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Abstract: Soil copper (Cu) contamination in mining areas poses a serious threat to the surrounding
environment and human health. Timely determination of Cu concentrations is crucial for the ecologi-
cal protection of mining areas. Hyperspectral remote sensing technology, with its non-destructive
monitoring advantages, is essential for monitoring soil Cu pollution and achieving sustainable
agricultural development. Using the hyperspectral technique for assessing soil Cu concentration,
four machine learning models (support vector regression (SVR), random forest (RF), partial least
squares regression (PLSR), and artificial neural network (ANN)), combined with three types of input
variables (the full-band, sensitive bands, and optimized spectral indices (Opt-TBIs)) were employed.
The hyperspectral reflectance of 647 soil samples from an abandoned tailings mine in western Inner
Mongolia, China was collected. The sensitive bands were extracted using the successive projections
algorithms (SPA), and 12 Opt-TBIs were selected. Results showed that the regions with higher soil
Cu concentration extracted by SPA and Opt-TBIs were concentrated in the red edge and near-infrared
regions. Compared with the full spectrum and SPA-sensitive bands, models based on Opt-TBIs
successfully predicted soil Cu concentrations. The Opt-TBIs-RF model provided higher accuracy
in estimating soil Cu among the four models. Using only four Opt-TBIs as input variables, the
model maintained a stable performance in estimating Cu concentrations in different mining areas
(R2

Val = 0.72, RPDVal = 1.90). In conclusion, Opt-TBIs as input variables demonstrate good predictive
capabilities for soil Cu concentrations in the study area, providing a basis for the formulation of
sustainable strategies for soil reclamation and environmental protection in Inner Mongolia.

Keywords: soil Cu concentration; machine learning; optimized two- and three-band spectral indices
(Opt-TBIs); hyperspectral monitoring technique; soil environmental protection

1. Introduction

The large-scale mining of copper (Cu) ore brings economic benefits. However, the
resulting massive amounts of slag and waste rock are not effectively utilized or man-
aged, ultimately accumulating into tailings ponds. Prolonged accumulation dramatically
increases Cu concentration in the surrounding soil, far exceeding its natural carrying ca-
pacity [1–3]. Excessive Cu in the soil is absorbed and accumulated by passive uptake of
plants, ultimately leading to human Cu poisoning and causing liver and kidney failure.
Specifically, high Cu concentrations induce toxicity in plants, e.g., disrupting the root struc-
ture and reducing plant growth [4]. Cu can also alter the quantity and community of soil
microorganisms, causing changes in the soil’s physicochemical properties [5]. Ultimately, it
alters soil structure and function, posing significant threats to the surrounding ecological
environment [6]. Therefore, there is an urgent need for reliable monitoring tools to rapidly
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and accurately assess the soil Cu in mining areas, providing adequate scientific evidence
for regional heavy metal Cu pollution control and sustainable soil management.

With hyperspectral remote sensing technology’s continuous advancement and de-
velopment, its application to soil organic matter, heavy metals, and other aspects has
become increasingly widespread [7]. Hyperspectral data accurately reflect soil spectral
characteristics, which is crucial in extracting spectral information and establishing models.
Hyperspectral remote sensing technology, with its high resolution, wide spectral range,
and fast analysis speed, demonstrates significant advantages in monitoring soil heavy
metal concentrations [8–10]. Compared to traditional field sampling and laboratory wet
chemical measurements, this technology can rapidly and efficiently obtain soil Cu con-
centrations over large areas [11]. However, there are numerous hyperspectral bands in
soil, and the spectral information is complex, with a considerable amount of redundant
information between spectral variables. If all spectral bands are used for modeling, the
inversion model calculation is affected by redundant information interference, reducing
the accuracy and timeliness of model predictions. Therefore, extracting two or more strong
information wavelength combinations of spectral indices is necessary to effectively reduce
irrelevant information interference, enhancing model computational efficiency and accu-
racy [12]. Previous studies have shown that spectral index formulas such as (R1 − R2) and
(R1 − R2)/sqrt(R1 + R2) have been well utilized for estimating metal concentrations in
plants and minimizing spectral shifts caused by external factors [13]. However, the sensi-
tivity to high-concentration heavy metals using only two-band spectral indices is relatively
low because two-band spectral indices become saturated with increasing metal concentra-
tions. We introduce three-band spectral indices to address this, which can somewhat reduce
spectral saturation limits [14]. Shi [15] pointed out that the three-band indices are a more
accurate estimation than the two-band indices because the three-band indices involve more
reasonable and informative bands. Many studies have also proved that the three-band
spectral indies have apparent advantages in estimating heavy metal concentration [16–18].
In recent years, the studies on the migration and transformation laws between plants
and soil heavy metals have gradually deepened, with numerous spectral index formulas
gradually being introduced into soil heavy metal band optimization. For example, Koois-
tra [19] found that (R1−R2) can reasonably estimate soil heavy metal concentration, and R2

ranges from 0.50 to 0.73. Jiang’s [20] work also confirmed that using a combined spectral
index method significantly enhances the correlation between spectral variables and soil Cu
concentrations. To further improve the reliability of spectral index extraction bands, using
fractional derivatives combined with band combination algorithms effectively mines more
soil Cu spectral information [21]. In addition, the three-band metal element index (TSMEI)
developed by Fu [22] can better monitor arsenic concentration in soil. However, due to the
complexity of soil composition, low Cu concentrations, and weak spectral information, it is
still unclear which spectral indices are the most effective for estimating soil Cu. Therefore,
combining TBIs with machine learning models is necessary to improve the accuracy of
model monitoring of heavy metals.

Applying machine learning algorithms combined with hyperspectral remote sensing
data in soil heavy metal detection has become increasingly popular. Tan [23] used the
coupling of 2151 hyperspectral bands with an RF algorithm to predict the soil heavy metal of
Cu concentration with a lower coefficient of determination. Similarly, the research findings
of Cheng [24] confirmed that the PLSR model could predict 50–70% of the heavy metal
variations in soil using full-band analysis. However, there are many hyperspectral data
channels, most of which have nothing to do with the required elements. Accordingly, most
of the uncorrelated spectral information affects the estimation performance of hyperspectral
models [25,26]. Therefore, choosing the appropriate band as the input variable is significant
for the machine learning algorithm. There are many methods for variable selection, and one
method commonly used for dimensionality reduction is the successive projection algorithm
(SPA). The SPA selects a group of valuable features containing helpful information and
the most important data of the original dataset. Wang et al. [27] used the SPA combined
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with PLSR to invert 89% of soil salinity changes in saline–alkali land. Similarly, Peng [28]
found that the SPA combined with support vector regression could explain 61% of soil
organic matter concentration variation. Currently, SPA methods are primarily used in plant
and chemical studies. There are few applications in soil heavy metal research. Another
critical method is determining how to select spectral indices. Many studies have shown that
constructing models based on spectral indices can complement information between bands.
The model’s predictive accuracy and stability can be enhanced by selecting spectral bands
with the highest correlation to soil Cu concentrations [29,30]. For example, the optimized
combination of (R1 − R2)/(R1 + R2) with PLSR can explain 85% of cadmium concentration
variations [31]. Combining the RF algorithm with spectral indices significantly enhances
the accuracy of predicting soil heavy metal Cu concentrations [32]. Using TBIs to select the
optimal bands for predicting soil Cu concentrations compensates for the limitations of using
full bands to predict soil heavy metal Cu concentrations. However, although these band
selection methods can be used for feature extraction, accurate model estimation can only be
achieved by combining the best bands as input variables. Therefore, the performance of soil
heavy metal estimation using different input variables and machine learning combinations
still warrants further investigation.

Machine learning methods show the advances in monitoring heavy metals in soil,
but the process of estimating soil heavy metal concentrations is strongly influenced by
mathematical models. Due to variations in model function formulas and data process-
ing methods, there are differences in input variables when combining different machine
learning approaches. Therefore, the main objective of this study was (1) to evaluate the
performance of spectral indicators in estimating soil Cu concentration and compare the
effects of different input variables (full-band, SPA, spectral indices) on the accuracy of soil
Cu prediction, and (2) to analyze the prediction accuracy and stability of the model and
select the appropriate model and input variables.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the location of the soil sample collection in the study area. Figure 1a is
located near an abandoned Cu tailings pond in western Inner Mongolia, China. The terrain
is high in the southwest and low in the northeast, slightly inclined from the southwest to
the northeast, and located in the Loop Plain. The average annual temperature is 3.7–7.6 ◦C,
yearly sunshine hours are 3213.7 h, annual rainfall is 136.3 mm, and maximum permafrost
depth is 1.27 m. The Cu contaminated soil in this area is predominantly saline–alkali soil,
with abundant mineral and sunlight resources within its boundaries.

The ore body in the Cu tailings pond area mainly exhibits a layered structure, with the
ore structure predominantly in the form of veins and blocks. The mineral content primarily
consists of hematite and magnetite, with small amounts of calcium carbonate and trace
amounts of aluminosilicate. Iron and manganese oxides in the soil, and carbonates and
silicates, can form Cu compounds through adsorption processes.

To validate the stability of the soil Cu concentration model constructed for the aban-
doned Cu tailings pond, the region depicted in Figure 1b was selected as the validation
area. Figure 1b is in a northern region of Inner Mongolia, near a tailings pond area. Climatic
conditions vary with elevation, with temperatures decreasing from southeast to northwest.
The average annual temperature ranges from 1–5 ◦C, with a growing season of 90–120 days.
Precipitation is relatively low and unevenly distributed temporally and spatially, with
considerable interannual variability. The average annual precipitation is around 370 mm.

The ore structure in the tailings pond area depicted in Figure 1b primarily exhibits a
layered or pseudo-layered formation with an east–west orientation. The mineral content
is predominantly composed of pyrite and silicate minerals, but a smaller proportion of
magnetite. Cu compounds mainly consist of oxides and silicate compounds.



Sustainability 2024, 16, 4153 4 of 23

Sustainability 2024, 16, 4153 4 of 23 
 

growing season of 90–120 days. Precipitation is relatively low and unevenly distributed 
temporally and spatially, with considerable interannual variability. The average annual 
precipitation is around 370 mm. 

The ore structure in the tailings pond area depicted in Figure 1b primarily exhibits a 
layered or pseudo-layered formation with an east–west orientation. The mineral content 
is predominantly composed of pyrite and silicate minerals, but a smaller proportion of 
magnetite. Cu compounds mainly consist of oxides and silicate compounds. 

 
Figure 1. Distribution of sampling sites. 

2.2. Data Collection 
2.2.1. Soil Sample Collection and Measuring 

Sampling was conducted in July 2020 around the western and northern tailings pond 
areas according to topography, wind direction, and water flow direction. The plum 
method was employed, and soil samples were collected at actual distances of 20, 50, 100, 
150, 200, and 300 m, with 647 and 232 soil samples in the western and northern tailings 
pond areas, respectively. Nine sub-samples were combined to form one sample point. The 
collected soil samples underwent natural air-drying treatment under sunlight to avoid 
interference from soil moisture and other factors [33]. After drying, the soil was sieved to 
remove plant roots and large particles of sand and gravel. A 2 mm nylon sieve was then 
selected for sieving all soil samples. Subsequently, the soil was ground using an agate 
mortar and pestle until passing through a 0.15 mm sieve. The sieved soil samples were 
uniformly divided into two parts using the quartering method, with one part used for 
laboratory chemical analysis and the other part used for spectral collection. 

The determination of soil samples primarily utilized the HF-HNO3-HCl-HClO4 four-
acid stepwise microwave digestion method. Three parallel samples were set for each soil. 
Each soil sample weighed 0.15 g and was moistened with 0.5 mL of ultra-pure water, 
followed by adding 2 mL of hydrofluoric acid (HF), and left to stand for 12 h. Then, 6 mL 
of hydrochloric acid (HCl) and 2 mL of nitric acid (HNO3) were added, and the soil 
digestion was carried out using a microwave digestion instrument. After digestion, 1 mL 
of perchloric acid (HClO4) was added, and the mixture was placed in a fume hood for acid 
evaporation. Acid evaporation was carried out for at least 3 h. When only one drop of 
liquid remained in the digestion vessel, a small amount of 2% nitric acid was added while 
still warm to rinse the walls of the vessel. After cooling, the solution was made up to 50 

Figure 1. Distribution of sampling sites.

2.2. Data Collection
2.2.1. Soil Sample Collection and Measuring

Sampling was conducted in July 2020 around the western and northern tailings pond
areas according to topography, wind direction, and water flow direction. The plum method
was employed, and soil samples were collected at actual distances of 20, 50, 100, 150, 200,
and 300 m, with 647 and 232 soil samples in the western and northern tailings pond areas,
respectively. Nine sub-samples were combined to form one sample point. The collected soil
samples underwent natural air-drying treatment under sunlight to avoid interference from
soil moisture and other factors [33]. After drying, the soil was sieved to remove plant roots
and large particles of sand and gravel. A 2 mm nylon sieve was then selected for sieving
all soil samples. Subsequently, the soil was ground using an agate mortar and pestle until
passing through a 0.15 mm sieve. The sieved soil samples were uniformly divided into two
parts using the quartering method, with one part used for laboratory chemical analysis and
the other part used for spectral collection.

The determination of soil samples primarily utilized the HF-HNO3-HCl-HClO4 four-
acid stepwise microwave digestion method. Three parallel samples were set for each soil.
Each soil sample weighed 0.15 g and was moistened with 0.5 mL of ultra-pure water,
followed by adding 2 mL of hydrofluoric acid (HF), and left to stand for 12 h. Then,
6 mL of hydrochloric acid (HCl) and 2 mL of nitric acid (HNO3) were added, and the soil
digestion was carried out using a microwave digestion instrument. After digestion, 1 mL
of perchloric acid (HClO4) was added, and the mixture was placed in a fume hood for acid
evaporation. Acid evaporation was carried out for at least 3 h. When only one drop of
liquid remained in the digestion vessel, a small amount of 2% nitric acid was added while
still warm to rinse the walls of the vessel. After cooling, the solution was made up to 50 mL
in a volumetric flask, filtered through a 0.22 µm filter, and then was ready for analysis. The
concentration of Cu was carried out using inductively coupled plasma–mass spectrometry
(ICP-MS), with the accuracy and precision of the sample analysis method controlled by the
National First-Level Soil Standard Substance (GSS-18).

The ICP-MS instrument model ICAP RQ (Thermo Fisher Scientific Inc., Waltham,
MA, USA) was used for soil sample analysis. Before measuring the samples, standard
curves of soil Cu were prepared at concentrations of 0, 20, 50, 100, and 300 µg/L. After the
instrument was started for 30 min, the standard series was then sequentially introduced into
the nebulizer, from low to high concentrations, for analysis, with the Cu mass concentration
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as the abscissa and the ratio of corresponding response values to internal standard values
as the ordinate to establish the standard curve. Before measuring each sample, the system
was rinsed with a 2% nitric acid solution until the signal decreased to the lowest level, and
sample measurement began after the analysis signal stabilized. Laboratory blanks and
national standards were prioritized for measurement before each sample was measured
sequentially. The Cu concentration (ω1, mg/kg) was calculated according to Formula (1).

ω1 =
(ρ− ρ0)×V × f

m×Wdm
10−3 (1)

where ω1 is the Cu concentration in soil samples; ρ is the corresponding Cu concentration
in the sample calculated from the standard curve; ρ0 is the corresponding Cu element
concentration in the blank sample; v is the final volume of the digested sample; f is the
dilution factor of the sample; m is the mass of the sieved soil sample taken; Wdm is the
content of sample dry matter.

2.2.2. Spectral Acquisition and Processing

In this study, soil spectral measurements were conducted in a completely dark lab-
oratory to avoid interference from external light sources. Each soil sample was taken
from an area of 20 cm2 and placed in a specialized square container (with dimensions of
20 cm2, non-reflective). A PSR+ ultra-portable full-band geophysical spectrometer (Spectral
Evolution) covering a 350–2500 nm spectral wavelength was used. The measurement was
performed using the instrument’s own 100 W halogen lamp as the only light source. A
fiber-optic probe was used to keep the probe perpendicular to the sample, with the lower
end positioned 20 cm away from the sample. The angle and distance between the light
source and the sample were set at 45◦ and 35 cm, respectively. A standardized white panel
was used for calibration before the first scan to provide accurate measurements, and each
sample was averaged after 10 repeated measurements. We randomly divided 647 soil
spectral data into calibration and validation datasets. The calibration points comprised 90%
(70% calibration and 20% validation) of the entire dataset, while the independent validation
points were represented by the remaining 10% (Figure 1). The 232 soil data points from the
tailings pond area depicted in Figure 1b were utilized to validate the model’s performance
in estimating soil Cu concentrations in different mining areas.

2.3. Methods
2.3.1. Successive Projections Algorithm (SPA)

The SPA can find the band containing the most information from the spectral infor-
mation to reduce the collinearity between band information. The SPA can extract the
maximum information bands from spectral data, reducing band collinearity. By projecting
wavelengths onto others and comparing the magnitude of projection vectors, the wave-
length with the maximum RMSE value is selected as the final feature wavelength. The
SPA generally selects wavelength variable combinations with the most minor redundant
information or minimum collinearity, effectively improving model computational efficiency
and accuracy. Therefore, the SPA can reduce the original spectral information and solve the
collinearity problem well.

In this study, feature band extraction was performed using the SPA (Figure 2), and
the SPA was used to screen feature wavelengths for the original spectrum (Figure 2a).
With the increase in the number of screening variables, the RMSE first decreased rapidly,
and when the number of variables was 8, the RMSE tended to a stable state. Its value
was 162.45 mg/kg (Figure 2b). Eight characteristic wavelengths were obtained by SPA
operation, from only 0.03% of the whole band, which drastically reduced many redundant
information variables in the spectral information.
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2.3.2. Hyperspectral Indices

The application of spectral indices can reduce the sensitivity of irrelevant spectral
bands to soil Cu elements, thereby mitigating redundancy in hyperspectral bands [34–39].
To investigate the impact of different types of spectral index formulas on the estimation
of soil Cu concentration, this study selected 12 representative two-band and three-band
spectral index (TBI) formulas (Table 1) and studied the wavelengths (R1, R2, and R3) of
TBIs within the range of 350–2500 nm. Utilizing TBI formulas, the optimal soil Cu bands
were selected to construct optimized spectral indices (Opt-TBIs) for identifying soil Cu-
sensitive bands. Opt-TBIs can improve the accuracy of soil Cu estimation to some extent
by identifying the optimal combinations of sensitive bands. The process of extracting
characteristic wavelengths of soil Cu involved combining Cu concentrations with each
index formula, selecting the set of all band combinations with the most minor error between
the calibration set and the validation set, and constructing spectral indices for the new band
combination. The R2 value consistently increased for each index formula, always retaining
the top 1% of band combinations. The contour and slice correlation maps visualize the
optimal wave combinations and sensitive spectral response regions. We used MATLAB
2021b to develop 2D and 3D correlation potentials of Opt-TBIs and Cu concentrations
in soil.

Table 1. List of the hyperspectral indices used in this study.

Two-Band Optimized Spectral Indices Three-Band Spectral Indices
Spectral Indices Formulas Spectral Indices Formulas Spectral Indices Formulas

TBI1
(R1, R2) (R1 − R2)/(R1 + R2). TBI5

(R1, R2, R3) (R1 − R2)/(R1 − R3) TBI9
(R1, R2, R3)

(R1 − R2)/ (R1 + R2
− 2 × R3)

TBI2
(R1, R2) R1 − R2

TBI6
(R1, R2, R3) R1/(R2 × R3) TBI10

(R1, R2, R3) (R1 − R2)/(R2 − R3)

TBI3
(R1, R2) (R1 − R2)/sqrt (R1 + R2) TBI7

(R1, R2, R3) (R1 − R2)/R3
TBI11

(R1, R2, R3) (R1/(R2 + R3)

TBI4
(R1, R2) (R1 + R2)/R2

TBI8
(R1, R2, R3) (R1 − R2)/(R3 − R2) TBI12

(R1, R2, R3) (R1 + R2)/R3

2.3.3. Machine Learning Algorithms
Partial Least Squares Regression (PLSR)

Machine learning algorithms are fundamental in hyperspectral analysis of soil heavy
metal concentrations, especially in improving the performance of specific algorithms
through empirical learning. The partial least squares regression (PLSR) model operates
by detecting linear combinations of explanatory variables (controlled variables) to run
processes or systems. The purpose of PLSR is to minimize the number of residual matrices in
the response variable, while maintaining the correlation between the explanatory variables
and the response variable through internal relationships unaffected by harmful collinearity



Sustainability 2024, 16, 4153 7 of 23

in the explanatory variables [40]. In this study, the independent variable matrix is X and
the dependent variable matrix is Y. The matrices of the standardized independent and
dependent variables are represented as E and F, respectively. The regression variances of
the first principal components t1 and u1 of the independent and dependent variables are
solved, and the residual matrices E1 and F1 are computed. E1 and F1 are then used to
replace E and F, forming new independent and dependent variables. The first principal
components t2 and u2 of the new independent and dependent variables are solved and set
as the second principal components of the original independent and dependent variables.
New independent variables E1 and dependent variables F2, along with the regression
equation of the second principal components t2 and u2, are established. These steps are
repeated until all principal components are obtained. Cross-validation is performed to
determine the number of principal components that meet the conditions, and a regression
model is established. The procedures above were carried out for regression calculations of
the model in a Python 3.10 environment, utilizing the “PLSR egression” function from the
“sklearn” package for relevant operations of the PLSR model.

Support Vector Regression (SVR)

SVR is widely used as a model in classification and regression analysis, and is defined
as a linear classifier with the most considerable interval in the feature space. The advantage
of SVR is its good intrinsic generalization ability to handle high-dimensional input spaces.
As a small-sample learning method, it simplifies the usual classification and regression
problems. The SVR model selected in this study uses the kernel function from the “support
vector regression” function in the “sklearn” package, implemented for model calibration
and validation in a Python 3.10 environment. The specific process is shown in Figure 3.
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Artificial Neural Networks (ANNs)

An ANN is a parallel information processing method consisting of many neurons
(processing units) interconnected to form a complex network for expressing the complex
number of uses between inputs and outputs in experimental data [41]. The multi-layer per-
ceptron (MLP) is considered the most effective type of neural network, typically comprising
a basic architecture of three layers. The trained data samples were fed through neurons
into the input layer, the leftmost layer of the neural network. All nodes between the input
and output layers constituted a hidden layer, which aided the neural network in learning
the complex relationships between data, effectively serving as a layer for data processing.
The neural network’s final layer, derived from the first two layers, was the output layer,
producing the final results. The number of neurons and hidden layers was determined
by the complexity of the experimental data, utilizing known non-constant parameters
to induce output variations, thereby handling many nonlinear data types. The model’s
inherent ability to provide nonlinear mappings between inputs and outputs is particularly
beneficial for processing a significant amount of fuzzy or random data. The ANN algorithm
in this study was implemented in a Python 3.10 environment, with functions used in the
model added from the “standard scaler” function in the “sklearn” package.

Random Forest Regression Algorithm (RF)

The RF algorithm is one of the typical ensemble learning algorithms composed of
decision trees [42]. The basic principle of the RF model consists of three main steps: random
sampling, random selection of features, and majority voting. In the RF model, a subset
was randomly selected from the calibration dataset, along with a random selection of
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some feature attributes. A decision tree model was then built using this subset and feature
attributes. This process was repeated until the specified number of decision trees was
established, which was then integrated into a random forest to obtain the final output result
by averaging the predicted results. Compared to bagging, decision trees are randomly gen-
erated from a fixed-size subset of all attributes in RF, thereby reducing computational costs.
RF has the advantage of high parallelization, significantly improving calibration speed on
large data samples. Due to random sampling, the model exhibits strong generalization, low
variance, high prediction accuracy, and good fitting. The RF algorithm in this study was
implemented in a Python 3.10 environment, with the “Random Forest Regression” function
from the “sklearn” package used during the computation process. The specific process is
shown in Figure 4.
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2.3.4. Variable Importance Score

The relative importance of the target variable predicted by the RF model was eval-
uated through the relative depth of feature use. This was undertaken by assessing the
contribution of each feature in the RF model across each tree, averaging these contributions,
and comparing their magnitudes. The magnitude of contribution was typically based
on the out-of-bag (OOB) error rate. Utilizing importance scores effectively assesses the
contribution of each feature variable to the RF model, thereby reducing the complexity of
model computation. The calculation formula for importance assessment is as follows:

Importance score (x) = ∑n
i=1

errOOB2 −−errOOB1
n

(2)

where n represents the number of decision trees, and errOOB1 and errOOB2 represent the
error of the variable X in adding noise to a decision tree and the out-of-bag error.

2.3.5. Model Accuracy

Two methods, cross-validation and independent validation, were employed to validate
the accuracy of the model. K-fold cross-validation involves dividing the original data into
K subsets, using each subset once as a validation set, while the remaining K − 1 subsets are
used as calibration sets. This ensures that each input variable is thoroughly analyzed and
compared. In practical work, K must be sufficiently large to ensure an adequate number
of calibration samples for each round. In this study, K was set to 10, which provided
enough samples for cross-validation. The soil Cu regression model was validated using
an independent validation dataset (Figure 1). Both validation methods were implemented
in the Python 3.10 environment. These methods utilized the “Random Forest Regression”
function from the “sklearn” package for calculation.

The performance of different spectral indices and models was evaluated by comparing
the correlation coefficient (r), coefficient of determination (R2), performance to deviation
(RPD), relative error (RE, %), and standard error (RMSE). The closer R2 and r values are to
1, the higher the RPD value, and the lower the RE and RMSE values, the better the accuracy
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and precision of the model. The formulas for calculating the above model evaluation
parameters are as follows:

R2 = ∑n
i=1(yi − yi)

2/∑n
i=1

(
yi −

^
yi

)2
(3)

RMSE =

√
1
n∑n

i=1

(
yi −

^
yi

)2
(4)

RPD =
SD

RMSE
(5)

RE =
RMSE

yi
×100 (6)

The meanings of all the letters in the formula above are as follows: n: number of
samples; ŷi: measured values of Cu concentration; yi: predicted value of Cu concentration;
yi: average value of Cu concentration.

3. Results
3.1. Variation in Cu Concentration and Spectral Reflectance

The descriptive statistics of soil Cu concentrations obtained from laboratory measure-
ments are depicted in Figure 5. Figure 5a illustrates that the Cu concentrations in soil
samples from the Cu tailings area mainly ranged from 5 to 1603 mg/kg. Among all the
soil samples obtained, 42% exhibited Cu concentrations exceeding the national pollution
threshold in China [43]. A total of 72% of the samples surpassed the pollution background
level [44]. In Figure 5b, it is shown that the Cu concentrations in the independent tailings
area primarily fell within the range of 18–621 mg/kg. In this region, 16% of the soil samples
exceeded the national pollution threshold in China. These results indicate a concentration
of Cu elements within the study area.
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Figure 5. Descriptive statistics of heavy metal concentrations include (a) Cu tailings mining area and
(b) independent verification of the tailings area.

The original reflectance of soil Cu is shown in Figure 6. In the average scope, the
standard deviation range is a partially transparent color. The spectral reflectance is nega-
tively correlated with Cu concentration, with lower reflectance corresponding to higher Cu
concentrations. Soil spectral calibration data and validation data are closely matched. A
more comprehensive range of calibration datasets means enough generalization to ensure
the model is universally applicable.
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Figure 6. Spectral data of soil samples: (a) Cu field spectra and (b) independent tailings field spectra.

3.2. Relationship of Soil Cu Concentration against Spectral Indices

Figure 7 displays the optimized two-band contour map, while Figure 8 shows the
three-dimensional slice plot of the optimized three-band spectral indices. Based on the
highlighted spectral regions in Figures 7 and 8, the highest R2 relationship between the
optimal Opt-TBIs and Cu concentration is determined. Figure 9 shows the influence of
Opt-TBIs on soil Cu concentration ranges from 41% to 59%. The near-infrared band (DIR,
750–1050 nm) is the primary sensitive band for the optimized two-band spectral indices in
estimating soil Cu (Figure 10b). For the optimized three-band spectral indices, the sensitive
bands are primarily located in the near-infrared (NIR, 750–1150 nm) region, with a small
portion in the red edge (RE, 690–750 nm) region (Figure 10c).

The linear regression between the best-performing Opt-TBIs and Cu concentration is
illustrated in Figures 11 and 12. The optimization algorithm for these bands significantly
improves their sensitivity. Opt-TBI9 (R1000 − R550)/(R1000 + R550 − 2 × R1125) and Opt-
TBI12 (R1150 + R700)/R975 exhibit the best performance among the spectral indices, with an
R2 of 0.59. Among all optimized spectral indices, the estimation capability of three-band
spectral indices is higher than that of two-band spectral indices.
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Figure 9. The optimal band and the relationship between the optimized spectral indices and soil
Cu concentration.
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Figure 10. SPA and Opt-TBIs extract sensitive wavelength position (a), and two-band Opt-TBI (b) and
three-band Opt-TBI sensitive band frequencies (c). Opt-TBIs (Ultraviolet radiation (UV): 340–400 nm;
blue light (B): 450–520 nm, green light (G): 520–600 nm, red light range (R): 600–690 nm, red edge
radiation (RE): 690–750 nm, near-infrared radiation range (NIR): 750–1150 nm).
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Figure 11. Correlation coefficients between two-band Opt-TBI1 (a), Opt-TBI2 (b), Opt-TBI3 (c), and
Opt-TBI4 (d) based on soil spectral data and Cu concentration.
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Figure 12. Correlation coefficients between TBI-band Opt-TBI5 (a), Opt-TBI6 (b), Opt-TBI7 (c), Opt-
TBI8 (d) Opt-TBI9 (e), Opt-TBI10 (f), Opt-TB11 (g), and Opt-TBI12 (h) based on soil spectral data and
Cu concentration.

3.3. Estimation of Cu Concentration Using a Machine Learning Model

Cu estimation performance analysis based on the machine learning model was per-
formed on calibration datasets with different spectral input variables (Figure 13). The
results show that the accuracy of the Cu concentration inversion model based on the
original spectrum is about 0.5–0.9. With SPA optimization, the number of input variables
can be significantly reduced, and the model’s accuracy can be maintained. Compared
with the original spectrum and the SPA, using the Opt-TBIs as the model input variable
significantly improves the prediction ability of soil Cu in different calibration datasets,
and the model inversion accuracy ranged from 0.67 to 0.95. The RF algorithm has the
best prediction performance among the four models, followed by ANN and SVR. The best
model for estimating soil Cu was Opt-TBIs-RF, with an R2 of 0.95, RPD of 2.58, and RMSE
of 61.68 mg/kg.
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Figure 13. Cu concentration calibration set predictions using four models: full-band (a,d,g,j), charac-
teristic band (b,e,h,k), and Opt-TBIs (c,f,i,l).

To better assess the performance of machine learning models in predicting soil Cu
concentrations by combining different input variables, the accuracy of the established
models was validated using a validation dataset (Figure 14). The results showed that the
Opt-TBI combination with RF demonstrates the highest performance in predicting soil Cu
concentrations, with an RPD of 2.31 and R2 of 0.92. Compared to Opt-TBIs, raw spectra
and the SPA exhibit poorer performance across different models, especially when the raw
spectra are affected by redundant information.
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3.4. Optimizing the Opt-TBIs-RF Model for Estimating Cu Concentration

To reduce the number of model input variables and obtain the most effective estimation
model using fewer soil Cu characteristic bands, this study utilized the importance score
of predictor variables predicted by the RF model to select the best input variables for the
prediction model (Figure 15). Further analysis was conducted to examine the ranking
of Opt-TBIs’ contribution in the optimal RF model. The results revealed variations in
the importance scores of the 12 Opt-TBIs (Figure 16). Opt-TBIs based on three bands
have a relatively high importance score compared with those based on two bands, and,
according to the ranking of model importance, Opt-TBI10, Opt-TBI3, Opt-TBI11, and Opt-
TBI2 contributed the most to the RF model (Figure 16). The best Cu inversion model
can be obtained using only the top four optimized spectral indices as input variables
combined with the RF algorithm (Figure 17). Compared to establishing an RF model with
12 Opt-TBIs, incorporating indices with higher importance scores into the model improved
computational efficiency and reduced the risk of overfitting. Utilizing the importance
ranking of Opt-TBIs reduced the model’s input variables by 33% and enhanced the stability
of predicting soil Cu concentration.
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Figure 17. The number of spectra in the validation and calibration datasets was optimized based on
the importance ranking of the Opt-TBIs and the RF model combination, and the performance of the
model was stable when the first four Opt-TBIs were utilized.
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The model dataset was cross- and independently validated to determine whether the
modeling combination has a stable forecasting ability. The results in Figure 18 show that
the R2 and RMSE of the validation set of the model established by cross-validation are
0.92 and 74.78 mg/kg, respectively. Cross-validation fully uses limited datasets to better
evaluate the model’s performance under different data distributions. In contrast, the results
of the independent validation model were also acceptable (R2 = 0.91, RMSE = 77.21 mg/kg).
The R2 values of the validation methods were above 0.90, and the RPD values were above
2.0, indicating that the model had good stability for estimating soil Cu concentration.
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Figure 18. The accuracy of the Opt-TBIs-RF model was verified using independent and cross-datasets.

Using independent soil data from the tailings pond area as the model validation
set, the Opt-TBIs-RF model’s ability to predict soil Cu concentrations was verified for its
generalization and accuracy. The results shown in Figure 19 indicate that the Opt-TBIs-RF
model established using data from the independent tailings pond area can explain 72% of
the variation in Cu concentrations in the soil. The model’s RPD is 1.90, and the RMSE is
62.68 mg/kg. The estimation model constructed by Opt-TBIs-RF demonstrates an excellent
linear relationship with the independent tailings pond area data, with the fitted data mainly
distributed around the 1:1 line, indicating minimal deviation of the model.
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Figure 19. Verifies the generalization ability of the Opt-TBIs-RF model using an independent dataset
from the tailings pond area.

4. Discussion
4.1. Comparison of Sensitive Wavebands

Extracting sensitive spectral bands from numerous soil spectra is crucial for improving
the accuracy of predicting Cu concentration. Two feature selection methods, the SPA and
Opt-TBIs, were employed to compare the extracted sensitive bands for soil Cu within
the entire spectral range. The selected positions using the SPA and Opt-TBIs across the
spectrum are illustrated in Figure 10a. It can be observed that some feature wavelengths
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selected through the two different methods were partially similar (e.g., 794 nm and 968 nm
selected by the SPA, and 968 nm selected by Opt-TBIs). However, the SPA tends to select
bands more concentrated in the near-infrared range, specifically around 1899–2211 nm.
There are trace amounts of Cu pollutants formed by aluminosilicate minerals in the studied
area. Previous studies have shown that the wavelength of Al-OH minerals mainly falls
within the range of 1800–2200 nm [45]. However, since Cu compounds in this mining area
are primarily distributed near oxides, the sensitive bands selected by SPA may have lower
Cu information wavelengths to some extent. In contrast, Opt-TBIs select feature wave-
lengths with a stronger representativeness and specificity for soil Cu concentration. The
soil Cu-sensitive bands identified by Opt-TBIs are predominantly located in the red edge
(RE, 690–750 nm) and near-infrared (NIR, 750–1150 nm) regions, as depicted in Figure 10b,c.
Since the mineral content in the mining area is mostly composed of hematite and magnetite,
many pollution compounds will be formed with soil Cu. Previous studies have shown
that wavelengths near 750 nm are related to iron and manganese oxides in the soil, where
the active sites on the surfaces of iron and manganese oxides adsorb ions [46,47]. These
active sites can further adsorb free Cu ions, highlighting more information about Cu in the
soil [48,49]. In the sensitive bands extracted in this study, the near-infrared spectral range
of 950–1150 nm contains more soil Cu-related information. This deviates from the conven-
tional notion that the high-information zone for soil Cu is around 1200 nm in the organic
matter spectral region [50–52]. This deviation may be due to the higher content of mineral
elements in the soil of the mining area than the organic matter content. In soils containing
a large amount of magnetite, metal ions are more likely to form complexes with OH- ions
in magnetite [53]. Moreover, with increased Cu ion concentration, molecular groups in
the near-infrared region (950–1150 nm) are more likely to form additional coordination
compounds with Cu ions. Consequently, when Cu ions accumulate in the 950–1150 nm
region, the extracted sensitive bands respond more to soil Cu concentration. Considering
the spectral characteristics of soil Cu, this study accurately and precisely extracted bands
containing high soil Cu information across the hyperspectral range (RE, 690–750 nm and
NIR, 750–1150 nm). Future research can further optimize the sensitive bands for soil Cu by
combining more characteristics of soil components.

4.2. Effects of Input Variables on Machine Learning Model Performance

Four widely used machine learning algorithms with different input variables were
investigated to estimate the soil Cu concentration in the current study. Using soil Cu
hyperspectral reflectance data, we compared the impact of different input variables on
model performance (full-band, SPA, and Opt-TBI). The type and quantity of input variables
significantly influenced the accuracy of machine learning models in estimating soil Cu
concentration. The R2 for the relationships between the full bands and Cu concentration
in the four models in the validation and calibration dataset was relatively poor due to
the influence of a large amount of redundant band information. The SPA can effectively
eliminate the insensitive wavelength, reducing the model’s complexity and calculation
dimension. Similarly, Jia et al. [54] also confirmed that the PLSR model based on the
effective wavelength of the SPA was significantly better in predicting soil nitrogen content
than the PLSR model based on the whole band. Compared with the SPA, the Opt-TBI
method is more agile and robust in deriving soil Cu concentration. A distinct aspect of
this study is that Opt-TBIs are constructed by recombining soil Cu full spectrum bands
rather than utilizing original formula bands. Results from Nawar et al. suggest that the
SPA cannot accurately separate Cu spectral signals due to the highly overlapping nature
of soil spectral information [55]. In contrast, Opt-TBIs, through a flexible combination
of the full spectrum, better address the spectral overlap effect in soil, enhancing sensitiv-
ity to Cu concentration [56]. Compared to raw spectral indices, spectral indices exhibit
improved predictive performance for soil Cu concentration by allocating more optimal
band combinations. Opt-TBIs capture subtle spectral features of Cu concentration in soil,
providing crucial input features for machine learning models. Integrating machine learning
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algorithms with sensitive bands extracted by Opt-TBIs reduces interference from irrelevant
information and enhances the accuracy of soil Cu prediction [57,58]. Hence, machine
learning algorithms based on Opt-TBIs represent a promising approach for predicting soil
Cu concentration. Reducing input variables through Opt-TBIs requires fewer soil spectral
features to accurately estimate soil Cu concentration. This effectively reduces the cost of
monitoring soil Cu pollution, promoting more sustainable land management practices. In
the future, rapid identification of regions with higher soil Cu concentrations can enable
targeted development and implementation of soil conservation strategies to mitigate the
impact of soil pollution on the environment and human health.

4.3. The Evaluation of Models

Before applying the model in practical applications, it is essential to validate its
performance in inversely estimating soil Cu concentrations. In this study, to better assess
the model’s accuracy, we employed a cross-validation method to verify the Opt-TBIs-RF
model on different subsets of soil Cu data. The model demonstrated excellent explanatory
power on the cross-validation dataset, explaining 92% of the Cu concentration variations
in the soil. However, previous studies have observed that cross-validation often utilizes
internal data used in model development, resulting in deterministic model estimation
outcomes [59,60]. To better mitigate this limitation, we introduced independent data
from the surrounding study area for a second evaluation of the model’s accuracy. Even
under the 10% independent data validation scenario, the Opt-TBIs-RF model still achieved
satisfactory estimation accuracy. However, validation using data from a single region
alone cannot demonstrate the superior generalization ability of the model. In this study,
independent soil Cu concentration data from tailings pond areas were obtained as the
validation set to assess the adaptability of the Opt-TBI model to different datasets in diverse
soil environments. The results demonstrated that the Opt-TBIs-RF model successfully
predicted Cu concentrations in the independent tailings pond area soil data, showcasing the
model’s high generalization ability and feasibility. These research findings strongly attest
that, when faced with appropriately expanded datasets, the Opt-TBIs-RF model exhibits
robust adaptability, ensuring accurate and stable estimation of soil Cu concentrations.

To further validate the impact of sample concentration variability on model stability,
soil Cu was categorized into three concentration gradients, and the RE values of the Opt-
TBIs-RF model were compared at different Cu concentrations (Figures 20 and 21). It is well
known that the maximum concentration in the calibration dataset will reduce the accuracy
of the model’s inversion of the target data [61]. However, in this study, the Opt-TBIs-RF
model demonstrated stable estimation accuracy at the highest (400–1600 mg/kg) and lowest
(0–100 mg/kg) concentrations of soil Cu. Remarkably, the Opt-TBIs-RF model maintained
a robust linear relationship between predicted and laboratory-measured values when
predicting concentrations of 100–400 mg/kg (Figure 20). This outcome effectively validates
that using a calibration dataset spanning a wide range of spectral variations reduces the
interference of sample concentration differences on the Opt-TBIs-RF model’s estimation
performance, thereby enhancing the model’s predictive capability. Therefore, the Opt-TBIs-
RF model emerges as a potentially reliable method for estimating soil Cu concentrations.

The soil Cu contamination can be rapidly and cost-effectively assessed through the
Opt-TBIs-RF model, and targeted soil remediation and improvement measures can be
implemented. For example, when elevated Cu levels are detected in soil, phytoremediation
methods can be employed to reduce heavy metals accumulation. Additionally, early adop-
tion of effective remediation measures can mitigate the soil Cu pollution to groundwater
and surface water. Furthermore, monitoring and improving soil Cu concentrations can
promote sustainable agricultural development, strengthen the quality of crop products,
and foster ecological balance. The model will also be applied to monitor different soil
environmental pollutants to further expand its practical value.
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5. Conclusions

In this study, soil Cu bands were optimized using full bands, the SPA, and Opt-TBIs,
and thus, a quantitative relationship model for soil Cu concentration using the optimized
spectral bands was established. The sensitive bands extracted by the SPA and Opt-TBI
methods are closely associated with the characteristic bands of soil Cu concentration.
Compared to spectral data extracted using full-band and SPA methods, the sensitive bands
selected by Opt-TBIs effectively enhanced the estimation accuracy of the machine learning
model. Utilizing Opt-TBIs combined with the RF model demonstrated the robustness in
estimating soil Cu concentration. There were significant differences in the contribution of
12 optimized spectral indices to the RF model for assessing soil Cu concentration. Using
the top four Opt-TBIs with the highest model importance as input variables, the RF model
exhibited good stability and consistency across different mining area datasets and other Cu
concentration distributions. In this study, the Opt-TBI algorithm showed higher predictive
accuracy for soil Cu concentration in the research area. The predictive model based on
Opt-TBIs can serve as a reference method for guiding the monitoring of soil Cu pollution
in mining areas, with broad application prospects.
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