Technical University of Munich
TUM School of Engineering and Design m

BIM-based semantic enrichment
for environmental analyses using
Large Language Models

Kasimir Forth

Vollstandiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universitat Minchen zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Frank Petzold

Prifende der Dissertation:

1. Prof. Dr.-Ing. André Borrmann
2. Prof. Dr. Jakob Beetz

3. Associate Prof. Dr.-Ing. Patricia Schneider-Marin

Die Dissertation wurde am 12.08.2024 bei der Technischen Universitat Minchen eingereicht und

durch die TUM School of Engineering and Design am 19.11.2024 angenommen.



Abstract

The AEC industry and the operation of buildings are responsible for approximately a third
of global greenhouse gas emissions. There is also a very high demand for resources and,
at the same time, a very high volume of waste. In order to meet the current ecological
challenges of the construction industry, environmental analyses are an established ap-
proach in the early design stages. These include life cycle assessments (LCA), material
passports (MP), and building energy performance simulations (BEPS), all of which are
applied as different use cases in this dissertation.

Building Information Modeling (BIM) is a digital designing and planning method that can
be used for carrying out such environmental analyses using semantically rich geometric
models of building designs. These BIM models are used as data sources to derive analysis
results without manual remodeling. A distinction is made between open and closed BIM
workflows. Open BIM differs from closed BIM by the use of manufacturer-neutral data
formats, including Industry Foundation Classes (IFC) for geometric and semantic model
information.

The main contribution of this dissertation is the (semi-)automated semantic enrichment
of open BIM models for environmental analyses using Natural Language Processing
(NLP) and Large Language Models (LLM). The semantic enrichment approach consists of
matching the semantically most similar data from a database to the items from the IFC
model and adding the missing information for the respective environmental analysis. The
degree of automation of this matching differs depending on the use case due to differently
structured databases and further domain-specific training of language models, the so-
called LLM fine-tuning. Depending on the use case, pre-trained LLMs (LCA), monolingual
fine-tuned LLMs (MP), or multilingual fine-tuned LLMs (BEPS) are used, whereby different
strategies are combined to increase the matching accuracy. The three environmental
analyses were tested using several real-world case studies and models, trained with their
semantic information, and evaluated.

The last chapter presents a decision-making approach regarding element and material
selection using open BIM data formats, including IFC and the BIM collaboration format
(BCF), as well as different visualization strategies. The results of the embodied green-
house gas emissions are visualized together with the uncertainties of the early design
stages. This method was tested and evaluated with experts and stakeholders without
LCA expertise using a case study to enable reliable decision-making based on various
visualizations.



Zusammenfassung

Das Bauwesen und der Gebaudebetrieb sind fiir gut ein Drittel der globalen Treibhaus-
gasemissionen verantwortlich. AufBBerdem besteht ein sehr hoher Ressourcenbedarf
bei gleichzeitig sehr hohem Abfallaufkommen. Um den aktuellen ékologischen Heraus-
forderungen der Bauwirtschaft zu begegnen, sind Nachhaltigkeitsanalysen bereits in
frihen Entwurfsphasen ein bewéhrter Ansatz. Dazu gehdren Okobilanzierungen (LCA),
Materialpéasse (MP) sowie Geb&udeenergiesimulationen (BEPS), welche in dieser Disser-
tation als verschiedene Anwendungsfalle angewandt werden.

Building Information Modeling (BIM) ist eine digitale Arbeitsmethode, um mithilfe se-
mantisch reicher Geometriemodellen von Gebauden solche Nachhaltigkeitsanalysen
durchzufihren. Dabei werden diese BIM Modelle als Datengrundlage verwendet, um
Nachhaltigkeitsanalysen ohne manuelle Nachmodellierung abzuleiten. Man unterscheidet
dabei zwischen offenen und geschlossenen BIM Arbeitsablaufen. "Open BIM" unterschei-
det sich von "closed BIM" durch die Nutzung hersteller-neutraler Datenformate, unter
anderem Industry Foundation Classes (IFC) fur Modellinformationen.

Der wesentliche Beitrag dieser Dissertation liegt auf der (halb-)automatisierten seman-
tischen Anreicherung von open BIM Modellen fiir Nachhaltigkeitsanalysen mithilfe von
Natural Language Processing (NLP) und kiinstlichen Sprachmodellen, auch als Large
Language Models (LLM) bekannt. Die semantische Anreicherung besteht aus der Zuord-
nung, im Englischen auch matching genannt, der semantisch &hnlichsten Datenséatze aus
einer Datenbank zu dem Typen aus dem IFC-Modell sowie der Ergdnzung der fehlen-
den Informationen fir die jeweilige Nachhaltigkeitsanalyse Der Automatisierungsgrad
dieser Zuordnung unterscheidet sich je nach Anwendungsfall aufgrund verschieden struk-
turierter Datenbanken und weitertrainierten Sprachmodellen, dem sogenannten LLM
fine-tuning. Je nach Anwendungsfall werden vortrainierte LLM (LCA), monolingual weit-
ertrainierte LLM (MP) oder multilingual weitertrainierte LLM (BEPS) verwendet, wobei
verschiedene Strategien zur Erhéhung der Zuordnungsgenauigkeit kombiniert werden. Die
drei Nachhaltigkeitsanalysen wurden anhand von verschiedenen realen Beispielprojekten
und -modellen getestet, mit deren semantischen Informationen trainiert und die Methode
ausgewertet wurde.

Im letzten Kapitel wird eine Methode zur Entscheidungsfindung von Konstruktions- und
Materialauswahl mithilfe von open BIM Datenformaten, darunter IFC und BIM Collaboration
Format (BCF), sowie verschiedenen Visualisierungsstrategien vorgestellt. Dabei werden
die Ergebnisse der gebundenen oder grauen Treibhausgasemissionen gemeinsam mit
den Unsicherheiten der friihen Entwurfsphasen dargestellt. Diese Methode wurde neben
Experten auch mit Personen ohne Okobilanzexpertise anhand einer Fallstudie getestet und
ausgewertet, um auf Basis verschiedener Visualisierungen belastbare Entscheidungen zu
treffen.
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Chapter 1

Introduction

1.1 Motivation

According to the International Energy Agency, the Architecture, Engineering, and Con-
struction (AEC) sector and building operations are responsible for approximately 37%
of the global final energy consumption and around 40% of the global Greenhouse Gas
(GHG) emissions (IEA, 2024). The impact of operational energy is approximately 27%,
and further energy consumption related to the construction-related manufacturing industry
is around 13%.

Furthermore, around 100 billion tons of waste annually originates from construction,
renovation, and demolition according to the UN Environment Programme (United Nations
Environment Programme, 2022), while about 35% of it is sent to landfill (Chen et al., 2022).
Conversely, global material use might increase from 79 Gt in 2011 to 167 Gt in 2060, with
the construction industry having the highest material intensity of all sectors (OECD, 2019).

These statistics show the necessity of holistic assessment of environmental impacts for
new constructions and renovation or demolitions of buildings, including operational and
embodied emissions, as well as the demand to increase the circular economy of the built
environment. The European Commission established through the EU taxonomy a legal
framework for, among others, real-estate-related financial transactions that address these
challenges by measures for climate change mitigation, climate adaptation, and circular
economy (European Commission, 2021).

1.1.1  Environmental analyses using BIM

Environmental analyses, such as Building Energy Performance Simulation (BEPS), Life
Cycle Assessment (LCA), or Building Circularity Assessment (BCA), have been introduced
to address the issues of global warming, waste generation, and resource demand in
the construction industry. Material Passport (MP), also known as (Building) Ressource
Passports or used as synonyms for Digital Product Passports (DPP) on product-level,
form the information basis for different environmental analyses, such as LCA, or BCA, as
shown in more detail in Section 2.2.2.

Figure 1.1 shows schematically material- and element-based design decisions in early
design stages compared to detailed design stages. Material and element decisions are
often relevant to the results of environmental assessments of buildings, such as operational
or embodied energy and emissions. As some materials and elements are not decided yet
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Figure 1.1: Material- and element-based design decisions in early and detailed design
stages

in early design stages or only vaguely described in general terms, such as concrete without
a specific stiffness class, environmental analyses are often conducted using benchmarks
and a top-down approach. When all decisions have been made in detailed design stages,
the environmental analyses are calculated from the bottom up.

Building Information Modeling (BIM) is an established method for a data-driven approach
for these environmental analyses using its models as a single source of truth (Borrmann
et al., 2021). However, these analyses are often conducted in detailed design stages when
all necessary information is available (Schumacher et al., 2022). This information is often
vague, uncertain, or completely missing in the early design stages.

A distinction is made in BIM workflows between closed BIM, meaning the usage of
software-specific, and open BIM, the usage of vendor-neutral data formats. Closed BIM is
often preferred over open BIM for LCA (Schumacher, 2021). The advantages of closed
BIM for environmental analyses are reduced data loss due to direct implementation in the
authoring tools using plugins. Nevertheless, all stakeholders of the BIM-based project
need to agree on one authoring tool and have licenses. However, this is not always the
case, so open BIM is preferred, especially by public clients. One main challenge here is
ensuring the correct data quality by exporting open BIM models from different authoring
tools using the data format Industry Foundation Classes (IFC). Especially in the early
design stages, not all models are checked and solved in detail when design decisions with
high environmental impacts must be made.

1.1.2 Problem statement

Relevant data for LCA or BEPS are often not in the same hierarchy as BIM models in the
early design stages. LCA databases, such as Okobaudat (BBSR, 2024), are usually not
very detailed and structured but only material- or product-specific, while BIM elements
often do not have all layers and materials modeling.

Figure 1.2 shows a simple BIM model as an example of semantic matching relevant
information for environmental analyses. One usual naming of the BIM exterior wall with
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Figure 1.2: Semantically matching relevant information for LCA (left) and Building Energy
Modeling (BEM) (right) based on an exemplary BIM model

reinforced concrete in teh authoring software Autodesk Revit is "Exterior CMU_Insulated",
with the BIM material "concrete" and "rigid insulation".

The related LCA datasets would include "reinforcement steel wire" and a generic concrete
dataset, which needs a specific stiffness class assigned, e.g. "concrete C20/25". However,
wall finishes, plaster, and paint materials are usually not modeled in the BIM model but
must be manually added for holistic and reliable LCA results.

Another environmental analysis use case covers the semantic enrichment for BEM models
based on BIM in order to ensure reliable BEPS results. In this case, space types for
Mechanical Electric Plumbing (MEP), including internal loads and schedules, need to be
assigned based on the naming of architectural rooms. For example, garbage or cleaning
rooms are both assigned to the MEP space type of "storage". Furthermore, the thermal
properties of all element layers must be enriched based on BIM elements, also considering
missing layers, similar to the before-mentioned use case of LCA.

Consequently, domain experts need to check and manually enrich the models with missing
information to ensure reliable environmental analysis results. However, this enrichment is
time-intensive and costly. Therefore, this BIM model enrichment process for environmental
analyses is usually done only once and in detailed stages. Furthermore, the results of en-
vironmental analyses are often interpreted by domain experts rather than decision-makers,
such as clients, although the BIM method promises an integral and more transparent
design approach.

1.2 Aim and scope of this thesis

To overcome barriers of BIM-based sustainability analyses in early stages, this dissertation
proposes a holistic framework for (semi-)automated semantic enrichment of open BIM
models for environmental analyses to support design decision-making in early design
stages using Natural Language Processing (NLP), especially its subtask Semantic Textual
Similarity (STS), and Large Language Model (LLM). This section introduces the challenges
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addressed by this thesis, based on the identified research gaps that will be presented in
Section 2.4:

1. Automated semantic enrichment of information for decision-support using
environmental analyses: The impact of design decisions in early design stages
is significantly lower compared to detailed design stages (MacLeamy, 2004). The
aim of automatically enriching semantic information relevant to these environmental
analyses is to include the results of these analyses for data-based design decision
support in early design stages. Pre-trained and domain-specifically fine-tuned LLM
can support this enrichment by matching the semantically most similar data from a
use-case-specific database. For the use case of LCA, a knowledge database based
on the German Okobaudat (BBSR, 2024) is proposed, for MP, an unstructured
material database by EPEA (EPEA GmbH, 2022), and for BEPS, the American
databases by National Renewable Energy Laboratory (NREL) are used (NREL,
2024).

2. Adding missing, uncertain element or material information for LCA in early
design stages: Early design stages are characterized by uncertain or missing
information, for example, about elements and their materials. In the detailed design
stages, this information has already been decided upon and is available in the BIM
model. To cover these uncertainties for life cycle assessments, the main aim is to
calculate ranges of LCA results rather than exact values in these early stages.

3. Using open BIM workflow and data formats to integrate the environmental
analyses results and design decisions: To establish a vendor-neutral collabora-
tion framework, open BIM workflow and data formats are essential. Therefore, the
proposed method exchanges BIM models using IFC. Furthermore, the BIM Collabo-
ration Format (BCF) is introduced to communicate design decisions and LCA results
to BIM modelers in their authoring tools. The BCF schema can be extended to save
all relevant information about the LCA results and the design decision-making.

4. Visualization of environmental impacts for design-decision-making of non-
LCA-experts: BIM and LCA both require expert knowledge and training to be able to
use the tools and interpret the results. Therefore, clients and building owners often
need experts, such as BIM or sustainability consultants, to interpret the LCA results
and use the tools for them. The aim is to use a combination of different visualization
strategies incorporated in an open BIM workflow to enable a transparent design
decision framework that can be also used by non-LCA experts.

1.3 Research methods

This dissertation follows the research method Design Science Research (DSR) by Peffers
et al. (2008) and was applied in all four publications I-IV. It consists of six operative steps:



(1) problem identification, (2) objective identification, (3) design and development, (4)
demonstration, (5) evaluation, and (6) conclusion.

The problems and objectives are identified as research questions, hypotheses, and
objectives in the following Subsections 1.3.1 and 1.3.2 and shown in Figure 1.3. The
design and development stages result in proposing different frameworks resulting in DSR
artifact. Prototypical implementations of these frameworks represent the demonstration
phase. Each publication has different evaluations of the demonstrations using different
experiments in order to answer the raised research questions. Additonally, Paper IV
uses a user study testing the prototype and a survey following qualitative and quantitative
evaluations. Finally, the conclusion phase is included in each publication, but also overall

for the overall framework and whole dissertation in Chapter 7.
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Figure 1.3: Scope of the publications presented in the following chapters
1.3.1 Research questions

Based on the identified scope from Section 1.2, the following research questions arise:



1. Which degree of automation is possible for the matching and enrichment process to
ensure reliable environmental analysis results for LCA, MP, and BEPS?

2. How can BIM models be semantically healed to enrich correct element types and
materials to the respective model elements so that a reliable LCA can be calculated?

3. Which monolingual LLM strategies of fine-tuning pre-trained LLM improves the
matching performance from IFC materials for MP?

4. Which multilingual LLM fine-tuning strategies improve the accuracy for matching and
enriching program types based on architectural rooms and construction with thermal
properties based on IFC elements and materials for BEPS?

5. How can uncertainties and LCA results in early design stages be intuitively visualized
for design decision support by non-LCA-experts?

6. How can open BIM data formats support the design decision-making process for
environmental analyses?

1.3.2 Research hypothesis and objectives

The derived hypotheses and objectives are addressed in dedicated chapters as shown
in Figure 1.3. These questions are clustered into three main topics: matching approach,
LLM fine-tuning, and visualization & decision support.

To approach the raised research questions, the following hypotheses and objectives were
derived:

1. Hypothesis: Depending on the structure of databases and fine-tuned LLMs with
domain knowledge, the matching method is fully or only semi-automated ensuring
reliable results for the different use cases of LCA, MP, and BEPS.

Objective: Development of (semi-)automated matching methods for three environ-
mental analyses, such as LCA, MP, and BEPS, and (un-)structured databases and
fine-tuned LLM with domain knowledge.

2. Hypothesis: Semantic Textual Similarity and pre-trained Large Language Models
support the automation of matching BIM elements to LCA datasets for calculating
a holistic, whole-building LCA. Missing layer information is added by structuring an
LCA-specific knowledge database, which heals the incomplete model.

Objective: Development of a framework for automatically matching BIM to LCA data
using a structured LCA knowledge database (LKdb). Uncertainties in early design
stages lead to a range of LCA results.

3. Hypothesis: A combination of different strategies of fine-tuning pre-trained LLM
improves the matching performance of IFC materials for Material Passports based
on small datasets, such as structuring and filtering the material database, adding
domain knowledge, using an optimal loss function and adding negative pairs.



Objective: Development of a framework for domain-specific fine-tuning of LLM for
enriching Material Passports by matching IFC materials to unstructured databases.

4. Hypothesis: Depending on the use case, differentiating between space type to room
matching or matching constructions with thermal properties, different combinations
of multilingual LLM fine-tuning strategies, such as different loss functions, adding
negative pairs, domain-specific abbreviations, adding context labels, or different
multilingual student LLM, improve the matching accuracy of BIM-based building
energy performance simulations.

Objective: Development of a framework for multilingual use case-specific matching
method ("rooms" & "elements") based on small datasets derived from three case
studies using a combination of fine-tuning strategies.

5. Hypothesis: A combination of different visualization strategies using 3D models and
color-coding supports non-LCA experts in making design decisions with comparable
improvements as by LCA experts.

Objective: Development of visualization strategies incorporating uncertainties and
LCA results and evaluating them using a user study.

6. Hypothesis: IFC models support automated calculation and visualization of envi-
ronmental analyses’ results, and extending BCF schema enables feedback commu-
nication of decision and LCA results.

Objective: Development of a framework for automatically calculating reliable results
of environmental analyses for decision support and development of an extended
BCF schema for communicating relevant information back to BIM modelers.

1.4 Overall concepts

This section introduces a generalized matching approach, which represents the common
contribution and is applied to different use cases of environmental analyses in the fol-
lowing chapters. Additionally, it shows how the semantic enrichment of all use cases of
environmental analyses and the proposed design decision support approach interact in a
general framework.

1.4.1 General matching approach

Figure 1.4 shows the initial idea of a matching approach for element-specific semantic
model enrichment based on Semantic Textual Similarity (STS) as presented in (Forth
et al., 2021). Three main steps are proposed to match a product from the IFC schema to
one of the LCA knowledge database (LKdb):

1. Filtering

2. Similarity calculation
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Figure 1.4: Matching approach for element-specific semantic model enrichment by (Forth
et al., 2021)

3. Selection and enrichment

The IfcProduct entity "is an abstract representation of any object that relates to a geometric
or spatial context" (buildingSMART International Ltd., 2024). Depending on the matching
use case, it varies and can be either IfcSpace, IfcElement or the IfcMaterial associated
with this IfcElement and is further described in Figure 2.3 in Section 2.1.3. The first
filtering step aims to narrow the solution space and ensure meaningful results using a
classification system. In this case, the German cost group system for building elements is
used (DIN 276, 2018). The second step includes the similarity calculation of every filtered
element from the database with the one from the BIM model. Finally, the semantically
most similar element is selected, and all information is enriched for the environmental
analysis. Depending on each use case, different levels of automation can be achieved,
starting from semi-automated design decision support to full automation.

Algorithm 1.1: Generilzed algorithm for matching data from a filtered external database to
products from IFC model

for ifc_product in all_relevant_products_in_IFCmodel:
similarity_dictionary = {}
for data in filtered_database:
term_similarity = cosine_similarity (vectorize (ifc_product),
vectorize (data))
token_similarities = []
for token_ifc_product in tokenize (ifc_product):
for token_data in tokenize (data) :
token_similarity = cosine_similarity (vectorize (
token_ifc_product), vectorize (token_data))
token_similarities.append(token_similarity)
if max (token_similarities) > term_similarity:
data_similarity_dictionary[data] = max(token_similarities)
else:
similarity_dictionary[datal = term_similarity
selected_data = max(similarity_dictionary)
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Figure 1.5: Generalized matching concept using Semantic Textual Similarity of IFC
products and filtered databases

Figure 1.5 and Algorithm 1.1 generalize the initial matching concept so that it can be
applied not only for element or material matching but also space types to rooms or similar
products from IFC to a hierarchically structured database. It shows the different matching
steps following the iterative workflow in more detail and is also publicly available with
an example from Section 2.3.3 on Github'. This general concept is applied to the three
different use cases of LCA, MP, and BEPS in the following chapters.

In the first step, the respective product from the IFC model, including its classifications, is
iterated. Next, the matching database is filtered according to the product’s classification.
This is necessary in order to narrow down the solution space and thereby significantly
increase the overall matching accuracy and ensure reliable and meaningful results. The
classification, relevant data in the IFC schema, and the database for matching vary
depending on each use case.

After each product, such as elements, materials, or rooms, in the IFC model is selected,
its tokens and whole expressions/terms are vectorized by its vector embeddings and com-

'https://github.com/kasforth/ifcProductMatching


https://github.com/kasforth/ifcProductMatching

pared to every filtered data set from the database. In Section 2.3.3, different approaches
are discussed to measure the semantic similarity of two terms. As transformer-based,
Pre-trained Language Model (PLM) are used and fine-tuned, cosine similarity of the terms
embeddings is used as a similarity measure. For every token of the term and the term
itself, the cosine similarities are measured.

The maximum similarity of either the token or the term is saved for each iterated dataset
from the filtered database. Finally, the maximum similarity of all cosine similarities is found,
and the data with the maximum similarity is selected and enriched to the IFC product
afterward.

1.4.2 General framework

Figure 1.6 shows an overview of how all proposed use cases and the decision-support
part are combined into one overall framework. The framework is divided into five different
main steps:

1. BIM modeling

2. Geometric processing

3. Semantic enrichment

4. Environmental analyses

5. Design decision support

The first two steps include the BIM modeling and the geometric processing. As only
pre-modeled real-world use cases are used in this dissertation, the BIM modeling and the
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Figure 1.6: Overall framework for Semantic model enrichment for environmental analyses
using Semantic Textual Similarity for design decision support in early design stages
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model export using the IFC schema are excluded from the scope of this thesis. For the
second step, depending on the environmental analyses, either a quantity take-off for life
cycle assessment and material passports or geometrically transformed surface models for
building energy performance simulation are processed as input for the following semantic
enrichment step.

The main contribution of this dissertation is step 3, the semantic enrichment. This step
consists of the matching approaches based on different databases for each environmental
analysis, and using different Large Language Models. The use-case-specific databases
have different degrees of structure, with the EPEA material database being unstructured,
the NREL space types database being structured only with one hierarchy level, and the
NREL construction database as well as the LKdb having the highest degree of being
structured with multiple hierarchal levels. Furthermore, the highlighted colors differentiate
between four parts: three different applied environmental analysis use cases of LCA, MP
and BEPS, and the design decision part. Each part will be described in more detail in the
following chapters and represents the four published peer-reviewed research papers.

Use case A covers the use case of LCA in early design stages and is presented in Chapter
3. For the semantic enrichment of this environmental analysis, a LKdb is proposed.
Furthermore, three different pre-trained LLM, such as GermaNet (Henrich & Hinirchs,
2010), SpaCy (Honnibal & Montani, 2017) and the German BERT (Chan et al., 2020), are
tested for matching and the German BERT is evaluated as the best performing LLM.

Use case B contains semantic enrichment for MP, described in more detail in Chapter 4.
The unstructured EPEA material database is used (EPEA GmbH, 2022), but the main
focus is further fine-tuning the German BERT LLM, including domain knowledge, using
Reimers and Gurevych’s methodology of using siamese BERT networks (Reimers &
Gurevych, 2019).

The third use case, C, focuses on BEPS presented in Chapter 5. It included two enrichment
steps for enriching space types based on architectural rooms and thermal properties based
on elements. Both databases, one for space types and one for constructions with thermal
properties, are provided by the NREL of the United States of America in English (NREL,
2024; Wilson et al., 2021), and the available real-world case studies and BIM models
are in German. Therefore, the main focus is multilingually LLM fine-tuning of pre-trained
BERT models for this use case following Reimers and Gurevych’s approach of knowledge
distillation for multilingual sentence embeddings (Reimers & Gurevych, 2020).

In step four, the use-case-specific environmental analyses are calculated or simulated
after the BIM models are semantically enriched. The fifth and last step contains the design
decision support based on the LCA results. This step is divided into the visualization of
the LCA results using the embodied GHG emissions for hotspot analysis, followed by
selecting the relevant elements, showing their variants and deciding on one, and lastly,
communicating the final design changes back all relevant information as issues to the BIM
modeler using the BCF.

11



1.5 Structure of the thesis

This cumulative dissertation is divided into seven chapters. This Chapter 1 first introduces
the aim and scope of the research conducted, as well as six research questions and
hypotheses are defined. Finally, overall concepts are described, focusing on the general
framework and general matching approach. Chapter 2 gives an overview of the relevant
background, related works, and current State of the Art about Building Information Model-
ing, BIM-based environmental assessments, and Natural Language Processing in the AEC
industry. The following chapters present three journal publications and one conference
publication according to the general framework and according to the contributions.

Chapter 3 contains Paper | which was published in the Journal "Energy and Buildings"
(Forth, Abualdenien, & Borrmann, 2023). It describes the proposed method of semantic
enrichment and model healing for life cycle assessments in early design stages using
pre-trained LLM and a structured LCA knowledge database (LKdb). The most similar
elements are matched from the database based on BIM elements and material names
using semantic similarity, and ranges of embodied LCA results are calculated, mainly
focusing on Global Warming Potential (GWP) and GHG emissions.

In the following Chapter 4, depicting Paper Il from the 2024 ASCE International Conference
on Computing in Civil Engineering (Forth et al., 2024), the matching method is adapted for
the use case of Material Passports. However, the material database used is unstructured,
and the focus is on the LLM fine-tuning strategies for the monolingual semantic matching
of material datasets to BIM materials.

In Chapter 5, the matching method is further developed multilingually for enriching space
types and thermal properties to enable the use case of Building Energy Performance
Simulations. This chapter includes Paper Ill, which was published in the "Journal of
Building Engineering" (Forth & Borrmann, 2024). Based on architectural room names,
the most similar space types and the most similar constructions with thermal properties
are matched based on the BIM elements and materials. The LLM fine-tuning has a
monolingual and multilingual step, as BIM models in German and NREL databases in
English are used.

Chapter 6 contains Paper IV which was published in the Journal "Developments in the
Built Environment" (Forth, Hollberg, et al., 2023). It introduces a novel approach for
design decision-making through interactive, model-based visualizations of uncertain LCA
outcomes from Chapter 3. The proposed methodology uses open BIM data formats,
including IFC and BCF. It is tailored to provide decision support for non-LCA experts in the
early design stages. Finally, Chapter 7 evaluates all the defined objectives of the thesis,
concluding with remaining gaps and an outlook for future research.
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Chapter 2

Background and related works

This chapter about the current State of the Art is divided into three main parts: Building
Information Modeling (BIM), environmental analyses using BIM, and Natural Language
Processing (NLP) and Large Language Model (LLM).

2.1 Building Information Modeling

In this section, the concepts of Building Information Modeling (BIM) are briefly introduced,
which are relevant for environmental analyses. First, the challenges of early design stages,
including uncertainties, are discussed, followed by the concept of Level of Development
(LOD) and Level of Information Needs (LOIN), data exchange formats for environmental
analyses, and semantic enrichment of BIM models. Generally, the focus is on the open
BIM method, which is vendor-neutral and follows a federated model approach (Borrmann
et al., 2021).

2.1.1 Early design stages and uncertainties

According to the MacLeamy curve (MacLeamy, 2004), the impact of cost and functional
capabilities are higher in schematic design and design development stages, and the
costs of design changes are lower compared to detailed design stages. However, many
decisions have not been made yet in early design stages, and several uncertainty in
design decisions exists (Knotten et al., 2015). Conducting environmental assessments in
early design stages helps domain experts in data-based decision-making, as Abualdenien
showed in his dissertation (Abualdenien, 2023).

As shown in Figure 1.1 in the Motivation Section 1.1, material- and element-based design
decisions are often not decided yet in early design stages or only vaguely available
using generic terms, e.g., concrete. However, this detailed information is relevant for a
bottom-up calculation of environmental analyses. If uncertainties are not addressed in
design decisions in early design stages, the results of environmental analyses might be
misleading or wrong. Therefore, uncertainties must be defined along every design stage,
especially in early phases (Tian et al., 2018).

Critical decisions significantly influence the building’s carbon footprint in the early design
stages. However, these stages are marked by substantial uncertainty due to incomplete
information and pending decisions, complicating the task of performing a holistic and
consistent Life Cycle Assessment (LCA) to support design decisions and optimize perfor-
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mance (Schneider-Marin et al., 2020). Goulouti et al. recommend a probabilistic approach
for service lives of building elements to increase the reliability of LCA and results (Goulouti
et al., 2020). Harter et al. (2020) and Schneider-Marin et al. (2020) analyzed the effect
of geometric and material-related uncertainties of embodied and operational emissions
testing.

Warrier et al. classified several sources of uncertainties in building LCA, such as stake-
holder decisions, input data and data quality, future stages (service life of components,
end-of-life choices, etc.), and uncertainties related to LCA methods (Warrier et al., 2024).
Relevant to this dissertation are the uncertainties due to input data, which are differentiated
into the quantity of materials and modeling choices of construction materials.

2.1.2 Level of Development and Level of Information Need

As previously described, building design progresses iteratively, evolving from initially vague
information to more detailed specifications, leading to increased accuracy and reliability of
BIM models throughout the modeling process (Abualdenien et al., 2021).

<
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Figure 2.1: Level of Development (LOD) of an exterior wooden wall construction
(B2010.20.10) according to (BIM Forum, 2023).

The Level of Development (LOD) defines the degree of completion, maturity, or elaboration.
While the BIMforum, the US chapter of buildingSMART International, has delineated
specific LODs, they have yet to be universally adopted as an international standard (BIM
Forum, 2023). Figure 2.1 shows exemplarily the LOD from 200, 300, and 350 of exterior
wooden wall construction and its inclusions.

In the European standardization effort (DIN EN 17412-1, 2021), Level of Information
Needs (LOIN) aligns with LOD, encompassing geometric and alphanumerical information,
but is tailored to particular use cases and milestones. However, Level of Information Needs
(LOIN) is a framework that does not define overall specific levels, as in the LOD concept by
BIM Forum. In Germany, LOIN is known as the combination of Level of Geometry (LOG),
specifying geometric detailing, and Level of Information (LOI), representing the extent of
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alphanumerical information. Level of Information (LOI) is contingent on project specifics
and client requirements, thus lacking generalizability. In practice, LOI is often articulated
through "Type-and-attribute tables" (TAT), detailing object types and attributes (Borrmann
et al., 2021). Additionally, buildingSMART International has proposed Information Delivery
Specification (IDS) aiming to author and validate non-geometrical information requirements,
such as material or classifications (Tomczak et al., 2022).

Abualdenien and Borrmann introduced a meta-model approach where multi-LOD data
depict buildings at various design phases, building upon BIMForum’s LOD definitions and
introducing the Building Development Level (BDL) concept (Abualdenien & Borrmann,
2019). While LOD delineates specific components, the BDL concept includes the overall
building maturity with multiple LODs for each component. The BDL concept resembles
the Modelldetaillierungsgrad (MDG) by VBI (Verband Beratender Ingenieure VBI, 2016).

(A) (B) (€)

Figure 2.2: Example of symbolic (A), simplified (B) and detailed (C) graphical representa-
tion of a building for 3D modeling to support master planning (A), early light analyses (B)
and detail light analyses (C) according to (DIN EN 17412-1, 2021).

Figure 2.2 graphically represents a 3D BIM model in the steps of a symbolic (A), simplified
(B), and detailed (C) design stage for early (B) and detailed (C) daylight simulations accord-
ing to (DIN EN 17412-1, 2021). LOls and LOGs are pivotal in BIM-based environmental
analyses by specifying required information or accommodating information uncertainty in
early design stages. As less information is available initially, generic datasets are utilized,
necessitating assumptions for missing material layers. Product-specific datasets can be
incorporated into calculations based on the components utilized during construction.

2.1.3 Data exchange formats for environmental analyses

The Industry Foundation Classes (IFC) data model (Liebich, 2013) constitutes an open
data exchange format formulated and upheld by buildingSMART, aimed at fostering
interoperability across the Architecture, Engineering, and Construction (AEC) sector. It
furnishes a unified data model facilitating seamless exchange of both geometric and
semantic information without loss. As a vendor-neutral standard, IFC encompasses
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a broad array of building information representations, encompassing diverse geometry
representations and a comprehensive set of semantic objects structured in an object-
oriented fashion.

IfcRoot
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Figure 2.3: Part of the IFC data model showing the most important entities in the upper
layers of the inheritance hierarchy according to (Borrmann et al., 2018).

Since its inception in 2009, the Green Building Extensible Markup Language (gbXML)
exchange format has emerged as a publicly accessible, non-commercial schema, primarily
oriented towards exchanging building information relevant to operational energy simula-
tions (Green Building Foundation, 2021). Initially developed by Green Building Studio and
acquired by Autodesk, Green Building Extensible Markup Language (gbXML) lacks official
standardization oversight. The gbXML schema does not include a complete BIM model but
rather encapsulates relevant environmental and geometric data of buildings. This derived
data model based on the BIM model is often called a Building Energy Modeling (BEM).
The schema features a "campus" container that houses one or multiple buildings, each
delineated by a closed building envelope described by surfaces. These surfaces are char-
acterized by type specifications (e.g., "InteriorWall"), Boundary Representation (B-Rep)
geometry, references to adjacent spaces linked to zones, and designated openings.

The gbXML format finds application in Life Cycle Assessment (LCA) during early design
phases, for instance, through utilization in CAALA software (CAALA, 2024), or Build-
ing Energy Performance Simulation (BEPS), e.g., using Honeybee from Ladybugtools
(Sadeghipour Roudsari & Pak, 2013), facilitating consideration of both embodied and
operational emissions. However, the schema lacks a detailed representation of specific ele-
ment layers and materials, rendering it unsuitable for precise alignment with environmental
datasets at the material level.

Recently, the initiative opensource.construction and Christian Kongsgaard published an
open data schema for LCA, called LCAx (Kongsgaard, 2024). It aims to establish an
open-source, machine, and human-readable data format for exchanging LCA results
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based on JavaScript Object Notation (JSON) format. However, the input data does not
necessarily need to be derived from BIM models.

2.1.4 Semantic enrichment of Building Information Models

Many advanced techniques are available for automating the augmentation of semantic
content for deriving different BIM use cases. Bloch’s analysis provided an overview of
various strategies, methodologies, and application domains for enriching the semantic
content of BIM (Bloch, 2022). Two primary avenues were identified: leveraging IFC to
represent building information coupled with inference-driven enhancement and integrating
IFC with external data sources.

Additionally, Semantic Web technologies were utilized to process building information,
focusing on building design, performance assessment, and notably, energy simulations
(Scherer & Schapke, 2011). Exemplary cases included using Natural Language Pro-
cessing (NLP) to classify spatial elements for Korean school buildings and deriving code
compliance regulations through rule extraction (Guo et al., 2021).

Costa and Sicilia employed semantic query languages to automatically convert BIM data,
concentrating on harmonized data models to facilitate building-scale energy simulations
utilizing EnergyPlus (Costa & Sicilia, 2020). In another approach, Baumgartel et al.
utilized ontologies to dynamically modify and assess thermal energy performance in
building contexts (Baumgartel & Scherer, 2016).

Generally, the majority of semantic methodologies leverage ontologies, Semantic Web
tools, and linked data concepts to achieve automated semantic enhancement in the BIM
domain. While some incorporate NLP, its application for enhancing detailed insights from
BIM models for energy simulations remains relatively limited.

In Sections 2.2.1 to 2.2.3, we focus more on current manual semantic enrichment pro-
cesses for different BIM-based environmental analyses.

2.2 Environmental analyses using BIM

To assess the ecological dimension of sustainability of building designs, different environ-
mental analyses are conducted, such as Building Energy Performance Simulation (BEPS),
Life Cycle Assessment (LCA), or Building Circularity Assessment (BCA), for which MP
constitute the basis. BuildingSMART International lists several open BIM use cases related
to sustainable building design and environmental assessments, such as daylight analysis,
thermal comfort and energy simulations, life cycle assessments, and material passports
(buildingSMART International, 2024).

In the following, the current State of the Art using BIM for use cases of LCA in Chapter
2.2.1, Material Passport (MP) in Chapter 2.2.2, and BEPS in Chapter 2.2.3 is introduced.
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2.2.1 BlIM-based Life Cycle Assessment

The method of a Life Cycle Assessment (LCA) is generally standardized in ISO norms
(DIN EN 1SO 14040, 2021; DIN EN I1SO 14044, 2021), and is divided into four phases:
(1) Goal and Scope, (2) Life Cycle Inventory (LCI), (3) Life Cycle Impact Assessment
(LCIA), and (4) life cycle interpretation. The European norms specifically for buildings
divide building into three main life cycle phases: (A) Production and erection phase, (B)
Use Phase, (C) End of Life Cycle, followed by model (D) including benefits and liabilities
outside of the system boundaries (DIN EN 15804, 2022; DIN EN 15978, 2012)

Occasion & Demand planning & Conceptual Design & Detailed
Initialization Basic Conception Approval Planning Planning

Building Systems Function Systems Element Systems Component Systems

ey

Y

™

Each consisting of a Each consisting of a Each consisting of a Each consisting of a
set of function system set of element system set of component system set of material(s)

Figure 2.4: Phase-specific specification of the planning object as a reference system for
the Life Cycle Assessment (LCA) (Horn et al., 2020).

The field of BIM-based LCA has gained increasing attention in research within the last
decade. Horn et al. showed different scopes of decision-making using Building Information
Modeling (BIM) for LCA in different design stages, as shown in Figure 2.4 (Horn et al.,
2020). They showed the correlation of different system levels, such as building, function,
element, and component systems, and the related design stage from very early (occasion
& initialization) to detailed planning. The main focus of this dissertation is on early design
stages, such as conceptual design stages following LOD 200-300, starting with element
systems but also taking component systems and materials into account.

In the following, three main aspects of this research field relevant to this dissertation are
highlighted, such as BIM-LCA integration strategies, matching and enriching LCA datasets
to BIM models, as well as visualization for LCA results and uncertainty using BIM.

BIM-LCA integration startegies

Wastiels and Decuypere introduced a classification of five strategies on how to integrate
BIM and LCA, as shown in Figure 2.5 (Wastiels & Decuypere, 2019). As part of the
BBSR research project "Digital Twin Footprint," these integration strategies were analyzed
towards its data exchange losses, degree of automation, suitability for practical use, and
more (Bahlau et al., 2024). Open BIM workflows have bigger advantages for complex
building designs with several planers involved using the federated model approach. How-
ever, the enrichment of LCA datasets with IFC elements or materials must still be done
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manually and semi-automated. With current software tools, a semi-automated BIM-LCA
process is also relevant to ensure reliable and holistic LCA (Forth et al., 2019).

Workflow 1: Bill of quantities (BOQ) export Workflow 2: IFC import of surfaces
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Figure 2.5: BIM-LCA integration strategies according to (Wastiels & Decuypere, 2019).

In Section 3.3, an initial literature review on BIM-based LCA was conducted. This section
discusses the most recent literature reviews and research gaps within the last few years.
Tam et al. reviewed open research gaps and future perspectives in the field of BIM-LCA
integration under the framework of ISO 14040 (Tam et al., 2022). They clustered the eight
unaddressed issues and eleven future perspectives in five topics:

1. Data collection at the Life Cycle Inventory (LCI) phase, such as ranges of LCA results
in early stages,

2. Data mapping at the LCI phase, such as hierarchical structures of LCA data,
3. Data exchange at the LCI phase,

4. Presenting environmental impacts of buildings at the LCIA phase, such as 3D
visualization of LCA results in BIM, and

5. Research topics of BIM-LCA integration at the interpretation phase.
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Fonseca Arenas and Shafique reviewed the recent progress on BIM-based LCA and BEM
integration and identified several research gaps and future directions (Fonseca Arenas
& Shafique, 2023). One direction considered the usage of Atrtificial Intelligence (Al) for
BIM-LCA integration to easier interact with BIM models, e.g., using a voice assistant
interface. However, they mainly understand BIM-based LCA in a closed BIM workflow,
neglecting open BIM.

Matching and enriching LCA datasets to BIM models

Chen et al. discussed three major topics of future prospects of BIM-LCA integration, such
as linking BIM to dynamic LCA, automated data linking of BIM to LCA data, and combining
further digital methods, such as semantic web or Geographic Information Systems (GIS)
(Chen et al., 2024).

Current approaches of matching LCA datasets to IFC models often use manual linkage
of Universally Unique Identifier (UUID) from external LCA databases and store these
as Property Set (Pset) in the IFC models (TheiBen, Drzymalla, et al., 2020). BuildingS-
MART International provides the Pset attribute "PSetEnvironmentallmpactindicators" and
"PSetEnvironmentallmpactValues" according to (BuildingSMART International Limited,
2020).

Parece et al. proposed an approach for automatically mapping LCA data to BIM objects
using a construction classification system SECClasS (Parece et al., 2024). However, the
approach follows the closed BIM approach, or the classifications need to be manually
assigned for each BIM object.

Another matching approach of matching LCA datasets to IFC materials has been intro-
duced by Reitschmidt using Okobaudat based on tokenization of material names and a
distinct matching or via Levenshtein distance (Reitschmidt, 2015). However, this linking
approach and the one by Reitschmidt is only applied for holistic LCA if all materials are
modeled in detail in the BIM model, which is the usually case for detailed design stages.

Visualization of LCA results and uncertainty using BIM

In their review of LCA result visualization, Hollberg et al. evaluate current practices and
offer a thorough overview of various strategies and their potentials (Hollberg et al., 2021).
This overview categorizes different visualization strategies based on LCA goals and the
amount of information conveyed, as shown in Figure 2.6.

3D model representations of buildings, such as BIM, are used to identify hotspots of
environmental impact with little information. Several researchers have implemented this
3D-model-based visualization strategy in recent years (Mousa et al., 2016; Naneva, 2022;
Réck et al., 2018a, 2018b; Tsikos & Negendahl, 2017). These methods predominantly
use color coding within authoring tools to visually represent the final LCA outcomes.
Kiss and Szalay employ a distinct visualization technique for detailed LCA analysis,
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Figure 2.6: Detail of Hollberg et al.s synthesis of the LCA goals, the group of visualization
types, and the amount of information displayed in the visualization according to (Hollberg
et al., 2021).

combining model-based color coding with a sunburst diagram to highlight specific aspects
of the results. Their implementation leverages Rhino and Grasshopper for enhanced
visualization capabilities. However, none of the mentioned approaches has tested its effect
and intuitiveness for users, especially non-LCA experts.

Another visualization strategy for identifying hotspots is heat maps, which was also
implemented by several researchers (Cer et al., 2017; Eberhardt et al., 2019; Goossens
et al., 2018; Kiss et al., 2020; Vuarnoz & Jusselme, 2018). However, Hollberg et al.
identified that heat maps are mainly used by LCA experts in detailed design phases, not
in early ones (Hollberg et al., 2021). Box plot diagrams are widely used to include the
LCA goal of comparing design options and uncertainties of the LCA results. These were
found to be also used in early design stages and also by building design professionals
and decision-makers, but less in existing LCA tools.

Marsh et al. reviewed uncertainties in LCA for the built environment, identifying several
sources, clustered by the LCA phases of Goal & Scope, LCI, and Life Cycle Impact
Assessment (LCIA) (Marsh et al., 2023). They also pointed out barriers such as data
quality, human error, practitioner expertise, carbon data comparability, data availability,
unknown early-stage material specifications, and time requirements.

Strébele introduced a fuzzy LCA (fLCA) approach that manages vagueness using distribu-
tion curves instead of singular outcomes (Strébele, 2022). Schneider-Marin et al. created
the EarlyData knowledge database to guide material choices during design stages with
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limited details, visualizing semantic uncertainty with box plots representing GWP ranges
(Schneider-Marin et al., 2022).

To address uncertainties in BIM models, Abualdenien and Borrmann proposed several
methods for visualizing geometric and semantic uncertainties in building elements during
early design stages (Abualdenien & Borrmann, 2020). They concluded that using a
combination of color value and transparency to quantify semantic reliability yielded a high
degree of intuitiveness and acceptance.

However, there are currently no visualization approaches for LCA results, including uncer-
tainties, using BIM models in early design stages, which have been tested and evaluated
by non-LCA experts.

2.2.2 BIM-based Material Passports

To tackle the current challenges of high waste generation and resource demand of the
AEC industry, the concept of circular economy is been used to close resource cycles
and material flows. However, material-related information is insufficiently documented
to realize the reuse and recycling of building components and materials. Therefore, the
concept of BCA has been introduced, such as Design for Disassemble (Elma, 2006), the
Material Circularity Index (Ellen MacArthur Foundation, 2015), or the Urban Mining Index
(Rosen, 2021). The German Sustainable Building Council (DGNB) agreed on a standard
for circularity indices for buildings distinguishing between today’s contributions and future
contributions (Braune & Wellstein, 2024). They count material origin, construction, and de-
molition waste as today’s contribution, while material compatibility, disassembly capability,
detachability, and material utilization are future contributions.

Digital Product Material Digital Building
Passport Passport Logbook

Area, complex, building,
element, product, Building
material, raw material

(mainly) built

: Built environment
environment

Industry Cross-industry

EU-wide framework for a
digital building logbook

Regulation EU Ecodesign Directive

Figure 2.7: Differences and similarities between digital product passports, material pass-
ports, and digital building logbooks according to (Cetin, 2023).

Several similar approaches exist for digitizing this BCA, such as Material Passport (MP),
Digital Product Passports (DPP), circularity passports, building renovation passports, or
(Building) Ressource Passports (Getin, 2023; Honic et al., 2024). The main difference
is that DPPs are used for any products in any industry (European Commission, 2022),
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while MP (BAMB, 2019) and Digital Building Logbooks (Volt et al., 2020) were specifically
developed for buildings, as shown in Figure 2.7. Building Ressource Passports, in German
"Gebauderessourcenpass" (DGNB, 2024), is often used as synonyms for MP or Digital
Building Logbooks in the German market for the above-mentioned concepts. The digital
Building Logbook can align with MP but extends the approach beyond circularity aspects
with other sustainability aspects, such as energy performance or renovation history (Cetin,
2023).

Several researchers investigated the potential of using different digital methods, such as
BIM, Internet of Things, or Digital Twins, for circularity assessments and MPs (Cetin et al.,
2021; Dervishaj & Gudmundsson, 2024). Wolf et al. introduced an overview of a circular
built environment in the digital age, covering business and governance aspects, design
and fabrication, as well as data-related aspects, such as GIS, Scan-to-BIM, Al, and BIM
for MP (de Wolf et al., 2024).

Using BIM for MP has been introduced to document all relevant information about BCA,
LCA, and others (Heinrich & Lang, 2019). Different approaches have been introduced
using authoring tools (Atta et al., 2021; Honic et al., 2019a), or following open BIM
workflows (Tomczak et al., 2024).

Tomczak et al. analyzed the IFC schema by developing IDS for circularity information (Tom-
czak et al., 2024). They discovered that information related to disassembly instructions,
End-of-Life predictions, and connections between components are difficult to incorporate
in IFC. Sanchez et al. developed a BIM-based Semantic Enrichment Engine for Disas-
sembly Planning (SEEDP) using open BIM standards, such as IFC, Information Delivery
Manual (IDM), and Model View Definition (MVD) for disassembly planning (Sanchez et al.,
2024). The relevant semantic information needs to be manually inputted but afterward
automatically enriched.

Currently, a few software providers have implemented tools for open BIM-based circularity
assessments, such as Madaster (Madaster, 2024), or circularity consultancies, such as
EPEA (Gebetsroither et al., 2024).

However, current approaches have not solved the gap in automated semantic enrichment
of relevant information, such as material information from external databases. To assess
open BIM models in early design stages, they still need to be manually enriched, which
makes iterative optimization and decision-support in early design stages costly and time-
expensive.

2.2.3 BIM-based Building Energy Simulations

The term Building Energy Performance Simulation (BEPS) is commonly used interchange-
ably with Building Energy Simulation (BES), Building Performance Simulation (BPS),
Building Energy Modeling (BEM), or simply energy simulation (Hong et al., 2018). This
overarching designation encompasses simulations primarily focused on energy demand
and indoor environmental factors such as thermal comfort, both based on a BEM model.
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The geometry representations and semantic information are the main differences between
BIM and BEM models. Consequently, one main challenge of transforming BIM models
to BEM models is the correct geometric transformation from volumetric to a watertight
surface representation without any gaps or holes. Furthermore, semantic information in
BIM models are defined use-case specific, while the relevant information for BEM models
are specified for the use case of energy-related simulations.

Eckstadt et al. conducted a comparative study examining three distinct methodologies
for conducting whole-building energy simulations, often termed building performance
simulations (Eckstadt et al., 2022). Their investigation centered on utilizing open BIM
models and the IFC data format as the principal input file. However, challenges persist
within existing tools, stemming from the need for accurate IFC export settings tailored to
individual simulation tools, limitations in the IFC import process, and inherent constraints
of the simulation tools themselves.

Van Treeck et al. discussed different data exchange formats for BIM-based BEPS, such
as using MVD with IFC or gbXML (van Treeck et al., 2018). Léhr et al., on a different note,
proposed a partially automated procedure for generating multi-zone thermal models from
IFC models (L6hr et al., 2022).

Ramaiji et al. introduced an alternative approach for converting IFC-based BIM into BEM,
directly converting IFC models into OpenStudio’s native IDD format (Ramaji et al., 2020).
Despite encountering challenges during conversion, they addressed these issues using
MVD. Similarly, Spielhaupter conducted a comparative analysis of various IFC-based
strategies for transforming BIM to BEM (Spielhaupter, 2021).

Yang et al. adopted IFC files as the foundation of their methodology, albeit with a different
approach wherein they initially converted IFC data into the gbXML format before further
transformation into the IDF format, which is the native file by EnergyPlus (Y. Yang et al.,
2022). However, their workflow indicates the frequent necessity of additional adjustments,
prompting the proposed strategy to employ the Honeybee JSON (HBJSON) format as
the transformation schema due to its open-source nature, adaptability across different file
formats, and enhanced geometric export reliability.

Strategy 1 Strategy 2
Strategy 3 Strategy 4

Figure 2.8: Comparison of different BIM-BEM interoperability strategies according to
(Ciccozzi et al., 2023).
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Ciccozzi et al. reviewed interoperability strategies in BIM to BEM workflows, identifying
four key approaches, as shown in Figure 2.8 (Ciccozzi et al., 2023): real-time connection,
standardized exchange formats, and middleware tools, MVD, and proprietary toolchains.
They also analyzed various methods of automatically mapping energy-related information
to the BIM model.

Following over 15 years of research in the intersection of BIM and BEM, this research
domain persists in confronting unresolved challenges. Gao et al. highlighted the automated
conversion of intricate spatial functions across all rooms as a critical area for future
exploration, given the ongoing manual nature of the current process (Gao et al., 2019).

Di Biccari et al. reviewed the state-of-the-art and research trends in BIM and BEPS
interoperability (Di Biccari et al., 2022). They emphasized the necessity for research to pro-
pose practical solutions for describing occupancy and MEP component schedules in BIM.
Additionally, they noted that despite the availability of thermal properties in authoring tools,
manual mapping is still required during the IFC export stage as part of post-processing.

Wang et al. proposed a method using PLM for transforming BIM to BEM matching meta-
models of different types of BEMs (Z. Wang et al., 2024). They compare the matching
accuracy of the PLM LSTM with their fine-tuned LLM T5-small (Colin Raffel et al., 2020)
using on collected metamodel pairs for training. However, they recommend integrating
constraints and rules for instance-level transformation by filtering the instances. Further-
more, they do not use their approach to automatically semantically enrich BIM models for
BEM.

In general, the current state-of-the-art still shows a research gap for robustly matching
BEPS-related semantic information to BIM objects, such as space types of thermal
properties of elements and materials, particularly in the early design stages when the BIM
model contains ambiguous information.

2.3 Natural Language Processing and Large Language Models

Natural Language Processing (NLP) is a sub-domain of Artificial Intelligence (Al) and
Deep Learning (DL). The field of NLP and the usage of Large Language Model (LLM) has
seen notable research progress in recent years, showcasing advancements in efficiency
and accessibility. Thereby, NLP is expanding its utility across various sectors, including
the construction industry. In the following sections, current approaches of NLP in the
AEC industry, the NLP subtask of Semantic Textual Similarity (STS), and, finally, domain
adaptation and fine-tuning of LLM are introduced.

2.3.1 Natural Language Processing in the AEC industry

Locatelli et al. conducted a scientometric analysis exploring the synergies between Natural
Language Processing (NLP) and Building Information Modeling (BIM) (Locatelli et al.,
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2021). In addition to the domain of Automatic Compliance Checking, they identified
Information Retrieval from BIM models and Information Enrichment of BIM objects as
further fields of significant application. Wang et al. developed a query-answering (QA)
system for BIM information extraction (IE) using NLP techniques, achieving notable
accuracy scores in their evaluation (N. Wang et al., 2022). Xie et al. proposed a method
for associating real-world facilities with BIM elements utilizing NLP for word segmentation
and keyword extraction, employing the LTP word segmentation module (Xie et al., 2019).
Their matching method evaluates matching matrices based on HiTree paths, aiming for
optimal alignment with natural language feature vectors.

Cornago et al. conducted a SWOT analysis employing Transformers for Life Cycle Assess-
ment (LCA) studies, revealing internal strengths such as automation, integration support,
and relatively low marginal costs (Cornago et al., 2023). However, concerns were raised
regarding data quality, electricity intensity during model training, and rapid technological
evolution. External opportunities encompass community-building and augmented data
availability, while threats include regulatory gaps, standardization issues, and a scarcity of
interdisciplinary expertise. Transformers promise to aid LCA practitioners by mitigating
scalability challenges and enabling data-centric environmental decision-making support.

Zheng et al. investigated the utility of domain-specific corpora in augmenting deep learning
and BERT-based models for Information Retrieval (IR) tasks within the AEC domain (Zheng
et al., 2022). Their findings indicate that domain-specific corpora enhance traditional word
embedding models for select tasks while detrimentally affecting others. Conversely,
BERT-based models consistently outperform traditional approaches, culminating in the
development of RegulatoryBERT, a highly effective model.

Wu et al. conducted an exhaustive review of NLP utilization in construction management,
highlighting advancements in information extraction and document organization (C. Wu
et al., 2022). They also deliberated on the potential and challenges of NLP applications in
construction management, serving as a valuable reference for project teams interested in
harnessing NLP techniques for intelligent construction practices.

One of the recent research trends in Al is combining Deep Learning techniques, like
NLP or Computer Vision (CV), with symbolic reasoning (symbolic logic and knowledge
representation), also known as Neuro-Symbolic Computing (NSC) or Neuro-Symbolic Al.
Luo et al. state that NSC "has the potential to enable more robust, interpretable, and
accurate Al systems in construction by harnessing the strengths of Deep Learning (DL)
and symbolic reasoning" (Luo et al., 2023).

While the relevance of developing NLP methodologies for various tasks within the AEC
domain is escalating, none of the discussed studies proposed an NLP-based enrichment
process for BIM-based LCA.

26



2.3.2 Large Language Models

In recent years, language models have been the basis of NLP’s research development.
Large Language Model (LLM) have proven emergent abilities compared to small-scale
models (Wei et al., 2022).

Ding et al. identified in their scientometric analysis three main phases of NLP in the
construction industry: the germination stage (2000-2011), the gradual development stage
(2012—2018), and the rapid development stage (2019-2020) (Ding et al., 2022). The
first stage is characterized by a small number of models and expensive computing power.
The most dominant techniques were Recurrent Neural Networks (RNN), as well as Long
Short Term Memory Networks (LSTM) (Hochreiter & Schmidhuber, 1997). A more efficient
variant of LSTM was realized by bi-directional training, meaning not only memorizing the
previous words but also the subsequent ones (Bach et al., 2024).

In the second stage, DL and neural networks became the dominant technology (Krizhevsky
et al., 2012). Open-source frameworks, such as Tensor Flow (2015) or Pytorch (2017),
as well as improved computing power and graphics cards, supported this technology,
enabling training on larger datasets (Wolber et al., 2024).

Furthermore, Vaswani et al. introduced transformer-based NLP models in 2017 (Vaswani
et al., 2017). It is based on the self-attention mechanism, which makes it possible to learn
contextual relationships between different parts of the input sequence (Bach et al., 2024).

The development and release of Bidirectional Encoder Representations from Transformers
(BERT), as shown in Figure 2.9, by Google in 2019 accelerated NLP research and
applications in the AEC industry (Devlin et al., 2018). BERT is trained for multiple tasks
and on large datasets.
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Masked Sentence A " Masked Sentence B Question "‘ Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.9: Overall pre-training and fine-tuning procedures for BERT (Devlin et al., 2018).

In 2022, the release of openAl's ChatGPT enabled an end-to-end solution, which is easy
to use by its Chat interface (OpenAl, 2022). However, there are different LLMs specialized
in different NLP tasks, such as 'text-embedding-ada-002’ using embeddings for STS tasks,
but these models are not free of use.
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2.3.3 Semantic Textual Similarity

The domain of NLP encompasses various functionalities, including text summarization,
text classification, named entity recognition, and sentiment analysis. This section primarily
focuses on introducing the foundational principles underlying Semantic Textual Similarity
(STS), a key task within NLP, as shown in Figure 2.10.

Deep Learning

Transfer Learning: instead of training a model from scratch, use models pre-trained on a large
dataset - fine-tuning with small dataset of specific task (reuse general-puprose LLM, avoid over-fit)

Natural Language Processing (NLP): convert text to numbers (vectors for
distance, direction)

Word Embeddings: Word2Vec, BERT Semantic Textual Similarity (STS):
contextual similarity by cosine similarity
Sentence Embeddings: measure

Universal Sentence Embeddings

Figure 2.10: Overview of Deep Learning, Natural Language Processing, and Semantic
Textual Similarity according to (Park, 2019).

One of the big advantages of NLP and STS is that it uses transfer learning, one feature
of DL. This allows training specific tasks on small datasets as the model is not trained
ab initio, but pre-trained LLM are used (Park, 2019). The core methodology for this task
involves sentence pair modeling, a technique also utilized in Natural Language Inference
(NLI) or Recognizing Textual Entailment (RTE) (Lan & Xu, 2018). Achieving STS involves
discerning the semantic relatedness between a statement and its associated premise,
also known as semantic similarity (Bowman et al., 2015).

Chandrasekaran and Mago comprehensively analyzed semantic similarity’s evolution,
categorizing approaches into knowledge-based (such as lexical-semantic nets), corpus-
based, deep neural network-based (such as transformer-based LLM), and hybrid methods
(Chandrasekaran & Mago, 2022). Each approach presents distinct merits and drawbacks,
with discernible trends favoring the development of embeddings and transformer models
imbued with greater semantic understanding. Corpus-based methods predominantly
employ cosine similarity to gauge the disparity between word vectors. However, alternative
metrics such as Euclidean or Manhattan distance are also employed in STS (R. Li et al.,
2023).

Corpus-based semantic similarity methodologies leverage word or sentence embeddings,
which encode vector representations of words, encapsulating linguistic associations (To-
bias Schnabel et al., 2015). Word embeddings capture individual word semantics, while
sentence embeddings encapsulate entire sentence semantics. Widely adopted pre-trained
word embeddings include Word2Vec (Mikolov et al., 2013) and BERT (Devlin et al., 2018).
BERT, comprising pre-training and fine-tuning stages, also accommodates sentence
embeddings. Reimers and Gurevych introduced Sentence-BERT (SBERT), also known
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as sentence transformers, a refined iteration of BERT employing Siamese and triplet
network architectures to derive semantically meaningful sentence embeddings, facilitating
cosine-similarity comparisons and excelling in STS tasks (Reimers & Gurevych, 2019).

STS tasks typically necessitate substantial datasets for training, fine-tuning, and evaluation.
The Stanford Natural Language Interference (SNLI) corpus, comprising 570k human-
authored English sentence pairs, is a commonly utilized dataset for this task (Bowman
et al., 2015). The STS benchmark serves as a standard evaluation metric for validating
STS tasks (Cer et al., 2017).

In the following subsections, different approaches of measuring semantic similarities are
introduced and exemplarily applied using the word pairs of "masonry" and "brick", as well
as "masonry" and "concrete".

Synset similarity using Lexical-Semantic Nets

Before the development of LLM using embeddings, language models represented in
knowledge graphs were used for STS tasks. Most known Lexical-Semantic Net are
WordNet in English (Fellbaum, 1998), or GermaNET in German (Hamp & Feldweg, 1997;
Henrich & Hinirchs, 2010). Vossen introduced a multilingual Lexical-Semantic Net, called
EuroWordNet, first including Dutch, Italian, Spanish and English language (Vossen, 1998).

These Lexical-Semantic Nets semantically relate nouns, verbs, and adjectives by grouping
lexical units that express the same concept into synsets and defining semantic relations
between these synsets, which stands for sets of synonyms. This is depicted as a graph,
where the nodes are synsets and the edges represent semantic relations (Navigli &
Martelli, 2019). Figure 2.11 shows the synset relations between the example words "brick",
"masonry" and "concrete".

Semantic similarity is often measured by the shortest path similarity, which is the inverse of
the shortest path length between two synsets (Rada et al., 1989). Other path-related simi-
larity measures include Wu-Palmer similarity (Z. Wu & Palmer, 1994), Leacock-Chodorow
similarity (Leacock & Chodorow, 1998), Resnik similarity (Resnik, 1995), Lin similarity (Lin,
1998), and Jiang-Conrath similarity (Jiang & Conrath, 1997).

Similarity measure  Score (masonry-brick) Score (masonry-concrete)
Shortest path 0.200 0.200
Wu-Palmer 0.714 0.714
Leacock-Chodorow 2.028 2.028
Resnik 2.305 2.305
Lin 0.196 0.200
Jiang-Conrath 0.053 0.054

Table 2.1: Different similarity measures between the words "masonry" and "brick", as well
as "masonry" and "concrete" using WordNet
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Instru-
mentality

Brick —— | Ceramic ———

an artifact made of hard
brittle material produced
from nonmetallic
minerals by firing at high
temperatures

an artifact (or system of
artifacts) that is
instrumental in

accomplishing some end

rectangular block of clay

baked by the sun or in a

kiln; used as a building or
paving material

Structure,
Construc,

Masonry Artifact

structure built of stone or
brick by a mason

a thing constructed;
a complex entity
constructed of many parts

a man-made object
taken as a whole

Building
Material

Concrete|————

material used for
constructing buildings

a strong hard building
material composed of
sand and gravel and
cement and water

Figure 2.11: Relatedness of synset "masonry" and "brick", as well as "masonry" and
"concrete" using WordNet (Fellbaum, 1998).

Table 2.1 shows the different similarity measures of shortest path, Wu-Palmer, Leacock-
Chodorow, Resnik, Lin, and Jiang-Conrath similarity between the example word pairs using
WordNet, as shown in Figure 2.11. Except for minor deviations in Lin and Jiang-Conrath
similarity, there are no differences in the scores of the word pair "masonry"-"brick" and

"masonry"-"concrete".

Semantic similarity using Levenshtein distance

There are several other approaches to measure string-based similarities. Ghomaa and
Fahmy differentiate between character-based and term-based similarity measures, also
known as token-based similarity measures (Gomaa & Fahmy, 2013). One of the most
used character-based similarity measures is the Levenshtein distance, which follows the
idea of an edit-based algorithm (Levenshtein, 1965). It defines the distance between two
strings a and b, as shown in Equation 2.1. The distance is measured by counting the
minimum number of single-character allowed operations needed to transform one string
into the other, such as insertions, deletions, or substitutions.

|a| ifb] =0
|b] ifla] =0
lev(a,b) = lev(tail(a), tail(b)) ifa| = [0] 2.1)
lev(tail(a),b)
1+ min < lev(a, tail (b)) otherwise.
lev(tail(a), tail(b))
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0 1 2 3 4 5 01 2 3 45 6 7 8
m|1 1 2 3 4 5 m|1 1 2 3 4 5 6 7 8
a2 2 2 3 4 5 al2 2 2 3 4 5 6 7 8
s|3 3 3 3 4 5 s|/3 3 3 3 4 5 6 7 8
o4 4 4 4 4 5 o|4 4 3 4 4 5 6 7 8
n|5 5 5 5 5 5 n|'5 5 4 3 4 5 6 7 8
al/6 6 6 6 6 6 a6 6 5 4 4 5 6 7 8
r\7 7 6 7 7 7 r|7 7 6 5 5 4 5 6 7
y| /8 8 7 7 8 8 y| '8 8 7 6 6 5 5 6 7

Table 2.2: Levenshtein distance between the words "masonry" and "brick", as well as
"masonry" and "concrete"

As shown in Table 2.2, the Levenshtein distance between the word "masonry" and "con-
crete" is smaller, scoring 7, compared to the Levenshtein distance between "masonry"
and "brick", resulting in a distance of 8 operations.

Cosine similarity using transformer-based LLM

Cosine distance or cosine similarity is a well-used term-based similarity measure for
corpus-based STS, and it calculates the cosine of the angle between two encoded word
or expression vectors. Every string is converted from text to a vector representation,
also known as embeddings, to measure semantic similarity by encoding the text using
the weights of the LLM. In this case, a vector is a list of numerical values, and their
combination represents the overall meaning (Wilbur & Sirotkin, 1992). Afterward, the
cosine similarity (cos(6)) between two different vectors, A and B, can be calculated using
the cosine similarity, as shown in Equation 2.2, while n is the dimension of the vector:

cosine — similarity := cos(f) = 2i1 (2.2)

RN

A B A A
©=10° QP 0=170>
Similar Vector Orthogonal Vector Opposing Vector
Cos = 98.48% Cos = 0.00% B Cos = -98.48%

Figure 2.12: Schematic overview of cosine similarities using two dimensional vectors

Figure 2.12 shows schematically the similarity of two-dimensional vectors using cosine
similarity. The closer the vectors point in the same direction, the higher the cosine similarity
is with a maximum of 100%. The further the vectors point in the opposite directions, the
smaller the cosine similarity is with a minimum at -100%. When the vector is orthogonal,
the cosine similarity is 0%. However, corpus-based embeddings have more dimensions,

31



BERT has 768 dimensions, but all vectors are positive, so the cosine similarity is always
between 0% and 100%. The cosine similarity between the words "concrete" and "cement"
is 94.72%, while between "concrete" and "brick" it's lower with 83.33% using BERT
('bert-base-uncased’) (Devlin et al., 2018).

2.3.4 Domain adaptation and LLM fine-tuning

Given that most LLM are trained on generic text, they may not always align optimally with
domain-specific tasks, necessitating domain adaptation. Typically, domain adaptation
involves fine-tuning a PLM on a domain-specific dataset (Kohle & Jannidis, 2020). This fine-
tuning process entails adjusting the weights of the original model to better accommodate
the specific characteristics of the domain data and the targeted task. The Huggingface
platform offers numerous PLMs in various languages, as well as multilingual LLMs that
are fine-tuned for domain-specific tasks (Wolf et al., 2019).

Selecting the appropriate loss function is crucial for fine-tuning PLM, depending on the
training data and the overall task at hand. For instance, to enhance the performance of
fine-tuning BERT in multitask domains like sentiment analysis, paraphrase detection, and
STS, Jadwin and Huang utilized in-domain pre-training and Multiple Negatives Ranking
Loss (MNRL) (Jadwin & Huang, 2023). They found that MNRL fine-tuning had the most
significant impact on performance optimization.

Contrastive Loss (Contrastivel), proposed by Hadsel et al., adjusts the distance between
two embeddings based on labels (0 or 1) (Hadsell et al., 2006). Cosine Similarity Loss
(Cosl) utilizes manual labels indicating the expected cosine similarity between two em-
beddings for fine-tuning LLMs, usually 0.8 for high similarity and 0.3 for contradicting word
pairs. Reimers and Gurevych employed either Softmax classifier (classification objective
function) for fine-tuning on SNLI dataset or CosL (regression objective function) to compute
similarity scores in their concept of sentence embeddings using Siamese BERT-Networks
(Reimers & Gurevych, 2019), as shown in Figure 2.13. For fine-tuning multilingual LLMs,
they utilized Mean Squared Error Loss (MSEL) to train the student model (Reimers &
Gurevych, 2020).

In addition to different loss functions and fine-tuning frameworks, multilingual PLMs
play a crucial role in fine-tuning. Conneau et al. introduced a multilingual masked
LLM, "XLM-R," trained with data from 100 languages, including German and English,
leveraging the strengths of multilingual XLM models and the monolingual RoBERTa model
(Conneau et al., 2019). Feng et al. proposed a Language-agnostic BERT Sentence
Embedding (LaBSE), focusing on multilingual sentence embeddings supporting 109
languages, including German and English (Feng et al., 2020). Reimers and Gurevych
also introduced a framework using knowledge distillation to create multilingual sentence
embeddings from monolingual ones (Reimers & Gurevych, 2020), offering versions of
multilingual PLMs, such as "distiluse-base-multilingual-cased-v2," which supports over
50 languages, including German and English, while requiring fewer samples and lower
hardware requirements for training.
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Figure 2.13: SBERT architectures with classification objective function for fine-tuning on
SNLI dataset (left) vs. regression objective function to compute similarity scores (right)
according to (Reimers & Gurevych, 2019).

Recent research projects showed the limitations of current LLM and the necessity of
combining LLM to databases or knowledgebases (Suchanek & Holzenberger, 2024).
Similar to the previously mentioned trend of neuro-symbolic Al, it aims to use structured
domain knowledge and the advantages of LLM to increase the performance of domain-
specific automation tasks.

2.4 Overall research gaps

Based on the previous chapters about the research background and related works, the
identified research gaps within the scope of this dissertation are highlighted, which were
previously introduced in Chapter 1.2:

1. Automated and robust matching of LCA datasets to BIM data: BIM model
information and LCA datasets follow different structures and hierarchies. The same
convention of hierarchy/ structure and naming needs to be addressed to link LCA
data to BIM data to guarantee a correct matching (Potr¢ Obrecht et al., 2020). "Since
the data structure and naming convention in LCA databases are fixed and hard to
disaggregate, the data structure and naming convention of data from BIM models
are often modified for mapping into LCA data during the data mapping process"
(Tam et al., 2022).

Furthermore, the same research gap also applies to matching material datasets
to BIM elements for Material Passports. Real-world case studies shall be used to
address a robust matching approach. Chapter 3 discusses this research gap for the
use case of LCA, and in Chapter 4 for the use case of Material Passports.

2. Ranges of LCA results in early design stages: Tam et al. identified the information
shortage of low LOD BIM models in early design stages as a challenge for reliable
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LCA calculations (Tam et al., 2022). A range of LCA results should be applied
instead of calculating specific LCA results for one uncertain element. This range
can also be integrated into the design decision-making. This research gap will be
addressed in Chapter 3.

. Automated and robust matching of space types to architectural rooms and
thermal properties to BIM elements for BEPS: To create Building Energy Models
out of BIM, manual enrichment steps are still necessary. "The detailed space type
of all spaces/rooms of a building should be automatically transformed from the BIM
model, rather than by manual data setting" (Gao et al., 2019). Also, additional data
regarding thermal properties must be manually enriched before a holistic energy
simulation with reliable results is calculated (Raggi et al., 2021). These two research
gaps of automated and robust enrichment of space types and thermal properties to
BIM models for holistic BEPS are addressed in Chapter 5.

. Combination of Large Language Models and Domain Knowledge: Current Large
Language Models have limitations for different domain-specific tasks. Promising
recent research areas are shown by neuro-symbolic Al (Luo et al., 2023) and combin-
ing knowledgebase and structured databases with LLM (Suchanek & Holzenberger,
2024) to automate domain-specific tasks, such as the previous matching of LCA, MP
and BEPS related information to BIM models. This gap is addressed in the Chapters
3,4 and 5.

. Visualization of environmental impacts for design-decision-making: Tam et
al. mentioned 3D visualization of environmental impacts in BIM models as another
open BIM-LCA integration challenge (Tam et al., 2022). They call for more effort in
this research direction "to make it more accessible to LCA practitioners to present
the environmental assessment results in an intuitive and visualized way" (Tam et
al., 2022). However, non-LCA experts shall also use these intuitive visualization
strategies discussed in Chapter 6.
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Chapter 3

Calculation of embodied GHG emissions in
early building design stages using BIM and
NLP-based semantic model healing

Previously published as: Forth, K.; Abualdenien, J.; Borrmann, A.: Calculation of embodied
GHG emissions in early building design stages using BIM and NLP-based semantic model
healing. Energy and Buildings 284, 2023, DOI: 10.1016/j .enbuild.2023.112837

Abstract

To reach the goals of limiting global warming, the embodied greenhouse gas (GHG)
emissions of new buildings need to be quantified and optimized in the very early design
stages, during which design decisions significantly influence the success of projects
in achieving their performance goals. Semantically rich building information models
(BIM) enable to perform an automated quantity take-off of the relevant elements for
calculating a whole building life cycle assessment (LCA). However, imprecise type and
property information often found in today’s BIM practice hinders a seamless processing for
downstream applications. At the same time, the early design stages are characterized
by high uncertainty due to the lack of information and knowledge, making a holistic and
consistent LCA for supporting design decisions and optimizing performance challenging.
In assessing this often vague information, it is essential to consider different levels of
element and material information for matching BIM to LCA data. For example, the structural
properties of concrete are not yet defined in early design stages and should instead be
considered as a range of material options due to different compressive strength classes.

This paper presents a novel methodology for automatically matching the coarse information
available in BIM models of the early design stages to the respective entries in LCA
databases as a basis for a fully automated calculation process of the embodied GHG
emissions of new buildings. This approach solves the existing gap in the automation
process of manually enriching BIM models and adding information of LCA data and
missing layers of vague models. In more detail, the proposed method is based on
Natural Language Processing (NLP), using different strategies to increase performance
in matching elements and materials from a BIM model to a knowledge database to
enrich environmental indicators of commonly used elements’ materials. The knowledge
database contains all missing information for LCAs and has different levels of information
for a range of several potential design options of elements and materials, including their
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dependencies. Accordingly, this paper investigates multiple NLP techniques and evaluates
the performance of state-of-the-art deep learning models such as GermaNet, SpaCy, or
BERT. Following this, the most performant NLP approach is used to provide an automatic
workflow for matching Industry Foundation Classes (IFC) elements to the knowledge
database, facilitating a seamless LCA in the early stages of design. For five different
case studies, the performances of the proposed matching method are analyzed. Finally,
one case study is selected to compare the embodied emissions results to those of the
conventional process.

3.1 Introduction

According to the United Nations, the construction industry, specifically through the pro-
duction of materials for building construction, is responsible for 11% of the global energy-
related carbon emissions (Abergel et al., 2017). In order to reach the international goals
of the Paris Agreement and reduce the environmental impacts, Green House Gas (GHG)
emissions of new buildings must be significantly reduced. To assess the Global Warming
Potential (GWP) of buildings, life cycle assessment (LCA) is an established method for
calculating environmental indicators along the whole life cycle. At its core, it is based on
environmental impact datasets for individual materials, typically provided through dedi-
cated databases. During the design phase, a careful LCA of the different design options is
required in order to identify the main drivers and optimize the building design accordingly.
However, in conventional projects in today’s practice, the main focus is still on improving
the economic performance of buildings, while environmental qualities are usually not
prioritized or even considered.

Until recently, LCA has mainly been calculated manually, which is time-consuming, espe-
cially when it comes to quantifying the building elements and matching them to environ-
mental datasets, which have a different classification system and ontology. BIM combines
geometry and semantics and thus facilitates deriving consistent and automated quantity
take-off of the relevant elements for calculating whole building LCA. Using and enriching
the semantic information of e.g., materials has great potential to completely automate the
calculation of whole building LCA (Safari & AzariJafari, 2021).

In early design stages, significant decisions are taken that have a major impact on the
carbon footprint of the building to be realized. This is a primary reason for conducting
a holistic multi-criteria variant analysis in the early design stages. At the same time,
the early design stages are characterized by a high degree of uncertainty due to the
lack of information and not-yet-taken decisions, making a holistic and consistent LCA for
supporting design decisions and optimizing performance challenging (Schneider-Marin
et al., 2020). In more detalil, in the rough BIM models of early design stages, materials are
typically defined by material groups rather than specific types, which allows a wide range
of possibilities for each material group. Furthermore, several materials or element layers
might not yet be defined, which gives the opportunity to explore and compare different
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design options. While several approaches for BIM-LCA integration exist, they are limited
in implementing a fully automated workflow with open BIM models, in particular when it
comes to early design phases (Forth et al., 2019). A major challenge lies in the fact that
imprecise type and property information in BIM models hinder a seamless processing for
LCA applications.

To overcome this issue of vague model information in early design phases resulting in labor-
intensive processes with additional manual input, we introduce the concept of "semantic
healing" for automatically calculating embodied greenhouse gas (GHG) emissions. In
doing so, we propose a novel automated method of matching LCA and BIM data on the
element level by using Natural Language Processing (NLP). This gap of a fully automated
matching process has not been filled yet (Safari & AzariJafari, 2021), while research on
NLP has recently advanced significantly and has strong potential for solving problems in
the AEC industry (Locatelli et al., 2021).

This paper focuses on supporting decision-making in the early design phases. To sup-
port the decision-making in these phases, decisions for more detailed phases are also
anticipated and analyzed. Based on the current approaches in the literature, the findings
are considered to further extend the approach in the sense of a holistic analysis that is
adaptable for further sustainability criteria.

The main contribution of this paper to the previously described problem involves a novel
approach for semantically healing conceptual BIM models to assist the calculation of a
holistic LCA, informing design decisions to detail the design further. The model healing
process is conducted by enriching all necessary information to the model by automatically
matching elements from BIM models to a knowledge database (discussed in detail in
section 4) using Natural Language Processing (NLP).

In summary, this paper aims to answer the following research question: Is automated
semantic healing of BIM models possible in a way that allows assigning correct element
types and materials to the respective model elements such that a reliable LCA can be
calculated?

It is structured as follows: Section 2 provides the relevant background in the field of
BIM, classification systems, NLP, and its application with BIM. Afterwards, Section 3.3
focuses on the state of the art of BIM-based LCA and discusses existing literature reviews,
highlighting their limitations. Section 3.4 presents the methodology for enriching BIM
models for LCA and proposes a new methodology for the semantic model healing process.
The proposed methodology is then evaluated in Section 3.5 through different real-world
case studies, where the potential, as well as limitations, are highlighted. Finally, Section
3.6 presents our conclusions and recommendations for future research.
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3.2 Background

This Section describes multiple fundamental topics about BIM, level of development,
classification systems, and Natural Language Processing (NLP), providing the necessary
background for the following Sections.

3.2.1 Level of Development (LOD) and Building Development Level (BDL)

As building design is a progressive process in which initially vague information is further
detailed, also BIM models gain more accuracy and reliability along the modeling process.
Level of Development (LOD) represents the degree of completion, maturity, or elaboration
(Abualdenien et al., 2021). While the BIMforum, the US chapter of buildingSMART
International, has defined individual LOD (BIM Forum, 2020), they have not been adopted
as an international standard, yet. Defined in the European standardization effort EN
17412, Level of Information Needs (LOIN) describes similar content like LOD, such as
geometric and alphanumerical information (Abualdenien et al., 2021), but specifies a
particular use-case and milestone it is supposed to be applied for.

In Germany, LOD is known as the aggregation of Level of Geometry (LOG), specifying
the geometric detailing, and LOI, representing the extent of alphanumerical information.
Borrmann et al. discuss that Level of Information (LOI) is highly dependant on the project
and client, so they can not be generalized. In BIM practice, LOI is often described
with "Type-and-attribute tables" (TAT) specifying object types and attributes (Borrmann
et al., 2021). Additionally, buildingSMART International proposed the Information Delivery
Specifications (IDS). "The main goal of IDS is to provide a simple yet comprehensive way
to author and validate nongeometrical [Information Requirements]", for example specifying
material or classifications (Tomczak et al., 2022).

Abualdenien and Borrmann developed a meta-model approach where multi-LOD data
represent buildings at different design phases (Abualdenien & Borrmann, 2019). Itis based
on the BIMForum’s LOD definitions and introduces a new concept, Building Development
Level (BDL). While LOD defines specific components, the BDL concept defines the maturity
of the overall building with multiple LODs for each component.

LOIs and LOGs are of great importance for BIM-based LCA as they provide a means
to specify the required information, or in turn, allow to take into account the vagueness
and uncertainty of information provided in early design phases. Since less information is
available in early design phases, generic datasets are used and missing material layers
have to be assumed. During construction, on the other hand, product-specific data sets
can be included in the calculation depending on the components used.
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3.2.2 Open BIM and open formats

The design and construction of a building is a collaborative process that incorporates
multiple disciplines. Each expert, such as the architect and structural engineer, uses
different authoring tools and requires specific information to be present in the model to
support a particular type of simulation and analysis. With the increasing specialization
of the stakeholders, the building industry requires a high level of interoperability. The US
National Institute of Standards and Technology (NIST) (GCR, 2004), as well as many
researchers and case studies (Cemesova et al., 2015; Hernandez et al., 2018; Lai &
Deng, 2018) have confirmed the difficulties and high annual costs resulting from the lack
of interoperability between the AEC industry software systems.

The Industry Foundation Classes (IFC) schema (Liebich, 2013) is an open data exchange
format developed and maintained by buildingSMART with the goal of enabling interoper-
ability across the AEC industry. It provides a common data model for lossless geometric
as well as semantic data exchange. IFC is a free vendor-neutral standard and includes a
large set of building information representations, including a variety of different geometry
representations and a large set of semantic objects modeled in a strictly object-oriented
manner.

Since 2009, the exchange format Green Building XML (gbXML) has been established as
a public, non-profit schema (Green Building Foundation, 2021) focusing on exchanging
building information for operational energy simulations. Initially developed by Green
Building Studio and later acquired by Autodesk, it is currently not maintained by an official
standardization body. The extension markup language (XML) schema does not intend to
describe a complete BIM model but represents the relevant building’s environmental and
geometric information. Often, the reduced BIM model is referred to as building energy
model (BEM). The schema provides a container denoted as "campus" for one or several
buildings, each of which has a closed building envelope described by surfaces. The
surfaces have a type specification (e.g., "InteriorWall"), B-Rep geometry, references to
adjacent spaces, which are referenced to zones, and assigned openings.

The gbXML format is used for LCA in early design stages, e.g., using CAALA software,
considering both embodied and operational emissions. Nevertheless, the details about
specific element layers and materials are not represented and therefore, not suitable for
accurately matching environmental datasets on material level.

3.2.3 Classification systems

The classification of elements in BIM models enables the project-wide, uniform structuring
of information in order to be read and used in an uniform and automatic manner. Applying
"a classification system for component types in a digital building information model"
enables all stakeholders "to have a common understanding of the information contained in
the building model and, in conjunction with a system for model development, enables the

39



realization of a high degree of automation for the processes to be operated by them" (VDI
2552 Blatt 9, 2022).

In the international context, the classification systems Omniclass and Uniclass are among
the most widespread. In Germany, due to the lack of a full-scale classification system,
the most common classification systems are DIN 276 for cost groups (DIN 276, 2018)
and DIN 277 for room usage types(DIN 277, 2021). According to German standards for
calculating LCA, e.qg., certification systems like DGNB or BNB, the classification system of
the cost groups of DIN 276 is used (BMI, 2015; DGNB GmbH, 2020).

For the LCA context, DIN V 18599, focusing on the Energetic evaluation of buildings ', has
been recently established (DIN EN 15643-2, 2021).

For LCA of buildings, a uniform classification of building elements defines the system
boundary, especially for the manufacturing phase (A1-A3) as well as the end of life cycle
(C3-C4) and module D. Thus, it is part of the "target and investigation framework" according
to DIN EN ISO 14040 (DIN EN ISO 14040, 2021). In German certification systems,
according to Deutsches Gutesiegel Nachhaltiges Bauen (DGNB) and Bewertungssystem
Nachhaltiges Bauen fir Bundesgeb&ude (BNB), the classification of cost groups is carried
out according to DIN 276 (DIN 276, 2018), taking into account the building elements for
the cost groups KG 300 "Building - Structures" (see A.1). The system boundary for the
operational phase, in particular the energy consumption during operation (B6), on the
other hand, refers to DIN 18960, which however is not relevant to this paper. For the
classification of relevant areas, on the other hand, the net room area (NRF) according to
DIN 277 is used (DIN 277, 2021).

3.2.4 Natural language processing (NLP)

Natural language processing allows computers to analyze and "understand" text created
by human authors. At its core, natural text is transformed into a computer-readable
representation through various techniques, including tokenization, lemmatization, and
vectorization. Those techniques convert each word to its original/dictionary form and
represent each word with a numerical value, describing the semantic similarity through
their distance (e.g., the word window has a smaller distance to door than to a tree).
Semantic similarity is a key feature of the matching process described in this paper.

As in other domains, artificial intelligence revolutionized its advancement. In this regard,
long short-term memory (LSTM) and recurrent neural networks (RNN) dominated NLP as
they learn bidirectional links between the vector representations of words and sentences to
capture the overall meaning. Recently, those networks were outperformed by transformer-
based models. One example of a pretrained deep bidirectional transformers is BERT
by Google (Devlin et al., 2018). The structure of transformers consists of an encoder
and a decoder, and transformer-based models themselves consist of multiple layers of

'Full title: Energetic evaluation of buildings in the context of the energy consumption in the use phase (B6)
relevant for the life cycle assessment in accordance with DIN EN 15643-2
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transformers (Vaswani et al., 2017). This enables learning the contextual representations
of input data.

3.2.5 NLP application in AEC

Locatelli et al. investigated in their scientometric analysis the synergies between NLP
and BIM (Locatelli et al., 2021). Beside the field of Automatic Compliance Checking,
they also identified Information Retrieval from BIM models and Information Enrichment
of BIM objects as a further fields of relevant application. Wang et al. developed a query-
answering (QA) system for BIM information extraction (IE) by using NLP and achieved
high accuracy scores in their evaluation (N. Wang et al., 2022). Xie et al. introduced a
method for matching real-world facilities to BIM using NLP for word segmentation and
keyword extraction by adopting the LTP word segmentation module (Xie et al., 2019). For
the matching method itself, matching matrices based on HiTree paths are evaluated using
the highest degree of matching with the natural language feature vector. Reitschmidt
proposed an matching method of IFC materials to the LCA database Okobaudat based
on tokenization of material names and a distinct matching or via Levenshtein distance
(Reitschmidt, 2015). Nevertheless, automated matching of LCA and IFC data on the
element level using NLP has not been developed yet (Safari & Azaridafari, 2021). Finally,
Zahedi et al. proposed an NLP approach for documenting design decisions by searching
building codes and request for proposal documents (Zahedi et al., 2022).

3.3 State of the Art of BIM-based Life Cycle Assessment (LCA)

This Section focuses on a literature review of the current approaches of BIM-based Life
Cycle Assessment (LCA). First, existing literature reviews are compared. Based on this,
a structured literature analysis is conducted by analyzing each publication according to
several topics. Finally, the findings and limits of conventional and current BIM-based LCA
methodologies are shown.

3.3.1 Existing literature reviews

Before presenting the literature analysis, existing ones are analyzed to prevent repeti-
tion. The focus is primarily on embodied emissions and energy rather than operational
emissions or energy. Nevertheless, the aspect of multi-criteria approaches will be investi-
gated too, for example, a combination of embodied and operational energy with life-cycle
costs (LCC). Analyzing eleven publications from 2013 to 2015, the literature review of
the BIM-based LCA method by Soust-Verdaguer et al. differentiates between Data input
(BIM-LOD, LCA goal & scope, stages, and inventory), Data analysis (BIM software, Energy
Consumption Calculation, LCA tool) and Outputs and communication of results (Environ-
mental impact indicators, sensitivity analysis, embodied and operational CO2 emissions)
(Soust-Verdaguer et al., 2017).
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In 2019, Wastiels and Decuypere classified existing approaches and identified five different
strategies for BIM-LCA integration (Wastiels & Decuypere, 2019). Later literature reviews
base their findings on these five strategies, which contain Bill of Quantities (BOW) export,
IFC import of surfaces, BIM viewer for linking LCA profiles, LCA plugin for BIM software,
and LCA-enriched BIM objects.

Potré Obrecht et al. classified in their literature review all analyzed methods according to
the five strategies by Wastiels and Decuypere (Potr¢ Obrecht et al., 2020). In the second
step, they differentiated between manual, semi-automated, and automated approaches.
In 2020, several other literature reviews were published focusing on different aspects.
Roberts et al. identified in their literature review about LCA in building design process
three different trends: integration of LCA into BIM, combining LCA and LCC, and using
parametric approaches (Roberts et al., 2020).

Cavalliere et al. concentrate on the capabilities of the combination of BIM and parametric-
based tools, analyzing 25 different publications between 2013 and 2018 (Cavalliere et al.,
2020). Most of the analyzed methods focused on BIM and only a few had a parametric
approach included. Hollberg and Ruth were the first ones to develop a parametric-based
LCA (PLCA) in 2016, using Visual Programming Language (VPL) but no BIM integration
(Hollberg, 2016). Llatas et al. focus in their systematic literature review on Life Cycle
Sustainability Assessment (LCSA) and add, besides LCA and LCC, also sLCA in their
investigation approach (Llatas et al., 2020). In total, they reviewed 36 papers about
BIM-LCSA integration, but only six methods included LCA and LCC and none sLCA. Tam
et al. analyzed in their critical review on BIM and LCA 61 articles by using content analysis
method (Tam et al., 2022). Furthermore, they identified several unaddressed issues, for
example, the lack of a standardized structure between BIM and LCA data.

3.3.2 Literature analysis

Based on the findings of existing literature reviews in the field of BIM-based LCA, a
systematic literature analysis was conducted. After reviewing more than 60 publications in
this field, published in 2018-2022, 25 were selected and analyzed. In the following, the
main findings are described. The main focus of several approaches is on detailed design
stages such as (Eleftheriadis et al., 2018; Santos et al., 2019; Thei3en, Drzymalla, et al.,
2020). However, optimization of the building design can be achieved in early design stages,
when information is still uncertain. Therefore, Rezaei et al. are suggesting a workflow that
is based on Autodesk Revit but doesn’t include an optimization process (Rezaei et al.,
2019). Only a few methodologies implemented uncertainties in their approach (Cavalliere,
Hollberg, et al., 2019; Eleftheriadis et al., 2018; Rezaei et al., 2019).

As previously shown, Wastiels and Decuypere classified five different integration strategies
(Wastiels & Decuypere, 2019). The two mainly implemented approaches of the analyzed
publications are the one which uses authoring tools for getting the Bill of Quantities (BoQ),
which was analyzed by (Potr¢ Obrecht et al., 2020). The second primary strategy is
using BIM objects enriched with property sets (Pset) (Eleftheriadis et al., 2018; Llatas
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et al., 2022; Santos et al., 2020; Thei3en, Hoper, et al., 2020). A new approach by Lee
et al. suggests BIM templates for authoring tools to avoid data loss due to exchange
formats (Lee, 2021). Only a few of the analyzed publications use existing LCA Plugins
for Autodesk Revit, such as Tally, eToolLC, or One Click LCA (Atik et al., 2020; Carvalho
et al., 2020; Nilsen & Bohne, 2019; Veselka et al., 2020; X. Yang et al., 2018). As most
of the approaches use the BIM model only for downstreaming LCA-related information,
only one includes a computer-readable feedback communication process of the calculated
results back to the BIM model (Horn et al., 2020).

Most of the analyzed approaches used the open BIM format, mainly IFC, such as (Figl
et al., 2019; Horn et al., 2020; Llatas et al., 2022; Santos et al., 2019; TheiBen, Drzymalla,
et al., 2020). Nevertheless, another open BIM exchange format specialized in energy
simulation is gbXML (Green Building Extensible Markup Language), which was used by
(X. Yang et al., 2018). Other approaches use the closed BIM approach with software tools
like Autodesk Revit (Abu-Ghaida & Kamari, 2021; Figl et al., 2019; Nizam et al., 2018)
or additionally in combination with the VPL tool Autodesk Dynamo (Bueno et al., 2018;
Hollberg et al., 2020; Kiamili et al., 2020; Naneva et al., 2020; Réck et al., 2018a). Another
used VPL tool is McNeel’s Rhino and Grasshopper, which was used by (Cavalliere, Habert,
et al., 2019; Hollberg & Ruth, 2016; Lobaccaro et al., 2018), which is not considered as a
BIM tool just as little as Trimble’s Sketchup, used by (Meex et al., 2018).

Although this publication focuses on LCA, the framework allows it to be extended to
multiple criteria for design optimization. Only a few analyzed approaches show a few
more criteria, which can be included in their workflows. While Kiamili et al. focus only on
embodied energy of HVAC (heating, ventilation, air conditioning) systems (Kiamili et al.,
2020), other approaches include both the embodied emissions of building construction
and HVAC (Cavalliere, Hollberg, et al., 2019; TheiBen, Drzymalla, et al., 2020). In a next
step, further publications even include operational energy besides embodied energy (Di
Bari et al., 2019; Figl et al., 2019; X. Yang et al., 2018). Besides LCA, Life Cycle Costs
(LCC) and social Life Cycle Assessments (sLCA) are further relevant criteria to consider
in the field of LCSA. A few approaches include both LCA and LCC (Abu-Ghaida & Kamari,
2021; Eleftheriadis et al., 2018; Figl et al., 2019; Santos et al., 2019). Llatas et al. propose
the only approach, which considers all three criteria of LCSA, while the main focus of
sLCA is on working hours (Llatas et al., 2022). Nevertheless, there is no methodology that
integrates embodied emissions of building construction and HVAC, as well as operational
emissions in early design phases.

As a functional unit of the approaches, most of the analyzed publications focus on the
whole building. Global Warming Potential (GWP) was considered by all approaches,
while other publications also considered further environmental impact categories such as
acidification potential (AP), eutrophication potential (EP), ozone depletion potential (ODP),
and photochemical creation potential (POCP) (Atik et al., 2020; Meex et al., 2018; Palumbo
et al., 2020; Santos et al., 2020; Thei3en, Hoper, et al., 2020). Depending on the country
of the publication, several different international Life Cycle Inventory (LCl) databases
were used, such as German Okobaudat, or ecoinvent and KBOB from Switzerland, and
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sometimes even product-specific Environmental Product Declarations (EPD). Palumbo
et al. investigated the challenge of using EPDs in early design stages to obtain accurate
LCA results (Palumbo et al., 2020).

As a result of the literature analysis, there is great potential for including LCA calculations
in an optimization process in early design stages using open BIM models. Furthermore,
most of the analyzed publications focused only on the criterium of LCA, extending the
focus on multiple criteria such as LCC is also becoming more relevant. Nevertheless, the
process of matching LCA and IFC data on element and material levels is still manual, and
an automated approach is not developed or solved yet.

3.3.3 Limits of conventional BIM-based LCA calculation

As the findings of the literature review showed, there are still challenges and opportunities
in the field of BIM-LCA integration. In this Section, the limits of conventional BIM-based
LCA approaches will be critically investigated using a case study.

Safari and AzariJafari stress in their publication out that a major focus will be in early design
stages, considering LODs and uncertainties in future approaches (Safari & AzariJafari,
2021). Zimmermann et al. showed in their investigation of industry practice and needs
different challenges, such as manual workflows, matching model data with LCA data,
quality in models, and many more (Zimmermann et al., 2021).

Nevertheless, in conventional projects in practice, the main focus is still on the economic
performance of buildings, while environmental qualities are not widely spread yet. This is
the reason to approach the holistic multi-criteria variant analysis, in the early design stages,
based on existing approaches of BIM-integration strategies for LCA. Current approaches
still have limits of fully automated workflow with open BIM models (Forth et al., 2019).
Scherz et al. propose in their methodology of hierarchical reference-based know-why
models design support for several sustainability criteria focusing on building envelopes
(Scherz et al., 2022). Nevertheless, BIM integration is only envisioned in their future work.

The main scope of this paper focuses on the early design phases. To support the decision-
making at these phases, detailing decisions from more detailed phases are additionally
analyzed. Based on the current approaches in the literature analysis, the findings are
considered to further extend the approach in the sense of a holistic analysis that is
adaptable for further criteria, for example, LCC or similar.

3.4 Methodology for semantic model healing for early BIM
models for LCA calculation

The aim of this paper is to develop a framework for calculating ranges of embodied emis-
sions of building designs based on element-specific design variants to support decision-
making in early design phases. The methodological approach includes open BIM data
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exchange in early design stages, environmental impacts of construction, operation, and
End-of-Life phase of buildings), as well as an automated matching of relevant informa-
tion from the model. Therefore a robust implementation should take different modeling
approaches (model authors & software products) into consideration. Furthermore, the
framework provides flexibility to add economic impact or individual cost benchmarks and
the calculation of further criteria.

As shown in the previous Section 3.3.3, the BIM-integration of LCA lacks an approach for
early design stages, which fully automatically matches all information from BIM models to
LCA datasets and considers uncertainties and missing information in early design stages.
Therefore, the proposed methodology focuses on the following key features:

- Semantic model healing by using an LCA knowledge database (LKdb)

- Automated matching of IFC elements to the elements of LKdb using pretrained NLP
models

- Calculation of LCA result ranges according to the early design uncertainties

The details of the method are described in the following Sections. First, the general
framework is introduced, followed by more detailed descriptions of each part, such as
semantic model healing, LKdb, and the matching method.

3.4.1 Proposed methodology

To perform multi-criteria analyses using BIM, engineers need a set of information to
be present in the BIM model. Usually, in early design stages, some of the required
information is uncertain or even completely missing, which has a significant influence on
analysis or simulation results. For this reason, the concept of a knowledge database is
introduced, which provides all relevant information and default values in the case that
relevant information is missing.

As this paper focuses on embodied GHG emissions, the database is filled with LCA-
relevant information. Nevertheless, the database can be easily extended to cover other
criteria as well. In case of missing or uncertain information, such as elements or properties,
the LKdb provides a set of possible options or ranges of values. Furthermore, several
design variants can be explored in these cases, and their performances can be evaluated
according to the influence of the incorporated uncertainties on the environmental qualities.

In the proposed methodology, design decisions are made by selecting one of these variants.
To implement the conducted selections in the design, these are communicated back to
the BIM authoring software. The proposed methodology follows the open BIM approach
to support a wide range of authoring tools. Therefore, it uses Industry Foundation Class
(IFC) and BIM Collaboration Format (BCF) as exchange data formats.
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Figure 3.1: General Framework of NLP-based semantic model healing of early BIM models
for LCA calculation

Figure 3.1 presents the different steps of the proposed methodology, which was briefly
described above. In the first step (1), the BIM model is exported from the authoring tool as
an IFC file. In the next step (2), the IFC data are pre-processed for the following analyses.
This is split into the Quantity Take-Off (2.a) and the NLP-based matching method (2.b),
which is explained in more detail in the upcoming Section 3.4.1. The Quantity Take-
Off (QTo) contains information about the element type, the classification, the sum of all
type-specific element areas, the area unit, the amount of type-specific elements, the
element-specific materials, and the thicknesses of the material layers. In terms of the
multi-criteria analyses to be performed in the next step, the focus is on the LCA calculation
in this publication (3.a). The final step consists of visualizing the results (4.a), supporting
the selection process, and communicating the design decisions and changes back to the
BIM author (4.b). In this regard, this publication concentrates on the visualization of the
LCA result ranges, including relevant benchmarks.

Semantic model healing

The semantic model healing process is performed to add all relevant but missing infor-
mation for the model-based LCA calculation. The first step in this process is to collect
all available and relevant information from the IFC model. Based on this information, the
second step focuses on how existing techniques of NLP help to match IFC elements to
those of a knowledge database. Different strategies are used for the NLP-based healing
process to increase the performance of the matching element from an "imperfect” BIM
model to this knowledge database. In the last step, all missing element information is
added by those of the matched knowledge database. The knowledge database contains
all missing information for LCA and has different levels of detail for a range of several
potential design variants of elements and materials, including their dependencies. The
semantic model healing process is performed when the incomplete IFC element data
are matched to the most similar element in the LCA knowledge database (LKdb) and
afterwards enriched by all missing element information provided by the LKdb.
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Figure 3.2: UML diagram of the proposed LCA Knowledge database with different hierar-
chies, such as elements, material categories and material options, and external databases
such as BNB life cycle (BBSR, 2017) or Okobaudat (BBSR, 2021)

3.4.2 LCA knowledge database (LKdb)

The LCA knowledge database, based on elements, layers, and materials, will contain all
information that is relevant for the holistic calculation of different criteria and is typically not
provided in the IFC model. This database is similar to the recently published "EarlyData
knowledge base" by Schneider-Marin et al., which has a similar purpose of calculating
reliable LCA results in early design stages considering uncertainties (Schneider-Marin et
al., 2022). Nevertheless, the focus of their database was not focusing on using it for testing
a robust matching approach. This LCA knowledge database is linked with different external
databases, for example, databases for environmental criteria, such as Oekobaudat (BBSR,
2022) (Figure 3.2). The main aim of the LKdb is to provide all necessary input information
for a holistic and correct LCA calculation and analysis, which is typically missing in early
design phases. Another aim is to combine several external databases with different input
information on different levels of information. International databases can be added to the
database using this methodology. Material and product-specific Environmental Product
Declarations (EPD) can be linked, too.

The database provides additional information on different levels, which are needed for
a sufficient LCA calculation, such as the lifespan of an element, End-of-Life scenarios if
missing in the original external dataset, or densities. Due to the German LCA classification
standard according to cost groups, the database itself is structured similarly to the classifi-
cation system of DIN 276 on the third level but provides a material-specific level of different
element layers. Other criteria information like cost values or U-values (if missing in the
model) for calculating operational energy can be stored in the database as well but are out
of scope in this publication. This ensures that a change in the variants leads to a change
in all criteria calculations and shows the complex dependencies of the multi-criteria design
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decision process. A first extension, including LCC, was tested recently (Lammers & Forth,
2022).

The general structure of the proposed LCA LKdb consists of three different levels: element,
material category, and material option. As the LCI database, Okobaudat was chosen
(BBSR, 2021). The main reason for this decision is that the selected case studies are
located in Germany. Thus the BIM models use German terminology for components and
properties. Furthermore, Okobaudat is the official LCI database for German certification
systems and consists of more than 1400 datasets specifically for building products.

Every single dataset of Okobaudat has as keys the Universally Unique Identifier (UUID)
and the relevant life cycle modules (A1-A3, C3, C4, D). All datasets from Okobaudat consist
of several environmental impact categories, such as Global Warming Potential (GWP),
Acidification Potential (AP), Eutrophication Potential (EP), Ozone Depletion Potential
(ODP), Photochemical Creation Potential (POCP), Primary Energy Renewable (PERE)
and many more. Nevertheless, the quality of some datasets is not sufficient for a holistic
LCA, as there are some End-of-Life scenarios missing. Therefore, generic End-of-Life
(EoL) datasets from Okobaudat have to be manually matched to those datasets, which
are lacking this information. For this reason, up to two UUIDs are linked to the material
option dataset of the LKdb: one for the production phases and, if necessary, one for
the End-of-Life scenario. Stenzel conducted in her master thesis this manual mapping
as well as a classification of all UUID according to German cost groups using DIN 276
(Stenzel, 2020). This information is used for the prototypical implementation of the LKdb.
All material options have a name and classification as their keys, which is derived from
the German name in Okobaudat. Further entries are the classification, UUID, included
Modules, and the encoded NLP vectors of the name (spans and tokens), which are stored
because of calculation performance reasons.

According to the structure of Okobaudat, every material is classified according to specific
material categories. As there are three different levels of categories, only the most specific
one is used for material classification in the LKdb. Every material category is mapped
to potential cost groups of the German classification system (DIN 276, 2018). This is
necessary to map the service life of building components on this level, according to (BBSR,
2017). This external input is named "BNB life cycle" and contains an ID, the lifespan in
years, the replacement rate according to 50-year buildings life, and an element or material
name according to its own classification. The key for material categories is the name
and the classification. Additional information is the encoded NLP vectors of the material
category name (spans and tokens) due to calculation performance reasons.

For setting up element layers, material options and categories are used in the next level.
Elements themselves can consist of one or multiple element layers. Both elements and
element layers have a default maximum and minimum thickness. The material layer
corresponds to the third level of the German cost group system (DIN 276, 2018). As the
material layer can consist of composite materials, different mix ratios need to be defined.
For monolithic layers, the ratio is 100%. As an example of composite materials in one
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element layer, reinforced concrete consists of different materials, such as concrete and
reinforcement steel. Every element layer has a unique material position, which describes
the order of the material in the specific element. For the element levels, every entry gets a
unique ID as a key. Due to calculation performance reasons and also for the elements, the
encoded NLP vectors of the element names (spans & tokens) are stored in the LKdb.

All entries for elements are inserted due to common domain knowledge. The most typical
construction types were considered and modeled using the proposed schema. Due to the
versatility of constructions, the database is continuously updated and has no claim to be
ever completed.

3.4.3 Matching method

In later design stages, conventional methods rely on manually matching each IFC ma-
terial to a UUID of external databases and store this information as a Pset attribute in
"PSetEnvironmentallmpactindicators" and "PSetEnvironmentallmpactValues" according to
(BuildingSMART International Limited, 2020) or self-defined Psets, such as "Plca_Lca"
according to (TheiBen, Drzymalla, et al., 2020). To avoid the laborious manual work of
matching elements and materials of the BIM models to the related ones in the LKdb, an
automated matching method is proposed in this paper. Another approach by Reitschmidt
also follows automated matching on material level (Reitschmidt, 2015). In contrast, in
early design stages, information about the materials is missing or incomplete. For this
reason, the proposed method is matching on an element-level, so this vague or missing
information about material layers can be added using the LKdb.

The main challenge of this method is to automatically and correctly match IFC and LKdb
elements and materials so that calculation and analysis results are also reliable. In early
design stages, materials are often defined in a more general way and not as specific as
in LCA databases, e.g., "concrete" rather than "concrete C20/25". Sometimes, for some
elements, material information is completely missing, while in the element naming, some
material information is included, for example "brick wall". Furthermore, the proposed
methodology aims to be a robust approach, which also considers poor model quality due
to multiple ways of modeling BIM models and exporting them as IFC files. As the structure
and nomenclature of elements and materials in IFC and the used LCI database Okobaudat
differ, the goal is to find the semantically most similar pairs on material and element level.

Figure 3.3 shows the proposed matching method, which is divided into three steps:

1. Filtering of element classification
2. Similarity analysis using NLP

3. Element selection

First, IFC elements are filtered according to their classification type. This classification,
according to the German cost group schema (DIN 276, 2018), is an exchange requirement
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Figure 3.3: General steps for an automated method of matching elements of IFC models
to those of the LCA knowledge database (LKdb)

(ER) and is stored as "lfcRelAssociatesClassification”. If the element does not comply with
the ER and no classification is available, the method can also classify the IFC element
using its "lIfcProduct” class types (e.g., IfcWall, IfcColumn, IfcSlab, etc.) and properties
(e.g., IsExternal, IsLoadBearing, etc.) according to (C. Richter & Liedtke, 2021).

In the second step, every IFC element and its properties are analyzed and semantically
compared according to its similarity with the filtered element variants in the LKdb. Not only
the element expressions but also the material expression is analyzed according to the NLP
technique used. In order to measure semantic similarity, every expression needs to be
converted from text to a vector representation. In this case, a vector is a list of numerical
values, and the combination of them represents the overall meaning (Wilbur & Sirotkin,
1992). Afterwards, the similarity between two different vectors A and B can be calculated
using the cosine similarity, while n is the dimension of the vector:

A;B;
cosine — similarity := cos( Liz1 (3.1)
\/Zz 1 A2\/Zz 1 B2
In the following Sections, these three main steps of the matching method are explained in
more detail, as shown in Figure 3.4. The choice of NLP technique will be investigated in
Section 3.5.2.

Element filtering

The starting point is iterating through each element type from the IFC model. Each
element type consists of an element name, its classification according to DIN 276, and its
material name. Based on the classification, a list of LKdb elements is filtered to compare
similarities with the IFC element. For performing a robust matching method, the elements
are compared on material and on element levels. Therefore, the IFC element name is
compared to the filtered list of LKdb elements. And furthermore, the IFC material is
compared to the material categories and material options which are contained in the
filtered element list. The differentiation between material category and material options is
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Figure 3.4: Detailed workflow for matching IFC elements to LKdb elements using Natural
Language Processing (using BERT language model) and cosine similarity on different
levels of information (element, material category, and material option)

required due to the fact that the matching method considers different LOls for the naming
of materials (see Section 3.4.3).

Similarity calculation

In the calculation of semantic similarities, three couples of IFC and LKdb are considered:
on element level, material level comparing with the material category, and comparing with
the material option. Each of these three couples is split into calculating the whole span
and all tokens. To this end, the word encoding or vectorization is conducted for twelve
different words per every iteration step, while the tokens themselves are also iterated. For
each token set, only the maximum token is considered in the following selection process.
The calculation of the cosine similarity is conducted six times per iteration step and is
stored in a list for the following selection process:

- element tokens
- element spans

- material category tokens
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- material category spans
- material option tokens

- material option spans

After the calculation of all cosine similarities, the most similar element and material are
identified. The maximum similarity of all element tokens and element spans are compared
for the most similar element. Accordingly, the maximum similarity of all material category
tokens and spans, as well as material option tokens and spans, are derived for the most
similar material.

Element selection

In the next step, the final element selection is performed based on the previously derived
most similar element and material. Therefore, the two cosine similarities of the most
similar element and most similar material are compared. If the similarity of the material is
higher, the corresponding element of the material is searched and selected. In case the
similarity of the element outperforms the one of the material, this element is selected if its
cosine similarity is higher than a threshold. As a threshold, 80% was set, according to the
material similarity analyses using the BERT model in Section 3.5.2. If this threshold is not
reached, the default element of the classification group is chosen, as the identified element
similarity is too low to ensure the quality of this matching method. For IFC elements with
multiple material layers, the steps of the previously explained workflow are derived for
every material layer. Nevertheless, in the end, the different results have to identify only
one selected element. For this, the different elements of each layer are counted, and
their cosine similarities are summed up. Finally, the element with the highest summed-up
cosine similarity is selected as the overall multi-layer matched element.

3.4.4 LCA calculation of LKdb elements

This paper focuses exclusively on embodied emissions. For this reason, for the LCA
calculation, the operational part B6 is omitted. This study does not focus on different
environmental impact potentials but on the reliability of the calculation process. The system
boundaries of the LCA include the life cycle phases production (A1-A3), maintenance and
replacement (B4), and End-of-Life (C3, C4, D).

Generally, the Environmental Impact Potential (£ P,.,) of the construction phase (c) for
each element (e) is the sum of the production phase (P.), recovery and disposal phase
(D.), and the maintenance and replacement (M.) in a reference period (¢p). As in the LKdb,
different material options for one material layer exist. The element-specific environmental
impact potential can consist of a range of results rather than a single value. In the following,
the different steps are described for calculating the Environmental Impact Potential of one
specific option set (o). The final LCA result ranges are derived by the different options and
can be clustered on element or cost group level or determined for the whole building.
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The maintenance and replacement M., of each element are calculated by the frequency of
replacement (7, ¢placement,e) @nd the sum of the production P, and recovery and disposal
phase D, , while the frequency of replacement depends on the ratio of the reference
period tp and the service life of the element (¢.).

Meo = Nreplacement,e * (Peo + Deo) (33)

35)
Nyreplacement,e = roundup(?) -1 (34)
e

The production P, of each element is the sum of the product of each layer-specific dataset
for the production phase (EIP;‘D};A?’) and element-specific quantities (f., , ) over each
element layer (i) of the element-specific maximum amount of layers (m.,). The recovery
and disposal D., is, accordingly, just taking the datasets for different life cycle phases into
account (C3-C4, D).

Mey

Po,=> EIP2 % f, o (3.5)
=0

Me,

D., = ZEIPgi—C‘LD * fon (3.6)
=0

The datasets EIPA'~43 or EIPS* ““" are stored in the LKdb. Depending on the
functional unit (z), the quantity of each dataset can either be area «., length I, volume
depending on the layer-specific thickness d., ;, mass depending on the material-specific
density p,;, or amount s..

few-,a = Q¢ (37)
fe,,,’i,l = le (38)
fko,iﬂ} = Qe * deo,i (3.9)
Jeouim = e * de, ; * poyi (3.10)
Jeois = Se (3.11)
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Case study | Net floor area | Total amount of | Total surface area of
number (sgm) elements all elements (sgqm)

1 ca. 11.870 2.110 68.949,39

2 ca. 1.950 307 5.823,82

3 ca. 35.300 13.966 85.193,77

4 ca. 11.390 7.144 118.155,97

5 ca. 8.710 5.822 117.562,25

Table 3.1: Information about the five case studies considering net floor area, total amount
of elements, and total surface area of all elements

Depending on the level of the matching and available attributes of the IFC elements,
different quantities can be used for this calculation step. The total area, length, and
amount of all IFC elements of one specific object type are always derived by the Quantity
Takeoff. If no material information is available in the IFC element and the matching is
performed on the element level, the default quantities, such as thicknesses and densities,
from the LKdb are used. If the matched element is based on most similar materials, the
material layer information of the IFC element is used for the LCA calculation. This is
also valid if, for a multi-layer element, only a few materials were identified in the matched
element. For these matched materials, the material layer thicknesses of the IFC element
are used, while for the missing ones, the default values are used according to LKdb. This
selection ensures that all available and relevant information of the IFC model is used
for LCA calculation. The LKdb provides all geometric and semantic information of the
material layers, which are not modeled in the IFC model but are crucial for a holistic LCA
calculation.

3.5 Evaluation and results

In this Section, we first briefly introduce five case studies, which are used to evaluate the
proposed methodology. In the first evaluation, the best-performing language model is
identified by testing three different models (GermaNet, spaCy, BERT) using the manually
matched couples (IFC-LKdb) of case study 1. In the following Subsection, the whole
element matching workflow is evaluated on all five case studies. Case study 2 is used
for evaluating the whole procedure, including the LCA calculation using Global Warming
Potential (GWP) as environmental impact category. Finally, we discuss the limitations of
the proposed methodology based on the evaluations.

3.5.1 Case studies

To validate the proposed matching method, five case studies from real-world projects
were selected, as shown in Figure 3.5 and Table 3.1. They are all office buildings, so
the performance of the proposed approach is comparable but from different modelers
and designers. Nevertheless, the quality of material and element naming, as well as the
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Figure 3.5: Selected case studies for validating the proposed matching method (Picture of
case study 1: (“Baustart fiir neues Siemens Technology Center in Garching”, 2022), case
study 3 (Siemens Deutschland, 2022)

modeled BDL and classification, differ in all five case studies and need to be taken into
account in the following analysis.

In Figure 3.6, the element distributions of the 2nd and 3rd levels of the German classi-
fication system according to DIN 276 are shown. Case studies 2, 4 and 5 do not have
elements in classes 320 (foundations) and 360 (roofs).

3.5.2 Evaluation of different NLP techniques for material matching

Following this, this publication investigates multiple NLP techniques and evaluates the
performance of state-of-the-art deep learning models such as GermaNet, SpaCy, or BERT.
They will be introduced in the following Sections and are the basis for the previously
introduced matching method. The best-performing NLP technique is applied for the
prototypical implementation and validation.

For comparing the three different NLP techniques and the performance of their workflows
as well as calculating the whole building LCA, case study 1 was chosen, which was
presented in Section 3.5.1. This real-life project guarantees that the material naming is not
optimized but according to current industry standards so that the matching performances
are tested under realistic conditions. In total, the IFC model of case study 1 consists of
2110 individual elements, which are summed up to 133 unique elements from the same
families. Those consists of 59 unique IFC materials, which were manually matched to LCA
material options and categories.

GermaNet

GermaNET is a Lexical-Semantic Net for the German language and is also known as the
German version of the Princeton WordNet (Hamp & Feldweg, 1997; Henrich & Hinirchs,

55



m Case study 1 Case study 2 Case study 3 Case study 4 mCase study 5
70%

60% T
50% +

40% +

30% T
20% +
- 10N
0% - t t t t
320 330 340 350 360

Figure 3.6: Overview of elements’ classification distribution of the five case studies

2010). GermaNet relates German nouns, verbs, and adjectives semantically by grouping
lexical units that express the same concept into synsets and by defining semantic relations
between these synsets (sets of synonyms). It can be represented as a graph whose nodes
are synsets and its edges its semantic relations (Navigli & Martelli, 2019). Therefore,
the similarity is not measured using cosine similarity but graph-related shortest path
similarity, which is equal to the inverse of the shortest path length between two synsets.
There are other path-related similarity analyses, such as Wu-Palmer similarity (Z. Wu &
Palmer, 1994) or Leacock-Chodorow similarity (Leacock & Chodorow, 1998), which are
not considered in this paper.

& identified ®@not identified

1 1 1 1
T

0% 20% 40% 60% 80% 100%

Figure 3.7: Identification rate of material token synsets using GermaNet for case study 1

As the workflow of the GermaNet differs partially from the other two NLP techniques, the
identification rate of the material token’s synsets needs to be analyzed before analyzing the
shortest path similarity. After the tokenization of the IFC material names, material options,
and their related material categories of the LKdb, synsets are identified to calculate the
shortest path similarity. Nevertheless, not for every token set, synsets could be identified.
As shown in Figure 3.7, only for 20.3% of the material category tokens and 40.7% of the
material option tokens, a pair of synsets with the IFC material could be identified.
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Figure 3.8: Shortest path similarity of identified, pre-matched material couples (IFC-LKdb)
using GermaNet for case study 1

Nevertheless, the shortest path similarities of the identified pairs of synsets show promising
results (Figure 3.8). The median of the similarity of material option tokens is 87.1%, and
of the material category tokens, even 98.6%, both with little deviation. However, including
the low synset identification rate of both material options and material categories from the
LKdb, the total similarity are very low and not sufficient for being used in the proposed
matching methodology.

spaCy

SpaCy is a pretrained neural network model and a promising implementation of the state
of the art in the field of NLP (Honnibal & Montani, 2017). lts large German model ("de_-
core_news_lg") includes 500k unique vectors in its corpus and represents every word or
expression with a vector of 300 dimensions. As sources for training data, existing corpi
were used, such as e.g., TiGer Corpus (Brants et al., 2004).

For the results of spaCy and BERT, the vectorization of both tokens and whole spans of
the material options and material categories are compared.

As shown in Figure 3.9, the ranges of the cosine similarity of all different comparisons,
according to Section 3.4.3, differ a lot. Generally, the similarities of IFC materials to the
material option spans have the worst performance, with the median being 13.6%. The
tokenization improves the performance of matching the material performances up to a
median of 60.0%. Also, the spans of the material categories are much better (median at
44.4%). The tokenization of the material categories improves the performance results by up
to 60.3%. As an additional performance result, the maximum similarity of all comparisons
(material option spans and tokens, as well as material category spans and tokens) is
calculated. Its median is 74.4%, but also the quartile ranges improved compared to all
other ranges. In general, the results are not sufficient for further usage in the proposed
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Figure 3.9: Cosine similarity of pre-matched material couples (IFC-LKdb) using spaCy for
case study 1

framework but show a promising strategy for getting the maximum similarity of every
option.

BERT

BERT stands for Bidirectional Encoder Representations from Transformers and was
released by Google in 2018 (Devlin et al., 2018). Transformers-based pretrained models
are currently state of the art and are capable of solving a wide range of tasks as they “can
represent the characteristics of word usage such as syntax and how words are used in
various contexts” (Locatelli et al., 2021). BERT represents each word or expression with a
vector of 768 dimensions, which is significantly higher compared to spaCy and makes the
similarity calculation more time-consuming.

For the NLP technique BERT, the same similarity comparisons using cosine similarity are
calculated as previously shown with spaCy. Figure 3.10 is showing the results as ranges of
the material option spans and tokens and material category spans and tokens according
to the workflow described in Section 3.4.3.

Generally, all result ranges differ much less compared to the results using spaCy. Addition-
ally, all medians are between 79.2% (material category spans) and 87.2% (material option
tokens). Also, the strategy of getting the maximum similarity of every option is improving
the promising general results (median 87.7%). In addition, the minimum values of each
result range show that BERT generally performs much better than spaCy.
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Figure 3.10: Cosine similarity of pre-matched material couples (IFC-LKdb) using BERT for
case study 1

Conclusions regarding NLP-based matching performance

It was possible to apply all three NLP techniques to the case study, although their language
body was not specifically trained for material expressions in the construction industry.
While GermaNET shows promising results in the ranges of shortest path similarity, the
identification rate of synsets is too low. Therefore, using GermaNET for the proposed
matching methodology is not pursued further.

The NLP library spaCy shows that different strategies of calculating the cosine similarity of
material option spans and material category spans are improving the results. Furthermore,
the tokenization of both material options and material categories, as well as choosing the
maximum similarity of every calculated option, improve the result ranges significantly. How-
ever, the ranges are deviating too much and are generally too low, so further consideration
for implementation is not planned.

The NLP technique BERT showed the most promising results. Low deviations of the
result ranges and high cosine similarity of all strategies lead to applying it for the matching
approach. Nevertheless, due to its large vectors with 786 dimensions, the calculation time
is significantly higher than with spaCy and needs to be considered for further optimization.

3.5.3 Evaluation of element matching method

In this Section, the proposed matching method is tested with real-world case studies. In the
first step, five office buildings were chosen, consisting of the required model information,
such as element classification according to DIN 276 and materials. In the next step, the
performance of the previously proposed matching method on element level using the
best-performing NLP model, BERT, is analyzed for all case studies. In the last step, the
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ratio of correctly matched versus complete set is evaluated for each case study depending
on their specific model quality.

According to the proposed matching method, as shown in Section 3.4.3, all elements and
their materials are filtered and encoded, the similarities are calculated, and finally, the
most similar element is selected. To evaluate the performance of the proposed matching
method, all matched elements are evaluated according to correctness. If not matched
correctly, the reason for wrong matching is recorded. For validation, a manual element
matching is set as ground truth, also using the same LKdb.

Besides correct and wrong element matching, there are other reasons why correct match-
ing was not possible. As the LKdb is just taking the most common elements into account, it
is not covering all potential element structures. Therefore, one of the reasons for incorrect
matching is the insufficient amount of available elements. Another reason for incorrect
matching is that there is no valid cost group classification according to the German classifi-
cation system DIN 276 available for the element to be matched. As a result, the algorithm
cannot filter the relevant list of elements in LKdb, and no default element can be selected.
Furthermore, also wrong classifications of the model’s elements can lead to incorrect
matching. This reason will be described in more detail in the following Sections. Finally,
incorrect matching can also occur if the element’s name and material’'s name are too
generic or not existing. In this case, the default element of the classification group is
matched according to the proposed matching method. In total, there are five different error
clusters:

a) correctly matched

b) no correct matching element available in LKdb
¢) wrong element classification

d) no valid element classification

e) too little information/ details

f) wrong matching

Figure 3.11 shows the matching performance of all case studies summed up, once
weighted by the amount of individual elements (left) and, on the other hand, weighted by
the element areas (right). The area-weighted result shows the influence of wrong matching
according to the LCA relevant quantities, while the element-weighted results show the
performance compared to the manual matching step.

The total element-weighted matching performance results show a correct matching of
78.1% for all five case studies. The biggest drivers of incorrect matching are due to too
little information/ details (8.62%), no correct matching element available in LKdb (5.65%),
and wrong element classification (5.50%). Nevertheless, the different ratios between
element-weighted and area-weighted matching performances differ so widely that wrong
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Figure 3.11: Total element matching performance of all case studies according to correct
matches or matching error cluster, weighted by the amount of elements (left) and area of
elements (right)
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Figure 3.12: Case-study-specific element matching performance according to correct
matches or matching error clusters, weighted by the amount of element

element classification is 32.96%, and only 62.97% of the elements are correctly matched.
Therefore, the results need to be analyzed in more detail and case-study-specific in the
following.

As shown in Figures 3.12 and 3.13, there are major differences in the error clusters
between the different case studies and the weighting scenario. When looking at the
element-weighted incorrectly matched elements of case study 2, the main error is no valid
element classification with more than 25.0%, which is mainly due to a different classification
nomenclature for windows ("B20" instead of "334"). For weighting the scenario using the
areas of the elements, the error is only 3.42%, and the correctly matched elements show
the best performance of all case studies. Similar differences can be seen for case study 3,
where the main error is due to clusters b) (11.68%) and e) (16.04%) in element weighting.
In the area-weighted performance, these two clusters seem less significant compared
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Figure 3.13: Case-study-specific element matching performance according to correct
matches or matching error clusters, weighted by the area of elements

to cluster c) (40.6%). This is due to the fact that the amount of elements is a different
weighting factor. Nevertheless, as in case studies 4 and 5 are more columns modeled,
which do not have the quantity of area but only length, the area-weighted performance
results become significantly worse, although the element-weighted performance seems
satisfying.

Generally, the matching performance shows satisfying results as, in total, 86,72% of the
elements were correctly matched, or due to too little information, the default element was
matched. 11,15% of the total elements were wrongly matched as there are not sufficient
classifications available. For only 0,83% of the total elements, the matching method results
in wrong matches. The performance results differ due to model complexity and the quality
of correct element classification according to DIN 276 of each real-world case study. The
quality of LOD, sufficient amount of elements in LKdb, and wrong matching due to the
proposed methodology and chosen NLP model seem to have a minor influence on the
matching performance. There can be different matching performances depending if the
total amount of matched elements or their areas are considered, which is mainly driven
by influences of columns without area quantity sets. Considering the fact that tested IFC
models were not optimized for this use case, the performance results prove the proposed
matching method for real-world projects. The performance can be further increased by
checking the model requirements of the elements’ classification.

3.5.4 Evaluation of LCA result range calculation
Next, we chose one case study to validate the whole semantic healing process by eval-

uating the calculation of the embodied GHG emissions. As case study 2 shows in the
area-weighted performance the best results, we select it for calculating the LCA results.
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Figure 3.14: Total and cost group-specific results of Global Warming Potential (GWP) of
case study 2 in [kg CO2-eq./ sqm*a]

The results will then be compared to a manual calculation, focusing on GWP as the
main impact indicator. For the conventional LCA calculation, we chose the German LCA
calculation tool eLCA (BBSR, 2022). Furthermore, only the total sum of all life cycle
phases (A1-A3, B4, C3-C4, D) is considered to directly compare the final results of the
examples. The reference period for this office building is 50 years, according to DGNB
and BNB standards. The main goal of this evaluation is to show the results of the entire
semantic healing workflow and its advantages compared to conventional processes. The
optimization of element-specific LCA results itself is not the focus of this Section.

Figure 3.14 shows the GWP results clustered by cost groups (KG) and the total sum of
the case study. Generally, the results show that the specific values of the conventional
calculation following the manual, conventional workflow using eLCA are in the same range
as the result ranges using the proposed methodology, including the matching method and
the LKdb. The total manual result of 3,04 kg CO2-eq./ sgm*a calculated with eLCA is
slightly lower than the range calculated by the proposed methodology and LKdb (Minimum
2,56, Median 3,25, Maximum 3,89 kg CO2-eq./sqm*a). To evaluate the difference in more
detail, the element-specific results have to be analyzed.

Figure 3.15 shows the GWP results of the most relevant elements for each class according
to the total sum of GWP over all life cycle phases. For each of the five chosen elements,
on the left side, the results of the manual calculation using eLCA are shown, and on the
right side, the automated calculated results using the matching method and LKdb are
shown. The shown IFC elements consist of different element types, such as single- and
multi-layer solid elements, windows and doors, or elements with composite materials. For
the element with the cost group 331 and 351, reinforced concrete was matched, which
consists of the materials reinforcement steel and concrete. While for the reinforcement
steel, only one material option is available, for the concrete, there are several according to
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Figure 3.15: Element-specific results of Global Warming Potential (GWP) for selected
elements of each classification group and different materials of case study 2 in [kg CO2-

eq.]

the specific compressive strength, which hasn’t been specified in this early design phase
yet. These different material options lead to a range of results for the total GWP.

In comparison, for the element of the cost group 341, the monolithic brick wall was chosen,
while only one material option of brick is available in this case. For this reason, both
results of eLCA and LKdb are identical and do not differ. For the selected door (KG 344),
different EPDs are used in the LKdb, while for the manual selection, only one EPD was
chosen. Usually, the LCA calculation of windows needs different quantity inputs as solid
elements, as the functional units for the window frame are the length of the perimeter and
the area for the transparent glass. The only varying material for the implemented LKdb
windows is the frame material, which is, in this matched case, wood. In the LKdb, glass
was implemented as only one material option per element, either single, double, or triple
pane, and is therefore not varying. The total GWP range is not varying a lot due to a few
different wood-based frame options, but also close to the manual calculation results.

Finally, the interior wall (KG 342) consists of a multi-layer element of plasterboard and
mineral wool. In the IFC model, the element consists of four different layers of plasterboard,
while in the LKdb, there are only two. Therefore, the different thicknesses were summed
up so that the total thickness for plasterboard layers is the same. Nevertheless, also in
this case, there are 26 different material options for plasterboard, which leads to a range
for the total GWP results.

In general, the evaluation of the whole process shows reliable GWP results compared to
manual calculation using eLCA. The results depend on the different element types and
the level of information, which was decisive for the matching. Another aspect is that with
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the manual workflow in early design stages, the total GWP results of this case study seem
to be lower than the average of the result range derived from the proposed methodology.
This underlines the need for a semantic healing process to enable more realistic LCA
result ranges based on this uncertain information.

3.5.5 Limitations

The authors had to make a couple of assumptions to validate the proposed methodology,
which led to certain limitations. For implementing the LKdb and its embodied emissions
values, the German database Okobaudat was used, as all the applied case studies are
located in Germany, and German material naming was used. An extension using other
databases and mapping them to elements and material options can be easily realized and
has been prototypically tested (Lammers & Forth, 2022). Nevertheless, the implemented
elements in the LKdb only cover the most common element structures. Specific element
structures for special cases need to be included in future work. So far, neither operational
energy simulation nor life-cycle cost calculation is included in the database, as the focus of
this publication is solely on embodied GHG emissions. Although we only discussed GWP
results for evaluating the LCA calculation, other environmental impact metrics have been
calculated, too, such as AP, EP, POCP, and ODP, as well as energy-related impact metrics.

The results of the element matching of five case studies presented in Section 3.5.3 show
that a correct classification is crucial to match the IFC element to realistic LKdb elements.
However, the German classification system DIN 276 was used, which cannot be directly
transferred to other countries’ classification systems. If IFC models have no or a lot of
incorrectly classified cost group elements, the LCA results will differ significantly and are
not meaningful.

Furthermore, the NLP model BERT employed here was not specifically trained for the
application in the AEC context. Nevertheless, the results from the material and element
matching showed that this circumstance does not affect the results due to the robust
selection process of the matching method. Nonetheless, the bidirectional trained model
leads to a high amount of vector dimensions for each expression and, as a result, a time-
intensive computation process. A specific trained model could decrease the computational
effort while providing similarly satisfying results as with BERT. For training such a model, a
high amount of real-world data from different companies and designers is needed, which
is difficult to collect due to privacy issues.

3.6 Conclusions and future research

To enable the calculation of embodied emissions of buildings in early design phases,
automated workflows based on BIM models can be used to compare different design
alternatives and find those solutions that have a minimal environmental impact. However,
the uncertainties in these stages are unavoidable and missing information can lead to
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erroneous LCA results. Therefore, enriching vague models is crucial for calculating
meaningful results, which are usually a range of results rather than single values. Among
the most challenging boundary conditions is the fact that early-stage BIM models often
lack precise specifications of object types and material properties. Instead, a wide range
of mixed terminology is used, and some information remains completely unprovided.
With this unstructured data, however, finding correct LCA information from the respective
databases is almost impossible.

To overcome this issue of manual material matching and vague model information, in this
paper, we propose a novel approach for automated semantic healing of BIM models. The
proposed method allows assigning correct LCA information of element types and materials
to the respective model element such that a reliable and holistic LCA can be calculated in
early design stages. For the semantic healing process, an NLP-based method is used
to enrich the model by automatically matching elements of an LCA Knowledge database
(LKdb) to close the missing gap of the automation process of enriching LCA datasets to
IFC materials and elements, and adding missing layer information of imprecise model
elements. This LKdb contains all relevant information for the LCA calculation process,
including LCA datasets on material level and different design alternatives, such as element
variants of the same classification group or different material options of each element layer.
Missing element layers are added to ensure reliable and consistent LCA results. The
elements are matched by the most similar material or element names using the cosine
similarity of the pre-trained NLP model vectors.

In an initial evaluation, different NLP models were compared by aligning the results of
pre-matched materials of a case study. BERT was identified as having the best-performing
results and proved to be suitable for the element-matching method. In a second evaluation,
the proposed matching method was tested using five real-world BIM models, and their
performances were analyzed. Generally, the proposed matching method proved to be
satisfactory, correctly matching the majority of the IFC elements (86,72% success rate
in total) to the corresponding LKdb elements. Nevertheless, the importance of correct
classification of the IFC models is a relevant requirement for correct element matching.
The success rate depends on the semantic model quality, mostly on correct and valid
element classification for the initial filtering step. In a third evaluation, one of the five case
studies was selected to calculate the embodied emissions focusing on global warming
potential of each element and summing the resulting ranges up for the whole building.
These results were compared to a manually calculated LCA using the tool eLCA, showing
that the manual results are in the range of the results using the proposed method.

Finally, answering the research question raised, it can be confirmed that the proposed
automated semantic healing methodology is sufficient for calculating embodied emissions
based on early design BIM models. The main limitations are the processing time of the
prototypical implementation using large NLP vector dimensions and the correct element
classification, which can be error-prone in a manual workflow.
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In our ongoing research, we plan to investigate the visualization of the results and selection
process of element variants or specific material options. Using the geometric BIM model
as an interactive representation and mapping the LCA results as color ranges has great
potential for the visualization and selection process. Furthermore, the developed methodol-
ogy and the LCA Knowledge database will be extended according to other element groups,
such as HVAC, as well as further criteria, such as for operational energy simulation, LCC
calculation, or circularity aspects. These criteria will also be included in the visualization
and selection process.
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Chapter 4

Domain-specific fine-tuning of LLM for
material matching of BIM elements and
Material Passports
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of LLM for material matching of BIM elements and Material Passports. Proceedings
of ASCE International Conference on Computing in Civil Engineering, Carnegie Mellon
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Abstract

Material Passports (MP) enable a combined assessment of life cycle assessments and
circularity assessment of buildings. Semantically rich 3D models, such as Building In-
formation Models (BIM), facilitate deriving consistent and automated creation of MPs.
Nevertheless, a time-consuming effort is still needed to manually match material and
element information to automate the BIM-based MP. To improve this step, we propose a
method of semi-automatically matching BIM materials to the relevant material datasets us-
ing Semantic Textual Similarity and fine-tuning pre-trained Large Language Models (LLM).
The method matches the semantically most similar environmental material datasets to
every BIM material to enrich further information. We are fine-tuning the LLM by proposing
different strategies, such as adding domain knowledge, testing different loss functions,
applying different labeling, adding negative pairs or filtering, and using manually matched
pairs of datasets from 23 real-world case studies. Combining different strategies for
fine-tuning a pre-trained LLM significantly increases the accuracy of the proposed method
of matching BIM elements and materials to environmental material datasets.

4.1 Introduction

In 2020, buildings and the construction industry were responsible for 36% of the Green-
house gas (GHG) emissions as well as for ca. 37.5 % of the waste generation within the
European Union (European Commission, 2020). To tackle the insufficient documentation
for realizing the reuse and recycling of buildings, the concept of material passports (MP) is
introduced in different scales, such as material, product, or building (Cetin et al., 2023).
Building Information Models (BIM) contain geometric and semantic information about
buildings and can facilitate MPs (Honic et al., 2019b). Besides precise quantity take-offs,
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further semantic information about the elements’ layers, materials, and detachability can
be included. However, manual steps are still required for enriching materials from circular-
ity databases to those used in BIM (Honic et al., 2019b), as architectural nomenclature
differs from the more precise databases. These manual enrichments are expensive in
costs and labor. We define this automated enrichment step as the primary technology gap
to be addressed by this publication.

To close this gap, we propose a novel method to automatically enrich open BIM models
with material information from LCA and circularity databases using Natural Language
Processing (NLP) and its subtask Semantic Textual Similarity (STS). Usually, the naming
of IFC materials is more generic, e.g., “pre-cast concrete”, while datasets for MPs are
more specific, e.g., “reinforced concrete” with specific compressive strengths. In a previous
publication, we showed a similar approach using a well-structured database and a pre-
trained Large Language Model (LLM) for LCA (Forth, Abualdenien, & Borrmann, 2023).
In this publication, though, we propose a domain-specific fine-tuning of pre-trained LLM
using different strategies for this task. These include domain-specific abbreviations, loss
functions, and additional information from the BIM model. Our method is based on open
BIM data formats, such as Industry Foundation Classes (IFC).

4.2 Background & Related Works

4.2.1 BIM for Material Passports

Recently, different researchers have proposed BIM-based methods for material passports
(MP). The findings suggest that LCA-based BIM plugins have significant potential for
improving circularity in early design stages but emphasize the importance of data accu-
racy, effective management, clear guidance for modeling, and increased knowledge in
implementing LCA and circular economy concepts. Honic et al. introduced a BIM-based
MP approach to optimize the recyclability of buildings. However, they identified the manual
material matching by a specialist as a significant obstacle (Honic et al., 2019b). Atta et
al. developed a framework for digital MPs using BIM, considering the deconstructability
of elements (Atta et al., 2021). However, their approach is based on the BIM author-
ing tool Autodesk Revit and is limited to its closed BIM workflows. Gebetsroither et al.
compared current BIM-based approaches for building Material passports mainly in the
German-speaking market (Gebetsroither et al., 2024). They came to the conclusion that
the approach by Madaster and from EPEA is currently practicable, and the BIM integration
not only saves time but also supports the documentation and archiving of the building.
The discussed approaches lack open BIM data exchange and a fully automated process
of matching material datasets from external databases to those of the BIM model. The de-
tachability, deconstructability, or connection types of elements for circularity assessments
are out of the scope of this publication and part of future research.
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4.2.2 Fine-tuning Large Language Models

As most large language models (LLM) were trained on generic text, they do not always
fit well into domain-specific tasks. Accordingly, domain adaptation needs to be applied
for domain-specific use cases. Usually, domain adaptation is fine-tuning a pre-trained
language model (PLM) on a domain-specific, new dataset. This fine-tuning process
adjusts the original model's weights, aligning them with the specific attributes of the
domain data and the targeted task. Reimers and Gurevych present Sentence-BERT
(SBERT), “a modification of the pre-trained BERT network that uses Siamese and triplet
network structures to derive semantically meaningful sentence embeddings that can be
compared using cosine-similarity" (Reimers & Gurevych, 2019). Their approach focuses on
semantic textual similarity (STS) and outperforms other sentence embedding methods. For
improving the performance of fine-tuning BERT in a multitask domain, such as sentiment
analysis, paraphrase detection, and STS, Jadwin and Huang employed an in-domain pre-
training and Multiple Negative Ranking Loss Learning (MNRL) (Jadwin & Huang, 2023).
They concluded that MNRL fine-tuning leads to the highest performance optimization
impact. Sachidananda introduced adaptive tokenization (AT), a method for efficiently
adapting PLMs to new domains by expanding the tokenization vocabulary with domain-
specific token sequences (Sachidananda et al., 2021). AT achieves significant performance
improvements without requiring further language model pre-training, offering a promising
approach for domain adaptation in natural language processing tasks. Generally, these
methods show different approaches for domain adaptation and fine-tuning of pre-trained
language models, which will be further discussed later.

4.3 Method

4.3.1 General workflow

As shown in Figure 4.1, the general workflow consists of four main steps. The first step
includes the BIM modeling in the authoring tool (1.a) and the IFC export (1.b). The detailed
requirements for the IFC export are described in the implementation section 4.2. The next
step 2.a contains a quantity take-off of all relevant elements and materials using the base
quantities of each element and layer. Step 3.a describes the main part of the proposed
method, called semantic model healing. The quantity take-off derived in the previous step
is used to automatically match the corresponding datasets from the material database (3.b).
For this process of semantically healing the IFC model, the highest semantic similarity
of the material datasets with each material of each IFC element is used. We fine-tune a
monolingual LLM domain specifically for this task based on the German language (3.c). In
the final step 4.a, we can upload the semantically healed and enriched IFC model to a
Material Passport platform for further analysis, such as life cycle assessments (LCA) or
circularity assessments.
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Figure 4.1: The general workflow of semantically healing IFC models for Material pass-
ports.

4.3.2 Strategies for fine-tuning domain-specific LLM and improving match-
ing performance

We propose five different strategies for the domain-specific LLM fine-tuning to improve
the STS and matching performance: Strategy 1 - Adding domain-specific abbreviations,
Strategy 2 - Applying different loss functions for fine-tuning, Strategy 3 - Adding different/
multiple labels for further context information (Element name, classification, IfcType, etc.),
Strategy 4 - Adding negative/ contradicting word pairs, and Strategy 5 - Filtering word pairs
according to IfcType. As shown in previous studies with similar model healing tasks but
for different analysis types (Reimers, 2023; Sachidananda et al., 2021), domain-specific
abbreviations were a big challenge for the matching approach. Therefore, our first fine-
tuning strategy is to train LLM with these AEC- and BIM-specific abbreviations. For the
second strategy, the following suitable loss functions are proposed for our application of
fine-tuning using manually matched word pairs. In brackets, the typical labels for positive
or negative word pairs are shown according to (Reimers, 2023):

a) Cosine Similarity Loss: manual positive matches (0.8), negative matches (0.3)
b) Contrastive Loss: positive (1), negative (0)

c) MNRL — Multiple Negatives Ranking Loss: no labels needed

Another strategy for improving the fine-tuning performance is to add further knowledge of
the BIM models using different labels for each type of information in the training process.
For every material pair, we also know the IFC element name, the IfcType, and usually
the classification. With the Softmax loss function, we can use different labels for fine-
tuning, including this additional information. Therefore, we propose the following labels:
Abbreviations (0), IFC material — positive material dataset (1), IFC element name — positive
material dataset (2), classification — material dataset (3), IFC Type — material dataset (4),
IFC material — contradicting material dataset (5). As shown for the last label, the fourth
strategy for improving the fine-tuning and matching performance is to include negative
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Figure 4.2: Automated material matching process of IFC materials to MP datasets

pairs. The MNRL has only positive word pairs with anchor ai, and pi being positive. But
it assumes all other positives pj are the negative pairs, so ai and pj for il=j are negative
pairs. We can manually create negative pairs for all other loss functions according to the
same logic but also check that pil=pj. The negative labels have already been introduced
in paragraphs of the previous strategies. This strategy can be realized by the Cosine
Similarity Loss (4a) as well as Contrastive Loss (4b). The fifth strategy includes a filtering
step of the material database. As the used material database is unstructured, we add a
filter structure using different IfcTypes, such as IfcWall, IfcSlab, IfcCovering, IfcColumn,
IfcDoor, IfcWindow, and IfcRoof. To enrich only applicable material datasets per IfcType,
we check for all positive word pairs for their related IfcType and save the material dataset.
Instead of comparing all 387 material datasets for each IfcMaterial, we can limit the
material datasets to 82 for IfcSlab, 79 for IfcWall, 51 for IfcCovering, 21 for lfcColumn,
etc. This strategy doesn’t improve the fine-tuning process but improves the matching
performance afterward.

4.3.3 Combination of different strategies

We briefly describe how different strategies can be combined with each other to improve
the fine-tuning process and match performance further. Adding abbreviations (strategy 1)
and the filtering process (strategy 5) can be combined with all different strategies. Multiple
labels (strategy 3) can only be realized with the Softmax Loss function, as the other
functions don’t allow multiple labels. Nevertheless, negative pairs can be realized with the
Cosine Similarity Loss and Contrastive Loss functions. MNRL already incorporates the
negative pairs, as described in the previous subsection. Different Loss functions could be
combined in case more model context was fine-tuned with multiple labels and Softmax,
and this LLM is used afterward as the base model for another fine-tuning process with
Cosine Similarity, Contrastive, or MNR Loss function or in the opposite order.
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4.3.4 Matching approach of highest semantic similarity

Figure 4.2 shows the general matching workflow of matching the semantically most similar
material of the material database to each IFC element layer’s IFC material. To this end,
first (1), all IFC elements are iterated (1.a) and, next, filtered according to their IfcType if
the filtering strategy (S5) is applied. If not, we go to the following step (1.c) of iterating
for each element and its material layers. These materials are then compared with the
whole or the filtered material database, so the material datasets are iterated (1.d). Each
IfcMaterial (2.a) and each material dataset from the database (2.b) are encoded in the
next step using different fine-tuned LLM. Next, the cosine similarity with each material
from the database is calculated for STS (3.a). The material from the database with the
highest cosine similarity is selected as the matched material for each IFC material (3.b).

4.4 Case studies and implementation

4.4.1 Case studies and datasets

For the domain-specific abbreviations, we used 571 general AEC abbreviations and their
descriptions (Bundesamt fir Bauwesen und Raumordnung 2021) and 155 BIM-specific
abbreviations (Helmus et al., 2021), such as construction types or material abbreviations.
Both abbreviation datasets are in the German language. We employed 23 IFC models
as case studies, where the IFC materials had already manually enriched PSets for the
Madaster Platform (Frank, 2021). Besides the availability of the provided case studies by
LIST Eco, the Madaster platform is one of the few Building Material Passport providers
using open BIM data format and the only commercial platform that embeds and manages
a portfolio of MPs of several buildings (Gebetsroither et al., 2024). The case study
projects are a mix of logistic, residential, and office buildings from different designers and
clients. This assures a high diversity in the data and real-world adaptability. The matched
materials from the material database mainly include 387 EPEA datasets (EPEA GmbH,
2022), but some were customized and added to the overall database. We extracted the
matches of IFC materials and MP dataset following Madaster-specific PropertySet called
"MaterialOrProductName". Based on these case studies, we derived 245 unique material
matches and split them into 75% training, 184 positive word pairs for training, and 25%
test samples (61 test pairs).

4.4.2 Prototypical Implementation

To implement the proposed method of fine-tuning domain-specific LLM, we used the
cased version of the German BERT model ('bert-base-german-cased’) as a base model
for training (Chan et al., 2020). All IFC models, including their element and material
names, and the EPEA database are provided in German language. For the prototypical
implementation of the training pipeline, we used SentenceTransformers packages based

73



0,
80,00% —@=Dbase model

75,00% @ Sla: BIM-Abbreviations

70,00% —@=—S1b: AEC-Abbreviations

=@ S]c: AEC- & BIM-Abbreviations
65,00%
S2a: CosineLoss
0,
60,00% S2b: ContrastiveLoss

55,00% @ S2¢: SoftmaxLoss

Matching accuracy

50,00% ==@==S2c: MNRLoss

=@ 1S3: SoftmaxL Multiple Labels
45,00%

S4a: CosineL Negative Pairs

40,00% . : : :
| ) 3 4 5 6 7 3 9 10 S4b: ContrastiveL. Negative Pairs

Maximum number of solutions =o—S5: Filter

Figure 4.3: Matching accuracy for strategies 1- 5 compared to the base model

on the SBERT method by Reimers and Gurevych (Reimers & Gurevych, 2019). These
packages incorporate all mentioned loss functions from Subsection 3.2. The different
labeling for the additional domain knowledge from the IFC models was pre-processed
accordingly after parsing all quantity take-offs.

4.5 Results

4.5.1 Results of the overall matching approach using different fine-tuned
LLM strategies

Figure 4.3 depicts the achieved matching accuracy, so the ratio of correct and total
matches/ predictions, when applying the different strategies. Instead of only showing
the correct matches of the most similar solution, we add a continuous solution space
of the maximum ten most similar matches. This is because the initial results would
not have a significant difference, and a deeper analysis would not be possible. The
results show that the base model ('bert-base-german-cased’) has only 44,26% correct
matches, taking the most similar match into account, but increases up to 60,66% of correct
matches considering the top 10 maximum similar matches. Different individual matching
accuracies exist for domain-specific information considering AEC-overall and BIM-specific
abbreviations. Each abbreviation source slightly increases the matching accuracy. But by
combining both abbreviations, the matching accuracy significantly increases to 67,21% for
the top 10 matches. Adding multiple labels (strategy 3) increases the matching accuracy
for the top four matches, but it even underperforms the base model for the following
matches. The highest increase in the matching performance is using the filter strategy.
The filtering is applied to the base model and reaches up to 75,41% correct matches.
The loss function with the highest matching accuracy is Multiple Negative Ranking Loss
(MNRL), which already considers negative pairs, followed by Contrastive Loss. Cosine
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Figure 4.4: Matching accuracy for combined strategies compared to the base model

Similarity Loss even underperforms compared to the base model. Nevertheless, adding
negative pairs significantly increases the matching performance. Overall, the loss function
with the highest matching accuracy is Contrastive Loss, including negative pairs, although
it's computationally more expensive than MNRL by a factor of ca. 100.

4.5.2 Results of the overall matching approach using different combina-
tions of the strategies

We defined a combination set of different strategies as follows:

- C1: Training AEC-, BIM-Abbreviations (S1c), Material Datasets with MNRL (S2c)
and filtering (S5)

- C2: Training AEC-, BIM-Abbreviations (S1c), Material datasets with MNRL (S2c),
multiple labels with SoftmaxL (S3) as base model, and filtering (S5)

- C3: Material Datasets with ContrastiveLoss including negative pairs (S4b), AEC-
and BIM abbreviations using MNRL (S1c) as base model, and filtering (S5)

Figure 4.4 shows the results of the matching accuracies of combining different strategies
compared to the base model. Generally, the results indicate that combining the individual
strategies increases the matching accuracy even more. Nevertheless, adding more
context with multiple labels (S3) did not improve the overall performance (see Section 5.1).
Adding this strategy to the combination of C1 lowers the accuracy. The best-performing
combination of strategies is C3, reaching up to 80,33% matching accuracy for the top
ten matches. The following section analyzes the results of the best-performing individual
strategies and the best-performing combination.
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4.5.3 Analysis of correct and wrong matches

As shown on the left side of Fig. 4.5, the base model has approximately 44% correct
matches but ca. 66% wrong matches. The reason for false matches was classified accord-
ing to the main material group of the IfcMaterials. Most of the wrong matches (31%) are
related to reinforced concrete. Accurate matching is challenging, as most of the lfcMateri-
als are named "Stahlbeton" (Engl. "Reinforced Concrete"), but the Material Datasets are
more diverse, including specific compression strength classes and reinforcement ratios.
The reason for wrong matches with aluminum, steel, and others (mainly asphalt and Larch
wood) is primarily that in the lfcMaterial, more than one material is included, while in the
ground truth, only one Material Dataset is matched. For the insulation materials, there
are in the ground truth matching instead of "XPS" other Material Datasets matched, such
as "EPS", making direct matching impossible. This can be avoided by including multiple
similar materials.

Compared to the base model, the strategies S1c and S4b decrease the error of wrongly
matching reinforced concrete by 11% (error cluster 1) and the error cluster 2-5 to 10-12%.
Furthermore, only adding the filter reduces the error cluster of reinforced concrete by
18% and the other error clusters by 13%. Combining these three strategies solves the
errors with steel and aluminum, and only the insulation error remains at 3% due to wrong
classification. Furthermore, error cluster 5 still includes the error with the specific wood
material. The error cluster 1 about reinforced concrete remains and can'’t be further
solved. This is mainly because, for the wrong matches, different reinforcement ratios
are added, which can not be predicted by the IfcMaterial alone. There are 23 different
material datasets for reinforced concrete with varying ratios of reinforcement, priorities,
or user-specific datasets. This issue could be handled by adding this information before
automatically matching to increase matching accuracy.
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4.5.4 Limitations

The most significant limitation of this publication is the limited number of matching samples
in the dataset. From 23 real-world BIM models, only 245 unique matching samples
were extracted, so the fine-tuning process took place with 186 samples. Also, the test
datasets were limited to 61 matches. However, besides the limited number of samples,
their quality also limits the accuracy of the matching. As previously analyzed, having
multiple IfcMaterials matched to only one input limits the overall performance. Another
limitation is that in this study, we only took one LLM network architecture into account. As
we have German material expressions, we used the German version of BERT (’bert-base-
german-cased’) as the base model (Chan et al., 2020). Finally, there is no 100% matching
accuracy possible. This means this approach is a support tool than fully automating the
process. For this reason, we included the Material Dataset with the highest similarity and
extended it to the top 10 most similar samples.

4.6 Conclusion & Outlook

In this paper, we introduce a method of (semi-)automatically matching BIM materials to the
relevant material datasets using Semantic Textual Similarity (STS) and different strategies
of domain-specific fine-tuning pre-trained Large Language Models (LLM). The method
matches the semantically most similar material datasets to every BIM material for further
analysis. We used the German BERT LLM and sentence embeddings using Siamese
BERT-Networks for fine-tuning. The five strategies and their combination increase the
matching accuracy from 44,26% to 80,33% by extending the solution space to ten material
datasets with the highest semantic similarity. Therefore, the low matching accuracy of
the most similar match leads to using this method as a support tool instead of a fully
automated approach. Although we had 23 real-world case studies, the 245 material
samples with different data quality are still limited. In our future research, we will use more
case studies and material samples for training and testing with cross-validation for more
robust solutions. Furthermore, a more structured database, rather than only differentiating
by IfcTypes, could increase the accuracy of the matching in the filtering step. As we
identified too many similar material datasets for reinforced concrete, we suggest an interim
step of adding more information about reinforcement ratio and priority. Additionally, these
fine-tuning strategies shall be transferred to multilingual training for enriching building
energy models for building performance simulations (Forth, 2023a). Last, more information
is missing, such as the connection type of different elements to derive the detachability
index to enable fully automated circularity assessments in early design stages.
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Abstract

To achieve the global targets of the Paris Agreement of limiting global warming, it is
necessary to reduce the operational energy of buildings, which are responsible for around
30% of the global greenhouse gas emissions. Building Energy Performance Simulation
(BEPS) is an established method to estimate the building’s energy demand in early design
stages. Building Information Models (BIM) provides geometric and semantic information
to create precise Building Energy Models (BEM) in early design stages. However, manual
enrichment of missing semantic information is still a time-consuming and laborious process.
Therefore, we propose a novel methodology to automatically enrich missing information
to BIM using Semantic Textual Similarity (STS) and fine-tuned Large Language Models
(LLM). For every IfcSpace, we match room-specific space types and constructions with
missing thermal properties using the semantic most similar pairs of the BIM model and
the according databases. We use three real-world case studies to fine-tune LLMs, and
two case studies evaluate the whole methodology. Different fine-tuning strategies, such as
using different loss functions, adding opposing word pairs or domain-specific abbreviations,
significantly improve the accuracy of the matching. At the same time, however, findings
show that semantic matching based on multilingual fine-tuned LLM performs worse
than translated, monolingually fine-tuned LLM. Finally, BEPS results from automatically
enriched BEM only slightly deviate from manually enriched BEM.

5.1 Introduction

According to the United Nations, buildings contribute to 40% of the world’s greenhouse
gas emissions, mainly in the operational phase (United Nations Environment Programme,
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2022). In order to reduce the environmental emissions of building operations, conducting
energy simulations throughout the entire design process assists in quantifying and enhanc-
ing the building’s energy performance. Building Energy Performance Simulations (BEPS)
include simulation of the whole building energy demand as well as thermal comfort. Early
design stages show a significant influence on decision-making and optimizing the later
real-life demand (Gao et al., 2019).

Building Information Modeling (BIM) digitally represents a physical building design geo-
metric, semantic information, and topological relationships (Borrmann et al., 2018). It can
support reducing the effort of Building Energy Modeling (BEM) by automating the energy
simulation workflow. The research field of BIM to BEM has been ongoing for the last two
decades. Several challenges on interoperability and data exchange formats or geometric
transformation from volumetric BIM models to surface-based BEM (van Treeck et al.,
2018) have been solved. Nevertheless, in early design stages, BIM models contain vague
information or are even lack relevant information for a holistic and reliable whole-building
energy simulation.

Furthermore, most of the current BIM-to-BEM approaches map or match BEPS-related
semantic information to BIM objects either manually (Di Biccari et al., 2022; Raggi et al.,
2021) or using templates (Muller et al., 2021). Manual matches mean an increased amount
of time, effort and required expertise, while template-based approaches usually do not
take semantic information from the BIM models into account but rather enrich it based on
statistical information. Additionally, in early design, detailed BEPS-related properties, such
as room-specific schedules and occupancies or element- and material-specific thermal
properties, are not yet defined. In the following, we focus on the Development Design as
the early design stage, as defined by Schneider-Marin & Abualdenien (Schneider-Marin &
Abualdenien, 2019). Moreover, most of the current approaches propose ideal workflows
but do not take the diversity of real-world case studies into account. Therefore, they are
not robust in this regard.

To the authors’ best knowledge, the gap of semi-automated enriching BEPS-related
information robustly based on real-world Building Information Models has not been filled
yet.

To close the described research gap, the main contribution of this publication is to propose
a novel methodology for semi-automating the enrichment of BIM-based room-specific
space types and element-specific thermal properties using Semantic Textual Similarity
and multilingual fine-tuning pre-trained Large Language Models (LLM). For the seman-
tic enrichment process, we use existing databases by the National Renewable Energy
Laboratory (NREL) and propose adapted matching methods for the room-specific space
types and element-specific thermal properties. Based on a number of German real-world
case studies, we test different fine-tuning strategies in order to improve the multilingual
matching performance.

In summary, we aim to answer the following research questions:
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a) How can semantic textual similarity and fine-tuning of pre-trained LLM support the
two multilingual matching use cases of space types to architectural rooms and
thermal construction to BIM elements in early design stages?

b) Which fine-tuning strategies improve the multilingual matching accuracy for each
use case”?

c¢) Is a fully or semi-automated matching possible to ensure reliable BEPS results?

To answer these research questions, we first propose the general workflow, the matching
methods, and the multilingual fine-tuning process and strategies. Second, we test the
methodology using five different case studies and a prototypical implementation. Finally,
we evaluate the matching accuracy of the different strategies of the room and element-
specific matching, and the final BEPS results of the overall workflow.

The publication is structured as follows: Section 5.2 introduces the most relevant back-
ground and works related to the topics of BIM-based BEPS, the current BIM to BEM
matching and semantic enrichment approaches, Natural Langauge Processing (NLP) in
the AEC industry, Semantic Textual Similarity (STS), as well as multilingual fine-tuning of
pre-trained LLM. Afterward, Section 5.3 presents the methodology of multilingual semantic
enrichment of BEPS, including the general workflow, geometric transformation to surface
models and BEPS, and describes in more detail the semantic enrichment part, as well as
the multilingual fine-tuning part. The proposed methodology is then evaluated in Section
5.4 using different case studies differentiating between the room-specific matching of
space types, the element-specific matching of constructions’ thermal properties and BEPS
results, and finally, highlighting the limitations. Finally, our conclusions and aimed future
research are discussed in Section 5.5.

5.2 Background and Related works

5.2.1 BIM-based building energy performance simulation

Building energy performance simulations (BEPS) is a term mostly used as a synonym for
building energy simulation (BES), building performance simulation (BPS), building energy
modeling (BEM), or energy simulation (Hong et al., 2018). This umbrella term includes
simulation for mainly energy demand but also indoor environmental qualities, such as
thermal comfort.

Ciccozzi et al. reviewed interoperability strategies in BIM to BEM workflows (Ciccozzi
et al., 2023). They identified four strategies, including real-time connection, standardized
exchange formats and middleware tools, MVD, and proprietary toolchains. They also
analyzed different approaches of automatically mapping energy-related information to the
BIM model.
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Eckstadt et al. conducted a comparative analysis encompassing three distinct pathways
for calculating whole-building energy simulations, often referred to as building performance
simulations. Their investigation was grounded in utilizing open BIM models and Industry
Foundation Classes (IFC) data format as the primary input file (Eckstadt et al., 2022).
However, the prevailing tools still confront certain challenges arising from accurate IFC
export settings tailored to each simulation tool, limitations within the IFC import process,
and inherent constraints of the simulation tools themselves. Loéhr et al., in a different
vein, proposed a partially automated process for constructing multi-zone thermal models
through IFC models (Lohr et al., 2022).

Ramaiji et al., on their part, introduced an alternative approach for transforming IFC-based
BIM into BEM (Ramaji et al., 2020). Their methodology involved a direct conversion of IFC
models into OpenStudio’s native IDD format. However, this conversion posed challenges
that were addressed using Model View Definitions (MVDs). Similarly, Spielhaupter, in his
master’s thesis, undertook a comparison of diverse IFC-based strategies for BIM to BEM
transformations (Spielhaupter, 2021).

In a related study, Yang et al. also employed IFC files as the foundation of their approach.
However, their route differed in that they initially transformed the IFC data into the gbXML
format before progressing to the IDF (EnergyPlus native file) (Y. Yang et al., 2022).
Nonetheless, their workflow overview indicates that additional adjustments are frequently
necessary.

Hence, the proposed strategy aims to leverage the HBJSON format as the transformation
schema. This choice is informed by its open-source nature, versatility in being converted
to various file formats (such as gbXML, IDF, etc.), and its heightened reliability in geometric
export. The IFC format will be only used as open BIM input for further geometric and
semantic transformation towards a fully enriched HBJSON format which is then used as
input for BEPS.

5.2.2 Matching or mapping BEPS-related semantic information to BIM ob-
jects

After more than 15 years of research in the field of Building Information Modelling (BIM)
to Building Energy Modelling (BEM), this research domain continues to grapple with
unresolved challenges. Gao et al. identified the automated conversion of intricate spatial
functions across all rooms as a pending avenue for future investigation, given that the
present process remains manual (Gao et al., 2019). Elnabawi’s assessment similarly
underscored the persistent manual nature of assigning occupancy operating schedules,
emerging as a central obstacle in achieving seamless interoperability (Elnabawi, 2020). In
alignment with these findings, Raggi et al. concluded that "additional data (e.g., regarding
some HVAC data [...], must be manually added [...] to the models before the energy
simulation can run" (Raggi et al., 2021). Notably, occupancy and operating schedules are
specifically linked to Heating, Ventilation, and Air-Conditioning (HVAC) data.
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Di Biccari et al. currently reviewed the State-of-the-art and research trend in the field of
BIM and BEPS interoperability (Di Biccari et al., 2022). They request that “research should
propose practical solutions for describing occupancy and MEP component schedules
in BIM” (Di Biccari et al., 2022). They also identified that even if thermal properties are
available in authoring tools, the IFC exports still need manual mapping as postprocessing.

Besides room-specific information, such as program-specific internal loads, occupancy,
etc., thermal properties of constructions and elements need to be mapped or matched
from libraries or databases to BIM models. Wimmer et al. presented an approach using
mapping rules (Wimmer et al., 2015). Nevertheless, a “continuous adaptation has to
be done on the mapping rule side”. Kim et al. proposed an approach of mapping IFC
information to building energy analysis models (Kim et al., 2016). Nevertheless, only if the
material name from the IFC model matches exactly the one in the ASHRAE library, the
thermal properties can be enriched. If not, a new material and its properties need to be
manually added.

Miiller et al. used a template-based approach to enrich thermal properties based on IFC
models in their BIM2SIM research project (Miller et al., 2021). They are using templates
from a project called TEASER(Remmen et al., 2018). Richter et al. recently further
developed this approach to improve the accessibility of thermal comfort analysis (V. E.
Richter et al., 2023). Li et al. recently developed an algorithm to map BIM-based objects,
such as spaces, using invariant signatures of AEC objects (H. Li et al., 2023). Different
features, such as coordinates, surfaces, or quantities of the surface, are used for this
algorithm to calculate the distance between IFC and IDF zones.

Generally, the current State of Art still shows a research gap in the field of robustly
matching BEPS-related semantic information to BIM objects, especially in early design
stages, such as the Design Development stage (Schneider-Marin & Abualdenien, 2019),
when the BIM model contains vague information. Hence, this publication focuses on the
(semi-)automated matching and enrichment of space types to architectural rooms, and
construction with thermal properties to BIM elements and materials.

5.2.3 Semantic enrichment of BIM

Various cutting-edge techniques are available for the automated enhancement of meaning
to serve different objectives. In her analysis, Tanya Bloch presented diverse strategies,
methodologies, and domains of application for enriching the semantic content of BIM
(Bloch, 2022). Within this context, two primary avenues were recognized: the utilization of
IFC to represent building information coupled with inference-driven enhancement and the
integration of IFC with external data sources. Furthermore, Semantic Web technologies
were harnessed to process building information. Among the trio of key application domains,
emphasis was placed on building design, performance assessment, and particularly
energy simulations (Scherer & Schapke, 2011). Noteworthy instances encompassed the
employment of NLP to classify spatial elements for Korean school buildings (Song et al.,
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2019), and the derivation of regulations for code compliance through rule extraction (Guo
et al., 2021).

Bloch and Sacks propose a semantic enrichment approach of BIM models by comparing a
machine learning approach and a rule-based approach for room type classification (Bloch
& Sacks, 2018). They used their own classification for labeling room types, a large number
of 32 case studies for training, and supervised artificial neural networks with different
features. However, this approach depends on large datasets for training and does not use
transfer learning.

Costa and Sicilia adopted semantic query languages to facilitate the automatic conversion
of BIM data, concentrating on harmonized data models to facilitate building-scale energy
simulations utilizing EnergyPlus (Costa & Sicilia, 2020). In a distinct approach, Baumgértel
et al. harnessed ontologies to dynamically modify and assess thermal energy performance
in building contexts (Baumgartel & Scherer, 2016).

Generally, the majority of semantic methodologies leverage ontologies, semantic web
tools, and linked data concepts to achieve automated semantic enhancement in the realm
of BIM. While a few also employ NLP, its application for augmenting intricate insights from
BIM models for energy simulations remains limited. Therefore, this study uses NLP for
automatically enriching the semantic information of BEM, as it uses pre-trained Large
Language Models and transfer learning and, therefore, promises to work with fewer case
studies for training.

5.2.4 Natural Language Processing for AEC-related tasks

The realm of Natural Language Processing (NLP) has demonstrated substantial advance-
ments in research, highlighting enhancements in both performance and user-friendliness.
This progress has extended its relevance beyond academic boundaries, permeating
diverse sectors, including the construction industry.

Cornago et al. published a SWOT analysis using Transformers for Life Cycle Assessment
(LCA) studies that reveals internal strengths, including automation and integration support
and relatively low marginal costs (Cornago et al., 2023). However, they formulate concerns
about data quality, electricity intensity during model training, and the rapid evolution
of technology. External opportunities include community-building and enhanced data
availability, but threats include a lack of regulation, standardization, and interdisciplinary
talent. Transformers have the potential to benefit LCA practitioners by addressing scalability
issues and enabling data-driven environmental decision-making support.

Zheng et al. explore how domain-specific corpora can enhance deep learning and BERT-
based models for Information Retrieval (IR) tasks in the AEC domain (Zheng et al., 2022).
They find that domain corpora improve traditional word embedding models for some
tasks but have a negative effect on others. In contrast, BERT-based models consistently
outperform traditional models. In consequence, they created a high-performing model
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called RegulatoryBERT. This work provides valuable insights and resources for future
investigations and applications in the AEC domain.

Wu et al. conducted a comprehensive review of Natural Language Processing (NLP) usage
in construction management, highlighting improved information extraction and document
organization (C. Wu et al., 2022). They also discussed the potential and challenges of
NLP applications in construction management and serve as a valuable resource for project
teams seeking to leverage NLP techniques for smart construction.

Although developing NLP for other tasks in AEC is becoming increasingly relevant, to
our best knowledge, none of the reviewed papers uses fine-tuned LLM for automated
semantically enriching BIM models for BEPS.

5.2.5 Semantic Textual Similarity

Natural Language Processing (NLP) covers different tasks, such as text summarization,
text classification, named entity recognition, sentiment analysis, and more. In this subsec-
tion, we are mainly focusing on the basic concepts for deriving Semantic Textual Similarity
(STS) as another task of NLP. The fundamental technique for this NLP task is sentence
pair modeling, which is also used for Natural Language Inference (NLI), also known as
Recognizing Textual Entailment (RTE) (Lan & Xu, 2018). It requires an understanding of
semantic similarity between a hypothesis and its premise (Bowman et al., 2015).

Chandrasekaran and Mago surveyed the evolution of semantic similarity and distinguished
between knowledge-based, corpus-based, deep neural network-based, and hybrid meth-
ods (Chandrasekaran & Mago, 2022). Each approach has different advantages and
disadvantages. However they identified the trends towards building more semantically
aware embeddings and transformer models. There are different types of corpus-based
semantic similarity methods, most of them using cosine similarity to measure the distance
between word vectors (Chandrasekaran & Mago, 2022). Other distance measures used in
the field of STS are Euclidian distance or Manhattan distance (R. Li et al., 2023).

Corpus-based semantic similarity methods use word or sentence embeddings, which are
vector representations of words, including linguistic relationships between words (Tobias
Schnabel et al., 2015). Word embeddings represent individual words, while sentence
embeddings represent whole sentences.

One of the most used pre-trained word embeddings include word2vec (Mikolov et al.,
2013) or BERT (Devlin et al., 2018). BERT consists of a pre-training step and a rather
inexpensive fine-tuning step and can also incorporate sentence embeddings. Reimers
and Gurevych present "Sentence-BERT (SBERT)", a modification of the pre-trained BERT
network that uses Siamese and triplet network structures to derive semantically meaningful
sentence embeddings that can be compared using cosine-similarity" (Reimers & Gurevych,
2019). Their approach focuses on semantic textual similarity (STS) and outperforms other
sentence embedding methods.
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Usually, big data sets are needed to train, fine-tune and evaluate semantic textual similarity.
One of the most used datasets for this task is the Stanford Natural Language Interference
(SNLI) Corpus consisting of 570k human-written English sentence pairs (Bowman et
al., 2015). For validating STS tasks, the STS benchmark is considered as a standard
benchmark (Cer et al., 2017). For our use case, however, there is only a small number of
parallel sentences or word pairs available, which makes the usual benchmarks obsolete.

However, we use STS for semantically matching and enriching BIM information to BEM,
and, additionally, the introduced SBERT approach is used for fine-tuning LLM based on a
small number of training datasets.

5.2.6 Multilingual fine-tuning of pre-trained Large Language Models

As most large language models (LLM) were trained on generic text, they do not always fit
well for domain-specific tasks. Therefore, domain adaptation is applied. Usually, domain
adaptation is fine-tuning a pre-trained language model (PLM) on a domain-specific, new
data set (Kohle & Jannidis, 2020). This fine-tuning process leads to an adjustment of the
original model’'s weights, aligning them with the specific attributes of the domain data and
the targeted task. The platform Huggingface provides multiple PLMs in different languages
or also multilingual LLMs that can be fine-tuned for further domain-specific tasks (Wolf
et al., 2019).

To fine-tune pre-trained LLM, the choice of the correct loss function is significant depending
on the training data and the overall task.

For improving the performance of fine-tuning BERT in a multitask domain, such as senti-
ment analysis, paraphrase detection, and semantic textual similarity (STS), Jadwin and
Huang employed an in-domain pre-training and Multiple Negative Ranking Loss Learning
(MNRL) (Jadwin & Huang, 2023). They concluded that MNRL fine-tuning has the highest
impact on optimizing performance.

Contrastive loss is another loss function proposed by Hadsel et al. where either the
distance between two embeddings is increased (label 0) or reduced (label 1) (Hadsell
et al., 2006). Cosine Similarity Loss uses the manual label of the expected cosine similarity
between two embeddings to fine-tune the LLM. Reimers and Gurevych used the Softmax
Loss when introducing their concept for sentence embeddings using Siamese BERT-
Networks (Reimers & Gurevych, 2019). In their approach to fine-tune multilingual LLM,
Reimers and Gurevych are using the mean square loss for training the student model
(Reimers & Gurevych, 2020).

Besides different loss functions and fine-tuning frameworks, pre-trained multilingual LLMs
are also important for the fine-tuning process.

Conneau et al. introduce a multilingual masked LLM, "XLM-R", trained with 2.5 TB in
100 languages, including German and English, taking the advantages of multilingual XLM
models and the monolingual RoBERTa model (Conneau et al., 2019). They showed that
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their pre-trained multilingual LLM reduces the amount of parallel training data needed to
achieve sufficient performance results.

Feng et al. propose a language-agnostic BERT Sentence Embedding, "LaBSE", approach
focusing on multilingual sentence embeddings (Feng et al., 2020). LaBSE supports
109 languages, including German and English, and promises good results for finding
translation pairs in multiple languages, as well as for assessing the similarity of sentence
pairs without translations.

Reimers and Gurevych proposed another framework using knowledge distillation to
make multilingual sentence embeddings out of monolingual ones (Reimers & Gurevych,
2020). They published several versions of a pre-trained multilingual LLM, the latest called
"distiluse-base-multilingual-cased-v2". This version supports more than 50 languages,
including German and English, and uses multilingual universal sentence encoders (Y. Yang
et al., 2019). Their advantage is that it can work with few samples, and the hardware
requirements for training are lower.

5.3 Methodology of multilingual semantic enrichment for
BEPS

In the following section, we first introduce the general workflow for the proposed method-
ology for semantic enrichment for multilingual Building Energy Performance Simulations
(BEPS). Next, we briefly describe the different steps, such as geometric transformation
from volumetric BIM models to BEPS surface models. Nevertheless, the main focus of
this publication is on semantic enrichment, including relevant databases, the multilingual
matching method of space types to architectural rooms and thermal properties of construc-
tions to BIM elements, as well as the workflow for multilingual LLM fine-tuning and different
domain-specific strategies for improving the fine-tuning and matching performance. Based
on these matches, we describe the further semantic enrichment part for room-specific
enrichment of space types and construction sets. Finally, we briefly describe which BEPS
metrics we are integrating with this methodology.

We are applying Peffer's Design Science Research (DSR) as our research method (Peffers
et al., 2012). Therefore, the proposed methodology serves as the artifact that answers
the defined research questions representing the design and development phase of the
previously described problem and motivation as well as the objective phase. The prototyp-
ical implementation demonstrates the utility and suitability of the artifact using different
real-world case studies. The evaluation and results section represents the evaluation
phase, while this publication serves as the communication phase.
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Figure 5.1: General workflow of proposed methodology of multilingual semantic enrichment
for building performance simulations

5.3.1 General workflow

As shown in Figure 5.1, the general workflow consists of five steps comprising external
and project-specific data processing and LLM fine-tuning. As external data, we consider
the Building Information Models in the authoring tool, as well as the space types and
construction sets databases, which we introduce in more detail in Section 5.3.3. The first
processing step has the BIM model as input and geometrically transforms it to a surface
model. In the next project-specific processing step (4), the semantic information consisting
of space types and construction sets are automatically enriched by the semantically most
similar matches using Semantic Textual Similarity (STS) and Large Language Models
(LLM). The matching of space types and construction sets are described in more detail in
Sections 5.3.3 and 5.3.3. After this matching, we run the building performance simulations
(BEPS), such as annual energy demand or thermal comfort simulation.

Previously, we have shown that the existing LLM is not sufficient for matching the semantic
information (Forth, Hollberg, et al., 2023). Therefore, we propose in this method two
fine-tuning steps. We split the five case studies into training and testing case studies. For
the training case studies, we extract the manually matched pairs of architectural rooms
and space types, and the element-construction or material pairs for LLM fine-tuning. For
the test case studies, we use the whole building BIM and BEM for testing the semantic
matching, enrichment and whole BEPS for evaluating the proposed method. The testing
data are used to validate the proposed workflow while the training data are only used to
fine-tune pre-trained LLM. First (step 2), the space types and construction sets of the
training case studies are manually matched. Next, we fine-tune pre-trained LLM using the
manually matched space types and construction sets and their BIM-related expressions,
as well as further domain knowledge, which is described in more detail in Section 5.3.4.
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5.3.2 Geometric transformation to surface model

As the main focus of this publication is the automated semantic enrichment of space types
and construction sets based on BIM in early design stages, we include existing methods
for the geometric transformation to surface models. In the prototypical implementation, we
use the Pollination Plugin for Autodesk Revit for the geometric transformation (Pollination,
2024). We manually extrude the rooms according to each level’s floor plan using each
level-specific height. As boundary location, we use the wall center so that no gap occurs
between adjacent rooms. Finally, we store the created surface models in gbXML and
HBJSON data format for further semantic enrichment steps and BEPS. In our future work,
we aim to base both steps, the geometric transformation and semantic enrichment, on
the IFC data formation. However, as we exclude the geometric transformation step of
our evaluation, we directly derive the geometrically transformed HBJSON file from the
authoring tool, while the semantic enrichment step is based on the exported IFC model.

5.3.3 Semantic enrichment

This section first introduces the relevant databases of space types and construction sets
by NREL. Next, the matching method is described. First, the use case of matching space
types to architectural rooms, and second, the use case of matching constructions with
thermal properties to BIM elements is introduced. Finally, we explain the workflow of the
integrated enrichment process for both use cases. Generally, for this step IFC models
are used as input to semantically enrich the previously geometrically transformed BEM in
HBJSON format, which will be finally used as input file for the BEPS.
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Figure 5.2: Semantic matching from BIM to BEM of space type (use case "room") and
constructions sets (use case "elements") for an example room and its elements
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Figure 5.2 shows exemplarily the two use cases of semantic matching from a simple
Building Information Model in German to the derived Building Energy Model with English
terminology. Semantic matching is the first step in semantic enrichment. It is divided into
the two use cases of matching space types to architectural rooms (use case "room") and
matching constructions and construction sets with thermal properties based on the BIM
elements and its materials of the BIM model (use case "elements"). A construction set is a
set of different construction types, such as walls, slabs, windows, etc., and will be defined
in more detail in the following section.

Relevant databases

For enriching the BEM with room-specific space types, also known as program types
or end-use load profiles, we use the standardized database by the National Renewable
Energy Laboratory (NREL) of the U.S. Department of Energy (Wilson et al., 2021) providing
the target terminology. Space types are necessary for building energy simulations and
contain all relevant MEP settings and information related to a room or zone. It contains
23 different building types and 224 different space types, and its ontology is shown in
Figure 5.3, including internal loads of lighting, infiltration, ventilation, electric equipment,
and different schedules. For matching the semantically most similar space type, we
use the identifier which consists of the year of the space types, e.g., 2019, the main
usage or building type, such as "Large Office", and the room or zone-specific usage, e.g.,

"open office", "corridor", or "conference". For the enrichment step, we add all information
attached to the matched identifier.

For enriching the construction sets of the building, we use the official construction set
and material database by OpenStudio, which was also co-developed by NREL (NREL,
2024). The ontology of these construction sets is shown in Figure 5.4. Every construction
set consists of a "WallFloorSet", a "RoofCeilingSet", a "DoorSet", and an "ApertureSet".
Apertures consist of a window construction, while walls, floors, roofs, and ceilings are
opaque constructions. Doors can be either opaque or window construction. Opaque
construction consists of one or multiple opaque materials that have different thermal
properties. Window constructions consist of a glazing system, the glazing material and
the gas filling, each having different thermal, and radiant properties.

For the construction set matching, the opaque construction and opaque materials identi-
fiers are important. For example, the construction "Typical Insulated Exterior Mass Wall-
R10" consists of the materials "Stucco", "CONCRETE HW RefBldg", "Typical Insulation-
R8", and "Gypsum". The thickness description in the identifier can be neglected in the
matching process.
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Figure 5.4: UML diagram of construction sets, and opaque & window constructions &
materials by the NREL (NREL, 2024)

Matching method of space types to architectural rooms

As shown in Figure 5.5, the matching method consists of three main steps: Program
filtering (1), similarity calculation (2), and finally, space type selection and model enrich-
ment (3). These steps follow the same logic as in previous proposed methods for LCA
enrichment (Forth, Abualdenien, & Borrmann, 2023). The filtering step is necessary to
narrow down the solution space. First, the main usage is filtered consisting of several
space type identifiers, as shown in Section 5.3.3. Next, for every |fcSpace, the semantic
similarities of the whole expression and of the tokenized space are calculated. Different
fine-tuned LLM are used for the encoding, and for the similarity calculation, the cosine
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similarity of the two encoded vectors is calculated. The maximum similarity of both the
tokenized and the whole expression is identified and iterated through all filtered space
types of the main usage. Finally, the space type with the highest similarity is selected to
the energy model for each IfcSpace for further enrichment in the next step.

1 Legend: Nodes: Workflows:
Eo Building Usage @
% = IFC Model — general
aE Program type <--
Program ;
! —>
2 : types (NREL) matching
1
1
- ' NLP (fine- ---» iteration
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5 ' i
K Encode Encode Encode i Similar. a.nal.
2 L & matching
e 1
a . . .. . . . U
:; Similarity Similarity L
IS token span E
E :
%) A 1
Maximum !
Similarity
3

Select Program type with
maximum Similarity

Program
selection

Figure 5.5: Matching space types to architectural rooms based on IfcSpaces using
Semantic Textual Similarity

Matching method of thermal constructions to elements

Following the logic of the space type matching, see Section 5.3.3, and the LCA element
matching (Forth, Abualdenien, & Borrmann, 2023), the construction matching method
consists of three main steps: construction filtering (1), similarity calculation (2), and
construction selection and model enrichment (3), as shown in Figure 5.6. Nevertheless,
the method is more complex, as more filters need to be applied to narrow down the solution
space, and the matching can happen on the construction or element level, as well as on
the material level, similar to the element matching in (Forth, Abualdenien, & Borrmann,
2023).
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Figure 5.6: Matching thermal constructions to lfcElements using Semantic Textual Similar-
ity based on material and element level

First, for every lfcElement, the unique IfcTypeObject is identified to decrease the calcula-
tion effort by matching only based on unique object type descriptions and materials. For
example, IfcTypeObject can originate from the same family in Autodesk Revit. Next, for
every lfcTypeObject, the availability of IfcMaterials is checked. If there are no IfcMaterials
available in the model, the matching method can still be processed based on the IlfcType-
Objects. If IfcMaterials are available, the matching method iterates through all available
materials for each IfcTypeObject.

For the filtering step (1), for every IfcElement, the IfcClass is identified to narrow down the
solution space. According to its internal description, we structured the NREL constructions
database into the following groups, which can be directly assigned the IfcClasses:
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- External Walls ("lIfcWall" or "lfcWallStandardCase" or "lfcCurtainWall" and "isExter-
nal")

- Internal Walls ("lIfcWall" or "lfcWallStandardCase" and not "isExternal")
- External Floor ("lIfcSlab" and "isExternal")

- Internal Floor ("lfcSlab" and not "isExternal")

- Roofs ("lIfcRoof)

- Ceiling ("lfcCovering")

- Doors ("lfcDoor")

Windows ("lfcWindow")

Window constructions already have a different schema, are identified with "lfcWindow",
and don’t have to be restructured. After the filtering, all relevant NREL constructions are
iterated, and their related materials are iterated, too.

In the next step (2), the similarity calculation takes place, both on construction and
on material level. For every expression, IfcTypeObiject, IfcMaterial, NREL construction
identifier, and NREL material identifier, the whole expression or spans and the tokenized
one are encoded, and the similarities are calculated using the cosine similarity. The
results lead to four similarities between the tokenized and the whole construction or
element expressions, as well as the tokenized and whole material expressions. In the
next step, the maximum similarity on the construction level and on the material level for
each IfcTypeObject are identified and iterated over all filtered NREL constructions and
their iterated materials. However, as in the NREL database, there are a lot of similar
constructions, which only differ by the thermal resistance and its classification, for example,
"Typical Insulated Exterior Mass Wall" and "Typical Insulated Exterior Mass Wall-R2". We
are neglecting these classifications and excluding similar ones from the matching. Instead
of 201 constructions, we take 20 different ones into account.

For the final step (3), these two similarities are compared. If the maximum similarity of
the construction level is higher than the similarity on the material level, this construction is
selected for enrichment in the next step. If the similarity on the material level is higher, the
construction of the most similar material is selected.
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Figure 5.7: Workflow of semantically enriching BEM for space types and construction sets
using previous matches

Figure 5.7 describes the workflow of enriching the Building Energy Models (BEM) using the
previous matches. The BEM is iteratively enriched for each architectural room (lfcSpace)
first (1.) and element afterward (2.). For every IfcSpace, the matched space type is
selected, and all relevant information from the NREL database, as previously described in
Figure 5.3, are enriched in the according BEM schema.

Next, each IfcElement, which is connected to each |fcSpace, is iterated, and the matched
constructions of its IfcTypeObject are selected for enrichment. The construction is updated
in the BEM. However, every room needs a complete construction set consisting of a wall
set, floor set, roof/ ceiling set, door set, and aperture set. Therefore, we identify the
IfcClass for each matched construction and assign it to the according set, as described
in the previous chapter. In this step, we also distinguish between internal and external
elements. However, we are excluding windows from the matching approach and only
assign generic constructions due to the specific naming of its thermal constructions and
materials.

By iterating through all elements of each IfcSpace, we create a step-by-step construction
set by enriching the according construction. Missing constructions are replaced by generic
constructions. Finally, each room gets a unique construction set assigned based on the
previously matched constructions of the BIM model.
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5.3.4 Fine-tuning LLM

In this section, we first describe the general workflow for multilingual fine-tuning pre-trained
LLM for adapting domain knowledge. Next, we differentiate different strategies for adapting
the fine-tuning process and improving the overall matching performance.

General LLM fine-tuning workflow

We propose three steps for multilingual LLM fine-tuning, consisting of (a) the dataset
pre-processing, (b) the monolingual LLM fine-tuning, and (c) multilingual LLM fine-tuning.
Figure 5.8 shows the general workflow for multilingual LLM fine-tuning. Generally, we used
different epochs for fine-tuning: 1, 5, 10, 15, and 20. We tested even more epochs, but as
the results overall decreased, we limited it to 20.

In the first step (a), we are preparing all relevant monolingual and multilingual data sets.
The main input contains the German room description, element name, and material infor-
mation of the BIM model, as well as the manually matched space types and construction,
including their materials. This input is split into, first, the monolingual matching pairs,
including the BIM information and German translation of the manual matches, and second,
the multilingual translation pairs of the German and English NREL databases. Further-
more, we include further domain knowledge, such as BIM-specific abbreviations in the
German language (Helmus et al., 2021), as well as multilingual material pairs by Madaster
(EPEA GmbH, 2022).

In the next step (b), we are first fine-tuning the manual matches in German language only
following Reimers’ methodology of Sentence Embeddings using Siamese BERT-Networks
(Reimers & Gurevych, 2019). We are using the German BERT model as the base model
(‘bert-base-german-cased’) and, therefore, the BertTokenizer for the tokenizing step. As
one of the fine-tuning strategies, we propose different loss functions for the mean pooling
for converting token embeddings into sentence embeddings.
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Figure 5.8: General workflow for multilingual LLM fine-tuning

In the final step (c), we proceed with the multilignual fine-tuning following Reimers’ Knowl-
edge Distillation for multilingual Sentence Embeddings (Reimers & Gurevych, 2020). The
previously fine-tuned monolingual LLM serves as a monolingual student model. Further-
more, we are testing different multilingual student LLM for the fine-tuning process. This
step uses the MSE loss function to optimize the matching performance.

Strategies for fine-tuning domain-specific LLM and improving matching performance

We propose four different strategies for the monolingual fine-tuning process and improving

the overall matching performance:

1. Applying different loss functions for monolingual fine-tuning, such as

a. Cosine Loss,

b. Contrastive Loss or

c. Multiple Negatives Rranking Loss (MNRL)

2. Adding negative/ contradicting word pairs (already included in MNRL)

3. Adding abbreviations, including

a. general ones in the AEC industry and

b. about construction and material nomenclature usually given in German BIM

practice
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4. Adding context, such as IfcClasses, isExternal, classifications using Softmax Loss
Function and multiple labels

The first two strategies of testing different loss functions and additional contradicting word
pairs are technically driven. The following two strategies, however, follow the aim of
incorporating domain knowledge using abbreviations and BIM-related context information
into the fine-tuning process of the LLM to increase the matching accuracy. As shown in a
previous study (Forth, 2023b; Forth, Abualdenien, & Borrmann, 2023), domain-specific
abbreviations were a big challenge for the STS-based matching approach. We can
differentiate between abbreviations in the field of BIM, as well as general construction
materials-related abbreviations. The last two strategies can’t be applied to the room-
specific fine-tuning, as the context is not given, and the BIM- or AEC-specific abbreviations
are not applied in the room naming.

We propose two main different strategies for the multilingual fine-tuning process and
improving the multilingual matching performance:

I. using different multilingual student LLM, such as

A. LaBSE,
B. XLM-RoBERTa and
C. Distilluse-v2

II. adding more multilingual pairs of materials.

Similarly to the monolingual strategies, the first multilingual strategy (I) follows a pure
technical motivation to select the best performing multilingual student LLM. The second
strategy (Il) tries to include further multilingual domain knowledge by using domain-specific
material translations from other databases, but is not applied to the room-specific fine-
tuning.

Combinations of proposed strategies

In Table 5.1 the overview of all possible combinations of different for fine-tuning LLM
and improving matching performances are shown. The table is divided by mono- and
multilingual fine-tuning steps, as well as by the two matching use cases of room-specific
matching space types and element-specific matching of thermal constructions, and finally
also the different strategies themselves.

Strategies 3 to 4 and Il are not available for room-specific matching but element-specific
matching only. Furthermore, all monolingual strategies can be combined with all multilin-
gual strategies. Therefore, we select the best-performing monolingual fine-tuned LLM for
further multilingual fine-tuning.
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Fine-tuning monolingual multilingual
Matching use case room & element element room & element elem.
Strategy ia 1b 1c 2 3a 3b 4|1A IB IC 1
1a CosinelL 0 X x) x) X X X X
1b ContrastiveL o) X (X)) (x) X X X X
1c MNRL o] incl. X X X X X X

| 2 Negative pairs X X incl. o X X X X X X
3a AEC-Abbr. x) x) x X 0o X X X X X
3b BIM-Abbr. x) (%) X X X 0 X X X X
4 Context labels 0| X X X X
IA LaBSE X X X X X X X| o X
IB RoBERTa X X X X X X X o] X
IC Distil.-v1 X X X X X X X 0 X
Il Multil. mater. XX X X X X X|x x x o

Table 5.1: Overview of combination of different mono- & multilingual strategies for fine-
tuning domain-specific LLM and improving matching performance

5.3.5 Building Energy Performance Simulations

As the main focus is on the semantic enrichment of BEM, we define the annual energy
demand simulation as the primary BEPS indicator to evaluate the impact of our matching
method. The results of the annual energy demand simulation are measured by the energy
use intensity (EUI) across the conditioned floor area in [kWh/sgm], which is, in our case,
the same as the total model floor area. We use Ladybug Tools and Pollination (Pollination,
2024) as an interface to run EnergyPlus simulations on a cloud server (EnergyPlus Devel-
opment Team, 2010). Besides the results as HTML files, providing detailed information
about monthly EUI results, the overall EUI results are divided into heating, cooling, interior
lighting, interior equipment, and pumps.

5.4 Evaluation and results

This section shows the evaluation and results of the proposed methodology. First, we
introduce five real-world case studies. We use three for fine-tuning and two for testing
and evaluation. Next, we are evaluating the results of the domain-specific fine-tuned
LLM for the use case of matching rooms and elements using for each using different
strategies. Furthermore, we are showing the results of the BEPS using the previous
matching approach and the proposed enrichment workflow. Finally, we are discussing the
limitations of the proposed approach.
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5.4.1 Case studies and datasets

All case studies are new building designs, mainly for office usage, modeled by different
architectural offices. As the case studies are new constructions, we can assume the latest
standards for the space types and construction sets, in our case, from the year "2019".
For the main usage or building type, we set "Large Office", which covers most of the room-
specific usages with only a few exceptions, e.g., canteen or parking. First, we exported
the model as an IFC4 design transfer view, including base quantities and second-level
space boundaries, as shown in Figure 5.9. Next, we used the Revit-Plugin from Pollination
(Pollination, 2024) to export a Building Energy Model from Revit as HBJSON data format
only focusing on the geometric transformation steps. For the semantic enrichment step,
the IFC model and its information about architectural rooms and elements, including their
materials, are used.

Training case studies Testing case studies

Revit

IFC

HBJSON

Figure 5.9: Overview of five case study buildings as Revit model (top), IFC exports (middle),
and manually transformed energy model (down)

Case studies 1, 2, and 3 were used for training the LLM. Case studies 4 and 5, consisting
of one small and one more complex building, were used to test the matching method,
evaluate the matching accuracies and evaluate the results of the BEPS. Table 5.2 shows
the overview of the extracted datasets from the training and testing IFC models for mono-
and multilingual fine-tuning for the different matching use cases, such as room-specific
matching of space types and element-specific matching of thermal constructions.
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Datasets training testing
Mat. use case Fine-tuning  Source positive | negative
monolingual Case studies 2,3,4 205 3.619
Room — . 86
multilingual  Case studies 2,3,4 129 -
Case studies 1,5 484 3.619
monolingual AEC-abbr. 571 284.114
Element BIM-abbr. 155 21.763 206
Context labels 2.065 3.619
multlingual Casg studieg 1,5 156 -
Multil. materials 387 -

Table 5.2: Overview of used datasets of the case studies and domain-specific strategies
for the matching use cases and divided by the mono- & multilingual strategies fine-tuning

As we used whole case studies for testing, the training datasets of the room matches
are around 70%, while the testing datasets are ca. 30%. For the element matching,
the ratio is slightly shifted to 66% training and 34% testing datasets. The multilingual
pairs derived from the training case studies are the unique space types and the thermal
constructions and materials. For the domain-specific abbreviations, we used 571 general
AEC abbreviations and their descriptions (Bundesamt fiir Bauwesen und Raumordnung,
2021) and 155 BIM-specific abbreviations (Helmus et al., 2021), such as construction types
or material abbreviations. For the multilingual material datasets, we used 387 material
translations created by EPEA provided by Madaster (EPEA GmbH, 2022).

The negative pairs are derived from the positive ones and take all potential contradicting
datasets into account. For the multilingual fine-tuning, no negative pairs are available for
training.

The NREL databases are provided by Ladybugtools in a JSON format and, therefore,
can be easily parsed without any preprocessing. Updates of these databases are also
provided by Ladybugtools when installing the latest versions of Honeybee.

5.4.2 Evaluation of matching space types to architectural rooms

In this section, we evaluate the results of the use case of matching space types to
architectural rooms. First, the monolingual fine-tuning results are evaluated, followed by
the multilingual ones. Finally, we discuss the analysis results of detailed error clusters and
the wrong matching using confusion matrices.

Evaluation of different monolingual strategies

Despite Komatsuzaki’s recommendation of just using one epoch for training Large Lan-
guage Models (Komatsuzaki, 2019), it usually applies to expensive training of large
datasets. In our case, we are fine-tuning based on smaller datasets, so we use multiple
epochs for fine-tuning. As we evaluate the matching accuracy in a second step for multiple
combinations, the training with multiple epochs is still expensive. For this reason, we train
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in steps of five (1, 5, 10, etc.) and maximum twenty epochs, as several test with more than
20 epochs (25, 30, 50) showed lower matching accuracy results.
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Figure 5.10: Results of the accuracy of monolingual matching architectural rooms to space
types using different loss functions, negative pairs, and training epochs

Figure 5.10 shows the matching accuracy of strategies 1a, 1b, and 1c using different
loss functions (CosineL, ContrastiveL, MNRL) in combination with adding negative pairs
over training of several epochs. Cosine Loss and Contrastive Loss perform worse without
negative pairs and lead to insufficient matching performance. Using negative pairs, the
different loss functions, Cosine Loss, Contrastive Loss, and MNR Loss, perform similarly.
Increasing the epochs more than one significantly improves the matching accuracy up to
over 80%. The maximum is reached by MNRL (S1c) with training 15 epochs. Furthermore,
MNRL is much cheaper in training compared to CosineL and Contrastivel including all
negative pairs.

Evaluation of different multilingual strategies

For the multilingual fine-tuning, we use the best performing monolingual, fine-tuned LLM
from the previous Section 5.4.2 as the teacher mode, S1c trained on 15 epochs.
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Figure 5.11: Results of the accuracy of multilingual matching architectural rooms to space
types using different student models and training epochs

Figure 5.11 indicates that multilingual fine-tuning using one epoch leads to insufficient
matching accuracies. Generally, XLM-RoBERTa (S1cIB) performs worse the other two
student models. Furthermore, only by a higher number of epochs the multilingual fine-
tuning, the matching accuracy reaches similar results compare to the other two base
models, which are around 42%. The best performing multilingual, fine-tuned LLM follows
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the combination of S1clA with a matching accuracy of 50%, using LaBSE as the base
model and being trained on 20 epochs. However, the matching accurarcy is significantly
lower than the monolingual ones.

Error analysis of fine-tuned LLM for room matching
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Figure 5.12: Error analysis of matching space types to rooms using different mono- and
multilingual base-models and fine-tuning strategies

In Figure 5.12, we identify different error clusters for the best-performing mono- and
multilingual LLM in comparison to the best-performing mono- and multilingual base models
("German BERT" and "Distiluse-v1"). In green, the correct matches for each LLM are
shown and correspond with the matching accuracy of each LLM. The other colors represent
wrongly matches space types matchings.

In red, for five rooms, the manual matched space types were from a different building type
and not "LargeOffice", but the manual matches were "Retail", "Security Screening", or
"Laundry". For this reason, no correct matching could be performed. To avoid this issue
in the future, we can either consider the two main usage types or extend specific space
types also for other main building usages.

For the other errors, we clustered them according to their manually matched space types.
The errors in yellow represent those clusters that could be fully rectified by fine-tuning the
monolingual LLM. Also, the number of blue-colored error clusters could be significantly
reduced to a minimum of 5,81% in total. However, two electrical or mechanical rooms and
one room each, lobby and storage, were wrongly matched.

The multilingual base model "Distiluse-v1" performs better than the monolingual base
model "German BERT". However, the multilingual fine-tuning based on the best-performing
monolingual LLM doesn’t significantly solve any error cluster. On the contrary, the correctly
matched IT rooms were wrongly matched in the fine-tuned LLM. This shows that the
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multilingual fine-tuning does not give reliable matching results, in contrast to the translated
version of the best-performing monolingual one.

In Figure 5.13, we compare the detailed errors for each space type of the building usage
"LargeOffice" using confusion matrices and comparing the monolingual base model on
the left side and the best performing fine-tuned LLM on the right side. As described above,
the multilingual LLM has lower accuracy than the translated monolingual. Therefore, we
compare the base model (German BERT) with the LLM by following the strategies S1c
trained with 15 epochs.
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Figure 5.13: Normalized confusion matrices of base model and best performing LLM of
matching space types to rooms

For the space types "Security Screening", "Laundry”, and "Retail", which are not part of
the building usage "LargeOffice", we can see the mismatches to "IT-Room", "Storage", and
"Parking". Furthermore, significant confusion can be identified for "Elec/MechRoom" and
"Main Mechanical" with "Service Shaft". Only minor confusion appears for "BreakRoom"
instead of "Restroom”, "Lobby" instead of "Storage", and "ClosedOffice" instead of "Lobby".
Overall, the confusion matrix of S1c_15 reflects the promising results of the previous
evaluations and error analysis.

5.4.3 Evaluation of matching thermal constructions to elements

In this section, we evaluate the results of the use case of matching thermal constructions
to the elements in the BIM model based on the similarities on the element and material
level. First, we discuss the monolingual fine-tuning results, followed by the multilingual
ones, and finally concluding with the detailed error analysis and confusion matrices.
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Evaluation of different monolingual strategies
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Figure 5.14: Results of the accuracy of monolingual matching BIM elements to thermal
construction using different loss functions, negative pairs and training epochs

Figure 5.14 shows the matching accuracies of the monolingual fine-tuning strategies of
using different loss functions for elements matching compared to the base model (German
BERT) using different training epochs. Adding negative pairs significantly improves the
matching accuracy for Cosine and Contrastive Loss. However, MNRLoss performs slightly
better than the other loss functions and has the highest accuracy of 40,82% using one
epoch for training. For this reason, we’ll use MNRL for fine-tuning the other strategies
in the next steps, including AEC-specific abbreviations (S3a) and typical BIM modeling
abbreviations (S3b) and the combination of both (S3ab).
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Figure 5.15: Results of the accuracy of monolingual matching BIM elements to thermal
construction using MNRL,different domain-specific abbreviations and training epochs

Figure 5.15 depicts the results of matching accuracies using the above-mentioned domain-
specific abbreviations (S3a-c) using MNRLoss (S1c) compared to the base model and
the version of S1c without abbreviations. Adding BIM-specific abbreviations increases
the matching accuracy up to 41,33% using 15 epochs for training. The overall maximum
of 41,84% is using both abbreviation sources and training with 20 epochs (S1c3ab).
Increasing the number of epochs higher than 20 does not improve the matching accuracy.
However, compared to the use case of room matching, the accuracy are significant lower,
which will be analyzed in more detail in Section 5.4.3.
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Evaluation of different multilingual strategies
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Figure 5.16: Results of the accuracy of multilingual matching elements to constructions
with thermal properties using different student models and training epochs

Figure 5.16 shows the matching accuracies of multilingually matching thermal construc-
tions to BIM elements using different fine-tuning strategies and epochs. We used S1c3ab
as the best-performing monolingually fine-tuned LLM (S1c3ab) as the teacher model. In
contrast to the multilingual fine-tuning of space type matchings, increasing the epoch
improves the matching accuracy for all student models. The maximum accuracy of 43.88%
is reached by the student model RoBERTa with five training epochs.

Strategy Il, adding more multilingual pairs of materials, slightly improves the matching
accuracy for the student models RoBERTa (S1c¢3ablB) and distiluse-v1 (S1c3ablC) but
not for LaBSE (S1c3ablA). However, the fine-tuning without SlI is significantly lower for
five training epochs.

Overall, the multilingual LLM fine-tuning combination of S1c3ab_20_IB_5 has the highest
matching accuracy with 43.88%. This one has slightly higher accuracy than the best-
performing monolingual ones. However, we conduct a more detailed error analysis on the
best-performing mono- and multilingual ones comparing it to the base model (German
BERT).

Error analysis of fine-tuned LLM for element matching

In Figure 5.17, we clustered the errors of the base model and the three best-performing
LLM, S1c_1, S1c8ab_20, and S1c3ab_20 combined with SIB_5 according to the element
construction types (interior and exterior walls, doors, ceilings, floor slabs, roofs). We can
identify the increased correct matches from 31,12% to 40.82%, 41,84%, and 43.88% for
the different fine-tuned LLMs.

While the high errors of wrongly matched exterior walls were only reduced by around 6%
each for S1c_1, floors, doors, and ceilings slightly decreased, and the roof was matched
correctly. However, the error cluster of the interior wall significantly increased by over 15%.
A similar trend can be observed for S1c3ab_20. Here, we have slightly better results for
the cluster of interior walls and floors but slightly worse for exterior walls.
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Figure 5.17: Error analysis of matching thermal constructions to elements using different
mono- (and multilingual) base-models and fine-tuning strategies

For the multilingally fine-tuned LLM with the highest matching accuracy S1c3ab_20_IB_5,
the worst matching error occurs for interior walls with 22.45% wrong matches and exterior
walls with 12.24% of wrong matches. Nevertheless, we identify the best improvements for

floors with only 11.73% wrong matches.
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Figure 5.18: Normalized confusion matrices of the base model and three best-performing
LLM of matching thermal constructions to elements

To have a more detailed analysis of each error cluster, we visualize the results in confusion
matrices for the different LLMs, as shown in Figure 5.18. We grouped the confusion
matrix according to the construction clusters to have a better overview of mismatches and
analyze it for the three best-performing LLMs together. For interior walls in all three LLMs,
we can identify an improvement for matching "Insulated Interior Wall" and only minor
deterioration for "Interior Wall". However, uninsulated interior walls are mostly mismatched
with insulated ones. For exterior walls, we identify different trends. While in the LLM using
abbreviations, we have improvements for insulated mass walls; this is not the case for
S1c_1. Nevertheless, in that LLM, we see improvements for uninsulated mass walls, which
are mismatched in the other two LLMs. All three LLM show mismatches for insulated
steel-framed walls; only S1c3ab_20 shows some correct matches.
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For doors, most of them are matched with "Insulated Metal Door" and not with "Interior
Door". As we only have one unique roof construction, all roof matches are correct. The
biggest improvements in the matching accuracy are identified for ceilings in all three LLMs.
While exterior mass and wood joist attic ceilings are correctly matched, insulated exterior
mass ceilings and interior ceilings are often confused, depending on the LLM. For the
slab floors, no LLM correctly matches carpeted ones, but mostly matches "Insulated Slab
Floor". The multilingually fine-tuned LLM has the best matching performance for this
cluster, as it almost always matches uncarpeted slab floors correctly.

Generally, the difference between "insulated" and "uninsulated" or "carpeted" and "un-
carpeted" is often confused. This usually happens if other materials that exist in both
elements are identified as semantically most similar. The insulation or carpeting material
does not seem to change the matching results. Therefore, the proposed element-specific
matching does not produce overall sufficient results evaluating unique constructions. The
differences for the whole model and effects on the BEPS results will be evaluated in the
following Section 5.4.4. One main limitation is that the NREL databases for construction
with thermal properties do not differentiate between different insulation materials in their
material or construction naming but rather between different thermal resistances of the
constructions and materials. Therefore, generic materials are difficult to correctly identify.

Fine-tuned LLM Matching accuracy F1-score (macro)
Base model (German BERT) 31.12% 27.16%
S1c: 1 epoch 40.82% 43.01%
S1c3ab: 20 epochs 41.84% 44.29%
S1c3ab: 20 epochs & SIB 5 epochs 43.88% 30.20%

Table 5.3: Matching accuracies and F1-scores of best-performing fine-tuned LLM for
thermal construction matching

Before BEM enriching, we compare the matching accuracy and F1-scores of the three
best-performing LLMs in Table 5.3. As we have an imbalanced dataset, we use the
macro average for the F1-score. We can identify that the multilingually fine-tuned LLM
has the highest matching accuracy with 43.88%, but only a F1-Score of 30.20%. The
other fine-tuned LLM S1c_1 and S1c3ab_20 have significantly better F1-scores. The most
balanced fine-tuned LLM is S1c3ab trained with 20 epochs, which we will use for BEM
enrichment and evaluation of the BEPS results.

5.4.4 Evaluation of resulting BEPS

In Figure 5.19, we show an overview of the total results of several BEPS in the shown
values, based on the energy use intensity, differentiating its different end uses, such as
Heating, Cooling, Electric Equipment, Interior Lighting, and Water Systems in the colors.
We compare the different BEM enrichment processes, such as using generic profiles,
manual enrichment, as well as automated BEM enrichment using the best-performing
fine-tuned LLM for both use cases "rooms" and "elements". Generally, we differentiate
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between the room-specific enrichment steps, where we use the manual matches for the
elements, and the element-specific enrichment of thermal construction, where we use the
manual matches of the space types. Finally, we combine both use cases and perform a
fully automated enrichment for both room- and element-specific enrichment. The manual
enriched version is set as ground truth.
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Figure 5.19: Overview of EUI results [kWh/sgm] of the two case studies using the different
enrichment strategies of generic profiles, manual enrichment, and enrichment using the
best performing LLM for room-specific, element-specific matching and both

Table 5.4 shows the deviations of the automatically enriched BEM models and the result-
ing simulated annual energy demand compared to the manually enriched ground truth.
Furthermore, the table is clustered by case studies and matching use cases "rooms" and
"elements" as defined in Section 5.3.3. The matching use case "generic" is when only
using generic space types ("Generic Office Program") and construction sets ("Generic Con-
struction Set"). Matching use case "both" includes the use cases "rooms" and "elements"
at the same time.

Deviation in BEM model Annual energy demand (EUI)
Matching use case || rooms elements | generic rooms elements both
Case study 4 6.25% 28.75% | 45.18% 1.83% -2.80% -0.90%
Case study 5 0.00% 20.00% | 36.02% 0.00% 2.11% 2.11%

Table 5.4: Deviations in BEM models and simulated annual energy demand (EUI) com-
pared to manually enriched BEM clustered by case study and use case or enrichment
method

Generally, we can identify a significant difference between generic enrichment and the
manual enriched BEM for both case studies, as shown in Figure 5.19 and Table 5.4. The
computed annual energy demand of the generic enrichment for case study 4 differs by
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45.18% and for case study 5 by 36.02% compared to the manually enriched ground truths.
This underlines the necessity of more precise enrichment than only using generic profiles.

Following the high accuracy of the room-specific matching of space types, we only see
a minor deviation between the LLM-based enrichment and the manual ground truth. In
case study 4, we have a small deviation of 1,83% for the total EUI. Although the matching
accuracy of unique room descriptions and elements is lower, we have a few rooms, like
"ClosedOffice" or "Conference", which occur more often. In total, we only for 6.25% of
all rooms differently matched space types for case study 4. The deviation in the EUI
simulation results is even lower, with 1.83%. For case study 5, we have no deviation as
the room-specific matching results are identical to the ground truth. Therefore, there is
also no deviation in the simulation results of the annual energy demand.

For the element-specific matching of constructions with thermal properties, we have lower
deviations to the ground truth for the whole BEM. The reason is similar to the room-specific
matching, that some correct matches, such as insulated interior and exterior walls, occur
in more rooms and have, therefore, a higher impact. In total, the elements differ by 28.75%
for case study 4 and 20.00% for case study 5 compared to the manually enriched BEM.
However, the EUI results for both case studies only slightly differ, with -2.80% for case
study 4 and 2.11% for case study 5.

If we are considering both matching use cases together, the deviations of the simulated
annual energy demand results are even lower. As for case study 5, only the matched
elements differ from the ground truth, the total deviation is 2.11%. For case study 4, we
have a difference of 0.90% of the EUI results compared to the manually matched BEM.

5.4.5 Limitations

The main limitation, but also the main challenge, is the availability of sufficient real-world
case studies and matching datasets for training and testing. We focused on office buildings
as a main usage of the buildings and need native BIM models in Revit to export BEM
models.

The overall results showed that small deviations of the simulated EUI results for the
room-specific matching of space types nor the element-specific matching of thermal
constructions are achieved and sufficiently accurate for BEPS in early design stages.
Therefore, this approach can assist with the matching process and can be integrated into
a decision support tool.

Additionally, we limited the strategies for fine-tuning and improving the matching perfor-
mance to testing different loss functions, including negative pairs, domain-specific ab-
breviations, adding context labels, different student models, and existing domain-specific
material translations. We did not further develop loss functions or the basic architecture of
pre-trained LLM. However, we tested different epochs for the training process.
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Furthermore, we focused only on German models and abbreviations. The requirements
and additional datasets might vary in different countries. Also, there might be differences
in the performance of the base model of BERT in different languages due to the availability
of its trained data.

In the use case of matching thermal constructions to BIM elements, we only took unique
constructions into account. Those with similar names but different thermal resistances of
the insulating materials were neglected and only the typical constructions were included.
Furthermore, due to the specific material names of window elements and materials, we
excluded these constructions from our matching approach, too, and only assigned a
generic construction.

5.5 Conclusion and future research

In this publication, we aim to close the research gap of semi-automated enriching BEPS-
related information robustly based on real-world Building Information Models in early
design stages. Therefore, we proposed a methodology using Semantic Textual Similarities
and different strategies for fine-tuning Large Language Models. We enrich space types
based on the semantically most similar architectural rooms using the name attribute of
IfcSpaces and MEP constructions including thermal properties based on IfcElements and
IfcMaterials. We trained the datasets of manual matches of three case studies and tested
and evaluated the matching results using two different case studies.

Our proposed methodology showed that Semantic Textual Similarity and fine-tuning of pre-
trained LLM support the two multilingual matching use cases of space types to architectural
rooms and thermal construction to BIM elements in early design stages to answer our first
research question. However, we had to separate the fine-tuned LLM for both use cases of
room-specific space type matching and element-specific matching of constructions with
thermal properties. Next, we first evaluated the monolingually fine-tuned LLM and the
multilingual ones afterward.

We also need to differentiate between both use cases for the second research ques-
tion about which fine-tuning strategies are improving the matching accuracy, as not all
strategies can be applied for room-specific matching of space types. Generally, we can
see for both use cases that adding negative pairs significantly improves the accuracy,
and MNRLoss leads to the highest accuracies with the least computing time. Adding
domain-specific abbreviations also improved the matching of thermal constructions to BIM
elements.

To answer the third research question of whether a fully automated or semi-automated
matching is possible to ensure reliable BEPS results, we need to differentiate between the
two use cases. For the room-specific enrichment, we reached high matching accuracy.
The results of matching the constructions to elements show some confusion in case one
thermal material appears in multiple constructions. Therefore, we need to develop the
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element-specific matching approach and the quality of the database of the construction
and materials with thermal properties. However, in total, the BEPS results only slightly
deviated using the fully automated enrichment compared to the manual enriched BEM
based on the two testing case studies.

In our future research, we also aim to include the geometric transformation to surface
BEM models based on IFC to incorporate this approach in a holistic open BIM workflow.

Additionally, we want to extend the scope to more case studies and datasets. This shall
include fine-tuning on different languages, more country- and domain-specific abbrevia-
tions for BIM modeling, and different construction and material databases with thermal
properties. These should have difference in the materials and not only in the thermal
properties to identify more unique matches on material level.
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Chapter 6

BIM4EarlyLCA: An interactive visualization
approach for early design support based on
uncertain LCA results using open BIM

Previously published as: Forth, K.; Hollberg, A.; Borrmann, A.: BIM4EarlyLCA: An
interactive visualization approach for early design support based on uncertain LCA re-
sults using open BIM. Developments in the Built Environment 16, 2023, DOI: 10.1016/
.dibe.2023.100263

Abstract

To meet the European climate goals in the building sector, a holistic optimization of
embodied greenhouse gas (GHG) emissions using the method of life cycle assessments
(LCA) are necessary. The early design stages have high impact on the final performance
of the buildings and are characterized by high uncertainty due to the lack of information
and not yet taken decisions. Furthermore, most current BIM-based LCA approaches
require high expertise and experience in both BIM and LCA and do not follow an intuitive
visualization approach for other stakeholders and non-experts. This paper presents a novel
design-decision-making approach for reducing embodied GHG emissions by interactive,
model-based visualizations of uncertain LCA results. The proposed workflow is based on
open BIM data formats, such as IFC and BCF, and is developed for decision support for
non-LCA experts in the early design stages. With the help of a user study, the prototypical
implementation is tested by 103 participants with different levels of experience in BIM and
LCA based on a case study. We evaluate the proposed approach regarding the support
of open BIM data formats, different LCA visualization strategies, and the intuitiveness of
different approaches to visualizing uncertain LCA results. The user study results show a
broad acceptance and need for open BIM data formats and model-based LCA visualization
but less for visualizing uncertainties, which needs further research. In conclusion, this
interactive, model-based visualization approach using color coding supports non-LCA
experts in the design decision-making process in early design stages.

6.1 Introduction

The AEC industry, which contributes to 40% of the world’s greenhouse gas emissions,
needs to make significant changes to achieve the global climate goals (United Nations
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Environment Programme, 2022). Recent studies have shown the increasing importance
of embodied environmental impacts (Réck et al., 2020).

Life-cycle assessments (LCA) of the whole building are being used as an established
method to evaluate these emissions during the design phase of buildings taking the
operational and embodied emissions of buildings into account. Different environmental
impact indicators, such as Global Warming Potential (GWP), are assessed, estimating the
emitted Greenhouse gas (GHG) emissions. This LCA method ensures current national and
international regulatory frameworks, for example, LEVEL(s), used to verify EU Taxonomy
classification and report ESG conformity (European Commission & Directorate-General
for Environment, 2021).

Schumacher et al. pointed out that Building Information Modeling (BIM) has significant
potential for a loss-free data exchange, as well as for understandable and user-friendly
communication of LCA results (Schumacher et al., 2022). Recent BIM-based approaches
partially automate the LCA calculation process and reduce the assessment effort using
different strategies (Wastiels & Decuypere, 2019). For automatic semantic enrichment,
Sackes et al. highlighted a "combined, optimal use of topological rule inferencing and
machine learning" as a foundational research challenge (Sacks et al., 2020). Fonseca et al.
identified BIM-based "data retrieval and representation based on the needs of nonexperts"
(Fonseca Arenas & Shafique, 2023) as a current research gap in the field of BIM-LCA
integration.

However, most of the current approaches in the field of BIM-based LCA are either using
closed BIM workflows or require a high level of LCA expertise to conduct and interpret the
calculated LCA results. Building owners, clients, or project developers, who usually make
overall decisions, often do not have the required expertise in LCA and are increasingly
using open BIM models. Today’s decision-making of construction and material choices
in industry practice hardly considers environmental impacts. Furthermore, there is high
uncertainty in early design phases, and current BIM-based LCA approaches do not
communicate these to decision-makers. This gap of visualization of environmental impacts
in BIM models, including uncertainties of early design stages for non-experts, has not
been filled yet (Tam et al., 2022).

The main aim of this publication is to close this gap by proposing a conceptual workflow
for interactively visualizing LCA results for design-decision support in early design stages
using open BIM models. Different interactive visual strategies, such as model-based
color-coding or box-plot diagrams, should help non-LCA experts to intuitively understand
the environmental impact of different design variants and select the preferred option.

In summary, we aim to answer the following three research questions:

a) How can open BIM data formats support the design decision-making process for
environmental impacts?

b) Which LCA visualization strategies support non-LCA-experts in the decision-making
of elements and material variants in early design stages?
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c) How can uncertainties of LCA results in early design stages be intuitively visualized?

To answer them, we first propose a workflow for visualizing LCA results for design decision
support based on open BIM Standards, such as Industry Foundation Classes (IFC) and
BIM Collaboration Format (BCF). Second, we test different LCA visualization strategies for
decision-making and uncertainty visualization by a prototypical implementation. Finally,
we test them with a user study to evaluate how they perform for different participants,
differentiating, for example, by their LCA experience.

This publication is structured as follows: Section 6.2 provides an overview of the state-
of-the-art of BIM-based LCA for decision-making, feedback communication using open
BIM data formats, visualization of LCA results, and uncertainties. Section 6.3 presents
the general research method and an approach for an interactive visualization and design
decision support of LCA using open BIM. The proposed workflow is then explained in
Section 6.4.1 and evaluated using a prototypical implementation described in Section
6.4.2 and a user study using a real-world project as a case study provided in Section 6.5.
Finally, Section 6.6 provides the overall findings and recommendations for future research.

6.2 Background and Related Works

This Section describes multiple fundamental topics about BIM-based LCA calculation,
model-based feedback communication, visualization strategies of LCA results, as well as
visualization of uncertainties of LCA results, providing the necessary background for the
following Sections.

6.2.1 BIM-based LCA for decision-making in early design stages

The field of LCA using BIM models has been increasing over the last few years. Thereby,
it is necessary to use open BIM data formats to enable loss-free interoperability between
different software tools (Borrmann et al., 2021). Industry Foundation Classes (IFC) is
an open BIM data format for semantic-rich geometric building models developed and
maintained by buildingSMART (buildingSMART Technical, 2023b).

Rezaei et al. proposed a BIM-based workflow for LCA calculation using closed BIM and
Revit for early and detailed building design stages (Rezaei et al., 2019). They used a
Monte Carlo simulation to allocate the uncertainty of materials in the early design stages.
Schneider-Marin et al. focus in their approach on uncertainty analysis of LCA using BIM in
early design stages (Schneider-Marin & Lang, 2020). In order to reduce the vagueness
and increase the result precision, they use sensitivity analysis as guidance for design
teams. However, they did not include material uncertainties in the early design stages.
Kamari et al. introduce a BIM-based LCA tool for early design stages (Kamari et al., 2022).
Their study showed that critical hotspots can be identified at a low level of detail at an early
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design stage. However, they did not implement an element-based LCA where the material
with the highest contribution can be identified.

Palumbo et al. propose in their study the use of Environmental Product Declarations
(EPD) in early design stages for LCA based on BIM models (Palumbo et al., 2020). In
their limitation, they state a lack of harmonized and homogenous formats of EPD schemes
and only focus on specific material groups, mainly of the main structure, but excluding the
building envelope. Llatas et al. extends their proposed approach to life cycle sustainability
analysis (LCSA) to also integrate social life-cycle assessment (sLCA) and use IFC4
schema in early design stages (Llatas et al., 2022). Nevertheless, they used Autodesk
Dynamo to calculate and visualize. In the last step, the LCSA results and enrich the IFC
properties and attributes using IfcPropertySet. Soust-Verdaguer et al. propose a similar
approach of LCSA introducing and validating an "element method" from early to late design
stages (Soust-Verdaguer et al., 2022). Although their approach uses element-specific
property sets for GWP, costs, and labor effort, their process is performed manually but can
be automated with an Application Programming Interface (API).

6.2.2 Feedback communication

As most approaches are based on closed BIM workflows, not all project stakeholders,
such as clients or project developers, are involved in the decision-making process. Con-
versely, those methods, which are based on open BIM workflow, face the challenge of
communicating the decision back to the BIM modeler and into the authoring tool.

One established communication method using open BIM workflows includes the BIM
collaboration Format (BCF) (buildingSMART Technical, 2023a). Generally, BCFs help in a
BIM-based collaboration project by communicating and solving issues, such as clashes,
and work similarly to a ticketing service. BCF is an XML-based file format zipped with other
relevant data, such as images. It consists of an issue name with a short text, a viewpoint
including a screenshot of the BIM model, a GUID of the selected elements, descriptions,
a history of the issue, the recipient of the message (group, person, or craft), a status of
information, as well as annotations. The topic details can be directly linked to the BIM
model by storing particular viewpoints and the unique identifiers of the related elements
(Borrmann et al., 2021). At the time of writing, more than 70 software products implement
the XML-based BCF exchange, while almost 30 software products use additionally the
server-based BCF API (buildingSMART Technical, 2022).

Horn et al. propose in their method the integration of IFCXML for a bi-directional BIM-LCA
integration (Horn et al., 2020). To this end, they enrich the BIM model with raw LCA results,
structured by LCA phases and materials, and are linked to the reference data set. Their
approach requires a complex setup, which is not applicable in broad yet.

Zahedi & Petzold introduce a minimized communication protocol specifically for the early
design stages (Zahedi & Petzold, 2019). Meng et al. implemented a web-based communi-
cation platform for discussing early design stages variants(Meng et al., 2020). Different
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functions from a defined workflow were implemented using different data formats, such as
JSON, IFC, or CSV.

6.2.3 Visualization of LCA results

Wiberg et al. document the progression of a visual, dynamic, and integrated approach
to building LCA in their publication (Wiberg, Lavhaug, et al., 2019). They identify various
methods of integration utilizing Visual Programming Languages, such as Dynamo and
Revit or Rhino and Grasshopper, to address dynamic aspects. Additionally, they categorize
other parametric approaches and dashboard implementations that employ Revit models or
district models, typically displaying the models without utilizing them to highlight or visualize
results. In their subsequent proposal, they put forward a visualization method employing
Virtual Reality to enhance stakeholder engagement (Wiberg, Wiik, et al., 2019). In this
approach, Revit models are employed to apply color coding based on LCA results, and VR
is utilized to interact with the model. This is deemed a “good platform for communicating
and visualizing complex data [...] not only for researchers but also for the general public”
(Wiberg, Wiik, et al., 2019).

Utilizing BIM models to visualize LCA results has demonstrated significant potential (Mousa
et al., 2016; Naneva, 2022; Rock et al., 2018a, 2018b; Tsikos & Negendahl, 2017). These
approaches primarily employ color coding in authoring tools to represent the final LCA
results visually. Kiss and Szalay apply a different visual technique for a detailed analysis of
LCA results, utilizing model-based color coding in conjunction with a sunburst diagram to
emphasize specific aspects of the results (Kiss & Szalay, 2019). For their implementation,
Kiss and Szalay utilize Rhino and Grasshopper.

Miyamoto et al. (2022) present a method that suggests incorporating LCA and LCC
findings to serve as a foundation for making design decisions (Miyamoto et al., 2022).
Despite not utilizing BIM models, they discuss the increasing significance of integrating a
spreadsheet approach with BIM workflows, albeit solely focusing on architects.

Hollberg et al. emphasize the importance of considering target users in developing
their user-centric LCA tool, specifically for early planning stages (Hollberg et al., 2022).
The process involved various stakeholders such as architects, sustainability engineers,
consultants, and real-estate developers. However, the visualization of results is limited
to fixed outcomes, and there was no provision for active interaction with the model.
Nevertheless, we partially use this method for tool development using a case study and a
user test, iteratively improving it with stakeholders’ feedback.

In their recent review regarding the visualization of LCA results, Hollberg et al. provide an
assessment of current practices and present a comprehensive overview of various strate-
gies and potentials (Hollberg et al., 2021). The overview clusters different visualization
strategies for LCA results according to its LCA goals and amount of information. We use
this overview for the selection and development of different visualization strategies.
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6.2.4 Visualization of uncertainties

The consideration of uncertainties in BIM models across varying levels of development has
been overlooked for a long time. To address these aspects, Abualdenien and Borrmann
(2020) propose multiple methods for visualizing geometric and semantic uncertainties of
building elements during early design phases. Among the various approaches, they find
that combining color value and transparency to quantify the reliability of semantics resulted
in a relatively high level of intuitiveness and acceptance (Abualdenien & Borrmann, 2020).

Marsh et al. reviewed uncertainties of LCA for the built environment and the different
sources of uncertainties (Marsh et al., 2023). Besides uncertainties due to the Goal &
Scope, the Life Cycle Inventory, and the Life Cycle Impact Assessment, they list the data
quality assessment, human error, and practitioner knowledge/ experience, as well as
the comparability of carbon data sources and tools, data availability, unknown material
specification at early stages, and time requirement for assessments as barriers.

In addition, Stroébele introduces a fuzzy life cycle assessment (fLCA) approach that
accounts for vagueness through distribution curves instead of singular outcomes (Strébele,
2022). Schneider-Marin et al. establish the EarlyData knowledge database for making
material choices during the design stage when detailed information about specific materials
is unavailable (Schneider-Marin et al., 2022). This method visualizes semantic uncertainty
by assessing a wide range of potential material combinations simultaneously using box
plot diagrams to represent the Global Warming Potential (GWP) ranges.

Petrova et al. propose a decision-support framework for sustainable design based on
knowledge discovery from diverse building data. They employ various matching mecha-
nisms between project data repositories and Common Data Environments (CDE), including
data mining, direct semantic queries, and geometric feature matching (Petrova et al., 2019).
The direct semantic queries rely on different ontologies, such as the Building Topology
Ontology (BOT) or product-specific ontologies.

In summary, the discussed publications highlight the significance of using BIM models to
visualize LCA results and present initial approaches. However, the investigation of inte-
gration within an open BIM workflow and the presentation of interactive result exploration
are lacking. This reveals a gap in terms of an interactive design decision tool for non-LCA
experts based on the open BIM method during early design stages. This publication’s
primary focus is to visualize uncertainties in rough model semantics and ambiguous results
comprehensively.

6.3 Method

The approach consists of the following key features:

- Design decision support concept based on IFC models and embodied emission
performance
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- Feedback communication using BCF for LCA

- Visualization of uncertain LCA results using different strategies

Afterward, we briefly explain the steps for prototypical implementation before introducing
the user study and its case study, set up, and the participants.

6.3.1 Research method and workflow

This paper aims to develop an approach for an interactive visualization approach for design
decision support of embodied emissions using open BIM in early design stages. Therefore,
we are proposing a workflow and evaluating it through a prototypical implementation and
a user study. The scope of the embodied emissions focuses on Global Warming Potential
(GWP) as the main environmental impact category.

We are following the research method of design science research (DSR) according to
Pfeffers et al. (Peffers et al., 2012). Doing so, the developed approach represents the
artifact supposed to answer the formulated research questions. We are prototypically
implementing this workflow using a case study to evaluate it. The prototype hereby aims
to demonstrate the utility and suitability of the artifact while the case study is applied to a
real-world situation. Finally, we are setting up an experiment and user study for evaluating
experts versus non-experts regarding the BIM and LCA experience.

1 2
Proposed Prototypical
Framework Implementation Survey
Open BIM data —> IFC-based LCA :|—> Question 13
RQ1 formats for design Proposed interactive —> IFC viewer Question 14
decision support visualization L—»  BCF server —j Question 15

methodology for
design decision

BIM-based LCA support of LCA using —» Measure Question 7

RQ2 visualization open BIM *E: Hotspot analysis —+—— > Question 8
strategies ) Colorcoding ——————%» Question10

(based on previous
developed NLP-based -

Intiuitive semantic model —» Transparency ————» Question9

RQ3 visualization of healing) ———» Colorrange ———— Question 11
uncertain LCA —> Boxplot ——» Question 13

User Study

Figure 6.1: Research method and general workflow for answering the three main research
questions (RQ1-RQ3) by (1) proposing a workflow, (2) prototypical implementation and (3)
User study

Figure 6.1 depicts how the research method is applied to answer these questions by
conceiving a workflow (see Section 6.4.1), providing a prototypical implementation, and
performing a user study. The latter is performed to evaluate the prototypical implementation
using a case study involving 103 participants. It will be introduced in detail in Section 6.4.2
and 6.3.4.
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The semantic healing process introduced in (Forth, Abualdenien, & Borrmann, 2023) for the
IFC-based LCA calculation process is implemented to answer the first research question of
open BIM data formats. Furthermore, a model viewer for IFC models is implemented and
tested, and the BCF server follows open BIM standards of buildingSMART International.
Finally, the questionnaire of the user study proves the importance of the open BIM
workflows and BCF as a standardized communication format.

For the second research question regarding different visualization strategies, we are
implementing three strategies: a model-based color-coding for hotspot analysis, the color-
coding of element and material-specific variants, and box plot diagrams of different design
variants. Besides measuring the performance of different participants according to LCA
reduction and taken time, we are additionally evaluating their feedback on these different
visualization strategies using questionnaires in the user study.

The third research question is about three different visualization strategies of uncertainties,
for which their intuitiveness is evaluated using a questionnaire. The three approaches
include using transparency in the model viewer according to the findings of (Abualdenien
& Borrmann, 2020), gradient color ranges for the different variants and box plot diagrams.

6.3.2 General workflow for design decision support of LCA using open BIM

The overall structure of the general workflow, illustrated in Figure 6.2, comprises four main
steps and relies on the LCA knowledge database (LKdb). The LKdb includes the most
typical elements based on domain knowledge and comprehensive information required
for a holistic LCA, including layer-specific replacement rates, LCI| datasets based on
Okobaudat, and any necessary End-of-Life scenarios. Further details regarding the LKdb
can be found in (Forth, Abualdenien, & Borrmann, 2023). This paper focuses on embodied
greenhouse gas (GHG) emissions, exclusively considering Global Warming Potential
(GWP) as an LCA impact category. The operational part B6 is excluded from the LCA
calculation. In terms of the LCA system boundaries, it encompasses the life cycle phases
of production (A1-A3), replacement (B4), as well as End-of-Life (C3, C4), and benefits and
loads beyond the system boundary (D). More details of the calculation process of the LCA
result ranges were previously described in (Forth, Abualdenien, & Borrmann, 2023).

LCA Knowledge database (LKdb)

(*.sql)
4 \ * bef
0 BIM-MLdeI]ing 9 Pre-prcicessing 6 Analysis v Design decision
a D N s -
BIM-Modelling in Matching Visualiz. of Selecting & Communi-

N Elements from LCA-calculation ——— tot. results showing cating
authoring tool IFC to LKdb (hotspots) variants changes
v A - v
D a . .
Selection Changing
of relevant final

IFC-Export ————* Quantity Take-Off I
*.ifc elements variants

Figure 6.2: General workflow for visualizing uncertain embodied GHG emissions for design
decision support in early design phases using open BIM
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In the initial stage of the proposed workflow, the BIM model is created using any capable
authoring software (step 1.a), followed by the export of the IFC model (step 1.b). The
subsequent step involves extracting the quantity take-off and conducting element matching.
The quantity take-off entails parsing all geometric and semantic information from the IFC
model for LCA calculations. This includes fundamental quantities such as area, amount,
layer thicknesses, or length, as well as density, materials, element names, GUIDs, and
classifications (step 2.a). The expressions of materials and elements are utilized in the
following step to match the IFC elements with the LCA knowledge database (LKdb) (step
2.b), which has been previously introduced and validated (Forth, Abualdenien, & Borrmann,
2022, 2023). This matching process relies on Natural Language Processing (NLP)
employing a Large Language Model (LLM) to determine cosine similarities between the
expressions of elements and materials in the IFC model with those in the LKdb. The most
similar LKdb element is assigned to each IFC element. Previously, we identified Google’s
LLM BERT (Devlin et al., 2018) as the most suitable for this task (Forth, Abualdenien, &
Borrmann, 2023).

Upon completing the element matching step, any missing information regarding LCA
datasets, life spans, or absent layers is populated with the datasets of the matched LKdb
element. Subsequently, the LCA results are computed, accounting for the uncertainty
associated with the element matching (step 3.a). Depending on the level of matching (refer
to Section 3.3), a range of material options for each layer of an element is considered,
leading to a range of LCA results for both individual components and the entire building.

This publication focuses on the final step of the general process, specifically the design
decision process (step 4.a-e). All steps are briefly described to provide an overview. The
design decision-making process can be invoked after all LCA information is calculated
and assembled. In the first step, 4.a, the results are visualized in the BIM model for
hotspot analysis. The median values of the element-specific LCA result range are used to
color-code the element in the IFC model in relation to its potential design variants. Next,
those elements are selected, which still show optimization potential and can be easily
detected using color coding (step 4.b). When one element variant is selected, all potential
element variants based on the same classification group and IFC type from the LKdb
are shown and highlighted (step 4.c). After all design choices have been made, the final
variant has been changed (step 4.d), and the changes are communicated back to the
authoring tool (step 4.e). To this end, an extended schema of BCF issues is automatically
created and uploaded to the BCF server, as described in more detail in Section 6.4.2.

6.3.3 Prototypical implementation

As the first part (steps 1-3) were already previously implemented and validated (Forth,
Abualdenien, & Borrmann, 2023), we are focusing on implementing the proposed decision-
making approach. After defining the different steps in the design decision support concept
and different visualization strategies, we implement the proposed workflow based on
HTML, JavaScript, and CSS and host it on a web server. We run the previous LCA results
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for the case study, store all relevant information as a JSON file, and upload it with the
IFC model into the web tool. The JSON file contains the following information from the
previously calculated steps 1-3 from the general approach in Section 6.3.2:

- IFC model exported either as IFC2x3 or IFC4 from authoring software in step 1.b

- Quantity takeoff including element-specific information on its object type name, IFC
type (e.g., lfcWall, IfcWindow), classification group, total surface area in square
meters, number of all elements of the same object type and its IDs, layer-specific
materials and their thicknesses from step 1.a

- Results of element matching including the level of matching (see cases in Section
6.4.1), most similar matched element, and if existing material options

- LCA results including the total GWP, the results for each layer, and the quantiles of
its result distribution in [kg CO2-eq.]

- Potential element variants based on the same classification group and IFC type from
LKdb including for each element variant the element name, its layer-specific, total
GWP results, and the quantiles of its result distribution in [kg CO2-eq.]

To integrate the design decisions into the current BCF version, there are two options,
either as BIM snippets, which are usually partial IFC files or by extending the BCF schema.
We consider the second option, as for now, we only use this communication to send and
store all created topics of the user study’s design changes on a BCF server. After the
first implementation round, we iterate and improve the tool with the first test candidates.
Next, we host the prototypical design decision tool on a website, integrating it with an
introductory video and the survey of the user study.

6.3.4 User study

The user study evaluates the prototypical implementation by setting up an experiment for
testing the prototype by participants who fill out a survey. In the following section, we first
briefly introduce the chosen case study, explain the overall setup of the user study, and
lastly, the participants and survey.

Case study project

We validate the proposed workflow and prototypical implementation by applying it to a
case study. To this end, an IFC model of an office building measuring 1950 m? is used.
The matching results and LCA outcomes have undergone previous validation (Forth,
Abualdenien, & Borrmann, 2023). Given that the project is situated in Germany, the
classification adheres to the German cost groups as per the DIN 276 standard (DIN
276, 2018). The Okobaudat database, which contains materials and elements named in
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German, is utilized for this purpose (BBSR, 2021). The NLP network BERT is employed
for element matching, as previously assessed in (Forth, Abualdenien, & Borrmann, 2022).
The case study model encompasses 307 individual elements originating from 16 distinct
object types. The cumulative surface area of all elements amounts to approximately 5824
m?2.

The LCA Knowledge database (LKdb) was introduced in detail in (Forth, Abualdenien, &
Borrmann, 2022, 2023). When setting up the datasets for this case study, we considered
137 of the most conventional construction elements across all classification groups. These
elements mainly consist of different element layers, which add up to 223 different element
layers. In total, there are 127 different material categories, which add up to 343 different
classification-specific material categories. The material options are directly connected to
Okobaudat (BBSR, 2021), which we manually enriched to 1000 different classification-
specific material options according to its potentially related element layers.

Set up of user study

To run the user study using the prototypical implementation, we set up a website server
which hosts the user study itself and a BCF server storing the BCF issues and viewpoints.
The user study itself is divided into three parts:

a) Introduction: following an explanation video (ca. 5 minutes)

b) Experiment: testing the prototype with the help of a case study by changing at least
three different elements and/ or material choices (ca. 3-5 minutes)

c) Survey: filling out the final questionnaire (ca. 4 minutes)
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