational analysis (M. Hughes & Franks, 2010), to modern

data-driven approaches, e.g. sports analytics (Link et al., 2018), PA plays a

crucial role in understanding and improving athlete performance. Electronic data

collection and analysis can provide immediate feedback, allowing for adjustments

to be made on the fly. This technological integration enhances the possibility of

7
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PA and might connect even more theoretical concepts with practical applications

in training.

One example is the incorporation of load monitoring towards understanding

and optimizing athlete training and performance. PD technologies enable the

precise measurement of an athlete’s workload, capturing various metrics like in-

tensity, duration and frequency of training sessions (Polglaze et al., 2015; Scott

et al., 2013). This data can be used to prevent overtraining and injuries and

ensure athletes maintain an optimal equilibrium between training stress and in-

jury recovery. Load monitoring uses a data-informed approach, allowing coaches

and athletes to make evidence-based decisions that enhance training outcomes

to ultimately raise the performance in competition (Akenhead & Nassis, 2016;

Gabbett, 2016).

However, not all technological achievements are also useful in practice. The

practical impact debate within PA emphasizes on the need for further research to

connect theoretical knowledge and practical application. This debate calls for re-

searchers to provide strong justifications for their work, underlining its relevance

and applicability in real-world sports settings. The argument suggests that while

theoretical advancements are valuable, the ultimate goal of PA should be to offer

actionable insights that can influence coaching strategies and ultimately improve

athlete performance. By aligning research objectives with practical needs, PA

can ensure that its developments are not only scientifically robust but also practi-

cally impactful, thereby enhancing the professional practice and understanding of

performance in sports (Carling, 2013; Carling et al., 2014; Mackenzie & Cushion,

2013).

2.2 Sports Informatics

Sports Informatics can be seen as the intersection between sports science and

information technology. It encompasses the study, design and implementation of

informatical methods to enhance various aspects of sports, including, e.g. train-

ing assessment (Dellaserra et al., 2014), PA (Lames & McGarry, 2007), coach-

ing strategies (Schmid et al., 2021) and fan engagement (Panchanathan et al.,

8
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2017). This field implements theoretical constructs and data manipulation meth-

ods to extract meaningful insights from sports data.

According to Perl (2006), the area of sports informatics was already developing

in a fast pace at this time. The term "Sportinformatik," or "Computer Science

in Sport," was first introduced by German sport scientist Herbert Haag in 1976,

initially referring to "Sport Information". Additionally, Jürgen Perl founded the

Institute for Informatics at a University in 1985 and established a section dedi-

cated to sports informatics (Lames and Link in Baca (2015)). While the Inter-

national Association of Sport Information (IASI) has been operating in this field

for decades, the development of Computer Science in Sport lagged behind due

to the late availability of necessary hardware and software tools. It wasn’t until

the mid-eighties, with the advent of more powerful personal computers capable

of analyzing complex interactive systems like sports games, that interest in this

area began to grow rapidly (Perl, 2006).

Since the nineties, computers and computer-based analysis methods and con-

cepts have formed the foundation for the expanding field of Computer Science in

Sport (Perl, 2006). Baca (2006) added informatics topics with potential applica-

tions in sports science that can be summarized as follows:

• Data collection, processing, and analysis

• Modeling and simulation

• Databases

• Multimedia visualization

These broad categories are captured within current science at the time of this

dissertation. The article collection of the spinfortec 2020 conference by Fehr

(2020) clustered the presented topics of current research as follows:

• Information and Feedback

• Data collection and data analysis

• Sport equipment and material

• Modeling and simulation

9
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• Multimedia, E-learning, E-sport

• Wearables and intelligent sports equipment

This dissertation primarily includes work about data collection and analysis but

also includes part of modeling and visualization. Therefore, the next chapter will

deal with this topic in more detail.

Data Collection, Processing, and Analysis

A multitude of parameters must be collected to describe and analyze athletic per-

formance. For instance, biological measurements like pulmonary function, oxy-

gen saturation, or heart rate are measured. Also, positional data of playing balls

and athletes make the analysis of technical and tactical patterns in team sports

possible. All these data need to be measured, processed, and analyzed to cre-

ate value in the relevant application field. Additionally, practical requirements,

such as low latency for real-time applications, influence the requirements for the

transmission medium during data collection (Baca, 2015). Therefore, measure-

ment technology that abstractly converts analog into digital signals is needed. A

summarizing term for this technology is sensors.

Sensors

According to Baca (2015), in the context of sports, there are several measure-

ments of increased interest. The following variables can be measured with sen-

sors:

• Acceleration:

Can be measured using piezoelectric or capacitive sensors. Modern sen-

sors can now be built as microelectromechanical systems, systems that can

be built on a micrometer scale (Nicolau, 2005). This sensor is commonly in-

cluded in IMUs. An exemplary acceleration signal of a tennis racket is shown

in figure 2.2.

• Angles and Angular Velocities:

Can be measured optically, mechanically, or with gyroscopes. Usually in-

cluded in an IMU.

10
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• Spatial Orientations:

Are measured using IMUs. Most commonly, an IMU combines gyroscopes

and accelerometers to measure spatial orientation.

• Distance and Speed:

Distance can be measured using changes in electric resistance or a poten-

tiometer. Speed can be measured by using the Doppler effect or be derived

from the rate of change in distance data.

• Temperature:

It can be measured with liquids, temperature-dependent materials, or in-

frared radiation. Some IMUs contain a thermometer.

• Time:

Time differences can be measured optically (e.g. Timing Gates (TGs)), elec-

tronically (e.g. stopwatches), or mechanically (e.g. sprint starts).

• Forces and Pressure:

Are primarily measured by strain gauges, capacitive sensors, or piezoelec-

tric.

• Oxygen concentration and Respiratory frequency:

Spiroergometry can measure oxygen uptake and breath frequency, whereas

the frequency alone can also be measured in other ways (e.g. strain gauges).

• Sound:

Microphones, for example, can measure sound pressure, which is translated

into the sound a human can hear.

• Biosignals:

Skin electrodes are usually used to measure electromyographic (EMG), elec-

troencephalographic (EEG) and electrocardiographic (ECG) parameters.

11
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Figure 2.2 Accelerometer signal from a tennis racket. The scale of the x-axis (time) illustrated, how fine-grained
these sensors must operate to answer certain questions. Graph taken from Baca (2015) with permission of Taylor &
Francis Group.

To ensure an unbiased capture of the sensory signals, the athletes must be dis-

tracted as little as possible. This is where "Ubiquitous computing" or "Pervasive

computing" offers solutions (Baca et al., 2009; Baca et al., 2022). This concept

evaluates the application possibilities of a variety of small connected computing

units. Different sensor-based measurement systems such as GPSs, LPSs, and

IMUs can be used within for this purpose. GPS and LPS are already effectively

utilized in sports for monitoring and helping to manage athletes in training and

competition (Robertson et al., 2023). Their non-intrusive application and tech-

nological capabilities make it an appropriate tool for sports. Additionally, IMUs

offer measurements with a high frequency at the exact spot where the sensor is

placed. By providing data on accelerations, their rotation and finally direction of

the movement, IMUs support the creation of detailed movement analysis.

Given that sensor-based data collection comprises a significant part of this

work, a detailed description of these fields is provided in chapter 3.2. In this
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context, the sampling frequency of any measurement sensor needs to be con-

sidered.

Sampling Frequency

The sampling frequency (or sampling rate) indicates how often an analog signal

is converted into a digital value. The conversion process needs to transform an

electrical signal into a digital value. The frequency of this conversion should be

selected to ensure that no important information is lost between the following

measurement points while keeping the number of values manageable for further

storage and processing (Baca, 2015).

Figure 2.3 illustrates how different sampling rates can influence the signal re-

construction. The example shows, that a sampling rate of 25 Hz is not repre-

senting the first peak within the signal. Increasing the rate to 50 Hz begins to

reveal a feature in the ascending part of the curve. At 200 Hz, the peak becomes

clearly recognizable. However, further increasing the sampling rate only adds

minimal information to the signal but highly increases data storage and requires

more processing at different steps (Baca, 2015). The sampled and saved signal

can then be further processed.

13
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Figure 2.3 Signal curves with different sampling frequencies. The representation of the original signal can be
adapted by a change in the sampling frequency. The effect of detecting smaller peaks in the curve with 25 Hz, 50 Hz
and 200 Hz is clearly visible. Sampling signals at a higher frequency has upsides and downsides. Taken from Baca
(2015) with permission of Taylor & Francis Group.

Signal Manipulation and Filtering

The processing, adjustment, revision or improvement of digital signals can be

summarized under the term Digital Signal Processing (DSP) (Baca, 2015). DSP

transforms the collected data to make it usable for further application purposes.

For example, data can be manipulated to improve signal quality or compressed

for long term storage.

Measured data often need to be scaled, for example, to convert from unit to

another. This step involves multiplying the signal by a linear or individual factor or

adding and subtracting offsets. With upsampling or downsampling, measurement

data can be synchronized. Different interpolation algorithms add data points for

upsampling, while data points are dropped for downsampling (Baca, 2015). This

was done in study 1 of this dissertation. Also, the sampling rate can play a huge

role for PA (Polglaze et al., 2016). With a signal normalization step, we can
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better compare signal values, as the data can be transformed into interpretable

intervals. Normalization can also be particularly useful when comparing signals

with different units (Baca, 2015).

With a Fourier transformation, the signal can be categorized into frequency

ranges. This step can enable the separation and aggregation of frequencies of

interest. This can help to determine an appropriate cutoff frequency for a filter

(Winter, 2009).

The application of different filters can be seen in figure 2.4. Measured data

often contain artifacts and noise, which can result from inaccuracies or errors in

the measurement equipment. Analog and digital filters can be used to remove

unwanted parts of a signal. They are usually applied as software routines to

the data. Well-known types of such filters are band-pass, low-pass and high-

pass filters, which filter out low-frequency or high-frequency parts of a signal,

respectively. A combination of those is the band-stop filter. These techniques

can be used independently of the measurement technology to improve the quality

and usability of the data (Baca, 2015).

Figure 2.4 Different filtering techniques. This illustration shows the different filters and the need for threshold choices.
For low-pass and high-pass filters, one threshold must be chosen to cut off higher or lower signal frequencies. Band-
pass and band-stop filters use two threshold to adapt the signal. Taken from Baca (2015) with permission of Taylor
& Francis Group.

Once the relevant data have been gathered and processed, analysis can be

carried out. The needed context can now be given to the results, or statistical

analysis is carried out. Also, the visualization of the data can be improved and

adapted using domain knowledge.

However, Sports Informatics extends beyond athlete tracking and raw data col-

lection. It also involves analyzing and interpreting large volumes of data — often

called big data — generated in sports settings. By applying machine learning

15



2 Context of Sports Science and Informatics

algorithms and advanced statistical models, sports computer scientists can un-

cover patterns and trends that might not be immediately apparent. This analytical

prowess aids in decision-making, strategy formulation and long-term athlete de-

velopment. Umpires can be supported by using technological advancements

(Kolbinger & Lames, 2017). Furthermore, sports informatics plays a crucial role

in transforming the fan experience. For example, the reaction of fans during soc-

cer matches was investigated using text mining (Kolbinger & Knopp, 2020).

Sports Informatics represents an interdisciplinary field that blends the physical-

ity of sports with the rapid development of information technology. From inter-

active smartphone apps that provide real-time statistics and analytics to virtual

reality experiences that bring fans closer to the action, the integration of technol-

ogy in sports is reshaping how fans engage with their favorite teams and athletes.

Through the use of technologies like LPSs, GPSs and IMUs, coupled with appro-

priate data analysis, it offers a data-driven approach to understanding and en-

hancing various dimensions of sports. As the field continues to evolve, it unlocks

new possibilities and will further influence sports science.

2.3 This Work

This dissertation implements elements from both training science and sports in-

formatics by applying technological methodologies within sports contexts.

The scientific validation of the accuracy of tracking technologies forms the foun-

dation of this project, assessing their integration into practical sports and running

applications. This process involves comparing new methods against established

standards to evaluate their accuracy in real-world sports settings. The basis

of the validation process in a robust methodological framework ensures, that

the proposed measurement techniques adhere to scientific standards while also

meeting the demands of PA.

The initial phase of the project focuses on the validation of tracking technolo-

gies. This involves a detailed comparison with gold-standard methodologies to

determine the accuracy of the new sensor-based methods. Such validation is

crucial, as it provides the scientific community and practitioners with confidence
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in the measurement tools and ensures that the data collected are both precise

and actionable.

Following the validation phase, the project explores the practical integration

of these validated methods into PA applications. This stage examines how the

newly validated technologies can enhance the granularity and accuracy of PA,

influencing training methodologies and informing strategic decision-making. The

integration process involves deploying the technology in real-world scenarios,

such as different training sessions, to assess its effectiveness and usability. The

goal is to ensure that these tools not only provide accurate data but also seam-

lessly integrate into existing training routines, offering real-time feedback and in-

sights that coaches and athletes can directly apply.

Additionally, the dissertation investigates the broader impact of these advanced

measurement tools on understanding athlete performance. By providing detailed

data on various performance metrics, such as speed, acceleration, or Ground

Contact Time (GCT), these technologies offer a more nuanced view of an ath-

lete’s capabilities and areas for improvement. This comprehensive understanding

can lead to more tailored and effective training programs, ultimately enhancing

overall athletic performance.

In the later stage of this work the potential of these technologies to enhance PA

and training in sports is highlighted. Advanced measurement tools, when prop-

erly validated and integrated, can offer significant insights that extend beyond

traditional methods. They provide a data-driven foundation for making informed

decisions about training regimens and performance optimization. By bridging the

gap between theoretical research and practical application, this work contributes

to the advancement of sports science, demonstrating how innovative technolo-

gies can be harnessed to improve athletic performance and training outcomes.
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3 Running Diagnostics

3.1 Principles of Human Gait and Running

Human motion spans a spectrum from a complete standstill to reaching max-

imum velocity (Figure 3.1). Especially normal and pathological gait is a well-

researched field within science (Peruzzi et al., 2011). The shift from walking to

running is characterized by a change in the gait cycle: from a phase where both

feet are simultaneously on the ground (double support) to a period where neither

foot touches the ground (double float) (Perry, 1992). This transition is illustrated

at point A in figure 3.1. The transition from running to sprinting, indicated as

Point B, is less distinctly defined. As this dissertation only discusses humans’

running motion, the large area of walking is not individually mentioned. Typically,

running is associated with longer distances and relies predominantly on aerobic

metabolism. In contrast, sprinting involves shorter distances at higher speeds,

engaging different metabolic processes (Cheetham et al., 1986).

A notable distinction in technique can be observed between sprinters and reg-

ular running athletes. Sprinters generally make the first ground contact with the

forefoot during their stride, often without the hindfoot ever making ground contact.

Conversely, most runners in longer distances tend to make the first contact with

the ground with either the midfoot or the rearfoot. The changeover from a midfoot

or rearfoot strike to forefoot striking is typically what defines Point B in figure 3.1.

Figure 3.1 Schematic description of human gait phases. Point A symbolizes the transition from walking to running.
Point B indicates the transition from running to sprinting. Figure adapted after Novacheck (1998).
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3.1.1 Gait Cycle

The human gait cycle is defined as the interval between consecutive Initial Con-

tacts (ICs) of the same foot (H. Zhang et al., 2020). This cycle, similarly to the

understanding of walking patterns, has been described using different terminolo-

gies. In alignment with the current literature and publications, this thesis adopts

the currently predominant set of terms to maintain consistency with current re-

search in the field.

Whittle (2014) describes that each gait cycle comprises two main phases: The

Stance Phase (StP) and the Swing Phase (SwP). The StP begins with the IC of

the foot with the ground and ends with the Terminal Contact (TC) (often called

toe off), marking the foot’s departure from the ground (Novacheck, 1998). The

time window between these events is defined as the StP. StPs of the left and

right foot overlap during walking, where both feet are in contact with the ground

at the same time. The SwP follows after the StP, starting from the TC and ending

at the next IC of the same foot, as depicted in figure 3.2.

Figure 3.2 Illustration of one gait cycle. The left leg (dark blue) and right leg (light blue) asynchronously go through
the Stance and Swing Phase. This leads to either one or both feet maintaining contact with the ground. Figure
adapted after Whittle (2014).
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The StP consists of three intervals marked by different patterns of ground con-

tact by the feet. This phase begins and concludes with periods of double support

phases, where both feet are in contact with the ground (Novacheck, 1998). Be-

tween these sections is the single support phase, during which only one foot

maintains ground contact. Figure 3.2 illustrates the phases within a single left

and right foot gait cycle. This visual representation aids in distinguishing be-

tween the movements of the right (light blue) and left (dark blue) sides of the

body (Whittle, 2014).

In gait analysis, stride and gait cycle are often used interchangeably to describe

the movement pattern of one limb. The term step refers to the movement from

one foot to the opposite foot. For instance, the movement from left IC to right IC

is defined as a right step, and the opposite is a left step, as shown in figure 3.2.

3.1.2 Sprint Cycle

The phases of the running gait cycle and the sprint gait cycle are identical and

are, therefore, both described in this subsection. Strides and steps in sprinting

are described similarly to walking (Novacheck, 1998). Each stride can be divided

into the StP and the SwP. However, there is no time frame for both feet to make

contact with the ground simultaneously. Instead, both feet are in the air at the

same time twice during the sprint cycle (Barberis, 2007). The StP begins with

the IC when the foot first touches the ground and ends with the TC, when the

foot leaves the ground (Vu Thi Thu, 2023). The SwP starts with the toe off and

ends with the IC of the next stride. As speed increases, the time spent in SwP

increases, stride time decreases, and the entire cycle shortens.

Typically, the phases of a maximal sprint can be subdivided into four phases:

1. Start Phase:

This includes reaction time and block clearance.

2. Acceleration Phase:

The step length increases during this phase. It can further be divided into

the initial, middle and final stages of the acceleration phase (Nagahara et al.,

2016).
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3. Maximum Velocity Phase:

Where step length peaks and stride time reaches its minimum (Mattes et al.,

2014).

4. Deceleration Phase:

Occurs after maintaining maximum velocity.

Each phase has different characteristics of spatiotemporal parameters. During

the acceleration phase, Step Length (SL) increases rapidly and levels off around

maximum velocity. Stride time decreases rapidly and reaches its minimum at

maximum velocity. Step Frequency (SF) increases rapidly in the initial 10 meters

and then remains fairly constant throughout the sprint.

In the context of velocity during the StP it is typically assumed that the foot’s

velocity is zero. This is based on the observation that the foot rolls from the outer

edge to the inner edge during this phase (Peruzzi et al., 2011). Although the

foot is in motion, its velocity is considered negligible or zero, particularly in the

brief period leading up to and including the heel off (Wang et al., 2015). This

assumption would lead to a clear distinction between steps. However, contrary

to casual walking, elite sprinters try to minimize the time of StPs which makes

this period rather short at high running speeds.

3.1.3 Events and Terminology

The gait cycle, an essential concept in running diagnostics and human locomo-

tion analysis, consists of a series of key events that collectively describe the com-

plex process of walking or running. A gait cycle with its terminology is illustrated

in figure 3.3. IC marks the beginning of the StP, signaling the foot’s first contact

with the ground. This event is crucial for absorbing impact and transitioning body

weight onto the leading limb. Therefore, it can be detected by ground reaction

forces (van Oeveren et al., 2024). Following IC, the Mid Swing occurs, providing

critical support and stability as the body’s weight is fully transferred over the foot.

This phase is pivotal for maintaining balance and facilitating forward movement.
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Figure 3.3 Terminology of gait events after Whittle (2014). A gait cycle consists of a Stance Phase and a Swing
Phase that can be further distinguished by the described events.

As the StP progresses, TC prepares the foot for lift-off, with the toes generating

the necessary thrust and accelerating the body forward. This leads into the Initial

Swing, where the limb begins its forward trajectory. Mid-swing follows, with the

limb advancing further. Terminal Swing completes the cycle, bringing the limb

forward in preparation for the next IC, thereby continuing the rhythmic pattern of

gait.

Within this cycle, two overarching phases are identified: the StP, where the

foot remains in contact with the ground, supporting body weight and facilitating

propulsion, and the SwP, characterized by the foot’s absence of ground contact,

allowing the limb to move forward (Kharb et al., 2011). SL and SF are critical

metrics in this context, measuring the distance covered per stride and the rate

of steps per unit time, respectively, both of which significantly influence running

efficiency and performance. The time a step takes is referred to as Step Time

(ST). Conversely, Ground Contact Time (GCT) is the duration the foot spends in

contact with the ground This value serves as a vital indicator of running dynamics

and efficiency, affecting speed and stability (Coh et al., 2001; Di Michele & Merni,

2014). Several studies state the importance of this PI within sprinting (Mattes et

al., 2014; Morin et al., 2012; Purcell et al., 2005).

Understanding these key events and terminology is fundamental in analyzing

and optimizing gait, providing insights into individual running mechanics, identi-

fying areas for improvement, and tailoring training interventions to enhance per-

formance.
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3.1.4 Running Training

The structure of a running training session encompasses various components

designed to improve different aspects of a runner’s performance. The following

covers four fundamental concepts: Permanent load training, repetitive training,

competition training and interval training. They provide a theoretical background

for the individual studies of this dissertation project.

Permanent Load Training

Permanent load training can be described by its low intensity, long duration, and

continuous execution without any pauses (Hohmann et al., 2020). This form of

training is designed to build endurance by maintaining a steady, manageable

effort over an extended period. Typically used in aerobic conditioning, perma-

nent load training helps improve cardiovascular health, increase stamina, and

enhance the body’s ability to sustain prolonged physical activity. It is a funda-

mental training method for endurance athletes, such as long-distance runners

and cyclists, who require the ability to perform consistently over long durations.

Repetitive Training

Repetitive training is characterized by high intensity efforts followed by full re-

generation during pauses, resulting in a long total duration (Hohmann et al.,

2020). This form of training involves performing multiple high-intensity exercises

or sprints, each followed by sufficient rest periods to allow for complete recovery.

The goal is to maximize performance during each high-intensity interval while

ensuring the body can fully recuperate before the next effort.

Competition Training

Competition training is designed to activate all of an athlete’s physical and mental

reserves (Hohmann et al., 2020). This training method involves a level of intensity

that is marginally higher than what the athlete can normally achieve, requiring

additional motivation and support. The purpose is to simulate the demands of
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actual competition, thereby enhancing endurance and preparing the athlete for

competitive performance.

Intensive Interval Training

Intensive interval training is characterized by numerous series of intervals with

high intensity (Hohmann et al., 2020). This type of training is aimed at improving

anaerobic endurance. A common characterization is a quite brief interval at high

speed. Runners perform short distances, such as 200m to 400m intervals, at

close to maximum effort, with recovery intervals to allow the heart rate to recover

partially. Sufficient recovery is critical in intensive intervals to ensure that each

effort is performed with maximum focus and energy. The recovery period often

includes walking or light jogging.

Extensive Interval Training

Extensive interval training involves a moderate intensity, focusing on enhancing

aerobic capacity through the cardiovascular system and, therefore, endurance

(Hohmann et al., 2020). Often, this is characterized by longer intervals. These

intervals are run at a challenging but sustainable pace, with short recovery pe-

riods. Sometimes, tempo or threshold runs are included. These are sustained

efforts at a controlled, hard pace. They are implemented to improve metabolic fit-

ness and increase the body’s ability to sustain high-intensity efforts over a longer

period. Unlike intensive intervals, recovery during extensive intervals is usually

active and consists of continued running at a lower intensity. The training is within

the aerobic zone and enhances the body’s cardiovascular system (Hohmann et

al., 2020).

Incorporating warm-up routines into a running program can also improve an ath-

lete’s performance. The warm-up prepares the body for the demands of high-

intensity work, while the intervals contribute to various performance factors, such

as speed, endurance and efficiency.
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3.1.5 Current Diagnostics

The methodology used for running diagnostics is constantly evolving. This para-

graph should only give a brief overview of the technologies currently used in

running diagnostics from the perspective of their application. A more detailed

description of all mentioned systems will follow in the next chapters.

Among the leading tools in this domain are TGs, GPSs, LPSs and IMUs, each

offering unique data sets that can be harnessed for analysis.

• Timing Gates:

Timing gates are often used in speed and agility drills. They provide precise

measurements of an athlete’s speed at various intervals. The data collected

can help assess an athlete’s acceleration, speed consistency and reaction

times.

• Global Positioning Systems:

Widely used in outdoor sports, GPS devices track an athlete’s position, ve-

locity and trajectory over time. This technology is commonly used by dis-

tance runners, offering insights into endurance, pacing strategies and move-

ment patterns across different terrains. Most wearables like running watches

or small trackers include GPS receivers.

• Local Positioning Systems:

LPSs are ideal for indoor sports or environments where GPS signals are

unreliable. By providing accurate positional data, LPS can provide the same

or even more accurate data.

• Inertial Measurement Units:

These sensors capture detailed data on an athlete’s acceleration, rotation

and orientation, offering a quantifiable view of their movements. IMUs can

help to identify asymmetries or inefficiencies in an athlete’s gait pattern and

many other variables.

The data derived from all these technologies can be utilized in various ways,

enhancing sports analytics’ scope and depth. For instance, tracking data can

inform individualized training programs, optimize tactic strategies, and contribute
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to injury prevention by identifying risk factors (Decroos et al., 2018; Rossi et

al., 2018). In rehabilitation contexts, these diagnostics can monitor an athlete’s

recovery progress and readiness to return to sports.

A notable application of sports analytics, as demonstrated in our research on

ghosting (Schmid et al., 2021), uses data from one of these diagnostic tools to

simulate and analyze player movements and positioning in team sports. By cre-

ating ’ghost’ versions of players based on real data, potential movements, strate-

gies and outcomes were shown. This can provide a powerful tool for coaches and

analysts to refine tactics and enhance player understanding of game dynamics.

3.2 Position Detection

The following chapter introduces the functioning of the most common PD method-

ologies that are used to raise spatiotemporal data in sports. It needs to be em-

phasized, that not all of these technologies are currently used in running sports.

As Link (2018) stated, tracking data are already used by stakeholders such as

media coverage, betting industry, data providers and many others. Additionally,

tactical analysis can be conducted based on positional data (Memmert et al.,

2017). Also, these data are scientifically used to enhance and evaluate math-

ematical models in sports (Beetz et al., 2005; Bialkowski et al., 2016; Dick &

Brefeld, 2019). In recent years, predominantly three PD methodologies have

come to the broader appliance in sports: GPS, LPS and Video-based Tracking

(VBT) (Buchheit et al., 2014; Memmert & Raabe, 2018). For further analysis,

the sensor-based solutions GPS and LPS are often supported by measurements

of IMUs. Therefore, the underlying principle of IMU measurements is also ex-

plained. The previously mentioned methods (Chapter 3.1.5) were used within

this dissertation project and are explained in more detail.

3.2.1 Global Positioning System

GPS has become a widely used technology in tracking outdoor athletic activ-

ities (Schutz & Herren, 2000). As there exist numerous other systems (e.g.

GLONASS, Galileo, Beidou), the correct term would be Global Navigation Satel-
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lite System (GNSS). GPS, however, is predominantly used in the literature and

will therefore be used synonymously in this dissertation. This is especially true

in team sports like football, rugby and handball, but also for many athletes in

individual sports like running or cycling (Aughey, 2011). In study three, this dis-

sertation project used GPS to add further insights for SIT. As the methodology

of GNSS was first used by the American military, the term of GPS has become

widely common, although it is only one of several satellite clusters.

GPS’s ability to provide spatio-temporal data on an athlete’s position, velocity

and distance covered makes it valuable for TS, especially PA. Besides the indis-

putable scientific use case of positional data (Rawstorn et al., 2014), also the

sports market applies GPSs commonly (Malone et al., 2017). The market shows

a variety of systems, such as SPI ProX (Köklü et al., 2015), GPSports (Linke,

Link, & Lames, 2018) and newer versions that support real-time data from com-

panies like Kinexon (Schmidt et al., 2023). Some studies have demonstrated the

validity and reliability of GPS in capturing macro-level data such as total distance

covered and average speed, which are crucial for sports (Di Salvo et al., 2006;

Gløersen et al., 2018).

The functioning of GPS PD is based on the triangulation principle. A simple

illustration of this is shown in figure 3.4. The location of the target point can

be determined by acquiring the position of a minimum of three reference points

and intersecting the resultant circles. The distance from the target point to the

reference point can be calculated by knowing the elapsed time and the speed

of the signal which is the speed of light. When the receiver captures signals

from over three reference points under standard conditions, the precision of the

positional determination is enhanced (Teeuw et al., 2005). Additionally, the speed

of a receiver can be calculated using the Doppler-shift phenomenon (J. Zhang et

al., 2006). This exploits the difference of received electromagnetic wavelengths

from a moving object. The speed measurements from GPS devices are not as

precise at higher velocities (Nagahara et al., 2017).
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Figure 3.4 Illustration of the triangulation principle. By acquiring the position of three reference points (RP) and
intersecting the resultant circles, the location of the target point (TP) can be determined. Each circle has a radius of
d, which is determined by the traveling time of the signal wave and its speed (the speed of light).

Several validation studies have evaluated the accuracy of GPS tracking in sports

settings (Akenhead et al., 2014; Beato et al., 2016; Gilgien et al., 2014; Gray

et al., 2010). Also, the reliability of different sensors (Coutts & Duffield, 2010;

Duffield et al., 2010) and the influence of sampling frequency was assessed

(Castellano et al., 2011; Rampinini et al., 2015).

However, GPS technology has limitations, particularly in terms of signal ac-

curacy in densely built areas or under tree cover. Generally, as a stable signal

transmission from the satellites needs a direct line of sight, GPS measurements

should only be conducted outdoors. Additionally, GPS is less effective in assess-

ing fine-grained positional data like the location of limbs (Linke & Lames, 2019).

3.2.2 Local Positioning System

LPS represents another sports tracking technology that utilizes various radio

frequency-based methodologies to achieve precise local/indoor PD. These me-

thodologies cover a broad spectrum, including infrared, ultrasound, Radio-Fre-

quency Identification, Wireless Local Area Networks, Bluetooth and Ultra-wide-

band (UWB) (Elkarim et al., 2015; Gu et al., 2009).
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Among these, UWB systems are commonly used in sports tracking (Bastida

Castillo et al., 2018). Notable implementations of UWB systems in sports include

Ubisense’s Real-Time Location System, Inmotio’s Local Position Measurement

system (Aughey et al., 2022; Frencken et al., 2010), ChyronHego’s ZXY Arena

(Medbø & Ylvisåker, 2023), Kinexon (Alt et al., 2020; Fleureau et al., 2020) and

RedFIR by Fraunhofer IIS (Seidl et al., 2017).

In contrast to GNSSs, which passively receive signals from satellites, LPSs

require athletes to wear devices that actively transmit signals to local static base

stations, also known as anchor nodes. These stations then calculate the position

of the player based on the characteristics of the received electromagnetic waves.

The core of LPS functionality lies in four primary position determination tech-

niques: Time-of-Flight (TOF), Time-Difference of Arrival (TDOA), Received-signal

Strength (RSS) and Angle of Arrival (AOA) (Vossiek et al., 2003).

• TOF estimates the location by measuring the time radio signals travel from

the transmitter to various anchor nodes.

• RSS calculates the location based on the difference between transmitted

and received power and often requires advanced models or algorithms like

neural networks to account for complex signal behaviors.

• TDOA assesses the time difference between signals reaching the base sta-

tions, utilizing nonlinear regression to translate this data into hyperbolic co-

ordinates, which, when intersected, pinpoint the player’s location. This cal-

culation is based on the triangulation principle (Figure 3.4).

• AOA involves calculating the incoming angles of signals at the anchor nodes

to determine the position of the player’s transmitter.

These methodologies enable LPSs to achieve an impressive overall sampling

rate of up to 1000 Hz (shared among transmitters) and static accuracy to within

approximately 0.1 m. However, dynamic accuracy, vital for tracking fast-moving

athletes, ranges between 0.08-0.28 m, highlighting some limitations in the tech-

nology’s current implementation (Blauberger, Marzilger, et al., 2021; Linke, Link,

& Lames, 2018; Ogris et al., 2012; Sathyan et al., 2012).
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The deployment of LPSs in professional sports settings is not without chal-

lenges. The complexity of system installation, including base station setup, cali-

bration and software configuration, varies dramatically across different systems.

This process can range from being relatively straightforward and automated to

complex and time-consuming (Linke, 2019).

Additionally, the environmental context of the sports venue can impact data

quality. Factors such as external radio frequency interference and the proxim-

ity of large or metal structures can influence signal transmission and, therefore,

accuracy. Similarly, a player’s proximity to pitch boundaries or obstructions like

advertising boards may also influence data quality. Another commonly known

issue is occluding objects (Manafifard et al., 2017).

LPSs have expanded the way athlete performance can be monitored and an-

alyzed, offering another methodology in position tracking. As technology ad-

vances, the costs associated with LPS usage decrease. Therefore, it can be

anticipated that these systems will become more accessible, which could lead to

their broader application in sports.

Validation of LPS in sports settings is crucial for ensuring their reliability and

accuracy. Various studies have been carried out, focussing on the usage in in-

door or outdoor environments (Sathyan et al., 2012), different sports (Rhodes

et al., 2014), or outcome parameters (Seidl et al., 2016). The topic of validation

is summarized in a systematic review by (Rico-González et al., 2020).

3.2.3 Video-based Tracking

VBT systems offer a solution to some of the limitations posed by sensor-based

measurements like GPS or LPS. These systems use the view of cameras to

capture athletes’ movements, preferably showing the whole field or pitch in the

scene. With further processing methods, the detected athletes are tracked as

pixel locations. These locations are then transferred into real-world distance

measurements (Di Salvo et al., 2006). The images can also be used for further

tactical analysis (Oskouie et al., 2014).

As an adaptation to the fundamental tracking technique, the image data can

be captured with drones, which established another sub-category: Drone-based
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PD. This possibility was investigated for sports movements in an article by Rus-

somanno et al. (2022) which was co-authored within this dissertation project.

The integration of machine learning algorithms in VBT has further enhanced

the capacity of these systems to provide appropriate feedback. VBT requires

a controlled environment for optimal data capture and can be resource-intensive

regarding equipment and data processing.

Validation of VBT systems is essential to ensure their accuracy and reliability

in capturing athletes’ movements. According to Aughey et al. (2022), valida-

tion against established standards like GPS or LPS confirms that VBT can offer

a viable alternative, particularly in scenarios where traditional sensor-based sys-

tems may fall short. By comparing the real-world distance measurements derived

from VBT systems against those obtained from gold-standard tracking methods,

researchers can assess the accuracy of VBT (Redwood-Brown et al., 2012).

Human Pose Estimation

Human Pose Estimation (HPE), particularly through advancements in marker-

less motion capturing, represents a current approach in the field of computer

vision. This technology allows for the detailed analysis of athletes’ movements

without the need for physical markers, which are traditionally used in motion cap-

ture systems (like Infra-red Motion Capturing (IR)). Instead, sophisticated algo-

rithms and computer vision techniques are employed to detect and track the hu-

man body’s key points from video data.

Recent studies have investigated the accuracy (Fukushima et al., 2024) and

highlighted use cases (Monteiro et al., 2024) for HPE technologies. Both stud-

ies were co-authored by the author of this dissertation. These innovations have

leveraged deep learning models and artificial intelligence to enhance the accu-

racy and efficiency of pose estimation in complex, dynamic sports environments.

Such technologies are capable of providing real-time feedback and biomechani-

cal analyses, which can be used to assess performance.

The application of HPE in sports science offers numerous advantages. For ex-

ample, without the encumbrance of markers, athletes can perform movements

more naturally, providing more authentic data for analysis. This method is par-
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ticularly beneficial in environments where traditional motion-capturing setups are

impractical, such as outdoor fields or in competition scenarios. The data collected

can be used to assess techniques, align training practices with performance out-

comes and conduct injury risk assessments.

Despite its benefits, HPE faces challenges, particularly in terms of environmen-

tal variability and the potential for decreased accuracy under certain conditions

(Fukushima et al., 2024). However, ongoing research and technological improve-

ments continue to address these issues, with the goal of making HPE as accurate

and reliable as traditional marker-based systems.

3.2.4 Inertial Measurement Unit

IMUs are micro-technology-based sensors offering precise measurements of an-

gular rate, acceleration and sometimes magnetic field orientations. These com-

pact devices provide inertial data, enabling the measurement of an object’s dy-

namics without the need for external reference objects.

Figure 3.5 Inertial Measurement Units for run-
ning. The labeling was done for the left foot (LF)
and the right foot (RF). The data output of both
sensors is the same. The attachment is done in
the manufacturer’s rubber case.

IMUs typically comprise a combination

of accelerometers, gyroscopes and magne-

tometers. Accelerometers measure linear

acceleration, while gyroscopes detect angu-

lar velocity, and magnetometers detect orien-

tation relative to the Earth’s magnetic field.

As the previously mentioned variables are

usually measured in three dimensions, the

whole sensor is often described as a 9-axis

motion sensor. This trio of sensors allows

for comprehensive motion tracking, capturing

translational and rotational movements.

The data from each sensor component is

synthesized through a process known as

sensor fusion (Dehzangi et al., 2017; Zhao

et al., 2019). This integration often employs

sophisticated algorithms like Kalman filters (Bailey & Harle, 2014) or Madgwick
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filters, which combine the diverse data streams into a unified output (Amaro &

Patrao, 2016). The data can be combined with information from other sensors,

e.g. GPS (Mertens et al., 2018). The result is the representation of an object’s

motion, accounting for various forces and movements.

Accurate data collection requires calibration of the IMU to counteract system-

atic errors and reduce noise. Calibration processes adjust for the sensor frames,

mounting frames and anatomical frames, ensuring the sensor’s accuracy (Bonnet

et al., 2009). Noise reduction techniques, such as signal smoothing and filtering,

are also used to reduce the impact of random fluctuations.

In sports science, IMUs have been increasingly used in the past years for an-

alyzing athletes’ movements. They allow for the assessment of speed, accelera-

tion, jump kinematics, gait analysis and more, offering data that can inform train-

ing adjustments, technique improvements and rehabilitation strategies. The run-

ning of athletes was already investigated by several studies using (foot-mounted)

IMUs (Bergamini et al., 2013; Bergamini et al., 2012; de Ruiter & van Dieën,

2019; Falbriard et al., 2018; Falbriard et al., 2020; Falbriard et al., 2021; Gurchiek

et al., 2019; Macadam et al., 2019; Potter et al., 2019; Schmidt, Rheinländer, et

al., 2016; Schmidt, Rheinländer, et al., 2016). IMU data from the athletes’ feet

were also already leveraged to quantify tactical parameters (Marris et al., 2021).

However, also some limitations, e.g. in running power estimation, were found

(Baumgartner et al., 2021). The sensors used in this dissertation are illustrated

in figure 3.5 (Physilog5, Gait Up SA, Lausanne, Switzerland, size: 47.5 mm ×

26.5 mm × 10 mm, weight: 11 g).

The key advantage of IMUs lies in their versatility and self-sufficiency. Unlike

optical motion capture systems, IMU do not require an external frame of ref-

erence, allowing for their use in various environments, including outdoors or in

confined spaces. Their compact size and ability to provide real-time data make

them appealing for a wide range of applications.

3.2.5 Ball Tracking

Ball tracking can be achieved with various technologies and, therefore, should

be seen as an individual methodology. However, it is covered in an individual
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section, as its utility for providing insights into game dynamics, player interactions

and overall strategy in various sports gives it standalone value. Currently, the two

primary methodologies for continuously tracking the ball are VBT and the use of

LPS.

VBT utilizes (sometimes high-speed) cameras positioned around the playing

pitch to capture the ball’s movement. These systems employ sophisticated image

processing algorithms to detect and track the ball’s position frame by frame. The

technical functioning is mainly the same as for players.

Alternatively, an LPS chip can be embedded within the ball to provide posi-

tional data. This method provides continuous tracking data that is then used for

both position and velocity calculations. As a chip needs to be installed inside of

the ball, additionally, an IMU can be integrated into the installation. However, it

requires modifications to the ball.

Both methods have individual advantages and limitations, and the choice of the

method may depend on the sport’s specific requirements. Usually, both systems

are integrated within the tracking of player data, as described in the sections

above.

3.3 Method Validation

Each study within this dissertation project relied on measurement equipment that

has undergone scientific validation. This commitment to using validated tools is

inevitable for research findings. Given the significance of validation in scientific

inquiries, subsequent sections of this dissertation will look into the methodolog-

ical importance of the validation process. These aspects of validation are espe-

cially pertinent to the studies at hand and provide an understanding of validation

efforts.

3.3.1 Validation Theory

In the realm of sports science, validating the accuracy of tracking technologies

is important to ensure reliable data collection, e.g. for PA (Linke, Link, & Lames,

2018). In this context, the validity involved using comparative systems with known
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and, in some cases, superior accuracy. This approach aligns with the concept

of concurrent validity, where the performance of one measurement tool is evalu-

ated against a gold standard or a well-established benchmark. By comparing the

outputs of the tracking technologies under investigation against these established

systems, researchers could determine the degree to which the new methods pro-

vide accurate and consistent measurements. This validation process is critical,

especially where precise data on player and ball positioning, speed and other

metrics can significantly impact training, game analysis and strategic planning.

The use of a gold standard in this validation theory ensures that the findings are

grounded in a reliable comparison, providing confidence in the technology’s utility

and applicability in real-world sports settings.

In a review study, Luteberget and Gilgien (2020) enumerated three main impor-

tant points a proper validation and, therefore, a gold standard should be tested in

sports settings.

1. Validating a system’s instantaneous dynamic position measurement is im-

portant as deviations in position can affect derived parameters (e.g. speed).

Discrepancies in data processing between devices and manufacturers can

amplify these errors.

2. Firmware updates or changes can alter data processing (e.g. parameter cal-

culation and filtering) without changing the basic measurement of position,

affecting parameters like distance and speed. Therefore, position measure-

ments serve as a more consistent parameter for long-term system validity.

3. Validating the instantaneous dynamic position in GPSs, LPSs and VBT sys-

tems is crucial for further tactical analyses and ensures long-term stability

across firmware versions, ultimately saving time and costs.

Additionally, a methodology should be validated in the context of where this

exact method will be used in the future. Therefore, Small-sided Games (SSGs)

and running courses have been established for tailoring validation settings to

replicate sports scenarios. SSGs (Aguiar et al., 2015) and courses (Hoppe et

al., 2018) are subjected to different validation studies to ensure they mirror the

targeted athletic skills and performance metrics. Both training forms have been
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evaluated together, too (Blauberger, Marzilger, et al., 2021; Linke, Link, & Lames,

2018).

3.3.2 Reference Measurements

All studies in this thesis were supported by various measurement technologies to

ensure precise temporal and spatial information. The three used methodologies

IR, TGs and OptoGait (OG) were chosen as tools for data collection in the publi-

cations and will shortly be summarized in the following paragraphs. Additionally,

as marker-less motion capturing plays an important and still developing role, it

will also shortly be described.

Infra-red Motion Capturing

IR, exemplified by systems like Vicon or Qualisys, is a technology widely used in

biomechanics, sports science and entertainment to capture and analyze move-

ment. These systems consist of multiple high-speed cameras equipped with

infrared sensors positioned around a designated capture area. A measurement

setup at the Technical University Munich can be seen in figure 3.6. The cameras

emit infrared light, which is reflected by small markers attached to the subject’s

body. The cameras then detect the reflected light, and sophisticated software tri-

angulates the data to construct a precise three-dimensional representation of the

marker’s movements over time. Many markers’ positions can enable the fitting of

a defined body or object, e.g., a subject skeleton, in the detected area. The re-

sulting data provides detailed insights into kinematics, allowing researchers and

practitioners to analyze biomechanical properties such as angles, velocities and

accelerations of various body segments. This technology is crucial for detailed

movement analysis, performance enhancement, injury treatment, and realistic

animation in films and video games.
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Figure 3.6 Measurement systems at the university’s diagnostics hall. An infrared motion-capturing system (Vicon)
is mounted on the rail system around the hall. OptoGait strips (blue) are placed on the floor.

Timing Gates

Figure 3.7 Timing Gate usage in running. The
elapsed time until an athlete reaches the pre-
cisely marked position on the track is captured
by TGs that are placed on tripods. The signals
of the TGs are forwarded wirelessly to a central
stopwatch.

TGs are electronic devices used to measure

the time it takes for an athlete to cover a

certain distance, making them indispensable

tools for evaluating speed and agility. These

systems typically consist of a sending device

emitting an infrared beam and a receiving de-

vice detecting this signal. When an athlete

passes through this infrared beam, this event

triggers a recording of the passed time.

This basic mechanism is the foundation of

accurate measurement of sprint times and
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other time-dependent metrics (Figure 3.7). Beyond sprint testing, TGs are ver-

satile tools used in various drills, such as shuttle runs, or for the assessment

of reaction times. The benefit of TGs lies in their precision and ease of setup,

allowing for the measurement of reliable and accurate data with minimal interfer-

ence with the athletes. However, their reliance on a clear path between the gates

can pose challenges in certain environments, and they primarily measure linear

speed, offering limited insights into complex, multi-directional movements. Addi-

tionally, the passing of a linear beam at one specific point means that unwanted

events can be detected. Hence, a sprint athlete’s limb (e.g. the arm) can pass

this point first, leading to erroneous (here too short) tracked times.

OptoGait

OG is an optical measurement system designed for gait and motion analysis.

The OG system employs two strips of linear floor-level photoelectric cells, creat-

ing corridors of light-emitting and light-receiving diodes (Lienhard et al., 2013).

These two strips are arranged parallel to each other and perpendicular to the

running path. As an individual walks or runs through this corridor, their feet in-

terrupt the light beams, allowing OG to detect all interruptions and subsequently

calculate temporal variables, such as SF, GCT and one-dimensional spatial indi-

cators, such as SL. In a post-processing step within the software, it offers a com-

prehensive view of a person’s movement. Its applications extend from running

(Schmidt, Rheinländer, et al., 2016) or jumping analysis (Castagna & Castellini,

2013) in sports to rehabilitation settings, where monitoring gait changes is used

to support recovery. OG’s ability to measure a wide array of metrics in real-time is

its most significant advantage, providing detailed feedback that can inform train-

ing adjustments and injury prevention strategies. The system’s requirement for

indoor environments and its higher cost can limit its accessibility and applicability

in some sports settings. The deployment of OG strips in a hall is shown in figure

3.6. An example of in-field usage in this project is illustrated in figure 3.8.

38



3 Running Diagnostics

Figure 3.8 Measurement setup of Optogait at a running track. OptoGait strips are placed on the track over the
course of 50 meters for tracking the first half of a 100-meter sprint.

While both technologies offer valuable insights, TGs excel in simplicity and

measuring speed over predetermined distances, whereas OG provides a deeper

analysis of movement patterns. The choice between TGs and OG often hinges

on the specific needs of the assessment, with TGs being more suited for straight-

forward speed and agility tests and OG for detailed biomechanical analyses. TGs

and OG provide precise timing measurements which were assessed in different

studies (Ammann et al., 2016; Ammann & Wyss, 2014; Schmidt, Rheinländer,

et al., 2016; Schmidt, Rheinländer, et al., 2016). In a validation study, the agree-

ment limits for GCT were determined to be 95% within 7.7% when compared to

a contact mat (Lienhard et al., 2013). Another investigation found no significant

discrepancies in GCT measurements when contrasted with a high-speed video

camera (Alvarez et al., 2017). The selection between TGs and OG should be
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guided by the objective of the PA, considering factors like the environment, type

of data required and budget constraints.

Laser Velocity Guard

The Laser Velocity Guard (LAVEG) is an instrument for measuring distances with

high precision, utilized for industrial applications or in fields such as engineering

or sports science. LAVEG operates by emitting a laser beam towards a target and

measuring the time it takes for the reflection to return. This time interval is then

converted into distance using the speed of light, allowing for calculating distances

and deriving velocities. The device’s ability to capture minute position changes

over short intervals makes it an invaluable tool for detailed motion analysis.

In sports science, LAVEG is used for tracking the speed and position of ath-

letes during training and competitions, offering data for further analysis and per-

formance enhancement (Bezodis et al., 2012). LAVEG’s contribution to precision

measurement has made it a valuable tool in domains demanding distance and

velocity measurements, such as running diagnostics.

3.3.3 Statistical Analysis

In method validation, statistical analysis plays a crucial role in assessing the ac-

curacy and reliability of the data obtained. Different methods are often used to

validate new measurement methods against established standards.

One widely recognized approach is the Bland-Altman analysis, Altman and

Bland (1983) introduced this method, which compares two different measure-

ment techniques by plotting the difference against the mean of the two measure-

ments to assess agreement (Figure 3.9). This technique is beneficial for deter-

mining the consistency across methods when measuring the same variable. This

method can be used to visually detect and present non-systematic or systematic

errors and biases in a measurement.

Additionally, root mean square error and mean absolute error are robust sta-

tistical tools used to measure the differences between values predicted by a

model and observed values (Figure 3.10). While the former gives a relatively

high weight to large errors, making it sensitive to outliers, mean absolute errors
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Figure 3.9 Exemplary Bland-Altman plot. The axes rep-
resent the difference between the two systems (y-axis)
and the average measurement of both systems (x-axis).
Each data point represents a measurement value of the
ground contact time. A line is drawn for the mean value,
and an upper/lower limit of the agreement line is added.
Same data as in (Blauberger, Horsch, et al., 2021).

Figure 3.10 Exemplary visualization of RMSE values.
The mean root mean squared error for position, speed
and acceleration measurements of players are shown
for different exercise types (columns 1-7) and a football
game scenario (column 8). Same data as in (Blauberger,
Marzilger, et al., 2021).

provide a linear score that makes absolute differences easier to interpret. Both

error calculations respect the unit of the input values.

The percentage difference is used to express the relative difference between

two quantities as a percentage. It offers a normalized metric of deviation that can

be intuitively interpreted and facilitates this interpretability even when comparing

very low and large magnitudes.
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4 Publications

This chapter summarizes all publications that were developed within this doctoral

project. For each paper, a short introduction with bibliographic facts, followed by

a summary in the context of the whole project, is given. The first three publi-

cations (sections 4.1, 4.2 & 4.3) are the main contributions of this dissertation

author within the topic. The respective published version is printed thereafter.

Additionally, two publications as co-authors are briefly summarized (section 4.4).

The full text of these two publications can be found in the Appendix (section 6.2).

4.1 Validation of Player and Ball Tracking with a Local Positioning System

Bibliographic Facts

The first study is entitled "Validation of Player and Ball Tracking with a Local

Positioning System". It was authored by Blauberger, P., Marzilger, R. & Lames,

M., and published in 2021 in the MDPI Sensors journal (Blauberger, Marzilger,

et al., 2021). At the time of the publication, the journal had an impact factor of

3.847 and was ranked in Q2. The network platform ResearchGate counts 33

citations and 1885 reads for this study (as of 07-02-2024).

Content

This study addresses the critical aspect of accuracy in sports tracking technology

and focuses on using an appropriate validation methodology in sports settings

where the system is put to use (Figure 4.1). The main aspect of this research

involves validating the effectiveness of a LPS in tracking players and balls, a

developing element in the analysis of sports performance. It specifically looks

into the errors associated with LPS technology, highlighting its applicability for

game sports like handball or football.
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While it shows promise in these use cases, its current error margin might still

be too high for accurately measuring granular running performance metrics such

as GCT. The accuracy of this measurement system, particularly in the context of

these errors, is of special interest for the advancement of the dissertation project.

Contribution of the Main Author

Patrick Blauberger (P.B.) conceptualized the study alongside Martin Lames (M.L.)

and developed the methodology with M.L. and Robert Marzilger (R.M.). The

Data acquisition was executed by M.L., P.B. and R.M.. P.B. was responsible

for the software development, validation, formal analysis, investigation and data

curation. Furthermore, P.B. wrote the draft of the manuscript and contributed to

the visualization of the data. He took on responsibilities in project administration,

ensuring the smooth progress and completion of the study. The final manuscript

version was accepted by all authors.

Figure 4.1 Measurement hall of the study. As the objectives of the study required a precise infrared motion-capturing
system, an indoor facility was used. The marks at the ground and the electronic placement arm were used for precise
position tracking.
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Abstract: The aim of this study was the validation of player and ball position measurements of
Kinexon’s local positioning system (LPS) in handball and football. Eight athletes conducted a sport-
specific course (SSC) and small sided football games (SSG), simultaneously tracked by the LPS and
an infrared camera-based motion capture system as reference system. Furthermore, football shots
and handball throws were performed to evaluate ball tracking. The position root mean square error
(RMSE) for player tracking was 9 cm for SSCs, the instantaneous peak speed showed a percentage
deviation from the reference system of 0.7–1.7% for different exercises. The RMSE for SSGs was 8 cm.
Covered distance was overestimated by 0.6% in SSCs and 1.0% in SSGs. The 2D RMSE of ball tracking
was 15 cm in SSGs, 3D position errors of shot and throw impact locations were 17 cm and 21 cm. The
methodology for the validation of a system’s accuracy in sports tracking requires extensive attention,
especially in settings covering both, player and ball measurements. Most tracking errors for player
tracking were smaller or in line with errors found for comparable systems in the literature. Ball
tracking showed a larger error than player tracking. Here, the influence of the positioning of the
sensor must be further reviewed. In total, the accuracy of Kinexon’s LPS has proven to represent the
current state of the art for player and ball position detection in team sports.

Keywords: validity; accuracy; local positioning system; player tracking; ball tracking; position;
speed; acceleration; team sports

1. Introduction

The analysis of sports performance in training and competition often relies on au-
tomatic position detection. Various decisions are based on metrics derived from player
tracking variables of these systems. Positional data are used for monitoring players’ train-
ing loads [1,2], activity profiles [3] or tactical performance analysis [4,5]. Additionally,
positional information about the ball can be used for further analysis, such as the integra-
tion of ball possession [6,7].

To acquire positional information, three methods are commonly used in sports practice,
as well as scientific investigations: Global positioning systems (GPS), local positioning
systems (LPS) and semi-automatic video tracking systems (VID) [1,8,9]. Regardless of the
tracking method, an individual, sport-specific validation of each system is necessary to
allow a proper interpretation of the position information [8,10–13]. Much effort can already
be found in the validation of GPS [8,14,15], LPS [8–11,15,15–19] and VID [8,20]. Different
sports like football [8,15,20–23], handball [24], ice hockey [18] or general sport-specific
settings [8,9,17,20] are evaluated. Furthermore, some studies investigated comparability
of results obtained from the three methods [8,25,26]. For some of these systems, the
continuous positional tracking of balls is possible. However, none of the aforementioned
validation studies accounted for the accuracy of ball tracking. The tracking of balls is solely

Sensors 2021, 21, 1465. https://doi.org/10.3390/s21041465 https://www.mdpi.com/journal/sensors
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validated in separate studies. Seidl et al. investigated tracking accuracy of a RedFir radio-
based tracking system and compared the results to lighting gates. A mean bias of 2.6%
was found, meaning a slight overestimation of the ball speed measured by the LPS [27].
The continuous accuracy of ball tracking was not assessed, highlighting a shortcoming of
lightning gates. Witt and colleagues investigated the detection of single ball contacts with
help of a LPS. Ball tracking turned out to be sufficient for detection of events [28].

Generally, the methodology of validation studies of LPS in sports turned out to be
complex and therefore requires many specific considerations. An individual, sport-specific
evaluation of each system is necessary [11–13]. For validation purposes, the usage of a
proper gold standard reference system is necessary to validate instantaneous position,
speed and acceleration [12]. Further critical points are the adaptation of filter parameters
or the correction for gait patterns [8,9,20].

Kinexon’s LPS is a widespread and commercially available system in the segment of
sports tracking. This system is used in the first division of the German handball national
league and also the Velux EHF Final4 to record matches since the 2019/2020 season [7].
A recent study from Fleureau et al. looked at the validity of peak speed and acceleration of
Kinexon’s LPS in handball specific movements [24]. They compared values to the results of
simultaneous motion capture and concluded an acceptable validity. Care should be taken
near the border of the playing field [24]. Alt et al. investigated the running based validity of
Kinexon’s LPS in a sport-specific circuit. They found a good to moderate tracking validity
with better results in outdoor tracking [9]. Hoppe et al. focused on validity and reliability of
a GPS and Kinexon’s LPS by comparing the results of both systems to timing gate reference
values. They found superior overall LPS values, although more outlier measurement errors
occurred [10]. A validation study including player or ball position measurements with
Kinexon’s LPS and an infrared camera-based criterion reference system was not found in
the literature.

Therefore, the aim of this study was the validation of Kinexon’s player and ball
tracking capabilities, specifically for applications in handball and football. To achieve this
validation, the LPS system’s position tracking was compared to an infrared camera-based
reference system with superior accuracy.

2. Materials and Methods
2.1. Participants

Eight adolescent male players from a professional handball club (age: 14.9 ± 1.2 years,
height: 1.8 ± 0.1 m, weight: 75.5 ± 5.0 kg) participated in this study. Prior to the study,
all players received verbal and written information about purpose, procedure and re-
quirements of the test. All captured data was anonymized. The protocol accorded to the
ethic standards of the Technical University of Munich and was in accordance with the
Declaration of Helsinki. Each participant and their parents gave written informed consent
to participate in this study.

2.2. Tested System

A commercially available LPS (KINEXON Precision Technologies, Munich, Germany)
was investigated in this study. Firmware versions and application software versions
corresponded to the latest releases on the testing date (APP version: 7.11.21, Stream
processor version: 7.11.2). The installation and calibration of the system was guided by
technicians of the manufacturer. Around the playing field 26 antennas and two base
stations were evenly distributed at three different height levels above the ground (Figure 1).
The calibration required the exact assessment of all antennas’ 3D positions with respect to
the local measurement area, using a Tachymeter with millimetre accuracy. With the help of
these reference positions, the LPS determines the location of the player and ball tags. This
calibration procedure is necessary if the system is installed at a new place. The different
height of the assembled antennas enabled 3D measurements of the ball tags. The player
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tag was positioned between each player’s shoulder blades utilizing a pouch sewn into the
player’s jersey (Figure 2).

Figure 1. Balcony-mounted Qualysis camera (left) and Kinexon antenna (right).

The sensors transmitted time information via radio-technology to the antennas, which
then forwarded the signal via a wide local area network to the local static base stations.
Afterwards, the time information of all antennas were aggregated by a central computer
and combined into positional data. The momentary position of a player was determined
with a frequency of 20 Hz. Certified handballs and footballs were equipped with sensor
tags underneath the spherical surface. This arrangement is similar to what is approved in
professional leagues (Figure 2).

Figure 2. (a) Kinexon tag attachment (blue circle) and reference system marker arrangement (red
circles). (b) Ball as reflective reference system marker with Kinexon sensor inside.

2.3. Testing Site and Reference System

The test took place in the test and application center L.I.N.K. (Figure 3) at the Fraun-
hofer Institute for Integrated Circuits (Nuremberg, Germany). The setup covered an area
of 26 × 16 × 6 m (base area: 416 m2) for measurements with both systems. The size of the
field was limited by the dimension of the measurement hall. All cameras of the reference
system were mounted on a gallery above the measurement area.
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Figure 3. Test setup at the Fraunhofer L.I.N.K test hall in Nuremberg.

Criterion positions for dynamic accuracy determination were captured by a 30-camera
motion capture system (28 Oqus 700+ cameras, 2 Miqus Video cameras, Qualisys, Sweden;
Figure 1). Based on infra-red determination of reflective markers a precise calculation of
the 3D-positions of the markers with a sample rate of 120 Hz was achieved.

To test the spatial accuracy of the reference system, a calibration object with known
dimensions was moved within the measurement area [8]. Deviations of the known spatial
distance between the markers and distance measured by the motion tracking system
resulted in a mean deviation of 2.89 mm (SD = 1.66 mm, 95% CI [−3.22 mm, +3.27 mm]).
The root mean square error (RMSE) was 1.7 mm.

For player tracking, several markers were placed on the upper thoracic spine between
the scapulae (Figure 2). The software recognized the different marker patterns for each
player and automatically calculated the center as current tracking position (Qualisys track
manager 2019.3).

Both, handballs and footballs were completely covered with reflective foil. This
enabled the reference system to track the ball as a single object, meaning the center of the
tracked marker is corresponding to the center of the ball (Figure 2).

2.4. Testing Protocol and Sample Size

The test setup contained both handball and football specific exercises to cover a variety
of game sport relevant situations.

All participants conducted four trials of a sport-specific course (SSC), containing
typical exercises of team sports. The elements were selected to test different critical capa-
bilities of player position tracking in high speed, acceleration and changes of direction
(COD) periods [19]. The exercises and intensities used are common practice for testing the
accuracy of position detection systems in sports [8,11,17,20,22]. The course consisted of a
linear sprint (1), 405 agility test (2), zig-zag jogging (3), squat jump (SJ) followed by sharp
COD (4), multi-directional lunges (5) and two curved sprints (6). An exemplary trajectory
of the course is shown in Figure 4.
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Figure 4. Sport-specific course (SSC) example with Qualisys data. Exercises in chronological order:
1 = linear sprint; 2 = 505 agility test; 3 = zig-zag jogging; 4 = squat jump and sharp changes of
direction; 5 = multi-directional lunges; 6 = two curved sprints

To test game specific patterns 4 vs. 4 and 3 vs. 3 small-sided football games (SSG)
without goals were conducted within the test area. Each game lasted for 2 min, followed
by 1 min of passive rest. The players followed the aim of keeping ball possession within
the team and were instructed to keep the intensity at a high level. If the ball left the playing
field, it was immediately returned by assistants around the field. This ensured a high net
playing time in the SSGs.

Ball shots and throws were tested in 46 football 11-meter penalty kicks and 72 handball
7-m throws without a goalkeeper. A 2 × 3 m goal was placed at the respective distance.
As this study aims only at validation, the same setup was used for shots and throws. The
participants were instructed to distribute the shots and throws equally over the whole area
of the goal. In total, 36 of the 7-m throws were executed as bounced shots.

Table 1 shows the sample size divided into player and ball tracking. For player
tracking no trial had to be removed, which resulted in a total sample size of 32 SSC
and 36 SSG trials. Ball positions were acquired for all 6 SSG, 46 football penalty shots
and 71 handball seven-meter throws. The handball throws altered between direct and
bounced shots. All SSG and shot trials were included in the analysis. One throw had to be
excluded, due to synchronization problems. In the post processing of the data, tracking
errors of the reference system such as out-of-bounds sample points were excluded from
the analysis. Shots and throws had a very short duration, thus time and frame data are
omitted in Table 1.

Table 1. Overview of trials and sample points, used for player and ball tracking in SSCs and SSGs.

Player Tracking Ball Tracking

SSC SSG SSG Shots Throws

Trials valid 32 38 6 46 71
Trials excluded 0 0 0 0 1
Sample points valid 55,783 83,086 24,374 - -
Sample points excluded 2147 4788 7230 0 0
Net time (min) 46.5 69.2 8.1 - -
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2.5. Data Processing

Position data of both systems were exported as raw data to local text files. Data of the
Kinexon LPS-System was sampled at 20 Hz for players and 50 Hz for the ball. Reference
system data was sampled with a frequency of 120 Hz. All further steps were executed
in MATLAB (R2019b, The MathWorks Inc., Natick, MA, USA). The criterion data was
downsampled to the Kinexon sample frequency, using a linear interpolation algorithm.

Raw positional data of all players were filtered with a fourth order Butterworth
low pass filter. The filtering method was adopted from validation studies with similar
exercises [20]. In previous studies an appropriate cut-off frequency of 1 Hz was determined
by analysing occurring gait frequencies of football players with a method described by
Winter [29]. Raw ball positions were filtered with a 4th order Butterworth low pass filter
and a cut-off frequency of 10 Hz.

Many use cases in sports require the analysis of speed and acceleration. Most commer-
cial systems provide these variables in their output. However, to assure better comparability
in this study, the filtered positional data were used as basis for the calculation. Speed (rate
of change in XY position) and acceleration (rate of change in speed) were derived by
differencing two consecutive data points. This procedure was applied to player as well as
ball data. Peak speed, peak acceleration and peak deceleration represents the maximum or
minimum momentary value in the respective data.

The alignment of both signals was accomplished in two steps. Initially all trials
were synchronized temporally. Therefore, the system data was time-shifted until the
minimal total RMSE between the speed values was found. For spatial synchronisation, a
Procrustes analysis (Euclidean similarity transformation) was conducted to find the best
fitting rotational and translational parameters and align both systems.

3D ball accuracy was investigated by comparing the tracked impact positions of shots
and throws crossing the goal line. The start and end of each shot and throw were manually
tagged. The intersection point of the ball with the goal plane was calculated using the
manually defined start position and the closest tracked position to the goal plane. The
coordinates of the goal were measured manually and did not change in during whole test.
Position errors are recorded in 2D (XY), height (Z) and 3D (XYZ).

As tracking devices are usually meant to show the gross movement of a player
and to avoid overestimation of covered distances by body sway when standing still, the
data was gait neutralized before the distance covered was calculated [8]. Waypoints
were created every 60 cm, the positions in between were interpolated using a shape-
preserving piecewise cubic spline algorithm [8]. Finally the distance between each frame
was summarized, resulting in the total distance covered. In addition to the total value,
distances are given in speed zones, using the following thresholds: Zone 1 (<6 km·h−1),
Zone 2 (≥6 to <15 km·h−1), Zone 3 (≥15 to <20 km·h−1), Zone 4 (≥20 to <25 km·h−1),
Zone 5 (≥25 km·h−1).

2.6. Statistical Analysis

Measurement errors of positional data are stated by means of root mean square error
(RMSE) and mean absolute error (MAE):

RMSE =

√
∑n

i=1(measured distance− actual distance)2

number o f measurements
(1)

MAE =
n

∑
i=1
|measured distance− actual distance| (2)

Both error indicators are stated for three variables. Position (m): Position RMSE and
MAE, Speed (m·s−1): Instantaneous speed RMSE and MAE and Acceleration (m·s−2):
Instantaneous acceleration RMSE and MAE. For position measurements, the circular error
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propable (CEP) as the median and the CE95 as the the 95th percentile of error values are
calculated.

Three indications of percentage differences occure in the results: Tables 3 and 5 include
the percentage difference for measured peak speed, peak acceleration and peak deceleration
values. Table 3 also shows the absolute percentage difference; Table 4 shows the absolute
percentage difference for shot and throw position errors; Table 6 elaborates normal and
absolute percentage differences between measured covered distance in the speed zones.
Speed zones 4 and 5 are excluded (-) for SSGs, as only two athletes reached zone 4 and
none reached zone 5. Percentage deviation is calculated for covered distances above 0 m in
both systems. In both cases, the omitted covered distances are added to the total distance.
All differences are stated as the average percentage deviation of the former variable in the
respective trials.

3. Results

The results are structured in three different sub-sections: Position, speed and acceler-
ation (1), Peak values (2), and Shot and throw tracking (3). All table values are rounded
after calculation which can lead to small inconsistencies in printed outcomes.

3.1. Position, Speed and Acceleration

Table 2 presents the 2D deviations of momentary position, speed and acceleration
between the reference system and Kinexon.

Table 2. Position, speed and acceleration errors measured for SSC and SSG. For each category, root mean square error
(RMSE) and mean absolute error (MAE) as well as their standard deviation (SD) is shown. CEP indicates the median
position error, CE95 the 95th percentile of error values.

Position (m) Speed (m·s−1) Acceleration (m·s−2)

RMSE ± SD MAE ± SD CEP CE95 RMSE ± SD MAE ± SD RMSE ± SD MAE ± SD

SSC

Total
0.09 0.08

0.07 0.15
0.07 0.05 0.20 0.12

0.02 0.01 0.01 0.01 0.05 0.01

Sprint 0.13 0.12
0.12 0.19

0.11 0.09 0.18 0.14
0.03 0.02 0.04 0.03 0.07 0.05

405-Agility 0.08 0.07
0.07 0.13

0.07 0.06 0.25 0.15
0.03 0.02 0.03 0.02 0.17 0.05

Zig-Zag 0.07 0.06
0.06 0.10

0.04 0.03 0.10 0.08
0.02 0.02 0.01 0.01 0.02 0.02

SJ + sharp turns 0.08 0.07
0.07 0.13

0.07 0.05 0.18 0.12
0.01 0.01 0.02 0.01 0.05 0.03

Lunges 0.08 0.07
0.07 0.12

0.06 0.05 0.28 0.19
0.02 0.02 0.02 0.02 0.14 0.09

Curved sprints
0.11 0.10

0.10 0.17
0.10 0.07 0.31 0.16

0.03 0.03 0.03 0.02 0.14 0.05

SSG
Player

0.08 0.07
0.6 0.13

0.06 0.04 0.18 0.10
0.01 0.01 0.02 0.01 0.04 0.02

Ball
0.15 0.12

0.11 0.22
1.61 0.86 36.06 19.22

0.03 0.02 0.75 0.09 14.57 2.21

3.2. Peak Speed, Peak Acceleration and Peak Deceleration

Table 3 shows the mean and standard deviation (SD) of peak speed, peak acceleration
and peak deceleration for the different stages of the SSC. Differences between both systems
are shown as relative and absolute percentage deviations.

50



Sensors 2021, 21, 1465 8 of 13

Table 3. Table with peak speed, peak acceleration and peak deceleration of the reference and Kinexon system for different
parts of the SSC. Percentage values indicate the differences between both systems.

Peak Speed (m·s−1) Peak Acceleration (m·s−2) Peak Deceleration (m·s−2)

Ref Sys ± SD Kinexon ± SD % Diff Absolute % Diff Ref Sys ± SD Kinexon ± SD % Diff Absolute % Diff Ref Sys ± SD Kinexon ± SD % Diff Absolute % Diff

Linear Sprint
7.43 7.51

1.0% 1.0%
3.82 3.76 −0.5% 5.2%

−4.64 −4.75
2.4% 2.4%0.39 0.40 0.62 0.48 0.49 0.51

405 Agility 5.90 5.98
1.4% 1.4%

7.01 6.92 −1.3% 2.7%
−7.45 −7.42 −0.3% 2.1%0.32 0.32 0.57 0.52 0.44 0.41

Zig-Zag 1.66 1.69
1.7% 2.4%

0.91 1.00
10.2% 12.9%

−1.02 −1.03 −0.1% 7.3%0.16 0.16 0.33 0.35 0.33 0.35

SJ and COD 4.43 4.51
1.7% 1.7%

4.52 4.63
2.4% 3.1%

−4.58 −4.70
2.7% 3.4%0.35 0.36 0.49 0.51 0.47 0.50

Lunges 1.21 1.22
1.5% 3.2%

1.99 2.04
2.9% 5.7%

−2.01 −2.09
4.3% 6.1%0.28 0.27 0.62 0.61 0.55 0.54

Curved sprints
5.82 5.86

0.7% 0.8%
6.08 6.10

0.5% 3.0%
−6.64 −6.71

1.1% 2.5%0.22 0.21 0.50 0.49 0.41 0.38

3.3. Shot and Throw Tracking

Deviations of the tracked position the ball passing the goal line are show in Table 4,
Table 5 shows the measured ball speed peaks in shots and throws.

Table 4. Football shot and handball throw: Deviation of impact position at the goal. The percentage
difference states the deviation between shot and throw errors.

Shot Pos Error ± SD (m) Throw Pos Error ± SD (m) % Diff

2D
0.13 0.13

2.4%0.08 0.15

Height
0.09 0.15 38.7%
0.07 0.13

3D
0.17 0.21 18.9%
0.08 0.18

Table 5. 2D peak speed of shots and throws.

Ref Sys ± SD (m·s−1) Kinexon ± SD (m·s−1) % Diff

Shot
24.65 25.05

1.8%3.49 3.50

Throw
17.78 18.20

2.6%1.64 2.27

3.4. Covered Distance

Table 6 presents the covered distance measured by the reference system and Kinexon.

Table 6. Covered distance in SSCs and SSGs, shown in five speed zones and the total trial. In SSGs,
zone 4 was only reached in two occasions and is therefore excluded. No player reached speed zone 5
in all SSGs.

Ref Sys ± SD (m) Kinexon ± SD (m) % Diff Absolute % Diff

SSC

Total
173.9 174.9

0.6% 0.6%6.7 6.8

Zone 1
48.8 48.9

0.2% 1.3%7.8 7.9

Zone 2
50.1 50.3

0.3% 1.3%8.5 8.8

Zone 3
46.7 45.0 −3.7% 4.1%7.2 7.5
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Table 6. Cont.

Ref Sys ± SD (m) Kinexon ± SD (m) % Diff Absolute % Diff

Zone 4
21.2 22.7

8.5% 9.1%8.9 9.1

Zone 5
7.2 8.0

14.5% 15.5%3.9 3.8

SSG

Total
165.5 167.1

1.0% 1.0%27.4 27.6

Zone 1
61.5 61.2 −0.5% 1.4%10.4 10.6

Zone 2
98.3 99.6

1.4% 1.7%29.2 29.4

Zone 3
5.4 6.0

15.3% 16.5%6.6 7.0

Zone 4 - - - -

Zone 5 - - - -

4. Discussion
4.1. Discussion of Results

The RMSE of 9 cm for positional measurements for the whole course did not differ
largely from the RMSE of 8 cm for SSG tracking. Both mean absolute errors turned out to
be 1 cm smaller (Table 2). The small advantage in accuracy of SSG compared to SSC is to
be expected as SSC contains more critical events for position detection. Table 7 shows the
accuracy of player position tracking from studies using a similar reference system.

Table 7. Results from studies using similar validation procedures.

Article Tested System Reference System Exercises Result

Ogris et al. [2012] [22] LPS Vicon Courses, SSG MAE: 23.4 cm

Linke et al. [2018] [8] GPS, LPS, VID Vicon Courses, SSG, Shuttle runs
RMSE GPS: 96 cm
RMSE LPS: 23 cm
RMSE VID: 56 cm

Luteberget et al. [2018] [11] LPS Qualisys Courses MAE: 21 cm

Linke et al. [2020] [20] 2 × VID Vicon Courses, SSG RMSE VID1: 9 cm
RMSE VID2: 8 cm

Hodder et al. [2020] [17] LPS Vicon Courses RMSE: 20 cm

A similar result pattern was found for general speed and acceleration errors. Looking
at the specific exercises of the course, tracking in high velocity phases (e.g., linear and
curved sprints) was less accurate compared to other sections (Table 2). Small differences
between RMSE and MAE (Table 2) hint towards a constant tracking error instead of several
peak errors, as calculation of RMSE squares all errors before taking the mean and the root.
Table 6 presents the difference of measured covered distance, divided into five speed
zones and the total value. In total, the percentage deviation was 0.6% for SSCs and
1.0% for SSGs. The positive differences indicate, that all covered distances were slightly
overestimated by the Kinexon system. These results are comparable to other studies
investigating LPS [11,20,23].

Table 3 demonstrates errors in peak speed, peak acceleration and peak deceleration
and the percentage deviations between Kinexon’s and Qualisys’s measured values. The
percentage deviation of measured peak speed in the six exercises of the course were in
the range of 0.7–1.7%. The error ranges got bigger for acceleration (−1.3–10.2%) and
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deceleration (−0.3–4.3%). The exercises with the highest percentage peak speed deviation
were zig-zag jogging and the squad jump followed by CODs. Additionally, a high peak
acceleration discrepancy was found for zig-zag jogging. The linear sprints with the highest
peak speed also showed an overestimation by the LPS. Such overestimations can be
found in other studies’ results, assessing Kinexon’s peak speed measurements. Fleureau
et al. mention a mean bias of 0.15 (m·s−1) and 0.17 (m·s−1) for side- and center-field
sprints [24]. These results indicate difficulties with the system in the assessment of speed
and acceleration for alternating trajectories and are in line with similar shortcomings of
LPS systems stated for LPS systems [19].

The 2D tracking accuracy of the football showed a position RMSE of 15 cm for SSGs.
Compared to player tracking accuracy, this turns out to be almost twice as high (player
tracking RMSE 8 cm; Table 2). Even the increased sampling frequency of 50 Hz (ball) com-
pared to 20 Hz (player) could not compensate for that. This is to be expected, because the
ball shows more critical kinematics, e.g., acceleration and speed than players’ movements.
Additionally, the systematic error mentioned, caused by the location of the LPS sensor in
the ball, influences the results. For ball tracking, the error should be interpreted respecting
the intended usage of the data. Although the positional error of ball tracking was higher
then the error found for player tracking in this study, the height of this error was stated as
acceptable for player tracking in other studies [17]. Therefore, ball tracking accuracy could
be appropriate for purposes like ball possession analysis [28]. For officiating purposes
such as hawkeye in tennis, where error rates of well under 1 cm are achieved [30] the ball
tracking should not yet be used.

Table 4 shows a deviation of 17 cm (shot) and 21 cm (throw) between the tracked
3D ball impact locations in the goal. This is a difference of 18.9% between the tracking of
handballs and footballs. When looking at the composition of the error, rather big differences
occur in height measurements, whereas the 2D position error was 13 cm for both ball types.
In total, ball position tracking was more error prone than player tracking. The measured
peak speed of the ball in shots and throws was slightly overestimated by the LPS (Table 5).
This discrepancy was in the same range for both balls.

4.2. Discussion of Methods

There are different designs for validation studies of a position tracking system [19].
As Luteberget and Gilgien [12] mention, a gold standard design is indispensable and
preferential to just comparing results of position tracking systems. A 3D-motion capture
system based on infrared cameras with passive markers may be seen as the presently most
effective reference system [12].

In this study, different stations of a sport-specific course were chosen to mimic relevant
movements in team sports, with a focus on critical situations for position tracking devices.
However, not all common and imaginable movements could be integrated. This should be
taken into account, especially for sports with focus on other movement patterns.

The data processing in this study was chosen to be appropriate and applicable to
recordings of two individual systems. However, the adaptation of the data processing to
one specific system might be beneficial for optimizing this system’s results. Differential
filtering settings are commonly used by manufacturers to improve results. This filter
adaptation might result in more precise tracking outcomes [9].

Player tracking was evaluated using a course with different sections and small sided
games. The course was designed to cover exercises for various demands within the testing
area. This area was limited to the coverage capacity of the reference system. To the
best knowledge of the authors, currently available infrared camera-based motion capture
systems cannot cover large areas like a whole handball or even football pitch. Nevertheless,
the size of the pitch has a significant influence on player kinematics and tactical behaviour.
Neither did the relatively short track for linear sprints allow for reaching top sprinting
speed nor did the limited pitch dimensions of the SSG allow for reaching top speeds
comparable to full pitch handball or football matches. Moreover, for the same reason only
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a small number of samples in high or very high speed sections could be compared. This
can be seen in the low availability of high speed covered distance in SSCs and the lack of
high speed occurrences in SSGs (Table 6). Although this limitation is caused by the state of
the art in validation methodology, it has the unpleasant consequence that we are not able
to validate systems in speed zones, where accuracy gets increasingly critical.

Ball tracking accuracy for handballs and footballs is demonstrated in 2D (Table 2)
and 3D (Table 4). Shots and throws were conducted with a large distribution of height
differences and therefore allowed the analysis in 3D. Here, the Z-coordinate (height of
the ball) was taken into account. In SSGs, the players’ aim of keeping ball possession led
to the passes predominantly with the ball on the ground. Ball position measurements in
SSGs were compared in 2D. The height accuracy in game-like scenarios should be more
specifically addressed in further studies.

The tracking of the ball depends, among other things, on the positioning of the sensor,
which is right underneath the surface of the ball. For a football (around ø 22 cm) and a
handball (around ø 18 cm), this results in a maximum dislocation of 11 cm/9 cm to the
center of the ball in the XY plane. As the ball is spinning, there is a variable systematic
error ranging from 0 cm to 11 cm. This error is part of the deviation between reference and
tested system, but may not really be seen as a measurement error.

5. Conclusions

This study investigated the sport-specific validity of Kinexon’s LPS for both, player
and ball tracking data. The comparison with an infrared camera-based motion tracking
system as criterion reference system allows for precise and continuous evaluation of the
tracking accuracy. The exercises in the course were chosen to reflect typical movements of
athletes in team sports, especially handball and football. It has to be considered, that the
coverage area of the reference system falls short of original handball and football pitches
thus not allowing for long phases of high velocities and coverage of a real-sized pitch.

The position measurements of players in the SSC showed just minor differences
within all exercises, depending on position, speed and acceleration. For the game-like test
setting, the error was slightly lower. These results are in line or even better compared to
previous studies on LPS or video-based systems and better than GPS. Ball tracking showed
a higher error than player tracking. The 3D accuracy for shots and throws depends on
measurements in the Z direction and shows differences between handballs and footballs.
The speed of the ball was slightly overestimated by the LPS.

Based on the results of this study, the accuracy of Kinexon’s LPS represents the current
state of the art regarding player and ball position detection in handball and football. The
system can be confidently used to track player and ball positions in team sports.

Author Contributions: Conceptualization, P.B. and M.L.; methodology, P.B., M.L. and R.M.; software,
P.B.; validation, P.B.; formal analysis, P.B.; investigation, P.B.; resources, M.L. and R.M.; data curation,
P.B. and R.M.; writing—original draft preparation, P.B.; writing—review and editing, M.L. and R.M.;
visualization, P.B.; supervision, M.L.; project administration, P.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Ethics Committee of the Technical University of
Munich (65/31 S-SR 04.02.2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors would like to thank the players and the trainer of HC Erlangen
for their kind participation in this study. The authors would also like to thank all technicians and
co-workers of Fraunhofer IIS and Kinexon for supervising the functionality of the systems.

Conflicts of Interest: The authors declare no conflict of interest.

54



Sensors 2021, 21, 1465 12 of 13

References
1. Buchheit, M.; Simpson, B.M. Player-Tracking Technology: Half-Full or Half-Empty Glass? Int. J. Sports Physiol. Perform. 2017,

12, S235–S241. [CrossRef]
2. Akenhead, R.; Nassis, G.P. Training Load and Player Monitoring in High-Level Football: Current Practice and Perceptions. Int. J.

Sports Physiol. Perform. 2016, 11, 587–593. [CrossRef]
3. Aughey, R.J. Applications of GPS technologies to field sports. Int. J. Sports Physiol. Perform. 2011, 6, 295–310. [CrossRef]
4. Memmert, D.; Lemmink, K.A.P.M.; Sampaio, J. Current Approaches to Tactical Performance Analyses in Soccer Using Position

Data. Sport. Med. 2017, 47, 1–10. [CrossRef]
5. Decroos, T.; van Haaren, J.; Davis, J. Automatic Discovery of Tactics in Spatio-Temporal Soccer Match Data. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; Guo, Y., Farooq, F., Eds.; ACM: New York, NY,
USA, 2018; pp. 223–232. [CrossRef]

6. Bradley, P.S.; Ade, J.D. Are Current Physical Match Performance Metrics in Elite Soccer Fit for Purpose or Is the Adoption of an
Integrated Approach Needed? Int. J. Sports Physiol. Perform. 2018, 13, 656–664. [CrossRef]

7. Manchado, C.; Tortosa Martínez, J.; Pueo, B.; Cortell Tormo, J.M.; Vila, H.; Ferragut, C.; Sánchez Sánchez, F.; Busquier, S.; Amat, S.;
Chirosa Ríos, L.J. High-Performance Handball Player’s Time-Motion Analysis by Playing Positions. Int. J. Environ. Res. Public
Health 2020, 17, 6768, [CrossRef]

8. Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE
2018, 13, e0199519. [CrossRef] [PubMed]

9. Alt, P.S.; Baumgart, C.; Ueberschär, O.; Freiwald, J.; Hoppe, M.W. Validity of a Local Positioning System during Outdoor and
Indoor Conditions for Team Sports. Sensors 2020, 20, 5733. [CrossRef] [PubMed]

10. Hoppe, M.W.; Baumgart, C.; Polglaze, T.; Freiwald, J. Validity and reliability of GPS and LPS for measuring distances covered
and sprint mechanical properties in team sports. PLoS ONE 2018, 13, e0192708. [CrossRef] [PubMed]

11. Luteberget, L.S.; Spencer, M.; Gilgien, M. Validity of the Catapult ClearSky T6 Local Positioning System for Team Sports Specific
Drills, in Indoor Conditions. Front. Physiol. 2018, 9, 115. [CrossRef] [PubMed]

12. Luteberget, L.S.; Gilgien, M. Validation methods for global and local positioning-based athlete monitoring systems in team sports:
a scoping review. BMJ Open Sport Exerc. Med. 2020, 6, e000794. [CrossRef] [PubMed]

13. Redwood-Brown, A.; Cranton, W.; Sunderland, C. Validation of a real-time video analysis system for soccer. Int. J. Sports Med.
2012, 33, 635–640. [CrossRef] [PubMed]

14. Vickery, W.M.; Dascombe, B.J.; Baker, J.D.; Higham, D.G.; Spratford, W.A.; Duffield, R. Accuracy and reliability of GPS devices for
measurement of sports-specific movement patterns related to cricket, tennis, and field-based team sports. J. Strength Cond. Res.
2014, 28, 1697–1705. [CrossRef] [PubMed]

15. Bastida-Castillo, A.; Gómez-Carmona, C.D.; de La cruz sánchez, E.; Pino-Ortega, J. Comparing accuracy between global
positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. Eur. J. Sport Sci.
2019, 19, 1157–1165. [CrossRef]

16. Serpiello, F.R.; Hopkins, W.G.; Barnes, S.; Tavrou, J.; Duthie, G.M.; Aughey, R.J.; Ball, K. Validity of an ultra-wideband local
positioning system to measure locomotion in indoor sports. J. Sports Sci. 2018, 36, 1727–1733. [CrossRef] [PubMed]

17. Hodder, R.W.; Ball, K.A.; Serpiello, F.R. Criterion Validity of Catapult ClearSky T6 Local Positioning System for Measuring
Inter-Unit Distance. Sensors 2020, 20, 3693, [CrossRef]

18. Link, D.; Weber, M.; Linke, D.; Lames, M. Can Positioning Systems Replace Timing Gates for Measuring Sprint Time in Ice
Hockey? Front. Physiol. 2018, 9, 1882. [CrossRef]

19. Rico-González, M.; Los Arcos, A.; Clemente, F.M.; Rojas-Valverde, D.; Pino-Ortega, J. Accuracy and Reliability of Local Positioning
Systems for Measuring Sport Movement Patterns in Stadium-Scale: A Systematic Review. Appl. Sci. 2020, 10, 5994. [CrossRef]

20. Linke, D.; Link, D.; Lames, M. Football-specific validity of TRACAB’s optical video tracking systems. PLoS ONE 2020,
15, e0230179. [CrossRef]

21. Stevens T, G.A.; de Ruiter, C.J.; van Niel, C.; van de Rhee, R.; Beek, P.J.; Savelsbergh, G.J.P. Measuring acceleration and deceleration
in soccer-specific movements using a local position measurement (LPM) system. Int. J. Sports Physiol. Perform. 2014, 9, 446–456.
[CrossRef] [PubMed]

22. Ogris, G.; Leser, R.; Horsak, B.; Kornfeind, P.; Heller, M.; Baca, A. Accuracy of the LPM tracking system considering dynamic
position changes. J. Sports Sci. 2012, 30, 1503–1511. [CrossRef] [PubMed]

23. Frencken, W.G.P.; Lemmink, K.A.P.M.; Delleman, N.J. Soccer-specific accuracy and validity of the local position measurement
(LPM) system. J. Sci. Med. Sport 2010, 13, 641–645. [CrossRef] [PubMed]

24. Fleureau, A.; Lacome, M.; Buchheit, M.; Couturier, A.; Rabita, G. Validity of an ultra-wideband local positioning system to assess
specific movements in handball. Biol. Sport 2020. [CrossRef] [PubMed]

25. Buchheit, M.; Al Haddad, H.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Di Salvo, V.; Mendez-Villanueva, A. Monitoring
accelerations with GPS in football: time to slow down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [CrossRef]

26. Randers, M.B.; Mujika, I.; Hewitt, A.; Santisteban, J.; Bischoff, R.; Solano, R.; Zubillaga, A.; Peltola, E.; Krustrup, P.; Mohr, M.
Application of four different football match analysis systems: A comparative study. J. Sports Sci. 2010, 28, 171–182. [CrossRef]

27. Seidl, T.; Czyz, T.; Spandler, D.; Franke, N.; Lochmann, M. Validation of Football’s Velocity Provided by a Radio-based Tracking
System. Procedia Eng. 2016, 147, 584–589. [CrossRef]

55



Sensors 2021, 21, 1465 13 of 13

28. Witt, N.; Völker, M.; Eskofier, B. Detection of Single Ball Contacts using a Radio-based Tracking System—A Basis for Technical
Performance Analysis. In Proceedings of the icSports 2016, Porto, Portugal, 7–9 November 2016; p. 35.

29. Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: Hoboken, NJ, USA, 2009; [CrossRef]
30. Kolbinger, O.; Lames, M. Scientific approaches to technological officiating aids in game sports. Curr. Issues Sport Sci. (CISS) 2017.

[CrossRef]

56



4 Publications

4.2 Detection of Ground Contact Times with Inertial Sensors in Elite

100-m Sprints under Competitive Field Conditions

Bibliographic Facts

The dissertation’s second study, "Detection of Ground Contact Times with Inertial

Sensors in Elite 100-m Sprints under Competitive Field Conditions" was authored

by Blauberger, P., Horsch, A. & Lames, M., and published in 2021 in the MDPI

journal Sensors (Blauberger, Horsch, et al., 2021). The journal had an impact

factor of 3.847 and ranked in the second quartile at the time of its publication.

The study has garnered nine citations and 535 reads on ResearchGate (as of

07-02-2024).

Content

Central to this study is the exploration of a feasible methodology for employ-

ing inertial sensors to accurately measure GCT in elite-level 100-meter sprints.

This research was applied under field conditions, ensuring that the outcomes

are directly applicable to high-stakes athletic environments (Figure 4.2). The

study’s participant pool, comprised of experienced elite sprinters, adds a layer of

practical relevance and authenticity to the research. This choice of participants

underscores the study’s commitment to generating findings that are not just theo-

retically robust but also directly transferable to high-performance sports settings.

One key outcome was the sensors’ ability to provide detailed temporal data

regarding the athletes’ foot contact with the ground during the sprint. This infor-

mation is essential for the understanding of sprinting, particularly in the context of

elite performance, where fractions of a second are decisive. The study showed

that the variations in GCT as measured by the sensors were aligned with the

athletes’ sprinting phases, offering insights into the efficiency and technique of

each sprinter. Moreover, the research found that these measurements could

be obtained reliably under competitive field conditions, indicating that such tech-

nology can be feasibly integrated into regular training and competition without

disruption. This aspect is crucial for coaches and athletes who seek to incor-

porate data-driven techniques into their training regimes without hindering the
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sport’s natural flow. The study’s results open up new possibilities for coaches

and sports scientists in tracking and enhancing sprint performance. By provid-

ing accurate, real-time data, these sensors can help fine-tune training programs,

identify improvement areas and develop strategies that can give athletes a com-

petitive edge. The potential of this technology focuses on sprinting but could also

be applied in other sports where GCT is evaluated as a PI.

Contribution of the Main Author

The main author (P.B.) was involved in conceptualizing the study alongside Mar-

tin Lames (M.L.) and also played a key role in developing the methodology with

Alexander Horsch (A.H.) and M.L.. P.B. was responsible for the software devel-

opment, validation, formal analysis and data curation, demonstrating a compre-

hensive involvement in both the execution and analytical aspects of the research.

A.H. and M.L. were significantly involved in data interpretation. P.B. led the writ-

ing of the original draft and contributed to the visualization aspects of the study.

While M.L. provided supervision and project administration, P.B.’s contributions

included operational execution, data analysis and manuscript preparation. All

authors approved the final research paper.
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Figure 4.2 Measurement setup and athlete. The blue OptoGait strips acquired reference data. Both feet of the
athlete were equipped with Inertial Measurement Units.
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Abstract: This study describes a method for extracting the stride parameter ground contact time
(GCT) from inertial sensor signals in sprinting. Five elite athletes were equipped with inertial
measurement units (IMU) on their ankles and performed 34 maximum 50 and 100-m sprints. The
GCT of each step was estimated based on features of the recorded IMU signals. Additionally, a
photo-electric measurement system covered a 50-m corridor of the track to generate ground truth
data. This corridor was placed interchangeably at the first and the last 50-ms of the track. In total, 863
of 889 steps (97.08%) were detected correctly. On average, ground truth data were underestimated
by 3.55 ms. The root mean square error of GCT was 7.97 ms. Error analyses showed that GCT
at the beginning and the end of the sprint was classified with smaller errors. For single runs the
visualization of step-by-step GCT was demonstrated as a new diagnostic instrument for sprint
running. The results show the high potential of IMUs to provide the temporal parameter GCT for
elite-level athletes.

Keywords: running; sprinting; contact time; sports analytics; inertial sensors (IMU); field application

1. Introduction

In recent years, the acquisition of performance parameters with sensors for applica-
tion in sport science and practice has been a developing topic. The evolution towards
smaller and lighter devices like inertial measurement units (IMU) allows for field usage in
professional sports. With the availability of increased sample rates, even sports with fast
and abrupt movements get in the scope of detailed sensor-based analysis.

In sports with high speeds, such as sprints, little direct feedback is available to the
athlete. Hence, scientific assistance needs to assess objective indicators to give detailed
feedback and enhance future performances. Temporal parameters like ground contact
time (GCT), step duration, and step rate are common features of running analysis. These
parameters were linked to enhanced performances in several studies [1–3], underlining
their helpfulness for coaches and athletes in training and competition. Additionally,
the influence of GCT on the running economy was stated [4]. In sprinting, a negative
correlation between GCT and performance in a sample including french elite-level sprinters
was found [5]. Especially GCT is an essential parameter in sprinting [6] but is not commonly
available in training and competition settings until now [7].

Temporal parameters, in which tiny deviations can play a decisive role, and can only
be captured with technological aid. Established methods like video footage, timing gates,
contact mats, motion capturing, or force plates are used to determine exact temporal
sprint parameters [8–10]. The feedback obtained by these methods can improve the
quality of the running technique. However, they require notable effort or preparation
and cannot be commonly applied in the field or competition settings, where the most
valuable information may be collected. Non-invasive position detection methods with
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less overall (Global positioning system—GPS) or on-court preparation (Local positioning
system—LPS) can eliminate these problems. Seidl et al. investigated the determination
of temporal parameters with a LPS. For the detection of ground contact times, the most
precise commonly used position detection method, LPS, does not work [11,12]. This also
implies that GPS is not suitable for this detection. For reliable sprint parameter detection,
photoelectric systems like Optogait or Optojump are commonly used [7,12–14]. However,
before the measurement, these systems need to be set up on the running track carefully,
thus requiring a large effort and not suited for analyses of official competitions. Moreover,
only straight runs of one athlete at a time can be assessed.

To substitute these time intensive and costly systems, the integration of IMUs for
diagnostics in gait [15–17], runs [18–20], or sprinting [13,21–25] received much attention in
the last decade. Various studies introduced new or adapted sprint performance metrics
based on data of IMUs. In a systematic review, Macadam et al. gathered several studies
investigating one or more types of temporal parameters for sprint kinematics. They
conclude, among other things, that a more distal sensor placement (e.g., foot, shank,
shoe-mounted) enhances the validity and reliability of sensor measurements [26]. Also,
a sampling frequency of >200 Hz improved results in the examined studies. A recent
study proposed combining data from a LPS with integrated IMUs positioned near the
participant’s sacrum for a more holistic view of gait parameters [27]. They stated good
results for speed and stride length while not addressing ground contact time. Schmid et al.
investigated the validity of IMU measurements with real-time quantification of the collected
data. They report detection errors of −2.5 ± 4.8 ms for GCT and a correct step detection rate
of 95.7% [13]. In a recent study, Falbriard et al. investigated temporal parameters during
hurdle running. Besides a perfect hurdle clearance detection (with the help of magnetic
sensors) and determination of the leading leg, they found an increase in GCT during
one race [28]. Schmid and colleagues suggested a discussion regarding the GCT values,
mentioning a correction procedure based on the previous study of Falbriard et al. [22,29].

From the current literature, it remains unclear whether the detection of sprint param-
eters with IMUs can determine the GCT of elite-level 50 and 100-m sprinters in the field.
Precise GCT information could be beneficial for coaches, athletes, and science to investigate
training and competition success. This study aims to validate the detection of GCTs for
elite sprinters in the field with shoe-mounted IMUs.

2. Materials and Methods
2.1. Sample and Protocol

The sample consists of 1140 steps from 34 maximum 50 and 100-m sprints per-
formed by five elite national sprinters, with three participants of the Tokyo Olympics
(age: 22.6 ± 2.7 years; weight: 69.6 ± 11.5 kg; 3 male, 2 female; test year’s best official
100 m time: f: 11.65 s, f: 11.11 s, m: 10.76 s, m: 10.77 s, m: 11.27 s); 889 of these steps
were simultaneously measured with the photoelectric Optogait system. The trials were
performed on official sprinting tracks during three separate training sessions. Before the
study, all athletes were instructed verbally and received written information about the
procedure and purpose of the study. The study has been approved by the ethical committee
of Technical University Munich and all subjects gave informed consent.

2.2. Measurement Systems

Two IMUs (Physilog5, Gait Up SA, Lausanne, Switzerland, size: 47.5 mm × 26.5 mm×10
mm, weight: 11 g) were attached to each athlete’s shoes, positioned right above the ankle of
the foot (Figure 1). The IMUs were chosen to be easily applicable, light, and least obstruc-
tive for the athletes’ performance. The positioning was reported not to be of any problem
by each athlete. The IMU included an accelerometer (512 Hz, ±16 g operating range) and
gyroscope (512 Hz, ±2000◦/s operating range) and a barometric sensor. In this project,
only the 3D accelerometer and 3D gyroscope are used. For ground truth data acquisition,
a 50 m corridor of photoelectric bars on the ground (Optogait, Bolzano, Microgate, Bolzano,
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Italy) was used. Optogait was used already as criterion measurement system in previous
sprinting studies [7,13,30]. This system is modularly composed of 1 m bars, which can
be connected to cover an arbitrary distance. Over the area of 100 cm × 80 cm, 96 light
diodes are evenly located 3 mm above the running track. One validation study reported
95% limits of agreement of 7.7% for GCT with a contact mat [31], whereas another study
did not find significant differences in GCT compared to a high speed video camera [32].
To acquire data for the total 100 m distance, the Optogait corridor was repositioned to the
second 50 m sector for 6 of the sprints. With this procedure, ground truth data for 77.98%
of the steps were captured (76.72% on the first 50 m and 23.28% steps of the last 50 m).

Figure 1. Sprint shoes with IMUs attached to the ankles (red circles).

2.3. Data Processing

Initially, all raw data of both systems were exported as local text files, and personalized
data was anonymized. The software MATLAB (R2021b, The MathWorks Inc., Natick, MA,
USA) was used for further data processing steps. The built-in functions butter, filtfilt,
and findpeaks were used in the algorithm. X, Y, and Z signals from the IMUs’ Accelerometer
and Gyroscope were acquired at 512 Hz and extracted with the company’s software
tool. The sensor’s respective information about the direction of acceleration and angular
velocity is described relative to the sensor’s position, which is constantly changing during
a movement. The current study summarized Accelerometer and Gyroscope outputs to
one vector as vector magnitude unit (VMU) to circumvent this problem. Both VMUs were
filtered using a 2nd order Butterworth low pass filter with a cut-off frequency at 70 Hz [28].
These filter parameters were successfully applied to the training data and achieved the
best results. The automatic detection of step events was achieved based on two relevant
episodes of a step cycle: Initial contact (IC) and terminal contact (TC). IC describes the
moment in time when the heel initiates the very first contact with the ground. TC, also
known as toe-off, refers to the moment when the tip of the foot leaves the ground. The
precise temporal location of these events can be determined with different procedures. It
turned out to be most promising to use patterns in accelerometer as well as gyroscope
data [22].

For algorithm development, repetitive patterns in the IMU signals were analyzed
and used to extract GCT. Six randomly selected runs served as training data. After the
development, no further adaptations were made to the detection, which was applied
to the rest of the runs. This procedure helps ensure that the algorithm does not over-
fit the data. Figure 2 exemplary illustrates the algorithmic determination of those time
points for one single step of a sprint. The IC of the foot causes an abrupt change of the
acceleration induced by the touchdown. In this study, IC was defined as the moment of

62



Sensors 2021, 21, 7331 4 of 10

the local minimum in acceleration when the heel impacts the ground (Figure 2A). Using
this definition of IC, the location of TC time points was determined with the help of the
ground truth data in the training set. The foot’s movement at the end of the contact
phase causes two peaks in the combined angular velocity. TC was defined by the local
minimum between these two bursts (Figure 2B). The graphs show synchronous signals of
the accelerometer and gyroscope of the IMU for one single step, together with the Optogait
signal for ground contact.

Figure 2. Vector magnitude unit (VMU) of x, y, and z acceleration (A) and angular velocity
(B) throughout one single sprint step. The blue dashed line marks the initial contact event; the
red dashed line the terminal contact. The solid red line indicates the resulting ground contact period
for the inertial measurement unit (IMU). The photo-electric-measured (Optogait) ground contact
time is represented by the solid blue line.

2.4. Statistical Analysis

Results regarding the whole sample include all steps which at least two athletes
performed. This discrepancy comes from the different step lengths of the tested athletes.
This leads to a maximum of 50 steps for any 100-m sprint.

All Graphs were created with Microsoft Excel (2016, Microsoft Corporation, Red-
mond, WA, USA). Percentage differences are calculated as the percentage deviation of the
photo-electric measured value. To show error distributions, a well-known procedure is
the visualization of data in a Bland-Altman-Plot. Step-wise deviations are indicated by
means of root mean square error (RMSE) between the calculated GCT and the GCT of the
ground truth.

3. Results

Section 3.1 addresses results on the validity of the GCT detection. Section 3.2 illustrates
the distribution of the measured GCT. Moreover, based on IMU data, exemplary evaluations
of individual runs regarding reliability and gender comparison are visualized. Results are
shown as percentage values, averages, standard deviations, and Bland-Altman plots.

3.1. Results on Validity

The algorithm correctly detected 863 of 889 ground contact events, corresponding to a
false detection rate of 2.92%; 6.47% of the first five steps and 13.33% of the last five steps of
the respective sprint were incorrectly detected. The remaining sprint steps were incorrectly
detected in 0.56% of the cases. The IMUs detected a mean GCT of 119.95 ± 22.51 ms,
and Optogait detected 117.13 ± 24.03 ms for all simultaneously measured steps. The step-
wise average relative time difference between IMU- and Optogait-GCT was 3.55 ± 6.16 ms,
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which translates to a 3.03% average deviation of GCT. A mean absolute time difference of
5.46 ± 4.55 ms (4.66% deviation) was measured. The deviation of each step results in a total
root mean square error of 7.97 ms.

Measurement errors for the detected GCT are illustrated in a Bland-Altman plot
(Figure 3). All steps with both IMU and ground truth data are shown independently of the
respective trial. The first five steps are marked with red dots, steps 6–50 are shown in blue
color. The solid black line represents the mean bias of all detected steps: 3.55 ms. Limits of
Agreement (2 ∗ SD) were obtained at −8.53 ms and 15.63 ms and are represented by the
black dashed lines.

Figure 3. Bland-Altman-Plot of IMU- and Optogait (OG) measured ground contact time (GCT).
Dashed lines show Limits of Agreement (2 ∗ SD): −8.53 ms and 15.63 ms, the dotted line the mean:
3.55 ms. Red data points represent steps 1–5 at the beginning of the sprint. Blue-colored dots indicate
all other steps (i.e., step 6–50).

Figure 4 shows the average step-wise measured GCT with Optogait (blue) and IMUs
(red).

Figure 4. Average GCT of Optogait (blue) and IMU (red) measurements. Only these steps are
included, which at least two different athletes performed. All measured data points are summarized
to one value for the respective step in the sprint.
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Table 1 shows the distribution of GCT throughout step ranges of five and ten steps.
The measured mean and absolute percentage deviation to the reference system in the
respective step range is displayed. Steps 6–46 show a constant deviation in the range from
3% to 6%. The first five steps indicate a lower relative difference (1.17%). The absolute
values are in the range above. For the last five steps, a lower relative (0.22%), as well as
absolute (2.13%) deviation is found.

Table 1. Mean IMU measured ground contact time (GCT), and its relative and absolute percentage
deviation to the reference system for various step ranges of all 100-m sprints. The first and last
intervals are summarized into five steps. All other intervals combine ten steps. The last five steps
showed the lowest percentage difference.

Step GCT ± SD % Diff ± SD Absolute % Diff ± SD

ine 1–5 163.45 1.17% 4.33%
24.73 1.77% 0.36%

ine 6–15 118.43 3.28% 4.61%
9.45 1.52% 0.78%

ine 16–25 109.32 4.28% 4.98%
6.40 0.52% 0.69%

ine 26–35 107.12 5.14% 5.72%
9.12 2.18% 1.27%

ine 36–45 107.86 4.24% 5.86%
9.01 2.27% 1.13%

ine 46–50 104.80 0.22% 2.13%
6.71 1.26% 1.11%

3.2. Results on GCT

The following result section illustrates the IMU-detected GCT of exemplary single
runs. The first graph visualizes the reliability of the measured GCT by showing two
runs of the same athlete. The following graph emphasizes the application of this method,
comparing GCT from single runs of athletes from different genders.

Figure 5 shows two separate sprints of the same athlete. Chronologically, blue repre-
sents the first and red the second sprint. The difference between the GCT of both runs is
on average 0.48 ms per step For steps 1–5, an average decrease of 27.36% in both runs can
be seen.

Figure 5. IMU-measured GCT of two 100 m sprints of the same athlete. Run 1 (blue) was conducted
approximately 30 min before Run 2 (red). The graph illustrates reliable intra-subject results.
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An exemplary comparison of GCTs of a female and a male sprinter is given in Figure 6.
These two individual runs were chosen to illustrate the possibilities of this method. Each
ground contact is represented by a dot on the respective line. The time between the last
and the first step of this 100-m dash was 10.66 s for the male and 11.12 s for the female
sprinter. The number of steps altered with 50 steps for the female athlete and 47 for the
male athlete. No gender dependent differences occur in the top speed phase of the run.

Figure 6. IMU-measured GCT of a female (red) and a male (blue) sprinter over 100 m. The marked
dots on each line represent ground contacts. The connecting line between the dots is added for better
visual separation. The time of the last contact represents the total period between the first and the
last step of the respective sprint.

4. Discussion

The current study was conducted to explore and prove the benefits of sensor-based
running parameters in top-level sports.

4.1. Discussion of Methods

The detection of gait events from sensor data progressed in recent years. Various
sensor outputs can be used to extract time points of interest. In addition, the procedure
during data processing also plays a decisive role in the development. This study does
not claim to extract the most precise or correct signals or features to estimate IC and TC.
In other proposed methods, specific components of the accelerometer and gyroscope are
tested for detection and applied to running signals [13,22]. Schmidt and colleagues used
minima in an acceleration component of one direction to detect IC and TC. Falbriard et al.
identified several different time points for IC and TC as possible ground contact indicators.
They found a combination of acceleration and angular velocity as promising by comparing
these time points to the detection of a force plate as the criterion reference system.

Especially for validation purposes, the study design should focus on an appropriate
criterion measurement system. The criterion measurement system in the current study,
Optogait, is a commonly accepted method for ground truth data acquisition [7,13]. The
recent study’s setup—including the alternation of the 50-m corridor—was also used in
other studies [7]. Additionally, the time-synchronization of all systems could improve the
insights during the algorithm development. Although the burst in the accelerometer at IC
was used to synchronize the events a posteriori by minimizing the least square errors of
the first IC, it is possible to circumvent this error source with a technical synchronization.
Hence, this time-synchronization would allow for a more accurate assessment of the IC
and TC detection.
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The results for GCT in Figure 6 are exemplary and must be further compared to inter-
and intra-subject results. Additionally, more incorrectly detected steps occurred during
the first five (6.47%) and last five (13.33%) steps. Therefore, improvements to the used
algorithm should be achieved, especially since the methodology of pattern detection from
IMU signals has been a fast developing topic in recent years; for example, the early steps of
a sprint (see Figure 3) show greater discrepancies.

A relatively small sample was chosen for this study to represent high-level sprinters
from different gender, age, weight, height, and other variations. However, it cannot be
assumed to have covered all discrepancies within this population. Therefore, no conclu-
sions about general differences can be drawn within this small sample size. For further
quantification of elite sprint performances, a broader data basis should be established
while considering that the evaluation of individual athletes should also be supported. With
the increasing usage of IMU sensors in recent commercial products, future studies can
also account for combining further sensory data to a more holistic acquisition of running
parameters of professional athletes.

4.2. Discussion of Results

The basic aim of a run analysis with IMUs should include the correct detection of
sprint steps. The results on correct step detection can hint towards the algorithm validity.
This study showed a detection rate of 97.1%. All false detected steps were missed real
steps, corresponding to false positive detections. 80.8% of these detection errors occurred
within in the first and last five steps of the respective sprint. This could be explained by
the different coordination patterns at the beginning and end of the sprint which lead to
unstable waveforms and ultimately false positives. To the best knowledge of the authors,
the detection rate is only explicitly stated in one other study. Schmidt et al. reported the
correct detection of 95.7% [13]. Thus, the proposed method showed results that are in line
or even better.

Figures 3 and 4 show the distribution of measurement errors for each step of the sprint.
The mean overestimation of 3.55 ms of IMU-based GCT detection compared to Optogait
hints towards a systematic bias (Figure 3). As Falbriard et al. stated, correcting the GCT
values based on previous results may help to achieve more precise results [22]. However,
Figure 4 illustrates low deviations at the beginning and end of the sprints. This can also be
seen in Table 1. The lower deviations of step range 1–5 and 45–50 indicate that an adaptive
GCT recognition could be helpful. The first five steps occur especially important, as big
relative changes can be observed in this time span (Figure 5. These indications need to be
considered in a potential correction procedure.

The limits of agreement in the Bland-Altmann analyses of −9.28 ms and 16.14 ms (see
Figure 3) appear to be relatively high compared to another study with a similar reference
system, which stated lower bounds [13]. Besides a different detection of ground contact
events, a possible reason could be the shorter contact time of elite sprinters who participated
in this study. Also, a different running style of the individual participant could make a
crucial impact because of the small sample size.

In Figures 5 and 6, individual runs are shown for application purposes. The temporal
resolution of GCT enables the visualization of minor differences during a single run. The
illustration of a female and a male sprinter in Figure 6 does not support a general gender
comparison. However, as the tested sample performs on a high level and therefore experi-
ence individual improvements in running economy, the use case can show possibilities of
individual analysis with IMU data. This representation of results does not contribute to the
validity measurement or quantification of the tested population. In the individual analysis
and comparison of these single runs, we can see indicators for running asymmetries (e.g.,
Figure 5—steps 43–47). As these asymmetries lie within the detected measurement error,
the pure indication of IMU signals can not solely be referenced. This analysis can more eas-
ily be transferred to competition, as no counterparty or athletes are distracted by wearing
such light and small sensors.
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5. Conclusions

The step detection rate with the IMU data showed high reliability, whereas the devia-
tion of the measured GCT depends on the section of the run. The early and late stages of
the sprints tended to have lower deviations between IMU and Optogait measured GCT.
These findings point out additional technical difficulties, such as problems of the algorithm.
In total, the results encourage the field use of IMUs as a potential method for step detection
and measurement of GCT in high-level sprints. This analysis can help to enhance our
knowledge about performance on the highest levels. The findings of this study encourage
the implementation of IMU-based measurements in high-level sprint competitions.
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4.3 A Pilot Study in Sensor Instrumented Training (SIT) - Ground Contact

Time for Monitoring Fatigue and Curve Running Technique

Bibliographic Facts

The third study within this dissertation, titled "A Pilot Study in Sensor Instru-

mented Training (SIT) - Ground Contact Time for Monitoring Fatigue and Curve

Running Technique" is authored by the research team including Blauberger, P.,

Fukushima, T., Russomanno, T.G. & Lames, M., and was published in June 2024

(Blauberger et al., 2024). The paper was printed in the International Journal of

Computer Science in Sport (IJCSS). It must be mentioned that this study was

published online only a short time before the writing of this dissertation. There-

fore, most bibliographic information cannot be stated.

Content

This study examines the utility of SIT in dissecting the nuances of mid-distance

running, focusing on the variations of GCT during different running conditions

and its potential as a fatigue indicator. Employing IMUs attached to the athletes’

feet and using the developed methodology of the previous study, the GCT vari-

ations between straight and curved running across two training protocols were

analyzed (Figure 4.3). Additionally, GPS sensors were used for location and

speed tracking.

The results of the study include the observable GCT variation between the inner

and outer feet during curve running, challenging some prevalent assumptions

about curve running dynamics. Additionally, a pattern correlating GCT and speed

with fatigue offers a new perspective to analyze athlete performance over training

sessions. These results align with previous research on foot behavior during

curve running and contribute to our understanding of training session dynamics.

By integrating advanced sensor technology, this study underscores the effec-

tiveness of SIT in enhancing our grasp of running kinematics, particularly in the

context of mid-distance running. The practical applications of these findings are

vast, promising coaches and athletes a data-rich perspective on refining curve

running techniques and optimizing training strategies. This research stands as
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a testament to the potential of sensor technology in elevating our understanding

and approach to sports training, paving the way for more targeted and effective

training methodologies in the future.

Contribution of the Main Author

P.B. is the main author of the study, collaborating closely with Takashi Fukushima

(T.F.), Tiago Russomanno (T.R.) and M.L.. P.B. developed the methodology,

working alongside all co-authors. P.B.’s responsibilities extended to software de-

velopment, validation, formal analysis, and data curation, representing the exe-

cution and analytical phases of the research.

In addition to these technical contributions, P.B. led the drafting of the research

manuscript and the visualization aspects of the study. While M.L. oversaw the

project through supervision and administration, T.F. and T.R. contributed during

data gathering. All authors agreed with the final version of the manuscript.

Figure 4.3 Running measurements in curved runs. IMU-sensors were attached to the athlete’s feet.
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Abstract 

This study examines the possibilities of sensor-instrumented training (SIT) in mid-

distance running training sessions. Within this framework, variations of ground 

contact time (GCT) between straight and curved running, as well as GCT as a 

fatigue indicator, are explored. Seven experienced runners, with two elite female 

athletes, participated in two training protocols: 15 sets of 400 m with 1-minute rest 

and five sets of 300 m with 3-minute rest. GCT was calculated using two inertial 

measurement units (IMU) attached to the athletes✥ feet. The running speed of all 

athletes was measured with wearable GPS devices. GCT showed variations 

between inner and outer feet, notably during curve running (300m: 2.56%; 

400m: 2.35%). However, for the 300m runs, statistically insignificant GCT 

differences were more pronounced in straight runs (3.54%) than in curve runs 

(2.56%), contrasting with the typical assumption of higher differences in curve 

running. A fatigue-indicating pattern is visible in GCT, as well as speed curves. 

Other data of this study are consistent with prior research that has observed 

differences between the inner and outer foot during curve running, while our 

understanding of the development throughout the training session is enhanced. 

Using SIT can be a valuable tool for refining curve running technique. By 

incorporating novel sensing technology, the possibilities enhance our 

understanding of running kinematics and offer an excellent application of SIT in 

sports. 

KEYWORDS: PERFORMANCE ANALYSIS, TRAINING CONTROL, SENSORS, CURVE 

RUNNING, GROUND CONTACT TIME  
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Introduction 

Sports disciplines like mid-distance running, characterized by demanding speed and endurance, 

are predominantly staged on oval tracks with varying distances. Achieving peak performance in 

these disciplines necessitates athletes to undergo specialized training regimens, including a 

spectrum of different training protocols. Different running parameters can be measured 

throughout these training sessions and come under assessment. 

For instance, ground contact time (GCT) is one important factor affecting a runner✥s 

performance and running economy (Joubert, Guerra, Jones, Knowles, & Piper, 2020; Mooses et 

al., 2021). GCT is the time a runner✥s foot spends in contact with the ground during each stride. 

A shorter ground contact time (GCT) is linked to swifter acceleration and exerts a positive 

impact on running economy, whereas a longer GCT can result in delayed finishing times and 

reduced force production (Lockie, Murphy, Schultz, Jeffriess, & Callaghan, 2013; Weyand, 

Sternlight, Bellizzi, & Wright, 2000). Research on mid-distance running has primarily focused 

on competition or race conditions (Renfree, Mytton, Skorski, & St Clair Gibson, 2014), with 

little attention given to GCT, especially during training. Inertial measurement units (IMU) 

application and appropriate data processing can monitor entire training sessions (Falbriard, 

Mohr, & Aminian, 2020; Schmidt et al., 2016). Understanding GCT during training is essential, 

as it can provide insight into a runner✥s technique. Generally, implementing feedback from 

measurements is essential within training control (Hohmann, Lames, Letzelter, & Pfeiffer, 

2020). Furthermore, the effects of running on different track sections, such as straight and curved 

passages, on GCT during training have not been thoroughly investigated. Running on curved 

surfaces requires greater changes in direction and may lead to differences in GCT between feet 

compared to straight running (Alt, Heinrich, Funken, & Potthast, 2015; Churchill, Salo, & 

Trewartha, 2015). 

Another aspect of training control is fatigue. It represents a multi-factorial phenomenon that 

impacts an athlete✥s performance capacity (Halson, 2014). Assessment of fatigue is crucial for 

optimizing training regimens and preventing injuries. One approach to assessing fatigue involves 

the study of stretch-shortening cycles within muscle contractions. Here, the muscle undergoes 

rapid transitions between eccentric and concentric phases, like, for example, within a ground 

contact in running, sprinting or jumping (Hennessy & Kilty, 2001). GCT has been proven a 

valuable parameter in this context for controlling fatigue in running, although mostly in lab 

settings (Apte et al., 2021). By monitoring GCT, coaches and sports scientists might gain insights 

into an athlete✥s fatigue status and make informed in-training decisions regarding training 

intensity, ultimately improving athletic performance and reducing the risk of injuries. 

This example highlights that different variables need to be monitored to support training control 

(Fernandes, Garganta, & Anguera, 2012). The concept of ubiquitous computing in sports brings 

the integration of small, interconnected, and intelligent tools, particularly sensor technologies 

like IMUs and GPS sensors, within the pervasive computing paradigm (Baca, Dabnichki, Hu, 

Kornfeind, & Exel, 2022). These sensors, usually integrated into wearable devices, facilitate 

real-time data acquisition and analysis, enabling athletes and practitioners to integrate objective 

information. Especially over the past years, this field saw remarkable advancements driven by 

the convergence of wearable technology, cloud computing, and artificial intelligence. 

IMUs, for instance, enable precise motion tracking, while GPS sensors provide geospatial data 

critical for performance assessment. This study mainly focuses on implementing IMU-measured 

data while additionally consulting GPS-measured data at specific sections and not analyzing it 

holistically. These innovations have impacted the landscape of sports analysis, offering the 

potential to capture data under field conditions. Numerous applications of these sensor-driven 

measurements can be found across a wide range of sports. In the following, we refer to this as 
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The training was performed on an official running track (World Athletics, 2019) in five training 

sessions. Before each training session, the participating athletes were informed about the purpose 

of the study and the collected data. The study accorded to the ethical standards of the Technical 

University of Munich, and all subjects gave informed written consent. Additionally, all personal 

data were anonymized to ensure privacy. The study design corresponded to the 

recommendations of the Declaration of Helsinki. 

Table 1: Description of running protocol and analyzed steps per athlete and run. 

 300m 400m 

Number of runs 5 15 

Rest [min] 3 1 

Number of athletes 4 4 

Steps in curve per athlete 

per run 

5 5 

Steps on straight per 

athlete per run 

5 5 

Total steps in curve per 

run 

20 75 

Total steps on straight 

per run 

20 75 

Measurement systems 

The IMUs were securely attached to the side of each running shoe. This methodology was chosen 

for its ease of application, lightweight design, and minimal impact on athletes✥ performance. The 

positioning of the IMUs on the ankle was also used in a previous validation study (Blauberger 

et al., 2021) to ensure data comparability. Athletes who participated in the study reported no 

issues with the sensor attachment. Each IMU includes a 3D accelerometer and a 3D gyroscope, 

both operating at a sampling frequency of 512 Hz. The accelerometer has a range of ±16 g, while 

the gyroscope has a range of ±2000°/s. 

Additionally, the athletes were equipped with a GPS. The transponder was positioned on the 

upper thoracic spine, between the scapulae. All GPS transponders were activated 15 minutes 

before data collection for proper satellite signal acquisition. Only GPS signals that met the 

manufacturer✥s internal quality standards were recorded (Shergill, Twist, & Highton, 2021). 

Data processing and analysis 

The raw signals of the IMUs✥ accelerometer and gyroscope were used to find the step event of 

initial contact and toe-off. Therefore, data was filtered and analyzed using a previously 

developed and validated methodology (Blauberger et al., 2021). Each resulting ground contact 

can be associated with the precise event time relative to the start of the run. GCT was assessed 

using the average GCT of the five steps closest to the middle of the first curve and one linear 

running corridor. The total step counts per curve and straight section can be seen in Table 1. All 

total run values comprise all steps of the whole run. Additionally, GPS data enabled continuous 

measurement of speed and covered distance. 

All values, tables, and graphs were developed using Matlab (R2022a, The MathWorks Inc., 

Natick, MA, USA). For the figures, data was filtered using a 4th-order Butterworth low-pass 

filter with a cut-off frequency of 1 Hz. Percentage differences were calculated as the percentage 

deviation of the former value. To compare GCT between the left and right foot during entire 

runs, we first assessed the normality of the data using the Shapiro-Wilk test. Depending on these 

results, a paired t-test (for normally distributed data) or Wilcoxon signed-rank test (for non-
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normally distributed data) was employed to display statistical differences in GCT values. The 

level of significance was set to p<0.05. Cohen✥s d effect sizes (ES) were classified as trivial (0-

0.19), small (0.20-0.49), medium (0.50-0.79) and large (>0.80) (Cohen, 1992). 

Results 

The first result section includes GCT results on all 300 m and 400 m runs, emphasizing curve 

running. In the second part, results are shown for indications of fatigue with exemplary looking 

into the data of an elite athlete✥s training session. This athlete✥s runs are particularly interesting, 

as the coach signalled the athlete after the first run that the intensity was slightly too high to 

complete the planned training. This feedback arose only from the coach✥s �gut feeling✁ and the 

measurement of the final time. 

Results on curve running 

For the 300 m runs, a total difference of 1.44% between the inner and outer foot was found. This 

difference is not significant (p = 0.35) and shows a trivial ES (0.19). The mean contact time 

during straight sections (143.87 ms) was lower than in curve sections without statistical 

signifance (149.78 ms; p = 0.18; ES = 0.32). Also, the percentual disbalance was higher in 

straight sections than in curve sections. The overall mean GCT increased insignificantly but with 

a high ES (p = 0.25; ES = 4.74) from 140.57 ms (run 1) to 156.00 ms (run 5). Although the 

absolute GCT was longer, the difference between the feet did not show an increase. The progress 

within the training can be seen by showing run 1, run 3, and run 5 (Table 2). It needs to be 

emphasized, that none of the differences in Table 2 showed statistical significance. 

Table 2: Mean IMU measured ground contact time (GCT) ± standard deviation in milliseconds and the percentage 

difference between inner and outer foot in 300 m runs. The total run aggregates the GCT of all steps. P-values are 

presented as -: (p > 0.05) and * (p < 0.05). Cohen✂s d effect sizes were classified as t = trivial (0-0.19), s = small 

(0.20-0.49), m = medium (0.50-0.79) and l = large (>0.80). Both indicators are superscripted after the percentage 

difference value. No statistical significant differences were found. 

 

Overall, the GCT for 400 m runs revealed a deviation of 1.31% (p = 0.01; ES = 0.36) between 

the inner and outer foot. By separating the 15 runs into three equal groups, development within 

the training session can be tracked. The discrepancy of GCT between feet is smaller in the 

straight part of the runs than in the respective curved section. While the deviation between the 

inner and outer foot in curve running rose, the absolute GCT remained at the same level (Table 

  All runs Run 1 Run 3 Run 5 

Total run 

Inner foot [ms] 146.46±7.97 139.04±7.39 146.83±6.28 152.21±9.97 

Outer foot [ms] 148.57±13.12 142.10±12.90 147.57±15.23 159.78±8.16 

Difference [%] 1.44-t 2.20-s 0.51-t 4.97-l 

Curve 

section 

Inner foot [ms] 151.72±9.69 141.70±7.02 155.08±10.46 158.33±11.59 

Outer foot [ms] 147.84±12.08 141.11±14.09 146.09±11.12 155.47±5.83 

Difference [%] 2.56-s 0.41-t 5.79-m 1.81-s 

Straight 

section 

Inner foot [ms] 141.37±9.14 134.77±9.74 144.43±7.39 146.52±9.43 

Outer foot [ms] 146.37±12.35 141.36±11.95 148.14±15.76 156.38±7.82 

Difference [%] 3.54-s 4.89-s 2.57-t 6.73-l 
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3). Out of 12 reported deviations in Table 3, four showed statistical significance. 

Table 3: Mean IMU measured ground contact time (GCT) ± standard deviation in milliseconds and percentage 

deviation between inner and outer foot in 400 m runs. The total run aggregates the GCT of all steps. P-values are 

presented as - (p > 0.05) and * (p < 0.05). Cohen✂s d effect sizes were classified as t = trivial (0-0.19), s = small 

(0.20-0.49), m = medium (0.50-0.79) and l = large (>0.80). Both indicators are superscripted after the percentage 

difference value. 

  
All runs Run 1-5 Run 6-10 Run 11-15 

Total run 

Inner foot [ms] 190.79±15.39 189.50±17.98 193.62±14.48 189.12±14.17 

Outer foot [ms] 188.30±12.85 186.59±16.71 192.28±6.72 185.84±13.26 

Difference [%] 1.31*s 1.53-m 0.69-t 1.73*m 

Curve 

section 

Inner foot [ms] 192.48±16.25 189.06±19.86 195.79±15.14 192.06±14.06 

Outer foot [ms] 187.95±14.76 184.88±19.92 192.95±7.06 185.54±14.84 

Difference [%] 2.35*s 2.21-s 1.45-s 3.39*s 

Straight 

section 

Inner foot [ms] 189.71±15.70 187.47±19.45 193.02±13.78 188.06±14.73 

Outer foot [ms] 188.37±14.85 186.73±17.67 192.47±8.11 185.44±17.29 

Difference [%] 0.71-s 0.40-s 0.29-t 1.39-s 

 

Figure 2 illustrates the GCT of the inner and outer feet in 300 m and 400 m runs during straight 

and curve running. The inner foot✥s GCT was always more prolonged in the curve than during 

straight running. However, the outer foot✥s contact time did not differ substantially during 

straight and curve running. 

 

 

Figure 2: Mean IMU measured ground contact time (GCT) in milliseconds between straight and curve running 

for the inner and outer foot in 300 m and 400 m runs with standard deviations. Statistical significance (p > 0.05) 

is indicated with * in the respective colour. 

Figure 3 displays the continuous development of the GCT in 300 m runs. The first part (a) 

presents the smoothed average GCT of both feet, while section (b) illustrates the GCT of the left 

and right foot individually. This exemplary figure indicates the influence of curve running on 

GCT. The running times are normalized, and display all runs✥ average times. 
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In Figure 5, we revisit the training runs of the same athlete, this time focusing on the evolution 

of GCT. Notably, a major increase in GCT from the first to the second run indicates a change in 

running mechanics. This growth suggests that the athlete, likely prompted by the coach✥s 

intervention regarding their pacing strategy (as observed in Figure 4), adjusted their technique 

during the subsequent runs. Complementary to the GPS data, it can be distinguished between 

different step numbers. The first five steps are skipped in the graph to avoid the error-proneness 

of the methodology close to the start (Blauberger et al., 2021). 

 

Figure 5: Mean ground contact time (GCT) of the same athlete within five 300 m runs. This data suggests a too-

high intensity in the first run, which led to an intervention by the coach. 

Discussion 

Discussion of results 

The results of this study, while indicative of specific trends, notably underscore the individuality 

in performance and response to training. Each athlete✥s data presents a unique profile, reflecting 

the interplay of physiological, biomechanical, and environmental factors. Although this 

individual variability limits the generalizability of our findings, it is crucial in demonstrating the 

potential and applicability of SIT. Especially, the statistical non-significance of many findings 

needs to be highlighted. Consequently, while the results may not provide an universal blueprint 

applicable to all athletes, they are showcasing the role of SIT for the application tailored training 

interventions. When customized to the individualities of each athlete, these interventions can 

enhance training outcomes. Thus, although our results are not broadly generalizable, they offer 

compelling evidence of the efficacy of SIT in a high-performance sports context, underscoring 

its utility in optimizing training strategies on an individual level. 

The statistical results observed in our study should be interpreted with care. Table 2 shows no 

significant differences at all, while only 4 out of 12 comparisons in Table 3 show significant 

deviations. Therefore, also effect sizes are reported alongside p-values. Effect sizes offer a 

deeper insight into the substantive significance of our findings, revealing the magnitude of 

observed differences or relationships that do not state statistical significance, which might be 

harder to achieve in this study with a small sample size (Sullivan & Feinn, 2012). While 

interpreting the statistical outcomes of our study, it is crucial to note that even large effect sizes 

may not result in statistical significance, underscoring the importance of cautious interpretation, 

especially in the context of a small sample size.The results show that continuous step-by-step 
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monitoring of the GCT of both feet provides valuable insights into the technique of curve 

running. Differences between the inner and outer foot in curve running (Figure 2) confirm 

previous findings in the literature based on an 8 m running corridor in the curve (Alt et al., 2015). 

To the best of the authors✥ knowledge, the increasing percentage differences throughout interval 

training were not reported before. 

Moreover, the results show that continuous step-by-step monitoring of the GCT of both feet 

provides valuable insights into the technique of curve running. This study✥s training protocols 

are used commonly in practice (Fernandes et al., 2012) and, therefore, for training and 

competition analysis at the highest level. The 300 m runs of elite athletes show the necessity of 

assessing GCT continuously and for both feet separately. It is illustrated that inner and outer feet 

should be treated individually, showing different patterns (Figure 3). 

However, an interesting finding emerged in our analysis of the 300m runs that diverged from 

common assumptions regarding GCT differences between legs in curved versus straight 

sections. Table 2 indicates that the observed differences in GCT were more pronounced during 

the straight sections (mean difference = 3.5%) compared to the curve sections (mean difference 

= 2.6%). This suggests that factors other than mere directional changes might contribute to GCT 

variations. This data thus highlights the complexity of GCT dynamics and underscores the 

importance of considering individual training developments. 

In the scope of the discussion of the observed pattern, it is essential to note that while the data 

presented in Figure 3, 4 & 5 belongs to one elite athlete, similar trends were noticed among the 

other participants, including both elite and non-elite athletes. This underlines the value of SIT in 

capturing individual data. It also aligns with our emphasis on the individuality of results, 

illustrating that while our findings are demonstrative of the effectiveness of SIT, they also 

highlight the need for personalized training approaches for each athlete. This individual 

perspective remains central to our discussion and the broader applicability of our study. 

The data shown in Figure 4 provides an in-depth look at the speed patterns of one elite athlete 

during a series of 300-meter runs, offering valuable information about their performance and 

how they manage fatigue. This figure highlights a notable trend, specifically a �too fast start,✁ 

which occurs when the athlete begins their training session at a pace that is too quick to maintain 

throughout the exercise. Essentially, the athlete starts much faster than they can sustain, leading 

to potential early exhaustion. This pattern is crucial for coaches to observe. It demonstrates the 

athlete✥s tendency to exert too much effort too quickly, which can be counterproductive in 

training and competitive environments. By identifying this development, coaches can provide 

immediate feedback to the athlete, advising them to adjust their pacing. This might involve 

starting at a more controlled, sustainable speed, allowing the athlete to conserve energy and 

maintain a steadier pace throughout the run. 

In Figure 5, we revisit the running performance of the same elite athlete, looking into the 

progression of GCT during the training session. Notably, this athlete✥s GCT data provides 

insights into the impact of training intensity and fatigue. The graph shows a visible increase in 

GCT when transitioning from the first run to the second run. This shift indicates a substantial 

alteration in running mechanics, potentially driven by the initial high-intensity effort in the first 

run. It is worth noting that this abrupt change in GCT could result from both the athlete✥s 

conscious adjustments and the body✥s natural adaptation to the running demands. 

Complementary to the GPS data (Figure 4), it can be distinguished between different step 

numbers. In combination, exact distances within the run can be associated with ground contacts. 

Observing such nuanced alterations in GCT underscores its value as a parameter for assessing 

fatigue and real-time technique modifications during training, emphasizing the crucial role of 

GCT monitoring in optimizing athletic performance. 
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Discussion of methodology 

The methodology used in this study employed a combination of data collection techniques, 

including GCT measurements using inertial sensors and GPS data analysis. In other studies, 

these methods were already utilized to investigate the running characteristics of mid-distance 

runners during training. 

The sample consists of seven experienced runners, focusing on one female athlete who competed 

at the highest international level (e.g., winning national championships). This selection ensures 

the inclusion of highly skilled athletes and provides valuable insights into the running 

characteristics of elite runners. P-values and effect sizes from pilot studies like this can help 

guiding the design of future studies, particularly in determining the necessary sample sizes to 

detect meaningful effects . By understanding the magnitude of the effects observed in a pilot 

study, researchers can more accurately estimate the sample size required for subsequent studies 

to ensure adequate statistical power. 

Specific steps from each run were selected for evaluation. For the 300m runs, 20 steps from each 

curve and linear section were analyzed, amounting to 100 steps to the final assessment. 

Similarly, in the 400m runs, 20 steps per curve and linear section were examined, adding to 1125 

steps across all runs. For the total run, every detected step was used. This methodological 

approach allowed for capturing the variations in GCT in different running sections. Another 

methodological procedure could have ended in slightly different results. 

GCT is measured using four IMUs attached to the athletes✥ feet. This method is relatively new 

(Falbriard et al., 2020; Schmidt et al., 2016). The accuracy of GCT measurements using IMUs 

was previously tested and documented in another manuscript. Also, the positioning of the IMUs 

on the foot ankle follows this study✥s procedure to ensure consistency and comparability of the 

collected data (Blauberger et al., 2021). 

To complement the GCT analysis, GPS transponders were utilized. These transponders were 

placed on the upper thoracic spine, between the scapulae, to capture and analyze the athletes✥ 
movement and speed during the training sessions. The GPS transponders were activated well 

before data collection to allow for satellite signal acquisition and ensure the quality of the 

recorded GPS data. Nevertheless, a margin of error can be found with this kind of tracking 

device, especially at higher speeds and curve running (Linke, Link, & Lames, 2018). 

The collected data, GCT from the IMUs and GPS speed measurements are analyzed using 

appropriate statistical methods. The mean values and patterns of GCT for the inner and outer 

foot are examined, mainly focusing on the influence of running on the curved section of the 

track. The GPS speed measurements provide insights into the athletes✥ performance and allow 

for a comprehensive analysis of their running characteristics during different sections of the 

training runs. 

The combination of IMUs and GPS data collection provides a validated methodology for 

analyzing the running characteristics of mid-distance runners. By incorporating both GCT 

measurements and GPS speed analysis, this study offers a comprehensive understanding of the 

athletes✥ running technique, performance, and the impact of different training conditions on their 

running characteristics. 

Sensor instrumented training 

The analysis of GCT dynamics within the training provides information about the athlete✥s 

adaptability and highlights the potential of SIT as a valuable tool for enhancing coaching 

decisions. By continuously monitoring GCT and other relevant metrics, coaches and athletes can 

adapt current training protocols to optimize performance. 
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Furthermore, the drop-off in GCT between the two more detailed analyzed runs underscores the 

importance of coaching intervention. These measurements can be implemented in the cycle of 

training control (Hohmann et al., 2020). Coaches control athletes✥ training and make informed 

decisions to optimize their training regimens. In this context, the observed changes in GCT 

provide a valuable cue for the coach to assess the athlete✥s level of fatigue and running efficiency. 

The coach✥s before-mentioned �gut feeling✁ can be supported with objective data. 

The integration of real-time feedback mechanisms in sports training is a promising aspect to 

consider within the discussion of our study. In the context of our research, the continuous 

monitoring of GCT using sensor technologies like IMUs and GPS sensors presents an 

opportunity for real-time feedback to athletes and coaches. The data acquired could be directly 

processed and wirelessly distributed to provide live insights during training sessions (Baca et al., 

2022). This real-time feedback empowers coaches to make required interventions, such as 

adjusting pacing strategies or refining running form, optimizing training regimens, and 

ultimately enhancing athletic performance. Furthermore, athletes can benefit from immediate 

feedback, enabling them to adapt even during the training. Thus, incorporating real-time 

feedback mechanisms based on GCT measurements possesses substantial promise for advancing 

sensor-instrumented training in sports. This study did not use real-time feedback but emphasized 

developing appropriate tools. For example, integrating various sensors into a mobile application 

could be tackled in future works. 

Conclusion 

This study adds to our current understanding of how running kinematics and training intersect. 

Commonly used information � like GPS-measured speed � can add information to regular 

training procedures. It is shown that this data can back up coaches✥ decisions regarding fatigue. 

Additionally, the application of sensing technology and specifically developed detection 

algorithms enable the continuous assessment of further parameters like ground contact time. 

Using this information, a prolonged GCT was found during curve running, especially in later 

phases of training.We advocate for further analysis of fatigue and curve run technique on a 

broader data basis, as their comprehensive understanding could potentially lead to enhanced 

training methodologies. We conclude that incorporating different sensor measurements showed 

indicators that could support the coaches✥ decisions during training and possibly competition. 

Additionally, an improved comprehension of running techniques and their monitoring during 

training can benefit the effectiveness and quality of training in elite-level sports. We suggest that 

these applications can support sensor-instrumented training. This approach needs to be further 

investigated and developed to ultimately provide coaches and athletes with real-time feedback, 

for example, with a mobile application. 
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4.4 Additional Publications

The following publications are not to be seen as the main achievement of this

publication-based dissertation but contribute thematically and, therefore, are short-

ly explained. The full text of these publications can be found in the Appendix

(section 6.2).

Drone Detection

The study titled "Drone-based Position Detection in Sports—Validation and Ap-

plications," authored by Russomanno, T. G., Blauberger, P., Kolbinger, O., Lam,

H., Schmid, M., and Lames, M. was published in 2022 in the journal Frontiers in

Physiology (Russomanno et al., 2022). The journal is focusing on advancements

in physiological research. According to the ResearchGate platform, the paper

shows a citation count of three and 1228 reads (as of 07-02-2024).

The primary aim of the research was to explore the efficacy and applications of

drone-based technology in accurately detecting positions in sports. This investi-

gation sought to bridge the gap in high-precision aerial tracking capabilities within

the sports domain, providing a novel perspective on athlete monitoring with the

potential to revolutionize training and analysis.

The results of the study underscored the accuracy and application potential

of drone technology in sports settings. The research demonstrated that drones

could be utilized for high-precision athlete tracking, providing a bird’s-eye view

that is advantageous for spatial analysis. This level of precision in positioning

is pivotal for tactical evaluations and enhancing the quality of performance feed-

back. The study’s successful validation of drone-based PD posits drones as

valuable assets for real-time sports analytics, positioning them as versatile tools

for future integration into diverse sporting disciplines.

In the context of running diagnostics, the study’s advancements offer a promis-

ing avenue for integrating aerial surveillance to augment traditional tracking meth-

ods. The drone’s vantage point provides a comprehensive view of athletes’ move-

ments, offering a new dimension to performance analysis that can influence and
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be influenced by ground-level diagnostics, enriching the data available for en-

hancing athletic training and strategies.

Ghosting

The study titled "Simulating Defensive Trajectories in American Football for Pre-

dicting League Average Defensive Movements" authored by Schmid, M., Blau-

berger, P., and Lames, M. was published in 2021 in the Journal Frontiers in the

section Sports and Active Living (Schmid et al., 2021). The journal, with an im-

pact factor of 2.7, publishes scientific contributions on all aspects of sports, physi-

cal activity and active living to investigate the benefits and risks of non-sedentary

behavior. The paper was cited seven times and read 324 times, according to

ResearchGate (as of 07-02-2024).

The research objective was to create a simulation model that could predict the

defensive movements of American football players, focusing on reflecting the av-

erage behaviors seen across the league. This model was based on a reinforce-

ment learning approach. The study contributed to the development of predictive

analysis within the sports domain, aiming to provide scientists, coaches and play-

ers with actionable insights that could improve game planning and performance.

The findings of the study revealed that such a model could effectively forecast

defensive player trajectories. This predictive ability is a game-changer for teams.

It allows them to anticipate opponents’ defensive strategies, which is crucial for

offensive decision-making. The research proved the practicality of such simula-

tions in professional sports environments, suggesting that this method could be

broadly adopted in coaching and training to enhance strategic preparations and

in-game adaptability.

This research’s contribution indirectly supports the development of advancing

running diagnostics by providing a framework that can be adapted to analyze

and enhance an athlete’s dynamic movements and decision-making in real-world

scenarios. This has a reciprocal influence, as advancements in running diagnos-

tics could feed back into the model, refining its predictive capabilities with more

granular data on player speed, agility and endurance. Thus, the gap between
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theoretical models and their practical applications in sports science could be fur-

ther closed.
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5 Discussion

5.1 Study Summary

This project involves three studies to develop and refine a methodology for ad-

vancing sensor-based running diagnostics in sports. Additionally, two studies

that analyzed the runs of athletes were co-authored.

Study one (section 4.1) starts the search for an adequate measurement sys-

tem by validating the capability of a state-of-the-art sensor-based LPS for player

and ball tracking (Blauberger, Marzilger, et al., 2021). It evaluates the accuracy

of position, speed and acceleration measurements by comparing the output with

a criterion reference measurement. This study contributes to the rating of one

specific LPS for further usage within the dissertation project. It enhances our

understanding of the importance of validation methodology for checking the ap-

propriateness of systems in the sports context.

The second study (section 4.2) focuses on implementing IMU-based sprint step

detection (Blauberger, Horsch, et al., 2021). The implementation is demon-

strated by showing a robust detection pattern and diving into a more detailed

analysis of one important sprint variable: GCT (Coh et al., 2001). The contribu-

tion of this study lays the basis for further analysis in running using IMUs.

The third study (section 4.3) uses the validated methodology of the previous

work to show an example of PPA. The findings suggest that we can see differ-

ences in running variables per foot in mid-distance sprints. This is shown with

the analysis of GCT. Finally, the integration of GPS data shows a more robust

identification of training variables like fatigue. This supports the usage of ad-

ditional sensor-based measurement data, which hints towards fatigue variables

within the training, leading to SIT.



5 Discussion

In this dissertation project, two co-authored studies are implemented: Rus-

somanno et al. (2022) and Schmid et al. (2021) (section 4.4). They explore a

simulation method, also called ghosting, and the usability of drone detection in

sports. The former study provides a perspective on the use of sophisticated data

analysis. Based on tracking data of all athletes’ run paths, a probable move-

ment pattern is predicted. The second study reveals ways drones can be utilized

for gathering positional data, offering a low-cost alternative to assess positional

data, which can then be used for sports and running analysis.

Both studies contribute to the understanding and application of tracking tech-

nologies in sports, offering implications for practitioners, researchers and athletes

alike. The movements of tracked athletes focus on running and sprinting in both

cases, which makes the results valuable within this dissertation project.

5.2 Validation

Validating tracking technologies for use in sports is important to ensure the re-

liability and accuracy of collected data. As this raw data is further used to cre-

ate PIs, even small errors can cumulate into not neglectable differences (Linke,

2019).

Sensor Placement

As shown in study 1 (section 4.1), the placement of the sensor can make a huge

difference in the outcome variable. For example, the influence of the location

of the center of mass must be taken into account (Linke & Lames, 2019; Saini

et al., 1998). For instance, placing a sensor inside a ball can lead to less ac-

curate measurements compared to body-attached devices due to the dynamic

and unpredictable nature of the ball’s movement during play. This variability can

bring errors in the detected data, which affects further analysis. A foot-attached

sensor can cause comparable problems, as the inertial forces at common sensor

placement locations (usually at the athlete’s back) are different.
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Limb Tracking

The accuracy of current tracking technologies may not be sufficient for precise

limb tracking. However, detecting the precise position of the limb is inevitable to

derive PIs like GCT. Seidl et al. (2017) highlight the appropriateness of an LPS in

capturing the step parameters like SL and ST. However, GCT was not as precise

as with different technologies. This is particularly relevant in running, where de-

tailed kinematic parameters are essential for performance optimization and injury

prevention, underscoring the need for more sophisticated tracking solutions, or

the integration of additional sensors (Seidl et al., 2017).

Validation setting

Furthermore, tracking technologies must be validated within the actual sports

setting they are intended for (Luteberget & Gilgien, 2020). The complexity and

unpredictability of real-world sports environments can influence the performance

of tracking systems. Validation in a controlled laboratory setting might not ac-

curately reflect the challenges and interference these systems face during live

sports scenarios, making in-situ validation important for ensuring the practical

applicability and reliability of these technologies in sports contexts.

New Technologies

As shown in the study about drone tracking, this method can be used very well

to create insights for PA. However, it is important to validate this method before

usage. In the framework given by Robertson et al. (2023) this has to happen in

Pillar A: Quality assurance & measurement. Drone tracking has shown to be a

valuable tool for PD, but it definitely needs further development and validation on

the way (section 4.4).

5.3 Method Development

The practical application of tracking methods in real-world sports settings raises

several important considerations that must be addressed to ensure their effec-
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tiveness and relevance. Especially since different application cases require an

adopted methodology to work within the fixed rules of a sport.

Required Accuracy

Another critical aspect is the method’s needed accuracy. The level of precision re-

quired can vary significantly depending on the sport and the specific performance

metrics being analyzed (Seidl et al., 2017). High accuracy is essential for meth-

ods intended to track fine-grained movements or minor performance changes.

For example, in sprinting, even small inaccuracies can lead to misleading con-

clusions and ineffective training recommendations.

Moreover, the method’s accuracy may vary with the context of its application.

As shown in the gait basics (section 3.1), the biomechanics change for differ-

ent running paces, for example, longer-distance runs. It can be expected that a

method that delivers high precision in 100m sprints (study 2, section 4.2) or con-

trolled environments might show lower accuracy over longer distances or in less

controlled settings. This potential decrease in accuracy could be due to various

factors, such as the initial contact difference from forefoot to rearfoot. Therefore,

the usage of different technologies in the framework of SIT can be beneficial.

Usability in Practice

Usability in practice is a key factor in the development of new methodologies

(Norman, 2013; Robertson et al., 2023). A method’s success is determined not

only by its technical capabilities but also by its ease of integration into daily train-

ing routines and accessibility for coaches and athletes. The utility of a method

in a practical context, such as its adaptability to various training environments

and its user-friendliness, is crucial for its adoption and sustained use in sports

settings.

Filtering Techniques

To enhance the accuracy and reliability of tracking methods, particularly in noisy

real-world sports environments, the implementation of appropriate filtering tech-
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niques is crucial. One commonly used approach is the application of low-pass

filters (e.g. butterworth low-pass filter), which help to smooth the data by remov-

ing high-frequency noise (Falbriard et al., 2018; Linke, Link, & Lames, 2018).

This is especially useful in scenarios where the measured data can be affected

by rapid, insignificant fluctuations that do not reflect true movement patterns or

performance metrics.

A low-pass filter operates by allowing signals with a frequency lower than a

certain cutoff threshold to pass through while attenuating signals with frequencies

higher than this threshold (Baca, 2015). The selection of the cutoff frequency

is critical and should be based on the specific characteristics of the movement

being analyzed. In the course of this dissertation, this filtering occurred on two

different occasions: Filtering the raw signal of LPSs and IMUs (study 1, section

4.1 & study 2, section 4.2). LPS signals were further distinguished for ball and

player tracking. In both cases, the cutoff frequency had to be chosen individually

to preserve the essential motion characteristics while eliminating noise.

Therefore, choosing an appropriate threshold is an important step that is used

to refine data. By setting specific cutoff values, data points outside a defined

range can be excluded, which can be particularly useful for eliminating outliers or

irrelevant fluctuations. For example, regarding GCT measurements, a threshold

can be applied to filter out unrealistic GCT values that could arise from sensor

errors or anomalous movements. Such a misdetected event should be counted

as incorrect step detection, or no detection at all.

The integration of these filtering techniques into the tracking methodologies not

only improves data quality but also enhances the precision of the derived metrics.

This, in turn, ensures that the PA is based on accurate data, thereby providing

more valid insights for training and performance optimization.

5.4 Feasibility in practice

Usage in competition

The allowance of technologies or methodologies in contests is an important con-

sideration, as competition is the important setting for PA (Lames, 2023). Sports
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associations and regulatory authorities often have strict guidelines regarding the

use of technology to ensure fair play and maintain the integrity of the competition.

Any new method or system intended for use in tournaments must align with these

regulations, and gaining acceptance can be a lengthy process involving demon-

strations of the technology’s value and safety. As summarized from Hohmann

et al. (2020) and Lames (2023), the usage in training and for developing athletes’

capabilities interplay with the final aim to maximize performance in competition.

Therefore, the integration into competition settings needs to be considered right

away.

Sensor Instrumented Training

Beyond regulatory approval, the practical implications of integrating new tech-

nologies or methods into sports settings are substantial. The ease of implemen-

tation, the adaptability of athletes and coaches, and the overall impact on the

flow and nature of the sport have to be considered, especially since the concept

of SIT proposes various new technologies (study 3, section 4.3). Technologies

that are intrusive, overly complex, or significantly alter the nature of the sport

may face resistance from stakeholders and could be less likely to be adopted

widely. Moreover, the logistical aspects of deploying new technologies, such as

the need for specialized equipment, operator training, and potential disruptions

to established routines, must be considered. The costs associated with these

implementations, e.g. in terms of financial investment and potential impacts on

training and competition schedules, also play a role in determining the feasibility

of new methods in practice.
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Smartphone Application

Figure 5.1 Implementation scheme for a smart-
phone app. The scheme describes the impor-
tant pillars that must be incorporated into the de-
velopment of a mobile sports application. Taken
from Baca (2015) with permission of Taylor &
Francis Group.

The integration of PA technologies into user-

friendly applications (apps) can be a bene-

ficial advancement in the practical develop-

ment of these methods. Apps can offer a

streamlined and accessible interface for ath-

letes and coaches to interact with complex

data, making it easier to incorporate perfor-

mance metrics into daily training routines.

For instance, apps can provide real-time

feedback on performance metrics such as

speed, acceleration, and GCT, allowing for

immediate adjustments during training ses-

sions (Romero-Franco et al., 2017).

Moreover, apps can facilitate the visualiza-

tion of data, enabling athletes and coaches

to better understand performance trends and

identify areas for improvement. By integrat-

ing data from various sources, including IMU sensors and GPSs, apps can

present a comprehensive overview of an athlete’s performance. This holistic

approach not only enhances the accuracy of performance analysis but also sup-

ports the development of more tailored and effective training programs.

The development and implementation of such an app must consider critical

components, ensuring that the interface is intuitive and that the data presented

is actionable. Baca (2015) gave an outlook on how such an integration could

look in sports environments (Figure 5.1). Training athletes and coaches to effec-

tively use an app is also crucial for maximizing their potential benefits. Overall,

app integration represents a significant step towards making the developed PA

technologies more accessible and practical for everyday use in sports settings.
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Simulation and Modelling

As described by Baca (2015), simulation and modeling are seen as the main

areas of sports informatics. Other scientific works focus more on this topic (Wen-

ninger, 2022). However, it should be discussed within the simulation background

of the co-authored study about ghosting. As we saw in the results, the outcome

of a simulated model adds context to its interpretability (section 4.4). Therefore,

its acceptance and application in practice might be higher. On the downside,

it is harder to understand how these results were created. Especially with the

developing usage of sophisticated methods like imitation learning (Schmid et al.,

2021). However, the integration of this research showed, how such methods

could be applied.

5.5 Limitations

Although each study’s limitations were stated individually in the publications,

some shortcomings have to be considered in the broader context of the whole

project.

The practical usability of the current development needs to be discussed in

the applied environment. Sports scientists always need to question the achieve-

ments of new developments. Under the term practical impact debate, this has

already been evaluated in several publications in recent times (Carling, 2013;

Mackenzie & Cushion, 2013). Accordingly, this dissertation needs to ask whether

the developed methods can be applied in real-world sports settings. Especially

the use of SIT (study 3, section 4.3 needs to have acceptance in everyday train-

ing. While theoretical models and controlled experiments in the laboratory pro-

vide valuable insights for the proof of conduct and the planning of a study, the

practical application can be hindered by other field-specific factors, such as the

dynamic nature of sports environments (Lames, 2023), practical usability (Car-

ling, 2013) and logistical challenges (Linke, 2019) of setting up and maintaining

tracking systems during training sessions or competitions.

Another limiting factor can be the level of accuracy required for meaningful

analysis. Various metrics might necessitate different degrees of precision. Some
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require a high level of accuracy to provide valuable insights, for example, when

the output data is further derived for advanced metrics (Linke, 2019). New tech-

nologies like computer vision generated results can assess sports movements

(Fukushima et al., 2024). This dissertation dealt with the application within sprints

in short intervals (study 2, section 4.2). The current technologies may not always

meet these requirements, particularly when assessing temporal parameters in

rapid movements such as in a sprint (Seidl et al., 2017). Additionally, the ac-

curacy of tracked variables may slightly diminish over longer distances, as even

small errors can accumulate over time. This is a notable concern for endurance

sports or activities where athletes cover extensive distances.

Another limitation is the feasibility of implementing a tracking method in actual

competitive settings. Regulatory allowances in tournaments and the practicality

of deploying these systems without interfering with the natural flow of the sport

are crucial considerations for PA (Lames, 2023). Especially having sensors worn

by an athlete might not be allowed in all sports. The acceptance of new tech-

nologies in regulated sports environments often requires extensive validation and

approval from third parties.

Addressing these limitations is essential for the continued application and inte-

gration of tracking and PA technologies in sports. By acknowledging and working

to overcome these challenges, the field can advance towards more robust, ac-

curate and practical solutions that enhance our understanding of athletic perfor-

mance and inform better training and competition strategies.
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6 Conclusion and Outlook

6.1 Conclusion

The integration of technology, especially sensor-based equipment like IMUs into

sports has proven to be possible and increasingly simple and insightful. The

evolution of tracking technologies and analytical methods has reached a point

where their incorporation into training, called SIT, can enhance PA and even

real-time decision-making.

This development is complemented by the depth of insights these technologies

provide. Modern tracking systems and analytical tools offer a level of detail and

precision previously unattainable, allowing coaches, athletes and researchers to

uncover nuanced aspects of performance and physiology. These insights can

lead to more personalized training programs, improved injury prevention strate-

gies and enhanced understanding of athlete performance and recovery.

This dissertation dived through the process of choosing, validating and lever-

aging an appropriate measurement technique. The start of this process was the

proper validation of a measurement system for sports contexts. This showed

that LPSs continue to become more accurate but guided the way to the usage of

another technology for running diagnostics. Using IMUs, a proper methodology

shows to be a valid tool for further diagnostics. Using this technique, in-field PA

was conducted. Together with evaluating data streams for different sensors, e.g.

GPSs, the usefulness of Sensor Instrumented Training was shown. The con-

cept of SIT contributes to the development of sports informatics. For example,

indication for fatigue could be seen in GPS and GCT curves simultaneously.

The simplicity of application and the richness of the data on new technologies

will likely further impact the landscape of sports science. This transformation will

enable a more data-driven approach to sports, where decisions are formed by
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comprehensive and reliable data. This will ultimately lead to improved athletic

outcomes and a deeper understanding of human performance.

6.2 Outlook

As we look toward the future, the development of measurement systems is poised

for continuous advancements. These systems are becoming increasingly sophis-

ticated, offering more accurate, comprehensive and nuanced data. The trajec-

tory of this progress suggests that future measurement technologies will be even

more integrated, less intrusive and capable of providing real-time feedback that

can be seamlessly incorporated into training and competition.

The acceptance of these advanced measurement systems by elite coaches

and athletes is crucial for widespread adoption. As these stakeholders recognize

the tangible benefits these technologies can bring to performance enhancement

and injury prevention, their integration into elite sports will likely become more

prevalent. The key to this acceptance lies in demonstrating the practical value of

these systems, ensuring they are user-friendly, and providing clear evidence of

their impact on performance outcomes. Integration into everyday life, e.g. with

a smartphone app, could be achieved in the near future. Meanwhile, scientific

support is an important piece to pave the way for meaningful technological im-

plementation. As new technologies and methodologies continue to penetrate

the market, scientists need to focus on the proper usage of these tools. Fu-

ture research should integrate the information of different sensors, especially in

sensor-based running diagnostics, to further develop the current state-of-the-art.

Moreover, there is an increasing trend toward making scientific data more ac-

cessible and understandable to the public. As sports science continues to evolve,

complex scientific concepts must be connected to their practical applications in

sports. This benefits the athletes and coaches by providing them with actionable

insights and engages the broader community, fostering a deeper appreciation

and understanding of the science behind sports performance.

With these developments in mind, the future of running diagnostics and analysis

is bright, and it has the potential to impact how training and competition are
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analyzed and enhanced. The key will be ensuring that the sports community

integrates technologies and communicates their benefits effectively and with a

scientific foundation.
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Drone-Based Position Detection in
Sports—Validation and Applications
Tiago Guedes Russomanno1,2*, Patrick Blauberger1, Otto Kolbinger1, Hilary Lam1,
Marc Schmid1 and Martin Lames1

1Chair of Performance Analysis and Sports Informatics, Department of Sport and Health Sciences, Technical University of
Munich, Munich, Germany, 2Laboratory for Teaching Computer Science Applied to Physical Education and Sport, Faculty of
Physical Education, University of Brasilia, Brasilia, Brazil

Radio and video-based electronic performance and tracking systems (EPTS) for position
detection are widely used in a variety of sports. In this paper, the authors introduce an
innovative approach to video-based tracking that uses a single camera attached to a drone
to capture an area of interest from a bird’s eye view. This pilot validation study showcases
several applications of this novel approach for the analysis of game and racket sports. To
this end, the authors compared positional data retrieved from video footage recorded
using a drone with positional data obtained from established radio-based systems in three
different setups: a tennis match during training with the drone hovering at a height of 27 m,
a small-sided soccer game with the drone at a height of 50 m, and an Ultimate Frisbee
match with the drone at a height of 85 m. For each type of playing surface, clay (tennis) and
grass (soccer and Ultimate), the drone-based system demonstrated acceptable static
accuracy with root mean square errors of 0.02 m (clay) and 0.15 m (grass). The total
distance measured using the drone-based system showed an absolute difference of
2.78% in Ultimate and 2.36% in soccer, when compared to an established GPS system
and an absolute difference of 2.68% in tennis, when compared to a state-of-the-art LPS.
The overall ICC value for consistency was 0.998. Further applications of a drone-based
EPTS and the collected positional data in the context of performance analysis are
discussed. Based on the findings of this pilot validation study, we conclude that
drone-based position detection could serve as a promising alternative to existing EPTS
but would benefit from further comparisons in dynamic settings and across different
sports.

Keywords: drone, video based, position detection, game sport, validation

1 INTRODUCTION

Metrics generated by the different position detection technologies are already commonplace for fans
of elite sports such as soccer, rugby, basketball, and American football (Barbon Junior et al., 2021;
Schmid et al., 2021; Blair et al., 2022; Charamis et al., 2022). Currently, video-based systems that use
image recognition are popular for live sports broadcasts and rely on several fixed cameras set up
around the field of play. However, there are a number of constraints regarding the location of these
systems. For example, the cameras must be placed at a sufficient height, which is often only possible
in stadia and other well-equipped training facilities (Siegle et al., 2013; Torres-Ronda et al., 2022).

Besides, previous studies have found that video-based electronic performance and tracking
systems (EPTS) for outdoor sports share some limitations, like occlusion during corner kicks in
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soccer (Iwase and Saito, 2004; Qi et al., 2004; Baysal and Duygulu,
2016; Kim et al., 2018), that can only be overcome by human
corrections or the use of more cameras, consequently increasing
the cost. Another point is associated with the use of fixed cameras
versus moving cameras, as this can vary the complexity of the
player tracking process (Chen et al., 2013; Hanzra and Rossi,
2013). Although it is possible, in principle, to use moving (tilting,
swaying, zooming) cameras, almost all commercial systems work
with fixed cameras.

With position detection becoming increasingly popular,
many sport clubs have adopted sensor-based EPTS [e.g
(Global position system (GPS)/Global Navigation Satellite
System (GNSS)- or radio-based systems/local based system
(LPS)], since most training facilities are not suitable for the
installation of video-based EPTS. Sensor-based systems are
also less costly than video-based systems, which would make
it possible for amateur or minor league sports to use this
technology. It is important to notice that the use of sensor
based EPTS in training is not always possible in stadia as
pointed by Shergill et al. (2021), that analyzed the quality of
the signal during professional football matches and found out
that the position of the players affected the quality of the
GNSS signal and therefore their performance measurements.

Nevertheless, the diversity of EPTS available on the market
poses a challenge for game analysts, as these different sources of
data are typically incompatible. Consequently, comparisons of
the players’ performances between these different systems, is
difficult. This issue has been reported in the literature (Varley
et al., 2012; Buchheit et al., 2014; Ellens et al., 2021). This
incompatibility and the lack of interchangeability between
systems creates a need for a single system capable of providing
position detection data in both competition and training settings.

It would be a unique and worthwhile advancement for
performance analysis if there was an affordable and reliable
EPTS for teams and sport associations with small budgets that
could collect data independent from setting, different stadia, or
training sites. Unmanned aerial vehicles (UAV), commonly
known as drones, could be the solution. Drones are widely
available in the consumer market and have been used for
several different applications so far, such as agriculture,
surveillance, cinematography, and in some cases, during sports
events to enhance the spectator experience (Ayranci, 2017). In
recent years, drone technology for consumers has advanced so
much that relatively inexpensive devices with decent flight
characteristics are available and from which high-quality video
recordings can be made. So, potentially, drones could play an
important role in future in performance analysis. Compared to
fixed cameras, these devices are portable and versatile, offer an
aerial perspective of the playing field, and produce high quality
videos that are suitable for broadcasting, position detection, and
tactical analysis. With the ability to analyze the playing field with
a single camera and without the need to install any equipment,
performance analysts could consider using drones as an
alternative to the existing video-based and sensor-based
position detection technologies.

Regarding the positional data that can be obtained from drone
footage, a review of the literature shows that several different

methods based on image processing and computer vision have
been used to automatically track players in a variety of sports (Cai
and Aggarwal, 1996; Araki et al., 2000; Pers and Kovačič, 2000;
Needham and Boyle, 2001; Iwase and Saito, 2004; Di Salvo et al.,
2006; Figueroa et al., 2006; Barris and Button, 2008; Barros et al.,
2011). More recently, new methods based on deep learning
approaches, like convolutional neural networks, have improved
the recognition and tracking of players in field sports, reducing
the need of an operator to correct the tracking of players (Stein
et al., 2017; Thomas et al., 2017; Cust et al., 2018; Renò et al.,
2018). However, these methods all rely on multiple fixed cameras,
and none have yet made use of a single drone camera. Concerning
the use of drones in sports, Ferreira et al. (2015) and Karungaru
et al. (2019) report that it is possible to detect and track players
using a drone, but neither of these studies investigated its use for
performance analysis. These studies also failed to validate the
accuracy and reliability of the positional data obtained from the
drone footage. Consequently, we believe that the current state of
the art in computer vision and deep learning allows for tracking
players automatically and provide positional data to derive
performance indicators based on drone-based video
technology (Thomas et al., 2017; Cust et al., 2018; Liang et al.,
2019; Lee et al., 2020).

Thus, this study aims to describe a new method for position
detection using a drone-based video system. We believe that
the recent advancements in computer vision and deep learning
can be used to reliably and automatically track players in a
variety of sports settings. This study will be the first to provide
validation of positional data obtained from drone footage in
three different sports: tennis, Ultimate Frisbee, and soccer.
This data will also be used to derive relevant performance
indicators for each of these sports based on the drone-based
video technology.

2 MATERIALS AND METHODS

2.1 Sample
To collect representative, real-world data for tracking and for the
validation of our drone-based video tracking system, we acquired
three different samples with varying field sizes, field colors,
number of players, and levels of expertise in three different
sports: tennis, Ultimate Frisbee and soccer. GPS-and LPS-
based technologies were used for the validation of our drone-
based video tracking system. For tennis, the sample was
represented by two 14-year-old male tennis players with eight
and 9 years of experience, respectively. For Ultimate Frisbee, the
sample data was collected during a trial match (n = 14), including
current or former players from the German national team (age:
28.35 ± 2.46 years). For soccer, eight female amateur soccer
players (age:20.80 ± 0.83 years) participated in a small-sided
game (4 vs 4).

All of the participants voluntarily gave informed consent to
participate in the collection of spatiotemporal tracking data via
drone technology. The data was anonymized to ensure
confidentiality. All procedures performed in the study were in
accordance with the Declaration of Helsinki.
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2.2 Drones
An unmanned aerial vehicle is an aircraft without any human
pilot, crew, or passengers on board. UAVs are a type of an
unmanned aircraft system (UAS), which consist of an
additional ground-based controller and a system of
communication with the UAV (Abhishek et al., 2020). The
drone used in this study was a Mavic Air 2 Model (SZ DJI
Technology Co., Ltd. DJI) with Obstacle Sensing, Advanced Pilot
Assistance 3.0, a fully stabilized 3-axis gimbal and 1/2″ sensor
camera. Video frequency was set to 24 Hz with 4K resolution of
3.840 × 2.160 pixels. As the flight duration of this drone is around
34 min, we used a second drone of the same model to replace the
first one and to ensure continuous data acquisition in case we
exceeded this duration. The chosen height during stationary flight
was determined based on the size of the field, weather conditions
and was in accordance with the legal regulations for UAV, in our
case the German regulations (www.gesetze-im-internet.de/
luftvo_2015/). All of these variables were set to optimize the
safety of the participants and the quality of the video footage
through the unique bird’s-eye view perspective.

2.3 Data Acquisition
The data was collected in three different setups: on a tennis court
(23.77 m × 8.23 m) with the drone hovering at a height of 27 m,
on an Ultimate Frisbee field (97.11 m × 36.25 m) with the drone
at a height of 85 m, and on a small-sided soccer field (39 m ×
29 m) with the drone at height of 50 m. All three sports were
recorded from a bird’s eye view with the drone positioned at the
center of the court/field, enabling a full view of the field and the
players, including the surrounding areas of interest, as shown in
Figure 1.

Before each data acquisition, eight red cones (Ø = 0.15 m)
were placed on the field, four of which were placed at the corners
and the other four at the intersection lines (control points). For
the Ultimate Frisbee setup, the control points were located where
the end lines intersect with the side-lines in the intersections of

the end line with the side lines. For the Tennis setup, the control
points were located where the service lines intersect with the
single side lines. The 2D locations of these cones (real-world
coordinates) were measured using the tachymeter Trimble M3
Total Station with the Trimble Access software (Version:
2012.10). This system was used to measure the distance
between a fixed point and the measurement device in X, Y,
and Z coordinates. A reflective marker was placed according
to the cones’ 2D center of mass (COM), which identified the
target point with 0.002 m of accuracy.

The cones’ corresponding projections on the image (image
plane coordinates) were digitized using our developed
software (section 2.4). Thus, the homographic parameters
of the mathematical image-object transformation were
calculated, allowing for 2D kinematic analysis. This method
for obtaining the transformation from 2D image coordinates
to 2D object coordinates was based on 2D homography
(Corke, 2017). Subsequently, both X and Y coordinates
represent the transformed coordinates relative to the court/
field coordinate system with origin in the bottom right of the
field/court.

2.4 Tracking Algorithm
Tracking was done using a flexible software interface developed in
the Python programming language (Python Software
Foundation, https://www.python.org/). Figure 2 presents the
block diagram of the tracking system, in which multiple object
tracking was performed (Bewley et al., 2016; Milan et al., 2016).
This was conducted with a 2 phase System. A Faster-RCNN
object detection neural network was trained to recognize players
from a bird’s eye view (Ren et al., 2015). Next, we tracked the
initial players’ bounding boxes with a generic object tracker called
Atom (Danelljan et al., 2019), which performs at the top of
specific tracking benchmarks such as UAV123 and TrackingNet.

Errors in the tracking process of the bounding boxes were
edited manually through a GUI written with QT (www.qt.io).

FIGURE 1 | Drone perspective from a bird’s eye view for tennis (27 m height), Ultimate Frisbee (85 m height) and soccer (50 m height).
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To transform the player coordinates from frame coordinates
to real-world coordinates, we extracted multiple corners of the
different game environments using template matching strategies.
A personal computer (Intel(R) Core (TM) i7-7700HQ, CPU
2.80GHz, 16 GB RAM, Ubuntu) was used to track the players.
All of the coordinates contained the X and Y coordinates of the
players, and the corners were saved as a CSV file.

The X and Y positions of the players were defined as the center
point of the bounding box enclosing the respective player’s
outline. Following the tracking procedure, the X and Y
positions of the players were reconstructed based on the four
corner points extracted for calibration in MATLAB (R2020b, The
MathWorks Inc., Natick, MA, United States) using 2D
homography (Corke, 2017). Due to slight movements of the
drone, the calibration was performed frame by frame to
reduce errors.

2.5 Validation
To validate the drone-based video EPTS system developed in this
work, two different tests were conducted. First, a static validation
was performed using specific known and measured points on the
court/field that were measured with the gold standard
(tachymeter). Secondly, we conducted a dynamic validation.
Ideally, this type of validation is conducted using 3D
kinematic analysis like Vicon or Qualisys (Luteberget and
Gilgien, 2020), but this is challenging and costly to do in field
settings (Linke et al., 2018) and actually cannot be done in large

environments like an Ultimate Frisbee field. The alternative is an
approximation, which involves comparing the measurements the
drone-based video system with other systems that have been
reported in the literature (Frencken et al., 2010; Randers et al.,
2010; Ogris et al., 2012; Varley et al., 2012; Buchheit et al., 2014;
Ellens et al., 2021). In this case, we used a GPS system and a LPS
system, described in Table 1.

All participants in this study were equipped with at least one
transponder for the GPS system (GPSports Sports Performance
Indicator (SPI) Pro X, Canberra, Australia). For tennis, an
additional transponder was attached for the LPS system
(KINEXON Precision Technologies, Munich, Germany). The
transponders were placed on the upper thoracic spine between
the scapulae.

The GPS transponders were activated 15 min prior to data
collection to allow for the acquisition of satellite signals, as only
GPS signals that meet the internal quality thresholds established
by the manufacturer are recorded (Shergill et al., 2021). The LPS
transponders were activated at the same time to reduce contact
between the investigators and the athletes in accordance with the
COVID-19 guidelines at the time. Just before the start of a match,
the drone was positioned above the center of the court/field and
set to remain in a stationary position (see Figure 1).

2.5.1 Static Validation
For the static validation measurements, the real-world
coordinates of four cones on the field/pitch (Ø = 0.15 m) were

FIGURE 2 | Block diagram showing the main steps of the proposed tracking method using a drone-based video system.

TABLE 1 | Description of the experimental design for tennis, Ultimate Frisbee and soccer, including the number of participants, gender, duration, match type, and tracking
devices used.

\Sport N Gender Overall duration (min) Validation intervals Exercise type GPS LPS Drone

Tennis 2 Male 29 4 sessions match ✓ ✓ ✓
Ultimate Frisbee 14 Mixed 34 3 sessions match ✓ ✓
Soccer 8 Female 5 1session small-sided game ✓ ✓
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measured with a tachymeter, which served as the gold standard.
For the sake of comparison, 5 minutes of video were acquired at
frequency of 24 Hz, just before the data collection session to
compare the drone measurements with the tachymeter
measurements on the tennis court and on the Ultimate
Frisbee field.

Previous studies used a limited number of timepoints for one
position to estimate the static measurement, for example by fixing
a transponder to the ground for 2 minutes or by measuring the
court/field manually before data acquisition (Lara et al., 2018;
Linke et al., 2018).

2.5.2 Dynamic Validation
Raw XY-positions from each of the EPTS were exported using the
respective software (see Figure 2). The raw speed data was
synchronized for speed using cross correlation. Which allowed
for the calculation of the deviation between the GPS system and
the drone system for each point in time and for each setting. Data
from the systems was sampled at different frequencies: 15 Hz
(GPS), 20 Hz (LPS) and 24 Hz (drone). All of the remaining data
analysis steps were executed in MATLAB (R2020b, The
MathWorks Inc., Natick, MA, United States). The data from
the LPS system and the drone systemwas down-sampled to 15 Hz
using a linear interpolation of the initial values. All positional data
was filtered using a fourth-order Butterworth low pass frequency
filter (Linke et al., 2018).

The dynamic validation was performed with two kinds of
analysis. First, the cumulative distance measured by the drone
system was compared to the distance from the LPS system for
tennis and from the GPS system for all sports. Secondly, the
distance covered across different speed zones was also compared:
stationary walking (0–3.9 km/h), jogging (4.0–7.9 km/h), and
quick running (above 8 km/h), mostly because the sample
hardly reached speeds above 14 km/h. These speed zones were
adapted from Krustrup and Mohr (2015).

Speed and acceleration data from the drone and LPS systems
were derived from filtered positional data. The GPS system
assesses speed data by the rate of change (Doppler) in the
satellites’ electromagnetic signal frequency (Schutz and Herren,
2000). Therefore, the manufacturer’s speed variable was used and
served as the basis to calculate acceleration.

2.6 Statistical Analysis
The accuracy of the static XY-position data was estimated by
means of the root mean square error (RMSE) as seen in .

RMSE �
�����������∑n

i�1(xi − yi)
n

√
(1)

where yi are the observations, xi predicted values of a variable, and
n the number of observations available for analysis.

Descriptive statistics are provided as means, standard
deviations (SD) and coefficient of variation (CV). A Shapiro-
Wilk test was used to test the normality of the data. In cases where
the data failed the normality test, non-parametric test procedures
were used to analyze the data (Wilcoxon signed-rank test).

To evaluate the performance of drone tracking compared to
GPS and LPS systems in the three different sports contexts
(tennis, Ultimate Frisbee, and soccer), a Bland-Altman plot
was drawn to assess the level of systematic difference between
measurements of the total distance covered by the players.
Pearson’s correlations coefficients were classified as (small
effect<0.3; medium <0.5; large >0.5). Reliability of total
distance covered was assessed calculating intra-class
correlation coefficients (ICC). ICC coefficients were classified
according to Koo and Li (2016) into poor (ICC ≤0.5), moderate
(ICC ≤0.75), good (ICC ≤0.9), and excellent (ICC >0.9).
Statistical analyses were conducted in MATLAB R2020b (The
MathWorks, Massachusetts, United States) and SPSS (v27.0.1.0).

3 RESULTS

3.1 Static Validation
Table 2 shows the RMSE of the distances between the observed
and expected positions on the court/field for the four control
points used in the tennis match and in the Ultimate Frisbee
match. It is important to reiterate that the four control points
were placed in specific positions based on the different court/field
sizes for tennis and Ultimate Frisbee.

The mean RMSE for a static position on the tennis court was
0.02 m, 0.08% of the court’s length and 0.24% of the court’s width.
For the Ultimate Frisbee field, the mean RMSE for a static
position on the field was 0.15 m, 0.15% of the court’s length
and 0.41% of the court’s width. The maximum RMSEs found in
static positions on the tennis court and the Ultimate Frisbee field
for a 5-min testing interval was 0.04 and 0.20 m, respectively.

3.2 Dynamic Validation
The regression analysis for the total distance between the drone
and the GPS/LPS systems showed a significant linear regression
(p < 0.05) for all three sports. For tennis, the R2 value was 0.980
with a RMSE of 21.8 m, RMSE% of 5.78% for GPS, with an ICC
value for consistency of 0.974 and the ICC for absolute agreement
of 0.923 (p < 0.001); for LPS, the R2 value was 0.999 with a RMSE
of 5.1 m, RMSE% of 1.21%, with an ICC value for consistency of
0.999 and the ICC for absolute agreement of 0.998 (p < 0.001). For
Ultimate Frisbee, the R2 value was 0.996 with a RMSE of 10.7 m,
RMSE% of 1.01%, with an ICC value for consistency of 0.998 and
the ICC for absolute agreement of 0.984 (p < 0.001). For soccer,
the R2 value was 0.926 with a RMSE of 12.9 m, RMSE% of 3.11%,

TABLE 2 | RMSE values for the four control points used to evaluate the static
accuracy during the calibration procedure on the tennis court and on the
Ultimate Frisbee field. Means and standard deviations are shown for both settings.

Control points RMSE values (tennis) RMSE values (Ultimate frisbee)

Number 1 0.04 m 0.20 m
Number 2 0.01 m 0.16 m
Number 3 0.04 m 0.11 m
Number 4 0.02 m 0.13 m
Mean ± sd 0.02 ± 0.01 m 0.15 ± 0.03 m
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with an ICC value for consistency of 0.956 and the ICC for
absolute agreement of 0.942 (p < 0.001).

Table 3 shows the descriptive statistics (means, standard
deviations anc coefficient of variation) for the different
tracking devices (Drone/GPS/LPS) regarding total distance
covered and total distance covered in the three different
speeds: stationary walking (0–3.9 km/h), jogging (4.0–7.9 km/
h), quick running (above 8.0 km/h) in Tennis, Ultimate
Frisbee (UF) and soccer small-sided game.

Figures 3–5 show Bland-Altman plots with the mean values
between the measurements and the lower and upper limits of
agreement for the total distance in all three sports (tennis,
Ultimate Frisbee, and soccer).

Regarding the total distance covered, an absolute difference of
13.67% was calculated for tennis, 2.78% for the Ultimate Frisbee,
and 2.36% for soccer between the drone and the GPS. The error
between GPS and LPS was 9.42% in the tennis match. The total
distance covered between the drone and LPS had an absolute
difference of 2.68% in the tennis match.

Figures 6, 7 show the deviation in the covered distances in total
and at different speeds, as illustrated by box plots. For Ultimate
Frisbee and soccer, Figure 6 shows the measurements from the
drone andGPS. For tennis,Figure 7 shows themeasurements from
the drone, GPS, and LPS. Since the players in this sample hardly
ever reached speeds above 14 km/h, the distances covered in each
speed zones were presented as follows: up to 4 km/h, from 4 to
8 km/h and greater than 8 km/h.

TABLE 3 | Descriptive statistics for the different tracking devices (Drone/GPS/LPS) regarding total distance covered and total distance covered in the three different speeds:
stationary walking (0–3.9 km/h), jogging (4.0–7.9 km/h), quick running (above 8.0 km/h) in Tennis, Ultimate Frisbee (UF) and Soccer small-sided game. Means, standard
deviations and coefficient of variance are shown for all the settings.

Device Tennis UF Soccer

Mean ±SD CV% Mean ±SD CV% Mean ±SD CV%

TOTAL DISTANCE (M) Drone 430.6 168.6 39.15 1022.2 166.9 16.32 404.2 49.0 12.12
GPS 377.1 141.0 37.39 1050.9 167.9 15.97 413.5 43.8 10.59
LPS 420.0 166.2 39.57 — — — — — —

DISTANCE IN SPEED Drone 143.5 60.9 42.43 148.6 28.0 18.84 90.5 15.7 17.34
0–3.9 kM/H (M) GPS 205.7 87.7 42.63 143.2 25.3 17.66 85.2 12.9 15.14

LPS 128.17 57.1 44.55 — — — — — —

DISTANCE IN SPEED Drone 217.8 104.0 47.75 297.2 54.0 18.16 168.4 35.9 21.31
4.0–7.9 kM/H (M) GPS 143.4 60.9 42.46 303.3 56.8 18.72 161.4 27.6 17.10

LPS 220.4 101.3 45.96 — — — — — —

DISTANCE IN SPEED Drone 69.3 31.1 44.87 576.4 180.0 31.22 145.2 47.2 32.50
>8.0 kM/H (M) GPS 27.9 13.8 49.46 684.37 183.0 26.73 166.9 57.3 34.33

LPS 71.4 34.6 48.45 — — — — — —

FIGURE 3 | Bland-Altman plot for the total distance covered in a tennis
match measured by the drone, GPS, and LPS. Dashed blue lines show the
limits of agreement (111.10 m and -25.36 m), and the continuous line shows
the mean (42.89 m) between GPS and LPS. Dashed black lines show
the limits of agreement (−0.20 m and −21.05 m), and the continuous line
shows the mean (−10.63 m) between the drone and LPS.

FIGURE 4 | Bland-Altman plot for the total distance covered in an
Ultimate Frisbee match measured by the drone and GPS. Dashed lines show
the limits of agreement (7.93 and 49.41), and the continuous line shows the
mean 28.87 m.
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3.3 Exemplary Results in Sports
Figures 8–10 show exemplary results in the three different sports
that can be obtained from a drone-based video EPTS system.
Figure 8 shows the typical movements of players (n = 14) during
the pull in an Ultimate Frisbee game, showing that the drone
system can deliver not only X and Y positions of the players, but
also allows for new insights about tactical displacement using the
bird’s eye view. Figure 9 illustrates the X and Y positions of tennis
players on the court during a match. Figure 10 is a direct

application of tracking data for game analysis in small-sided
soccer games based on heatmaps.

4 DISCUSSION

This study is the first to demonstrate the application of a drone-
based video system for the performance analysis of three different
sports: tennis, Ultimate Frisbee, and soccer. The results not only

FIGURE 5 | Bland-Altman plot for the total distance covered in a small-
sided game soccer match measured by the drone and GPS. Dashed lines
show the limits of agreement (36.42 m and −17.64 m), and the continuous line
shows the mean (9.39 m).

FIGURE 6 | Percentage deviation of the total distance measurements
between the drone-based video system and GPS in Ultimate and soccer for
different speed zones. Boxplots show the respective median (red line); the
bottom and top edges of the box indicate the 25th and 75th percentiles
(blue box). The whiskers extend to the most extreme data points without
considering any outliers (“+” symbol). UF (Ultimate Frisbee), So (soccer small-
sided game).

FIGURE 7 | Percentage deviation of the total distance measurements
between the drone-based video system and LPS and drone-based video
system and GPS in tennis for different speed zones. Boxplots show the
respective median (red line); the bottom and top edges of the box
indicate the 25th and 75th percentiles (blue box). The whiskers extend to the
most extreme data points without considering any outliers (“+” symbol).

FIGURE 8 | Tracking data recorded with a drone from an Ultimate
Frisbee game during the pull and 7 s afterwards. Team 2 (red square) has the
frisbee (upper field). Frisbee was not tracked; blue dashed line represents the
vector from starting to end position of the passe.
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show the system’s ability to detect and track players from a bird’s
eye view (Ferreira et al., 2015; Karungaru et al., 2019), but also to
collect and generate position detection data. Furthermore, the
results from this study are validated against some of the existing
position detection technologies (GPS and LPS) that are currently
used in performance analysis.

The mean measurement error found for the static
validation was less than 0.41% of the size of the court/field
for all three sport settings. The maximum difference found
between the known and measured positions on the tennis
court and on the Ultimate Frisbee field was 0.04 and 0.20 m,
respectively. These values are lower than the ones reported by
Alcock et al. (2009), who reported mean errors of 1.5% of the
width and 2.5% of the length of a soccer field. The results from
the static validation support the accuracy of the drone-based
video system for the measurement of static positions on the
court/field when compared to the gold standard (the
tachymeter). This improved accuracy may be explained by
the fact that every frame from the drone footage is calibrated
individually since the drone is subjected to small movements
during flight.

For the dynamic validation, the measurements of the total
distance covered, and the distances covered in different speed
zones were compared between the drone system and commercial
GPS and LPS systems. The total distance covered measured by the
drone had a high correlation with both the GPS and LPS systems,
with Pearson correlation coefficients of 0.96 and 0.99,
respectively. It is important to clarify that correlation, in this
case, does not mean that all of the systems came to the same
measurement, but that the systems are related to each other. A
better way to evaluate the agreement between the different
methods might be a regression analysis. In this way, we would
need to determine a formula that best predicts the magnitude of a
value obtained from the drone as it relates to another measuring
device (GPS or LPS).

Regression analysis shows a R2 value higher than 0.90, and ICC
results showed excellent consistency and absolute agreement in
the measurement of the total distance covered. Buchheit et al.
(2014) report small differences (5.4%) between GPS and optical
tracking systems in relation to total distance covered. In this
study, the differences in the total distance covered between the

drone and GPS systems are around 3% for Ultimate Frisbee and
soccer small-sided game.

However, at this time, there is no gold standard used for
dynamic validation of drone-based position detection. The
authors chose to present Bland–Altman plots that illustrate
some qualitative data, such as the mean bias (how much does
the drone deviate from the measurements obtained by the GPS
and/or LPS) and the confidence intervals, that may be used to
explain some of the systematic and random deviations observed
between the different tracking technologies in this study.

The limits of agreement in the Bland-Altmann plot for total
distances are 49.41 and 7.99 m for Ultimate Frisbee (drone vs
GPS; see Figure 4), 36.52 m and −17.64 m for soccer (drone vs
GPS; see Figure 5), 15.74 m and −122 m for tennis (drone vs GPS)
and −0.26 m and −21 m for tennis (drone vs LPS; see Figure 6).
The limits of agreement for the drone vs LPS in tennis look better
compared to the results for GPS, as the size of the field may have
hindered the precision of the GPS measurements.

Overall, there was excellent agreement in the measured
distances covered in different speed zones during the tennis
match between the drone and LPS systems. However, there
were some noteworthy differences between these two systems at
higher speeds (above 8 km/h), which suggests there might have
been a systematic error during data collection. For validation
purposes, it would be ideal to compare the drone system to an
accepted gold standard as the reference system to confirm the
accuracy of instantaneous position, speed, and acceleration values.
This type of validation should be conducted in the near future for
the drone-based video system, especially using regression analysis
to compare the results against other EPTS or gold standards like
Vicon or Qualisys (Luteberget and Gilgien, 2020).

Based on the findings of this study, the application of a drone-
based video system resulted in more accurate static positions and
dynamic trajectories (with less deviation) compared to LPS- and

FIGURE 9 | Example of X and Y positions obtained by the drone system
for two players during 1-min of gameplay in a tennis match.

FIGURE 10 | Heatmap representation of the two teams (4 vs 4) during
5 min of gameplay in a small-sided soccer game.
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GPS-based systems. This finding is in line with previous studies
that compared traditional video-based systems with GPS-based
systems (Buchheit et al., 2014; Linke et al., 2018). While it appears
that video-based systems generate more accurate and
representative results for multi-player tracking compared to
sensor-based systems, the process still requires supervision by
an experienced operator, as the player trajectories can be
unpredictable. Nevertheless, the advantages of a drone-based
video system also include video footage from a bird’s eye view,
which allows for a unique perspective for tactical analysis of both
one’s own team and the opposing team. The drone’s main
advantage is its versatility, as it can be used in training or
during competitions without the need to install any additional
equipment (traditional video-based systems) or attach any
devices to the players (sensor-based systems). A drone-based
video system also provides a different vantage point than
traditional video-based systems, as the drone can fly above the
court/field and be maneuvered to remain in a stationary position.
Lastly, drones are accessible and less costly than other EPTS,
facilitating the ability to use position detection methods for
performance analysis at all levels.

It is worth mentioning that the current work presents some
limitations regarding its validation at higher speeds, greater than
8 km/h, given that the study sample did not reach such speeds.
Nevertheless, the results found in this study are of sufficient
validity for Ultimate Frisbee, tennis, and small-sided games in
soccer, where other authors have also reported that higher speeds
are rarely reached (Linke et al., 2018; Linke et al., 2020).

5 CONCLUSION

To the best of our knowledge, this is the first study to demonstrate
and validate the use of drones for performance analysis, as well as
present examples of their application in several different game
sports (tennis, Ultimate Frisbee, and soccer). The drone-based
video system not only detects and tracks players’ positions and
trajectories, but also provides performance analysis metrics in
competition and training settings. The results were validated
against known position detection technologies on the market
(GPS and LPS). By implementing a drone-based video system,
coaches and performance analysts will be able to visualize and
quantify the X and Y positions of all players on the court/field.
Furthermore, the drone footage will allow for conclusions about
the physical demands and tactical behaviors observed in training

and in competition across a variety of game sports. Future
research can build upon the findings of this work by further
testing the drone-based video system in different sport contexts
and environments, such as indoor use. In the meantime, this
study has shown that drone-based video position detection is
both feasible and reliable; this technology has the potential to
enhance performance analysis in sports and facilitate access to
position detection methods.
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American football is an appealing field of research for the use of information technology.

While much effort is made to analyze the offensive team in recent years, reasoning about

defensive behavior is an emergent topic. As defensive performance and positioning

largely contribute to the overall success of the whole team, this study introduces a

method to simulate defensive trajectories. The simulation is evaluated by comparing

the movements in individual plays to a simulated league average behavior. A data-

driven ghosting approach is proposed. Deep neural networks are trained with a multi-

agent imitation learning approach, using the tracking data of players of a whole

National Football League (NFL) regular season. To evaluate the quality of the predicted

movements, a formation-based pass completion probability model is introduced. With

the implementation of a learnable order invariant model, based on insights of molecular

dynamical machine learning, the accuracy of the model is increased to 81%. The trained

pass completion probability model is used to evaluate the ghosted trajectories and

serves as a metric to compare the true trajectory to the ghosted ones. Additionally, the

study evaluates the ghosting approach with respect to different optimization methods

and dataset augmentation. It is shown that a multi-agent imitation learning approach

trained with a dataset aggregation method outperforms baseline approaches on the

dataset. This network and evaluation scheme presents a new method for teams, sports

analysts, and sports scientists to evaluate defensive plays in American football and lays

the foundation for more sophisticated data-driven simulation methods.
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1. INTRODUCTION

American football is a widely used sport for the statistical evaluation of the performances of
teams. Performance indicators for play-by-play data such as expected points added (EPA1), the
defense-adjusted value over average (DVOA2), and defensive passing and rushing yards help to
evaluate defensive plays (Cohea and Payton, 2011). Tracking data is also incorporated to evaluate

1https://www.espn.com/nfl/story/_/id/8379024/nfl\discretionary-explaining\discretionary-expected\discretionary-

points\discretionary-metric.
2https://www.footballoutsiders.com/info/methods#DVOA
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single plays or specific game situations (Yurko et al., 2019).
As demonstrated by recent Superbowl winners, defensive
effectiveness has a major impact on winning. An emergent
example for the acknowledgment of this fact is coach Paul
Bryants’ famous mantra:

Defense wins championships. Foxworth (2018)

Improving defensive behavior is, therefore, a major predictor for
winning championships. Of the last eight Superbowl winners,
four were ranked first or second in overall defensive rating
in the league. In contrast to the offensive ratings, where just
one team was ranked first or second. Hence, coaches’ decisions
on providing strategies for offense are important. However,
defense is a key element for winning and statistics prove that3.
It is cumbersome to imagine all possible defensive formations
applicable for a specific offense. Furthermore, it is hard to
determine which defender contributed to a specific defensive
play, as defensive outcomes are commonly evaluated as a team
achievement. With the emergence of tracking data, it is possible
to cluster and classify specific contributions of defensive players,
which helps to choose the right player in the corresponding play.

In 2013, the NBA team “Toronto Raptors” introduced a
ghosting method to model the defensive behavior of opposing
teams. These “ghosts” are synthesizing simulated trajectories of
the movements of defensive players on the court. After 6 years
of research, they developed a rule-based algorithm to simulate
defensive behavior (Lowe, 2013). Unfortunately, this algorithm
is not publicly available. This ghosting model computes more
aggressive trajectories than observed during any NBA game,
and only the most elite defenders (LeBron James in 2013
accounted for that) could mimic the behavior of the ghosts.
Hence, the model seems unsuitable for imitating true defensive
behavior. In recent years, research in artificial intelligence has
leveraged methods to simulate human behavior by mimicking
past motions and, therefore, better capture the movements
of humans compared to a rule-based programming approach
(Hussein et al., 2017). As offensive behavior implies interaction
with highly unknown variables such as how the quarterback
reacts (including creativity), passes or a scheduled game plan for
the specific play, defensive behavior is mostly reactive and could,
therefore, be modeled by imitation learning.

Modeling defensive behavior by simulating possible running
trajectories of defensive players, knowing the behavior of the
offense can be a notable tool. This could be used for setting up
tactics beforehand or for the usage in retro-perspective analysis.
Furthermore, this method can provide offensive and defensive
coaches a tool to adapt their decision for the play strategy.

The presented ghosting model is capable of generating
movement trajectories of the defensive teams via imitation
learning, from the time the ball is snapped until the quarterback
throws a pass forward. The model is evaluated using the expected
pass completion probability at the moment the quarterback
throws the pass forward.

3https://www.si.com/nfl/talkoffame/nfl/scoring-defense-the-key-stat-for-super-

bowl-contention

The proposed model provides support for the decision-
making of defensive coaches and helps with the evaluation of
defensive strategies. It can be incorporated with media or fan
applications or be used for extensive match analysis.

2. RELATED WORK

The availability of tracking data in American football led to an
increased amount of projects about evaluation and application
engineering. The most commonly used tools in the area of team
performance analytics are advanced statistical methods as well
as machine learning and artificial intelligence. This chapter is
divided into three parts, statistical methods, neural networks, and
imitation learning.

Statistical methods have flourished in the past several years,
and expanded the highly competitive landscape of sports analysis.
Fernandez and Bornn (2018) modeled pitch control with a
parametric approach to model influence areas of specific players
with Gaussian functions and add the influence of each player
to a team influence model based on the spatial coordinates
on the field. Dutta et al. (2019) investigated defensive player
behavior by classifying the behavior of defensive backs on two
different coverage schemes, man coverage and zone coverage,
using Gaussian mixture models to capture the state in an
unsupervised manner.

Offensive player routes were analyzed with neural networks
by recognizing and classifying running routes into different
categories from wide out routes and backfield routes to compare
the number of routes ran by the offense and the probability
of targeting a receiver in that route (Team, 2019). Mehrasa
et al. (2017) reduced player trajectories with one-dimensional
convolutional neural networks for play recognition and team
classification in basketball and ice hockey. The authors conclude,
that franchise player or starting lineups contribute heavily to the
team classification and identification using tracking data. Burke
(2019) used deep neural networks to analyze the decision-making
of quarterbacks and compute the pass completion probabilities
of the quarterback with respect to the position of receivers and
the closest defenders. Deshpande and Evans (2020) picked up
this idea and extend the model in a more sophisticated way,
by incorporating hypothetical pass probabilities in a Bayesian
non parametric catch probability model. Most of the features
of models regarding hypothetical passes are unobserved and,
therefore, impute observable inputs.

Imitation learning yields multiple areas of operation in sport.
Seidl et al. (2017) proposed a sketching tool for basketball
play-by-play analysis, where they also use imitation learning
to synthesize NBA defense. Coordinated multi-agent imitation
learning was first proposed by Le et al. (2017) and was validated
to be superior to an unstructured solution of a predator-prey
problem, called the pursuit domain and on a soccer domain,
where the results also showed a smaller loss in the coordinated
case with respect to unstructured behavior. The training of the
ghosted soccer players was done with Long Short Term Memory
(LSTM) layers, while the Pursuit Domain was modeled with a
random forest. A main finding of the study is the benefit of the
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FIGURE 1 | Motivational Play: Eli Manning (10) throws a pass short right to

Cody Latimer (12) for 8 yards before stopped by a tackle. The the trajectories

of offensive teams are displayed in orange, the trajectories of defensive teams

are displayed in blue, and the ball trajectory in red. The line of scrimmage is

labeled and displayed in yellow.

alternating training of the model Hochreiter and Schmidhuber
(1997) and the cascading training process of the LSTM layers for
the problem.

The recently proposed methods and the extensive work by
the NFL to make advanced statistics publicly available is the
motivation to build a ghosting model for the defensive player
trajectories of American football. Imitation learning is used to
predict the trajectories of defensive players. Subsequently, these
predicted positions are evaluated by comparison with the actual
positions using a pass completion probability model.

3. METHODS

In this study, a method to simulate individual and collective
defensive behavior of American football players from the time
of ball snap until the quarterback throws the pass forward is
developed. A big aim of cornerbacks and safeties is trying to
intercept passes or prevent offensive receivers from running the
ball after the catch. Other defenders (e.g., linebacker, defensive
end) try to rush and tackle the quarterback, so the pass cannot
even be thrown. To date, to the best of our knowledge, no model
accounts for the different team strategies or the contribution of
individual defensive players to the outcome of the play.

The proposed ghosting model takes advantage of a
comprehensive representation of tracking data. Individual
defensive players are modeled with the positional information of
the offensive team. As ghosted trajectories do not behave like the
true running trajectory, a learned pass completion probability
model, similar to previous study (Burke, 2019; Deshpande and
Evans, 2020) is proposed to evaluate the true running trajectories
with the synthesized trajectories.

3.1. Data
In December 2020, the NFL released a free-to-use, new NFL
player and ball tracking dataset for the NFL Big Data Bowl 2021
challenge (NFL Big Data Bowl, 2020). The dataset includes game
data of 17 weeks of the 2019 regular season of theNFL. Each game
contains play-by-play positional information about defensive
and offensive players and football, as well as meta-information

about the play as illustrated in Figure 1. Positional information
is provided for different numbers of players, ranging from 10
players to 21 players. These players are tracked by a radio-
frequency-based system (RFID). The sensors were implemented
in both of the shoulder pads of the player, to capture the position
of the player as well as the upper body orientation at a rate of
10 Hz. Compared to current optical tracking systems used in
basketball, hockey, and soccer, RFID-based tracking in American
football is error resistant, and it is possible to measure accurate
positions and orientation, even with visual indentations. The
manufacturer states an accuracy of 6 inches (≈ 15.24 cm).
However, to the best knowledge of authors, no validation study
evaluating the accuracy is published yet of the system. The
recording starts when the offense is set, meaning that the motion
of offense and the reaction of the defense before the ball are
snapped, are also captured in the data. For each tracked player
and ball, every time frame contains its x and y position on the
field within 0m ≤ x ≤ 120m and 0m ≤ y ≤ 53.3m. The speed
and orientation of the upper body of each player are saved to
individual vectors. Offensive players also have an attribute for the
running routes (e.g., Go, Hitch, and Crossing). For every player,
different time frames are marked with the respective events, i.e.,
when the ball is snapped, the quarterback throws a pass, the pass
is received, or the first contact with the defender.

3.2. Pass Completion Model
Pass completion can be modeled in various ways. The NFL
introduced a model to evaluate pass completion probabilities
of specific players based on 10 features corresponding to every
receiver (Team, 2018). With this method, it is difficult to
simultaneously evaluate the positions all players’, as every single
route is computed and player-to-player comparison is conducted.
Consequently, a single evaluation metric cannot be generated
without engineered adjustments. To circumvent this issue, the
pass is captured as a binary problem for the entire team in
this study. This simplification helps to capture the completion
probability and combines the probabilities of player-to-player
single routes analysis in a model where the different routes
are automatically combined in an end-to-end approach. In the
model, y captures whether the pass was caught, given the specific
formation and speed of the players, neglecting the targeted player.
The following formulas illustrate that this issue can be considered
a binary classification problem with a completion probability:

P(y = 1|X) =
1

1+ e−f (X)
(1)

where X is the feature vector containing the positional
information of all players and is defined according to Figure 2,
and f (X) is to be optimized by a logistic regression

log

(

P(y = 1|X)

1− P(y = 1|X)

)

= f (X) (2)

As a universal function approximator of f (X), feed-forward
neural networks with different architectures are used, which are
optimized by a grid search and are compared to a gradient
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FIGURE 2 | Feature Vector of the pass completion model.

boosted tree model, likewise with optimized hyperparameters by
a grid search. Additionally, the problem can also be viewed as
multi-class classification, yet as interception probability is low
and is linked to large noise, as discussed by Burke (2019) and
Deshpande and Evans (2020), it is possible to neglect the special
classes in this application and further classify the pass outcome as
positive or negative.

The neural network was trained with the ADAM optimizer
(Kingma and Ba, 2014), while learning rate and architecture were
selected with a grid search resulting in the architecture of three
fully-connected layers with batch normalization. The first two
layers were of size 64 with an additional dropout layer, while the
last layer is a fully-connected layer with 32 neurons. The batch
size was kept at 1,024 samples per batch and the learning rate
was chosen to be 2e-3. The gradient boosted tree hyperparameter

search for the architecture resulted in a maximum depth of 10
and 60 leaves. The learning rate is 0.03. The models were trained
with 7-fold stratified cross-validation. Furthermore, a focal loss
was used to account for class imbalances, yet, this did not yield
better results and was not used/chosen following the law of
Occam’s razor.

3.2.1. Feature Vector and Training Data

The training, validation, and test data consists of all passes with
seven tracked defenders and six tracked offensive players, either
complete or incomplete/intercepted from the NFL Season 2019.
The training and validation data consists of the first 14 weeks of
the NFL regular season, while the test data was taken from the
last 3 weeks of the regular season. Overall, 17,346 passes were
conducted. After filtering to the specific conditions, 9,199 passes
were left. The whole training/test dataset was split 70/30% to
accurately train the model and minimize overfitting.

The feature vector was created with respect to the available
data from the later proposed ghosting model. As the ghosting
model will synthesize the trajectories from the event of ball
snap to the moment when the quarterback is throwing the ball,
the latest possible time step to determine the pass receiving
probability, the event of the forward pass, is used. Besides this
information, each of the five receivers is assigned with the relative
and absolute position of the two closest defenders as proposed by
Burke (2019). The feature vector is ordered as shown in Figure 2.
The quarterback was handled as a separate feature collection, as
the distance to itself is irrelevant. Furthermore, a relative position
on the field regarding the yard line and the down and yards until
the next down starts was added.

The training set was augmented to make the receiver input
order invariant by randomly changing the input receiver position
in the feature vector. Furthermore, the play was normalized to
always face in one direction and the line of scrimmage is the
original orientation regarding the x-axis. This can be done, as
the play itself should be rotation invariant, and the outcome
should not depend on which direction the quarterback throws
the pass.

3.3. Ghosting/Deep Imitation Learning
In Le et al. (2017) presented a ghosting model for soccer teams,
learned from a season of professional soccer data via deep
imitation learning. This model was able to capture team behavior
in response to different attacking scenarios. In addition to useful
insights for team comparisons, the trajectories also produced
seemingly trivial outputs upon visual inspection in the first few
seconds. However, it is precisely these few seconds in American
football that provide insight into defensive behavior, which is why
the deep imitation learning approach is transferred to American
football and the focus is exactly on these first seconds, because
they are essential to the defensive behavior before the pass
takes place.

3.3.1. Data and Feature Vector

In this part of the study, the NFL Next Gen Dataset of the
2019 Season is used and the games are filtered for plays with
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FIGURE 3 | Feature vector ghosting model.

FIGURE 4 | (A) Assignment of specific roles in formations with Gaussian mixture models to the corresponding feature vector. (B) Assignment of roles with a learned

Hidden Markov model with Gaussian emission functions for different roles to the specific model according to running positions in the coordinated

multi-agent approach.

seven defensive and six offensive players and, therefore, 14
trajectories with the ball. Moreover, the vector contains meta-
data regarding yards to go until the next down, number of downs,
and absolute distance until touchdown. This results in the same
number of training sequences as for the completion probability
model, all plays are filtered, where there was no forward pass, the
quarterback was not sacked and did not perform a handoff. The
average sequence has a duration of 3.6 s.

The feature vector of the model is ordered first by the
defensive team, then by the offensive team, followed by the
ball position and the meta-data, which includes yards to go,
number of downs and the absolute position on the field,
where the play takes place. The position of players is again
normalized so that the line of scrimmage determines the x-axis,
and the play takes place in the negative y-direction from the
perspective of the offensive team. This is displayed in Figure 3.
As there is no formation information in the NFL NextGen
dataset, a consistent representation of the position of players and
positional behavior in the feature vector needs to be guaranteed.
To achieve consistency, the tactical role of each player was
assigned independent of their named position. Accordingly,
an unsupervised role alignment algorithm (Gaussian mixture
models) was chosen. The idea of inferring to a specific formation
was developed and discussed by Bialkowski et al. (2016). The
roles get assigned with a Hungarian algorithm, where a Gaussian

mixture model is trained on starting positions and assigns the
initial roles according to it. The model is illustrated in Figure 4A.
This improves the structure of the learning problem, as defensive
backs can switch positions and safeties can act as defensive
ends. Moreover, cornerbacks and safeties are not bound to be
on the left or right side of the field, so assigning positions in
a fixed value might disrupt the network and make the learning
problem impossible.

3.3.2. Training With Imitation Learning

Imitation is the ability to recognize and reproduce others
actions4. Hence, imitation learning is learning and developing
new skills from observing these skills performed by another actor
or oracle. The agents inmulti-agent imitation learning contribute
individually to a specific goal and need to collaborate.

This multi-agent imitation learning problem arises from two
factors, first multiple agents need to learn simultaneously, and the
role assignment of the learned agents dependent on the action
of the corresponding model, which is in regard again dependant
on the assigned role. To overcome this interdependence, Le et al.
(2017) proposed an alternating optimization approach, by first
optimizing for the imitation task, with a fixed role assignment,
next fixing the policies and retrain the assignment model. This

4https://en.wikipedia.org/wiki/Imitation
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approach is repeated until no further improvement takes place
on the validation set.

The assignment model, also called the structured model by
Le et al. (2017), is learned via an estimation maximization
algorithm on a Hidden Markov model with Gaussian emissions,
and training was conducted on the same data as the other parts of
the algorithm, despite velocity, distance to quarterback and ball
position were not used to cluster the trajectories. The results are
displayed in Figure 4B.

When learning variable-length sequences, recurrent neural
networks are suited well for this job. LSTM layers are preferably
used to model sequences of this kind and are eminently used
when long-term dependencies are playing roles in current
predictions. The individual trajectories are modeled with a two-
layer LSTM with 128 neurons each. In training, the sequences
were split into a length of 25 and an overlap of 10. Later,
role-based model learning is compared to static model learning.

The models are trained in three phases according to Le
et al. (2017): pretraining, single policy training, and joint policy
training. When pretraining, the models are trained with a least-
square learning approach without interaction of the single model
itself or with other models. This means the model predicts
the next timestep of the players, given perfect information and
correction of the miss-predictions in training. This method
does not resemble realistic trajectories, but initializes models
parameters well for the following tasks. In the next step, the
policies predict multiple timesteps, with imperfect information of
their position, yet all other players have perfect information. This
process of predicting multiple timesteps into the future is called
rollout. The error of the imperfect information prediction is used
to update the model again, and it helps to recover the model
from ill predictions. This results in stable position predictions
of the policy and enables the model to recover from prediction
mistakes and eventually simulates test time during training first
introduced by Ross et al. (2011) under the terms of no-regret
online learning and present it under the term DAgger (Dataset
Aggregationmethod). In the last step, all ghostmodels are trained
together by predicting the respective next position on the field.
Therefore, every model updates the corresponding training data
input by imputing the predicted role positions and, therefore,
simulating the complete defensive behavior. Empirically, this
generates more stable trajectories. The joint training seems to
make the model more robust against perturbations in general.

4. RESULTS

4.1. Pass Completion Probability
The pass completion probability is used to validate the proposed
ghosting model and, therefore, needs to be appropriately
calibrated. As the baseline for the classification problem, a naive
classifier of assigning every pass as a catch is used. The result
of this method is comparable to the mean pass completion
rate in the NFL for the test set data and accounts for 64.8%.
First experiments of the pass completion probability model yield
disillusioning results, when using ordered data as described by
Lucey et al. (2014), as the highest accuracy of the best model is
<5% better than the naive classifier.

TABLE 1 | Table comparing the accuracy of pass completion prediction and the

correlating miss-classification rate.

Model and data Accuracy Miss-classification

Neural Network, ordered Data 69.5% 30.5%

Neural network, order-invariant data 81.6% 18.4%

Gradient boosted tree, order data 66.9% 33.1%

Gradient boosted tree, order-invariant data 76.2% 23.8%

FIGURE 5 | The ROC curve of the pass completion probability model. The

AUROC is 0.746 for the neural network and 0.730 for the gradient boosted

tree. The dashed blue line, represents the baseline of a random sample, the

orange line, the ROC curve of the neural network, and the green line

represents the ROC curve of the gradient boosted tree.

In other fields like quantum mechanical force prediction with
black box estimators, order invariant learning is important. To
achieve this, the atoms are either ordered by distance (Behler
and Parrinello, 2007) or the invariance is learned by random
permutations (Bapst et al., 2020). When applying random
permutations to the order of the receivers, the accuracy of both
models, neural networks and gradient boosted trees increases.
The neural network outperforms the gradient boosted tree by
around 5% in-accuracy (Table 1). In Figure 5, the Receiver
operation characteristics (ROC) curve for the final classification
models, with Area under ROC (AUROC) scores of 0.746 and
0.73 respectively, are displayed. The curve shows how well the
signal is separated from the noise and returns another evaluation
metric for binary classification problems. According to Hosmer
and Lemeshow (2000), an acceptable value for the discrimination
ability of binary classification is defined between 0.7 < AUROC
< 0.8. Rice and Harris (2005) are arguing that AUROC > 0.714
can be classified as good and AUROC > 0.639 as acceptable.
Hence, the used classification models are suitable for evaluating
the ghosting model. For the following evaluation, the neural
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FIGURE 6 | (A) Model error for different roles according to specific models. Blue is the coordinated single model. Yellow is the uncoordinated single model.

(B) Average rolled-out error throughout play, until the quarterback throws a pass. The blue line indicates the rolled-out error under DAgger optimization. The orange

line indicates the rolled-out error without DAgger optimization.

FIGURE 7 | (A) Pass completion probability for synthesized trajectories and true trajectories at the time when the quarterback throws the forward pass (R: 0.545)

(B) Average pass completion over time between synthesized (blue) and true trajectories (orange) of defensive players.

network approach was chosen due to the higher AUROC and
accuracy score.

4.2. Ghosting
For ghosting models to have value, they should conscientiously
represent true behavior. In the first step, the exemplary results of
the model are qualitatively evaluated, and examples of different
behavior produced by the ghosting model are discussed. Finally,
the models are checked in terms of prediction accuracy and
precision. This means that the true (x,y) position of the players
is compared with the predicted (x,y) position.

As discussed by Le et al. (2017), the task of the same
player can vary throughout a play. By validating this hypothesis,
a coordination model and a team-based model without
coordination were trained. The coordination model alternately
updates, also called cross-update, the chosen policy with the
hidden Markov model, displayed in Figure 4B, while the team-
based model assigns the feature vector, and hence the formation,
with a Gaussian mixture model, displayed in Figure 4A.

In Figure 6A, the impact on a role-based coordination model,
in comparison to a static association of roles can be seen. The
error for almost every role of the coordinatedmodel is better than
the error of the static model. Especially the error of players 5 and
6 are larger than for the coordinated model.

Figure 6B displays the cascading errors (MAE per timestep)
occurring due to the rollout of the trajectories. In this study
the rollout approach with the described DAgger algorithm to
simulate test time is compared to the naive single-agent learning
approach. While the naive optimization model error is drifting
very strongly with up to 10 m, the DAgger optimization error
remains in an acceptable range of about 2 m. DAgger is especially
valuable in this approach, as there is no access to an omniscient
oracle and, therefore, needs an approximation for deviations in
the given trajectories.

As true running trajectories and simulated trajectories may
differ, an impact measurement via a “third party,” the trained
pass completion probability model is conducted. In Figure 7A,
the pass completion probability at the time of the thrown pass
in the test set is visible for the respective ghosted trajectories and
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FIGURE 8 | (A) Exemplary short play (≈ 3s): The Quarterback (16) throws a short pass to a receiver (12) on the left side of the field. Offensive players are illustrated in

blue, defenders orange and ghosted trajectories in gray color. The initial position of the players is represented by the player shirt number. (B) Pass completion

probability over the course of the play for the ghost/simulated trajectories and true/original movements.

real trajectories. The R-value is 0.545, which indicates the close
positive relationship of the pass completion probability of ghosts
to the pass completion probability of the observed defenders.
Figure 7B displays the average pass completion probability for
the synthesized trajectories and the true trajectories throughout
the plays in the test set. Although the ghosts run different
trajectories during the different plays, in the test set, the average
pass completion rate of the ghost is similar to the true pass
completion rate, which the ghosts should mimic in the end. With
the incorporation of positions of all receivers and defenders,
the model is capable of the individual interpretation of the
current defensive formation without taking the decision-making
of quarterback into account.

5. DISCUSSION

5.1. Pass Completion Probability
The calculation of the pass completion probability for every
player, as proposed by Team (2018), is based primarily on the
positioning of players, their closest defenders, or separation from
the sideline. Sophisticated models like this are very suitable for
analyzing quarterback decision-making and even whole plays in-
depth but are too complex to assess team performance. In this
approach, the total completion probability is used to compare
the ghosting model with the actual running routes. Burke (2019)
uses a two-step pass completion probability by first selecting the
receiving player and calculating the pass completion probability
afterwards. This is a very detailed approach to investigate the
decision-making of the quarterback but does not cover defensive
team behavior. Hence, the distribution of the targeted player
and, therefore, the pass completion probability may change. This
approach could be extended by Deshpande and Evans (2020) and
the suggested hypothetical pass completion probability, where
they investigate if the proper player was chosen for the pass. In
the current approach, the decision-making of the quarterback is
bypassed, and a pass completion probability by the positions of
the receivers and the defenders is computed. This enables the

approach to give concise information about the current value of
specific opposing positions on the field without biasing themodel
by a designed combination of pass completion probabilities
for every player. Nevertheless, the model accounts for applied
pressure on the quarterback by incorporating the kinematic
parameters and metadata of defenders, so that indirectly, the
model can account for a poorly thrown pass due to themovement
of nearby players of the defending team.

5.2. Ghosting Model
The objective of the ghosting model is to synthesize realistic
defensive behavior. Especially, it should be intrinsically learned to
have a team meta behavior, by following a coordinated strategy.
In the following section, two examples are investigated and
discussed with respect to the evaluation metric.

Figures 8A, 9A illustrate examples of the observed offensive
(blue) and defensive (orange) trajectories for a short and a
long play. Parallel to the tracked movement trajectories, the
predicted/ghosted movement paths of the defensive players
(gray) for the same period are displayed.

In Figure 8A, the true running trajectories are compared with
the generated ones, which are interchangeably referred to as
ghost trajectories or ghosts in this study. In the figure can be
seen, that the ghosts behave similarly to the true players except
that the ghosts pressuring the quarterback to decide to run in
parallel and the players both tried to tackle the quarterback. The
pass was thrown after 3 s. The pass completion probability for
the original trajectory and the simulated trajectory, displayed
in Figure 8B has the same tendencies, which is closely related
to similar positions. Although the model is returning similar
tendencies, high noise in the signal relates to a non-perfect
pass completion model. Steerability of the ghosting model is
included regarding yards to go, the number of downs, and
position on the field regarding the distance to the end zone.When
changing these variables, no distinguishably different behavior of
the ghosted players compared to the initial ghosting outcome can
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FIGURE 9 | (A) Exemplary long play (≈ 7.2 s): The Quarterback (7) throws a pass to a receiver (12) on the right side of the field. Offensive players are illustrated in

blue, defenders orange and ghosted trajectories in gray color. (B) Pass completion probability over the course of the play for the ghost/simulated trajectories and

true/original movements.

be observed. This indicates a low influence of those variables in
the ghosting model for the dataset.

Figure 9A illustrates the behavior of true and ghosted
trajectories throughout 7.2 s before the quarterback pass. The
ghosted trajectories differ significantly from the actual running
trajectories. This is a result of the much larger prediction horizon
of the play. The policies/ghosts have significantly more decisions
to make and different collaborative behaviors can emerge. After
a few seconds, variabilities at the Safety positions (players 43 and
29) can be observed (Figure 9A). The running path of defender
number 43 closes some space to the offensive receiver (number
12), the same pattern can be observed for defender number 29.
In this study, the ghosts move more backwards and the defender
number 29 is closing more to the receiver 12. The collaborating
models run a different strategy than the actual players, yet the
pass completion probability is similar according to (Figure 9B).
As the model takes the defensive behavior of all teams of the
NFL into account, the prediction is an average defensive behavior
of all teams. Extensive data of specific- teams and players can
help to develop team-specific defensive models according to
Seidl et al. (2017).

By comparing the coordinated and uncoordinated models
in Figure 6A, it can be seen that both safeties have a much
larger error than in the coordinated model. This indicates
that the safeties are running the most varying strategies and
are interchangeable in position (left and right), which yields
to the conclusion that the team model cannot capture the
strategic changes that are a result of communication between
safeties and the reaction to the offensive trajectories. Also,
the middle linebacker position (number 4) has a much larger
error in the uncoordinated model. These positions seem to
have the most different tasks in different strategies, while the
cornerbacks (number 1 and 2) and outer linebackers (number
0 and 3) appear to have a more pre determined strategy in the
observed formations. Yee et al. (2014) argue that the safety is the
most versatile position. Furthermore, Figure 4B displays larger
covariances in the hidden Gaussian emissions for the running

routes that can be observed for the specific players. Hence,
compared to the superior coordinated model, the uncoordinated
model helps to understand the influence of global strategy and
how it differs across single players.

Respectively, looking into the time evaluation of the pass
completion model in Figure 7B, it can be stated that the
average pass completion probability is close to the average pass
completion probability over the entire period. This indicates that
the model is not distinguishing between the timestamp of the
trajectory and cannot infer the time when the pass is thrown up
to 8 s. Notably, the average pass completion probability of the
model over the period for the ghosting model and the original
running trajectories is indistinguishable, therefore, the ghosting
model infers a similar strategy to the original data and can be used
to simulate short and long trajectories before the pass is thrown.

6. CONCLUSION AND FUTURE WORK

To guarantee the stated accuracy of the predicted positions
and make this model helpful for practitioners, the validity of
the tracking system needs to be further evaluated. Noteworthy,
the sport-specific context turned out to be a challenge for
different tracking methods (Hoppe et al., 2018; Linke et al.,
2018). Although systems with comparable technology showed
promising results in recent validation studies (Blauberger et al.,
2021), future research needs to be conducted in the validation of
the NFL tracking system.

Deep imitation learning can be mutually adapted to many
kinds of team sports with sufficient tracking data at hand. The
current study demonstrates that smart feature engineering and
reinforcement learning approaches improve the quality of the
ghosted trajectories. Investigating a formation with the overall
pass completion probability can establish the comparability
to run trajectories without comparing the exact position of
the players and allowing deviations. However, this lacks the
evaluation of the single-player pass completion probability.
Upcoming study could include analysis of single player pass
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completion probability and the variation in those compared to
the ghosting models. Furthermore, individualization of players
could be included by adding meta-features for every player and,
therefore, provide the possibility to compare the performance of
individual players in specific plays.

Another drawback of the proposed method is the necessity
of a deterministic feature vector. This leads to a massive loss in
training data, as it is necessary to determine and adapt to the
number of players on the field. In the case, this resulted in a loss
of more than 50% of training data for the whole NFL regular
season in 2019.With the emergence of graph neural networks and
the ongoing research in spatio-temporal graph neural networks
(Zhou et al., 2018), this drawback might be resolvable in the
near future. Although, the focus of the analysis was kept to pre-
throw trajectories for defensive players, the algorithm can be
extended to longer trajectories, e.g., movements after the catch.
With a sophisticated annotation tool for American football plays,
this method could be used to incorporate the versatility of the
coverage scheme of defenders. This was not possible with the
included data from the NFL dataset 2019 but might be addressed
with the work of Dutta et al. (2019). Furthermore, ghosting
can be used in the back-end of real-time player sketching. The
possible benefit for coaches is also proposed for other sports, like
a basketball by Seidl et al. (2017). NFL coaches and analysts can
compare their defensive team performance to the league average

performance, conduct a hypothetical analysis for specific plays,
determine miss behaving defenders, or progress to completely
automatic game analysis.
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