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Abstract
Structural health monitoring is an important field in civil engineering with increasing

importance. On the one hand, this is due to high demands on the stability of structures,
especially infrastructure, and on the other hand the aging of existing infrastructure in
combination with ever-increasing loads. With ongoing digitalization in the construction
industry, this thesis starts at the numerical level to make an important contribution
by further developing model-based methods in structural health monitoring of large
structures.

The thesis focuses on damage detection using coda waves that are a special type of
ultrasound. The method is particularly suitable for use in concrete and benefits from
the multiple scattering of the ultrasound in the medium, as this allows a significantly
larger area to be monitored with very high sensitivity. The thesis also deals with a
second method, computational model updating, whose mathematical principles are
almost identical but whose applicability is much more general concerning measurement
data, building materials, etc. Both methods allow damage to be localized and, in
some cases, even classified by solving an inverse problem. They represent an essential
interface between real buildings and digital models. Such models, which compare with
the actual state using measurements, are called digital twins.

Damage localization with coda waves is being further developed in various aspects
in this thesis. To enable more flexibility in boundary conditions and geometries than
the analytical solutions typically used to date, the finite element method is derived
and used for the required wave propagation simulations. In addition, it is shown in a
laboratory test that damage localization can also be carried out at lower frequencies
than those previously used in the literature. This extension of the frequency spectrum is
an important contribution to applying the technology in large structures, as the signals
can be transmitted further. Other developments in the thesis contribute to improved
robustness and damage classification with coda waves. In particular, successful damage
localization based on the evaluated phase shift in the signal is a promising novelty.
The developments are being tested with a multi-stage experiment. All parameters are
calibrated in a purely numerical experiment to subsequently test the settings found in
a laboratory test. The damage localization based on FE simulations was successfully
validated with comparatively low frequencies by reliably detecting and, for the most part,
localizing occurring cracks. The evaluation at various load levels also underlines the
immense sensitivity of coda waves to multiple influences. In addition to the laboratory
test, the damage localization is also tested in a real, large structure, the Gänstorbrücke.
Possible damage locations were localized in a load test.

With the computational model updating, a second model-based evaluation method
of measurement data is derived and applied in the thesis. However, the method is
significantly more universal and allows identified changes to be classified. As with
the coda waves, the application-oriented investigations are carried out on a purely
numerical experiment whose results are then applied in a real experiment. In summary,
the developments of both methods and validation through real experiments make an
important contribution to the ambitious goals of digital twins presented in this thesis.





Zusammenfassung
Die Zustandsüberwachung von Bauwerken ist ein wichtiger Bereich im Bauwesen, der

zunehmend an Bedeutung gewinnt. Dies liegt zum einen an den hohen Anforderungen
an die Standsicherheit von Bauwerken, insbesondere Infrastrukturbauten, sowie an
der Alterung bestehender Bauwerke in Kombination mit immer größer werdenden
Belastungen. Mit der fortschreitenden Digitalisierung im Bauwesen setzt diese Arbeit
auf numerischer Ebene an, um durch die Weiterentwicklung modellbasierter Methoden
in der Strukturüberwachung großer Bauwerke einen wichtigen Beitrag zu leisten.

Die Arbeit konzentriert sich dabei auf Schadenserkennung mit Hilfe von Ultraschall,
in Form von Coda-Wellen. Das Verfahren ist speziell für die Anwendung in Beton
geeignet und profitiert von der Mehrfachstreuung des Ultraschalls im Medium, da
dadurch ein großer Bereich mit sehr hoher Empfindlichkeit überwacht werden kann. Die
Arbeit befasst sich auch mit einer zweiten Methode, der rechnerischen Modellanpassung,
deren mathematische Grundlagen nahezu identisch sind, aber dessen Anwendbarkeit viel
allgemeiner in Bezug auf Messgrößen, Baumaterialien etc. ist. Beide Methoden erlauben
es durch Lösen eines inversen Problems Schäden zu lokalisieren und teilweise sogar zu
klassifizieren. Sie stellen eine bedeutende Schnittstelle zwischen realen Bauwerken und
digitalen Modellen dar. Derartige Modelle, die über Messgrößen einen Abgleich mit
dem realen Ist-Zustand durchführen, werden als digitale Zwillinge bezeichnet.

Die Schadenslokalisierung mit Coda-Wellen wird in dieser Arbeit in verschiedenen
Aspekten weiterentwickelt. Zum einen wird für die Wellenausbreitungssimulation die
Finite-Elemente-Methode hergeleitet und eingesetzt, da sie deutlich mehr Flexibilität
bei Randbedingungen und Geometrien bietet als die bisher typischerweise verwendeten
analytischen Lösungen. Darüber hinaus wird in einem Laborversuch gezeigt, dass die
Schadenslokalisierung auch mit niedrigeren Frequenzen als den bisher in der Literatur
verwendeten, durchgeführt werden kann. Diese Erweiterung des Frequenzspektrums
ist ein wichtiger Beitrag zur Anwendung der Technologie in großen Strukturen, da
Signale so über größere Distanzen übertragen werden können. Weitere Entwicklungen
der Arbeit tragen zu einer verbesserten Robustheit und Schadensklassifizierung mit
Coda-Wellen bei. Insbesondere die erfolgreiche Schadenslokalisierung auf Basis der
ausgewerteten Phasenverschiebung im Signal ist eine vielversprechende Neuheit. Die
Entwicklungen werden in einem mehrstufigen Experiment getestet. In einem rein nume-
rischen Experiment werden alle Parameter kalibriert, um anschließend die gefundenen
Einstellungen in einem Laborversuch zu testen. Die Schadenslokalisierung auf Basis
von FE-Simulationen konnte mit den vergleichsweise niedrigen Frequenzen erfolgreich
validiert werden, indem auftretende Risse zuverlässig erkannt und größtenteils lokalisiert
wurden. Die Auswertung zu verschiedenen Belastungsstufen unterstreicht zudem die
hohe Empfindlichkeit von Coda-Wellen gegenüber verschiedener Einflüsse. Zusätzlich
zum Labortest wird die Schadenslokalisierung auch an einem realen, großen Bauwerk,
der Gänstorbrücke, getestet. Mögliche Schadensstellen wurden in einem Belastungstest
lokalisiert.

Mit der rechnerischen Modellanpassung wird eine zweite modellbasierte Auswer-
tungsmethode von Messdaten hergeleitet und angewendet. Die Methode ist jedoch
deutlich universeller und erlaubt eine Klassifizierung der identifizierten Veränderun-
gen. Wie bei den Coda-Wellen werden die anwendungsorientierten Untersuchungen
an einem rein numerischen Test durchgeführt, dessen Ergebnisse dann in einem realen
Test angewendet werden. Zusammengefasst wird so durch Weiterentwicklung beider
Methoden und Validierung durch reale Versuche ein wichtiger Beitrag zu den in der
Arbeit vorgestellten ambitionierten Zielen von digitalen Zwillingen geleistet.
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Chapter 1

Introduction

1.1 Motivation

A civil engineer’s job is to guarantee the safety of buildings and infrastructure
throughout the structure’s lifespan. In particular, a functioning and safe
infrastructure plays a decisive role in a strong economy. Bridges are of
enormous importance within the infrastructure and, simultaneously, one of
the most sensitive parts. During their lifespan, structures change, damages
can occur, and even today’s loads are usually higher than the standards of
years ago. For critical infrastructure such as bridges, it is thus essential to
monitor structures’ actual state to guarantee society’s safety. In Germany,
the need is also underlined by the advanced age of the infrastructure, as an
approximate third of all bridges are already older than 50 years [1], which
is old when considering the expected lifespan is between 50 and 100 years.
Another motivation for preserving built infrastructure is minimizing new
construction to reduce the use of raw materials and greenhouse gas emissions.

Germany has a well-established monitoring concept defined by the national
code DIN 1076 [2]. It stipulates that bridges must be controlled every six
years with an external, close-up visual inspection. However, this proven
concept is very labor-intensive and ultimately a subjective assessment based on
information visible on the surfaces of the structures. If damages are detected on
the surface and should be examined more closely, also deeper in the structure,
there are various methods from the field of non-destructive testing (NDT).
However, these are usually associated with even more effort. In individual
cases, NDT is already being used for permanent monitoring, also known as
structural health monitoring (SHM). Contrary to visual inspection, permanent
monitoring typically leads to an objective evaluation of the structures. One
challenge with implementing SHM in, e.g., a national code is that the building
materials strongly differ. Steel, for example, is a homogenous material, whereas
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concrete is very inhomogeneous with a wild mix of cement, aggregates, and
pores. Next to the material, accessibility or environmental influences are
factors that can limit applicable NDT methods. A superordinate concept is
needed to implement the various NDT methods into an integral predictive
maintenance workflow. In order to do so, a modular structure is required
so that measurement techniques can be combined in different ways, and
digitalization must be as extensive and automated as possible. The digital
twin (DT) concept, which describes a virtual model that communicates via
a bi-directional dataflow with reality, is ideal. The communication between
the virtual model and reality offers excellent potential for improving SHM.
For example, the model can be used to structure measurement data much
better and more clearly, and it can also be enriched with historical data. The
exchange also makes it possible to compare calculations in the model with
real measurement data to validate and improve the model and ultimately use
it for predictions. This transfers the reactive maintenance towards predictive
maintenance with accompanying long-term planning. An illustration of how
to embed the DT concept into SHM can be seen in Fig. 1.1 from a report
by the Federal Ministry for Digital and Transport in Germany on DTs for
bridges [3].

Compile
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Dynamic
coupling

Physical twin
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Saving and
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Figure 1.1: The value chain through the digital twin (adapted from [3]).

The overall DT concept of Fig. 1.1 combines the evaluations in the
virtual space with the real structure on a general level to improve monitoring.
However, parts of the used models are also continuously connected to reality.
They either use measurement data for further computations, e.g., model-based
imaging of damage or compare computational results to measurement data
to improve the numerical models. This comparison with the status quo
and the resulting improvement of the digital model is the key to reliable
and meaningful models that can be potentially used for predictions or to
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simulate scenarios. A universal method to improve the numerical models is
the computational model updating (cf. Ch. 7 + 8).

Established SHM methods (strain gauges, displacement measurements,
accelerometer, etc.; cf. Sec. 4.1) that can be used with computational model
updating usually provide local information. This thesis also focuses on a
technology that is suitable for large-scale monitoring of concrete, the coda
wave interferometry (CWI) (cf. Ch. 4 - 6). See Planès et al. [4] for a
good overview of the technology. CWI originates from geophysics, more
precisely seismology, and is now applied to concrete structures. It is based
on the principle that signals with their diffuse tail can be reproduced. As
soon as small changes appear in the propagation medium, the signal changes
slightly. These changes and especially their development within the signal
are measured and evaluated. Coda waves are in a frequency such that they
travel several meters through a specimen and are scattered multiple times,
meaning they not only travel directly between source and receiver but also
in a diffuse area around it. The scattering has the benefit that coarse sensor
networks can monitor a large area. Another significant advantage of the
scattering and longer travel distances within the specimen is an enormous
sensitivity to changes that affect the coda signal. Parameters that affect the
coda signal are, e.g., stress [5–8], temperature [9, 10], moisture changes [11],
and damage in the form of micro- or macro cracks [12, 13]. Several groups
[14–19] have conducted field experiments with CWI and demonstrated the
immense potential of the technology. However, the immense sensitivity to
all kinds of influences comes with challenges, such that it is more difficult
to filter only influences from cracks. Next to detecting a fault somewhere in
the monitored specimen, CWI also allows for localization and, with certain
limitations, a classification. Work in this field was conducted by Larose et al.
[20] and Zhang et al. [21, 22], who successfully applied CWI for damage
detection in concrete structures. The mentioned studies are based on analytic
solutions that describe the ultrasound behavior in concrete, which comes
with limitations for applications in complex geometries. A major challenge in
CWI is to find a good trade-off between large-area coverage of the geometry
to be monitored, accuracy, and applicability. The frequency used plays a
central role here. The presented work uses a central frequency of 60 kHz,
which appears somewhat low at first glance compared to literature [4, 23] and
the mentioned experiments [20–22] that all use frequencies above 100 kHz. A
longer wavelength allows signals in concrete to be transmitted over a longer
distance but is scattered less. It is thus questionable whether the known
imaging methods based on multiple scattering can be used without further
ado. Summarized has CWI great potential, as concrete is the most commonly
used construction material, and the technology allows to combine monitoring
of large areas with a very high sensitivity to little changes. Therefore, the
focus of the application-oriented method developments as a contribution to
a digital twin is on the coda wave technology. The computational model
updating is also discussed to achieve universal applicability with various SHM
technologies.
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1.2 Objectives

The central objective of this thesis is developing and improving numerical
methods for SHM applications that, in a bigger picture, contribute to a
DT of structures. The two investigated methods, CWI and computational
model updating, appear at first glance very different due to different kinds of
measurements, but on the methodical and mathematical level, they are, in
fact, very similar. The CWI is applied in this thesis for damage localization
by solving an inverse problem. Several objectives are pursued in this work to
improve the technology, namely:

• Application of finite element method (FEM) as a method for solving
the governing problem instead of the established analytical solutions to
make the damage localization with CWI versatile for complex structures.

• Extension of the multiple scattering-based imaging to a frequency of
60 kHz that, according to literature [4], belongs to the single scattering
regime.

• Improvement of robustness to avoid manual filtering of measurement
data

• Damage localization before, during, and after macrocrack formation to
investigate the sensitivity of the technology, damage classification, and
find application limits.

• Application of the developed algorithms in laboratory and field experi-
ments.

On the one hand, CWI is a method specific to concrete, and, on the
other hand, the imaging primarily localizes, but quantification of detected
damage is challenging. In the end, only indirect conclusions can be drawn
about structural-mechanical parameters that an engineer typically works
with in his models when assessing a structure. For this reason, this thesis
also investigates a method that can be used more universally and allows for
quantifying stiffness changes: computational model updating. The universal
applicability of computational model updating and comparing measurements
with models to improve the computational model are central elements of
DTs. Given the very ambitious goals of DTs, combining various measurement
techniques and methods, as presented in this work, in one model is essential.
Ultimately, this is the only way to achieve maximum precision and information
content in the numerical model while maintaining robustness.
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1.3 Outline

CHAPTER 2 introduces the concept of a digital twin (DT). It gives a brief
historical overview and introduces the key differences between a (simple)
digital model and a DT. Further on, the focus is on DTs in civil engineering,
where different subtypes are specified and a classification in the context of
this work is given.

CHAPTER 3 introduces the basics for solving ill-posed inverse problems.
On the mathematical level, the later presented applications of CWI and com-
putational model updating are very similar, and derived algorithms are thus
universally applicable. Explanations of the mathematical algorithms start
with a linear problem and then extend to necessary regularization techniques
and non-linear problems. Finally, techniques to apply constraints on the
solution and the applied algorithms are shown.

CHAPTER 4 starts a part of this thesis dealing with coda waves. The
chapter introduces the technology in the context of NDT. Further, the basics
of concrete and waves and the combination of ultrasound waves in concrete
are discussed. The chapter continues with the basics of evaluation and influ-
ences on coda signals and the signal processing for later presented damage
localization, as well as an overview of used hardware.

CHAPTER 5 presents contributions for imaging with coda waves. First,
the widely used analytical solution is discussed. Then the use of FEM for
the problem is derived, which is a significant improvement, especially when it
comes to complex geometries. A further improvement of the FEM solution is
shown, which is achieved by adding radiation terms describing the ballistic
wave in a post-processing step. Afterwards, the choice of the central param-
eter of the simulations, the diffusivity, is discussed, and a novel method to
obtain the parameter based on derivatives of the analytic diffusion solution is
presented. The chapter continues with explanations of the inverse problem
for damage localization with CWI. The problem is a linear one that uses
gradient information. The necessary sensitivities of coda waves are derived
based on models for multiple scattered waves. Also, a method that signifi-
cantly improves the robustness and allows the presented models to work with
measurement data from the rather low-frequency signal of 60 kHz is shown.
In this novel idea, sensitivities are clipped in the areas near transducers.
Interpretations and justifications for this modification are discussed in the
corresponding section.

CHAPTER 6 shows results of CWI based damage localization. Three ex-
periments are evaluated that build on each other and investigate different
parameters. The first pure numerical experiment calibrates overall signal
processing, simulation, and solving settings. The found settings are applied
in the second one, an actual laboratory experiment. With a fiber-optic sen-
sor (FOS) as reference technology, the sensitivity, accuracy, and robustness of
CWI based damage localization are investigated. The chapter concludes with
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a third experiment that performs damage localization on a field experiment
at a real bridge.

CHAPTER 7 deals with computational model updating in structural analysis.
It is the underlying basis for DTs that aim to represent reality with digital
models as well as possible. The basis for the model updating is once again
an inverse problem that uses gradient information. The sensitivities in this
case are obtained by deriving the FEM problem directly with respect to the
quantity of interest. The adjoint sensitivity analysis is beneficial for computing
sensitivities for model updating. The chapter discusses the inverse problem
of computational model updating with corresponding solution techniques. It
concludes with an outlook on combining computational model updating with
CWI based damage localization.

CHAPTER 8 applies the computational model updating in two experiments.
As in the CWI part, the first one is a purely numerical one used to investigate
different parameters such as mesh refinement and load and measurement
positions. The second experiment is a simple real experiment of a 3-point
bending test with moving load.

CHAPTER 9 finishes the thesis with a conclusion and gives an outlook
for future research and developments.



Chapter 2

Digital Twin

2.1 Origins of the Digital Twin

The term digital twin (DT) is widely used in many industry fields, and its
definitions vary. Especially within the last decade, the DT gained interest as
increased computational power, sophisticated 3D visualizations, and sensor
developments allowed for improved computation and visualization of reality.
This chapter introduces the fundamental concept of a DT and then focuses
on the application of DT ideas in civil engineering. In general, a DT refers to
a concept with three components that are also visualized in Fig. 2.1:

• the real physical object in the real space

• the model or digital object in the virtual space

• a bidirectional data/information connection of the two spaces

Real
Space

Virtual
Space

Data

Information Process

Figure 2.1: Early digital twin concept (adapted from [24]).

An existing example of a DT is, e.g., Google Maps [25], which nowadays
offers real-time updates of the traffic situation due to a data flow from real
to virtual space. The information process that points in the other direction
from an optimization process in the virtual space could be a route change
suggested by Google Maps due to a traffic jam.
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In 1991, Gelernter [26] named the idea of the DT concept Mirror Worlds.
In 2002 Grieves [27], who has a background in product lifecycle management,
called this concept Mirrored Spaces Model and later further developed it to
an Information Mirroring Model [28–30]. The term DT, together with a
detailed definition, was introduced in a report by NASA in 2010. The report
describes a DT as "an integrated multiphysics, multiscale simulation of a
vehicle or system that uses the best available physical models, sensor updates,
fleet history, etc., to mirror the life of its corresponding flying twin. The
digital twin is ultra-realistic and may consider one or more important and
interdependent vehicle systems."[31] As the DT is nowadays a widely applied
concept, several other definitions have been published. Tab 2.1 lists a selection
of DT definitions from science and industry that show a large variety. A
review on DTs from Liu et al. [40] lists 21 different published definitions that
come from all sorts of application fields and focus on different aspects such as
the required high accuracy of the virtual model, a real-time data exchange,
the adaption of either real or virtual space to the other space or the modeling
of the whole life cycle of an object. However, due to the hype around DT,
there are also definitions, such as the one by the Centre for Digital Built
Britain at the University of Cambridge, that just renamed technology that
has existed for years. An interesting aspect is highlighted by the definition
of Arup [35]. Due to the bidirectional feedback loop, machine learning and
artificial intelligence have great potential to improve the DT. According to
their definition, the aim of the DT is not only to react to a new situation but
to take action because artificial intelligence expects a situation to be avoided.

Michael Grieves, who significantly developed the early concepts for DTs,
also distinguishes between different subtypes of DT: a digital twin prototype
(DTP) and a digital twin instance (DTI)[33]. The DTP refers to an object or
product in development where a physical object does not necessarily exist.
To manufacture a physical instance, the DTP contains all the information on
design, parts, processes, etc. The model can also optimize all parts in the
DTP. Overall, the DTP can thus also be regarded as a rebranding of existing
methods. The DTI, on the other hand, describes a physical object to which
an individual digital twin remains connected throughout the entire life cycle.
Therefore, it could be necessary to update the virtual space due to changes in
the real space. Those changes are, e.g., registered by sensors that send data
to the virtual space and update it.



2.1. ORIGINS OF THE DIGITAL TWIN 9

Source Definition from science

Cambridge Centre for
Digital Built Britain
[32] Academia

A digital twin is a realistic digital representation
of something physical.

Grieves et al. [33]
Academia

Digital twin is a set of virtual information con-
structs that fully describes a potential or actual
physical manufactured product from the micro
atomic level to the macro geometrical level.

Madni et al. [34]
Academia

A digital twin is a virtual instance of a physical
system (twin) that is continually updated with
the latter’s performance, maintenance, and health
status data throughout the physical system’s life
cycle.

Definition from industry

Arup [35]
Construction

A digital twin is the combination of a computa-
tional model and a real-world system designed
to monitor, control and optimize its functionality.
Through data and feedback, both simulated and
real, a digital twin can develop capacities for au-
tonomy and to learn from and reason about its
environment.

Deloitte [36]
Consulting

A digital twin is a near-real-time digital image of
a physical object or process that helps optimize
business performance.

General Electric [37]
Conglomerate

A digital twin is a living model that drives a busi-
ness outcome.

IBM [38]
Software

A digital twin is a virtual representation of a phys-
ical object or system across its lifecycle, using
real-time data to enable understanding, learning
and reasoning.

Siemens [39]
Conglomerate

A digital twin is a virtual representation of a physi-
cal product or process, used to understand and pre-
dict the physical counterpart’s performance char-
acteristics.

Table 2.1: Overview on different DT definitions from science and in-
dustry (from [35] and [40]).
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2.2 From Digital Model to Digital Twin

A difficult question in the field of DT is how to differentiate a digital model
from a DT. Wright et al. [41] answer this with the mandatory requirement
of the physical twin and real-time bidirectional communication between the
two spaces. If this connection lacks an automated data flow in one direction
Kritzinger et al. [42] propose three subtypes: digital model, digital shadow,
and digital twin, and refer to the three types as different levels of integration.

Digital Model The authors refer to a digital model as "a digital represen-
tation of an existing or planned physical object that does not use any
form of automated data exchange between the physical object and the
digital object" [42] (cf. Fig. 2.2). For a digital model, definitions from

Physical
Object Digital

Object

Manual Data Flow

Manual Data Flow

Figure 2.2: Definition of Kritzinger et al. [42] for a digital model.

model theory are applicable. Banks [43], e.g., describes a model as a
simplification and, therefore, an abstraction of a system. Nevertheless,
the model must be complex enough to fulfill its purpose, for example, to
answer questions about the system’s behavior in a specific situation and
simulate it with sufficient accuracy. Kritzinger et al. [42] also proposes
that a digital model can exchange data between physical and digital
objects but only manually, such that a change in the state of one object
has no direct effect on the other object.

Digital Shadow The digital shadow is based on the previous definition of
a digital model with the extension of an automated one-way data flow
from the physical object to the digital object (cf. Fig. 2.3). This means
that a change of the physical object registered, e.g., by sensors, directly
leads to changes in the digital object, but not vice versa. Another
definition of the Fraunhofer-Gesellschaft [44] for a digital shadow (with
manufacturing background) emphasizes the sufficiently accurate image
of the real processes to create a real-time evaluation basis of all relevant
data.

Digital Twin Kritzinger et al. [42] define the digital twin with a fully
integrated and automatized data flow between physical and digital
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Physical
Object Digital

Object

Automatic Data Flow

Manual Data Flow

Figure 2.3: Definition of Kritzinger et al. [42] for a digital shadow.

objects in both directions (cf. Fig. 2.4). Thus, it is a digital shadow plus
the ability to directly apply changes in the digital model on the physical
one, e.g., use the digital model as a controlling or optimization instance of
the physical object. Wright et al. [41] further elaborate that "the model
used in a digital twin needs not be a data-driven model, but it should
produce results that are directly equivalent to a measured quantity (so
that the model updating process is data-driven), and the model will
likely take in other measured quantities as boundary conditions, loads,
or material properties." Also a validated digital model in the authors
understanding is only a snapshot and a DT "can extend the use of that
model to timescales over which the object and its behavior will change
significantly" [41], so, in other words, is continuously validated by data.

Physical
Object Digital

Object

Automatic Data Flow

Automatic Data Flow

Figure 2.4: Definition of Kritzinger et al. [42] for a digital twin.

The concept of DTs is applied in various industry fields nowadays, and
numerous publications and reports exist. The same terminology is used in
the context of very different framework conditions. The bidirectional data
flow is way easier for machines that regulate themselves with digital twins
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than in the built environment. When thinking, for example, of a bridge, it
is questionable how the built, static structure could adapt due to results,
optimization, etc., from the virtual model. Nevertheless, the DT concept is
also applied for large-scale constructions ([45–47]). It is usually referred to
as a DT, although according to the definition of Kritzinger et al. [42], it is a
digital shadow. This thesis follows the generic understanding that a DT is
present as soon as the real and virtual space are connected. To differentiate
between the capabilities, complexity, and connectivity of the digital twin, a
differentiation by capability levels is used in this thesis. It is presented in
a report of the construction company Arup [35] and further elaborated by
Wenner et al. [3] (cf. in Fig. 2.5). Here, the descriptive level 1 is equivalent

Descriptive

Virtual repro-
duction of the
real object
for visual rep-
resentation.
Integration
and presenta-
tion of data.

Informative
Presentation
of the status
using aggre-
gated and
analyzed sen-
sor data.

Predictive
Prediction of
future condi-
tions using
monitoring
data, ma-
chine learn-
ing, and fore-
casting mod-
els.

Prescriptive

Use of mon-
itoring data,
predictive
simulations,
and machine
learning. De-
velopment of
proposals for
action.

Autonomous
Autonomous
action based
on indepen-
dent learning,
forecasts and
decisions.

A
bi

lit
y

Level

1 2 3 4 5

Figure 2.5: Capability levels of digital twins (adapted from [3]).

to the digital model. The informative level 2 is equivalent to a digital shadow.
According to the definition, the predictive level 3 and the prescriptive level 4
have a unidirectional data flow with increasing intelligence due to machine
learning. However, they would still be a digital shadow according to Kritzinger
et al. [42]. Only at level 5, where autonomous decisions also have automatic
real-time transfer back to the real space a true DT is achieved.
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2.3 Digital Twin in Civil Engineering

The concept of DTs also found its way into the large variety of civil engineering.
A good overview of implemented DTs in the build environment can be found
in a report by Arup [35]. The report also differentiates 5 different types of
DT in civil engineering that are further elaborated by Wenner et al. [3]:

Asset Twin An asset twin is the digital representation of an object, such as
a bridge or building. The object thereby consists of several parts. The
focus is, however, not on individual parts but the whole object and its
overall performance and functionality. The individual parts would be
called component twins, and the interactions are called system twins.
An example of an asset twin is, e.g., a bridge. It exists of several parts
such as supports, main girder, pylons, cables, etc. Thereby, the role of
a component twin would be to monitor a specific part, e.g., the cables.
The role of the asset twin would be to collect all data, structure and
analyze it, and draw a conclusion about the overall operational state.

Component Twin As mentioned in the asset twin, a complex system can
be differentiated by detail and overall focus. A component twin is an
individual part of particular interest within a larger object. In the bridge
example, a component twin could be a cable in a cable-stayed bridge.
The elongation of such cables can be measured with strain gauges and
set in relation to calculated values in a component twin.

System Twin A system twin refers to interconnected objects. It is closely
related to asset twins as both consist of multiple parts. System twins
focus on controlling the relations and dependencies of all the different
parts. An example from the built environment is smart home automati-
zation. The house is the object, and automated technical equipment
with sensors such as air conditioning, sun protection, and heating sys-
tems are the individual parts. All the mentioned parts can affect the
temperature within the house. The goal of a system twin would be
to find an optimized setting such that, in the end, a pleasant living
environment is obtained and the parts do not work against each other.

Process Twin A process twin monitors physical processes or sub-processes in
real-time. Processes can also be optimized, and problems can be quickly
identified and rectified. Wenner et al. [3] name the maintenance process
of transport infrastructure as an example from civil engineering. The
process twin manages from the recording of damage until maintenance
measures the whole lifecycle of objects, assigns responsibilities and
deadlines, and controls cost-effectiveness.

Network of Systems The case that various types of DTs from different
domains are connected is called a network of systems. An example is
a city where residential buildings, factories, energy and water systems,
public transport systems, and infrastructure all communicate [48].

A concept closely related to the one of DT in civil engineering is building
information modelling (BIM). The aim of BIM is to bundle all relevant
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building data and related processes in a digital model. The close connection
to DTs is therefore obvious. Kaewunruen et al. [49–51] even state that "BIM
is digital twin" [40]. A report by the Federal Ministry for Digital and Transport
in Germany classifies the two in relation to each other as follows: "The most
important component of the DT is the BIM model. This fundamental data
source is the basis for navigation in the visualization, locating data sources,
and mapping the building taxonomy. In addition, important information
from the building inspection, building diagnostics, and, depending on the
degree of maturity, from the building monitoring is located and visualized
within the BIM model. Other condition-relevant data (e.g., satellite images,
vehicle or smartphone data) can also be included. At higher capability levels,
the heart of the digital twin is automated data processing, which processes
the raw data into aggregated condition information and can be used as a
basis for forecasting conditions. However, non-aggregated information from
third parties can also be imported (embedded data) or linked (linked data)
within the digital twin. All this information is made available to users in a
structured, needs-based, and intuitive way via a human-machine interface.
While BIM has so far mainly been used for the planning and construction of
infrastructure structures, the digital twin now also enables the BIM method
to be transferred to construction operations."[3] (translated from German).
Summarized, one can say that the BIM model is part of the DT. However,
overall functionalities of DTs due to real-time sensor data with data analysis
and possibilities of simulation and prognosis that lead to forecasting models
and decisions extend the ideas of BIM (cf. Fig 2.6).

BIM model

Real-time sensor data

Data analytics

Simulations

Prognosis

Digital twin with high maturity level

Figure 2.6: BIM and digital twin (adapted from [3]).

This thesis focuses on the monitoring of large structures in civil engineering.
The aforementioned report by the Federal Ministry for Digital and Transport
in Germany [3] gives a good overview of how a DT of bridges looks like in its
contribution to the digital twin Federal Trunk Roads Master Plan (cf. Fig.
1.1). Another example of how an asset twin of a bridge could be structured is
given in Fig. 2.7.
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Real Space

- Bridge components

- Damages

- Traffic load

- Sensors

- Inspections

- Diagnostics

- Monitoring

- ...

Virtual Space

- BIM model

- Inspection data

- Sensor data processing

- Simulations

- Structural analysis

- Interfaces to other DTs

Information on the
condition of the bridge

Maintenance
measures

Figure 2.7: Digital twin for bridges.

The report also gives an overview of the current state of DTs for bridges
in Germany. At the moment, very few DTs of capability level 2 exist that,
in certain aspects, behave and react as the represented asset. Grabe et al.
[45], Wenner et al. [46], and Lazoglu et al. [47] give further insights into the
mentioned projects in Germany.

The work presented in this thesis contributes to a component twin of
a bridge part that is monitored. Ch. 5 deals with method development,
validation, and improvement for the SHM with coda waves. With a virtual
model that can describe the behavior of ultrasound in concrete structures, it
is possible to image changes such as damage. Applying the same DT ideas to
combine measurements and simulations is also done with structural models
in Ch. 7, where computed displacements are compared with measured ones.
Using the differences between simulation and reality, one can identify changes
with an inverse problem from computational model updating. Further work
in this field with similar methods is done by Airaudo et al. [52] and Löhner
et al. [53]. Another significant benefit of DTs in structural analysis is the
continuous validation due to the feedback between structural models and
reality, which significantly improves confidence in a virtual model and is a
key to forecasting models. The presented methods are required to analyze
measurement data and draw conclusions about the structure’s actual state.
They are, therefore, essential to get from an informative level 2 DT to a
predictive level 3 DT and beyond.





Chapter 3

Solution Strategies for Ill-Posed
Inverse Problems

This thesis deals with system identification based on measurement data.
For this purpose, a model that allows system information to be related to
measurement data is used. The big challenge is to determine the model’s
input parameters so that the computed responses have the closest possible
match to the measurement data. This problem of finding the best solution
is the typical case of an inverse problem that, in this case, is ill-posed. The
mathematical fundamentals, as well as strategies to solve the problem, are
discussed in this chapter. Fig. 3.1 gives an idea of a typical inverse problem
for imaging with CWI measurements (cf. Ch. 5).

3.1 Ill-Posed Problems

The fundamental problem that arises in system identification applications
can be expressed with a function f : Rn 7→ Rm:

f(x) = y (3.1)

The challenge of an inverse problem is to find x ∈ Rn with given y ∈ Rm

such that the residual r is zero:

r = y − f(x) = 0 (3.2)

The function f(x) is non-linear in most application fields. To solve the inverse
problem with the gradient-based Newton method, f(x) is linearized in xk

with a Taylor series of first order:

f(x) ≈ f(xk) +∇f(xk)
T (x− xk) (3.3)
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Figure 3.1: Visualization of a typical inverse problem for system iden-
tification with measurement data.

The nabla operator (∇) refers to the gradient of f(x)T in xk and in mathe-
matics is known as the Jacobi matrix referred to with A in this thesis.

The explanations on ill-posed problems start with the linear case and are
in Sec. 3.5 extended to the non-linear case. For the linear case, the Taylor
series approximation of f(x) in Eq. 3.3 is independent of the linearization
point xk. A linearization in xk = 0 leads to

f̃(x) ≈ y0 +Ax (3.4)

As a simplification, y0 is chosen as zero, which is valid for the case that in
the zero-state (x = 0) measurements y are also zero. This is,e.g., the case
for the imaging with coda waves pictured in Fig. 3.1 where one can say that
if nothing changes, so no damage x appears, nothing is measured. With Eq.
3.4 inserted into Eq. 3.2 one obtains the following linear inverse problem:

Ax = y with A ∈ Rm×n , y ∈ Rm (3.5)
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A problem as in Eq. 3.1 or the simplified linear relation in Eq. 3.5 has three
requirements to be classified as a well-posed problem [54]. A solution x of the
problem exists (existence), there is at most one solution (uniqueness), and it
depends contentiously on the data (stability). For the practical application
case of a fit of a numerical model to real measurement data, these requirements
are not fulfilled. Due to noise and modeling errors, there is a lack of a solution
that reduces the residual to zero, which means the problem is inconsistent.
In case of fewer measurements than parameters to be adjusted, it is also
underdetermined, which conflicts with the uniqueness requirement. The
stability requirement ensures that small errors in the data cause only small
errors in the solution. Kress [55] names the condition number κ of a matrix
as a measure for the degree of well-posedness or stability. For a rectangular
matrix A ∈ Rm×n it can be computed as follows

κ(A) =
σmax(A)

σmin(A)
(3.6)

where σmax(A) and σmin(A) are maximal and minimal singular values of A,
respectively. In the present cases of this thesis, the condition numbers are
significantly larger than 1, which means the matrix is ill-conditioned.

The lack of a unique, stable solution requires reformulations for numerical
treatment. For the present case of an ill-posed problem, the additional assump-
tion of a smooth solution, also referred to as regularization, is introduced.
A standard method for regularization used in this thesis is the Tikhonov
regularization (Sec. 3.3).

3.2 Least-Squares Optimization Problem

An optimization problem generally tries to find the best solution from all
feasible solutions. As shown in the example of Fig. 3.1 in the plot on the
bottom left, no solution fits the model to the measurements without remaining
error, which means the problem is inconsistent. Thus, the standard approach
for solving the inconsistent linearized problem of Eq. 3.5 known as the Gauss-
Newton method is a reformulation to a least square optimization problem
that minimizes the residual of Eq. 3.2:

min
x∈Rn

∥y −Ax∥22 with A ∈ Rm×n , y ∈ Rm (3.7)

This expression is also called the optimization problem’s objective function.
The solution of this quadratic extreme point problem is found by setting the
gradient to zero:

∇∥y −Ax∥22 = 0

∇(y −Ax)T (y −Ax) = 0

ATAx−ATy = 0

(3.8)

ATAx = ATy (3.9)
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The term of Eq. 3.9 is also called normal equation because geometrically, the
residual is orthogonal to the range of A at the solution x. Eq. 3.9 can be
used to solve for x:

x = (ATA)−1AT︸ ︷︷ ︸
Moore–Penrose inverse A+

y (3.10)

The term of Eq. 3.10 contains the Moore-Penrose inverse A+ = (ATA)−1AT

[56, 57]. It is also known as pseudoinverse as it is a generalization of the
inverse matrix to singular and non-square matrices.

Another way to compute the Moore-Penrose inverse that is numerically
more stable uses the singular value decomposition (SVD). The compact SVD
decomposes the matrix A ∈ Rm×n in the two orthogonal matrices U ∈ Rm×r

and V ∈ Rn×r and a diagonal matrix Σ ∈ Rr×r where r ≤ min{m,n} is the
rank of A.

A = UΣVT =

r∑
i=1

σiuiv
T
i (3.11)

The diagonal matrix Σ = diag(σ1, ...., σr) contains the singular values σi

ordered by magnitude on its diagonal and scaled such that σ1 > σ2 > ... >
σr > 0. The columns of U are the left singular vectors of A, and the columns
of V are referred to as the right singular vectors. With the matrices of the
SVD, the pseudoinverse can be computed as follows:

A+ = VΣ+UT with σ+
ii =

{
0, if σii = 0,
1

σii
, else.

(3.12)

When using the components of the SVD, only the diagonal matrix is
inverted, which is numerically more stable than inverting a full matrix.

3.3 Tikhonov Regularization

For the Tikhonov regularization that was independently introduced by Phillips
[58] in 1962 and Tikhonov [59] in 1963, a regularization term is included in
the minimization:

min
x∈Rn

(∥y −Ax∥22 + ∥Γx∥22) (3.13)

The regularization is performed by adding the Tikhonov matrix Γ. The
standard choice for Γ, which is also used in this thesis, is as a scalar α
multiplied with the identity matrix I:

Γ = αI (3.14)

The Tikhonov matrix can be understood as a penalty term that regularizes
the solution by, at the same time, providing a small residual of the initial
problem as well as a moderate value of the penalty term. If the problem is
not regularized, large oscillations usually appear in the solution. These large
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values are penalized in the Tikhonov regularization, and a smooth solution
is obtained with a good choice of α. With the regularization parameter α,
the confidence in the model can be controlled. In the case of a very small
value, the problem is very close to the original one, and instabilities have to
be expected. If the value is chosen too large, there is only little connection to
the original problem. A method of finding a good regularization parameter is
the L-curve method by Hansen [60] (cf. Sec. 3.4).

When searching the minimum of Eq. 3.13, the gradient is set to zero as
in Eq. 3.8. This leads to the following expression containing the Tikhonov
matrix:

x = (ATA+ ΓTΓ)−1ATy (3.15)

In a Bayesian interpretation, ΓTΓ can be understood as the inverse co-
variance matrix of the solution C−1

X that, as Link [61] describes, is used to
constrain the variation of the solution [62]. In case of more knowledge about
the solution, one can replace the identity matrix I in Γ with a different one.
For the application case of imaging with coda waves, Planès et al. [23], for
example, use the discrete mesh’s geometry information in a matrix containing
an exponential correlation term between the discrete nodes.

Using the SVD representation of A, Eq. 3.15 can be rewritten. Note that
Γ = αI is already inserted in the following expression:

x = (VΣUTUΣVT + α2I)−1VΣUTy (3.16)

Considering the orthogonality of the singular vectors, the expression can be
further simplified as follows [63]:

x =

r∑
i=1

σiu
T
i y

σ2
i + α2

vi (3.17)

This expression can be used to extract a filter function that helps to understand
how the Tikhonov regularization works [63]:

x =

r∑
i=1

f(σ2
i )

uT
i y

σi
vi with f(σ2

i ) =
σ2
i

σ2
i + α2

(3.18)

When looking at the filter function f(σ2
i ), one can see that it is ≈ 1 for

singular values much larger than the regularization factor α. The filter
function is approximately zero for values much smaller than α. Since the
singular values are in descending order, the Tikhonov regularization is thus
damping the influence of the small singular vectors known to have a highly
oscillating influence. This filtering is similar to another common regularization
method, the truncated SVD that cuts small singular values and corresponding
singular vectors with a Heaviside function. See Weber et al. [63] for a further
comparison of how the two regularization methods can be expressed with
filter functions.
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3.4 L-Curve Method

As mentioned above, the biggest challenge with regularization is to find a good
regularization parameter α. Hansen [60] introduces a method of determining
the parameter for discrete ill-posed problems. In order to do so, the problem
must be solved several times, and each time the parameter is varied. When
plotting the residual sum of squares (RSS) of the solution ∥x∥22 against the
RSS of the residual ∥Ax−y∥22 in log-log scale, one obtains an L-shaped curve.
Fig. 3.2 shows an exemplary L-curve for the laboratory experiments of Sec.
6.2. As one wants to obtain a small residual, the optimal result of α should
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Figure 3.2: L-curve for the laboratory experiments of Sec. 6.2 evalu-
ated at load step 8.

be as left as possible. The part of the L-curve going to the right is created by
the penalty term taking over and limiting precise imaging. However, without
regularization, the solution contains large oscillations that increase ∥x∥22,
which must also be avoided. Therefore, Hansen [60] describes the kink of the
L-shape as an optimal choice. In case the kink of the L-shape is smooth, the
point of maximum curvature is the recommended choice. In the L-curve of
Fig. 3.2, this would be α = 0.04.
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3.5 Non-Linear Ill-Posed Problems

The previous explanations were based on the linear inverse problem of Eq.
3.5 where gradients are independent of the linearization point xk. For the
non-linear case, the Taylor series approximation of Eq. 3.3 changes depending
on the linearization point xk and can be written as follows where the notation
with xk as a subscript of A indicates that it is the gradient at xk.

f(x) ≈ f(xk) +Axk (x− xk) (3.19)

When inserting into the residual formulation of Eq. 3.2 and minimizing with
the least-squares formulation of Eq. 3.7, one obtains

min
x∈Rn

(∥y − f(xk)−Axk (x− xk)∥22) (3.20)

With the zero setting of the gradient as in Eq. 3.8, one obtains the normal
equation

AT
xk

Axk (x− xk) = AT
xk

(y − f(xk)) (3.21)

that leads to the explicit solution known as a Gauss-Newton iteration step:

xk+1 = xk + (AT
xk

Axk )
−1AT

xk
(y − f(xk)) (3.22)

For the linear case xk is zero and f(xk = 0) = 0 is assumed. Applying these
simplifications at Eq. 3.22, one obtains the solution for the linear problem of
Eq. 3.10. The similarity is due to the linearization of the non-linear function
f(x).

For a general non-linear problem, one can apply the same regularization
techniques as in Sec. 3.3. Thereby, it is essential to first linearize the problem
and then regularize by penalizing the change of the solution x − xk in the
iteration step. Otherwise, the solution is determined with the first iteration
step [64].

min
x∈Rn

(∥y − f(xk)−Axk (x− xk)∥22) + ∥Γ(x− xk)∥22) (3.23)

By setting the gradient of the argument in Eq. 3.23 to zero in order to solve
for the extreme point, one can again solve for an explicit solution xk+1. With
the inverse covariance matrix C−1

X instead of ΓTΓ, one obtains the following
expression:

xk+1 = xk + (AT
xk

Axk +C−1
X )−1AT

xk
(y − f(xk)) (3.24)

With a scalar multiple of the identity matrix chosen for C−1
X , as done in this

thesis, Eq. 3.24 is known as Levenberg–Marquardt algorithm [64–66]. This
solving algorithm is later applied in the practical applications presented in
this thesis (cf. Ch. 8). With C−1

X = α2I and the SVD of A, the Leven-
berg–Marquardt algorithm can be written as follows:

xk+1 = xk +

r∑
i=1

σiu
T
i (y − f(xk))

σ2
i + α2

vi (3.25)



24 CHAPTER 3. SOLUTION OF ILL-POSED INVERSE PROBLEMS

For the sake of completeness and in order to highlight the potential for
improvement, a further generalization is mentioned here. Next to knowledge
about the solution which the covariance matrix of the model CX contains,
further knowledge about correlation in the measurement data can be respected.
This is done by weighting the rows of A with the inverse covariance matrix
of the measurement data C−1

Y . Based on Tarantola et al. [67], this leads to
the following objective function that is minimized:

∥y − f(xk)−Axk (x− xk)∥2Y + ∥x− xk∥2X =

[y − f(xk)−Axk (x− xk)]
T C−1

Y [y − f(xk)−Axk (x− xk)]+

(x− xk)
TC−1

X (x− xk)

(3.26)

Here ∥ · ∥2Y and ∥ · ∥2X refer to the squared Euclidean norm weighted with
C−1

Y and C−1
X , respectively. When solving the minimization problem by

setting the gradient to zero, one gets the following solution for xk+1, which is
also referred to as generalized Tikhonov regularization [62]:

xk+1 = xk + (AT
xk

C−1
Y Axk +C−1

X )−1AT
xk

C−1
Y (y − f(xk)) (3.27)

As mentioned above, CY is the covariance matrix of the measurement data.
A correlation between different measurements is neglected in this thesis. For
the application case of CWI, Planès et al. [23] calls this assumption reasonable
for distant sensors and non-overlapping measurement time windows. CY is a
diagonal matrix for non-correlated measurements. If it is the identity matrix, it
is also referred to as the Markov estimator that yields the best linear unbiased
estimate [68]. However, with larger or smaller values, specific measurements
could be over- or under-weighted depending on the confidence in its accuracy,
for example. Planès et al. [23], weights the rows of A with the magnitude
of the measurement value. Another possibility for the CWI application in
this thesis would be a relation to the source-receiver distance, as there is a
larger modeling error for short source-receiver distances and, thus, most likely
a bigger discrepancy to measurement values.

To conclude this section, the Gauss-Newton algorithm for a least-squares
problem is compared to the standard Newton method for non-linear problems.
For solving an optimization problem, one needs the Jacobi matrix A with
first-order derivatives and the inverse Hessian matrix H. The iteration step
for finding an extreme point with the Newton method then looks as follows:

xk+1 = xk −H−1
xk

Axk (3.28)

Comparing the Newton step to the Gauss-Newton step of Eq. 3.22, one can
see that with the transformation of the problem to a least-squares one, the
Hessian matrix H with second order derivatives, that are usually difficult to
obtain, is approximated with AT

xk
Axk . The first order derivatives Axk of the

Newton method become AT
xk

f(xk).
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3.6 Constrained Optimization

When searching for the solution of the inverse problem, one can introduce the
assumption that values of the solution field can only be positive, so x ≥ 0.
This special type of a constrained least-squares problem is referred to as
non-negative least squares (NNLS):

min
x∈Rn

∥y −Ax∥22 subject to x ≥ 0 (3.29)

Lawson et al. [69] developed an active-set method for solving an NNLS
problem. The method transforms, when activated, the inequality constraint
(here x ≥ 0) into an equality constraint (here x = 0) that is easier to handle.
A generalization of the NNLS is the bounded-variable least squares (BVLS)
algorithm by Stark et al. [70]. It extends the non-negativity constraint to
a more general one with a lower and upper bound: l ≤ x ≤ u. The two
algorithms are introduced and published as Fortran implementations. In this
thesis, the programming language Python limited required modifications such
as adding a regularization term, and thus, two different implementations are
used, presented in the following.

3.6.1 Projected Gradient Descent Method

The projected gradient descent method is a simple algorithm directly applica-
ble to the gradient descent algorithm of Eq. 3.24 to ensure all parameters
x are in the feasible domain. In the first step of the algorithm, the uncon-
strained gradient descent iteration step of Eq. 3.24 is performed. In the
second step, values outside the feasible domain are projected back onto it.
For the non-negativity constraint, this is done by truncating negative values
and setting them to zero in each iteration step. The complete algorithm is
also shown in the flowchart in Fig. 3.3. It is used in the computational model
updating of a structural-mechanical model in Sec. 8.2.

3.6.2 Trust Region Reflective Algorithm

For imaging with coda waves, an algorithm introduced by Branch et al.
[71] as "a subspace, interior, and conjugate gradient method for large-scale
bound-constrained minimization problems" is used. Compared to classical
gradient methods as steepest descent, conjugate gradient methods converge
in fewer iteration steps but at the cost of more computational effort during
each step. For gradient descent methods such as the used steepest descent,
the number of iterations is commonly proportional to the condition number
κ(A), whereas, for conjugate gradient method, it is typically determined by
a square root of the condition number, i.e., is much faster [72]. With huge
condition numbers for the inverse problem, the conjugate gradient method
can significantly reduce computation times. Due to its high mathematical
complexity, a modified version of the lsq_linear algorithm of the open-
source package for scientific programming with Python, scipy1, is used. In

1 github.com/scipy
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Figure 3.3: Flowchart of the Projected Gradient Descent Method.

its documentation, the algorithm is described as follows: "The algorithm
iteratively solves trust-region subproblems augmented by a special diagonal
quadratic term and with trust-region shape determined by the distance from
the bounds and the direction of the gradient. This enhancements help to avoid
making steps directly into bounds and efficiently explore the whole space of
variables. To further improve convergence, the algorithm considers search
directions reflected from the bounds. To obey theoretical requirements, the
algorithm keeps iterates strictly feasible. [...] For large sparse Jacobians, a 2-D
subspace approach of solving trust-region subproblems is used [71, 73]. The
subspace is spanned by a scaled gradient and an approximate Gauss-Newton
solution delivered by scipy.sparse.linalg.lsmr. [...] The algorithm works
quite robust in unbounded and bounded problems [...]."[74]

3.7 Remarks on the Implementation

The projected gradient decent method is manually implemented in Python.
The trust region reflective algorithm of Sec. 3.6 is a scipy implementation
For the linear problem where A is independent of x, numerically expansive
computations of the projected gradient descent method as inverting or SVD
of A only need to be performed once, which is advantageous and speeds
up computations during each iteration step if computed in advance. Two
modifications have been manually implemented for the trust region reflective
algorithm. One is the addition of a regularization by including the damping
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term of the Tikhonov regularization in the algorithm. The second modification
is an enforcement of iterations for the algorithm. As it is originally a linear
solver, a solution for the first iteration step in the feasible domain is regarded
as optimal and a stop criterion. This check was modified to enforce further
iterations that significantly improved the result. Fig. 3.4 compares the two
algorithms at an application of the laboratory experiment of Sec. 6.2 at load
step 8. One can see that the obtained solutions in blue appear very similar.
Also, the obtained residual and solving times are very comparable. Thus,
both methods are comparable and deliver good results.
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Chapter 4

Basics of Coda Wave Interferometry

4.1 Overview on Non-Destructive Testing and
Structural Health Monitoring

Monitoring of structures is an essential part of guaranteeing their safety. In
Germany, the national code DIN 1076 [2] defines the review of the actual
condition of the bridge structure to ensure its stability and safe use for traffic.
Inspections can be divided into different levels. The most common method is a
visual inspection that only provides surface information. Different NDT meth-
ods exist that allow further structure evaluation. The applicability strongly
depends on the structures’ material. The majority of built infrastructure is
made out of reinforced concrete. Compared to a homogenous material such
as steel, concrete is very complex due to an inhomogeneous mix of aggregates,
cement, and steel reinforcement. For concrete structures, established NDT
methods are electrical methods, ground penetrating radar, impact-echo test-
ing, and ultrasonic testing, to name a few. A good overview of NDT methods
can be found in Lee et al. [75] and McCann et al. [76] and for ultrasonic
methods in Schiebold [77]. The opposite of NDT methods are destructive
methods such as core sampling. Non-destructive and destructive testing meth-
ods have in common that the result is typically on-demand local information.
Thus, inspecting large structures such as bridges is costly and typically does
not detect sudden events or trends. A permanently installed monitoring is
thus desirable and addressed by the field of SHM. Standard fixed sensors
measure displacements, strains, accelerations, and environmental conditions
such as temperature and humidity. Also, some of the NDT methods are
applicable for permanent monitoring, e.g., acoustic emission and ultrasound
methods. An overview of used sensors and their associated algorithms can
be found in Yoder et al. [78]. The typically obtained information is global,
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e.g., eigenmode information. Local NDT methods, which sometimes work in
a sensor network, can be extended to the entire structure but usually require
an unfeasible number of sensors due to the small sensing areas. Next to the
size of structures, environmental variations are a significant challenge for
permanent monitoring systems. Environmental variations can significantly
influence the measured data depending on the measurement technology. The
main challenge is to distinguish natural variations due to the environment
from permanent ones that are caused by damage.

In order to ensure structural integrity and safety, all SHM methods aim to
detect damages. Damage here can be described as irreversible changes, but
there are still different levels to distinguish. Worden et al. [79] propose the
following taxonomy:

• Defect: Inherent in the material and statistically all materials will
contain a known amount of defects. This means the structure will
operate optimally if the constituent materials contain defects.

• Damage: When the structure is no longer operating in its ideal condi-
tion but can still function satisfactorily, i.e., in a sub-optimal manner.

• Fault: When the structure can no longer operate satisfactorily. If one
defines the quality of a structure or system as its fitness for purpose,
it suffices to define a fault as a change in the system that produces an
unacceptable reduction in quality.

With this classification, the aim is to detect faults and damage that could lead
to a fault. The detection of damage can be distinguished into different levels.
Established SHM applications are often limited to localization or classification
of the following classification by Worden et al. [79] and Rytter [80]:

• 1. Detection: The method gives a qualitative indication that damage
might be present in the structure.

• 2. Localization: The method gives information about the probable
position of the damage.

• 3. Classification: The method gives information about the type of
damage.

• 4. Assessment: The method gives an estimate of the extent of the
damage.

• 5. Consequence: The method offers information about the structure’s
safety, for example, estimates residual life.

4.2 Overview on Concrete

Concrete is a highly heterogeneous composite of cement, aggregates, and
water. After a hydration process in which water and cement form a matrix
around the aggregates, a hard and resistant material is created that can be
seen in Fig. 4.1. The properties of concrete strongly depend on several factors,
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Figure 4.1: Structure of concrete [81].

such as the cement used, the water-cement ratio, and the additives used.
The compressive strength of concrete is typically more than ten times higher
than its tensile strength. Therefore, concrete is usually combined with steel
reinforcement. Compressive strengths of concrete range from 10N/mm2 to
over 100 N/mm2. With increasing compressive strength, the average Young’s
modulus increases from 27000 N/mm2 to 45000 N/mm2. The used aggregates
can also have significant differences in size. Fine ones typically have diameters
< 4mm while coarse ones can have 1-3 cm diameters. Reinforcement bars
also often have diameters of 1-3 cm and in the case of pre-tensioning, this can
further increase. While the distribution of aggregates is uniform within the
material, the distribution of reinforcement strongly depends on the position
in the material. Thus, not only can the characteristics of different concrete
specimens strongly differ, but also, within one concrete specimen, the local
cross-sections can have large differences. It is, therefore, very challenging to
investigate existing concrete structures with NDT technologies.

Under load, concrete deforms. For reinforced concrete, two states differ:
before and after cracking. Until the concrete tensile strength is reached,
the material behaves linear-elastically. This means that deformations are
fully reversible. In this domain, stress and strain are linearly related by
Hookes law. Once the tensile strength is exceeded, the material begins to
crack, and the steel reinforcement is activated to carry the tensile forces.
Cracks are typically irreversible changes in the medium but not necessarily
unwanted damage. In an economical structure design, cracking is often
planned. However, cracks reduce the protection of the reinforcement, making
the material more vulnerable. An overview of crack classifications and the
influence of cracks on ultrasound can be found in Wolf [82].
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4.3 Overview on Wave Properties

The fundamental properties of a wave are wavelength λ, frequency f and
wave speed c that are related as follows:

λ =
c

f
(4.1)

Depending on the particle movement, one can distinguish two main types of
body waves shown in Fig. 4.2. One is compressional waves with body motion

Figure 4.2: Types of body waves: 1. and 2. shear waves (S-waves), 3.
compressional wave (P-waves)[83].

in the longitudinal direction, referred to as primary waves (P-waves), and the
other is shear waves with particle motion in the transversal direction, referred
to as secondary waves (S-waves). Next to body waves, there are also different
types of surface waves, with the Rayleigh waves being the most important
ones. The used transducers in the presented experiments emit energy as
P-waves. However, mode conversion into an S-wave or vice versa is possible
during a scattering event. After many scattering events when a diffuse wave
field is obtained, the P-wave energy and S-wave energy ratio is as follows [84]:

Ep

Es
=

1

2

(
cs
cp

)3

(4.2)

The wave speed in concrete depends, among other factors like cement paste,
aggregates, and water ratio, significantly on the concretes Young’s modulus.
Typical are wave speeds of the P-wave in concrete in the range of 3500m/s
- 4500m/s. Also, P-waves are approximately 1.7 times faster than S-waves.
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Consequently, this means that S-waves contain approximately 90% of the
energy in the diffuse wave field.

Next to the properties of Eq. 4.1, the sound pressure p is another fun-
damental property of ultrasound. In a wave signal, the sound pressure p is
represented by the amplitude. In the free field, the sound pressure of body
waves decreases proportionally to the second power of the distance r to a
point source (spherical divergence):

p ∼ 1

r2
(4.3)

The wave is reflected or refracted on boundaries and heterogeneities in the
medium. The ratio of reflection and transmission depends on the difference
in acoustic impedance Z of the materials that depend on the wave speed c
and material density ρ:

Z = c ∗ ρ (4.4)

The acoustic impedance is related to the sound pressure by the velocity v of
the particles around their rest position:

Z =
p

v
(4.5)

In addition to the spherical divergence, which reduces the sound pressure,
the ultrasound is also attenuated. Attenuation consists of scattering, intrinsic
absorption, and diffraction. Often, scattering is the dominant reason for
attenuation [85]. The scattering behavior of ultrasound is typically investigated
in polycrystalline media [86–89]. One can differ from three types of scattering
that depend on the ratio of wavelength λ and scatterer sizes d [90]:

• Rayleigh scattering: λ/d >> 1.0

• Stochastic scattering: λ/d ≈ 1.0

• Diffusive scattering: λ/d < 1.0

Ultimately, the scattering behavior and, thus, the attenuation is frequency-
dependent and increases significantly with the frequency. Different defined
scattering regimes for concrete are given in the following section.

4.4 Properties of the Coda Wave in Concrete

Coda waves travel in heterogeneous media and are backscattered by inho-
mogeneities. Historically, they are typically investigated in seismology [91,
92]. Heterogeneities distributed uniformly in the earth’s crust backscatter
earthquake waves, creating a signal containing a diffuse tail. This tail that
typically starts after the direct, ballistic wave is called coda. In terms of the
multiple uniformly distributed heterogeneities, concrete has many similarities
to the earth’s crust. With a scaling of the frequency to the ultrasonic regime
due to the different dimensions, the evaluation of coda waves is thus trans-
ferable to concrete. The wave is scattered mainly by aggregates, pores, and



34 CHAPTER 4. BASICS OF CODA WAVE INTERFEROMETRY

reinforcement in concrete. As previously mentioned, the scattering behavior
is frequency-dependent. Planès et al. [4] define four overlapping scattering
regimes for ultrasound in concrete. The delineation is done by the average
number of scattering events of a wave from the source to the receiver.

• stationary wave regime: f < 20kHz (no significant scattering)

• simple scattering regime: 10kHz < f < 150MHz (one scattering event
on the way from source to receiver)

• multiple scattering regime: 100kHz < f < 1MHz (multiple scattering
events on the way from source to receiver)

• attenuation regime: f > 500kHz (not applicable to large scale concrete
structures)

The multiple scattering regime is the most important since coda waves are
characterized by multiple backscattering at heterogeneities. Planès et al. [4]
describe that in received multiple scattered signals, the direct wave is highly
attenuated and sometimes no longer visible. In contrast, the direct wave
of signals in the simple scattering regime is visible. However, the simple
scattering regime signals often contain a coda part after the ballistic part.
Experiments presented in Ch. 6 use signals with a central frequency of 60 kHz.
Two signals of the experiment presented in Sec. 6.2 that have the same source
but different travel distances in the medium are shown in Fig. 4.3. For the
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Figure 4.3: Comparison of two 60 kHz signals with different travel
distances in the medium.

signal with the short travel distance of 0.3 m, one can see peaks in the signal
that indicate the arrival of the direct wave. Two arrivals are visible: the one
of the p-waves (first) and the one of the s-waves (second). After the first
peaks, there is a long diffuse tail called the coda part. Thus, there must
also be multiple backscatterings at this short source-receiver distance. With
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increasing source-receiver distance, as in the bottom signal of Fig. 4.3 (pair
18-25), the scattering events increase, and the direct wave is no longer visible.
According to Planès et al. [4], the frequency of 60 kHz with wavelengths
of λp−wave ≈ 0.07m and λs−wave ≈ 0.04m belongs to the simple scattering
regime. However, the evaluation of the waveforms in Fig. 4.3 suggests
that travel distances in the medium play a significant role in the scattering
characterization.

This goes along with two measures for describing the scattering behavior:
the scattering mean free path l, and the transport mean free path l∗. The
scattering mean free path describes the distance between two successive
scattering events and thus is a measure of the heterogeneity of the material.
The transport mean free path describes the distance after which the wave has
lost the memory of its initial direction of propagation. After this distance,
the wave propagation is no longer directional but a superposition of countless
random paths that create a diffuse spread of the wave field. In case scattering
is isotropic, the two measures are the same. In case the wave has traveled less
than the transport mean free path, the direct wave parts are visible as that
is the part containing information about the initial direction of propagation.
The two signals of Fig. 4.3 suggest that this experiment’s transport mean free
path must lay between the two evaluated source-receiver distances. Further
investigations on this problem are performed in Sec. 6.2.4.2.

Most applications of coda waves in concrete use frequencies in the range
of 100 kHz to 1 MHz, which is in the multiple scattering range. In this thesis,
the multiple scattering-based techniques are applied to signals with a central
frequency of 60 kHz as they also show a diffuse coda part created from multiple
backscattering. The smaller frequency also leads to reduced attenuation. Thus,
transmitting the signal over longer source-receiver distances is possible, which
is beneficial for the application in large concrete structures.

Due to the diffuse spreading of the ultrasound into the concrete, the coda
part is also very sensitive to changes in the medium because a change affects
not only the tiny part of the ballistic wave but multiple random wave paths
that interfere with a change. Thus, little changes have increased visibility in
the signal.

4.5 Evaluation of Coda Waves

The comparison to a reference measurement is essential for evaluating coda
waves. Therefore, the NDT method with coda waves is typically referred to
as coda wave interferometry (CWI). The comparison to a reference cancels
influences on the scattering of a signal by geometric boundaries, aggregates,
and pores of the concrete and reinforcement bars. This means coda signals
with their diffusive tail can be reproduced as long as no external influences
affect the specimen. The diffuse tail of the signal is especially sensitive to tiny
changes because many random paths of the wave cross a small change and
superpose in the tail, creating amplified visibility. The CWI is multi-layered,
and the parameters examined are discussed in more detail below.
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4.5.1 Cross Correlation

The actual measurement value in CWI is a cross-correlation coefficient (CC)
for a time frame of length T in the signal φ at time t that is computed as
follows [93, 94]:

CC(t) =

∫ t+T/2

t−T/2
φref (t)φ(t) dt√∫ t+T/2

t−T/2
φ2

ref (t) dt
∫ t+T/2

t−T/2
φ2(t) dt

(4.6)

For two identical signals, the CC is one. The larger the changes, the lower the
CC. When putting the focus on changes in the waveform, the decorrelation
coefficient (DC) is investigated that is closely related to the CC, in fact:

DC = 1− CC (4.7)

4.5.2 Evaluated Time Frames

The time frames of length T for evaluating a CC or DC can be divided into
two types. One is the overall (long) time frame, and one is successive shorter
ones for evaluation of a DC development (cf. Fig. 4.4).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time [µs]

In
te

ns
ity

tt + T
2 t + T

2

coda signal
short evaluation frame length for DC development over signal length
long evaluation frame length for general signal comparison

Figure 4.4: Exemplary time frames for the correlation evaluation of a
coda signal.

The coda technology primarily uses the diffuse tail of a signal. Thus, the
overall time frame should be long enough. With decreasing signal intensity,
the signal-to-noise ratio, however, increases, and the overall signal length
should be limited. The shorter time frames for the DC development evaluation
should be chosen long enough to avoid substantial deviations but short enough
to be able to document development.
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4.5.3 Phase Shifts

One can generally distinguish two types of changes in the coda signal. One is
a phase shift of the signal that comes from a change of the wave speed δv, and
one is a change in the waveform that typically comes from new scatterers. As
described later in Sec. 4.6, there are multiple reasons for a change in the wave
speed. With a pure change of the wave speed and no waveform deformation,
the signal changes are, in theory, revertible by stretching the signal along the
time axis with a factor ε [95]. The stretching technique assumes that with
the linear increasing time of the signal in the specimen, the signal’s phase
shift also increases linearly. With a reduction of the wave speed, e.g., due to
compression, the stretching can also be negative.

The stretching factor ε is obtained by stretching the signal multiple times,
and the ε that creates the largest CC is chosen as the best stretching factor for
the measurement. In the presented work, each signal is stretched in successive
short time frames, and therefore, one can document a stretching development
over the signal’s length. Figure 4.5 visualizes the phase shifts over the signal’s
length that is linearly interpolated within the evaluation frames.
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Figure 4.5: Evaluated phase-shift over the signal length.

4.5.4 Decorrelation Development

Next to the phase shift of the signal, the waveform itself can also change.
This change is typically measured with the DC. Due to the scattering in the
medium, a certain point is passed not just once by the wave but multiple
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times by randomly scattered wave paths. Thus, adding a new scatterer into
the medium, e.g., due to a crack, does not change the signal at just one
position but several positions. These multiple waveform changes in the signal
create a characteristic DC development over the signal’s length. This DC
development is shown in Figure 4.6 and tends to increase in later parts of
the signal because more random wave paths cross the new scatterer and
create various interferences with other wavefronts that all add up to an
increased decorrelation. This superposition also explains the high sensitivity
of CWI to tiny changes. The described increasing development of DC is very
characteristic of the relative position of the new scatterer to the source-receiver
pair and is modeled with sensitivities of the coda wave (cf. Sec. 5.2.1).
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Figure 4.6: Exemplary decorrelation evaluation of measurement in five
consecutive non-overlapping windows of length 400µs after
the arrival of the first wave (time-of-flight (tof)).

4.6 Influences on Coda Waves

When applying CWI as a SHM, it is important to understand influences on
the signal that creates decorrelation. Especially due to the high sensitivity
of coda waves to small changes, environmental variations can significantly
change the coda signal. Below is an overview of the most important influences:

Temperature With significant variations on a daily and yearly scale, temper-
ature has an enormous environmental influence on concrete structures.
With increasing temperature, the wave speed of ultrasound increases.
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Since the wave speed is not obtained from a time-of-flight evaluation
but with CWI that analyses the little phase-shifts within the signal, the
sensitivity of detecting temperature changes with CWI is immense. This
vast potential is documented by several studies [10, 96, 97] investigating
the effect of temperature on coda waves. With CWI, even changes in
the magnitude of one degree become visible in the later parts of the
coda waves. Wang et al. [98] compares different studies that evaluate
the phase shifts from temperature. Results show significant variations
in the relation of phase shifts to temperature change. The main factors
are probably the significant variation of the concretes Young’s mod-
ulus described in Sec. 4.2 and different source-receiver distances and
specimen dimensions. The temperature development in the specimen
is also highly non-linear, which means that the temperature variation
can affect similar source-receiver combinations in the same concrete
structure differently.

Moisture The moisture change in concrete is closely coupled with tempera-
ture change. Ju et al. [11] investigates the effect of moisture content in
a cement mortar on the ultrasound velocity. The study shows that the
wave velocity slightly increases with increasing moisture, and the signal
attenuation also increases.

Stress Changes In elastic materials, the ultrasound velocity is related to
the stresses in the medium. The relation is called the acoustoelastic
effect discovered by Brillouin [99]. The effect describes a decrease in
ultrasound velocity with increasing pressure and, vice versa, faster ultra-
sound velocities with increasing tensile stress. The acoustoelastic effect
involves a non-linear extension of the constitutive relationship between
the mechanical stress and the resulting strain. See, e.g., Lillamand et al.
[8] and Guyer [100] for further information on non-linear elasticity. The
effects of stress on the ultrasound velocity are material-specific and
described with material constants that depend on the Lamé and Mur-
naghan coefficients. In a controlled environment, CWI allows recovering
the relative velocity change dv/v with a precision of 10−5 according to
Larose et al. [7]. This precision allows structures to be monitored at a
stress level well before cracking. One obtains a near-linear relation at
low-stress levels when plotting the ultrasound signal’s relative velocity
change dv/v against the mechanical stress change. From the slope of the
linear regression of this relationship, one can obtain the acoustoelastic
constants of the material. For concrete, values from the literature differ
in a wide range. Planès et al. [4] reports a range of 0.1 × 10−3 to
2× 10−3 MPa-1 for healthy concrete. Studies [101–104] also find that
the acoustoelastic constant increases with increasing damage. Thus,
with good calibration, the acoustoelastic constant could be a tool to
detect altered concrete. However, Zhang et al. [104] also report increases
of the acoustoelastic constant with load cycles. Direct damage detection
from obtained acoustoelastic constant is problematic for a long-term
SHM application, where temperature also affects the relative velocity
change.
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Cracks Cracks are cuts in the medium of micro- or macroscopic scale. There
are different types of cracks, which are strongly related to the cause
of cracking. Microcracks are not visible to the naked eye. They can
form as a natural part of the cement hydration process but also due
to thermal or mechanical loading. Under mechanical loading, one can
observe a memory effect of concrete (Kaiser effect). It describes the
effect of additional microcracking when stresses exceed the historical
maximum [6]. Under pressure, it can also be observed that micro-cracks
close [105]. One can distinguish bond, mortar, and aggregate cracks
depending on the location. Microcracks connect to macrocracks with
excitation of the concrete tensile strength or under dynamic loading.
However, macrocracks are not necessarily problematic depending on
the reinforced concrete exposure. In an economical design of the struc-
tural members, steel reinforcement is used to bridge the cracked parts.
Nevertheless, it is essential to monitor the development of micro- and
macrocracks. Wolf [82] describes three main effects of cracks on the
ultrasound signal: A change in ultrasound velocity, sound pressure,
and scattering behavior. The effects of the acoustoelastic effect usually
superpose with the effects on the ultrasound velocity. Shortly before
macrocracks appear, Shokouhi et al. [106] report a decrease in the
ultrasound velocities. Regarding sound pressure, studies [106, 107]
report a loss in amplitude with increasing damage. With cracks being
a discontinuity in the medium, each new crack marks a new scatter,
and thus, the overall scattering behavior changes. Larose et al. [12]
have shown that locating small changes in a multiple scattering such as
concrete is possible. The localization is based on a waveform distortion
due to the additional scatterers that can be measured with a DC evalu-
ation of consecutive time frames within the signal. As described in Sec.
4.5.4, the DC increases towards later parts of the signal. The increase
is very characteristic of the relative position of the new scatterer to the
source-receiver pair and is modeled with sensitivities of the coda wave
(Sec. 5.2.1). With an equivalent model, locating the small changes is
possible.

4.7 Signal Processing for Damage Localization

The signals themselves are processed before applying CWI on coda signals.
In practical applications, a measurement is typically repeated several times
within a few milliseconds, and the average signal is used. This is done to
improve the reproducibility of the coda signals and increase the signal-to-noise
ratio by reducing white noise. The next step filters specific frequencies with a
bandpass filter to reduce the signal’s noise. Also, the start of the signal is
dependent on the travel distance between the source and the receiver. Thus,
the start of the signal is cut off depending on the estimated time-of-flight (tof)
of the signal. After this constant signal processing, the CWI is performed.

As mentioned above, there are various influences on a coda signal. With
a focus on damage localization, influences from temperature, moisture, and
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the acoustoelastic effect are regarded as noise to be filtered. These influences
mainly create a phase shift due to ultrasound velocity changes. Due to
typically inhomogeneous changes in temperature and stress over the specimen
domain, there can be variations in the phase shifts. Typically, it is assumed
that the phase shift increases linearly and can be compensated by stretching
the signal. With several consecutive time-frames for stretching, it is also
possible to compensate for non-linear developments of the phase-shift over
the signals’ length (cf. Sec. 4.5.3). After stretching, it is assumed that all
effects that affect the ultrasound velocity are filtered out, which means only
influences that distort the signal remain. Thus, in theory, only the effects of
cracks on the signals’ scattering behavior remain after stretching.

4.8 Used Hardware for Coda Waves

For CWI, ultrasound transducers are used as source and receiver. The typical
type of application for ultrasound used for CWI is a surface mounting of trans-
ducers. Niederleithinger et al. [108] describes three substantial disadvantages
of the surface installation. Namely, there are difficulties in a constant coupling
over time, the significant influence of external effects such as temperature,
and the danger of harm in a permanent field installation. The authors thus
use sensors developed by Acoustic Control Systems, Ltd. (ACS, Moscow,
Russia) in cooperation with the Bundesanstalt für Materialforschung und
-prüfung (BAM) that are shown in Fig. 4.7 and also used the experiments
presented in this thesis. The sensors contain a hollow piezoceramic cylinder

Figure 4.7: Photo of the used embedded ultrasound transducer [108].

of 20 mm diameter and 35 mm length that converts the electronic signal into
an ultrasonic wave. Together with metallic clips at the piezo’s ends, the total
length of the cylinder-shaped transducer is 75 mm. The embedded installation
is ideally done before casting the concrete. In this work’s laboratory experi-
ments, the sensors are attached to the reinforcement with 3D-printed plastic
clips that ensure a safe mounting position. It is also possible to install sensors
at existing structures. For this purpose, core drillings are made, sensors are
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Figure 4.8: Response of the transducer to a short electrical impulse
(2µs), recorded by a second, identical one with no distance
in between them [108].

Figure 4.9: Frequency spectrum of signal from Fig. 4.8 [108].

inserted, and the holes are filled with grout. Further information on the instal-
lation and detailed signal characterization can be found in Niederleithinger
et al. [108]. For this work, the characterization of the signal with a description
of the excitation in time and frequency domain shown in Fig. 4.8 and Fig. 4.9
is sufficient. Despite the short excitation of 2µs, the signal in Fig. 4.8 shows
a long reverberation. Also, the frequency domain shows several peaks, with
the most prominent one around 62 kHz. For CWI, the lack of sharp cuts in
the time or frequency domain is unproblematic. For CWI, the most essential
requirement of the ultrasound transducers is excellent signal reproducibility
over a longer period, which is the case for the used sensors.

At this point, some simplifications in the numerical modeling of the sensors
should also be pointed out. Despite the cylindric shape with a length of
75 mm, the transducers are treated as point sources in the numerical models.
Also, the simulations neglect any directivity pattern and assume a uniform
signal spread in all directions. The signal is furthermore referred to as a
60 kHz signal.

The discussion on the hardware used for reference measurements is kept
short as it is specific for each experiment. A good overview of the used strain
measurement techniques for reinforced concrete structures is given by Clauß
et al. [109], who also performed the experiments of Sec. 6.2.



Chapter 5

Finite Element Based Imaging with
Coda Waves

Parts of this chapter are taken from Grabke et al. [110].

5.1 Simulation of Coda Waves

Describing observed measurements with a model is generally required for
successful damage localization. Since the measurements come from a signal
processing of coda waves, the behavior of ultrasound in concrete needs to
be simulated. As described in chapter 4, coda waves are very complex
ultrasonic waves whose waveform is created from multiple scattering. This
phenomenon can be modeled with equivalent high-fidelity simulations or
simplified simulations that use homogenizations. The following subsections
compare the different types of simulations for the coda problem and apply a
finite element formulation to the problem.

5.1.1 High Fidelity Simulation

The high-fidelity simulation tries to describe the occurring physical processes
as precisely as possible, which requires a very fine discretization in space
and time. Fine spatial resolution is required to model the heterogeneity of
concrete containing aggregates and pores that scatter the ultrasound. The
fast-moving, high-frequency ultrasound wave requires fine discretization in
time. For numerical stability in one dimension, the relation of mesh size ∆x
and time ∆t also depends on the propagation velocity v and is known as
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Courant-Friedrichs-Lewy condition (CFL Condition) [111]:

C =
v∆t

∆x
(5.1)

The CFL Condition should generally be lower than 1 to ensure an accurate
physical representation of the process. For n dimensions Eq. 5.1 changes as
follows:

C = ∆t

(
i=1∑
n

vxi

∆xi

)
(5.2)

This work uses high-fidelity simulations to generate synthetic coda signals
for numerical experiments. However, the later described imaging with CWI is
working with simplifications (cf. Sec. 5.1.2). In order to generate the synthetic
coda signals, a simulation is performed for every ultrasound transducer to
generate a reference measurement. Then, synthetic damage in the form of a
new scatterer is added to the model, and the simulation is repeated to generate
the evaluated measurements. These simulations were performed by colleagues
from Prof. Dr. Erik H. Saenger’s team at the Bochum University of Applied
Sciences. More information on the performed simulation of coda waves can
be found in Finger et al. [112]. The code for seismic wave propagation uses a
rotated staggered-grid finite difference scheme. In order to ensure numerical
stability, time steps are chosen such that C < 0.8 (Eq. 5.2).

5.1.2 Simplifications

Modeling coda waves as precisely as possible requires fine discretization
in space and time. This makes a large, structural-scale simulation compu-
tationally extremely expensive and thus infeasible for real-world problems.
Therefore, the CWI typically uses a significant approximation by Ryzhik et al.
[113], who have shown that the spread of a wave’s energy in a random media
as concrete can be approximated with a diffusive spread in a homogeneous
medium. This relation can be seen in Figure 5.1 where the absolute values
of the received signal are shown next to the solved diffusion equation at
the receiver’s position R for a spread from source S. One can see that the
diffusion solution forms an envelope around the signal and, therefore, is a valid
approximation for the energy contained in the signal. This approximation that
homogenizes the material drastically reduces the complexity of the simulation
because, unlike wave propagation simulations, the model used for solving the
problem does not contain any scatters. Thus, mesh sizes and time steps can
be increased. Additionally, the diffusion problem is a well-known parabolic
partial differential equation (PDE) whose analytical solution for point sources
exists. Also, the problem is well known in FEM. Thus, an application of FEM,
a very versatile technique in terms of geometry and boundary conditions to
the coda problem, is possible.
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Figure 5.1: Envelope fitting of a signal (60 kHz) in concrete with the
solved diffusion equation.

5.1.3 Analytical Solutions for the Coda Problem

Most probably due to its roots in geophysics, previous studies on imaging
with CWI, e.g., Zhang et al. [21] and Planès et al. [23] use analytical solutions
to describe the coda waves’ intensity. The analytical solution for the just
mentioned diffusion approximation in an infinite two-dimensional space with
a point source that is active at t = 0 reads as follows [114]:

IDiffusion,2D(r, t) =
1

4πDt
e

−r2

4Dt (5.3)

The analytical solution that is valid for an infinite space needs to mirror a
source at boundaries where energy is reflected. More recent publications [23,
115] used a different PDE to describe the wave energy spread. The solution of
the radiative transfer equation (RTE) is similar to the solution of the diffusion
PDE except for a part in the RTE that represents the ballistic wave. It is
referred to as a more accurate representation of the actual coda wave and is
expected to improve the results. Paasschens [116] gives an analytical solution
of the RTE for similar boundary conditions as in Eq. 5.3:

IRTE,2D(r, v, t) =
e−r/l

2πrv
δ(t− r

v
) +

√
1− r2

v2t2

4πDt
e

1
l

√
v2t2−r2Θ(vt− r) (5.4)

In both analytical solutions, r stands for the distance to the source, t is the
time, and D represents the diffusivity of the medium. In Eq. 5.4, δ represents
the Dirac delta, Θ is a Heaviside function, and v is the wave speed. The
first summand of Eq. 5.4 represents the ballistic wave and is "activated" by
the Dirac delta for the time of the wave passing the location (t = r/v). It
is referred to as the coherent term. The second summand of Eq. 5.4 is very
similar to Eq. 5.3 and represents a diffusive spread of the scattered wave.
Further insight into the RTE is given in Sec. 5.1.5.
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5.1.4 Finite Element Formulation for the Coda Problem

FEM is an universal method for solving a given PDE. The derivation of the
finite element (FE) formulation for the coda wave behavior with its analogy to
a diffusive spread is described following Ottosen et al. [117] and Zienkiewicz
et al. [118] that are both standard works of FEM. FEM subdivides the
large solution field into smaller finite elements. The solution is approximated
for each element with predefined functions (called shape functions) whose
derivatives are also known in advance. This is done by transforming the PDE
(here given in Eq. 5.5), which is also referred to as strong form, into a weak
form that satisfies the PDE not at every position x but over the domain Ω in
a weak sense. Based on the mentioned authors [117, 118], the strong form of
the coda problem using the diffusion analogy can be formulated as follows:

−∇T (D∇I) +Q =
∂I

∂t
(5.5)

where D is the diffusivity of the medium, I is the wave energy concentration,
and Q describes sources or sinks, which in the context of the coda technology
are the ultrasound transducers. The weak form is obtained using the weighted
residual method (Galerkin method) and satisfies Eq. 5.5 over a domain Ω:∫

Ω

v

[
∂I

∂t
+∇T (D∇I)−Q

]
dΩ = 0 (5.6)

v refers to a weighting function (also called test function) that is weighting the
residual such that the unnoticed compensation of positive and negative con-
tributions is avoided. FEM then approximates the solution I with predefined
shape functions N.

I = Nu (5.7)

Here u contains the wave energy concentration at the discrete points which
connect the elements. These nodes are also referred to as control points. In
the Galerkin method, the shape functions that describe I are also used to
describe the weighting function v. The weak form is then integrated by parts,
and the approximations with shape functions are inserted. Zienkiewicz et al.
[118, Ch. 5] give the result as

Cİ+KI = f (5.8)

with the following element contributions whose integrals need to be evaluated
and assembled into the global matrices of Eq. 5.8:

Ce =
∫
Ωe

NTNdΩ

Ke =
∫
Ωe

BTDBdΩ

fe =
∫
Ωe

NTQdΩ

(5.9)

B contains the derivatives of N such that

∇I = Bu with B = ∇N (5.10)
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Note that compared to Zienkiewicz et al. [118, Ch. 5] the terms referring to
the energy flux at the boundary Γ have been omitted because it is assumed
that the ultrasound signal is reflected at boundaries with negligible energy loss.
To solve the transient problem, the time domain must also be approximated.
The Crank-Nicolson method [119] is an unconditionally stable problem-solving
method. The following explanation is based on Taler et al. [120]. The method
uses a generalized trapezoidal approximation of the time domain to obtain
the wave energy concentration at the time step n + 1:

In+1 = In +
[
(1− θ)İn + θİn+1

]
∆t (5.11)

where ∆t is the time step between time steps n and n+1. The Crank-Nicolson
method uses 1/2 as the temporal parameter θ, making it a semi-implicit
method. Multiplying both sides of Equation 5.8 with θ for time step n+ 1
and with 1− θ for time step n and algebraically adding both terms then leads
to:

C
[
(1− θ)İn + θİn+1

]
+K

[
(1− θ)In + θIn+1] = (1− θ)fn + θfn+1 (5.12)

Combining Equation 5.11 and Equation 5.12 and rearranging to a form of
K∗In+1 = f∗ that lets one solve for the unknown In+1 leads to the final
problem to be solved:

(
1

∆t
C+ θK

)
In+1 =

[
1

∆t
C− (1− θ)K

]
In + (1− θ)fn + θfn+1 (5.13)

The explained steps for deriving a FE formulation apply to any given
PDE. If a different PDE is found that describes the scattering behavior of
coda waves better, the FEM methodology is an ideal candidate for solving
the problem. Due to its weak formulation, the used shape functions only
approximate the exact solution. Those functions are, in general, exchangeable.
The FE solution can be improved by increasing the polynomial order of the
used functions. The flexibility of FEM can be applied to the dimensionality
and element geometry. For 2D geometries, a very versatile formulation is
based on triangles, and for 3D geometries, it is based on tetrahedrons. The
analytical solution that is valid for an infinite space needs to mirror a source
at boundaries where energy is reflected. The boundary conditions in FEM
can respect that reflecting behavior which is especially useful for complex
geometries without a clear mirror axis.

Compared to the analytical solution of a PDE that is valid for only one
specific case, the FE solution has advantages because all kinds of boundary
conditions in terms of geometry or the time of the source being active can be
handled.

Fig. 5.2 and Fig. 5.3 show the results of the FEM simulation for the
experiment of Sec. 6.1. One can see the diffusive spread from transducer 4
(cf. Fig. 6.1) at different timesteps that illustrate how the energy spreads
into the medium.
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Figure 5.2: FEM simulation results for the diffusive spread from one
transducer (cf. experiment of Sec. 6.1).
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Figure 5.3: Diffusive spread of Fig. 5.2 at cutting plane y = 0.5m.

5.1.5 Combination of Finite Element Based and Analytic
Approach

As mentioned in Sec. 5.1.3 recent publications [23, 115] describe the RTE of
Eq. 5.4 as more suitable for simplifying the coda problem. The main reason
is the coherent term that represents the ballistic wave. The ballistic wave is
increasingly important, especially for frequencies in the transition range of
single and multiple scattering. A second main difference between Eq. 5.4 and
the classic diffusion problem is the Heaviside function limiting the diffusive
spread to the wave speed, which physically makes sense. In order to improve
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the FEM solution of the diffusion problem, the two described improvements
of the RTE are applied to the FEM solution in a post-processing step.

IFEM+Analytic(r, v, t) =
e−r/l

2πrv
δ(t− r

v
)︸ ︷︷ ︸

coherent term

+IFEM (r, v, t) Θ(vt− r)︸ ︷︷ ︸
Heaviside function

(5.14)

For applying the Heaviside condition on the FEM solution, the p-wave
speed v is used. The coherent term representing the ballistic wave is added
to the solution. For discrete meshes and time steps, the Dirac delta δ(t− r

v
)

creates difficulties. Generally speaking, it activates the corresponding term for
the exact moment of the wave passing. This activation happens at the time
step closest to the time passing a corresponding node for the used discrete
meshes. In order to represent border reflections, the transducers are mirrored
at the borders.

Another discontinuity occurs at the source position because the distance
to the source appears in the denominator in Eq. 5.14. Thus, a modification
at the source position is left out. This, unlike at all other nodes, ultimately
does not increase the sensitivities at the source position. However, this is
neglected since the sensitivity at transducer positions is significantly larger
than in other areas, and the modification would only affect the first time step.

Fig. 5.4 and Fig. 5.5 compare the improved diffusion simulation to the
standard FEM results from Fig. 5.2. One can see how the Heaviside function
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Figure 5.4: FEM simulation results for the diffusive spread from trans-
ducer for the experiment of Sec. 6.1.
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Figure 5.5: Diffusive spread of Fig. 5.4 at cutting plane y = 0.5m.

limits the radius of the diffusive spread. For t = 100µs, the additional
coherent term RTE is more visible. Note that the inconsistencies in the circle
in Fig. 5.4 result from treating the Dirac delta in discrete meshes. Also, for
the early time steps, the spread is no longer a perfect circle, which is also due
to the behavior of a Heaviside function in discrete meshes. However, these
are only cosmetic issues. Due to the exponential influence, the improvements
only change the diffusive spread at early time steps where the energy spread
close to a transducer is simulated. Therefore, the boundary reflections of
the ballistic wave, represented by the coherent term, are not visible. For an
improved understanding, Fig. 5.6 shows only the coherent term without the
main diffusive spread.

0 1x-coordinate [m]
0

1

y-
co

or
di

na
te

 [m
]

Coherent term of RTE
t = 100 µs

0

0.43

0 1x-coordinate [m]

Coherent term of RTE
t = 200 µs

0

0.27

0 1x-coordinate [m]

Coherent term of RTE
t = 400 µs

0

0.05

Figure 5.6: Spread of the ballistic wave (= coherent term in Eq. 5.14).
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5.1.6 Choice of the Homogenization Parameter Diffusivity

The main parameter when using the diffusion analogy to approximate the
signal’s energy spread is the diffusivity D of the medium. The larger the
diffusivity, the faster energy moves away from the source. It depends on several
parameters, such as the number of scatterers in the medium and their size
compared to the wavelength of the initial signal. In case the distance on which
the waves lose all the information about their initial direction due to scattering
(referred to as mean scattering free path l∗) is known, Sheng [121] gives the
formula to compute the diffusivity D depending on the dimensionality d of
the model and average velocity of the transport of energy ν:

D =
νl∗

d
with

{
d = 2 for plane problems ,
d = 3 for volumetric problems.

(5.15)

5.1.7 Envelope Fitting

The diffusion coefficient can also be obtained with an envelope fitting of
the signals’ absolute values ISignal using the solved diffusion problem shown
in Figure 5.1. Due to its simple and fast evaluation, the analytic diffusion
solution of Eq. 5.3 is used. In order to describe the actual signal as precise as
possible, a part describing the energy dissipation is added to Eq. 5.3 with D
as the dissipation factor:

IDiffusion,2D(r, t,D,D) =
1

4πDt
e

−r2

4Dt e−Dt (5.16)

To give an outlook: The previous neglect of dissipation does not affect the
imaging with CWI described in Sec. 5.2 since the term vanishes in Eq. 5.19.
Thus, as a simplification, the dissipation is only respected for the envelope
fitting. With time t and source-receiver distance r being fixed for a signal,
the tunable parameters for the envelope fitting are the diffusivity D and the
dissipation factor D. The two parameters are found in an iterative process.
First, the time of the signal’s maximum is searched. It is obtained by averaging
the time of the signal’s three maximum amplitudes. As shown in Fig. 5.1,
the envelope forms a maximum at this point. To find D, the derivative of
Eq. 5.16 with respect to t is set to zero, and with known tmax of the extreme
point from the actual signal, one can solve for D:

d
dt
I(r, t,D,D) =

1

4πDt
e−

r2

4Dt e−Dt︸ ︷︷ ︸
̸=0

(
−1

t
+

r2

4Dt2
−D

)
︸ ︷︷ ︸

=0

= 0

solve for D: D(tmax) =
r2

4tmax(Dtmax+1)

(5.17)

In the next step, an envelope connecting the peaks of the second half of the
signal (t ≥ T/2) is formed, as the dissipation strongly influences the intensity
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loss. The dissipation factor D is found with a least-squares fitting:

min
D∈R

∥ISignalenvelope(t)− IDiffusion,2D(D, t)∥22
with t ≥ T/2
subject to D ≥ 0

(5.18)

Since the dissipation factor influences the position of the maxima, the
search for D and D is repeated iteratively.

5.2 Imaging Problem

The simulation described in Section 5.1 approximates the waves’ energy
spread. The evaluated measurement, however, is a decorrelation development
of two compared signals. In order to transfer the wave simulation to a
model representing the signal decorrelation, sensitivities of the coda wave are
computed.

5.2.1 Coda Wave Sensitivities

Sensitivities are, in general, gradient information, so information from the
first-order partial derivatives of a function. They are needed in the Gauss-
Newton algorithm that is applied applied to solve inverse problems (cf. Ch.
3). For coda waves, the sensitivities describe how an input variation δx that
in the case of CWI is something that affects the wave, e.g., little damage
occurring, changes the response value y, that in the case of CWI is, e.g., a
DC measurement. With the assumption that the wave information, which is
the waveform, is created from multiple scattering, Pacheco et al. [122] applies
a model of random paths to compute the sensitivities of the coda wave. The
sensitivities depend on the position x at which a scattering event can occur
during a travel time t from source S to receiver R:

K(S,R, x, t) =

∫ t

0
I(S, x, u)I(x,R, t− u) du

I(S,R, t)
(5.19)

In Eq. 5.19 (pictured in Fig. 5.7), I(position 1, position 2, t) stands for
the wave intensity at position 2 after time t of a wave starting from position
1. Looking at the numerator of Eq. 5.19, one can see that the integral sums
up all the time combinations of a wave going from the source position S to
position x to the receiver position R in time t. These combinations are also
referred to as random paths. Since the waves going through position x are
just a fraction of all wave paths arriving at the receiver R, the numerator
term is normalized by the general possibility of a wave traveling from source
S to receiver R in time t.

Fig. 5.8 gives an example of coda sensitivities in the model from the
numerical experiments in Sec. 6.1. One can see that the sensitivities depend
on the time evaluated and are very large in areas close to the source or receiver.
For the imaging problem, next to the magnitude of sensitivities relative to
other positions, the development of sensitivities over time in the signal is
crucial.
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Sec. 6.1).

Since a new scattering event in concrete, that Pacheco et al. [122] assumes
in the random paths model, can only be caused by a crack due to filtering of
other influences (cf. Sec. 4.7), the imaging problem becomes one specifically
for damage localization.

5.2.2 Inverse Problem for Damage Localization

The sensitivity kernel K of Eq. 5.19 is a model that simulates the effects
of new scatterers in the propagation medium. It allows to relate coda wave
sensitivities to decorrelation measurements that form an inverse problem. The
CWI based damage localization with this inverse problem was significantly
developed by Larose et al. [12], Rossetto et al. [123] and Planès et al. [23].
With the assumption of small damage, the relation of a change in the medium
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x and the corresponding measurement values is assumed to be linear [23]:

Ax = y (5.20)

A is a matrix containing the sensitivity kernel for one pair at a specific time
in each row. The vector y contains the measured decorrelation in the signal
with pair and time matching the sensitivity kernel in the corresponding row.
A graphical overview of the problem is given in Fig. 5.9. As CWI is a relative
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Figure 5.9: Visualization of a typical imaging problem with CWI
(model from Sec. 6.1).

measurement technology, the values in y are no absolute measurements. They
are a measured change ∆y coming from a change of the initial state to the
current state. The initial state is typically unknown, a classical problem
with relative measurements. In Eq. 5.20, vector x also does not contain the
actual state but only the change ∆x to the initial state. These changes ∆x
are with the model of Pacheco et al. [122] new scatterers. Since the new
scattering is assumed to come from new cracks, x can be understood as the
damage at each mesh node. The size of matrix A is m× n, with n referring
to the number of nodes in the mesh and m referring to the total number of
measurements. Typically, the amount of nodes in the mesh is larger than
the number of measurements, and thus the problem is underdetermined. In
order to solve the problem of Eq. 5.20, the solution algorithms introduced in
Ch. 3 are applied. For the specific case of damage localization based on DC
measurements, one can also introduce the assumption that the solution needs
to be positive. This is because sensitivities are only positive, and a change
∆x can only create a positive DC measurement.
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5.2.3 Clipping of Sensitivities

The application of CWI in practical experiments has shown a tendency
of damage localization directly at the position of transducers despite the
damage appearing in areas away from the transducer. Such a phenomenon
can also be seen in experiments from literature (cf. [124, 125]). Drastically
greater sensitivities at the position and immediate vicinity of the transducers
are a possible cause. These values at transducer positions are many times
larger than those that are, e.g., the transport mean free path l∗ away from
transducers. For solving the ill-posed imaging problem, this immense influence
of transducer positions, in the end, leads to localization at these exact positions
that, however, should be avoided. The numerical models simplify a transducer
as a point source which is a singularity for the FEM model. In reality, the
transducer has real dimensions shown in Fig. 4.7. In order to compensate
for the numerical singularity in the model, in this study, the sensitivities
are modified at the position of transducers by clipping the peaks for the
application of CWI in real structures. There are several ways to determine
the clipping values. One way would be to use the sensitivity value at a defined
distance, e.g., transport mean free path l∗, to the transducer as the limit
value. Due to difficulties for transducers close to a border where such a point
might be out of the model, open questions due to the different source-receiver
distances and a significant uncertainty on the transport mean free path l∗ for
the given frequency range, a more straightforward approach is used in this
study. Sensitivities are limited to a fixed fraction of the maximum value. The
clipping of sensitivities for a threshold of 1

2
of the maximum value is shown

in Fig. 5.10.
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Figure 5.10: Illustration of clipping the sensitivity values at a fraction
of 0.5 of the maximum value (model from Sec. 6.1).

A parameter study has shown that reducing the fraction used for the
threshold leads to a smoother solution field for real experiments. This comes
with a loss in resolution for damage detection but immense improvements in
robustness. The clipping of sensitivities can be interpreted as a smoothing of
sensitivities known to have a smoothing effect on the solution field.
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5.2.4 Remarks on the Solution Space

This section discusses the solution space obtained in more detail for better
classification. Known quantities in the imaging problem are the decorrelation
measurements stored in the vector y with b ∈ R : 0 ≤ y ≤ 1 and the
sensitivities of the matrix A. Note that unlike measured phase shifts in the
signal due to a wave speed change δv, there is no clear physical relation for
the decorrelation measurements. This lack already indicates the difficulties in
interpreting the solution space. A range for the sensitivities is challenging,
but values are positive and << 1. Sensitivities relative to each other in space
and time are much more crucial for the imaging. The damage vector x relates
the sensitivities linear to the measurements. Due to the sensitivities, which
are difficult to interpret in terms of magnitude, the values of the solution
space are also not classifiable. However, values must be positive. Values of
the solution set should only be compared to each other, and the solution
should generally be understood as a binary statement about the damage.
Moreover, the node values depend on the mesh refinement (cf. Fig. 6.11),
so the sum over a specific range is constant. When localizing damage, it
should also be clear whether the result should be as precise as possible or
somewhat fuzzier but more robust against mislocalization. These preferences
can be controlled with the optimization algorithm’s regularization factor α or
a constraint limiting the solution space (x ≤ xmax).

In order to improve the imaging problem, calibration is desirable, but it
is challenging since one would need to identify the system as precisely as
possible. In case a value of x for macro cracks is known, e.g., from laboratory
calibration experiments, this threshold can be used to classify a detected
damage area as a crack or not. Alternatively, one could introduce a constraint
x ≤ xcrack to the optimization problem, which would increase the detected
damaged area, and comparison of results for different load steps might be
easier.



Chapter 6

Results on Damage Localization with
Coda Waves

Parts of this chapter are taken from Grabke et al. [110].
The FEM based damage localization with coda waves is tested in three

experiments. First, a synthetic experiment is performed. Then, the technology
is applied to a laboratory’s actual large-scale concrete specimen. The last
experiment is to see how much the technology can be applied to existing
structures. In this three-step scheme, the knowledge and controllability of
influencing parameters decrease. Thus, the numerical experiment investigates
several numerical input parameters and their sensitivity to the obtained
solution. The laboratory experiment is primarily used to investigate the
damage development closely. The application at an existing bridge shows the
current status of practical applications.

6.1 Damage Localization with Synthetic Data

6.1.1 Experimental Setup

The numerical experiment is based on one presented in multiple publications
[23, 115, 126, 127] with variations in the transducer and damage position.
The spatial overview of the experiment is shown in Fig. 6.1. The wave
propagation simulation uses the same settings as the simulation by Planès
et al. [115] with a Gaussian impulse with a central frequency of 500 kHz,
23000 randomly distributed scatterers, a grid step of 333µm and a time step
of 94.2 ns. Each scatter has the size of one grid point, which makes the
volume fraction of scatterers 2.55‰. The wave propagation simulation was
performed by colleagues from the team of Prof. Dr. Erik H. Saenger at
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the Bochum University of Applied Sciences (cf. Finger et al. [112] for more
information). The wave propagation from every transducer was simulated
twice, once without and once with damage in the form of three new scatters
added.
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Figure 6.1: Overview of the performed numerical experiment. Left
shows the coda signal computation model with scatterers in
the form of grid points. The right shows the unstructured
mesh used for damage localization. Blue dots mark the
transducer positions, and orange dots mark the damage
locations.

Each synthetic signal was evaluated in five consecutive non-overlapping
windows of length 400µs after the arrival of the first wave (time-of-flight (tof))
with the correlation evaluation of Eq. 4.7 and 4.6. A total of 56 measurement
pairs results in a size of 280 for b from Eq. 5.20.

An advantage of the numerical experiment is the precisely known damage
position and extension to be detected. This knowledge means that in the
optimization problem of Eq. 5.20 next to the measurement vector b, the
usually unknown damage vector x is known. For a system calibration, the
problem of Eq. 5.20 can be used to find the optimal coda wave sensitivities A
for the given case. With a reformulation to a least squares problem, one can
solve for the diffusivity D that represents the heterogeneity of the material,
and that is the main parameter influencing the sensitivities:

min
D∈R

∥A(D)x− b∥22 subject to D ≥ 0 (6.1)

Solving Eq. 6.1 results in D = 64.25m2

s
. Note that computed coda wave

sensitivities for a rather large D make it computationally cheap to compute
sensitivities of smaller diffusivities. One can see in Eq. 5.3 that D and t
always appear in combination. Thus, one can approximate the sensitivities
of a different diffusivity by varying the time axis. This procedure of finding
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the homogenization parameter for the material is different from the original
experiment by Planès et al. [115] that computes the diffusivity as follows:

D =
vl∗

2
(6.2)

Next to the wave speed v, the transport mean free path l∗ (cf. Sec. 4.4) is
required for this approach. Planès et al. [115] gives a formula to compute
the scattering mean free path l that in the case of uniform scattering is equal
to l∗. However, this formula requires additional computational expansive
simulations and is thus less practical. However, the authors end up with
a diffusivity of D = 62.5m2

s
, which is in good accordance with the used

64.25 m2

s
.

The model for damage localization differs from the very fine grid used for
the wave propagation simulation. The shown results use an unstructured
mesh that can be seen on the right in Fig. 6.1 with an average node distance
of 0.03m. This refinement results in 1284 nodes, the number of unknowns
of the inverse problem. The mesh resolution is chosen to be finer than the
mean scattering free path l∗ that, in this case, is given as 0.05m by Planès
et al. [115]. The mean scattering free path l is referred to as a quantity to
what accuracy the CWI can detect damage. A study on the mesh refinement
is performed in Sec. 6.1.7.

6.1.2 Finite Element Based Damage Localization

The settings described above create a problem with 1284 unknowns and 280
known measurements. Tab. 6.1 provides an overview of the used parameters.
By solving the inverse problem of Eq. 5.20 with the trust region reflective
algorithm of Sec. 3.6.2 and the constraint x ≥ 0, the solution in Fig. 6.2 is
obtained. The solution is very satisfying compared to the previous studies
[23, 115, 126, 127] on a comparable setup. For further improvements and
parameter investigations, this solution is used as a reference for the following
parameter studies. Based on the settings of this solution, one parameter is
varied after the other.

6.1.3 Evaluation of the Analytic Solution Based
Improvements

The basis solution shown in Fig. 6.2 uses the FEM based solution with
the analytic improvements of Sec. 5.1.5. In order to evaluate the effect of
these improvements, the solution is compared to a pure FEM based damage
localization in Fig. 6.3. As expected, the effect of the analytic solution-based
improvements is rather small but positive. Next to the reduced residual, one
can see that the improvements allow for even preciser damage localization.
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Simulation parameters for damage localization

Intensity computation FEM-based (Sec. 5.1.4) +
Improvements of Sec. 5.1.5

Specimen dimensions 1m × 1m

Average node distance 0.03m

Number of nodes 1284

Simulation time step 1× 10−6 s

Diffusivity 64.25m2

s

Evaluated signal length (after tof) 2000 µs

Decorrelation window length T 400 µs

Amount of measurements 280

Solving algorithm Trust Region Reflective
Algorithm (Sec. 3.6.2)

Table 6.1: Overview of the simulation parameters for damage localiza-
tion at the numerical experiment.
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Sec. 5.1.5.

6.1.4 Comparison of Analytical Solutions to Finite Element
Based Damage Localization

The advantages of FEM have already been discussed in Sec. 5.1.4. This
section compares the FEM based solution (without improvements) to the
more established analytic approaches that have also been used in the original
experiment by Planès et al. [115]. The result is shown in Fig. 6.4. Generally,
the residual for the given setup is less for the analytic solution. However,
the damage localization works very well for all three cases. The residual for
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Figure 6.4: Comparison of FEM-based and analytical solution-based
damage localization.
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the known damage locations was computed for a second evaluation. For this
purpose, the damage vector obtained from the solving algorithm was replaced
with the known damage positions. The corresponding residuals are shown in
Tab. 6.2.

Pure FEM
solution

Analytic diffu-
sion solution

Analytic RTE
solution

residual 3.79× 10−5 2.79× 10−5 2.519× 10−5

Table 6.2: Residual for replacing the optimization solution with the
known damage vector.

Comparing the values from Tab. 6.2 to Fig. 6.4 contains a surprise. The
residual is larger when using the known damage vector. Thus, the expected
global minimum, the "perfect" solution, is impossible to find when solving
the optimization problem. A probable reason is that the underlying model
that relates measurements and sensitivities is based on random paths and has
no governing physical law. For the known damage positions, the residual for
the analytic solutions is smaller than for the FEM based solution. Keeping
in mind that the FEM approach allows computing arbitrary geometries with
correct treatment of boundary reflections, the combination of FEM with
the two analytic solution-based improvements (Sec. 5.1.5) seems to be an
appropriate trade-off. This approach leads when using the known damage
position vector to the residual of 3.49× 10−5 that is in-between the residual
of the pure FEM solution and the analytic ones.

6.1.5 Comparison of Different Solution Algorithms

The optimization problem for damage localization is generally inconsistent,
large-scale, and ill-posed. The used solution algorithm and its settings are thus
of immense influence. The trust region reflective algorithm (Sec. 3.6.2) has
proven robust for the previous evaluations. Another option to solve the inverse
problem is the manually implemented projected gradient descent method (Sec.
3.6.1) that necessarily requires regularization. For better comparison, the
solution of the damped trust region reflective algorithm is also taken into the
comparison of Fig. 6.6. In order to obtain a good regularization factor α, the
L-curve method of Hansen [60] (cf. Sec. 3.4) is performed (cf. Fig. 6.5).

For the given problem, the damping does not have a significant impact be-
cause a satisfying, non-oscillating solution is obtained even without regulariza-
tion due to further internal regularizations of the scipy.optimize.lsq_linear
implementation. The L-curve, therefore, has no apparent kink but is a rela-
tively smooth curve. Nevertheless, damping is essential for the real experiments
in the following sections.

In the evaluation of Fig. 6.6, one can see that the obtained solutions
are very similar for all settings. However, the residuals of the trust region
reflective algorithm and projected gradient descent method differ significantly.
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Figure 6.5: L-curve method of Hansen [60] for the trust region reflective
algorithm.
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Figure 6.6: Comparison of different algorithms for solving the least-
squares optimization problems.

Another difference can be seen in the number of iterations for the undamped
solution, which is very little compared to the damped solutions. This is
due to the damping that limits the step sizes. However, the computation
times per iteration step for the damped algorithms are significantly lower
because of an improvement of the problem for numerical analysis by adding
the regularization term. Note that the number of iterations significantly
influences the extension of the obtained damage region, and the tolerances are
thus adjusted individually to obtain comparable damage extensions. Small
mislocalizations are seen in all solutions, and in particular, the one near the
transducer on the bottom left is common to all. Another comparison of the
two different algorithms is shown in Fig. 3.4 with a similar result. Due to
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a better performance in obtained residual and general robustness, the trust
region reflective algorithm is chosen as a standard algorithm for imaging with
CWI in this thesis.

6.1.6 Study on the Used Evaluation Time Frames

The evaluation time frames refer to the window length T to compute the DC.
Longer evaluation frames likely create a smoother DC development over the
signals’ length. However, they reduce the number of measurements. This
reduction could affect the optimization problem and lead to worse conditioning.
Next to increasing the number of measurements by varying the evaluation
frame length, it can also be increased by overlapping the evaluation frames.
These parameters are evaluated in Fig. 6.7.
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Figure 6.7: RSS for different evaluation frame lengths.

As already seen in Sec. 6.1.4, the solution from solving the optimization
problem gives, according to the RSS, a better fit than when using the known
damage positions. Contrary to what is indicated above, the optimization
problem does not seem to be affected by reducing the number of measurements.
In Fig. 6.7, one can see that the RSS is the lowest for the longest evaluation
window and the largest for most measurements. This is because, with an
evaluation window length of T = 2000µs, fewer summands contribute to the
RSS than with shorter window lengths. Thus, the improved evaluation is the
average misfit per measurement as shown in Fig. 6.8 and additionally, the
imaging solution for three different time frame lengths is shown in Fig. 6.9.

The average error shown in Fig. 6.8 could conclude that an overlap of
evaluation frames is the best choice. However, this creates a correlation of
measurement values neglected in this thesis (cf. Sec. 3.5). Fig. 6.8 also
suggests that a window length of 1000 µs is the best choice. However, the
imaging of Fig. 6.9 with T = 1000µs is not as satisfying as the one for
T = 400µs despite the smaller residual. As the imaging for T = 200µs
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Figure 6.9: Comparison of damage localization for different evaluation
frame lengths.

shows more mislocalizations, the frame length of T = 400µs is chosen as the
standard.

6.1.7 Study on Mesh Refinements

In general, a finer mesh allows more precise imaging of a quantity. For the
case of damage localization by solving an inverse problem, a refinement,
however, also leads to an increase of unknowns. Thus, the previously used
refinement orients itself at the scattering mean free path l that Planès et al.
[115] describe as a quantity to what accuracy the CWI can detect damage.
This assumption should be verified with a study on mesh refinement later
used to find appropriate refinement for the practical experiments.
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Figure 6.10: Comparison of damage localization for different mesh
refinements.

The evaluations of Fig. 6.10 result in similar residuals. Optically, all
imaging results also appear very satisfying. However, the extension of the
damage region strongly differs and is mesh-dependent as only one or two nodes
are identified as damaged. With the real damage being significantly smaller
than the mesh sizes, the punctual localization appears to be more precise for
the fine mesh. However, real damage most likely has larger extensions, and
pointwise localization might only sometimes be desirable. Also, it is desirable
to have no mesh dependency. By damping the solution algorithm with the
regularization factor α, one obtains an improved solution shown in Fig. 6.11
with less mesh dependency. One can see that the damping has little influence
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Figure 6.11: Comparison of damage localization for different mesh
refinements with damping the trust region reflective algo-
rithm.

on the results of the coarse meshes, but for fine refinements, the result is no
longer a punctual localization. One can also see that with increasing mesh
refinement, the solving time increases. For the undamped problem, the times
increase over-proportionally. For the damped problem, overall solving times
are smaller, and the increase of solving times for finer meshes is less.

The model with 491 nodes has an average node distance of 0.05 m, which
is also the mean scattering free path l. With the underlying assumption of
multiple scattering, l also describes the accuracy of imaging with CWI. The
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refinement study supports this assumption, as the finer meshes lead to similar
damage extensions. Therefore, a recommended choice is a mesh refinement
with node distances equal to or a bit smaller than the mean scattering free
path l.

6.1.8 Study on Simulation Time Step

Regarding the simulation time step, it is essential to differ the simulation to
obtain the synthetic coda signals and the FEM-based diffusion simulation
to obtain coda wave sensitivities in a homogenized material. The performed
study investigates the time step for the latter. Usually, the solution is expected
to improve with finer discretization in space and time. However, with an
inverse problem and a diffuse model relating measurements and simulation,
significant post-processing steps can affect an expected improvement with
reduced time steps. This can be seen in the results of Fig. 6.12.
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Figure 6.12: Comparison of damage localization for different simulation
time steps.

The time step of t = 1× 10−6 s results in the lowest residual. For smaller
time steps, the localization also works very well. Only with larger time steps
does the solution worsen. A possible reason for the failed localization with
t = 1× 10−5 s is a CFL number larger than one for the given setup, which
can result in numerical instabilities for the given problem. In order to have
an efficient simulation, the time step is chosen as large as possible, and thus
t = 1× 10−6 s is an ideal choice for the used diffusivity.

6.1.9 Remarks on the Computational Effort

Computations were performed on a machine with an 8x3.70 GHz CPU and
64 GB RAM. The used open-source project KRATOS Multiphysics [128] for
solving the diffusion problem is implemented in C++ with a Python shell.
The sensitivity kernel computation is implemented in Python. The diffusion
problem must be solved for each transducer to construct the sensitivity kernel.
For the numerical experiment, that is eight times solving a problem with
1284 nodes, 2434 elements, and 2216 time steps. Computation times were
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11:54 [mm:ss] for the diffusion problem (avg. 89 s per transducer). This
expansive computation can be performed in advance.

Compared to values given in Grabke et al. [110], the computation times for
the sensitivity kernel reduce drastically. Previous implementations computed
sensitivities for every time step of the diffusion simulation, which is not
required for the damage localization problem that only requires sensitivities
for corresponding DC measurements. The resulting reduced computation
time for 280 measurements is 0.524 s. Solving times for the inverse problem
are given in each figure and are strongly influenced by parameters such as
damping or tolerance, which is the residual change per iteration step.
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6.2 Damage Localization at a Real Large Scale
Concrete Specimen in a Laboratory

6.2.1 Experimental Setup

This section tests the coda wave-based damage localization in a laboratory
experiment. Parts of the results are published in Grabke et al. [110, 129].
Investigated is a real reinforced concrete specimen with a four-point bending
test conducted by the Institute of Concrete Structures at the Ruhr University
Bochum. The experiment is very similar to the one described in detail by
Clauß et al. [130] (cf. Fig. 6.13) except for increased specimen dimensions
that can be seen in Figure 6.14. The embedded ultrasound transducers are
described in Sec. 4.8 and are installed before casting the concrete with clips
attached to the reinforcement bars.

Figure 6.13: Test setup of the very similar four-point bending test
conducted by the Institute of Concrete Structures at the
Ruhr University Bochum [130].

The loading is stepwise increased. During the first 20 loading steps, the
force increases with 5 kN and then with 10 kN until failure. With this setup,
the average tensile strength of the used concrete fctm is exceeded after ten
load steps, so cracks should appear around this load step. Next to the CWI,
a FOS is used to monitor cracks. Further details on the FOS can be found in
Clauß et al. [130] and Sec. 6.2.2.

The ultrasonic signal is a Gaussian pulse with a central frequency of 60 kHz.
In order to compensate for phase shifts, e.g., from the acoustoelastic effect
[8], the signals are stretched before the correlation evaluation. The CWI
evaluation is divided into two types. First, a CC evaluation over the different
load steps (Sec. 6.2.3) and then a DC based damage localization for different



70 CHAPTER 6. DAMAGE LOCALIZATION WITH CODA WAVES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

FOS

Figure 6.14: Overview of the experimental setup. Blue dots show the
25 embedded ultrasound transducers, and green marks
the Fiber Optic Sensor. Black lines on the bottom of the
specimen indicate the fully developed crack pattern.

fixed load steps is performed (Sec. 6.2.4). The results for damage localization
at all load steps are attached in the appendix.

In total, 25 embedded ultrasound transducers that measure 104 combina-
tions are used. The coda signals, however, immediately showed complications
that can appear in real applications. In Fig. 6.15, one can see a bad measure-
ment compared to a typical signal.
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Figure 6.15: Example of a bad signal (pair 18-16) compared to a typical
signal (pair 12-10).

Reasons for such failures are often hardware-related and, with transducers
embedded into the concrete, are only sometimes fixable. Cracks may also
run into the transducer positions during the loading process, which may also
degrade the reproducibility of the signal. In this experiment, a malfunction was
identified for transducer 16 working as a receiver, and related measurements
were thus taken from the data set.
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6.2.2 Evaluation of the Fiber-Optic Measurements

FOS is an established strain-measuring technology. In the experiment, a fiber
is placed along the reinforcement bars at a height of 44 mm from the bottom.
In case of cracking in the concrete, the reinforcement bar is activated and
stretched over-proportionally. This stretching can be seen as peaks in the FOS
measurements. Thus, the FOS is a sensitive technology for measuring cracks
along the x-axis. However, it does not give direct information about the crack
width, direction, and extension in the y- and z-direction. The x-coordinates
are nevertheless beneficial information to better understand CWI data with
increasing load (Sec. 6.2.3) and to verify the damage localizations of Sec.
6.2.4. Fig. 6.16 shows the FOS measurement of selected load steps. The raw
measurement data is smoothened with a Savitzky–Golay filter [131] for the
visualization.

0.0

409.8
strain
of FOS

[ ]

load step 4

0.0
86.2

409.8
strain
of FOS

[ ]

load step 6

0.0

199.0

409.8
strain
of FOS

[ ]

load step 8

0.0

293.8
409.8

strain
of FOS

[ ]

load step 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 3.9
x-position [m]

0.0

409.8
strain
of FOS

[ ]

load step 12

Figure 6.16: FOS measurements of selected load steps.

One can see that the overall strain increases with increased load and that
the first indications for the crack positions can already be seen at load step 6.
In the figure of load step 12, the final crack pattern is also shown. Orange
marks cracks seen in the FOS measurement, and blue marks little cracks
that form at later load steps. As explained in the following Sec. 6.2.3, a
stepwise updated reference measurement for CWI is used. This means that
the reference measurement is always the previous one. Since only changes
compared to the reference state are detectable, cracks are most easily detected
when they form. If cracks already exist and are, e.g., increasing, they might
still be detectable. Fig. 6.17 plots the FOS changes between each load step,
which is equivalent to the stepwise CWI measurements.

One can see that the maximum difference in strain increases with the
load steps. One can also see that the biggest changes at each load step move
from the middle (e.g., load step 10) towards the outside (load step 12). The
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Figure 6.17: Difference in the FOS measurements between selected
load steps.

changes at the middle crack near x = 2 m even decrease after load step 10. This
decrease indicates that the crack formation is finished, the reinforcement fully
activated, and cracks towards the outside increase. Noteworthy is also that in
the very early loading phase at load step 4, there are already indications for
the five cracks in the middle, which is surprising because the average tensile
strength of the used concrete fctm is exceeded after ten load steps.

6.2.3 Correlation Evaluation over Time

In order to get an overview of the measurement data, the overall signal
correlation is evaluated over the time of the experiment. There are two
established approaches for computing the CC: a fixed reference and a stepwise
updated one. In the stepwise approach, the measurement is always from the
previous load step, meaning only cracks and other changes happening in this
one load step are detectable. A comparison of the CC evaluation for the two
approaches is shown in Fig. 6.18.

One can see that with the fixed reference and increasing load, the CC in
general only decreases. This is not true for the stepwise CWI evaluation. Here,
maximum changes in the medium appear around load steps 9 and 17. Before
load step 9, there are also little CC drops already. For the fixed reference,
however, the correlation of selected measurements drops significantly with
the first load step. A central assumption of CWI is a good reproducibility of
signals, their diffuse tails, and the occurrence of little changes in the medium.
With CC dropping down to about 0.2 at selected measurements, the general
reproducibility is no longer given. The assumption of little changes is also
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Figure 6.18: Comparison of CC for fixed and stepwise updated refer-
ence measurements.

more than questionable, with multiple cracks appearing. Thus, the stepwise
updated reference is the only applicable technique for the experiment. Fig.
6.18 also clearly shows the large amount of measurement data. In order to
better understand the CC development depending on the position of the
measurement pair in the specimen, Fig. 6.19 gives the CC measurements of
selected pairs together with an overview that also includes the crack pattern.
The selected ten pairs of Fig. 6.19 are chosen such that different positions on
the specimen are represented, but the focus is still on the area with cracks
developing. Also, pairs are chosen symmetrically except for pair 18-21, whose
CC development is special. Overall, the CC developments are comprehensible
but contain surprises. Starting with zones far from the damage zone, one can
see that the CC of pair 4-1 and 22-25 are nearly unaffected. Pairs 8-17 and
14-11 are in the middle but at the top, show comparable little developments
during cracking. However, cracks are noticed around load step 8 and later.
Pair 7-19, which is also in the middle but at middle height, shows similar
development compared to the pairs at the top, but with cracks developing,
shows larger CC drops. The pairs at the bottom outside 12-3 and 24-15 show
similarities up to load step 14 and then developments differ. Pair 12-3 shows
CC drops to 0.7, whereas 24-15 remains around 0.9. Here, the influence of a
crack position in relation to the transducer position is probably significant.
This can especially be seen with pair 18-21, which shows a large CC drop
at load step 9. One would expect comparable or larger CC drops for the
pairs in the bottom middle. However, looking at the crack positions, one can
see that a crack is going into the mounting position of transducer 21. This
change, close to a transducer, dramatically influences the CC. One can also
see this in the sensitivity kernel, which forms sharp peaks at the transducer
positions. However, the peak in the sensitivity kernel is so sharp that the
value of the measured correlation and the model might still significantly differ,
which can lead to problems in the damage localization (cf. Sec. 6.2.4.6). As
expected, the pairs in the bottom middle show significant CC changes. The
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Figure 6.19: CC evaluation of selected pairs with a graphical overview
of the position in the specimen below.

pair 18-9 that senses the whole middle third shows a very continuous CC
development. There is only one significant drop at load step 15, and since pair
18-21 also shows a significant CC drop, there is most likely a crack going into
the mounting position of transducer 18. The same can be seen for transducer
12 at load step 16. Like the FOS measurements, the CWI also detects the
first changes in the bottom area around load step 4. This early detection
again shows the high sensitivity of the CWI technology and the immense
potential that comes with it. However, cracks in the transducers’ mounting
position strongly influence the measurements and can cause inconsistencies.



6.2. DAMAGE LOCALIZATION IN LABORATORY EXPERIMENT 75

6.2.4 Damage Localization

6.2.4.1 Procedure in Previous Publications

The FEM based damage localization procedure is generally based on Grabke
et al. [110]. The final result of the study was reproduced with the updated
code used for the present evaluations and is shown in Fig. 6.20.
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Figure 6.20: Damage localization for the time of crack formation with
settings according to Grabke et al. [110]. The blue color
shows located damage. The black curve below shows the
strain measured with FOS, and peaks indicate cracks.

Of particular note are three changes compared to Grabke et al. [110]
that resulted from the ongoing research. One is the manual selection of
useable measurement data. This selection was required because using the
complete measurement data set would result in damage localization at selected
transducer positions. The assumed main reason for this is the cracking into
the mounting position of transducers, as discussed in Sec. 6.2.3. In order to
avoid data filtering, the sharp peaks of the sensitivity kernel at transducer
positions are modified so that damage localization does not tend to transducer
positions anymore. Further details are given in the following Sec. 5.2.3. The
second specialty was the superposition of several damage localizations at
different load steps. This procedure is generally an excellent way to reduce
the influence of mislocalization and sharpen the localized crack positions. The
procedure is, however, conditionally applicable for practical application, and
thus, this thesis tries to avoid such a superposition. A third change is the
solution algorithm. In Grabke et al. [110], the scipy.optimize.lsq_linear
algorithm is applied. As previously indicated, that solver tends to find a
punctual localization if not damped. In Grabke et al. [110], the damage
region’s extension was controlled with a threshold on the solution. This
maximum threshold is very individual and requires a calibration performed
in Grabke et al. [110] during an early loading state. When adding a damping
term, as done in this thesis, the punctual localization can be avoided; thus,
an individual calibration is no longer necessary.

6.2.4.2 Diffusivity Evaluation

The diffusivity is the main homogenization parameter describing the intensities
of a measurement. For real measurements, the envelope fitting of Sec. 5.1.7
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is a good tool for determining the diffusivity. Fig. 6.21 plots the determined
diffusivity over the transducer distance.
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Figure 6.21: Diffusivity from envelope fitting over source-receiver dis-
tance. Blue lines show the standard deviation.

One can see a strong dependency on the distance, especially for the short
source-receiver distances. That is because of the clearly visible ballistic parts
of the waves that can also be seen in Fig. 4.3. Therefore, the envelope fitting
does not form an envelope around the peak from diffusion but the peak of
ballistic p- and s-waves. Starting around a source-receiver distance of 0.8m,
the variance of the evaluated diffusivities increases, and there is no longer a
strong dependence on the source-receiver distance. An explanation could be
that for the used concrete combined with a central frequency of 60 kHz, the
transport mean free path at which the wave loses all its directional information
is around 0.8 m. This distance is equivalent to a transport mean free time of
≈ 190 µs for p-waves and ≈ 330 µs for s-waves.

Next to the used multiple scattering based coda wave sensitivities Pacheco
et al. [132] also define single scattering based coda wave sensitivities. These
are based on the assumption of only one uniform scattering from source to
receiver. The prevailing physical behavior of 60 kHz ultrasound in concrete
is likely no isotropic scattering. Therefore, the transport mean free time
in the medium is more critical than the amount of scattering events. After
this time, the wave spreads diffusively and creates a state where multiple
scattering-based techniques are applicable. The evaluated signals have a
length of 2000 µs after arrival, which, together with the transport mean free
times given above, means the majority of the signal arriving comes from a
diffuse wave field. Therefore, the multiple scattering-based computations of
sensitivities should be applicable. For the approximation of all signals with
the diffusion problem, a diffusivity of 400m2

s
that is following values from
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literature (Fröjd [133] used 440m2

s
for a 50 kHz signal) is used. This value also

matches the average of 396m2

s
of all signals above a source-receiver distance

of 0.6ṁ (so larger than the assumed transport mean free path).

6.2.4.3 Simulation Settings

It is assumed that the crack development is uniform over the specimen width.
Thus, the specimen is simplified to a 2D model, significantly reducing the
computational effort. The choice of settings for the damage localization
strongly depends on the expectations. The damage localizations in Grabke
et al. [110] focused on precision, which is possible for a laboratory experiment
with controlled parameters and reference measurements where the expected
output is known. Therefore, one can distinguish false results from good ones.
In practical applications, reference measurements with increased accuracy
and robustness are usually not given. Thus, the CWI must be as robust
as possible. A second goal of this experiment is also to find application
boundaries. Settings are chosen to avoid manual filtering of the measurement
pairs. A complete overview of the used settings for the damage localization
presented in the following sections is given in Tab. 6.3.

6.2.4.4 Calibrations at Early Load Steps

In order to find application boundaries of the CWI for damage detection, the
evaluation is split into three parts: before, during, and after crack formation.
This section investigates load steps 5 and 8 before the computed reach of
the concrete tensile strength. As one can see in the FOS measurements of
Fig. 6.17, there are already changes happening and indications for the crack
positions. In Fig. 6.18, the CC measurements are relatively little, but a slight
increase can already be seen in the stepwise evaluation. With the assumption
of small changes that can be detected, the early load steps are regarded as
the best choice for calibrating the clipping threshold for sensitivities. Fig.
6.22 and Fig 6.23 show imaging results of this parameter study.

In general, one can see a strong effect of the sensitivity manipulation.
Without modifications, the position of transducers is located. This problem
is avoided by clipping the sensitivities. The lower the threshold is chosen,
the larger and smoother the located damage field becomes. By clipping
the sensitivities at a specific value, there is a loss of information, but the
solution improves until a certain point. This is probably related to the quality
of the measurement data and its fit to the simulated sensitivities of the
waves. Comparing the different sensitivity thresholds, a clipping at 1

6
of the

maximum value appears to give the visually best solution. This threshold
on the sensitivities is also applied to all further investigations. Fig. 6.24
shows sensitivities of the measurement pair 10-16 with a clipping at 1

6
of the

maximum value.
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Experiment parameters

Central frequency of Gaussian pulse 60 kHz

Amount of useable measurements 99

Specimen dimensions 3.9m × 0.5m

Range of source-receiver distances 0.23m - 1.36m

Simulation parameters for damage localization

Intensity computation FEM-based (Sec. 5.1.4) + Improve-
ments of Sec. 5.1.5

Sensitivity modification values for each measurement clipped
to 1/6 of the maximum sensitivity

Average node distance of the mesh 0.03m

Number of nodes 2473

Simulation time step 1× 10−6 s

Diffusivity 400m2

s

Evaluated signal length (after tof) 2000 µs

Decorrelation window length T 400 µs

Reference measurement step-wise updated

Signal stretching window length T 250 µs

Solving algorithm Trust Region Reflective
Algorithm (Sec. 3.6.2)

Table 6.3: Overview of the simulation parameters for damage localiza-
tion at the real experiment.
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Figure 6.22: Damage localization at load steps 5 with different thresh-
olds on the sensitivity. The blue color shows located
damage. The black curve below shows the strain change
of FOS measurements compared to the previous load sets.
Peaks in the FOS measurements indicate cracks.
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Figure 6.23: Damage localization at load steps 8 with different thresh-
olds on the sensitivity and visualization as in Fig. 6.22.



6.2. DAMAGE LOCALIZATION IN LABORATORY EXPERIMENT 81

Sensitivity Kernel in 3D projection
(Pair 10-16, t = 200 µs)

10
16

1.25 1.50 1.75 2.00 2.25 2.50 2.75

se
ns

iti
vi

ty
 [-

]

threshold

Sensitivity Kernel in 2D plane at y = 0.25 m
 (threshold at 1/6 of maximum)

inital sensitivities clipped sensitivities

Sensitivity Kernel in 3D projection
with clipped sensitivities

10

16

Figure 6.24: Exemplary sensitivities of a measurement pair at the real
large-scale concrete specimen.

The characteristic of clipping at a low threshold is a plateau in the direct
path region that becomes larger as the evaluation time within the signal
increases. The magnitude of the clipping threshold may be related to factors
such as central frequency, source-receiver distances, and the density of the
measurement network. In this experiment, there is a high density of sensor
pairs, which could explain why it is still possible to detect at good accuracy
despite losing a lot of sensitivity information due to a low clipping threshold.
Another explanation of the effect the clipping has can be described with the
typical sensitivity development illustrated in Fig. 5.8. The most crucial factor
for the fitting process is the shape of the sensitivity kernel development over
time. When comparing the development at the position of the transducer
(blue curve) and in the middle of the two transducers (orange curve), one
can see that the shapes are both convex and quite similar. The least-squares
fitting uses these curves and a scaling factor to match the measurements. In
case a measurement develops in a convex way as the blue and orange curves
do, it would thus be possible to fit with the blue curve but also the orange
curve. The very strong influence of the transducer position in the end leads
to pointwise localizations at the transducers. The clipping leads to a similar
development of all points on the clipping plateau that, in the end, creates a
smoother and more satisfying localization.

Next to a calibration of the sensitivity clipping threshold, the damping
of the solution algorithm needs to be adjusted. This is again done with the
L-curve method of Hansen [60] (Sec. 3.4). The L-curve of load step 5 with
the final settings is shown in Fig. 6.25 and results in a damping of λ = 0.04.
The L-curve method was also conducted at all other load steps, resulting in
similar damping factors. This makes sense as the damping primarily affects
the sensitivity matrix that is constant for all load steps.

6.2.4.5 Damage Localization in Early Loading Phase

With a completed calibration, the three stages before, during, and after
crack formation are now discussed in more detail. This section investigates
the green framed plots of Fig. 6.22 and Fig. 6.23 at load steps 5 and 8
that are before the computational reach of the concrete’s tensile strength.
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Figure 6.25: L-curve of Hansen [60] at load step 5.

Even though CC measurements are relatively little, the damage localization
already leads to surprising results. At load step 5, the damage localization
detects a damaged area in the middle third. The extension of this detected
area is in good accordance with the peaks of the FOS measurement. Several
differences in the damage field indicate multiple cracks and are in approximate
accordance with the cracks detected by FOS, which is an excellent result. At
load step 8, multiple sharp peaks exist in the FOS measurements. The damage
localization correctly identifies the bottom middle area, but the extension
towards the sides lacks a crack on each side with the chosen settings. The
difference in magnitude of the located damage field also does not match the
FOS measurements at all peaks. Especially at x = 1,9 m, a significant damage
is not located. Despite missing precision, the localization is nevertheless very
robust with the settings. Also, the magnitude of the localization makes sense
when comparing values of Fig. 6.22 and Fig 6.23.

The results at the early load steps underline the large sensitivity of coda
waves to little changes and consequently the immense potential of CWI as an
early damage detection technology. The enormous sensitivity comes from the
wave scattering that results in a large sensing area and the evaluation of later
parts in the signal where little changes have increased visibility. In this early
loading phase, a major requirement for CWI of good signal reproducibility is
also fulfilled with CC coefficients larger than 0.9 for all signals.

6.2.4.6 Damage Localization at Time of Crack Formation

At first glance, the time of crack formation is the most interesting because
most irreversible changes that should be detected occur. The FOS evaluations
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in 6.16 show no clear load step when the cracking happens. The time of
crack formation is thus defined here as when the computed tensile strength
of concrete is reached, which is at load step 10. Fig. 6.26 shows the CWI
damage detection results.
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Figure 6.26: Damage localization at load step 10 with content visual-
ized as in Fig. 6.22.

Several parts are correctly detected, but there are also two areas (middle
and left) where the damage identification misses a few cracks. The CC in Fig.
6.18 and Fig. 6.19 already indicated that with macro cracks appearing, the
quality of selected measurement pairs drastically decreases. These pairs with
bad reproducibility of signals are also part of the evaluated data set and can
have a strong influence. Therefore, pairs with a CC worse than 0.9 (in total
nine pairs) are filtered out for the damage localization in Fig. 6.27.
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Figure 6.27: Damage localization at load step 10 with content visual-
ized as in Fig. 6.22 and only pairs that have a CC > 0.9.

The simple filter for measurement quality improves the result a little.
Despite the cracked area near x = 1.9 m that was also not visible at load step
8, there is a good identification of the damage zone in the middle. Overall,
the solution procedure appears very robust, with or without a filter on the
measurement quality.
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When comparing the magnitude of the maximum value of the solution to
load step 8, one can see a clear jump. This also becomes visible when plotting
the maximum value of all load steps, as shown in Fig. 6.28. Very important
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Figure 6.28: Development of ||x||max for the first 20 load steps.

for this evaluation is to also take the actual plot of the damage localization
into account. All plots are attached in Appendix A. With the actual solution
plot and the CC developments of Fig. 6.18, one can, e.g., explain the outlier
in Fig. 6.28 at load step 9 with the over-proportionally large decorrelation
related to transducer 21. When neglecting the outlier, one can identify two
trends highlighted in green and orange. Until load step 7, there is a nearly
linear increase with a slope of approximately 0.14 [1/kN]. From load step 7,
the trend changes, and until load step 13, the increase is also nearly linear
but with a slope of approximately 1.02 [1/kN]. When comparing with the
FOS results of all load steps shown in the appendix, one can see that until
load step 6, there is a rather diffuse field of cracks, and at load step 7, three
sharp peaks become visible in the FOS measurements, which might indicate
the first macro cracks. In the FOS data of the appendix, one can also see
that after load step 13, the sharp peaks become once again more diffuse,
which could explain why the trend from load step 7 to 13 no longer continues.
Summarized, one can say that analyzing trends in the ||x||max development
has immense potential for differentiating micro and macro cracks and, thus,
different damage states and should be further investigated. However, this
is only possible in a laboratory setting with controlled load increase that is
typically not given for a practical field application.

In order to get a feeling about the fit of measurement data and the simulated
model, the least-squares fitting is evaluated for selected pairs in Fig. 6.29.
What is shown is the left-hand side (LHS) and right-hand side (RHS) of the
inverse problem to be solved (cf. Eq. 5.20). The LHS represents the simulated
model multiplied with the solution of Fig. 6.27, and the RHS represents the
measurement data to be fitted. A good fitting is possible if lines of the same
color are close together, indicating a good model. One can see that overall
trends in the four curves match, which, together with a satisfying solution,
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Figure 6.29: Visualization of the least-squares fitting of selected mea-
surement pairs for the damage localization of Fig. 6.27.

proves that it is possible to perform a damage localization with a central
frequency of 60 kHz and a model based on the diffusion analogy.

6.2.4.7 Damage Localization After Completed Crack Formation

A major question next to the detection of new cracks is the detection of
existing cracks. With a stepwise updated reference, the expectation is that
existing damage is not detectable as long as the crack does not extend. This
section investigates load steps 15 and 18, and results are shown in Fig. 6.30.
At these load steps, the crack pattern in the middle is fully developed, and
further cracks develop and increase closer to the supports. The CC values at
the two load steps are comparatively small, as one can see in Fig. 6.18 and
Fig. 6.19 but unlike load steps 9 and 10 overall plausible.

In the FOS measurements of Fig. 6.30, one can see that the peaks moved
to positions further away from the middle area. In the middle, there is sort of
a plateau indicating a constant strain, which means cracks are fully developed
but open up. The damage localization with CWI shows remarkable results.
The damaged area’s extension is described pretty well. This is surprising
since the relative measurement makes existing damage challenging to detect.
At load step 15, one can see good correlation to the tiny peaks in the FOS.
Only on the right is a peak that is not located. Instead, a mislocalization
appears further to the right.

At load step 18, individual cracks seem no longer detectable. One central
assumption of CWI is the appearance of only little cracks, and with many
measured correlations dropping down to 0.7, this is most likely no longer
fulfilled. Thus, it is more than questionable that the used sensitivities of the
homogenized material correctly describe the measured physical phenomena,
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Figure 6.30: Damage localization at load steps 15 and 18 with content
visualized as in Fig. 6.22.

which would explain why individual cracks are no longer detectable. Despite
a rough description of the damaged area, individual cracks are not detectable,
which underlines the application boundary for detecting existing cracks. In
general, this is a disadvantage but can be advantageous for structures that
are designed to have zones with cracked concrete in certain parts.

Concluding the damage localization at an actual experiment under con-
trolled conditions, the results are promising. With the little modification of
clipping the peaks in the sensitivity kernels, the overall goal of a robust CWI
based damage detection is fulfilled. It is a significant improvement compared
to Grabke et al. [110]. The evaluation at early load steps also shows the
immense sensitivity of CWI to slight changes, and the correct identification of
damaged regions at late load steps underlines the robustness. The detection
of existing damage is identified as an application boundary. All damage
localizations are qualitative results. The next step points towards a damage
quantification that can trigger an alarm. One possible method shown is the
analysis of trends of the solution’s maximum value for increasing load.
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6.2.5 Further Investigations

6.2.5.1 Influence of the Used Diffusivity

Due to the large variations of the diffusivities obtained from envelope fitting
of the signals shown in Fig. 6.21, the used value is further investigated. The
used 400m2

s
is in accordance to values from literature (Fröjd [133] used 440m2

s
for a 50 kHz signal). Different diffusivities are tested to investigate the effect
of diffusivity on the final damage localization result. Fig. 6.31 shows the
result for a damage localization with D = 100m2

s
, D = 200m2

s
,D = 400m2

s

and D = 600m2

s
for an evaluation at load step 10.
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Figure 6.31: Evaluation of the effect of the used diffusivity on the
damage localization result at load step 10.
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The comparison shows that the used 400m2

s
are a good choice, but also,
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s
, several cracks are located correctly. Therefore, load step 5 with

smaller changes to be detected is also investigated in Fig. 6.32. The diffusivity
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Figure 6.32: Damage localization at load step 5 with content visualized
as in Fig. 6.22 and a diffusivity of 200m2

s
.

study shows that the damage localization also works with 200m2

s
, but 400m2

s
is overall a better choice. The diffusivity used, of course, changes sensitivities.
However, in the end, the spatial relation of the sensitivities changes less than
the variations in the measurement data, and thus, the solving algorithm still
works.

Instead of using a fixed diffusivity, it would also be possible to use the
individual diffusivities obtained from envelope fitting for each measurement
pair. This use of individual diffusivities is ambivalent. On the one hand, the
simplification with a diffusive spread is introduced as a simplified description
of the signals’ intensities (envelope fitting). However, the actual reason why
the diffusion analogy is applicable is that the energy of a multiple scattered
signal in a heterogeneous media behaves similarly to a diffusive spread in a
homogenous media. Thus, the diffusivity is a quantity describing the material
in relation to the used frequency and should, therefore, be constant. The
obtained strong relation of diffusivities on the source-receiver distance as
seen in Fig. 6.21 is nevertheless a discrepancy that might come from the
actual scattering behavior of the used 60 kHz as discussed in Sec. 6.2.4.2.
The applicability of a fixed diffusivity should be answered with the damage
localization for load steps 8 and 10 using individual diffusivities. The result
is shown in Fig 6.33.

Individual diffusivities would, in general, drastically increase the computa-
tional effort since each pair requires an individual FEM simulation. Therefore,
the sensitivity scaling for different diffusivities described in Sec. 6.1.1 is
applied.

The results support the assumption that the diffusion analogy describes the
heterogeneous material in relation to the used frequency. The localizations are
not wrong but significantly worse than with a fixed diffusivity. At load step 8,
multiple mislocalizations are symmetric to the x-axis. This symmetry might
come from the overall symmetry of the experimental setup. At load step 10,
the unusually high decorrelations related to transducer 21 significantly affect
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Figure 6.33: Application of individual diffusivities on the damage lo-
calization at load step 10.

the result. In total, the diffusivity evaluation shows that the use of a fixed
diffusivity is the correct interpretation of the diffusion analogy and for the
given setup with a central frequency of 60 kHz, D = 400m2

s
is a good choice.

6.2.5.2 Evaluation of Stretching Factor

In general, the coda wave sensitivities explained in Sec. 5.2.1 are a model that
describes where the wave most likely obtained its information. As described in
Sec. 4.5, there are two main wave phenomena measured in CWI: a phase shift
quantified with a stretching factor ε and a waveform distortion quantified with
the correlation coefficient CC resp. DC. In the damage localization process,
the phase shift is corrected by stretching the signal before evaluating the
CC. However, the phase shift can also be regarded as information collected
by the signal from source to receiver and, thus, a quantity described by a
generalized interpretation of the coda wave sensitivities. This section replaces
the DC measurements in y of Eq. 5.20 with the signals’ stretching factor
ε. The settings of Tab. 6.3 are used for the damage localization. The only
difference is a signal stretching window length of 400 µs to ensure the number
of unknowns is identical to the previous damage localization. Fig. 6.34 shows
the damage localization results at three of the previous loading stages.

One can see that during the different loading states, the damage localization
works. Compared to the results of Sec. 6.2.4, the localization looks even
better. Not only is the overall damaged area detected quite accurately, but
the detection of nearly all cracks individually works pretty well.

Despite its good correlation with cracks, the damage localization with
stretching factors should be cautiously treated. Certain effects are neglected
since only measurement data was exchanged, and the rest is identical to
the previous localizations. This is because the solving algorithm applies a
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Figure 6.34: Inverse problem-based damage localization at different
loading stages with stretching factors ε as measurement
data.

positivity constraint on the solution. Since all values are positive, this is
valid for DC as measurement data. However, tension and compression areas
contribute with a different sign for the stretching. Thus, a solution should
also allow negative values. Therefore, the constraint is removed, and the
new solution is shown in Fig 6.35. The fact that the results are good despite
major neglections raises the question of why the damage localization works.
In general, the effects on the stretching factor ε are diverse and not limited
to damage but also include phase shifts caused by stress changes. The effects
on ε from damages and stress changes are superposed, but since the damage
areas are detected, the corresponding effects on ε seem to dominate. In the
end, the positivity constraint focuses the solution on the areas under tension
whose effects on the signal are dominated by cracked areas. The larger effect
of altered concrete compared to healthy concrete is also described by Planès
et al. [4].

The damage localization without a positivity constraint in Fig 6.35 gives a
plausible solution. The signs of the values change from top to bottom, as is
the case with the stresses. The magnitude changes in the tension field are
again in good correlation with peaks in the FOS. Only the solution at load
step 15 is implausible at three positions where the sign is constant across the
cross-section height.
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Figure 6.35: Inverse problem-based damage localization at different
loading stages with stretching factors ε as measurement
data without positivity constraint on solution.

The good results with correct treatment of the solution field underline
the high potential of stretching factors as measurement data for damage
localization. Since cracks are the main focus, the positivity constraint that
focuses the solution towards cracks can be regarded as a beneficial filter.
Summarized, the use of the stretching factor evaluated in consecutive time
frames as explained in Fig. 4.5 instead of the decorrelation DC is very
promising and, together with the underlying generalized interpretation of
coda wave sensitivities should be further investigated.

6.2.5.3 Influence of the Measurement Pair Network

The results of Sec. 6.2.4 use a relatively dense net of measurement pairs.
In order to investigate the influence of this density on the accuracy of the
results, a small study with only a fraction of all active pairs was performed.
Fig. 6.36 shows on the top only neighboring pairs in the x-direction active, in
the middle only neighboring pairs in y- and diagonal-direction active, and on
the bottom a superposition of the top two ones, so all pairs to the neighbor
only. Due to the very good correlation of the located damage potions to the
FOS measurements, load step 5 is evaluated in this study. The evaluation
shows that the damage localization already works with the 21 pairs in the
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Figure 6.36: Study on the influence of the measurement pair network
(short distance measurement network).

x-direction. With only pairs in y- and diagonal directions, the resolution of
damage detection over the specimen height is limited. The superposition of
all directions sharpens the result of the x-direction-only pairs.

In contrast to the pairs to a neighbor only, Fig. 6.37 uses only pairs to
not neighboring transducers in the same subdivision as in Fig. 6.36. The
evaluation shows that already, with only nine rather long measurement pairs
in the x-direction, a damage localization is possible. The damaged area is
accurately described, and even correlations of the solution and the FOS peaks
can be seen. Note that the tolerance for this evaluation is decreased by one
decimal power. Otherwise, the algorithm would stop after 192 iterations
with only rough localization. With the lower tolerance, the algorithm stops
after a similar amount of iterations as in the other two pair combinations.
The diagonal pairs to non-neighboring transducers are quite flat. Therefore,
the difference to the x-direction evaluation mainly lies in the number of
measurement pairs and not, as in the previous evaluation, in the directionality.
The solution identifies a peak of the FOS that was not detected with the pairs
in the x-direction only but misses the correct identification of the damaged
area. Combining all directions leads to a promising result, dominated by the
solution of the diagonal pairs, as these are in the majority.

When comparing Fig. 6.36 and Fig. 6.37, one can say that the long-
distance measurement network identifies the overall damaged region a bit
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Figure 6.37: Study on the influence of the measurement pair network
(long distance measurement network).

better. A possible reason could be that long-distance pairs travel longer than
the mean scattering free time and thus fulfill the assumption of the diffuse
wave field already at the wave’s arrival at the receiver. For short-distance
pairs, this is only fulfilled for DC evaluation frames later in the signal. This
was also seen in the diffusivity evaluation of Fig. 6.21 that showed a strong
source-receiver distance dependency for the short distance pairs. However,
the short-distance measurement network also detects several individual cracks
quite accurately. Pairs in the x-direction appear more helpful in detecting
cracks along the x-axis. This is especially visible with the nine long-distance
pairs in the x-direction that allow a good detection of the damaged region.
This is remarkable as the inverse problem deals with 2473 unknowns and only
nine knowns. Overall, one can say that with more measurement pairs, the
solution improves in all cases, and the result of the entire measurement network
with 99 pairs (Fig. 6.23) in the end is the best. The study, however, shows
the potential of an optimized measurement pair selection in case external
factors limit the number of measurement pairs. This is, for example, the case
in a practical field application in case a complete measurement set needs to
be measured quickly.
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6.3 Damage Localization in Large Bridge

6.3.1 Experimental Setup

With the proven applicability of CWI based damage detection at a controlled
actual experiment, the next step is applying it to an existing large structure.
For this purpose, an approximately 12m long area in the middle of a large
bridge with a span of 82,40 m was instrumented with ultrasound transducers.
Fig. 6.38 and Fig. 6.39 give an overview of the bridge and the instrumented
area.

Load
15 t / 35 t

Instrumented Area

82,40 m

Middle of the Bridge

12 m

Figure 6.38: Overview of the instrumented bridge (adapted from [134]).

Due to its old age and a known problem with tendon corrosion, the structure
is also monitored using different technologies. Müller et al. [134] gives an
excellent overview of the bridge’s history, status, and monitoring.

For the subsequent mounting of the ultrasound transducers described in Sec.
4.8, core drillings were performed that were filled with the transducers and
afterward grouted with concrete. This creates similar conditions compared
to the laboratory experiment of Sec. 6.2. Also, compared to gluing onto
the surface, the installation has significantly better durability and signal
transmission properties, which are essential for long-term monitoring.

The problem with the existing structure is a lack of information on the
current state and reference measurements for the CWI results. After the
instrumentation of the ultrasound transducers, test measurements were per-
formed. The bridge was closed for this purpose and only loaded with a 15 t
and a 35 t heavy truck in the middle of the bridge. Tab. 6.4 gives an overview
of the loading process.
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Figure 6.39: Overview of sensor placement (blue dots) and cross-
section.

Loading process

Load step Loading Position

1 (reference) no load -

2 15 t middle of the bridge

3 no load -

4 35 t middle of the bridge

5 no load -

6 15 t middle of the bridge

7 no load -

Table 6.4: Overview of the loading process at the real bridge.
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Since the used central frequency is the same as the laboratory experiment
of Sec. 6.2, the used simulation parameters are also as similar as possible.
An overview is given in Tab. 6.5. One main difference from the laboratory
experiment is using a fixed reference. For the evaluation of load steps 2-7, the
measurements at load step 1 are used as the reference measurement.

Central frequency of Gaussian pulse 60 kHz

Amount of useable measurements 81

Range of source-receiver distances 0.41m - 4.62m

Simulation parameters for damage localization

Intensity computation FEM-based (Sec. 5.1.4) + Improve-
ments of Sec. 5.1.5

Sensitivity modification values for each measurement clipped
to 1/6 of the maximum sensitivity

Average node distance of the mesh 0.15m

Number of nodes 1746

Simulation time step 1× 10−6 s

Diffusivity 400m2

s

Evaluated signal length (after tof) 2000 µs

Decorrelation window length T 400 µs

Reference measurement fixed reference

Signal stretching window length T 250 µs

Solving algorithm Trust Region Reflective
Algorithm (Sec. 3.6.2)

Table 6.5: Overview of the simulation parameters for damage localiza-
tion at the real bridge.

6.3.2 Numerical Model

As shown in Fig. 6.39, the instrumented girder has a T-cross section with a
varying web height. The beam can thus be regarded as a complex geometry
on which the advantages of the FE formulation can be utilized. Even though
the FE formulation of the coda problem would allow a precise 3D modeling
of the geometry, simplifications are applied to reduce the size of the model.
The 3D geometry is reduced to a 2D plane obtained by a vertical cut through
the center of the T-cross section. As the results of the laboratory experiment
in Sec. 6.2 show, this is possible for a rectangular geometry. For the T-cross



6.3. DAMAGE LOCALIZATION IN LARGE BRIDGE 97

section, the reduction also means the contributions of the flange are neglected.
This is justifiable as the amount of wavefronts going from the web (source
position) into the flanges and back to a receiver in the web is very small
compared to wavefronts going only through the web. In the x-direction, the
varying height of the web is modeled with a curved unstructured mesh. To
respect a spread of energy away from the instrumented zone into the bridge,
the 12m long instrumented area is expanded by approximately 6m in the
x-direction on each side. The final model with a length of about 24 m and a
height of 1.17 m - 1.84 m results after meshing with an average node distance
of 0.15 m in a model with 1746 nodes. This is also the number of unknowns
for the damage localization problem. The extension of 6m on each side is
performed to correctly model the instrumented area boundaries. To solve the
inverse problem, reducing the model to the actual instrumented area could
reduce the number of unknowns. However, this was not done in the end due
to nearly no effect on the solution.

6.3.3 Usability of the Real Measurement Data

In order to evaluate the usability of measurement pairs, the overall CC of
signals at load steps 3, 5, and 7 are evaluated and shown in Fig. 6.40. With
load step 1 as the reference measurement, there is no change in the loading,
and thus, all CCs should be close to 1, which means no changes in the signal.
If there are significant correlation drops, the reproducibility of signals, which is
a central underlying assumption, is not given, and thus signals can not be used.
A lack of reproducibility of the signals is very often hardware-related and can
not be improved or repaired afterward. A good reproducibility of the signals
is assumed if the CC does not fall below 0.9. As shown in Fig. 6.40, several
signals do not fulfill the CC threshold. Fig. 6.41 gives a graphical overview
of the used measurement pairs (top) and the unusable and thus filtered ones
(bottom). Most filtered measurement pairs have a long source-receiver distance
or are connected to transducer 8 or 18. The longer the transmitting distance,
the smaller the received amplitude, and thus, the signal-to-noise ratio increases.
The maximum transmitting distance in this application with subsequently
installed transducers is around 4m. However, further investigations on the
maximum transmitting distance for the coda signal in real structures are
recommended for future research. A malfunctioning of selected transducers
also occurred in the laboratory experiment. In total, 29 pairs out of 110 are
filtered out due to bad reproducibility. When comparing the CC values with
the ones from the experiment in controlled laboratory conditions (Sec. 6.2),
one can see that challenges could arise in a practical application due to a
generally worse reproducibility.

6.3.4 Evaluation for Different Loadings

Before evaluating the damage localization under load, load steps 3, 5, and 7
without loading are further investigated with a damage localization. Results
are shown in Fig. 6.42. This should give a reference for the damage localiza-
tions under load and help distinguish if the detected damage is only localized
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Figure 6.40: CC evaluation at the real bridge for no loading applied.
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Figure 6.41: Overview of the used measurement pairs. Green pairs
are used, and orange ones are filtered out. Thick, light
grey lines indicate the position of tendons, and the mesh
represents a 2D slice of the bridge geometry.

under load or also without loading. One can see that the resulting damage
localization looks very similar for all load steps without loading applied. Also,
the change of the reference measurement, as shown in the bottom of Fig.
6.42, has no influence. This is good as it indicates that the choice of the
used reference seems to have no big influence, and the detected damage areas
most likely come from comparably bad signal reproducibility in that area. As
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Figure 6.42: Damage localization at the real bridge for load steps
without loading applied.

shown in Fig. 6.40, the reproducibility of signals surpassing the threshold of
0.9 still differs. With the zero state evaluation and the knowledge of areas
where localized damage might come from bad signals, the damage localization
under load is performed. Fig. 6.43 shows the results for increasing loading.
Note that the actual loading process of Tab. 6.4 is different from the order of
the visualization (where loading increases from top to bottom) but due to
the use of a fixed reference has no effects.

The damage localization for the different load steps looks very similar. This
reproducibility is an excellent sign and increases the significance of the results.
Even though the values of the solutions space have no expressiveness on their
own, as discussed in Sec. 5.2.4, a comparison of the values for the different load
intensities makes sense. The maximum value of the solution space ||x||max

increases with increasing loading, which makes sense as the cracks open up
with the increased load, and the damage to be detected increases. Under
loading, multiple damaged regions are detected. The most important ones are
at the bottom near x = -3.0 m, x = -1.2 m, x = 0.0 m and x = +2.0 m (orange
circled). Another one is near x = +1.0 m that is detected under 15 t loading
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Figure 6.43: Damage localization at the real bridge for increasing loading.

but not under 35 t loading. The other damage localizations at x < -4.0 m show
strong similarities to the damage localization with no loading and are thus
more likely signal reproducibility related, as discussed before, rather than
coming from the actual damage. Due to the relative measurement evaluation,
only new damage can be detected. Putting all load steps shown in Fig. 6.42
and Fig. 6.43 in the actual order of Tab. 6.4 underlines the assumption that
there are existing cracks that open up under load and close without loading.
This phenomenon should be further investigated in laboratory experiments
but can be very powerful for detecting existing damage. Note that the closure
of cracks with resulting invisibility for the CWI most likely comes from the
prestressing. It can also be seen that the detected damage area is directly
under the applied forces. For the given structure, the bending moment and,
consequently, the stresses originating from the external load are maximum
around the position of the load application. This explains why only cracks
open up near the position of the load application. Another investigation of
the structure on site is advised, but due to the inaccessibility of the affected
area, it was not possible so far.

Overall, the results of the CWI damage localization are promising. However,
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measuring a complete set of signals for each load step takes several minutes.
This duration makes an application under varying traffic loads very difficult.
Nevertheless, the given design of the experiment with controlled loading is a
practically applicable use case of CWI as non-destructive testing as cracks in
a prestressed structure that open up under loading seem to be detectable. It
should also be mentioned that since existing damage is hard to detect, the
structure can always be in a worse condition than the CWI results suggest.
Further research should try to find solutions for an application under varying
traffic loads.

6.3.5 Influence of the Number of Measurement Pairs Used

Due to the long time it takes to measure a complete set of signals, the influence
of the density of the measurement network is investigated. For this purpose,
the evaluation from Fig. 6.43 is repeated with only measurement pairs of
neighboring sensors (that fulfill the CC threshold) active. Fig. 6.44 shows the
resulting damage localization. Note that compared to Sec. 6.2.5.3, where a
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Figure 6.44: Damage localization at the real bridge for increasing load-
ing with only selected pairs active.
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similar study was performed, the distances to neighboring sensors are in the
range of the study for pairs to not neighboring sensors in Sec. 6.2.5.3 that
gave slightly better results.

Compared to the complete measurement network of Fig. 6.43, the result is
overall similar to the detected damage near the middle of the bridge. However,
mainly results with no load and with 35 t applied are a bit different. There is
no longer a magnitude change between 15 t and 35 t. Also, several localizations
at 35 t were not seen before. A parameter with strong influence is the clipping
threshold for the sensitivities. All previous damage localizations had a very
dense measurement pair network. The threshold at 1/6 might be too low for
the very sparse measurement pair network. Therefore, the clipping factor is
increased to 1/2, and results are shown in Fig. 6.45.
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Figure 6.45: Damage localization at the real bridge for increasing load-
ing with only selected pairs active and sensitivities clipped
at 1/2.

With the higher threshold, the solution under a load of 35 t improves with
fewer localizations that were not seen before and larger values for the located
damage compared to the 15 t load state. With 15 t applied in the middle of
the bridge, the detected damage locations are again reproducible and strongly
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correlate to the results, with the whole measurement network being active.
Only the detection of Fig. 6.43 at the bottom near x = -3.0 m is not visible.

Overall, the damage localization gives good results, with only measurement
pairs of neighboring sensors being active. The threshold on the sensitivities
can be understood as a filter that should be adjusted correctly, and it helps
to increase the threshold for coarser measurement pair networks. The more
pairs sense an area, the more robust the results are. It could thus be a use
case to permanently measure with a selected number of pairs and perform
further inspections with a complete measurement network in case of significant
changes compared to a defined reference.

6.4 Conclusion on Damage Localization with Coda
Waves

This chapter has further developed several aspects of damage localization with
CWI. The numerical investigations with multiple parameter studies were used
to develop the FEM based imaging. Compared to the established analytic
solution-based imaging [20–22], this is an improvement as FEM allows to
solve the problem in complex geometries. The analytic solution-based imaging
typically uses the RTE that contains next to a part describing the diffusive
spread and also one that represents the ballistic wave. In this thesis, the
improvements of the analytic RTE are applied to the FEM solution in order
to further improve it. The developments were then tested in a laboratory
experiment. The major challenge here was successfully applying the previously
at higher frequencies (> 100 kHz) used methods to the comparatively low
60 kHz.

One problem that can also be found in experimental results from literature
[124, 125] is the strong correlation of the obtained solution with the transducer
network. The assumed reason in this thesis is the spatial sensitivity distri-
bution that forms sharp peaks at the transducer positions but, in the time
domain, has a convex development that is in shape similar to regions further
away from the transducer. Because of this behavior, the applied least-squares
fitting needed to solve the inverse problem tends to identify transducers as
damaged locations. The dependency on transducer locations is reduced in
this thesis by limiting the sensitivities in transducer regions to a fraction
of the maximum. By doing so, the obtained results and the robustness to
implausible measurements are improved. Justifiable is this approach with the
size of the ultrasonic transmitters, numerical singularities of point sources,
and the known lack of the model in areas close to the transducer. Ultimately,
this modification also allows us to apply the multiple scattering-based imaging
techniques to the signals from a 60 kHz impulse.

The laboratory investigations underline the immense sensitivity of coda
waves. Even with a loading half the one where the concrete’s tensile strength
is reached and computational cracking occurs, little changes are detectable
and correctly located. When macrocracking occurs, one can see in the
measurement data that the imaging is sensitive to cracks occurring very close
to transducers. Another difficulty is the narrow space in which many cracks
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occur simultaneously. Therefore, it is impossible to correctly identify all
cracks individually, but a rough localization of the damaged area is relatively
robust. This is also the case after the cracks appear and only open further
under increasing load. The thesis also derived a method of fitting the diffusion
solution to the ultrasound signals to obtain the material’s diffusivity for
a frequency of 60 kHz. The results show a large variance and, for short
source-receiver distances, a strong correlation to the tof. The problem is most
likely related to a travel distance less than the transport mean free path and
could be addressed in further research by respecting this implausibility in
the solution algorithm in the covariance matrix of the measurement data. In
the experiment, the influence of different amounts of measurement pairs was
investigated. Due to the limited size of the test specimen, a conclusion is
difficult. Ultimately, the best results are achieved with the maximum number
of measurement pairs, but localization is also possible with fewer. This finding
has the potential for optimizing sensor positions in further research. An open
problem of the imaging with CWI is the classification of localized damages.
With a stepwise load increase and a gradient analysis of the obtained solution
values, the thesis shows a possible indicator for irreversible damage. A novelty
is using phase shifts evaluated within the coda signal as measurements instead
of DC for the inverse problem. The good identification of stress, tension and
damage zones is an excellent result that is very promising for further research.

Applying damage detection with CWI in a field experiment at the Gänstor-
brücke showed promising results. Due to the complex, non-cubic geometry
with a varying cross-section, it is essential to be able to model the problem
with FEM. One restriction, however, is that the experiments miss a crack
mapping or reference measurements as validation for the CWI. However, the
data was checked for consistency and plausibility in the best possible way.
Results suggest that even existing damage could be detectable if the cracks
close without loading due to pre-tensioning.

The three conducted experiments underline the benefits and immense
potential of CWI. The technology’s most significant advantages are its large-
scale coverage of the monitored structure and its immense sensitivity. However,
this sensitivity to various environmental influences is also the biggest challenge
in long-term SHM applications. In a controlled setting, most of the influences
are, however, controllable such that CWI can be applied as supporting NDT
method for enhanced investigations on a structure.



Chapter 7

Model Updating in Structural
Analysis

Computational model updating aims to identify input parameters of a numer-
ical model such that computation results match measurements in the best
way possible. This chapter uses local sensitivities that describe the relation
of adaptable input parameters and measurable output parameters by deriva-
tives. With the sensitivities appearing in the inverse problem, the problem
is an application of gradient-based optimization. This system identification
application is mathematically similar to the previously presented imaging
techniques with coda waves (cf. Sec. 5.2.2). A specialty of the coda problem
is that sensitivities are not determined by derivatives of a problem but with a
model based on random paths (cf. Sec. 5.2.1). This chapter uses a structural-
mechanical model to show how sensitivities can be calculated by deriving an
initial problem. Due to the relation of real quantities to a numerical model
that allows calibration, the method is a crucial aspect of DT development.
In contrast to the coda problem, the application in structural analysis has
the advantage that measurements, e.g., displacements, can be directly linked
to the structure’s stiffness. This allows localization of structural changes, as
well as a quantification of the stiffness change.

7.1 Introduction to Model Updating in Structural
Analysis

The basis for model updating in structural mechanics is the analysis of
structural behavior. The most popular method to numerically solve structural-
mechanical problems is the finite element method (FEM). In principle, the
same procedure as in Sec. 5.1.4 is applied. For this reason, references are only
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made here to literature that deals extensively with the subject. Standard
works for FEM are among others Ottosen et al. [117], Zienkiewicz et al. [118],
Hughes [135], and Bathe [136].

In structural analysis, the FEM master stiffness equation relates forces f
to stiffnesses K and displacements u:

Ku = f (7.1)

The contribution of each element to the master stiffness equation of Eq. 7.1
is computed with the same elemental formulations as in the diffusion problem
(cf. Eq. 5.9). Eq. 7.1 and Eq. 5.8 are, in fact, the same for a static case (time
derivative vanishes) if I is replaced by u.

It should be noted that numerical methods are models that can only rep-
resent reality partially due to idealization, discretization, solution errors, and
erroneous assumptions. In the FEM workflow, they appear as shown in Fig.
7.1.
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Solution error
VERIFICATION

Discretization + solution error

Modeling + discretization + solution error
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Figure 7.1: Role of FEM in the structural analysis process (adapted
from [137]).

An overview of the different errors is given below. The list is not claimed to be
exhaustive, and further examples of the errors can be found in Mottershead
et al. [138].

1. Idealization errors result from assumptions made to characterize the
mechanical behavior of the physical structure [138].

• simplifications of the structure, e.g., a plate is treated like a beam

• FE formulation neglects particular properties, e.g., the influence of
transverse shear deformation

• erroneous modeling of boundary conditions, e.g., elastic support is
assumed rigid

• non-linear structural behavior assumed linearly
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2. Discretization errors results from reducing the mathematical model to
a discrete model with a finite number of degrees of freedom [137].

• finite element mesh is too coarse

3. Solution errors due to numerical limitations.

• implementation errors

• limited numerical precision

• choice of the wrong or inefficient solution algorithm

4. Erroneous assumptions for model parameters [138].

• material parameters such as Young’s modulus

• cross-section properties of a beam

• erroneous assumptions for the external loads

When computing real structural responses, the aim is to minimize all the
listed errors in the FEM workflow. Models that fulfill these requirements
shall be called validated models [138].

Computational model updating aims to adapt a set of input parameters of
a numerical model such that the computations yield the same results as given
measurements. This framework is similar to the DT concept, whereby due
to the unidirectional relationship, it is, according to Kritzinger et al. [42], a
digital shadow. In the context of model updating, it is also essential to include
a measurement error as a source of error. In numerical benchmarks that
compare with analytical solutions, this error does not appear. Nevertheless,
when working with real measurements, the influence of quality and accuracy of
measurements is enormous and should always be considered when evaluating
results.

7.2 Sensitivity Analysis in Structural Analysis

Model updating aims to adapt input parameters such that the output parame-
ters of a model are matched with measurements. Investigating the relationship
between input and output parameters is the classical application of sensitivity
analysis. Local sensitivities are gradient information that can be determined
using derivatives. A simple way to numerically compute sensitivities is using
finite differences (FD) where input parameters are varied with a finite step,
and changes in the output are investigated. It is numerically inefficient be-
cause FD needs to solve the problem for each input-output relation. More
advanced methods are the direct and adjoint sensitivity analysis, which are
numerically efficient in investigating the relation of one input parameter to
numerous output parameters or numerous input parameters to one output
parameter. Input parameters in the structural analysis are, e.g., cross-section
properties and Young’s moduli that can differ for each element, but also node
positions, loads, etc., are input. Output parameters are, e.g., displacements,
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stresses, and strains. In case the model updating should be able to modify all
elements, so numerous input parameters, the adjoint sensitivity analysis is a
numerically efficient choice.

7.2.1 Adjoint Sensitivity Analysis

The explanations below are based on the excellent work of Fußeder [139] in
this field. Input parameters are referred to with x in this thesis, and the
solution of the master stiffness equation, which is also referred to as the
primal problem, are the state variables u. In order to be able to deal with
various kinds of output parameters, not only the state variables u, the general
response function y is introduced. It can stand for displacements and other
output parameters, e.g., stresses.

y(x,u(x)) (7.2)

The total derivative with respect to an input parameter xi ∈ x of this general
response description that can depend on x as well as u, which itself depends
on xi, then looks as follows:

dy

dxi
=

∂y

∂xi
+

[
∂y

∂u

]T
· du

dxi
(7.3)

In order to obtain the total derivative of u with respect to xi, the primal
problem is derived with respect to xi. Therefore, the equilibrium of Eq. 7.1
is rewritten as a residual formulation

r(x,u) = K(x)u− f(x) = 0 (7.4)

and derived with respect to xi:

dr

dxi
=

∂r

∂xi
+

∂r

∂u
· du

dxi
= 0 (7.5)

Eq. 7.5 can be solved for du
dxi

du

dxi
=

[
∂r

∂u

]−1

·
[
− ∂r

∂xi

]
(7.6)

and inserted into Eq. 7.3:

dy

dxi
=

∂y

∂xi
+

[
∂y

∂u

]T
·
[
∂r

∂u

]−1

·
[
− ∂r

∂xi

]
(7.7)

With the partial derivatives of Eq. 7.4 inserted, the expression to evaluate the
sensitivity of a response y to a change of an input parameter xi is obtained:

dy

dxi
=

∂y

∂xi
+

[
∂y

∂u

]T
·K−1 ·

[
∂f

∂xi
− ∂K

∂xi
u

]
(7.8)
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The partial derivative of y with respect to xi is generally computationally
cheap. The expensive part is the second summand. A specialty is that the
term on the left of the inverse stiffness matrix ( ∂y

∂u
) is independent of the

input parameters xi and the one on the right ([ ∂f
∂xi

− ∂K
∂xi]

u) is independent
of the selected response function y. In terms of computational effort, it thus
makes a difference in which direction Eq. 7.8 is evaluated as it is possible
to separate input parameters from responses. If the analysis is started with
an evaluation of K−1 · [ ∂f

∂xi
− ∂K

∂xi
u] which is the state derivative du

dxi
, the

evaluation is known as direct sensitivity analysis. The state derivative

du

dxi
= K−1 ·

[
∂f

∂xi
− ∂K

∂xi
u

]
︸ ︷︷ ︸

f∗

(7.9)

thereby has similarities to the solution of the master stiffness equation
u = K−1f and the partial derivative of −r with respect to xi is thus de-
noted as pseudo-load f∗. The pseudo-load only depends on input parameters
and is independent of the response. The second analysis step evaluates Eq.
7.3. Since the partial derivative of y with respect to u can be determined
with less effort, it is computationally cheap to evaluate the influence of one
input parameter on numerous responses y.

If it is, however, of interest to evaluate the influence of many input pa-
rameters, the expensive matrix-vector multiplication should be carried out
from right to left. The necessary computation order change is achieved by
transposing Eq. 7.8:

dy

dxi

T

=
∂y

∂xi

T

+

[
∂f

∂xi
− ∂K

∂xi
u

]T
·K−T ·

[
∂y

∂u

]
︸ ︷︷ ︸

λλλ

(7.10)

The version of Eq. 7.10 is called adjoint sensitivity analysis. Analogous to the
direct sensitivity analysis, where the first computation step is summarized
in the state derivative du

dxi
, a special variable is introduced for the adjoint

sensitivity analysis: the adjoint displacement λλλ. Taking into account that dy
dxi

and ∂y
∂xi

are scalars and K is symmetric, the adjoint sensitivity analysis can
be rewritten as follows:

dy

dxi
=

∂y

∂xi
+f∗

T ·λλλ with
pseudo-load f∗ =

[
∂f
∂xi

− ∂K
∂xi

u
]

adjoint problem λλλ = K−1 ·
[
∂y
∂u

] (7.11)

In Eq. 7.11, the computation of λλλ is the most expensive. Due to the similarity
to the solution of the master stiffness equation u = K−1f , the partial derivative
of response y with respect to the state variables u is also referred to as adjoint-
load. After the adjoint problem is solved, the final evaluation can thus be
regarded as a computationally cheap post-processing step. Thus, the adjoint
sensitivity analysis is suitable for evaluating the influence of numerous input
parameters on a fixed response.
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7.2.2 Computational Aspects

The focus of this thesis is on the adjoint sensitivity analysis. It is the basis
for the computational model updating below, where all input parameters can,
in theory, be adjusted to update the model and, therefore, must be evaluated
with adjoint sensitivity analysis. Fußeder [139] mentions aspects regarding
the computational effort and an efficient implementation. The computational
effort can be reduced due to the sparsity of the pseudo-load. As typical input
parameters xi dealt with in this thesis are element values such as cross-section
parameters and Young’s modulus, the partial derivative of f with respect to
xi is zero, and only stiffness entries in the master stiffness matrix K directly
depending on xi are non-zero values. Therefore, instead of evaluating the
whole master stiffness matrix, dy

dxi
can be evaluated by adding the n elemental

contributions ( e) that are non-zero after the adjoint problem is solved.

dy

dxi
=

∂y

∂xi
+
∑
n

{[
∂fe

∂xi
− ∂Ke

∂xi
ue

]T
· λλλe

}
(7.12)

For evaluating the effect of the Young’s modulus Ei of the i-th element on a
displacement uj , Eq. 7.12 simplifies to the following:

duj

dEi
= −

[
∂Ki

∂Ei
ui

]T
· λλλi (7.13)

For evaluating the pseudo-load f∗, one needs to implement the partial
derivatives of K and f for all input parameters of interest. As these are
various, Bletzinger et al. [140] and Gengdong et al. [141] use a semi-analytic
sensitivity analysis with FD to evaluate the elements’ partial derivative to
remain flexible to various input parameters. Masching [142] shows that the
semi-analytic approach is even faster.

7.2.3 Graphical Interpretations

In his work, Fußeder [139] shows the close connection of adjoint sensitivity
analysis to influence functions. The classic application of influence functions in
engineering is the fast, graphical evaluation of the influence of different loading
scenarios on a fixed system response. The similarity to adjoint sensitivity
analysis is obvious. In his work, Fußeder [139] introduces generalized influence
functions that can be used to evaluate arbitrary relations of input parameters
and system responses. A complete explanation is out of the scope of this
thesis, and the reader is referred to Fußeder [139] and Fußeder et al. [143,
144] for exhaustive explanations. Here, only a graphical example points out
the visible relation of the sensitivities dealt with in this chapter and the ones
of the coda waves in Sec. 5.2.1.

With the method of generalized influence functions, the spatial relationship
between stiffnesses and deformations can be calculated by pointwise multipli-
cation of two functions. This is shown for a beam under line-load p (Fig. 7.2)
and single load F (Fig. 7.3) in the figures below.
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Figure 7.2: Graphical sensitivity analysis for effect of Young’s modulus
E on displacement u1 of a beam under line-load p.
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Figure 7.3: Graphical sensitivity analysis for effect of Young’s modulus
E on displacement u1 of a beam under single load F .

On the left, the curvature κλ = −λ′′ of the influence function λ for a
system response y, here node displacement u1, is shown. Influence functions
of displacements are the system deformation under a unit load equivalent to
the evaluated displacement. The curvature is closely related to the moment
course with M = −EIκλ. Thus, the curvature of the influence function can
also be derived from the moment course under the unit load. The second
function related to the evaluated input parameter is shown in the middle. For
the example of Young’s modulus as input parameter, the moment under the
given load is of interest and referred to as pseudo-moment M∗

E . The pointwise
multiplication of the influence function and pseudo-moment leads to the final
sensitivity du1

dE
shown on the right. For the case of discrete finite elements,

the continuous curves are only approximated. With an integration over the
element length, discrete values per element are obtained and shown in Fig.
7.4 for a beam discretized with ten elements.

x
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Curvature of influence
function yi = u1

F

pseudo-momentM ∗
E

×
u1

F

final sensitivity du1
dE

Figure 7.4: Graphical sensitivity analysis for effect of Young’s modulus
E on displacement u1 of a beam under single load F with
discrete finite elements.

The graphical procedure is similar to the visualization of the coda sensitivity
computation in Fig. 5.7. Common in both sensitivity computations is
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that input and response are separated. For coda sensitivities, this is the
independence of source and receiver in the sensitivity kernels numerator (Eq.
5.19). A visible difference is, however, that coda sensitivities have, unlike the
static loading in the structural analysis example, a time component such that
all possible time combinations are added up in the integral of the sensitivity
kernel (Eq. 5.19).

7.3 Computational Model Updating

Computational model updating aims to calibrate a numerical model such that
computed values agree with real measurements. Recommendable works in
this field with practical applications are, among others, the ones by Link [61,
68], Mottershead et al. [138], Stöhr [145], and Friswell [146].

Mathematically, the goal of computational model updating is to minimize
a function f(x) that describes the difference of measured responses ỹ, that
are quantities from the real space and thus independent of numerical input
parameters x and estimated responses y, which in this case are the responses
of the FE model.

min
x∈Rn

f(x) with f(x) = ỹ − y(x) (7.14)

The problem that input parameters x need to be adapted such that the
system’s responses that can also be measured are matched is a classical
inverse problem. When applying the Gauss-Newton algorithm of Ch. 3 on
the inverse problem, Eq. 7.14 is formulated as least-squares problem that
contains the RSS of estimated and measured values:

min
x∈Rn

∥ỹ − y(x)∥22 (7.15)

The estimated responses y are approximated with a linearization by a Taylor
series expansion that is truncated after the linear term:

y(x) ≈ y(xk) +Axk · (xk+1 − xk) (7.16)

y(xk) thereby describes the responses of the initial (or previous) model with
xk as input parameters. The entries of A depend on the point of linearization
given by xk, which is indicated by the notation with xk as subscript. When
inserting Eq. 7.16 into Eq. 7.15, one obtains the objective function for
computational model updating:

min
x∈Rn

∥ỹ − y(xk) +Axk · (xk − xk+1)︸ ︷︷ ︸
y(x)

∥22 (7.17)

Eq. 7.17 is similar to Eq. 3.20. Applying the equations introduced in Sec.
3.5, the solution of one iteration step can thus be obtained with:

xk+1 = xk + (AT
xk

Axk )
−1AT

xk
(

∆yk︷ ︸︸ ︷
ỹ − y(xk))︸ ︷︷ ︸

∆xk

(7.18)



7.3. COMPUTATIONAL MODEL UPDATING 113

In the solution of the Gauss-Newton iteration step in Eq. 7.18, the problem
that solves for the incremental update ∆xk is a linear one that can be written
as follows:

Axk︸︷︷︸
dy
dx

·∆xk = ∆yk

with ∆xk = xk+1 − xk

and ∆yk = ỹ − y(xk)

(7.19)

The problem of Eq. 7.19 is visualized in Fig. 7.5. In the figure, the indices of
A refer to the position in the matrix (and not the point of linearization). It
is noticeable that the problem is very similar to that of imaging with coda
waves (cf. Fig. 5.9, Eq. 5.20).
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Figure 7.5: Linearized relation of input parameters x (here elemental
Young’s modulus Ei) and system responses y (here nodal
displacements uj) that is described in Eq. 7.19 visualized.

In each iteration step, x is updated, and therefore, a recomputation of
all sensitivities in A is required. However, when assuming little changes of
x, the non-linearity of the least-squares optimization problem in Eq. 7.15 is
typically significantly larger than the non-linearity of the structural behavior.
In order to reduce computational effort, one could solve the problem for x
with fixed sensitivities until convergence, update A, and repeat the complete
procedure until convergence.

The problem of Eq. 7.17 is ill-posed. It is thus required to regularize
the problem, e.g., with the Tikhonov regularization presented in Sec. 3.3.
Therefore, the inverse covariance matrix of the input parameters C−1

X and
the inverse covariance matrix of the measurements C−1

Y are included and the
incremental update for an iteration step ∆xk computes as follows (cf. Eq
3.27):

∆xk = (AT
xk

C−1
Y Axk +C−1

X )−1AT
xk

C−1
Y (ỹ − y(xk) (7.20)
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This formulation is also used by Link [68] and Mottershead et al. [138]. For
C−1

X , that represents the uncertainty in the initial parameter estimation [63,
147, 148], the authors do not use the damping of the Tikhonov regularization
where C−1

X = α2I but the following:

C−1
X = α2WX with WX =

mean(Γ)
mean(Γ−1)

Γ−1 and Γ = diag(AT
xk

C−1
Y Axk )

(7.21)
The weighting matrix WX allows the parameter changes to be constrained
according to their sensitivity [138]. As the matrix Γ, which contains sensitivity
information, is inverted, large sensitivities in AT

xk
C−1

Y Axk are damped with
only a small value. In contrast, small sensitivities are damped with large
entries in WX . Consequently, the parameters xi remain unchanged if their
sensitivity approaches zero [68]. The scalar α is obtained with the L-curve
method of Sec. 3.4.

In the computations for imaging with coda waves, the relation of system
responses that are contained in the inverse covariance matrix of the measure-
ments C−1

Y is neglected by choosing C−1
Y = I. The choice of the identity

matrix is called the Markov estimator and yields the best linear unbiased
estimate [68]. If measurements of different types are used in the computational
model updating, values are likely of different magnitude. In such cases, it is
advantageous to normalize the measurements as follows [138]:

C−1
Y = diag(y)−2 (7.22)

The computational model updating can be applied at various times in the
life cycle of a structure. On the one hand, it is possible to initially calibrate a
numerical model so that reality is represented in the best way possible. After
calibration, the model is validated and can be used to predict different scenarios.
If further changes happen in reality, the computational model updating allows
localization and quantification of those changes. Knowledge about the affected
input parameters can thereby significantly improve the results, as this could
reduce the space of input parameters. Another improvement could be achieved
by knowing whether a change has a positive or negative effect. This could be
respected with constraints on the solution and the algorithms of Sec. 3.6.

7.4 Combination of Model Updating in Structural
Analysis with Imaging with Coda Waves

The focus of this thesis lies in the imaging with coda waves in concrete.
Therefore, the question arises of how this is related to the just-described
computational model updating. The relationship is multi-layered. From a
mathematical point of view, the two methods are an inverse problem in which
sensitivity information is related to measurements, meaning mathematically,
they are the same. The only difference is that in the computational model
updating, the inverse problem is non-linear, as sensitivities change during the
model updating. Therefore, improvements in the mathematical part of one
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application can also improve the other application. The bigger advantage,
however, is that with the developed FEM based imaging with coda waves
and the computational model updating that also uses FEM, it is possible to
apply both methods on the same mesh. Tab. 7.1 shows the similarities in the
overall discretization and system identification (SI) approach as well as the
differences in parameters, boundary conditions (BCs), responses and other
settings. Note that for the structural-mechanics case, the measurements are
a response of the FEM problem, and thus, it’s possible to not only localize
but also quantify identified changes. For the case of imaging with coda waves,
the DC measurements are unitless with DC ∈ [0, 1] and no direct part of the
FEM problem. Thus, the interpretation of the obtained solution from the SI
is not as straightforward as in the structural-mechanics case (cf. Sec. 5.2.4).

Table 7.1: Comparison: Coda Imaging - Computational Model Updating.

Physical system Scattered dynamic
waves Structural-mechanics

Idealization Diffusion model Beam model

Discretization FEM FEM

Solver type transient static

Analysis type non-linear non-linear

Dirichlet BCs transducer support

Neumann BCs reflecting boundaries forces

Important material
parameter diffusivity stiffness

FEM solution energy concentration displacements

Measurements DC or ε of two
ultrasound signals

system responses e.g.
displacements, strains

System identification sensitivity-based sensitivity-based

Sensitivity analysis
random wave path
combinations (Eq.
5.19)

analytic derivatives
(Eq. 7.10)

Inverse problem
least-squares
formulation with
constant A (Eq. 3.20)

least-squares
formulation with
A(x) (Eq. 3.20)

Result of SI Localization of "new"
scatterers e.g. cracks

Parameter adaptation
e.g. stiffness
(Localization and
quantification)
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Due to the many similarities of the two methods, combining the evaluation
of coda measurements and strain or displacement measurements is possible.
The combination can be done in a simultaneous way where the inverse problem
of imaging with coda waves and the one of computational model updating
are joined to one by stacking the sensitivity matrices and measurement vec-
tors. This combination comes with problems due to magnitude differences
in sensitivities and measurement values. More promising would be a succes-
sively combination where imaging with coda waves is performed first. This
results in a localized damage field, but as mentioned above, it is difficult to
directly conclude the magnitude of the solution without complex calibration
measurements. A classification could be made possible by applying the known
damage field from coda imaging as a filter on the model updating problem
so that only detected damage locations are in the set of investigated input
parameters. The reduced model updating problem can be used to further
classify the detected damage with structural parameters such as stiffness.

Another relation of coda measurements and quantities from structural
analysis contains, at least in theory, the stretching factor of the coda signal ε.
One can draw conclusions about the stress state by evaluating the stretching
factor. Structural analysis can also compute such a stress state in a controlled
environment. The relation of the two methods could then be deployed
to individually calibrate the pairs in the ultrasound transducer network.
Another way is to use measured stress information from ε evaluation in the
computational model updating. Overall, there is great potential for synergy
effects when combining the two methods in SHM applications. However,
combining the two methods comes with immense requirements for the accuracy
of the numerical models and the mandatory requirement of measurement
technologies for coda imaging and computational model updating in the same
specimen.



Chapter 8

Results on Model Updating in
Structural Analysis

The computational model updating introduced in Sec. 7.3 is applied in two
experiments in this chapter. First is a pure numerical test, where modifying
selected parameters creates synthetic measurements. The modification is
then identified with computational model updating. Similar to the results of
imaging with coda waves in Ch. 6, the numerical framework is deployed to
conduct parameter studies. As the aim is to apply the numerical methods to
actual structures, the method is, in a second step, tested in a real experiment.

8.1 Computational Model Updating with Synthetic
Data

8.1.1 Experimental Setup

The numerically investigated system is a beam with a moving single load
applied at several positions. As system response, the displacements at several
positions are measured. The number of load positions and displacement
measurements varies in the parameter studies. The discretization is also part
of the numerical parameter studies. Young’s modulus is reduced in a defined
section in the numerical experiment. The analysis results of this modified
system are used as synthetic measurements. Young’s modulus reduction is
assumed to be unknown in the model updating workflow and is identified only
from the synthetic measurements. An overview of the described experimental
setup is shown in Fig. 8.1.

Load positions, displacement measurements, and FE refinement are part
of numerical studies. Thereby, four different refinement levels, four different
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Figure 8.1: Overview of the structural system for the numerical experiment.

amounts of displacement measurements, and three load cases are investigated.
Tab. 8.1 gives an overview of the different cases. The numerical weakening
of the structure is chosen to be Young’s modulus reduction by 20 % in a
fixed range. The single loads in this example are only applied to the left
part of the beam, as otherwise, many rows in the matrix would be linearly
dependent due to symmetry. The state variables u are computed with a
geometrically non-linear computation. Nevertheless, it does not make a
difference as the measurements are computed similarly, and therefore, the

Parameters for numerical model updating

statical system
single-span beam with l = 5 m

one single load F=100N applied at xF

cross section rectangular 40mm×10mm

material steel with E = 210000 N
mm2

modification reduction of E by 20% in x = 1.5m − 2.5m

FE refinement 10, 20, 40, 1000 elements

displacement
measurements

4 positions xu = 1, 2, 3, 4 [m]

9 positions xu = 0.5, 1.0, . . . , 4.5 [m]

19 positions xu = 0.25, 0.5, . . . , 4.75 [m]

39 positions xu = 0.125, 0.25, . . . , 4.875 [m]

load cases
1 single load xF = 2.5 [m]

2 single loads xF = 1.25 and xF = 2.5 [m]

5 single loads xF = 0.5, 1.0, 1.5, 2.0, 2.5 [m]

Table 8.1: Settings for model updating with synthetic measurement data.
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effects of the more accurate non-linear computation vanish. Additionally, the
system’s geometrical non-linearity under the given load is nearly linear and,
therefore, neglectable.

In the parameter studies, the amount of unknowns is defined by the FE
refinement, so between 10 and 1000. The combination of measured responses
and load cases defines the amount of measurements. The example of Fig.
8.2 with four displacement measurements and one load case for refinement
with ten elements shows the least amount of measurements. The maximum
amount is 39 displacement measurements combined with five different load
cases, which makes a total of 195 measurements. Depending on the chosen
settings, the obtained inverse problem for model updating is either over- or
underdetermined.

x

z, u

F

u1
u2 u3

u4

Figure 8.2: Example of four response measurements (ui), one load
case, and a refinement with ten elements.

8.1.2 Results of Computational Model Updating with
Synthetic Data

With various parameters from Tab. 8.1 investigated, the evaluation of the
results is complex. In the numerical experiment, where the damage location is
precisely known, the residual evaluated for assessing the result is the difference
of input parameters x̂updated and the actual input parameters xknown. This
differs from the minimized residual of responses. In the optimization, the
residual of Eq. 7.15 is minimized but does not give direct information on how
accurate the obtained solution is. Fig. 8.3 shows convergence plots for the
four different refinements and an evaluation of how the amount of evaluated
system responses relates to the remaining residual of input parameters. For
an easier comparison, a constant y-axis is used in all diagrams. Starting with
the refinement of 10 elements, the deviation of the obtained solution from
the targeted one is zero for nearly all cases. Only with the least number of
measurements could the obtained solution be better. With the refinement of
20 elements, one can see the effect of the amount of measured responses and
load cases very clearly. To visualize the obtained residuals of the solution,
Fig. 8.4 and Fig. 8.5 show results for the refinement with 20 elements and
different densities of the measured responses. The figures are structured as
follows: On the left is an overview of the evaluated load case and measured
responses. These positions are also indicated on the right in light blue and
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Figure 8.3: Convergence study on model updating with different ele-
ment refinements.

orange. On the right side of the figure is the obtained solution for Young’s
modulus distribution plotted over the element length in grey. The black
dotted lines indicate the actual applied modification to be identified.
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Figure 8.4: Model updating with 20 elements and four measurements.
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Figure 8.5: Model updating with 20 elements and 19 measurements.

For the case of 4 responses (Fig. 8.4), the discrete jump of the applied
change in Young’s modulus is not identified precisely and is only approximated.
For the case of 19 response measurements (Fig. 8.5), where every nodal
displacement is measured, the jump is, however, precisely identified, and the
remaining error of the solution is nearly zero. This already indicates a result
that becomes more evident with more elements: the refinement of points
where either a load acts or a response is measured is crucial for the accuracy of
the obtained solution. The observation is underlined by the convergence study
with 40 and 1000 elements. With 40 elements, the remaining error is nearly
zero for the fine refinement where every FE node displacement is measured.
For the coarser measurements, one can see that an increase in load positions
improves the result. However, the increase in response measurements has a
larger effect, as one can see, e.g., at approximately 40 total measurements. This
is also visible for the refinement with 1000 elements. Here, an increase in load
cases does not affect the cases of 19 and 39 response measurements. However,
an increase in measured responses significantly reduces the error. What is
interesting about the 1000-element refinement is that it is unproblematic to
have fewer measurements than unknowns for the mathematical solving part.
Fig. 8.6 shows the solution with only four measurements in total. One can
see that a rough identification of the applied modification is possible. The
solution also shows that in between the points of response measurements,
the solution interpolates linearly. A similar development can be seen in the
refinement with 20 elements in Fig. 8.4. The solutions are, in fact, very
similar, only that with 1000 elements, the linear interpolation is more evident.
For the given example, this leads to the conclusion that the obtained solution
is mesh-independent for a strongly underdetermined inverse problem.

Overall, the numerical study verifies the numerical model updating work-
flow. The study showed a dependency of the obtained solution on the number
of load positions and response measurements. The response measurements’
density has a larger effect in the given example. The observed linear interpola-
tion of the solution between response measurements is remarkable and could
help to optimize sensor placement, a field with immense potential for future
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Figure 8.6: Model updating with 1000 elements and four measurements.

research. Due to the linear behavior between response measurements, the
solution primarily depends on load and measurement positions rather than
the mesh refinement. The finer mesh, however, helps to represent courses
more accurately.



8.2. MODEL UPDATING AT REAL EXPERIMENT 123

8.2 Computational Model Updating at a Real
Experiment

8.2.1 Experimental Setup

With a successful verification of the numerical model updating, the method is
tested with real measurements for further validation. Therefore, an experiment
similar to the numerical one is carried out. A single-span beam with a length
of 1.8m is loaded with a single load at 17 positions. The static loading is
applied with weights. The weight is chosen such that the material is still in its
elastic range under maximum load (load at l/2), but deflections are as large as
possible. Staying in the elastic range allows for the repetition of the experiment,
and the larger the deformations, the smaller the influence of measurement
errors. For displacement measurements, white dots are attached to the beam
that can be tracked with digital image correlation (DIC). Therefore, pictures
are taken with a camera (Fujifilm X-T30 with 26.1-megapixel sensor) and
evaluated using the software GOM Correlate [149]. The beam is an aluminum
rod with an 8 mm × 8 mm cross-section. As a modification, the beam can be
stiffened by attaching another 8 mm × 8 mm aluminum rod with a length of
170mm with five screws at defined positions. The attachment with screws
allows the experiment to be repeated, as no permanent changes are made.
Tab. 8.2 gives an overview of all settings. Fig. 8.7 and Fig. 8.8 show photos
of the experiment.

Parameters for model updating at real experiment

statical system
single-span beam with l = 1.8m

one single load F=16.74N applied at xF

cross section rectangular 8mm×8mm

material aluminium with E = 69000 N
mm2

modification stiffening of structure in range of x = 0.78m −0.95m

FE refinement 180 elements (lele=10mm)

displacement
measurements 33 positions

xu in range of x = 0.27m −1.40m

approx. every 30mm

load cases 17 positions xF every 0.1m from 0.1m to 1.7m

Table 8.2: Settings for model updating with real measurement data.

The FE model is refined with 180 elements, equal to an FE element
length of 10mm. In the computations of displacements and sensitivities,
geometrical non-linearities are respected. Computation results were compared
to the actual measurements to validate the numerical model. The comparison
showed that choosing the actual static system is not straightforward. The
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camera for DIC

test stand

DIC points

static loading

Figure 8.7: Setup of test stand with DIC displacement measurements
under static loading.

Support on both sides Stiffening

Figure 8.8: Details of the support and applied modification (stiffening)
of the system.

detail of the support in Fig. 8.8 could lead to the assumption that both
supports are assumed to be fixed as the movement toward the inside is
blocked. In non-linear analysis, this leads to significant normal forces that
stiffen the structure and reduce the maximum displacement. As the measured
displacements are larger than the computed ones, the assumed rigid support
on both sides is questionable. A computation with moving support on one
side came closer to the measured values but still contained a significant
error. The appropriate solution is a spring whose stiffness is calibrated with
numerical model updating. Next to the boundary conditions, there are several
other uncertainties (e.g., assumed Young’s modulus, manufacturing-related
residual stresses, pre-tensioning due to fixing the mounting position, etc.)and
modeling errors (e.g., neglection of boreholes for stiffening, simplification
with point load, etc.). In order to compensate for these modeling errors that
have an enormous influence when using absolute displacement measurements,
relative displacement measurements are used. Therefore, the experiment was
conducted twice, once without and once with modification, and the used
measurements for model updating are the difference between the two (cf.
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Fig. 8.9). This has the advantage that the initial computation model does
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difference of measurements
used for model updating:

y = y2 - y1

Figure 8.9: Overview of the real experiment. Colors represent the
different load cases.

not need to be fully calibrated to match the measurements in the best way
possible. For localization, it is sufficient to have a correct statical system, but
the influence of the exact boundary conditions is limited as it is the same
in the two measurements. Nevertheless, this fix avoids a full calibration and
reduces uncertainties. However, to use the model for predictions or other
extrapolations, one needs to apply the computational model updating for full
calibration and the best possible modeling of all known non-linearities and
specialties.

Displacement measurements are evaluated with DIC using the software
GOM Correlate [149]. Per load position, five pictures are taken to reduce mea-
surement errors and get insight into the accuracy that lies between 10−1 mm
to 10−2 mm. This high accuracy is helpful as the initial and modified system
deflection difference is around 1mm. Fig. 8.10 shows the DIC results under
maximum load. A difficulty in the data processing was that some measure-
ment points, especially in the areas near the supports, were not tracked at
all load positions. These measurements were not used as data, leading to 33
trackable points.

8.2.2 Results of Computational Model Updating at a Real
Experiment

The first result is already mentioned above, namely the difficulty of fully
calibrating an initial model such that computational results are matched to
absolute measurements. By only measuring relative changes in the displace-
ment (cf. Fig. 8.9), the large influence of uncertainties in the boundary
conditions reduces significantly. The finally obtained measurements are shown
in Fig. 8.11 and are the difference of displacement in the modified (u2) and
initial system(u1): u = u2 − u1.

The most significant difference in deformations between the two systems is
in the middle section, where deformations are the largest, and modification is
applied. It is also very conclusive that the deformations on the stiffer system
are smaller, and the difference is negative. The relative measurements are
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Figure 8.10: DIC results from GOM Correlate for load in the middle
of the beam.
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Figure 8.11: Used relative measurements of the real experiment.

positive in the edge areas of the measuring field, which should not be the
case. The error on the right is especially evident. An inaccurate test setup is
identified as a possible cause here. As the camera button was pressed multiple
times directly on the camera during the experiment, there is a chance that
the position, especially the camera angle, has minimally changed. At first
glance, such a tiny change might not be visible, but considering the high
accuracy of DIC, it can be a factor. This significant measurement error is
a considerable handicap for the numerical model updating. In this thesis,
no further pre-processing of the data that tries to reduce such an error is
conducted. However, the visible error is instead regarded as a challenge in
terms of robustness for practical applications of the method.

Eq. 7.18 and Eq. 7.20 are applied for the numerical model updating.
As the problem is ill-posed, it needs regularization. Therefore, the L-curve
method is applied to obtain an optimal damping factor, similar to the imaging
with coda waves. Results are shown in Fig. 8.12, and one can see that the
typical L-shape is not obtained. In the figure, one can see how different
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Figure 8.12: L-curve method for determining the damping factor α.

damping factors affect the solution, as a low factor (2× 10−5) creates a highly
oscillating result, and a rather large factor leads to no changes, which also
becomes evident when looking at the magnitudes of the y-axis. As the L-curve
method does not yield a good result, the optimal damping factor is chosen
from a visual comparison of the obtained solutions, in this case, 2 × 10−3.
The result is shown in Fig. 8.13. The figure is structured like the ones in
the previous section. On the left is an overview of load and measurement
positions, and on the right, the obtained solution is plotted in grey over the
beam length. The black dotted lines thereby indicate initial values (horizontal
line) and the location where the modification that is to be located is applied
(vertical lines). As the actual magnitude of the stiffening is not known only
the position is indicated.

The result from updating the numerical model locates a stiffening in the
range of the applied modification, which is a good result. However, areas near
the support are also identified as stiffened, which is false. A possible reason
is the comparatively small sensitivity in that area and the lack of measured
responses near the support. This problem of small sensitivities is the opposite
of the issue with the sensitivity peaks for imaging with coda waves. The issue
of these small sensitivity values affecting the solution is addressed by Link
[68] and Mottershead et al. [138] who use Eq. 7.21 as the inverse covariance
matrix of the input parameters instead of C−1

X = α2I used so far in this thesis.
Results with the different term for C−1

X are shown in Fig. 8.14.
In the middle, the result looks similar to the previous one, but the areas

near the supports are no longer modified. Therefore, the different inverse
covariance matrix of the input parameters is a good improvement for the
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Figure 8.13: Model updating at real experiment with
Eq. 7.18 and Eq. 7.20 with C−1

X = α2I.
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Figure 8.14: Model updating at real experiment with
Eq. 7.18 and Eq. 7.20 with C−1

X from Eq. 7.21.

algorithm. The maximum stiffness increase is 20.9%, and the maximum
stiffness reduction is 9.31%. The reduction appears in the areas left and
right of the modification and is a wrong identification. The problem can
be improved by respecting further knowledge about the modification in the
numerical model updating workflow. In reality, it is conceivable that an
engineer knows if stiffness has either only decreased, e.g., due to cracks, or
increased. This knowledge can be respected with constraints on the solution
algorithm of Eq. 7.18 by applying the Projected Gradient Descent Method
of Sec. 3.6.1. Doing so ensures a range of possible solution values during
the solving process. For the given case of a local stiffening, the constraint is
a non-negativity constraint on the input parameter update ∆xk. Fig. 8.15
shows the obtained solution with the constraint.

The obtained solution is remarkably accurate in locating the modification
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Figure 8.15: Model updating at real experiment with Eq. 7.18 and
Eq. 7.20 with C−1

X from Eq. 7.21 and non-negativity
constraint on solution.

and a notable good result. However, the magnitude with a stiffness increase of
5.06 % is less than one would expect and less than the previous result. When
looking at the stiffening detail in Fig. 8.8, one can see that the cross-section is
doubled. The stiffness, however, strongly depends on the bond between the two
rods. This bond strongly depends on factors such as tightening and slipping
of the screws and friction between the two aluminum rods. As aluminum is a
relatively soft metal, the stiffening effect may be significantly lower than the
computed value. Therefore, this significant uncertainty on the actual applied
modification limits the conclusions about damage quantification.

8.3 Conclusion on Computational Model Updating

This chapter derived and successfully applied computational model updating.
The basis for a universal application of the method is created with a focus
on the derivation of required sensitivities used in the inverse problem. This
chapter used displacements as measurement data, but generally, any quantity
that appears in the FE problem can be used. As the method relates digital
models to real measurements, it is one possible core technology of DTs.
Numerical investigations with synthetic measurements verified the successful
application and showed the limits. Surprisingly, a substantial deficit between
the amount of measurements and unknowns in the inverse problem does not
cause problems with the algorithms for ill-posed problems. The accuracy of
the solutions is also strongly related to the number of measured responses.
The numerical investigations showed that the obtained solution interpolates
linearly between response measurements. With the application-oriented
approach of this thesis, the method was also tested using a real experiment.
The measurement data itself, however, showed significant implausibilities.
Nevertheless, the localization of the modification was successful, which shows
that the method is robust to a certain extent. In theory the computational
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model updating also allows for quantification. This, however, requires a
well-calibrated initial model and a more accurate set of measurement data.
Due to a simple setup and the tools available, such an accuracy was not
achieved. Conclusions about the damage quantification would require further
experiments to calibrate stiffness values at the support, the beam itself, and
the stiffening. Working localization with simple tools is a successful proof of
application at real structures and an excellent improvement for measurement
data evaluation to gain further insight into structures. This leads towards
the desired digital twin for SHM, where the numerical model updating plays
a crucial role.



Chapter 9

Conclusions and Outlook

The aim of this work is method developments as a contribution to a DT
for large structures. The integration into an overall monitoring concept
of buildings using a DT shows several challenges. The basis of the DT is a
constant exchange of model and reality, which places enormously high demands
on the numerical models and represents a significant difficulty. Additionally,
the goals of the presented DT that aim for autonomous, predictive maintenance
are very ambitious. SHM technologies are also very diverse, and focusing on
only one technology, e.g., CWI, is not enough. Ultimately, it is necessary to
have universal methods that contribute individually towards better digital
models that are part of the DT. It is also necessary to combine different
technologies in one digital model. Methodological developments are performed,
in particular, to localize damage with coda waves. Additionally, the universally
applicable, and to a certain extent, core method of DTs, the computational
model updating, is discussed and applied in this thesis. The discussion of
mathematical principles shows that the fundamentally different measurement
systems are almost identical mathematically. In both methods, an inverse
problem is formulated and solved with local sensitivity information. The
only difference is that sensitivities of the coda waves are independent of the
to-be-identified input parameter "damage", whereas in computational model
updating, the inverse problem is non-linear as sensitivities depend on the
input parameters. However, the many parallels make it possible to transfer
algorithms and findings from one application to another and vice versa. The
application-oriented focus of this thesis is reflected in the structure of the
experiments. Both investigated methods were first developed and tested at a
numerical level in order to subsequently apply them in real experiments. The
step up to the application in reality is always associated with many difficulties.
However, to make the whole thing a real DT, it is indispensable and a special
achievement of this work.
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The focus of methodological developments in this thesis is on damage
localization with coda waves. By homogenizing the highly complex diffuse
spread of ultrasound waves in concrete, the complex phenomena are transferred
to a simpler diffusion problem, which can also be solved for large geometries.
Previous studies [20–22] used analytic solutions to the diffusion problem.
In this thesis, FEM is used to solve the diffusion problem. FEM is a well-
established method to solve different kinds of partial differential equations. A
significant advantage is that any geometry can be modeled and solved using
unstructured meshes. The modular structure of the imaging workflow also
allows for the exchange or improvement of the diffusion problem, with one
better suited for representing the scattered ultrasound waves in concrete. In
this thesis, the modular structure is utilized to combine the FEM solution
with analytic radiation terms from the RTE that, according to literature
[23, 115], are better suited to describe the coda waves in areas close to
the transducer. The combination of the primary solution with FEM to
allow geometric flexibility and local improvement through radiation terms
is a promising novelty. A particular challenge in this work was the central
frequency of the ultrasound waves of 60 kHz. Published applications of damage
localization [20–22] worked with higher frequencies where the signal is scattered
more often. As the scattering behavior is a central element of the simplification
that the multiple scattered ultrasound waves can be approximated with a
diffusion simulation [113] and the model for computing the sensitivities [122]
is also based on this assumption, the low frequency is a significant challenge.
In order to meet this challenge, the current state of the art was simulated
in numerical experiments, and extensive parameter studies were carried out
on all possible input parameters. Found settings were then applied to a
laboratory experiment with 60 kHz as the central frequency. An investigation
of the signals has suggested that with a sufficient dwell time of the signals
in the specimen, even a 60 kHz signal is scattered sufficiently often to apply
the models based on multiple scattering. Nevertheless diffusivities obtained
from an envelope fitting show a large variance and are implausible. A typical
problem of the CWI based damage localization is a correlation of the obtained
solution with the transducer network that can also be found in literature [124,
125]. This thesis avoids the effect by limiting the sensitivities in transducer
regions to a fraction of the maximum. The modification improves the obtained
solution and increases the robustness to implausible measurements. Results
of the laboratory experiment show the immense sensitivity of coda waves to
microscopic changes that happen before the first microcracks occur. With
many cracks appearing close to each other, the individual localization of each
crack was not always possible, but a robust identification of the damage zone
works. This is generally sufficient for CWI as supporting technology in an
integral SHM concept where several technologies work together. A novelty of
this thesis with great results is using the measured phase shift in the signals
for the inverse problem of damage localization. So far, the DC is the only
used measurement of the coda signals used for imaging. The use of phase
shifts is explained with a general interpretation of the coda sensitivities that
goes beyond scattering and resulting waveform distortion. Results show a
good identification of cracking regions and correctly distinguishing pressure
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and tension zones. The successful application of the developed method in
a real, large building again underlines the technology’s great potential and
paves the way for its use in practice. Summarized key contributions in the
field of CWI of this thesis are

• Successful development and demonstration of low-frequency imaging in
numerical, laboratory, and field experiments.

• Methodological developments through the use of FEM.

• Improvements in accuracy through the consideration of radiation terms
in the FEM solution.

• Overall robustness improvement through sensitivity modifications.

• Novel use of phase-shift as measurements in the inverse problem.

One problem of damage localization with CWI is the classification and
quantification of localized damage. However, the thesis shows indicators that
become visible with permanent monitoring under increasing load. Motivated
by the difficulty of classifying damage, another method was developed that
promises to quantify structural changes: computational model updating. The
detailed explanation of the method allows the transfer to different measure-
ments. The graphical explanations of the inverse problem also make the close
parallelism to damage localization with CWI clear. To apply it in the context
of a DT, the method is developed and examined in a numerical framework and
later applied in a real experiment. However, a considerable measurement error
is directly recognizable due to the simple measurement setup. Nevertheless,
it is possible to localize system modifications correctly. Only the correct
quantification does not succeed, as higher demands are placed on the accuracy
of the measurements and models. Nevertheless, the method is one possible
core technology of DTs as it allows the communication of the digital model
with reality to ultimately improve the model in accuracy and reliability.

Outlook Lately, there has been much research about DTs. The recent
report of the Federal Ministry for Digital and Transport in Germany on DTs
for bridges is just the latest chapter. It underlines the recent trend and its
importance. Goals and the actual status quo of DTs in civil engineering
are, at the moment, far apart. Current projects [45–47] realize a capability
level of 2 out of 5. In order to achieve higher capability levels, combining
different SHM technologies in an integral monitoring concept is required.
The measurement technologies need to be chosen so that they complement
each other in a meaningful way. In the digital models, there is a need for
modular and universal structures to enable exchange and data fusion. It
should also be noted that the solution space is deterministic for the presented
imaging methods based on discrete sensitivities. Despite validation with
real measurements, values are always subject to uncertainties. Therefore,
one should incorporate these uncertainties into the DT (e.g., via Bayesian
updating).
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With a focus on coda waves in this thesis, the topic is a good starting
point for future research and improvements. One of the evident problems is a
strong correlation of the source-receiver distance to obtained diffusivities from
an envelope fitting of the signals with the solution of the diffusion problem
(cf. Fig. 6.21). Even though the imaging workflow worked with the used
diffusivities, one could improve the solution by respecting the derivation of the
obtained individual diffusivity from the used one in the covariance matrix of
the measurement data. The practical application of CWI in a large building
has shown great potential. Now, strategies are needed to use the technology as
SHM during operation. With CWI being sensitive to many influences, a big
difficulty is to filter the desired quantity. Therefore, further investigations on
the individual environmental influences and their superposition or intelligent
choices of the reference signal are good starting points for further research.
A conceivable goal for practical applications is, for example, to calibrate the
CWI so that an alarm is activated when limit values are exceeded, leading to a
local inspection. In the final instance, such processes should be as automated
as possible. With a working imaging workflow in both the CWI imaging and
computational model updating, future research could also address the question
of optimized sensor placement to find a good trade-off between accuracy and
necessary hardware.

The insight into structures with NDT also allows the numerical models to
be calibrated better. If one finds ways of incorporating the stress information
measured with CWI (that appears in the phase shift of the coda waves) into
a structural model, this would have immense potential in several respects. On
the one hand, it would be easier to classify damage with CWI measurements,
which is one of the remaining challenges. The measurement data from large
areas within the structure would also make it possible to calibrate the compu-
tation models more precisely, which evens the way for potential forecasts for
the future. Ultimately, this would further improve the safety of the existing
infrastructure and enable long-term, forward-looking planning.



Appendix A

Results for Coda Imaging at
Laboratory Experiment at All Load
Steps

The following figures relate to Sec. 6.2. The reader is referred to this section
for an explanation of the related experiment. The contents of the figures
are structured as follows: On the top half, the modeled geometry is shown
with light grey, indicating the used sensor pairs. Blue shows the damage
localization with CWI on a scale shown on the right. The red line indicates
the position of the FOS, whose measurements are shown in the bottom half
of the figure. In the FOS measurement, peaks indicate cracks.

A.1 Standard Damage Localization
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Figure A.1: Damage localization at load step 1.
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Figure A.2: Damage localization at load step 2.
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Figure A.3: Damage localization at load step 3.
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Figure A.4: Damage localization at load step 4.
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Figure A.5: Damage localization at load step 5.
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Figure A.6: Damage localization at load step 6.

0.0

0.5

y 
[m

]

position of FOS

load step: 7     loading: 35 kN     reference measurement: load step 6     sensitivities clipped at 0.167

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 3.9
x [m]

0.0

66.3

st
ra

in
of

 F
OS

[
]

residual = 9.98E-02
tolerance = 1E-06
cond(A) = 1.55E+06
damping  = 0.04

||x||max = 5.79223
iterations = 2305
solving time = 26.21 s

0.0

5.8

Figure A.7: Damage localization at load step 7.
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Figure A.8: Damage localization at load step 8.
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Figure A.9: Damage localization at load step 9.
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Figure A.10: Damage localization at load step 10.
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Figure A.11: Damage localization at load step 11.
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Figure A.12: Damage localization at load step 12.
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Figure A.13: Damage localization at load step 13.
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Figure A.14: Damage localization at load step 14.
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Figure A.15: Damage localization at load step 15.
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Figure A.16: Damage localization at load step 16.
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Figure A.17: Damage localization at load step 17.
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Figure A.18: Damage localization at load step 18.
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Figure A.19: Damage localization at load step 19.
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Figure A.20: Damage localization at load step 20.



A.2. DAMAGE LOCALIZATION WITH ε AS MEASUREMENT 141

A.2 Damage Localization with ε as Measurement

Refer to Sec. 6.2.5.2 for further explanations on the figures below.
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Figure A.21: Damage localization with ∂
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at load step 1.
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Figure A.22: Damage localization with ∂
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at load step 2.
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Figure A.23: Damage localization with ∂
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at load step 3.
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Figure A.24: Damage localization with ∂
∂v

at load step 4.
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Figure A.25: Damage localization with ∂
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at load step 5.
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Figure A.26: Damage localization with ∂
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at load step 6.
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Figure A.27: Damage localization with ∂
∂v

at load step 7.
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Figure A.28: Damage localization with ∂
∂v

at load step 8.
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Figure A.29: Damage localization with ∂
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at load step 9.
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Figure A.30: Damage localization with ∂
∂v

at load step 10.
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Figure A.31: Damage localization with ∂
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at load step 11.
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Figure A.32: Damage localization with ∂
∂v

at load step 12.
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Figure A.33: Damage localization with ∂
∂v

at load step 13.
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Figure A.34: Damage localization with ∂
∂v

at load step 14.
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Figure A.35: Damage localization with ∂
∂v

at load step 15.
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Figure A.36: Damage localization with ∂
∂v

at load step 16.
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Figure A.37: Damage localization with ∂
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at load step 17.
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Figure A.38: Damage localization with ∂
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at load step 18.
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Figure A.39: Damage localization with ∂
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at load step 19.
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at load step 20.
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Figure A.41: Development of ||x||max and ||x||min for the first 20 load
steps with ε as Measurement.
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