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Abstract

Autonomous robots hold the potential to revolutionize various domains of science, from
space and planetary exploration to search and rescue missions. By harnessing their
ability to navigate and interact within complex environments, their application has been
studied to solve the increasing problem of recovering orbital debris. In the pursuit to
obtain a robust and reliable methodology to service malfunctioning tumbling satellites
in orbit, the challenge posed by localization and pose estimation while performing
complex maneuvers has arisen.

To further the capabilities of autonomous flying robots, this thesis proposes a novel
method to integrate kinodynamic path planning with perception-aware strategies. This
research is driven by the aspiration to attain globally optimal solutions for autonomous
guidance by capitalizing on the comprehensive understanding of a known environment.

The approach unites the constraint compliance and global optimality of gradient-
based optimization and sampling-based kinodynamic path planning, with the use of
visual information to obtain a kinodynamic perception-aware path planning algorithm.
By fusing these paradigms, the deployed algorithm allows robots to navigate through
scenarios in SE(3) while exploiting the rich description of their surroundings for both
obstacle avoidance and improvement of localization.

This thesis advances the landscape of visual-based planning by devising a perception-
aware framework to address the problem of autonomous flight within the International
Space Station (ISS). The methodologies hereby devised are not limited to space applica-
tions, but can find numerous avenues for future applications for holonomic robots in
general.

In the following, the RRT*-GBO algorithm is employed to leverage the combination
of sampling-based path planning with gradient-based optimization. This methodology
is able to handle highly non-convex and nonlinear problems and will be used to tackle
the path-planning problem in SE(3) for holonomic robots, such as Astrobees and robot
manipulators.

The method will be then extended by formulating a feature-density function to
efficiently plan kinodynamic trajectories by accounting for vision-based cost and con-
straints formulation.

Both approaches are demonstrated in applications on simulated environments based
on real data from the ISS. The perception-aware path planning method is then compared
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with appropriate reformulation of state-of-the-art approaches in SE(3), demonstrating
superior performance with a simplified and more flexible approach.
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1 Introduction

Space robotics has gained significant popularity in recent years. As the environment of
space does not allow humans to easily operate in it, the need for autonomous vehicles
is imperative to sustain the expansion that the market is showing in this field.

The increasing use of satellites and the launchers necessary to place them in orbit,
leaves a substantial amount of debris, cluttering the environment and posing significant
risks to any object within it. Moreover, a growing number of retired, malfunctioning or
fuel depleted satellites remains in high-orbit, threatening to completely lose high-value
satellites even for minor failure events.

Servicing or recovering these free-floating bodies is extremely relevant and efforts
are being made to efficiently achieve this goal.

However, the challenging case of space debris tumbling uncontrollably has required
additional investigation. In order to resolve this increasingly occurring and dangerous
situation, the Deutsches Zentrum für Luft- und Raumfahrt (DLR) has been researching
methodologies to use autonomous satellites to retrieve these spacecrafts. Often times,
the motion of the freely rotating debris is unknown, thus requiring the development of
a reliable pipeline to first identify the target’s motion, in for the purpose of approaching
it.

The pipeline has been implemented and tested in the ROAM/Tumbledock experiment
[Alb+22; Alb+21]. The methodology employs visual estimation of the target motion,
followed by the identification of a suitable mating point in space. A path planning
step follows, in order to identify the motion the robot needs to undergo to reach
the rendezvous position. Finally, the found trajectory is fed to a Tube-based Model
Predictive Control (MPC) strategy, which can account for uncertainty bounds providing
robustness and reliability to the method.

In order to test and validate the pipeline, it has been deployed on the ISS, using two
free-flying robots on board, the Astrobees, shown in Fig. 1.1.

The experiment was designed to command motion on one of the robots, in order
to simulate a tumbling target with a given inertia. This target system was to then be
approached by another robot, acting as chaser. The chaser’s approach and mating
procedure towards the target is shown in Fig. 1.2.

During the experimental campaign, however, while in motion to approach the target,
the astrobee chaser experienced localization failures. This event was later prevented by
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1 Introduction

Figure 1.1: Photograph of two astrobees grasping an object. From NASA.

Figure 1.2: A time-lapse of the rendezvous portion of the pipeline for an arbitrary
tri-axial tumble within simulation environment, from [Alb+22].
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1 Introduction

Figure 1.3: Results of estimated position and velocities during the experimental cam-
paign. The AstroLoc [Sou+22] is represented in blue, while in red is the
model-based EKF. Of notice are the discontinuities in the localization results,
which are removed by the EKF. From [Alb+22].

adding a model-based Extended Kalman Filter (EKF) on top of the existing localization
pipeline of the system [Sou+22]. The depiction of the difference between the localization
result and the EKF for position and velocity is shown in Fig. 1.3.

While this solution has been effective, the reason for such of a relevant disruption in
the localization remains unclear.

1.1 Objectives of the thesis

The purpose of this thesis is motivated by the search of a solution for the issue in
the visual-based localization pointed out above. Of relevance is the 3D motion of a
free-flying robot, as depicted in Fig. 1.1. In particular, the objective is to define a path
planning pipeline that can effectively leverage a sparse description of the operational
environment of the robot in order to obtain a globally optimal solution for different
cost formulations, with focus on those which are perception-related.

The scope of this thesis is the implementation of a kinodynamic path planning
approach for solving highly constrained planning problems, in combination with the
necessity of identifying a viable metric that can be correlated to the performance of the
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1 Introduction

localization.
Finally, the identified planner has to be adapted and modified in order to allow

testing on a robotic manipulator, in order to reproduce the free-flying dynamics on
Earth.

As the targeted optimization problem is expected to be highly non-convex in nature,
the research is directed towards kinodynamic sampling-based methodologies, which
have proven to be efficient in the most general nonlinear and non-convex constrained
path planning cases.

In order to provide an efficient methodology to perform sampling-based path plan-
ning on manifolds such as SO(3) and SE(3), the RRT*-GBO is implemented by aug-
menting the sampling-based method to the space of rigid body motions.

The same methodology is then applied to perception-aware path planning on sparse
maps by formulating a continuous and differentiable feature-density function. The
maps are assumed to be accurate and already available. These are containers for a list
of 3D distinct and recognizable points, which represent landmarks detected during the
mapping procedure.

The proposed algorithm is compared to the currently available state-of-the-art
method, to showcase its capabilities and advantages.

These methods are implemented and applied to simulated environments representing
real-life scenarios.

1.2 Contents of the thesis

The contents described above are laid out in the following fashion:
Chapter 2 introduces the models of the system and environment which are used

throughout the work.
In Chapter 3, an analysis of the kinodynamic path planning problem is performed,

studying literature and presenting a novel approach to plan optimal trajectories in SO(3)
and SE(3) within the RRT*-GBO algorithm. Following the theoretical background for
kinodynamic path planning, Chapter 4 introduces a description of the path planning
problem based on visual information. Then, the problem of VIL is addressed and
an available state-of-the-art method is analyzed. An alternative approach to perform
perception-aware planning in SE(3) is devised, in order to cope with the identified
shortcomings of the method found in literature. The two are then compared after
appropriately reformulating the state-of-the-art approach to be applied in SE(3).

Chapter 5 presents a thorough report of the results obtained during the development
of this thesis.
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1 Introduction

Finally, Chapter 6 concludes the thesis, summarizing the contents and proposing
further research questions tied to the topic.
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2 System Modeling

2.1 Free-Flying robot

In this section, the focus will be the definition of the system dynamics and components
of the Astrobee robots on board of the ISS. In particular, the objective of this work
is to design methodologies that can be applied in the context of experiments such as
Tumbledock [Alb+22].

2.1.1 System Dynamics

The robot moves as a free-floating body in tridimensional space. As it is a free-floating
body on-board the ISS, which orbits earth at a given rotational speed ωISS, the equations
of motions in the body frame are

ma = F − ω × (ω × p)− 2ω × v − ω̇ × p, (2.1)

where a is the translational acceleration, F is the total force vector acting on the body,
ω is the angular velocity, p is the position with respect to the rotating frame and ω̇

is the angular acceleration. In this specific case, the angular velocity comprises of the
following terms ω = ωB + ωISS + ωE, where B stands for body and E stands for earth.
Considering ωISS = 0.0011803 rad

s and ωE = 7.2921159 × 10−5 rad
s , the rotation of the

Earth can be neglected, while the rotation of the ISS could have an effect on the robot
dynamics. To be consistent with the description used by [Alb+22; WSK16], the system
dynamics will be considered as described by [AEO20]:

a =
F
m

(2.2)

ω̇ = I−1[τ + ω × Iω], (2.3)

where τ is the torque applied to the system and I is the moment of inertia. In the case
of the Astrobee, these quantities are:

• m = 9.58kg

• I =




0.153 0 0
0 0.143 0
0 0 0.162


 kg m.
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2 System Modeling

For path planning purposes, the focus of Eq. (2.3) is shifted on the actuation, therefore
the inverse dynamics are defined as

u = f−1(x, ẋ) =
�

ma
Iω̇ + ω × Iω

�
. (2.4)

In Eq. (2.4), the variable x = [p, v, R, ω] represents the state of the system and u = [F, τ]

is the actuation.

2.1.2 Dynamic constraints

In the context of path planning, it is desirable to define limit values for states and
actuation. The following are listed in [AEO20]:

• px ∈ [0, 1.5]m, py ∈ [0, 6.4]m and pz ∈ [0, 1.7]m,

• vi ∈ [−0.1, 0.1]m
s , for i = x, y, z, ,

• Fx ∈ [−0.849, 0.849]N, Fy ∈ [−0.406, 0.406]N and Fz ∈ [−0.486, 0.486]N,

• ωi ∈ [−0.1, 0.1] rad
s , for i = x, y, z,

• τx ∈ [−0.0849, 0.0849]N, τy ∈ [−0.0406, 0.0406]N and τz ∈ [−0.0486, 0.0486]N.

The robots are actuated using a set of 12 thrusters, the forces are mapped onto the
actuators through the built-in Force Allocation Module (FAM) [AEO20].

2.2 Robot manipulator

In the context of this thesis, it is interesting to also embed the free-flyer dynamics onto
an holonomic robotic arm.

The robots dynamics are defined through the classical Lagrangian formulation

M(θ)θ̈+ C(θ, θ̇)θ̇+ F(θ, θ̇) = τ, (2.5)

where θ corresponds to th joint angles of the manipulator, M(θ) is the inertia matrix,
C(θ, θ̇) represents the Coriolis matrix and F(θ, θ̇) contains all external forces on the
system.

Additionally, the forwards kinematics can be defined as a function that maps the
joint angles into a tridimensional pose T of the end effector, which is assumed to be the
free-flyer in this case:

k : Rn → SE(3). (2.6)

7



2 System Modeling

Inverting the mapping, the inverse kinematics are obtained as the function that
delivers joint angles from a tridimensional pose

k−1 : SE(3) → Rn. (2.7)

In the case of this work, it is assumed that both functions are known and available.
The robot manipulator in analysis in this thesis is the On-Orbit Servicing Simulator

(OOS-SIM) [Art+15]. In particular a Kuka KR120 industrial robot, with 6 degrees of
freedom.

The robot’s layout is shown in Fig. 2.1, robotic arm’s end effector on the left acts
as the Astrobee chaser. The robot on the right can be used to move acting as a target,
or positioned to increase the available space for the left arm. A light weight robot is
positioned on top of the target and the camera attached to it can be therefore moved to
act as an onboard fixed monocular camera.

Figure 2.1: OOS-SIM arms and end effector’s positions with relative position of each
element’s frame. From [Lam+18]. The chaser (left) carries a light weight
robot, which position is assumed fixed within in this thesis. The light
weight robot’s frame E can be considered as the frame of of the camera.
The chaser’s body frame B initially coincides with the inertial frame I . The
target (right) with its frame T allows to be moved to simulate a rotating
target and is equipped with the possibility to be grasped at the origin of
frame G.

8



2 System Modeling

2.3 Collision models

Within this work, it is necessary to simulate tridimensional collision between solid
objects to incorporate the obstacle avoidance feature. In order to do that, the Bullet
Collision library [Cou15] is employed.

The foundation of the Bullet collision model lies in the definition of shapes and
objects. Shapes define the geometric form of objects, ranging from simple geometries
such as spheres and boxes, to more complex geometries like convex hulls. These
encapsulate the geometrical characteristics of objects, such as their size and proportions.
A collision object then combines a collision shape with transformation information, such
as position and orientation. This holistic representation forms a complete description
of an object’s collision properties, enabling it to be incorporated into any environment.

By representing robots and obstacles as collision objects, it is possible to simulate
the robots pose in an environment by linking it to a specified object. In particular, the
library allows to define a Penetration depth. This quantity defines the minimum distance
that two objects have to move in order to not overlap. This quantity can be used as a
measure of distance and a discriminant to define collision. The penetration depth is
considered positive when the objects are colliding and negative if the objects are not in
contact. Therefore the condition of obstacle avoidance can easily be formulated as a
scalar inequality in the form

PD + |tc| ≤ 0, (2.8)

where tc represents a safety value that can be added to include obstacle inflation. In
Figure 2.2, a sketch of the computation of the penetration depth computation is denoted.
In the image, the obstacle on the right can be displaced vertically or horizontally to
avoid collision. As the penetration in horizontal direction is the shorter one, that is
the distance taken into consideration. This behavior determines non-linearity in the
constraint, thus using simple convex shapes such as boxes or spheres is beneficial.

Object 1

Object 2
PD

Figure 2.2: Sketch of two overlapping objects where the penetration depth is high-
lighted.
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2 System Modeling

2.4 Camera model

As the autonomous free-flyers rely on a monocular camera to perform localization, it is
important to model its parameters correctly.

The camera model used is a simple pinhole projection model [HZ03]

λ




u
v
1


 = K[RC|pC]




xW
yW
zW
1


 , (2.9)

where [RC|pC] is a block matrix containing the camera orientation and position. The
vector [xW , yW , zW , 1] represents the homogeneous coordinates of the point to project
in the world frame. The quantities u, v corresponds to the pixel measurements in the
image plane of the projected point. The matrix K is the intrinsic calibration matrix of
the camera and in the case of the Astrobee it corresponds to

K =




fx 0 cu

0 fy cv

0 0 1


 =




607.64218 0.0 624.85552
0.0 606.53899 514.57737
0.0 0.0 1.0


 , (2.10)

where fx, fy are the focal lengths in pixel and (cu, cv) is position of the camera center in
pixel coordinates.

The camera is positioned on the robot at position pCB = [0.1177,−0.0422,−0.0826]
with respect to the origin of the body frame. The orientation of the two frame is
differentiated only by change of axis, such that the z-axis of the camera points in the
direction of xB. An approximate representation of the relative positions of the two
frames is shown in Fig. 2.3.

10



2 System Modeling

xC

yC

zC

RCB, pCB

xB

yB

zB

Figure 2.3: Relative representation of camera frame and body frame.
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3 Kinodynamic Path Planning

As explained in Chapter 1, this work revolves around developing an efficient path
planning framework on SE(3) to address the problem of determining a trajectory for
an Astrobee in an highly constrained environment. In particular, the Astrobee robot
described in Section 2.1 moves within a small enclosure and can exploit all the 6 degrees
of freedom of the system. Additionally, the robot has tight constraints with respect
to dynamics, actuation and obstacle avoidance. As denoted in the Introduction, the
challenges of space robotics are numerous, one of which is testing, as on-orbit testing
facilities are only a few and scarcely available. Therefore, setting up tests on Earth is
imperative to improve the design loop of any system to be deployed on-orbit. This calls
for the necessity of extending any formulation done for the astrobee, to the OOS-SIM
described in Section 2.2.

In the following sections, the problem of kinodynamic path planning is introduced
formally. The numerous approaches devised over the years are analyzed and compared.
Afterwards, the kinodynamic path planning problem is approached attempting to
combine the common paradigms of sampling-based planning and trajectory optimiza-
tion. The algorithm of RRT*-GBO is exploited in order to expand the research on its
applications and extended onto the space of rigid body motions. Finally, the extension
of the algorithm for robotic manipulators is discussed.

3.1 Problem Statement

3.1.1 Introduction

Kinodynamic path planning is an extremely relevant topic, as it plays a crucial role
in the domain of robotics, especially related to autonomous vehicles and motion
planning in general. The methods used assure finding optimal and feasible paths
within a dynamic environment, in order to allow safe navigation even in highly
constrained settings. Currently available methods, however, face significant challenges -
particularly planning in highly dimensional spaces, handling of uncertainty, difficulty
in incorporating complex dynamics, and reliance on heuristics that deliver sub-optimal
results.

12



3 Kinodynamic Path Planning

3.1.2 Related Work

Popular approaches to path planning in robotics can be divided in two major categories:
graph-search and sampling-based methods.

Graph-search approaches that have been widely applied are Dijkstra’s [Dij59] and A*
[HNR68]. These methods rely on the theoretical foundations of dynamic programming
[Bel54] to find exact solutions for discretized continuous problems. Due to their
formulation, these algorithms are resolution complete and resolution optimal, meaning that
they will find an exact and optimal solution for the given discretization in a finite time,
if one exists.

A* leverages heuristics to search the graph and results in a optimally efficient formula-
tion, guaranteeing that any other algorithm using the same heuristic will expand at
least the same number of vertices as A*. While the solution guarantees these desirable
properties, the quality of the continuous path obtained from the discretized graph
is highly dependent on the discretization. Refining the discretization also results in
largely extending the size of the problem and thus the computational effort required.
These methods suffer the so-called curse of dimensionality [Bel66] when planning in
highly dimensional space. Cases such as planning for robot manipulators or mobile
robots in 3D are prime examples.

These algorithms have nonetheless been successful in kinodynamic planning tasks
[Che99] when the dimensional space is limited. In [Zho+19], the authors employ an
hybrid-state A* to generate a safe and feasible initial trajectory by generating motion
primitives on the discretized control space. The motions are obtained by propagating
the control inputs through the quadrotor dynamics represented as a Linear Time Invari-
ant (LTI) system. As the solution of the A* algorithm is suboptimal in the continuous
control space, it is further smoothed using gradient-based optimization in order to
increase clearance of obstacles and smoothness. The authors from [Zho+19] employ
non-uniform B-splines and apply motion constraints by leveraging their convex hull
property [PBP02], as well as managing time allocation. The approach works well in con-
fined and small spaces, especially for quadrotors which are proven to be differentially
flat. As such, the system dynamics can be represented through a set of flat outputs and
each of them can be treated independently. Moreover, the flat outputs are 4 parameters
(position and yaw angle) which accounts for a significant reduction of the state space.

Sampling-based planners, such as Probabilistic Roadmaps (PRM) [Kav+96] and
RRT [LJ01], avoid the issues related to discretization of the state space by randomly
sampling the continuous domain. These approaches allows efficient planning in
high dimensional spaces, but render the search probabilistic rather than exact. These
methods are probabilistically complete- the probability of finding a solution, if that exists,

13



3 Kinodynamic Path Planning

converges to one as the number of samples grows towards infinity. These methods
also offer anytime resolution- the problem representation grows more accurate with each
sampling step, allowing the user to achieve suboptimal solutions early on, which can
be improved with increasing iteration numbers.

An additional step towards optimality is taken with algorithms such as RRT* and
PRM* [KF11]. These variations converge to the optimal solution in infinite time, they are
therefore asymptotically optimal. It is important to note, however, how these algorithms
do not have any guarantee on the rate of convergence, as the sampling is random.

An alternative hybrid method that fuses aspects of graph-search and sampling-based
methods, has been proposed, Batch Informed Trees (BIT)* [GSB14]. The algorithm has
successfully been tested on R2 and R8 with robotic arms.

One of the most common path planning paradigms for mobile robots has been a
decoupled approach based on initially finding a collision-free geometric path through
sampling-based techniques, to then smooth it using polynomial splines and B-splines
[RBR16; Ole+16]. Approaches such as the one from [MK11] have showcased the
flexibility of pairing the sampling-based path planning with smoothing techniques.
This approach, while efficient and effective, might initially deliver unfeasible solutions
as it does not account for the dynamics of the robot.

To extend the kinodynamic properties of the original formulation of RRT*, which
was only valid for holonomic robots, [WB13] devised the kinodynamic RRT*, which
guarantees asymptotic optimality for any system with controllable linear dynamics and
is valid in any dimension. The algorithm incorporates the system dynamics within a
two-point boundary value problem. The analytical solution of the problem delivers the
optimal control policy along an edge of the tree. The use of linear dynamics, however,
limits the algorithm to a small class of applications which require validity of linear
approximations. To further the scope of applicability of this method, [Zhi+20] devised
an updated kinodynamic RRT* where the motion primitives are obtained by solving an
optimal control problem. The explicit solution of the optimal duration for the motion
primitives is given to optimally connect any pair of states. The methodology is effective
as it outperforms the original formulation in terms of exploring more states while
generating smoother trajectories.

The search to construct an all-purpose kinodynamic sampling-based methodology
has been pushed forward by the RRT*-GBO [SL14]. In order to account for any kind of
nonlinear system dynamics as well as integrating nonlinear constraints within the edge
computation. The method outperforms the standard RRT* by generating a feasible
close-to-optimal initial solution, which can then be smoothed, reaching an optimal
solution in shorter time than classic two-step RRT approaches. The technique is suitable
for offline applications as it has shown to be computationally expensive, thus requiring
long times to converge to a solution. Although only tested in simulation with holonomic
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systems, the method is not restricted by any underlying assumption and is therefore
general in its applicability.

3.1.3 Problem Description

In the context of a free-flying systems, the path planning problem of interest requires
the construction of a path for the full motion in the three-dimensional space. The
problem is highly constrained and it requires satisfaction of constraints on position,
orientation, velocities, accelerations and actuation, while searching for an optimal
trajectory within a fixed time horizon.

The problem is approached by attempting to find a globally optimal solution for
the path planning task of an Astrobee robot through an enclosed path with obstacles.
In particular, formulating a problem which resembles the Tumbledock experiment,
by considering a confined section of the ISS, planning the motion around a rotating
obstacle in order to reach a defined meeting point at a selected time.

For testing purposes, it is necessary to include inverse kinematics of a robotic
manipulator in order to plan the motion of its end effector as if it represented the
free-flyer itself. Thus the implementation requires enough flexibility to be applicable to
different robotic systems without substantially modifying the underlying optimization
problem.

With the same framework, the problem is extended by introducing the kinematics
constraints of a robot manipulator with 6 degrees of freedom.

Objectives

The primary objective of this chapter is to address the problem of optimal kinodynamic
path planning on SE(3) for a free-flying robot and for a robotic manipulator’s end
effector. Mathematically, the problem entails solving an optimization on a non-convex
submanifold of SE(3). In order to efficiently search the highly dimensional and non-
convex space, we apply a sampling-based method to efficiently search it. To the best of
the author’s knowledge, the only methodology that allows to obtain globally optimal
solutions accounting for arbitrary constraints in a one-step fashion is the RRT*-GBO.
The goal within this chapter is to extend the algorithm to the six degrees of freedom
necessary to describe elements of SE(3). Exploiting these extension, the successive step
is to include the inverse kinematics of a robotic manipulator in the problem.

Contributions

Within this chapter the following challenges will be investigated:
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• Application of GBO on manifolds.

• Efficient and uniform random sampling on SO(3).

• Extension of the RRT*-GBO on SE(3).

• Formulation of a novel tree-edge construction to decrease the computational time
for the expected use cases.

• Application of the methodology on Astrobee in simulation and on a Kuka robot
in simulation and experiment.

3.2 Methodology

3.2.1 Overview

Within this section, the detailed explanation of the methods used are given. In order to
reach the objectives described in section 3.1.3, a thorough investigation of the theoretical
results and previous research on the topic is conducted, as well as expanded through
the necessary adaptations to the case at hand. The contents which will be discussed
can be summarized as:

• optimal path-planning using GBO on B-Splines,

• parametrization and optimization on manifolds,

• application of sampling-based methods on manifolds,

• formulation of RRT*-GBO on SE(3),

• conceptualization of an alternative edge formulation to reduce the search space
and computational time.

3.2.2 Optimal path planning on manifolds with interpolating curves

As mentioned in 3.1.2, using optimization to describe a trajectory has proven to be a
very effective and valuable technique in motion planning.

The motion planning problem under consideration can be formulated as a nonlinear
Optimal Control Problem (OCP) as follows:

min
x(t)

Γ(x(t), ẋ(t), ẍ(t), u(t)) (3.1a)
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subject to

x(t0) = x0 (3.1b)

x(t f ) = x f (3.1c)

∂ix(0)
∂ti = c0

(i) for i = 1, . . . , p + 1 (3.1d)

∂ix(t f )

∂ti = ctf
(i) for i = 1, . . . , p + 1 (3.1e)

xmin ≤ x(t) ≤ xmax (3.1f)

ẋmin ≤ ẋ(t) ≤ ẋmax (3.1g)

ẍmin ≤ ẍ(t) ≤ ẍmax (3.1h)

umin ≤ u(t) ≤ umax (3.1i)

g(x(t), ẋ(t), ẍ(t), u(t)) ≤ 0. (3.1j)

where equation (3.1a) corresponds the objective function to minimize, which we
consider as a general function of the state x and its derivatives ẋ(t), ẍ(t). Additionally,
the function can depend on the control inputs of the system u(t), which are correlated
to the states through the system’s inverse dynamics u = f−1(x(t), ẋ(t)). Equations
(3.1b) and (3.1c) correspond to boundary conditions on the state itself, while equations
(3.1d) and (3.1e) are boundary constraints on state derivatives, up to order p + 1.
The values c0

(i) and ctf
(i) are the assigned values to be assigned at the boundaries.

Equations (3.1f) - (3.1i) represent bounding box constraints for the system dynamics
and actuation. Finally equation (3.1j) includes additional nonlinear constraints such
as collision avoidance and/or inverse kinematics, generalized in the vector-valued
function g(x(t), ẋ(t), ẍ(t), u(t)).

For the scope of this work, the objective function is considered to be an integral in
the form:

Γ(x(t), ẋ(t), ẍ(t), u(t)) =
� t f

t0

L(x(t), ẋ(t), ẍ(t), u(t))dt (3.2)

In this chapter, the cost formulation is related to the mechanical energy, formulated
as the integral of the squared power consumption over the trajectory in [SL14] and
[SL16]:

L(x(t), ẋ(t), ẍ(t), u(t)) = (u · ẋ)2. (3.3)
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Numerical Optimization

The OCP defined in eq. (3.1) can be reformulated as a Nonlinear Programming (NLP)
problem as in [NW06]:

min
x

f (x(p)) (3.4a)

subject to

hi(x(p)) = 0, i = 1, . . . , N (3.4b)

gi(x(p)) ≤ 0, i = 1, . . . , N (3.4c)

where x corresponds to the optimization variable defined with respect to a parameter
p ∈ RN , f represents the objective function and hi and gi are equality and inequality
vector constraints defined at points p, respectively.

As Equation (3.4) cannot, in general, be solved analytically, a numerical method to
approximate the result is employed. Sequential Quadratic Progamming (SQP) [NW06]
is an iterative method that allows to solve nonlinear constrained optimization problems
efficiently. The method approximates the objective function quadratically, as well as
using a first order approximation of the constraints. Considering the optimization
variable x ∈ Rn at an iterative step k, one obtains a Quadratic Progamming (QP)
subproblem in the form:

min
x

fk +∇ f T
k p+

1
2

pT∇2 fk p (3.5a)

subject to

h(xk) +∇h(xk)T p = 0 (3.5b)

g(xk) +∇g(xk)T p ≤ 0, (3.5c)

where the subscript k refers to the value of the function at step k, while p represents
the search direction. The solution is then formulated as (xk + pk, λk+1) where pk, λk+1

are the solution and its corresponding Lagrange multiplier for equation (3.5).
In practice, however, the SQP method requires the solution of a constrained QP at

each iteration. The cost of this approach limits the size of the solvable optimization,
additionally, the use of Hessians introduces a number of issues that can jeopardize
the success of the algorithm. The Hessian matrix can be computationally expensive
to calculate, especially for large-scale optimization problems with numerous variables
and constraints. Moreover, calculating second-order derivatives numerically can be
prone to numerical instability and accuracy issues, especially when dealing with
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complex or ill-conditioned functions. Finally, storing such a matrix can require large
amounts of memory. To alleviate these issues, we employ the Sequential Least Squares
Programming (SLSQP) [Kra94] method. Without loss of generality, as inequality
constraints can be reformulated as equalities, the focus is on the equality constrained
QP in the form

min
x

fk +∇ f T
k p+

1
2

pT∇2 fk p (3.6a)

subject to

Ak p + ck = 0 (3.6b)

the problem’s solution (pk, lk) is unique and satisfies the system of Newton equations
from [NW06]: �∇2 fk −AT

k
Ak 0

� �
pk

λk+1

�
=

�−∇ fk
−ck

�
(3.7)

in which lk = λk. The new iterate (xk+1, λk+1) can therefore be defined either as the
solution of the quadratic program or as the iterate generated by Newton’s method
applied to the optimality conditions of the problem.

Examining equation (3.7), the part of the step pk in the range space of AT
k is completely

determined by the second block row Ak pk = −ck. The Hessian only affects pk in the
null space of Ak, therefore it is useful to consider quasi-Newton methods that find
approximations only to the part of ∇2 fk that affects the component of pk in the null
space of the constraint matrix. Defining matrices Zk, Yk whose columns respectively
span the null space of Ak and the range space of AT

k , the step can be rewritten as:

pk = Yk pY + Zk pZ. (3.8)

Substituting this expression in equation 3.7, the system becomes:

(AkYk)pY = −ck (3.9a)

(ZT
k ∇2 fkZk)pZ = ZT

k ∇2 fkYk pY − Zk∇ fk. (3.9b)

and the Lagrange multipliers λk+1 are computed as

(AkYk)
Tλk+1 = YT

k (∇ fk +∇2 fk). (3.10)

One can define the least-squares multipliers by choosing Yk = Ak, to obtain

λ̂k+1 = (Ak AT
k )

−1Ak∇ fk. (3.11)
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These reformulation is equivalent to solving the problem

min �∇L(xk, λ)�2
2 = �∇ fk − AT

k λ�. (3.12)

One additional simplification based on the null-space can be obtained by removing
the cross term ZT

k ∇2 fkYk pY, obtaining the simpler equation:

(ZT
k ∇2 fkZk)pZ = −Zk∇ fk. (3.13)

As a last step of the approximation, the term ZT
k ∇2 fkZk needs to be reformulated.

Suppose having taken a step αk pk = xk+1 − xk = αkZk pZ + αkYk pY. Considering
∇2 fk+1 = ∇2 fk(xk+1, λk+1), through Taylor’s theorem:

∇2 fk+1αk pk ≈ ∇L(xk + αk pk, λk+1)−∇L(xk, λk+1). (3.14)

Pre-multiplying by ZT
k the expression becomes:

ZT
k ∇2 fk+1Zkαk pk ≈ −ZT

k ∇2 fk+1Ykαk pY − ZT
k (∇L(xk + αk pk, λk+1)−∇L(xk, λk+1)).

(3.15)
Finally one can completely eliminate the Hessian by removing the cross term

ZT
k ∇2 fkYk pY as done above. The elimination leads to a final reformulation of the

equation (3.7), which can be expressed as the secant equation [NW06]:

Mk+1sk = yk (3.16)

where sk = αk pk and yk = ZT
k [∇L(xk + αk pk, λk+1)−∇L(xk, λk+1)]. In order to obtain

the matrix Mk+1, the problem is solved assuming the solution to be the matrix that is
closest to the one at the previous step Mk, in this fashion:

min
M

�M − Mk� (3.17a)

subject to

Msk = yk (3.17b)

M = MT (3.17c)

where the normed difference corresponds to the Frobenius norm. The solution is
obtainable using the BFGS [NW06] method, which iteratively delivers Hk+1 assuming
that

Hk = ∇2 fk = Mk. (3.18)

This series of considerations and approximations allow to solve an SQP without re-
sorting to computing second derivatives. However, the is approximation leads to an
extreme relevance on accurate gradient information for the solution of the optimiza-
tion problem. Throughout this work, we will use the implementation made available
within the NLopt [Joh07] open-source library, which is widely used and offers efficient
implementation of the algorithms in C and C++.
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Optimization on B-splines

The space of states on which the optimal solution is to be found is infinite in the
most general case. In order to limit the size of the optimization problem to render
it treatable, a generic n-dimensional trajectory s(t) is parametrized as a polynomial
spline of selected degree p.

The B-splines are piecewise polynomial functions which are widely used for inter-
polation and approximation of general multivariate functions. Their formulation is
advantageous as it ensures continuity and smoothness up to the p + 1’s derivative.
The function is defined on a set of knots ti that form a knot vector t. The spline is
then defined as a linear combination of basis functions Bp

j and control points pj. The
basis functions only depend on the knots and can be computed recursively with the De
Boor’s formula [Boo77]:

B0
j =

�
1, if tj ≤ t < tj+1

0, otherwise
(3.19)

Bp
j =

t − tj

tj+p − tj
Bp−1

j (t) +
tj+p+1 − t

tj+p+1 − tj+1
Bp−1

j+1 (t). (3.20)

The value of the B-spline at a given value within the knot vector is:

s(t) =
m

∑
j=0

pjB
p
j (t). (3.21)

In order to apply the algorithms defined in 3.2.2 on a trajectory optimization problem,
one can introduce the state space parametrized as a B-spline, which knot vectors spans
the times between t0 to t f . Within the optimization framework, this is equivalent as
choosing the optimization variable x as the vector of control points P = [p0, . . . , pm] of
size m + 1.

By using a clamped B-spline of order p + 1, one can conveniently incorporate
boundary conditions in the B-spline by adding knots of multiplicity p+ 1 corresponding
to the starting and ending points of the trajectory. The resulting knot vector is the
following sequence of size nknot + 1 where nknot = m + p + 1:

t =


t0, ..., t0� �� �

p+1

, t1, t2, . . . , tnknot−2, tnknot−1, t f , . . . , t f� �� �
p+1


 . (3.22)

By selecting the first and last control points to correspond to the state boundary
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conditions

p0 = x(t0) (3.23)

pm = x(t f ) (3.24)

the optimization problem can be reduced by removing a set of 2 ∗ n optimization
variables as well as constraints (3.1b) and (3.1c). Since B-splines are continuous and
smooth polynomials of order p + 1, one can ensure existence and continuity of their
derivatives up to the p − k-th one at any knot of multiplicity k. Conveniently, one can
formulate the k-th derivative as a function of the same control points, through:

s(k)(t) =
m

∑
j=0

pjB
p(k)
j (t). (3.25)

The new basis functions are defined as:

Bp(k)
j (t) =

p!
(p − k)!

k

∑
i=0

ak,iB
p−k
j+1 (3.26)

with:

a0,0 = 1 (3.27a)

ak,0 =
ak−1,0

tj+p−k+1 − tj
(3.27b)

ak,i =
ak−1,i − ak−1,i−1

tj+p+i−k+1 − tj+1
for i = 1, . . . , k − 1 (3.27c)

ak,k =
−ak−1,k−1

tj+p+1 − tj+k
(3.27d)

The relation between B-splines and their derivatives is shown in Fig. 3.1. As the order
of the derivative increases, the degree of the spline decreases accordingly.

As the basis functions only depend on the value of the knots and on the degree
of the derivative, they can be computed without knowledge of the control points
value. As this is the case, arbitrary values can be set to the trajectory as well as its
time derivative, by constructing a linear system of equations for any time tj, with
p + 1 ≤ j ≤ nknot − (p + 1):

Ap = c (3.28)

where
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Figure 3.1: Example of the differentiability properties of a general trajectory exploiting
B-splines. Using degree p = 4 one obtains continuity up to the jerk (k = 4).
From [BM08].

A =




Bp
j (tj), Bp

j+1(tj), . . . , Bp
j+p+1(tj)

Bp(1)
j (tj), Bp(1)

j+1 (tj), . . . , Bp(1)
j+p+1(tj)

...
...

...
...

Bp(p+1)
j (tj), Bp(p+1)

j+1 (tj), . . . , Bp(p+1)
j+p+1 (tj)




p =




pj
pj+1

...
pj+p+1.


 c =




c(0)tj

c(1)tj
...

c(p+1)
tj

.




(3.29)
In equation (3.29), the matrix A contains the known basis functions, the vector p

contains the control points that are subject to the constraints and c is the vector of
constraint values, where the superscript corresponds to the degree of the derivative that
are to be fixed c(k)tj

= ∂ks
∂tk . By constructing two of such system of equations for t0 and

t f , the vector valued boundary constraints (3.1d) and (3.1e) are integrated by defining
the appropriate control points, thus reducing the number of optimization variables by
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p ∗ n. It is common for online motion planning formulations, to also embed constraints
(3.1f)-(3.1i) directly in the formulation of the B-splines [Lam+11; Gon+16; Use+17].
Considering the derivative of a general B-spline, we can express it as a new curve with
control points Q = [q0, . . . , qm−1], defined as:

ds
dt
(t) =

m−1

∑
j=0

qjB
p
j+1(t) (3.30)

where
qj =

p + 1
tj+p+1 − tj+1

(pj+1 − pj). (3.31)

Exploiting the convex hull property of the control points [Cha21], the trajectory can
conservatively be defined to be confined within the kinodynamic constraints by selecting
appropriate bounds. However, B-splines value pass through control points only if the
multiplicity of the knots is higher than one. As the objective is to obtain the optimal
trajectory given a set of constraints, the preferred approach is to enforce them directly
on the spline values on a set of via points of size nviaPoints, that uniformly span the knot
vector (3.22). By increasing its size arbitrarily, one can more and more accurately verify
that the trajectory never becomes unfeasible, at the expense of increasing computational
effort.

Finally, one obtains the reformulated OCP that describes motion planning on a
n-dimensional B-spline of order p + 1, s(t), defined on the knot vector t with control
points P:

min
Popt

Γ(Popt) (3.32a)

subject to (3.32b)

smin ≤ s(t) ≤ smax (3.32c)

ṡmin ≤ ṡ(t) ≤ ṡmax (3.32d)

s̈min ≤ s̈(t) ≤ s̈max (3.32e)

umin ≤ u(t) ≤ umax (3.32f)

g(s(t), ṡ(t), s̈(t)) ≤ 0 (3.32g)

where Popt represents the subset of control points between pp+1 and pm−p+1 that are
involved in the optimization.
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Optimization on the special orthogonal group SO(3)

To plan a sequence of attitudes and orientations and to construct smooth trajectories,
applying the methodology described above is desirable. The attitude of a rigid body
can be described as matrix R ∈ R3×3. As not all matrices describe a rotation, the space
of rotation matrices needs to be defined as SO(3) ⊂ R3×3, mathematically detailed as
the following:

SO(3) =
�

R ∈ R3×3 : RRT = I, det(R) = +1
�

. (3.33)

The manifold fundamentally represents the set of matrices that are orthonormal with
positive and unitary determinant.

The methods described above to perform GBO on a set of optimization variables
Popt, are derived based on the underlying assumption that all variables live on the real
coordinate space Rn, thus all mathematical operations are contained within the space.
In particular, when defining the numerical optimization methodology in Section 3.2.2,
the solution was defined as an iterative summation of steps on a line pk:

xk+1 = xk + αk pk. (3.34)

However, when operating on the space of orientations SO(3), the sum of two elements
might not be an orthonormal 3 × 3 matrix with determinant +1. Trying performing
a simple vector addition between two rotation matrices R1, R2 ∈ SO(3), one has no
guarantee that the solution will be contained within the original manifold. As in
[DK17a], defining an increment on the manifold is achieved by leveraging the notion of
the angle-axis representation. Considering a rotation axis ω̄ ∈ S2 and a rotation angle
θ ∈ S1, a tridimensional vector ξ ∈ R3 is obtained. The vector encapsulates both the
angle and axis information by multiplying the two ξ � θω̄.

In order to construct a matrix from this vector, it is necessary to introduce the notion
of the hat map ˆ(.), which operates by reformulating a vector in R3 into a skew-symmetric
matrix, in this fashion:

ξ̂ =




1 −ξz ξy

ξz 1 −ξx

−ξy ξx 1


 . (3.35)

If ξ is approximately zero, the matrix is close to a member of SO(3). However, it is
desirable to define an exact mapping onto the manifold. Therefore the notion of matrix
exponential is introduced, based on the formulation from [Hal00]:

exp(ξ̂) �
∞

∑
k=0

1
k!

ξ̂
k
= I + ξ̂ +

1
2!

ξ̂
2
+

1
3!

ξ̂
3
+

1
4!

ξ̂
4
+ . . . (3.36)
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An ulterior definition, stemming from the matrix exponential above, is the exponential
map. This mapping exploits a relevant feature of the group SO(3). As it shares the
properties of being a group, as well as a differentiable manifold, SO(3) is a Lie Group.
As such, the quantity ξ̂ can be described as a member of its Lie Algebra so(3), which
represents its tangent space. The exponential map is defined as the function that maps
elements of the lie algebra to the lie group

exp : so(3) → SO(3). (3.37)

This function is exact for arbitrarily large vectors and thus is very general. To construct
a member of the SO(3) manifold from a tridimensional vector, the matrix exponential
has a convenient analytical expression, denominated Rodrigues’s formula:

exp(ξ̂) � I +
sin(θ)

θ
ξ̂ +

(1 − cos(θ))
θ2 ξ̂

2
. (3.38)

The exponential map is valid for any Lie group, thus the procedure hereby detailed is
not constrained to SO(3).

Being able to map elements of R3 to elements of SO(3), any rotation can be inter-
preted as an incremental one, starting from a reference element of SO(3), R0:

R1 = R0 exp ξ̂1. (3.39)

Leveraging this formulation, expressing a sequence of rotations over time can be
done by extending the formula above:

R(t) = R0 exp ξ̂(t). (3.40)

Eq. (3.40) allows to recover the use of interpolating curves within the optimization
framework.

B-splines parametrization of SO(3)

The main contribution of this section is the improvement of state-of-the-art path
planning approaches for rotations, by means of tridimensional B-splines. In [NP16]
and [BD18], the authors implement third order polynomials to construct a simple
interpolation with four parameters only. The method presented in this thesis allows to
use any arbitrary number of parameters to describe a trajectory in SO(3). The sequence
of rotations R(t) can be interpolated recovering the B-spline parametrization used in
equation (3.21), by interpolating the vector ξ:

ξ(t) =
m

∑
j=0

rjB
p
j (t). (3.41)
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Initial and final boundary conditions on the trajectory must be prescribed to fully
define a path. However, it is not clear how to define boundary conditions on the vector
ξ. In particular, the objective is to constrain the following quantities:

• R0, Rt f

• ω0, ωt f

• ω̇0, ω̇t f

To this end, defining the mapping that transfers the notion of a rotation matrix into its
Lie algebra becomes necessary. This mapping is denoted as the logarithmic map, being
the inverse of the exponential one. This function is represented as log : SO(3) → so(3).
As detailed in [LP17], retrieving the angle-axis counterpart of a rotation matrix R
requires identifying three cases:

1. if R = I then θ = 0 and ω̄ is undefined.

2. if tr(R) = −1 then θ = π and the axis can be any of three solutions:

ω̄ =
1�

2(1 + r33)




r13

r23

r33


 (3.42)

ω̄ =
1�

2(1 + r22)




r12

1 + r22

r32


 (3.43)

ω̄ =
1�

2(1 + r11)




1 + r11

r21

r31


 (3.44)

In this specific case, both ω̄ and −ω̄ are solutions.

3. if θ = arccos( 1
2 (tr(R)− 1)) ∈ [0, π), then

ˆ̄ω =
1

2 sin(θ)

�
R − RT

�
(3.45)

With this set of formulae, the quantity ξ associated with a rotation matrix R is
obtained by introducing the inverse of the hat operator. Defining the reverse hat operator
as (.)̌ : so(3) → R3, which maps the non-diagonal elements of a skew symmetric matrix
onto a three-dimensional vector.
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This representation allows to parametrize any rotation matrix within SO(3) as an axis-
angle pair through its logarithmic map, however one cannot define relative rotations
larger than 2π due to its singularity in π. None of the works of [BD18; NP16] address
the singularity, nor they describe accurately how to obtain the logarithmic map of an
orientation matrix. This singularity restricts the motion planning problem to relative
rotations of an angle within θ ∈ [0, 2π]. In the context of minimizing the mechanical
energy, this formulation is advantageous. When obtaining the angle-axis representation
of the final attitude, this methodology always delivers the representation with minimal
angle, which can be interpreted as the shortest path on the manifold [Har+13]. This
allows to define a well-posed initial solution for the path planning problem.

When it comes to defining the set of boundary conditions, the logarithmic map can
be exploited to obtain the two values ξ0, ξt f

, in particular, these values can be computed
using the continuous and differentiable chart transition on SO(3) as expressed in
[Wat+20; Wat+18]:

ξ2 =
�
log(R−1

1 R2 exp(ξ̂1))
�

.̌ (3.46)

As the formula requires knowledge of ξ1, a possible and simple approach is to set it
to ξ1 = 0. It is trivial to verify that the exponential map of the null vector returns the
identity matrix, so exp(ξ̂1) = I. This way, simplifying (3.46):

ξ2 =
�
log(R−1

1 R2)
�

.̌ (3.47)

Obtaining the boundary conditions means setting the values of the orientation parametriza-
tion vector as in [BD18]

ξ0 = 0 (3.48)

ξt f
=

�
log(R−1

0 Rt f )
�

.̌ (3.49)

Fixing angular velocities values can be done exploiting the notion of right Jacobian
from [NP16]:

J(ξ) � I +
1 − cos(�ξ�)

�ξ�2 ξ̂ +
(�ξ� − sin(�ξ�))

�ξ�3 ξ̂
2
. (3.50)

The matrix J(ξ) maps infinitesimal increments from the tangent space to the manifold,
in this case it allows to map the first derivative of the interpolated vector onto the
angular velocity as:

ω = J(ξ)ξ̇. (3.51)

Extending the reasoning to the angular acceleration, (3.51) can be differentiated to
obtain a function of the vector ξ, which can be expressed according to [NP16] as:

ω̇ = J(ξ)ξ̈ + C(ξ, ξ̇) (3.52)
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where

C(ξ, ξ̇) � (�ξ� − sin(�ξ�))
�ξ�3 ξ̇ × (ξ × ξ̇)

− (2 cos(�ξ�) + �ξ� sin(�ξ�))− 2
�ξ�4 ξ · ξ̇(ξ × ξ̇)

+
(3 sin(�ξ�)− �ξ� cos(�ξ�))− 2�ξ�

�ξ�5 ξ · ξ̇(ξ × (ξ × ξ̇)). (3.53)

With this set of formulae, the parametrization vector and its derivatives at time tj can
be determined by sequentially solving the following equations:

ξtj
=

�
log(R−1

0 Rtj)
�
ˇ (3.54)

ξ̇tj
= J(ξtj

)−1ωtj (3.55)

ξ̈tj
= J(ξtj

)−1(ω̇tj − C(ξtj
, ξ̇tj

)). (3.56)

The set of equations above allows to reformulate any condition (Rti , ωti , ω̇ti) into a set
of conditions (ξti

, ξ̇ti
, ξ̈ti

). Rewriting the angular motion variables as functions of the
parametrization vector in R3 allows to recover the incorporation of boundary conditions
within the B-spline formulation by constraining the control points, leveraging the
same exact method detailed in equations (3.28)-(3.29). Moreover, exploiting equations
(3.51) and (3.52), the values of angular velocity and acceleration can be computed as
functions of (ξ(ti), ξ̇(ti), ξ̈(ti)). Therefore permitting to incorporate nonlinear inequality
constraints on these values as well.

With these notions, an interpolation on SO(3) has been constructed. The method
allows to map a sequence of rotations with defined boundary constraints, by using
only variables that live on R3. As explained in [NP16], using this representation to
interpolate trajectories has the advantage of approximating the minimum acceleration
profile, which implies that the underlying path is smooth and short. In particular, when
ω0 = ωt f = 0 the sequence yields the shortest path on the manifold. As done for a
general B-spline, the OCP for path planning on SO(3) can be expressed and resolved
using GBO:

min
Ropt

Γ(Ropt) (3.57a)
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subject to

ξmin ≤ ξ(t) ≤ ξmax (3.57b)

ξ̇min ≤ ξ̇(t) ≤ ξ̇max (3.57c)

ξ̈min ≤ ξ̈(t) ≤ ξ̈max (3.57d)

umin ≤ u(t) ≤ umax (3.57e)

g(ξ(t), ξ̇(t), ξ̈(t)) ≤ 0 (3.57f)

In this case, a tridimensional B-spline of degree p = 2 is taken into consideration,
defined on knot vector t and control points R, with Ropt representing the set of free
control points that are subject to optimization.

Having defined the optimization parameters to be a set of vectors on R3, the tech-
niques of numerical optimization detailed previously are available to approach the
numerical solution.

This methodology presented allows to perform path planning efficiently on SO(3).
The same method can be also adapted to representations with quaternions, by using
the formulas defined in [NM15]. The two share similarities as they both parametrize
the rotations using an angle-axis representation and leverage the exponential map of
SO(3). However, the method devised by [NM15] is used to interpolate precomputed
waypoint trajectories in SO(3), thus not allowing to obtain optimal solutions without a
precomputed set of orientations.

Finally, this method can be extended to higher derivatives such as the rotational
jerk, defined in [ZKC98] as ω̈ = ω̇ + 1

2 ω × ω̇. By implementing the reformulation
from [Som+20] one can efficiently compute time derivatives of the parameters, plus the
gradients of the B-spline with respect to the control points. Due to time constraints,
however, in the course of this thesis it was not possible to completely extend the
formulation to incorporate this level of generality.

Optimization on the special Euclidean group SE(3)

Considering a rigid body in the free space, assuming an inertial frame {I} and a frame
fixed to the rigid body at point O�, {B}. At any point in time, the pose of the rigid
body can be described as an homogeneous transformation, which corresponds to the
displacement of frame {B} from frame {I}. This homogeneous transformation can be
represented by a matrix, which is an element of the special Euclidean group of rigid
body transformations in three dimension

SE(3) =
��

R p
0 1

�
|R ∈ R3×3, p ∈ R3, RTR = I, det(R) = 1

�
= R3 × SO(3). (3.58)
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It can be shown [MLS17] that SE(3) is a manifold as well as a group for matrix
multiplication, which means that it is a Lie group as SO(3). As for any other Lie group
its Lie algebra se(3) defines its tangent space

se(3) =
��

Ω v
0 0

�
|Ω ∈ R3×3, v ∈ R3, ΩT = −Ω

�
(3.59)

where Ω = ω̂. The literature does not present results that significantly highlight an
advantage in interpolating and optimizing elements of SE(3) instead of using a split
position and orientation R3 × SO(3) representation [NP16; Som+20]. Hence, combining
two B-splines, one for the position s(t) and one for orientation ξ(t), to interpolate the
rigid body motion is a viable option to efficiently parametrize the group without the
need to modify the derivations obtained so far. Combining the methodologies described
so far for R3 and SO(3), the trajectory optimization framework on the manifold is
obtained.

Considering the trajectory of a rigid body as T(t) = (p(t), R(t)), the OCP for
trajectory optimization using the B-spline representations τ(t) = (s(t), ξ(t)) can be
formulated. Defining the control points as Q = (P, R), where Qopt = (Popt, Ropt).
Finally, formulation for trajectory optimization on SE(3) is

min
Qopt

Γ(Qopt) (3.60a)

subject to

τmin ≤ τ(t) ≤ τmax (3.60b)

τ̇min ≤ τ̇(t) ≤ τ̇max (3.60c)

τ̈min ≤ τ̈(t) ≤ τ̈max (3.60d)

umin ≤ u(t) ≤ umax (3.60e)

g(τ(t), τ̇(t), τ̈(t)) ≤ 0 (3.60f)

As a final note, Problems (3.32), (3.57) and (3.60) cannot be proven to be convex,
as there are non-trivial non-linearities within the constraints and cost function. Thus,
convergence to a global optimum cannot be proven and guaranteed. Most likely, the
solution will converge towards a local minimum which will be highly dependent on
the initial guess fed to the optimization as well as the specific problem solved.

3.2.3 Sampling-based planning on manifolds

Most of the works mentioned in Section 3.1.2 avoid planning on the entire SE(3).
Applying simplifying reasoning on the dynamics of the robot or simplifying the
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problem statement, in many cases the space of the trajectory can be conveniently
reduced. The generation of randomly distributed samples on groups different from
Rn is a non-trivial task. Mainly due to the complex topological structure of the group,
which leads to difficulty in defining a distance metric on non-euclidean spaces. On n-
dimensional cubes Rn, using a pseudo-random generator delivers efficient sampling of
the space. A viable alternative to improve coverage of the space, is using a deterministic
sequence of quasi-random numbers. This approach offers the best results in terms
of discrepancy and dispersion [LBL04]. The topology of the space SE(3), induced by
the rotation component of SO(3), determines relevant implications for path planning
algorithms which intend to efficiently represent and search the special euclidean group.
Without careful implementation, these representational details can create a point of
failure in the algorithm. In this section, the focus will be the sampling of SO(3), as it is
advantageous to consider SE(3) = R3 × SO(3).

Sampling of SO(3)

In [Kuf04], the authors point out that a naive approach when sampling Euler angles and
unit quaternions would lead to samples which are strongly biased towards the polar
regions. As an alternative, they propose an effective approach to randomly sample
Euler angles and quaternions, as shown in Fig. 3.2.

Figure 3.2: (a) Random sampling of Euler angles by only using a naive approach, (b)
uniform sampling of SO(3) with Euler angles, from [Kuf04].

Although effective, the method presented leverages rotation parametrization that are
intrinsically limited. Euler angles are not natural representation of rotations due to their
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singularities. On the other hand, quaternions do not allow to easily compute metrics
to evaluate the quality of the sampling such as dispersion or discrepancy [Yer+10].
In [Yer+10], the authors point to the subgroup algorithm [DS87] as the most correct
methodology to construct random sequences of rotations. The method exploits the
property of any Lie group to be uniformly sampled by combining elements from a
subgroup and its quotient, or coset space S2 at random. In the case of SO(3), the
approach can be applied by considering the subgroup S1 and its coset space S2. This
approach is widely used, however it lacks deterministic uniformity guarantees, and the
explicit neighborhood structure necessary to appropriately cover the entire space.

To obtain a sequence of rotations on SO(3) that is uniform, covers the entire space and
fulfills requirements on measures of discrepancy and distortion, the method devised by
[Yer+10] is going to be followed within this work. The method requires construction
of a deterministic incremental grid on SO(3) by leveraging its topological structure,
which allows it to locally behave as the Cartesian product of the two spaces S1 and
S2. Using multiresolution grids on the 1-sphere and on the 2-sphere, they can then
be lifted to the special orthogonal group by applying the Hopf coordinates. This set
of coordinates permits to compute a quaternion associated with a given rotation. The
quaternion in Hopf coordinates is expressed by considering the three angles (θ, φ, ψ),
in which ψ ∈ (0, 2π] parametrizes S1, while θ ∈ (0, π] and φ ∈ (0, 2π] represent the
space S2. In Fig. 3.3 the effect of varying the Hopf fibration parameters on points
sampled on the sphere is shown. The figure also depicts the difference between the
spherical coordinates and the Hopf coordinates. This comparison allows to see why
the Hopf coordinates do not present singularities, as they generate a series of non-
intersecting arcs within the sphere. The figure shows the main advantages of using this
parametrization, as the fibers are non-intersecting thus it presents no singularities, and
the circles represented by the variable ψ are all of equal length. The rotation quaternion
q = (q1, q2, q3, q4) from Hopf coordinates is then expressed as:

q1 = cos
θ

2
cos

ψ

2
(3.61a)

q2 = cos
θ

2
sin

ψ

2
(3.61b)

q3 = sin
θ

2
cos

�
φ +

ψ

2

�
(3.61c)

q3 = sin
θ

2
sin

�
φ +

ψ

2

�
. (3.61d)

Defining a grid structure on S1 and S2 is the next step to randomly sample points
from the two manifolds. Lifting this grid structures then allows to obtain a rotation
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Figure 3.3: Visualization of the spherical(above) and Hopf (below) coordinates on SO(3)
using angle and axis representation by [Yer+10]. The depiction corresponds
to a projection of the S3 onto the equatorial solid sphere drawn in R3.
(a) Spherical coordinates with range of ψ ∈ [0, π

2 ], where (θ, φ) form a
discretization of size 20 in S2. (b) Half spheres show the full range of θ, φ

while ψ ∈ [0, π
2 ] takes 4 discrete values. (c) The range of Hopf coordinate

with ψ ∈ [0, 2π), where (θ, φ) form a discretization of size 12. (d) Half
spheres showing the full range of the Hopf coordinate θ, φ while ψ ∈ [0, 2π)

takes 4 discrete values.

quaternion on SO(3) which can be converted to a rotation matrix. As [Yer+10], the
HEALPix package [Gor+05] is chosen to obtain a uniform grid on the 2-sphere. The
package was originally developed for astrophysics and its purpose is to provide a
deterministic, uniform, and multiresolution sampling method, additionally it partitions
the sphere in sections of equal area. Figure 3.4 and 3.5 depict the partitioning of
the baseline grid in squares in the space of Hopf coordinates, as well as the effect of
subdividing the baseline grid of size m2 = 12.

The HEALPix grid delivers the latitude and longitude of any point on the 2-sphere,
thus delivering the Hopf coordinates (θ, φ). To complete the parametrization, an
ordinary grid in S1 is constructed. Uniformly dividing the range of ψ in m1 samples, a
simple ordinary grid is obtained. [Yer+10] demonstrates that, in order to construct a
grid in which cells have all equal size, the circumference of the circle S1 and the area of
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Figure 3.4: HEALPix [Gor+05] grid on the 2-sphere. Above the cylindrical projection
of the sphere onto the (cos(θ), φ) coordinates. Below the visualization of
the base grid with m2 = 12 points, together with the incremental sampling
procedure which subdivides each tile of the initial grid into ulterior 4
squares. From [Yer+10].

the sphere S2 have to relate to the number of samples with the following relation:

π

m1
=

�
π

m2
. (3.62)

As the base grid of HEALPix is constructed by mapping the vertices of a icosahedron
onto the sphere, the number of points correspond to 12. To satisfy equation (3.62), m1

needs to be equal to 6. The final grid is constructed by the cartesian product of the two
grids, constructing a set of m1, m2 samples that form the first resolution layer of the
sampling procedure.

To re-introduce the randomness that characterizes sampling-based methods, a simple
solution is to randomize the choice of grid elements. Within motion planning problems,
this sampling method has shown to outperform classical implementations of PRM
[Yer+10], and has successfully been implemented in A* on SO(3) [Wat+20]. In the scope
of this work, the use of the incremental property of the grid is kept to a minimum.
Alternatively, the discretization is chosen such that the algorithm can rely on one
sufficiently fine grid. This choice is dictated by simplicity of implementation and time
constraints.
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(a) (b)

(c) (d)

Figure 3.5: HEALPix [Gor+05] two-dimensional representation with different level of
sampling on a Mollweide projection. (a) number of samples m2 = 12, (b)
m2 = 48 (c) m2 = 192, (d) m2 = 1200

RRT*-GBO on SE(3)

In this section, the approach to obtain an optimal trajectory on the group SE(3) by
means of the RRT*-GBO methodology denoted in [SL14] is shown. The algorithm used
comprises of three main steps:

1. Incremental building of the tree

2. Interpolation of the initial solution

3. Smoothing.

The initial solution is computed by following Algorithm 1.
For the sake of clarity, the algorithm steps are summarized in functions, which are

explained in the following paragraphs.
initialize_grid: in this step an initial grid is constructed as in Algorithm 2. First,

an origin po is defined in R3 in order to construct a grid of size (Nx, Ny, Nz) around it,
with limits defined as [(xmin, xmax), (ymin, ymax), (zmin, zmax)]. Based on this quantities, a
step size is defined and the location of the grid points are stored in a container GR3 .
Afterwards, a similar procedure is conducted for the sampling of orientations. Once
the size of the grid is defined based on the number of HEALPix and S1 discretization
Npix = m2, Nψ = m1. The discretization of S1 is done through an ordinary equally
spaced grid, while the S2 is constructed exploiting the efficient HEALPix discretization
discussed above. Once the separate grids GS1,GS2 are constructed, one obtains the
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Algorithm 1 RRT*-GBO iteration

initialize_grid(po)
connect_to_goal(xstart)
for i ← 0 to Niter do

xnew ← sample()
if xnew /∈ Cobstacle then

connect_to_goal(xnew)
xbest, enew ← neighborhood_query()
if enew is feasible then

T ← add(xnew)
connect_tree(xnew, xbest, ebest,new)
rewire(xnew)

end if
end if

end for

final one through a cartesian product, obtaining GSO(3). The grid on SE(3) is finally
constructed by the cartesian product GR3 × GSO(3).
sample: this function is characteristic for sampling-based methods. As the sampling

is based on incremental grids on SE(3), the first step is to verify if the grid has been
completely covered. In case that is true, an incremental step is performed, which means
that the discretization of the grid is increased by a resolution level l. This step repeats
the initialize_grid with updated discretization sizes. In particular, the elements
of R3 can be re-sampled by subdividing each cube in an arbitrary even number of
sub-cubes. For SO(3) elements, the procedure requires increasing the size of the S2
grid by a factor of 4l . The corresponding size of the S1 grid has to be found through
Equation (3.62).

Once the grid is verified to be appropriate, an element is randomly selected from
it, as denoted in Algorithm 3. The entry is then removed from the container to avoid
repeatedly selecting the same elements at a given resolution level.
neighborhood_query: given two nodes xi, xj, this function computes the cost asso-

ciated with the connection within the two in order to find the best node to create a
new edge of the tree. Algorithm 4 shows how the function, for each node in the tree,
creates an edge ei,j by solving the boundary value problem between the two set of
states and their derivatives (τ, τ̇, τ̈, . . . ), by constructing an optimization problem as
in Equation (3.60). The edge is scored first based on a pruning metric, which stops
the iteration if a certain threshold value rthreshold is exceeded. This check allows to
also create a neighborhood around the candidate node xi, which allows to apply the
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Algorithm 2 initialize_grid

GR3 ← po

NR3 ← (Nx, Ny, Nz)

lR3 ← [(xmin, xmax), (ymin, ymax), (zmin, zmax)]

ΔlR3 ← [Δx, Δy, Δz]
for i ← 0 to Nx do

for j ← 0 to Ny do
for k ← 0 to Nz do

GR3 ← (xo + iΔx, yo + jΔy, zo + kΔz)
GR3 ← (xo − iΔx, yo − jΔy, zo − kΔz)

end for
end for

end for
NSO(3) ← [Npix, Nψ]

lS1 ← [0, 2π)

ΔlS1 ← Δψ

GS2 ← HEALPix(Npix)
for i ← 0 to Nψ do

GS1 ← (iΔψ)

end for
GSO(3) ← GS1 × GS2

GSE(3) ← GR3 × GSO(3)

Algorithm 3 sample

if size(GSE(3)) = 0 then
GSE(3) ← increment_grid()

end if
id ← uniform_random_distribution(size(GSE(3)))
xnew ← GSE(3)[id]
GSE(3) ← remove(xnew)

38



3 Kinodynamic Path Planning

rewiring procedure later on. Afterwards the best node to connect the candidate, xbest,
is found by simply selecting the one which would lead to the lowest cost value.

Algorithm 4 neighborhood_query

for xi in T do
ei,j ← compute_edge(xi, xj)

if prune(ei,j) < rtreshold then
neighborhood ← xj
if cost(ei,j) < cost(ei,best) then

xbest ← xj
end if

end if
end for

connect_tree: this function connects two nodes xbest, xnew together by adding the
new node to the existing tree. The node is added to the graph and its boundary
conditions are updated by extracting them from the edge formulation ebest,new. Finally
the edge is stored and added to the tree, as shown in Algorithm 5.

Algorithm 5 connect_tree

T ← add_node(xnew)

xnew.B ← boundary_conditions(ebest,new)

T ← add_edge(ebest,new)

connect_to_goal: this function’s purpose is to connect a node of the tree xi to the
goal node xgoal . Following Algorithm 6, the edge ei,goal between the two nodes is
computed. If its cost falls below the threshold rgoal , the procedure moves forward. If
the goal has no existing connections, the new node will be connected. However, if
there exists a connection from a node xj to xgoal , the cost of the existing edge ej,goalis
compared with the one of the new candidate. Whenever the candidate edge’s cost
is lower, the existing one is removed from the tree and substituted. By proceeding
this way, the solution of the edge converges to the optimal value of that section of the
trajectory.
rewire: as in the classical RRT* formulation, this function checks checks if the

latest node added to the tree xnew can reduce the cost of other paths that arrive into
neighboring nodes xi from xincoming. In this case, as shown in Algorithm 7, the criteria
of the rewiring is based on the cost metric. If the cost of the possible connection enew,i
is lower than the existing eincoming,i, then eincoming,i is removed and substituted by enew,i.

This procedure delivers an initial trajectory Tinit(t), which comprises of a number
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Algorithm 6 connect_to_goal

ei,goal ← compute_edge(xi, xgoal)

if cost(ei,goal)< rgoal then
if xgoal is connected with xj ∈ T then

if cost(ei,goal)< cost(ej,goal) then
T ← remove_edge(ej,goal)
T ← add_edge(ei,goal)

end if
else

T ← add_edge(ei,goal)
end if

end if

Algorithm 7 rewire

for all xi in neighborhood do
enew,i ← compute_edge(xnew, xi)

if cost(enew,i) < cost(eincoming,i) then
T ← remove_edge(eincoming,i)
T ← add_edge(enew,i)

end if
end for
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of sub-trajectories that connect the sequence ofNnodes nodes:
�

xstart, ..., xgoal
�

. Each of
the sub-trajectories is kinodynamically feasible and locally optimal with respect to
the boundary conditions and constraints, and spans a time Δt = t f . This trajectory
is interpolated by using a B-spline with NRRT control points, this parameter can be
tuned based on the problem in order to accurately express the trajectory without
requiring excessive computational power and avoiding overfitting. Once the trajectory
is interpolated, the resulting spline represents the motion of the system between time
t0 and time t0 + Δt(Nnodes − 1). Exploiting this result as an initial solution for a final
smoothing, the quality of the end-result is increased and approximates the global
optimum for any given cost metric and constraint. The sketch of the procedure is
shown in Figure 3.6.

Start

Goal

Figure 3.6: Sketch of the smoothing procedure of the RRT*-GBO. The tree delivers an
initial solution that comprises of locally optimal edges (blue, red and green
segments). The initial guess is fed to a smoothing procedure that delivers
the optimal solution (black).

The methodology allows for path planning with arbitrary cost and constraints and
delivers high-quality trajectories. One additional advantage is the time allocation
aspect. The approach prevents drawing edges to nodes that cannot be reached before
Δt. Rather than explicitly optimizing for time as in [Use+17], this method can add
an arbitrary number of edges to reach the goal, in order to increase the duration of
the trajectory and allowing for an estimate of the necessary duration of the motion.
However, the RRT*-GBO presents significant drawbacks, in particular when it comes
to the formulation of the edges. In the original formulation by [SL14], the sampling
was conducted up to the first derivative of the state. This would result in segments
with erratic behavior given by the randomness of final conditions imposed within the
OCP, as shown in Figure 3.7. This effect degrades the quality of the initial solution.
Additionally, it worsens the time allocation for the final trajectory by increasing the
total duration to accommodate unnecessary maneuvering. The final runtime of the
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algorithm is significant. The sampling of higher derivatives substantially increases the
search space and, if not enough iterations are performed, the initial guess returned by
the RRT*-GBO might require multiple smoothing to converge.

Figure 3.7: RRT*-GBO solution for a free-floating robot moving around the ISS from
[SL14]. The initial solution provided to the smoother by the algorithm shows
segments that are highly suboptimal.

Optimal edge construction using propagation of motion

Within this section, the problem of the random sampling within an high-dimensionally
state space is investigated. In particular, an alternative edge construction is proposed,
in an attempt to lower the computational effort required to find a solution of the
algorithm.

In general, for a configuration space C of dimension n, the state space comprises
of the former augmented with velocity coordinates. This augmentation leads to a
two-fold increase in dimension 2n. Since the complexity of planning algorithms usually
scales exponentially with the dimension of the search space [LJ01], sampling the entire
state space may be impractical, even for relatively small dimensions [SD91]. As the
configuration space of the robot is SE(3), it corresponds to n = 6 degrees of freedom,
thus sampling the state-space requires searching a space of dimension 2n = 12. In
an attempt to mitigate the negative effects that the sampling approach used in [SL14]
would have in SE(3), within this thesis the RRT*-GBO is employed using an alternative
edge construction methodology.

42



3 Kinodynamic Path Planning

In [PCN13], in order to limit the search to the configuration space of the problem,
rather than approaching the full state space, the authors formulate an Admissible
Velocity Propagation (AVP) technique. The foundation behind the concept lies within
the limited range of possible velocities that a system can assume based on its initial
conditions and kinodynamic constraints. The authors first devise an algorithm to define
kinodynamically feasible, time-optimal paths in the state space, by using as input a
path in configuration space. The authors then construct the AVP-RRT, a kinodynamic
planner that leverages the aforementioned algorithm in order to construct smooth and
continuous paths. The planner limits the sampling to the configuration space and
behaves like an RRT. The edges, however, are computed using the AVP formulation
by propagating velocity information at the junction of any two edges. By specifying
bounding-box constraints on velocity and continuity between nodes of the RRT, the
methodology can produce smooth paths in the state space, by connecting two points
in configuration space. The algorithm relies on considering the velocity at any origin
node, which corresponds to the initial velocity for a new edge. If the value is null, the
nodes are connected with a straight line, if it isn’t a third order polynomial is used to
connect the two. This connecting trajectory has to ensure that continuity at the junction
is guaranteed and that the derivative at the final location does not violate the maximum
value, which is conditioned on the velocity at the start of the segment. Once the path
in configuration space is defined, the velocity is obtained through the AVP algorithm.

In [BD18], the authors explicitly formulate the construction of motion primitives
for segments where a portion of the states is not fixed at the boundary conditions. In
particular, they show that it is possible to define motions where no boundary state is
defined, effectively freeing a number of parameters to be defined by optimization pro-
cedure. The method allows to obtain lower cost on the trajectories, as more parameters
can be modified. The ability to define boundary conditions, however, is lost and the
size of the optimization problem inevitably increases.

Within the context of the RRT*-GBO, these implementation choices have been the
motivation behind the change. In particular, the implementation used within this thesis
formulates edges such that only the configuration of the robot in SE(3) is sampled.
This leads to higher derivatives being the result of the optimization procedure. The
quantities are later extracted from the edge and become initial conditions for new edges
departing from the given nodes. This approach extends the AVP-RRT’s property of
propagating admissible velocities and constructing smooth paths at the junction of
nodes. In particular, the edges constructed through this method are entirely smooth
and differentiable up to the highest derivative embedded in the parametrization. By
embedding the computation of velocity profiles within the GBO, only admissible
velocities are obtained, as well as ensuring continuity of higher derivatives delivering a
smooth trajectory.
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A sketch of the result is presented in Figure 3.8. The resulting path can effectively
be interpreted as one continuous curve as there are no jumps at the junctions. The
formulation also avoids jerky motion by constructing velocity and acceleration profiles
conditioned by their values at the source node, rather than originating from uninformed
random samples.

Start

Goal

Figure 3.8: Sketch of the updated edge construction for RRT*-GBO. The tree delivers an
initial solution that is continuous and differentiable at any node (blue, red
and green segments). The smoothed solution is closer to the initial guess if
the nodes are part of the optimal path (dotted).

The resulting algorithm may lack the probabilistic completeness attributed to sampling-
based methods which sample the input space [LJ01]. In [CPN14], the authors analyze
thoroughly the completeness property of various type of randomized kinodynamic
planners. Considering the classical formulation of the RRT-GBO in [SL14], it is classifi-
able as a state-based steering algorithm. While [CPN14] provide proofs for probabilistic
completeness of such methodologies, it is not within the scope of this work to extend it
to the RRT-GBO implementation. Currently, the original formulation is not guaranteed
to retain any of the properties of state-based randomized planners. Therefore, there is
no evident loss in applying the edge construction defined above within the scope of
this work.

3.2.4 Implementation on robotic manipulators

As a final step, the extension to the space of SE(3) and the formulation of the problem
allow to seamlessly apply the methodology on robotic manipulators. In particular,
considering an arm with 6 degrees of freedom, the end effector moves in 3D space as a
free-flyer would, albeit the additional limits imposed by the joints and actuation.

Assuming that the dynamic constraints applied on the free-flyer, are a subset of the
limits imposed by the robotic arms dynamics and actuation, the envelope of states
reachable by the end effector coincides with the one of the Astrobee robot. Defining the

44



3 Kinodynamic Path Planning

set of reachable states and applicable actuation of the Astrobee as XA,UA and the set of
reachable states and applicable actuation of the end effector XE,UE, the following is
assumed to be true

XA ⊂ XE

UA ⊂ UE.
(3.63)

Thus, fulfilling the constraints placed on the free-flyer dynamics, ensures fulfillment of
the constraints on the robotic manipulator as well.

Through this assumption, it is trivial to extend the problem of moving the end
effector simulating the motion of an Astrobee, by just adding inverse kinematics as a
constraint. In particular, in Chapter 2 it was assumed that the inverse kinematics were
known, thus defining them as in Eq. (2.7)

θ = k−1(TE), (3.64)

where θ represents the joint angles of the robot and TE the pose of the end-effector.
By considering a set of feasible joint angles (θmin, θmax) to account for collision with

the environment and joint limits within the robotic arm itself, the inverse kinematics
can be integrated in the OCP in Eq. (3.60) as a box constraint in the form:

θmin ≤ k−1(τ(t)) ≤ θmax. (3.65)
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This chapter’s purpose is to expand the notion of kinodynamic path planning men-
tioned in Chapter 3. The goal within the coming sections is to leverage the notions
laid out for optimal path planning, in order to formulate a cost function that combines
the search for energy-efficient trajectories as well as assuring improvements of visual
estimation for autonomous robots in known environments.

The problem is first studied in terms of recent approaches reported in the literature.
As the purpose of this thesis is to incorporate this alternative cost formulation in the
context of RRT*-GBO steering functions, it is necessary to construct a OCP to solve
through the SLSQP method described in 3.2.2.

Once possible routes are identified, an analysis is performed to understand the
applicability of uncertainty-aware methodologies within the context of GBO. Finally,
the cost formulation selected as the most suitable is defined and compared to current
state-of-the-art methodologies.

4.1 Problem Statement

4.1.1 Introduction

In recent years, the field of robotics has witnessed remarkable advancements, enabling
robots to operate autonomously in complex and dynamic environments. A fundamental
challenge in robotic navigation is the seamless integration of perception and planning,
allowing robots to not only generate collision-free paths but also to make informed
decisions based on the perception of their surroundings. This chapter delves into
a critical facet of modern robotic navigation -perception-aware path planning – and
explores its synergistic integration with Visual-Inertial Odometry (VIO) technology.

Traditional path planning algorithms, which have been discussed in chapter 3, have
largely focused on kinematic and dynamic constraints and geometric considerations.
However, as robots are increasingly deployed in real-world scenarios, the reliance on
solely geometric information may be inadequate.

To navigate with efficiency and safety, robots must possess the ability to perceive and
understand their environment in real-time. VIO has emerged as a powerful solution,
fusing data from cameras and inertial sensors to estimate the robot’s pose and motion
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accurately. An extension of the methodology, Visual-Inertial Simulataneous Localization
And Mapping (SLAM) (VI-SLAM) allows to both estimate the pose of the robot, while
constructing an incrementally updated map of the surrounding environment. By lever-
aging this sensor fusion, robots can gain a deeper understanding of their surroundings,
leading to more informed path planning decisions.

This paradigm shift from traditional path planning not only enhances the robot’s
ability to avoid collisions but also opens avenues for optimizing trajectories considering
perceptual objectives, such as visibility of landmarks or minimizing uncertainty while
traversing a path.

4.1.2 Related Work

Literature shows that the link between active perception and SLAM is strong, as the
connection between the robot’s pose and its environment [BR11; Mu+16]. The state
estimation performance is highly influenced by the system’s trajectory. The field of
active perception and active vision [AWB88], has grown significantly in recent years in
an attempt to fill the gap in between state estimation, path planning and control.

One of the first efforts in the field was presented in [DM02], the authors control
the motion of two movable cameras on a ground robot, in an attempt to reduce the
uncertainty during localization. The method exploits the incrementally built map
to increase the localization accuracy by leveraging the cross coupling between the
robot’s pose and the mapped features. With a similar intent [Ata15; ACA14], integrate
path-planning and control with the state estimation. Differently from [DM02], these
works do not actively control the motion of the sensors alone, but rather generate paths
that enhance the entire motion estimation.

Formally, the active perception path-planning problem can be formulated as a
Partially Observable Markov Decision Process (POMDP) [KLC98], which delivers a
framework for planning under uncertainties. Unfortunately, the complexity of such an
approach motivates the search for alternative solutions.

The field of Belief-space planning has originated from the formulation of sampling-
based planners that would incorporate uncertainty within the plan. The approach
demonstrated to be very effective, especially tackling obstacle avoidance with uncertain
position information. Methods such as belief trees [BR11] and belief roadmaps [PR09]
have been successfully applied within two-dimensional exploration and mapping
problems [Ach+14; Cos+16].

The most recent works address the problem of online planning through a receding-
horizon approach, to combine exploration of unknown environments with belief-space
planning. In [Ach+14] the authors developed a planner using random belief trees.
The cost metric used is the uncertainty associated with the transition from one node
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to the following. To quantify the uncertainty, the covariance matrix associated with
the EKF-based estimation is propagated along an edge of the graph. Using the same
approach, [Cos+16] developed a planner that can handle dense mapping scenarios
using photometric information. The covariance at each node is obtained by predicting
the reprojection error’s uncertainty at any given point, relying on the map available
at the planning stage. Both these methodologies assume straight edges as steering
functions within the tree. In [ZS18], an ulterior step is proposed. The authors use a
sampling-based methodology with polynomial steering functions. In particular, they
construct polynomial motion primitives to reach a desired distance from the starting
position. A number of sampled poses on these segments are then scored based on the
quality of the expected VIO, which is obtained using an active map for that specific
segment. The cost metric is obtained from the covariance matrix of the localization
estimation, expressed in terms of the associated the least-squares problem. In [Wu+22],
the authors improve the framework defined in [ZS18]. They first extend the formulation
by formalizing the steering functions as minimum-jerk fifth-order polynomials. Each
trajectory section goes through checks to verify input feasibility and velocity limits. An
ulterior improvement is obtained by including a penalization on trajectories that lead to
motion blur on the visual feed. The measurement covariances are computed including
additional uncertainty terms. The terms are functions of the robot’s velocity since they
are computed using the associated pixel velocities of the mapped features.

Aside from sampling-based methodology, the path of trajectory optimization with
interpolating curves has been approached as an alternative. In [Mur+19], the authors
aim at defining a GBO planner for the flat outputs of a Micro Aerial Vehicle (MAV),
which has to move through a set of waypoints assumed to be known. First, the planner
constructs a polynomial trajectory through the set of positions. After that, the yaw
angle trajectory is obtained by performing an optimization that aims at maintaining the
highest number of visual landmarks in view during the motion. The authors define a
relaxed differentiable function to model the visibility of a feature, in order to construct a
continuous and smooth cost function to feed to the numerical optimization framework.

In [BTC20], the authors extend the approach of [Mur+19] by introducing a kinody-
namic A* planner to obtain an initial guess of the trajectory. In particular, they aim
at not only maintaining a large number of landmarks in view, but also selecting only
areas where the features extracted are reliable. Areas which can be highly textured
might be considered unreliable if the texture is transient. This is the case for water
or grass moved by the wind, which does not look consistent over time although can
be considered a texture-filled area. The methodology presented by [BTC20] allows to
account for the reliability of an area through semantic segmentation, the information
is then scored and accounted in the generation of the initial trajectory through the
search-based planner. At a later time, the trajectory is optimized by using a B-spline
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formulation with elastic-band cost functions. The cost accounts for smoothness and
collision avoidance, as well as visibility of landmarks using the same relaxed function
from [Mur+19]. Additionally, the authors introduce a co-visibility term, which penalizes
large changes of direction of the camera over adjacent poses.

In [Zho+21], a methodology for replanning in the context of fast flight through un-
known environments is devised. The planner uses an initial topological path searching
approach, in order to obtain an initial trajectory from a number of locally optimal
trajectories generated in this step. The best trajectory found through this process is
refined by a risk-aware planner, which aims at increasing visibility towards unknown
areas while maintaining safety guarantees with respect to unknown obstacles. Once
the risk-aware trajectory is obtained, the yaw angle of the MAV is further optimized to
actively explore unknown areas.

4.1.3 Problem Description

The scope of this chapter is to investigate a perception-aware path planning algorithm,
that allows to plan trajectories that maximize the number of visible landmarks along
them. The devised planner should seamlessly fit within the kinodynamic path planning
problem described in chapter 3, therefore should allow to incorporate a number of
necessary constraints. The final goal of the methodology is to define and implement
an algorithm that allows to be deployed in real-life scenarios on the ISS, allowing to
improve the quality of the localization algorithm deployed on the robot.

The ISS module is a known environment and as such all the visual information
within it is assumed to be known. This environment is provided through a sparse
map of landmarks, which is assumed to be correct and non-changing during the path
planning solution.

As detailed in section 4.1.2, many of the available methodologies are constructed to
be deployed on MAVs and ground vehicles. Most of these system’s dynamics can be
fully parametrized by considering less than 6 degrees of freedom, thus none of the
methods described for these platforms is applicable to the case of a free-flyer on SE(3).

State-of-the-art approaches frequently adopt a two-step process. First, a kinodynamic
path is generated using search or sampling-based methods to find a feasible trajectory
through the environment. Subsequently, an additional optimization step is employed,
incorporating perception-aware cost functions to refine the path. However, this two-step
approach may not fully exploit the potential of perception data, potentially leading
to suboptimal trajectories or limited adaptability to different scenarios. Many of the
currently available methods, do not provide a thorough analysis of the cost functions
in use, rendering the evaluation of the solution difficult from an optimality perspective.
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Objectives

The primary objective of this chapter is to construct a perception-aware GBO path
planner that can efficiently exploit data from the environment. The planner should
be able to cover the full parametrization of SE(3) and account for flexibility in terms
of cost functions and constraints. Additionally the cost function should allow to be
easily interpreted within the context of numerical optimization in order to demonstrate
optimality of the solution.

Contributions

In the next sections, the following challenges will be investigated:

• Analysis of uncertainty-based cost functions within GBO.

• Construction of a feature-density function in SE(3).

• Application of the feature-density function within GBO.

• Extension of available GBO approaches to SE(3).

• Comparison of the feature-density approach with state-of-the-art methods.

4.2 Methodology

4.2.1 Overview

In order to construct a planner that minimizes the uncertainty of the localization during
operations, it is necessary to investigate the relationship between estimation approaches
and the system’s motion. In the following sections, the problem of localization is
investigated analyzing the inner workings of available estimation methods. The analysis
is performed in order to identify the applicability of uncertainty-based cost metrics in
the context of this work.

Afterwards, a state-of-the-art cost function formulation from literature is extended
in order to fit within the path planning problem at hand. Finally, after analyzing the
shortcomings of state-of-the-art methodologies, an alternative approach is formulated
and proposed.

4.2.2 Visual-Inertial Localization (VIL) for autonomous free-floating robots

A paradigm that has gained success for autonomous robots’ navigation is SLAM. The
methodology relies on the sensors on-board to construct and update a map of the
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surrounding environment, while simultaneously estimating the system’s pose. The
correlation between the poses of the robot and the observed landmarks is what allows to
improve the quality of the estimation and mapping over time [Thr02]. The methodology
allows to reconstruct the entirety of the surrounding environment, but that also comes
at a cost of increased computation.

It is common for state estimation to rely on the onboard sensors to only estimate the
robot position and orientations. The most popular paradigm is VIO [SZ20; Leu+15].
The methodology combines the sensor information from cameras and IMU sensors, in
order to estimate the motion of the robot over time. This approach is well suited to be
used online as it is characterized by low latency. VIO leverages the high output rate
of the IMU sensor (its rate can reach up to 1, 000Hz ). However, since it is affected by
poor signal-to-noise ratio at low accelerations and low angular velocities, the fusion
with low frequency camera images allows to correct accumulated drift [SZ20].

In the context of the Astrobee robots, the system can rely on a very detailed map of
the environment which is obtained through the procedure described in [Col+16a]. The
localization procedure can therefore exploit the information by relying on the existing
map to improve the quality of the pose estimation. The case under consideration is
defined as VIL, as the robot does not need to estimate landmark positions, but rather
match features extracted from an image to existing ones.

The methodology currently used on-board the Astrobee on the ISS is described in
[Sou+22]. The system uses a factor-graph approach implemented in GTSAM [DC22;
DK17b], which combines preintegrated IMU measurements [For+15] with visual mea-
surements implemented as smart factors [Car+14].

Considering the motion of a system equipped with an IMU and a monocular camera,
let Kk denote the set of all keyframes up to time k. The objective is to estimate the set
of states

Xk = {xi}i∈Kk
(4.1)

where the state vector x comprises of position p, orientation R, velocities v, ω and
accelerometer and gyroscope biases ba, bg.

As the landmarks are not objective of the estimation, their structure is therefore not
part of the optimization variables. In order to solve the problem, the measurements
have to be included as inputs. Let Ci denote the camera measurements at keyframe i.
At time i any number of landmarks l can be in view, thus the set contains a number
of pixel measurements zi,l . Here Li is used to denote the set of visible landmarks
at time i. In the same fashion, the set Ii,j represents the set of IMU measurements
acquired between two consecutive keyframes i and j. Following this notation, the set of
measurements collected up to time k is represented as

Zk =
�
Ci, Ii,j

�
(i,j)∈Kk

. (4.2)
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The estimation problem can now be formulated as a factor graph [For+15]

p(Xk|Zk) ∝ p(X0)p(Zk|Xk) = p(X0) ∏
(i,j)∈Kk

p(Ci, Ii,j|Xk)

= p(X0) ∏
(i,j)∈Kk

p(Ii,j|xi, xj) ∏
i∈Kk

∏
l∈Li

p(zi,l |xi). (4.3)

The solution is the Maximum A Posteriori (MAP) estimate, corresponding to

X �
k = arg max

Xk
p(Xk|Zk), (4.4)

or alternatively to the minimum of the negative log-posterior

X �
k = arg min

Xk
− ln p(Xk|Zk). (4.5)

Assuming zero-mean Gaussian noise on the measurements, equation (4.5) results in the
following least-squares problem

X �
k = arg min

Xk
�r0�2

Σ0
+ ∑

(i,j)∈Kk

�rIi,j�2
Σi,j

+ ∑
i∈Kk

∑
l∈Li

�rCi,l�2
ΣC

(4.6)

where r0, rIi,j and rCi,l correspond to the residuals associated to each measurements.
The quantities Σ0, Σi,j and ΣC are the respective measurement covariance matrices.

The residuals for the IMU preintegrated measurements are rIi,j =
�
rΔRi,j , rΔvi,j , rΔpi,j

�T

as defined in [For+15]. More relevant for the current analysis are the residuals of visual
measurements

rCi,l = zi,l − π (Ri, pi, ρl) (4.7)

where ρl ∈ R3 denotes the position of the landmark l in the tridimensional space and
π(.) is the perspective projection which also encodes the transformation from camera
to IMU frame.

In the context of perception-aware path planning, the main concern is to maximize
the effectiveness of the visual component of the estimation. The analysis will thus
focus on the term rCi,l . In particular, the aim is to exploit equation (4.6) to obtain the
estimation error of the least-squares problem in terms of the associated information
matrix. The focus thus shifts on the simplified problem

X �
k = arg min

Xk
∑

i∈Kk

∑
l∈Li

�zi,l − π (Ti, ρl) �2
ΣC

(4.8)

where the pose of the body is now defined by Ti ∈ SE(3). The solution is approached
through numerical optimization using the Gauss-Newton solver. The results are
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achieved by operating on the manifold SE(3), applying a similar methodology to
the one showed in Chapter 3. The least-squares problem is reformulated through an
infinitesimal increment on the Lie algebra se(3), ξ

ξ� = arg min
ξ

∑
i∈Kk

∑
l∈Li

�zi,l − π (Ti exp(ξ), ρl) �2
ΣC

. (4.9)

The solution is obtained incrementally by updating Ti ← Ti exp(ξ). In practice, the
problem is linearized, obtaining the following expression

ξ� = arg min
ξ

∑
i∈Kk

∑
l∈Li

�zi,l − π (Ti, ρl)− Jξ,i,lξ�2
ΣC

(4.10)

in which the projection term has been linearized through its Jacobian Jξ,i,l =
∂π(Ti ,ρl)

∂ξ .
The explicit expression of the Jacobian can be obtained by applying the chain rule,
using the reformulation ρ�

i,l = Tiρl = [X�
i,l , Y�

i,l , Z�
i,l ],

Jξ,i,l =
∂πi,l

∂ρ�
l

∂ρ�
l

∂ξ
, (4.11)

where the term π (Ti, ρl) has been reformulated as πi,l for clarity. Explicitly, this
quantity represents the perspective projection of the landmark ρl = [Xl , Yl , Zl ] on the
image plane:

πi,l =


 fx

X�
i,l

Z�
i,l
+ cx

fy
Y�

i,l
Z�

i,l
+ cy.


 . (4.12)

The derivative is obtained through derivation of the Lie algebra

∂ρ�
l

∂ξ
=

�
I − (ρ�

l )̂
�

. (4.13)

Finally, combining equations (4.11), (4.12) and (4.13), the Jacobian can be explicitly
expressed as

Jξ,i,l =




fx
Z�

i,l
0 − fxX�

i,l

Z�
i,l

2 − fxX�
i,lY

�
i,l

Z�
i,l

2 fx +
fxX�

i,l
2

Z�
i,l

2 − fxY�
i,l

Z�
i,l

0 fy
Z�

i,l
− fyY�

i,l

Z�
i,l

2 − fy − fyY�
i,l

2

Z�
i,l

2
fyX�

i,lY
�
i,l

Z�
i,l

2
fyX�

i,l
Z�

i,l


 . (4.14)

Stacking the Jacobians Jξ,i,l delivers Ji, which allows to obtain the covariance of the
estimated parameter [HZ03]

Σi = (JT
i Σ−1

C,i Ji)
−1 = (Λi)

−1 (4.15)
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where the variable Λi represents the information matrix of the estimated pose Ti.
As the map M contains only pre-estimated landmarks, which are assumed to be

of high quality and fixed a priori, the poses {Ti}i∈Kk
are conditionally independent

[ZS18]. Therefore, the information matrix of the entire estimation can be written as a
diagonal matrix

Λ =




Λ0 0 · · · 0
0 Λ1 · · · 0
0 . . . · · · 0
...

...
...

...
0 · · · 0 ΛK.




(4.16)

The same can be said for the covariance matrix Σ = Λ−1.
A representative example can be formulated by assuming a pose Ti, from which

two landmarks l1, l2 ∈ Li are visible. The positions of the landmarks with respect
to the camera are expressed as ρ�

i,1 = [X�
i,1, Y�

i,1, Z�
i,1] and ρ�

i,2 = [X�
i,2, Y�

i,2, Z�
i,2]. The

corresponding stacked Jacobian matrix is Ji =
�

Jξ,i,1
Jξ,i,2

�
, resulting in

Ji =




fx
Z�

i,1
0 − fxX�

i,1

Z�
i,1

2 − fxX�
i,1Y�

i,1

Z�
i,1

2 fx +
fxX�

i,1
2

Z�
i,1

2 − fxY�
i,1

Z�
i,1

0 fy
Z�

i,1
− fyY�

i,1

Z�
i,1

2 − fy − fyY�
i,1

2

Z�
i,1

2
fyX�

i,1Y�
i,1

Z�
i,1

2
fyX�

i,1
Z�

i,1

fx
Z�

i,2
0 − fxX�

i,2

Z�
i,2

2 − fxX�
i,2Y�

i,2

Z�
i,2

2 fx +
fxX�

i,2
2

Z�
i,2

2 − fxY�
i,2

Z�
i,2

0 fy
Z�

i,2
− fyY�

i,2

Z�
i,2

2 − fy − fyY�
i,2

2

Z�
i,2

2
fyX�

i,2Y�
i,2

Z�
i,2

2
fyX�

i,2
Z�

i,2




. (4.17)

Considering a measurement covariance defined as ΣC = diag(σC , σC), the resulting
covariance matrix is ΣC,i = diag(σC , σC , σC , σC). Finally, the information matrix can be
computed through inverting equation (4.15):

Λi = JT
i Σ−1

C,i Ji. (4.18)

Due to the large size of the resulting matrix Λi, it cannot be reported completely. To
provide an insight of the mathematical formulation of the matrix, the trace of the
information matrix is reported. The choice falls on the trace based on the notion
delivered by [Cos+16]. In the paper, the authors focus on the trace of the covariance
matrix, as it allows to consider the majority of the state space without excessive
computation. For demonstration purposes, the trace of the information matrix in this
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example reads

tr(Λi) =
f 2
x X�

i,1
2Y�

i,1
2

σCZ�
i,1

4 +
f 2
x X�

i,1
2

σCZ�
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4 +
f 2
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2
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4 +

+
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(4.19)

Equation (4.19) shows how each landmark’s position appears in the expression as
non-negative terms of a sum. The example shows the correlation between increasing
the number of landmarks in view and increasing the information content at a given
pose. The expression also allows to note that the terms within the information matrix
are continuous only as long as a landmark is visible. Since the visibility of a given
point is a discrete function, if one of the two landmarks fell outside of the field of
view, all terms linked to it would be removed from the sum. The discontinuity of the
visibility function, renders the use of metrics related to the information matrix (thus
the covariance matrix as well) inappropriate within the context of GBO.

4.2.3 Continuous visibility functions

In the previous section, the correlation between camera measurements and localization
uncertainty has been highlighted. This theoretical result consolidates the observations
and intuitions made in most of the works from section 4.1.2, that maintaining a
large number of landmarks within the field-of-view ensures reduction of localization
uncertainty. Since it has been deduced that exploiting the covariance matrix of the
estimation does not constitute a suitable cost metric for GBO approaches, alternative
cost functions have to be investigated.
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State-of-the-art approaches

In [Mur+19], the authors define a relaxed differentiable visibility function, which allows
to model the discrete visibility of a given point into a continuous value.

The approach relies on the definition of five vectors defining the camera frustum.
A point in space lies within the field-of-view if and only if it belongs to the viewing
frustum. The representation of the frustum is the intersection of five half-spaces. Four
of these represent the regions within the edges of the camera image and the optical
center, while the last corresponds to the region in front of the sensor. Each of the
half-spaces is expressed through a vector in R3. These vectors connect the optical center
of the sensor to its vertices, their definition represented in the camera frame is:

vtr =



(w − cx)πx

(−cy)πy

f


 , (4.20)

vtl =



(−cx)πx

(−cy)πy

f


 , (4.21)

vlr =



(w − cx)πx

(h − cy)πy

f


 , (4.22)

vll =




(−cx)πx

(h − cy)πy

f


 , (4.23)

vz =




0
0
f


 , (4.24)

where πx, πy are the pixel width and height of the camera image in meters, w, h are
the same width and height in pixels and f is the focal length, which is assumed to be
the same in x and y direction. The cross-products of four of these five vectors define
the camera frustum vtr × vlr, vtl × vtr, vll × vtl and vlr × vll . In [Mur+19], the authors
leverage the frustum to construct the following vector

o(Ti, ρl) =




1
2 (1 + tanh(vtr × vlr · ρ�

i,l))
1
2 (1 + tanh(vtl × vtr · ρ�

i,l))
1
2 (1 + tanh(vll × vtl · ρ�

i,l))
1
2 (1 + tanh(vlr × vll · ρ�

i,l))
1
2 (1 + tanh(vz · ρ�

i,l))




. (4.25)
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The visibility function vs(Ti, ll) of landmark ll at pose Ti is computed by multiplica-
tion of the terms oj of o(Ti, ρl)

vs(Ti, ρl) =
4

∏
j=0

oj. (4.26)

The function vs spans the continuous range of values between 0 and 1, where 0
corresponds to complete non-visibility and 1 corresponds to the highest possible
visibility score. The cost function associated to the landmarks visibility is defined as
the sum over the scores of each landmarks l ∈ L at all poses {Ti}i∈K [BTC20; Mur+19]

Fl = − ∑
i∈K

∑
l∈L

vs(Ti, ρl). (4.27)

As an additional cost component, Bartolomei et al. [BTC20] introduce a term to
penalize motion that steers the camera away from the previous direction, in an attempt
to maintain the same set of features in view between successive keyframes. The term is
denominated co-visibility, and is defined as the difference between the yaw angle at a
keyframe θi and the direction that connects two consecutive keyframes θn

i (Ti, Ti+1)

Fv(Ti, Ti+1) =

�
(|θi − θn

i (Ti, Ti+1)|− Δθ�)2, if |θi − θn
i (Ti, Ti+1)| ≥ Δθ�

0, otherwise
(4.28)

where Δθ� represents a limit on the maximum variation of orientation. The final cost
formulation can be written

Fv = ∑
i∈K\{K}

Fv(Ti, Ti+1). (4.29)

The original authors leverage their representation of the state-space by describing the
orientation as a yaw angle rather than three parameters. Moreover, they constrain the
system’s camera direction using the direction of movement. In the case of planning
on SE(3), this approach does not hold anymore, as the velocity is arbitrary and the
orientations cannot be simply represented by a single parameter.

Differentiable visibility function in SE(3)

In order to apply these methodology to the problem analyzed in this thesis, it is
necessary to formulate an extension onto the special euclidean group. As mentioned
above, the cost definition used in [BTC20], is not suitable for a free-flying robot such as
Astrobee, nor a robot manipulator. Thus an extension of the co-visibility cost is hereby
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presented, based on the assumptions that two consecutive sampled keyframes are close
enough that the view does not change substantially. Under this assumption, the same
landmarks are in view in two adjacent keyframes, if the variation in orientation is
small. To construct a distance metric on the space of rotations SO(3), the angle-axis
formulation used in Section 3.2.2 can be exploited. As denoted in [Har+13], the angular
distance can be defined as the the angle θ which connects two orientations R1, R2. The
angle can always be chosen as 0 ≤ θ ≤ π, if necessary by reversing the axis of rotation.
Under this conditions, it is possible to compute the angle through the logarithmic
map of SO(3). Defining the distance function as d∠, the value of the angle between
consecutive rotations is defined as the 2−norm of the angle-axis vector representation
of the relative rotation

d∠(R1, R2) = � log(R1RT
2 )�2. (4.30)

This distance metric expression allows to extend the co-visibility cost to SE(3) by
writing

Fv = ∑
i∈K\{K}

d∠(Ti, Ti+1). (4.31)

Finally, by formulating the vision-based cost function of the trajectory planning
through GBO on SE(3) as in [BTC20]:

ΓC(T(t)) = λlFl + λvFv (4.32)

where λl , λv are weights used to influence the relevance of the different cost components
within the optimization.

4.2.4 Feature-density function

The method described up to this point, does not allow for the flexibility desired in this
thesis. The differentiable function’s convexity was not thoroughly investigated by the
authors, thus not providing any guarantee of optimality nor any information on how to
define the weights of each cost term. Additionally, the function requires to compute a
scoring function for each landmark in the map, which could lead to very high overhead
in terms of computations required. The authors sample only a limited number of via
points in their implementation, as increasing them would lead to a definite increase in
computation. Finally, the experimental results have shown that although the offline
map shows the presence of a landmark at a certain position, the landmark might not be
recognized during the estimation process. That calls for the definition of a cost metric
that can not only rely on texture information rather than landmarks positions, but also
that allows the flexibility to give more relevance to selected areas of interest and less to
others.
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In order to accurately analyze and then verify the validity of the perception-aware
planning results, the objective of this section is to define a Feature-density function. The
aim of this approach is to construct a function that takes a map M as input and returns
a metric that allows to estimate the density of texture within the environment. Moreover,
this function should be continuous, differentiable and possibly convex (which can be
achieved through proper tuning) in order to work well in the context of GBO.

The function is obtained through a generalization of the B-splines used in the context
of trajectory planning. In particular, the goal is to construct a polynomial function to
interpolate the visibility of a landmark at pose Ti.

In order to interpolate higher dimensional arrays, the formulation of tensor-product
B-splines [Sch07] is exploited. A tensor-product B-spline is the combination of multiple
one dimensional B-spline curves, which allows to describe d-dimensional functions
f : Rd → R through the following formula

P(χ) =
m1

∑
i1=0

· · ·
md

∑
jd=0

cj1,...,jd Bp1
j1
(χ1) . . . Bpd

jd
(χd). (4.33)

In Eq. (4.33), χ = [χ1, . . . , χd] is the vector at which the function is evaluated, ci1,...,id

are elements of the coefficient matrix C ∈ Rm1×···×md and B are the one-dimensional
basis functions defined in Eq. (3.20). The B-spline has very similar characteristics
as its one-dimensional counterpart. The d splines are of degree (p1, . . . , pd), defined
on d knot vectors (χ1, . . . , χd) of sizes (nknots,1 + 1, . . . , nknots,d + 1). The control points
belong to the coefficient matrix of size m1 × · · · × md. For each dimension i, it holds
that nknots,i = mi + pi + 1.

With the describing power of the multivariate function, the goal is to now construct
a grid of values to be interpolated. In order to do that, the grid structure constructed
for sampling-based methods in Chapter 3.2.3 can be leveraged. In order to accurately
model the visibility of a give landmark from a pose Ti, the perspective projection model
described in Chapter 2.4 is employed. With known camera parameters, the visibility
of landmark l at position ρl is computed by verifying that its image coordinates (u, v)
are within the width and height of the image in pixels w, h. Performing this check for
all landmarks stored in the map M, the number of visible landmarks can be stored
for any pose. By iteratively performing this procedure on a grid, it is possible to span
the entire environment and create a function V(T,M) which returns a single value,
which will be referred to as the feature-density ρ f . The resulting grid would require
to span the space of rigid body motion, thus requiring a parametrization through 6
parameters. Through the simplifying assumption that the rotation around the camera
axis zc does not substantially affect the resulting view, therefore one variable of rotation
is removed. This leaves the representation to a 5-dimensional grid that is parametrized
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Figure 4.1: Surface interpolation through tensor-product spline of a convex function.

through position p and two rotational parameters Θ, Ψ. The grid is finally interpolated,
obtaining the scalar value ρ f = P(χi) ≈ V(T,M), with χ = [xi, yi, zi, Θi, Ψi].

The outline of the approach is described in Algorithm 8. First, the discretization of
the grid is defined through the number of cells and the environment limits mathb f lSE(3).
Once the grid is defined, the procedure spans through each of the five dimensions to
construct poses covering the entire environment Ti,j,k,l,m. Each pose is subsequently
stored within the input grid GSE(3). Afterwards, each of the poses is passed through
the visibility function V together with the given map of the environment. The results
are stored in the output grid V . Once the sampling procedure is completed, the
interpolation is conducted to obtain the interpolating tensor-product spline P.

For ease of understanding, the result of the methodology for the 2-dimensional space
R2 is shown in Figure 4.1. The figure depicts the scattered density values obtained
from the sampled grid, which are fitted through a continuous and smooth third-order
polynomial curve. This methodology allows flexibility in the description of the density
function based on the order of the interpolating splines and the discretization of the
underlying grid. Moreover, if the map M used for the interpolation corresponds
exactly to the one of the environment, the approximation returns the accurate number
of visible landmarks seen at the interpolation point. The advantage of this approach,
however, lies in the abstract description of feature density. In particular, the map used
within the visibility modeling, can be arbitrarily sampled and modified, in order to
remove or retain chosen areas and give preferences to certain landmarks over others.
By tuning properly the spline degree, the grid and the map, the approximating function
can be appropriately shaped in order to improve the performance of GBO numerical
approaches. A downside of using approximating polynomial functions is the oscillatory
behavior that is inherent to their formulation. Due to this effect, fictitious minima and
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Algorithm 8 Feature-density function

NSE(3) ← (Nx, Ny, Nz, NΘ, NΨ)

lSE(3) ← [lx, ly, lz, lΘ, lΨ]

ΔlSE(3) ← [Δx, Δy, Δz, ΔΘ, ΔΨ]

for i ← 0 to Nx do
for j ← 0 to Ny do

for k ← 0 to Nz do
for l ← 0 to NΘ do

for m ← 0 to NΨ do
Ti,j,k,l,m ← pose(xi, yj, zk, Θl , Ψm)

GSE(3) ← Ti,j,k,l,m
V ← V(Ti,j,k,l,m,M)

end for
end for

end for
end for

end for
P ← interpolate(GSE(3),V)

maxima might appear in areas where the value of the points to be interpolated changes
significantly.

Finally, the cost function associated to the feature-density along a trajectory sampled
at K poses {Ti}i∈K, formulated through the 5-parameters representation {χi}i∈K is
expressed as

ΓC(T(t)) = ∑
i∈K

nlandmarks − P(χi)

nlandmarksK
, (4.34)

where nlandmarks indicates the total number of landmarks contained in the map M used
to interpolate the values. Equation (4.34) represents a continuous and differentiable
function, which spans the range [0, 1] and reaches a minimum when the value P(χ)
reaches a maximum.

4.2.5 Trajectory planning with continuous visibility functions

The cost formulation described above, is suitable to be used in the context of perception-
aware trajectory planning through GBO. In the scope of this work, it is also interesting
to include the cost formulation within the kinodynamic planning framework introduced
in Chapter 3. What is particularly important is to introduce kinodynamic constraints,
collision constraints and a smoothing component for the final trajectory. In [BTC20],

61



4 Perception-aware path planning

this is achieved by formulating the cost function through a series of weighted additive
terms. No constraints are explicitly added, as the cost is formulated to include ”soft
constraints” which account for smoothness, collision avoidance, time optimization and
vision constraints. In the context of this thesis, however, the objective is to construct an
approach that relies on constrained optimization techniques, in order to achieve the
highest optimality of the solution within the provided bounds and satisfaction of the
constraints.

The trajectory planning problem formulated in Eq. (3.60) remains completely valid.
The formulation allows to use any cost function formulation, thus would allow to
be implemented minimizing the cost described in Eq. (4.34). This solution, however,
would not be satisfactory for the requirements detailed above. The solution would have
no guarantee of delivering an efficient trajectory in terms of actuation, except for not
violating the constraints imposed. It is thus relevant to introduce a smoothing term in
the cost formulation. Similarly to the approach of [Use+17; BTC20], an weighted sum
of cost terms is implemented. As a smoothing term, the mechanical energy cost term
defined in Eq. (3.3) is used.

The discrete-time implementation of Eq. (3.3) is

ΓM(T(t), Ṫ(t), u(t)) ≈ 1
EM

∑
i∈K

(Ṫi · ui)
2, (4.35)

where EM is a normalizing term that is defined, based on the initial value of the
mechanical energy, or the expected maximum value, in order to maintain the cost
within [0, 1] for numerical efficiency.

Introducing a weighting term λM ∈ [0, 1], the composite cost function comprising of
both perception-aware and smoothing component is defined as

Γ(T(t), Ṫ(t), u(t)) = λMΓM(T(t), Ṫ(t), u(t)) + (1 − λM)ΓC(T(t)). (4.36)

This formulation ensures that Γ ∈ [0, 1] and allows to define the relevance of each
component of the sum within the optimization. At the extremes, the function behaves
completely as mechanical energy-optimizing (lambdaM = 1), or as features-density-
optimizing (lambdaM = 0).

Feature-density constraint

As a last formulation of interest, the implementation of a constraint based on the
feature-density is investigated.

In the context of path-planning under uncertainty, it might be interesting to aim for a
planner that determines optimal paths that allow to never fall below a defined threshold
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of visible landmarks tlandmarks. In [Sou+22], the authors define a localization system
which relies on tracking landmarks throughout motion. Within their implementation,
it is explicitly stated that the localizer requires a minimum number of tracked features
in view, as well as a saturation value over which tracking is not necessary.

To this end, the feature density function could easily be incorporated within a
constraint in the form of Eq. (3.60f)

g(T(t)) = tlandmarks − P(χ(t)) ≤ 0. (4.37)

This constraint can then be included in the optimization problem from Eq. (3.60)
without any other modification.
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5 Implementation and Results

5.1 Introduction

In the following chapter, numerical results for the methodologies devised in this thesis
are presented. Delving into the applications of the algorithm presented above, their
practical applicability and functionality is shown. In particular, this chapter presents the
numerical results of the kinodynamic and perception-aware path planning algorithms
designed for holonomic robots operating in SE(3). Their implementation is then
employed on both the Astrobee and the robotic manipulator platforms.

5.1.1 Hardware and software environment

The translation of innovative algorithms into reality necessitates a seamless interaction
between computational power and tangible hardware. The implementation of the
algorithm was coded in C++ and Python and the computations have been performed on
a laptop Lenovo Thinkpad T440 from 2016 with the following characteristics: processor
Intel i5-4300U and Ram 8Gb. The algorithms have been designed to be deployed in
Robot Operating System (ROS) as well as the in-house equivalent Links and Nodes
(LN). The path planning algorithms have been successfully deployed in the Astrobee
simulation environment [NAS] and in simulation on the OOS-SIM.

5.1.2 Overview

This chapter is structured to provide a comprehensive understanding of the implemen-
tation process and the outcomes achieved. Each section demonstrates the effect of the
methodologies developed in the previous chapter, by detailing the implementation
details and showcasing the most relevant results.

The following results are hereby presented:

• optimal path planning in SE(3),

• sampling in SO(3),

• applications of the RRT*-GBO,
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• study of maps of the ISS,

• analysis of the feature-density function,

• results of perception-aware planning in 2D and 3D

5.2 Kinodynamic Path Planning

In the following, the results of the methods of path planning defined in Chapter 3 are
shown.

The objective of the methodologies devised, is to implement an efficient algorithm
to search the solution for highly constrained kinodynamic path planning problems in
the context of free-flying robots. As such the algorithms are deployed on the Astrobee
robot described in Chapter 2.1.

5.2.1 Optimization on the special Euclidean group SE(3)

The optimization problem described in Section 3.2.2 is numerically implemented. The
problem is constructed by defining two B-splines, one for the translational trajectory on
R3 and one for the rotational trajectory on SO(3). The parameters characterizing the
B-Spline parametrization of the state-space on SE(3) are reported in Table 5.1.

Table 5.1: B-spline parameters on SE(3).

Space t0 − t f [s] p nknots m

R3 0 − 60 3 20 16
SO(3) 0 − 60 2 20 17

Given the parameters, the trajectory on R3 is represented by a piecewise third-
order curve, which leads to continuity up to the third derivative (jerk). The one on
SO(3), instead, results in a piecewise second-order curve, meaning its derivatives result
continuous up to the second derivative (angular acceleration).

Here reported is an exemplifying case of the capability of the trajectory planning
through interpolating curves. In particular, a tridimensional reorientation maneuver is
performed in order to truly test the ability of the algorithm.

The trajectory connects the following boundary conditions:

• p0 = [0, 0, 1]T m, p f = [3, 0.5, 0]T m

• v0 = [0, 0, 0]T m
s , v f = [0, 0, 0]T m

s
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• a0 = [0, 0, 0]T m
s2 a f = [0, 0, 0]T m

s2

• j0 = [0, 0, 0]T m
s3 , j f = [0, 0, 0]T m

s3

• R0 =




0 −1 0
1 0 0
0 0 1


, R f =



−1 0 0
0 1 0
0 0 −1




• ω0 = [0, 0, 0]T rad
s , ω f = [0, 0, 0]T rad

s

• ω̇0 = [0, 0, 0]T rad
s2 ω̇ f = [0, 0, 0]T rad

s2 .

The cost function employed is the mechanical energy defined in Eq. (3.3). The
optimal path is a straight line on SE(3), as it is the shortest path connecting the two
poses. The velocity profiles analytically express parabolic curves while the accelerations
express linear functions.

With respect to the algorithm implementation, the resolution is obtained by sampling
the trajectory at nviaPoints waypoints. The numerical optimization is performed using
the following parameters:

• relative tolerance: 10−8,

• absolute tolerance: 10−9,

• nviaPoints = 120,

• permutation parameter for numerical gradients: δc = 10−4,

• constraints tolerance: 10−5,

• maximum number of iterations: 200.

Figures 5.1 and 5.2 depict the overview of the maneuver, as well as showing the
profiles of the dynamic quantities explicitly represented. In Figure 5.1, the position is
represented by the dashed line ( ), while the orientation of the body is expressed by
the three axis of the body frame. Each axis is depicted as a straight solid line: xB in
blue ( ), yB in green ( ) and zB in red ( ).

By observing the plot represented in Fig. 5.2, the solution approximates the parabolic
shape of the theoretical solution, as described in [Lam+11].

As denoted in Eq. (3.25), B-splines derivatives are B-spline themselves. The higher
the derivative’s order, the lower the degree of the corresponding B-spline. As lower
order B-splines have less interpolation capability, given the same knot vector [BM08],
the higher derivatives cannot retain as much information. This effect is especially
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(a)

(b)

Figure 5.1: Three-dimensional depiction of the optimal reorientation maneuver with
three-dimensional rotation. (a) Longitudinal view, (b) lateral view.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Profile of the dynamic quantities of a tridimensional reorientation maneuver.
(a) position, (b) orientation, (c)-(d) velocities and (e)-(f) accelerations.
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relevant in the angular motion derivatives, where the angular velocity, being a first
order polynomial, can only tend towards the theoretical parabolic solution.

However, the resulting trajectory correctly determines the optimal solution. The
trajectory does not present constraint violations as none of the imposed constraints on
the dynamics are active, and no obstacle is present in the environment. The boundary
conditions are fulfilled, as can be seen by the plots beginning and ending portions.

The performance of the resolution algorithm are described in Table 5.2.

Table 5.2: Performance of numerical optimization for the 3D reorientation maneuver.

Cost [J] Inequality constraints Optimization Time [s] Iterations

0.0945 16 × nviaPoints 1.629 23

5.2.2 Sampling on SO(3)

Within this section, the implementation of the random sampling approach on SO(3)
exploited in Section 3.2.3 is depicted for ease of understanding.

In [Yer+10], the authors do not show detailed results of their methodology in the
context of sampling-based planning. Here an intuitive representation of the formulated
approach is proposed. In particular, similarly to the plotting method used by [Kuf04],
the SO(3) grid described in Section 3.2.3 is portrayed using the angle-axis representation
of orientations. Each element of the manifold is represented as a vector tangent to
the sphere, its position on the surface together with the direction of the vector are
determined based on the angle and the axis of the corresponding element.

Figure 5.3 shows the outline of the grid structure, in particular depicting the differ-
ence between discretization levels, demonstrating the use of incremental grids. Figure
5.4 shows a set of randomly sampled elements on grids with increasing refinement,
showcasing that with increasing resolution and samples, the space of SO(3) is progres-
sively covered by maintaining high degree of uniformity and discrepancy.

This sampling approach can be efficiently applied within the context of kinodynamic
path planning.

5.2.3 RRT*-GBO on SE(3)

The implementation of the RRT*-GBO on SE(3) with optimal propagation of motion,
discussed in Chapter 3.2.3 is here implemented and applied within the context of
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(a) (b)

(c)

Figure 5.3: Angle-axis representation of the incremental grid structure on SO(3) with
increasing refinements. Depicted are 3 refinement levels l: (a) l = 1, m1 =

6, m2 = 12, (b) l = 3, m1 = 12, m2 = 48 (c) l = 4,m1 = 24, m2 = 768.

(a) (b)

Figure 5.4: Angle-axis representation of random sampling of elements on SO(3). (a)
Random 100 samples on grid l = 2 (b) Random 500 samples on grid l = 4.
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motion within constrained environments. To introduce the main characteristics of the
algorithm, a series of preliminary descriptive use cases are shown.

Preliminary examples

First,the capability of the tree-search to avoid obstacles and the importance of the
connect_to_goal functionality of the algorithm are demonstrated in Fig. 5.5 and Fig.
5.6. Starting with Fig. 5.5, the picture represents an obstacle placed to the upper right
from the starting position of the robot. The problem of interest starts statically at
position [0, 0, 0]Tm and ends statically at [4, 4, 4]Tm. An obstacle is placed at [1.5, 1, 1],
which is in a position that would disrupt the theoretical solution connecting the Start
and Goal with a straight line. The algorithm, however, immediately finds the trajectory
connecting the start to the goal node due to the connect_to_goal call at the beginning
of the path planning process. This solving edge is denoted as ”Start, Goal” within
the plot. Moreover, the algorithm samples the configuration space attempting to find
other feasible solutions. The node 1 is found in the vicinity of the Start and similarly
connected to the endpoint. As the other nodes are relatively far, the connection to the
Goal from them is not drawn out, due to infeasibility of the edge. Once the limit of
iterations is reached, the algorithms selects the most optimal solution. In this case the
path Start → Goal, as it is found by slightly altering the motion to avoid the obstacle.
In fact, it is mostly the area in the vicinity of the object to be affected by the constraint,
and that is visible as the trajectory only slightly curves to the left side of the red box. It
is clear that the alternative solution, Start → 1 → Goal requires a larger actuation effort
as it performs an expensive course correction to avoid the obstacle. The colorbar allows
to interpret that the smoothed trajectory’s color lies in the lowest end of the spectrum,
meaning that the algorithm has obtained the minimum cost trajectory between the ones
it had previously found. The final solution smooths the turn near the obstacle in order
to make it less aggressive, this achieves lower cost by limiting the peaks in forces and
moments in favour of smooth profiles which limit power consumption.

Second, an example to showcase the construction of tree edges is reported in Fig.
5.6. The figure depicts a uncluttered view of the tree constituted previously. This
case only considers three nodes: Start, Goal and node 1 at position [0.5, 0.5, 0.5]Tm.
The depiction demonstrates how the algorithm constructs an edge stemming from
the starting conditions into a sampled node. The methodology immediately finds
an optimal solution for the edge ( ). The obtained path is a straight line linking
the two positions As there are no boundary conditions imposed to reach node 1, the
optimization delivers a set of boundary conditions dictated simply by the lowest cost
achievable by fulfilling the applied constraints.

This effect has consequences on the new edge that departs from node 1. The trajectory
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Figure 5.5: Solution of the RRT*-GBO on SE(3) showing its ability to reach the Goal
rapidly while avoiding obstacles through both sampling around it and
leveraging the edge formulation.

( ) now starts with a nonzero velocity which would lead into the obstacle. Therefore,
the new edge is forced to curve to avoid the collision, which leads to increased actuation
effort and thus higher cost. This behavior, however, leads the obtained trajectory Start
→ 1 → Goal to be a possible feasible initial guess for further smoothing. Although
this possible solution has not been chosen to be smoothed by the algorithm, Fig. 5.6
shows that the smoothed solution ( ) and this candidate traverse a similar path in
the configuration space.

Real-life scenarios

The aim of this work is to replicate real-life path planning scenarios for free-flying
robots using the RRT*-GBO. In this section, two of such cases are presented.

First, a planar reorientation maneuver within an enclosed environment, by moving
around a static obstacle (another Astrobee in this case). Then the same problem is
augmented in order to replicate a more challenging setting, aiming to replicate a planar
variation of the Tumbledock experiment. It is assumed that, at the goal position, the
robot should have pre-determined boundary conditions, in order to simulate rendez-
vous with a rotating target.

The first of the two problems at hand is defined by the following boundary conditions:
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Figure 5.6: Depiction of the construction of edges through optimal propagation of
motion. The composite candidate solution Start → 1 → Goal is not only
continuous and differentiable, but traverses a similar path to the one of the
smoothed trajectory.
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• p0 = [0, 2, 2]T m, p f = [3, 2, 2]T m

• v0 = [0, 0, 0]T m
s , v f = [0, 0, 0]T m

s

• a0 = [0, 0, 0]T m
s2 a f = [0, 0, 0]T m

s2

• j0 = [0, 0, 0]T m
s3 , j f = [0, 0, 0]T m

s3

• R0 =




1 0 0
0 1 0
0 0 1


, R f =



−1 0 0
0 1 0
0 0 1


 corresponding to a rotation of 180◦ around

the z-axis,

• ω0 = [0, 0, 0]T rad
s , ω f = [0, 0, 0]T rad

s

• ω̇0 = [0, 0, 0]T rad
s2 ω̇ f = [0, 0, 0]T rad

s2 .

The environment is confined within a 3m × 3m × 3m box and the obstacle is placed
at pobj = [2, 2, 2]T m. The complete graph of this case is shown in Figures 5.7 and 5.8.
The pictures presents the entire graph as well as the final smoothed trajectory. In order
to reach a solution in a short time, the optimizers settings are deliberately set to settle
for largely suboptimal solutions, in order to leverage the constraint satisfaction and
velocity propagation capabilities without requiring long computational times. Namely,
the number of via points used is lowered to 60 and the relative tolerance is chosen to be
10−6 for the tree construction. This leads to suboptimal behavior is some of the edges,
such as sudden course changes which appear as spikes. These occurrences lower the
optimality of the initial guess constructed by the tree, but easily disappear when the
smoothing is performed with tighter settings.

The naive straight line, which would be the optimal trajectory in this context, con-
necting the start to the goal would collide with the obstacle, thus the algorithm rejects
it immediately and proceeds to the tree construction. After all iterations are concluded,
it can be seen that the algorithm has been able to connect only one node to the goal.
The formulation of the edges allows to identify very early which edges are not suitable
for the solution. For this case, the solution of the tree is the path Start→ 13 → Goal.

As the algorithm required two distinct segments in order to reach the goal, the final
trajectory will comprise of a B-spline with t f = 120s. These features allow to not only
include an heuristic for final time computation, but also guarantee to fulfill constraints
and reduce the final cost by reducing the required actuation.

The solution is interpolated and smoothed to obtain the trajectory shown in Fig.
5.9. The development of the state and state derivatives are reported in Fig. 5.10. The
presence of the collision constraint strongly affects the solution, in particular, it forces
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Figure 5.7: Complete tree and trajectory for the static Tumbledock simulation. The
edges of the graph are shown and labeled.

the optimizer to deviate from the optimal solution and thus the parabolic shape of
the velocity profiles is affected. Due to its high nonlinearity, the resulting trajectory
presents a more erratic behavior, especially in the instants where the robot is closest
to the obstacle. As the obstacle avoidance models the entire tridimensional object, the
attitude plays a role as well. Figure 5.9 allows to see that the robot faces towards the
obstacle to avoid its corners. For clarity, a sketch of the concept is presented in Fig. 5.11.
If not rotated, the robot (green) would collide with the obstacle (red), while following
the trajectory ( ).

Nonetheless the algorithm is able to find a solution which cost is the lowest and
approximates an optimal solution.

The second problem assumes a target object rotating in place with angular velocity
ωobj = [0, 0, 0.01]T m

s . The setup of the simulation assumes that the meeting point for
the robot will be at position p f = [3, 2, 2]T m. Therefore the boundary conditions for the
robot in order to synchronize its motion with the rotating object, are obtained through:

v f = ωobj × (p f − pobj) (5.1)

a f = −ωobj × v f (5.2)

ω f = ωobj. (5.3)

As a result, the boundary conditions for the rotating Tumbledock problem are:
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(a)

(b)

Figure 5.8: Additional views for the static TumbleDock tree. (a) View from above, (b)
view from the front.
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Figure 5.9: Final trajectory obtained with the RRT*-GBO in the static obstacle avoidance
problem for an Astrobee.

• p0 = [0, 2, 2]T m, p f = [3, 2, 2]T m

• v0 = [0, 0, 0]T m
s , v f = [0, 0.01, 0]T m

s

• a0 = [0, 0, 0]T m
s2 a f = [−0.001, 0, 0]T m

s2

• j0 = [0, 0, 0]T m
s3 , j f = [0, 0, 0]T m

s3

• R0 =




1 0 0
0 1 0
0 0 1


, R f =



−1 0 0
0 1 0
0 0 1




• ω0 = [0, 0, 0]T rad
s , ω f = [0, 0, 0.01]T rad

s

• ω̇0 = [0, 0, 0]T rad
s2 ω̇ f = [0, 0, 0]T rad

s2 .

Figures 5.12 and 5.13 represent the tree and the overview of the solution. The pictures
depict how the tree changes when boundary conditions are applied. The difference
is relevant as there is an increased concentration of edges on the side of the obstacle,
as the introduction of a velocity component in the y-direction, biases the preferred
direction of the edges connecting to the goal.

The solution of the algorithm is presented in Fig. 5.14 and the state and its derivatives
are reported in 5.15. It can be seen how the boundary conditions are imprinted onto
the trajectory and followed.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: State and derivatives of the final trajectory obtained with the RRT*-GBO in
the static obstacle avoidance problem for an Astrobee.

xB

Obstacle

Figure 5.11: Obstacle avoidance through reorientation.
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Table 5.3: Performance of RRT*-GBO for real-life scenarios

Case Iterations Final Cost [J] RRT time [s] Smoothing time [s] Total time [s]

Static 15 0.004704 104.084 3.098 ≈ 110
Rotating 20 0.001147 153.840 7.181 ≈ 160

The results of the implemented algorithm for the two scenarios are reported in Table
5.3.

As the table shows, the rotating case required more iterations as finding a suitable
connection to the goal presented challenges. However, the cost results lower since the
robot does not need to completely decelerate when reaching the final position, but
rather coasts into position by maintaining its momentum. Finally, it can be seen that the
computational times are reasonable if compared with the original implementation from
[SL16], although the exact performance comparison in not drawn within this work.

Figure 5.12: Complete tree and trajectory for the rotating Tumbledock simulation. The
edges of the graph are shown and labeled.

5.2.4 RRT*-GBO for robotic manipulators

As testing on the ISS has not been possible during the course of this thesis, the results
have been tested on the OOS-SIM platform available.
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(a)

(b)

Figure 5.13: Additional views for the rotating TumbleDock tree. (a) View from above,
(b) perspective view.
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Figure 5.14: Final trajectory delivered by the RRT*-GBO in the rotating obstacle avoid-
ance problem for an Astrobee.

The algorithm has been extended on a Kuka robot with 6 degrees of freedom and
tested on a simple trajectory comprising of a 30◦ rotation with respect to the vertical
axis, and a translational motion from p0 = [1.64, 0, 2.245]T m to p f = [1.5, 0.8, 2.25]T m.
The derivatives are all set to 0 in this case.

The resulting trajectory was found by the RRT*-GBO at the first step of 15 iterations
since the optimal solution was reached at the first iteration by simply connecting start
and goal. The algorithm’s solution is reported in Fig. 5.16. The figure shows that only 2
other nodes were added, as the addition of the inverse kinematics constraint determines
a strong limitation for the feasibility of many edges. The joint angles, velocities and
accelerations are shown in Figures 5.17, 5.18 and 5.19. Particular attention is given to
the joint angles, as their value must not exceed the thresholds described in Chapter 2.7.
The constraint satisfaction is highlighted in the plots. The trajectory has been tested in
simulation and a sequence of snapshot from the simulated motion is reported in Fig.
5.20.

5.3 Perception-aware Path Planning

In the following, the results related to the perception-aware path planning are reported.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: State and derivatives of the final trajectory obtained with the RRT*-GBO in
the static obstacle avoidance problem for an Astrobee.
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Figure 5.16: RRT*-GBO tree solution on the OOS-SIM.

Figure 5.17: Application of the RRT*-GBO on the OOS-SIM. Joint angles with their
relative upper and lower bounds.
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Figure 5.18: Application of the RRT*-GBO on the OOS-SIM.Joint velocities.

Figure 5.19: Application of the RRT*-GBO on the OOS-SIM. Joint accelerations.
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(a)
(b)

(c)
(d)

Figure 5.20: Snapshots of the trajectory on the OOS-SIM. While the robot on the right
is positioned to limit possible collisions, the end effector of the robot on the
left acts as an Astrobee, translating and rotating. The motion is depicted
from (a)-(d) where the first is the initial condition and the last is the end
condition.
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5.3.1 Environment Maps

As a first step examples of maps of the ISS are shown in Fig. 5.21. Both maps contain a
large amount of landmarks, amounting to approximately 10000 for the U.S. Laboratory
Module (USL) and 100000 for the Japanese Experiment Module (JEM).

These results show that using methods such as the one from [BTC20] would require
iterating over a large number of landmarks for every via point, thus requiring a huge
number of numerical operations.

(a) (b)

Figure 5.21: NASA maps obtained through bundle adjustment, from [Col+16b]. (a)
USL module, (b) JEM module.

The use of the feature-density function, allows to reduce the computations associated
to the map by downsampling it beforehand. By applying random downsampling the
maps can be reduced in size without losing the underlying density information. If the
downsampling factor is too aggressive, however, the map might lose information and
thus the path-planning problem would be affected. The results of downsampling with
different factors are shown in Fig. 5.22.

5.3.2 Feature-density function

It is now possible to analyze the feature-density interpolating function described in
Chapter 4.2.3. The results discussed here are obtained using the map shown in Fig.
5.22 (d), which corresponds to the map of the JEM downsampled by a factor f = 100.
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(a) (b)

(c) (d)

Figure 5.22: Effect of random downsampling on maps. (a) USL map downsampled by
a factor f = 10, (b) JEM map downsampled by a factor f = 10, (c)USL map
downsampled by a factor f = 100, (d) JEM map downsampled by a factor
f = 100.
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The map reflects the experimental results showing that most of the visible features are
located at the further end of the module at y ≈ −10m and z ≈ 4.6m, which corresponds
to the airlock area.

The discrete grid is constructed with the parameters defined in Table 5.4.

Table 5.4: Grid parameters for interpolation of feature-density function

Quantity N Lower limit Upper limit

x 5 10m 12.5m
y 5 −12m −6m
z 5 2.5m 7.5m
Θ 15 −2πrad 2πrad
Ψ 15 −2πrad 2πrad

The grid is intentionally loose, as the objective is to avoid overfitting in order to
obtain a smooth function that doesn’t require long computation to be obtained. The
variables which are discretized more thoroughly are the ones related to rotation, as it
has been noticed that these need higher refinement. Large steps translate to very large
changes in orientation (changes of π when using a discretization of 5), which does not
allow to produce suitable interpolations as the values change abruptly.

The interpolation is performed using third-order tensor product splines, provided by
the Scipy library [Vir+20], leveraging the scipy.interpolate.RegularGridInterpolator,
which allows to interpolate in arbitrary n-dimensional regular grids.

The results of the interpolation are shown in Fig. 5.23. The pictures report the view of
the 4 walls of the JEM as interpolated functions, as well as the effect of a rotation around
the z-axis. The plots clearly show that with a suitable parametrization of the grid and
interpolation functions, the cost function can be shaped in order to be approximately
convex, thus making it very efficient to be used within the GBO approach.

5.3.3 Trajectory planning with continuous visibility functions

In this section, the cost formulations from Eq. (4.34) and (4.36) are discussed and
compared to the formulation from [BTC20].

Feature-density function

As a test case, the path planning algorithm is first applied in the context of a two-
dimensional motion parallel to the front wall. The trajectory is deliberately started in
an area outside of the map, in order to show that at the initial stage of the solution, the
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(a) (b)

(c)
(d)

(e)

Figure 5.23: Interpolation function on the walls of the JEM. (a)-(c) Sidewalls perpen-
dicular to the y-direction. (b)-(d) Longitudinal walls perpendicular to the
x-axis, (e) view obtained rotating around the z-axis.
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number of visible features is small. Figure 5.24 shows all the OCP formulations dis-
cussed in Chapter 4, providing the mechanical energy-based solution as a benchmark.

Figure 5.24

The solution from a purely mechanical energy perspective ( ) results in a straight
ght line between the starting and goal position. The one from the purely feature-based
cost function ( ) , results in the smoothed approximation of a step function, which
immediately approaches the area with the highest concentration of visible features and
then reaches the goal. The combined cost formulation delivers a smooth trajectory
( ) that approaches the more textured area in a more efficient manner. Additionally,
the result from the feature constraint formulation of the OCP is reported. The result
( ) is a trajectory that closely resembles the one where the cost function is purely
feature-based when the constraint is active, while also deviating to cross an additional
area of locally higher concentration than the one crossed by the purely feature-based
formulation, as the latter attempts to reach the goal position in the shortest amount of
time. Towards the end, the trajectory becomes smoother and more efficient. Finally, a
comparison is drawn with the cost formulation used [Mur+19; BTC20]. The obtained
path ( ) is almost identical to the one obtained with the feature-density function. This
results is extremely relevant as it demonstrates that in the 2D case, the feature-density
cost formulation achieves the same results as state-of-the-art methods by exploiting
a downsampled map rather than a full description. Additionally, the formulation
devised in this thesis can act as a benchmarking value to verify the optimality of the
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methodology defined in [BTC20], allowing to discuss questions that the authors did
not address in the paper.

All these methodologies show that the formulation steers the robot towards textured
areas. In order to showcase the optimality of the solution, the interpolating function
can be easily represented. Figure 5.25 depicts the development of the cost value along
the trajectory. The picture shows not only how the function reaches the peak of the
interpolating function, but that it attempts to remain in the maximum for as long as
possible. The picture also shows the effect of the blending parameter λM on the balance
between actuation-effort and feature visibility. At the limits of the value, the function
collapses on either of the two extreme solutions.

The same results can be see in more details in Figure 5.26. The plot represents the
feature density over the time span of the trajectory. Again, the plot highlights the
blending effect of the combined cost formulation. Based on the blending parameter,
the number of features can be increased. The picture also presents the behavior of the
planner when introducing a feature visibility constraint with a high threshold. The
constraint is only enforced in the time span between 20 and 40 seconds, and it is clear
that it severely affects the solution even in the segments in which it is not enforced.
The graph also shows that, for the purely feature-based cost formulation, the result
approximates a step function. As the underlying spline is intrinsically smooth, it cannot
accurately represent function with noncontinuous derivatives.

As the methodology has proven to be effective in the two-dimensional case, the path
planning is extended to the full space of SE(3). In particular, the problem is lateral
motion parallel to the front wall, described by the following boundary conditions:

• p0 = [11,−7, 5]T m, p f = [11,−9, 5]T m

• v0 = [0, 0, 0]T m
s , v f = [0, 0, 0]T m

s

• a0 = [0, 0, 0]T m
s2 a f = [0, 0, 0]T m

s2

• j0 = [0, 0, 0]T m
s3 , j f = [0, 0, 0]T m

s3

• R0 =




1 0 0
0 1 0
0 0 1


, R f =




1 0 0
0 1 0
0 0 1




• ω0 = [0, 0, 0]T rad
s , ω f = [0, 0, 0]T rad

s

• ω̇0 = [0, 0, 0]T rad
s2 ω̇ f = [0, 0, 0]T rad

s2 .

The overview of the solution is depicted in Figure 5.27. The problem is solved on the
downsampled map with a blending factor λM = 0.4. The robot starts in a pose that

91



5 Implementation and Results

Figure 5.25: 3D representation of the cost value of different trajectories for the 2D
motion case.
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Figure 5.26: Feature density over time for different perception-aware planning problem
formulation in 2D.

does not allow to view the highest number of landmarks, thus it immediately starts
turning towards the most textured area. Additionally, the robot slightly translates away
from the wall, as that allows to fit a bigger portion of the wall within the field-of-view.

The detailed representation of the state and its derivatives is reported in Figure 5.28.
The plots demonstrate how the robot moves smoothly towards the goal position, while
slowly adjusting its position and orientation in order to view a bundle of landmarks
located at [11,−9, 4.6]m. In particular, the motion the system undertakes is a reorienta-
tion combined with moving away from the area of interest, as that allows to not only
increase the features in view, but also to reduce the necessary angular velocity.

The motion is an extremely relevant result obtained with the approach proposed in
this thesis. As Fig. 5.28 shows, the methodology exploits fully the given environment,
in fact, the obtained trajectory pushes the robot to the limits given by the constraints.
In particular, the position and angular velocity constraints are active, with the latter
experiencing a slight violation of ≈ 0.005 rad

s (allowed by a selected threshold of 0.03 rad
s ).

The algorithm performance is reported in Table 5.5.
From an implementation perspective, the use of a Scipy interpolation within C++ is

detrimental for the performance, as can be seen by the long computation time needed.
However, it can be expected that an implementation offline the entire pipeline in C++
would lead to an approximate reduction in time by a factor of 10.
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Figure 5.27: 3D representations of the trajectory obtained using the feature-density cost
formulation, blended with mechanical energy. The trajectory is shown
within the sparse map of the JEM environment.

Table 5.5: Performance of path planner with the feature-density cost function.

Case Cost Implementation language Time [s]

Feature-density function 0.7677815 Python embedded in C++ 6.53994
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(a) (b)

(c) (d)

(e) (f)

Figure 5.28: State and derivatives of the 3D trajectory obtained using the feature-density
cost formulation, blended with mechanical energy. The plots additionally
report the constraints imposed within the OCP (black dashed-dotted).
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Relaxed visibility function in SE(3) on a downsampled map

One of the contributions of this work has been the reformulation of the relaxed
visibility function found in the literature, into the case of motion on SE(3). The detailed
explanation of the method and implementation within the context of kinodynamic path
planning is denoted in Section 4.2.3.

In order to draw a comparison, the function is tested on the same downsampled
map of the JEM. The cost is formulated using the mechanical energy as smoothing
component, while the perception cost comprises of both the feature visibility function
and the co-visibility term, as derived in 4.32.

The resulting trajectory is shown in Figures 5.29 and 5.30.

Figure 5.29: 3D representations of the trajectory obtained using the relaxed visibility
cost formulation, blended with mechanical energy. The trajectory is shown
within the sparse map of the JEM environment.

The solution behaves similarly to the one shown previously, albeit the planned
motion is requires less translation and rotation. The trajectory appears less smooth,
while not showing as much redirection towards the bundle of most landmarks.

Finding the correct tuning parameters is non-trivial and requires trial and error, in
this case the weights used are λl = 10−1 and λv = 10+1. The performance of the
algorithm is reported in Table 5.6.

This algorithm’s implementation in C++ is approximately ten times faster than the
feature-density function. The thus they are comparable in numerical performance.
However, the cost formulation presented in [BTC20] is not numerically efficient, as it
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(a) (b)

(c) (d)

(e) (f)

Figure 5.30: State and derivatives of the 3D trajectory obtained using the relaxed visi-
bility cost formulation, blended with mechanical energy. The plots addi-
tionally report the constraints imposed within the OCP.
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can be seen the cost takes negative values, which could jeopardize the quality of the
solution in numerical solvers.

Table 5.6: Performance of the path planner with the relaxed visibility cost function on
the downsampled JEM map.

Case Cost Implementation language Time [s]

Differentiable visibility function, f = 100 −19.9258 C++ 0.6174

Relaxed visibility function in SE(3) on a full map

Finally, the same test case just described for the differentiable visibility function from
Eq. 4.32, is deployed on the full JEM map.

Figure 5.31 depicts the overview of the trajectory. The number of features in view
comes from a downsampled map for clarity of visualization. Since the number of
landmarks is so high, they would obstruct the view completely.

The resulting path presents the behavior that has been common in all cases of 3D
perception-aware planning discussed in this work. The robot travels backwards from
the most textured areas, to include as many features as possible within the field of
view.

Both Fig. 5.31 and 5.32 show that the resulting path has resemblances to the two
cases described above with respect to position and attitude. However, in this case the
resulting plots portray a very erratic behavior with strong accelerations and changes in
velocities.

In particular it can be seen that many of the constraints are being violated. This
effect can be associated to numerical issues with the cost formulation described by
[BTC20]. Specifically, referring to Eq. (4.32), the cost formulation depends on the
negative sum of a score associated with each landmark at each via point. In cases such
as the one presented here, the environment is a small and enclosed space, as described
in Section 2.1. Even motions of small entity can result in large changes in cost, which
leads to high gradient values (up to ≈ 107). As detailed in Section 3.2.2, the gradient
information reflects directly on the numerical optimization method by influencing the
Hessian matrix. The mathematical properties of the Hessian matrix of the Lagrangian,
define the convexity and convergence of the problem, as well as constraint satisfaction
[NW06].

Moreover, the large number of landmarks in the map, directly influence the number of
operations to perform at any iteration of the solution process. Referring to Section 4.2.3,
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Figure 5.31: 3D representations of the trajectory obtained using the relaxed visibility
cost formulation, blended with mechanical energy. The trajectory is shown
within the sparse map of the JEM environment. For clarity only a limited
amount of landmarks are shown.

the computation of the cost function at any given pose requires numerous computations,
which scale poorly with an increasing number of landmarks.

This "curse of dimensionality" is clearly showcased in Table 5.7, which reports both
the cost value and the extremely long computation time required. With an increase in
landmarks of a factor of 100, the computational time has increased by ≈ 4000 times.

Table 5.7: Performance of the path planner with the relaxed visibility cost function on
the downsampled JEM map.

Case Cost Implementation language Time [s]

Differentiable visibility function, f = 1 −3.14 × 104 C++ 2463.62

5.4 Discussion

Kinodynamic path planning: The method improves on sampling-based path planning
methodologies by extending its formulation to the sampling and planning of orienta-
tions, leveraging incremental grid structures and GBO on manifolds. The RRT*-GBO
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(a) (b)

(c) (d)

(e) (f)

Figure 5.32: State and derivatives of the 3D trajectory obtained using the relaxed visibil-
ity cost formulation, blended with mechanical energy in the full map case.
The plots additionally report the constraints imposed within the OCP.
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method was modified from its original formulation by introducing an improved edge
construction through propagation of motion. The modified edge formulation allows to
limit the sampling manifold to the configuration space, thus alleviating the computa-
tional load related to sampling on a 12-dimensional state space, by only sampling a
6-dimensional one on SE(3). In the context of sampling-based path planning, avoiding
to sample the complete state-space could lead to losing the probabilistic completeness
of the RRT* algorithm. The issue, however, has not been addressed in this thesis.

A sampling technique on SO(3) has been proposed based on state-of-the-art ap-
proaches. Additionally, the grid and the resulting samples have been shown, in order
to qualitatively demonstrate the mathematical properties described in the literature,
but never showed visually before.

The kinodynamic path planning algorithm has demonstrated to deliver the expected
solutions for tridimensional reorientation maneuvers inspired by the TumbleDock
scenario, which entails obtaining a kinodynamic path that reaches a spinning object
with boundary conditions that allow to synchronize the motion of target and chaser
Astrobees. Additionally, the algorithm has proven to achieve the necessary flexibility
to include the inverse kinematics constraint of a robotic manipulator. This extension
allows, with the proper assumptions, to simulate the Astrobee dynamics using a robotic
manipulator on ground. A demonstrative example solution has been obtained. The path
has shown to allow compliance with the joint limits constraint for a simple reorientation
maneuver within the OOS-SIM simulation environment at DLR.

While no guarantee of global optimality is available, the RRT*-GBO has shown to
consistently deliver the solution with the lowest cost with respect to the generated tree.

Perception-aware path planning: In the second part of the thesis, an extended
analysis of perception-aware path planning using GBO has been conducted. First a
novel approach for perception-aware path planning in SE(3) has been devised. The
resulting formulation leverages a feature-density function to embed the environment’s
information in a continuous and two-times differentiable function. Differently from
current state-of-the-art methods, the approach is not solely reliant on full environment
descriptions, but rather allows to lower the complexity of the problem by exploiting
landmarks’ density measures rather than accurate 3D positions. By randomly down-
sampling an initially given map, the algorithm can deliver a density function which
retains the information content without the need to query large amount of landmark
data online. The result is achieved by performing a multivariate interpolation of a
discrete visibility function obtained from a grid on SE(3). This step allows for high
degree of flexibility, as the discretization of the grid, the discrete visibility function and
the interpolating curves can all be modified and adapted arbitrarily.

First the interpolation results have been showcased and demonstrated by plotting
the feature density of the JEM walls. Afterwards, the function has been tested by

101



5 Implementation and Results

constructing different OCPs and applying them to a 2D scenario within the ISS.
The results have demonstrated that using a feature-density cost formulation delivers

trajectories which maximize the number of features as well as the duration of this
visibility condition.

While this solution demonstrates the functionality of the path planning algorithm
obtained, the obtained path is highly inefficient and impractical from the standpoint of
the actuation. Therefore, a blended cost function has been proposed and employed. The
cost, comprising of a visual term (feature-density) and a smoothing term (mechanical
energy), has proven to deliver smoother trajectories that still steer towards highly
textured areas. Moreover, the obtained cost function allows to appropriately tune a
blending parameter to favour either of the two cost components, adding a degree of
flexibility and tuning to the resulting trajectory planner.

Finally, since localization algorithms require a limited number of features to remain
in view, rather than purely maximizing the number of visible features, it is possible
to specify a threshold of density in the form of a nonlinear constraint. This approach
fits seamlessly within the GBO approach and has demonstrated to deliver feasible
trajectories. Using a constraint allows the algorithm to autonomously discern between
optimizing for mechanical energy of feature visibility based on the current conditions
of the robot. Unfortunately, the method requires the knowledge to define a suitable
threshold such that the trajectory cannot become unfeasible due to constraint violation.

To complete the analysis of perception-aware path planners, the state-of-the-art
methods defined in the literature for R3 have been extended to work in the space of
rigid body motions. In particular, the method using a relaxed visibility function has
been chosen as a suitable candidate to draw a significant comparison.

Both the feature-density function and the relaxed visibility functions have been
deployed in 3D scenarios using the downsampled JEM map. Both algorithm have
shown very similar results in both the 3D and 2D cases. In 3D, however, the feature-
based methodology has demonstrated to plan trajectories that more efficiently leverage
the available environment and constraints.

Attempting to apply the relaxed visibility methodology onto the full map, however,
has delivered largely unfeasible results which violated many of the constraints. Thus,
the effectiveness of the methodology requires a more thorough analysis. The result acts
as an indicator of a possible shortcoming of the state-of-the-art methodology, which
might not be well suited to be applied in cases where the number of landmarks is high.
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In this thesis, a novel methodology for kinodynamic and perception-aware path plan-
ning in SE(3) is proposed.

Kinodynamic path planning: The RRT*-GBO method was successfully expanded to
be applied to cases of path planning on SE(3). The increased state-space to sample
requires the implementation of an improved edge construction methodology, which
has successfully delivered smooth edges even across tree nodes, while reducing the
sampling to the configuration space. The modification of the underlying RRT* approach,
however, might compromise the optimality of the algorithm, although these properties
have not been investigated in this work.

The algorithm leverages the mathematical structure of the manifold SE(3) to sample
it and perform GBO using B-splines.

The algorithm has been deployed on simulated scenarios using Astrobee robots as
well as a robotic manipulator on ground. Both cases have demonstrated the algorithm’s
effectiveness in delivering optimal smooth trajectories in a limited number of iterations
for highly constrained problems.

Perception-aware path planning: In the second part of the thesis, perception-aware
path planning has been addressed.

First a novel approach for perception-aware path planning in SE(3) has been devised.
By using smooth and two-times differentiable interpolating B-splines, a feature-density
function is obtained from downsampled landmarks map of the ISS.

The approach showcased its functionality in simplified cases on R2 as well as in
SE(3). The results have demonstrated that using a feature-density cost formulation
delivers trajectories which maximize the number of features as well as the duration of
this visibility condition.

In two-dimensional cases, the method has shown to obtain the same results as the
relaxed visibility method described in [BTC20; Mur+19].

To alleviate the issue of obtaining impractical trajectories, two approaches were
proposed: a blended cost combining mechanical energy and feature-density, and a
feature constraint. Both the formulations deliver smooth trajectories that steer the
system towards more textured areas.

Finally, the blended cost formulation was chosen to be employed in the context of
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6 Conclusions

kinodynamic perception-aware planning on SE(3). The method has delivered optimal
results that leverage the dynamic properties of the Astrobee platform to its maximum
within the constraints. The feature-density blended cost formulation proposed in this
thesis has outperformed the extension to SE(3) of the state-of-the-art methodology on
a downsampled map of the JEM.

To complete the investigation, the extended relaxed visibility cost formulation was
tested with a full map, demonstrating that the method’s performance drastically
degrades when the visibility of many landmarks has to be computed online.

6.1 Future work

Due to time limitations within this thesis, a series of interesting research questions have
been left unanswered, while many others have arisen.

Resolution of localization failures: it should be investigated if the proposed perception-
aware methodology translates to a real improvement of the localization for the astrobee
case. Constructing a sparse map of the OOS-SIM environment and implementing
locally a VIL pipeline would allow to gather significant results.

Perception-aware path planning: the feature-density path planning algorithm should be
integrated within the RRT*-GBO to verify the quality of the solution for non-convex
problems. The extension to SE(3) of the relaxed visibility function should be further
tested and analyzed, to verify its performance in highly textured maps. In order
to account for obstruction of features, introducing ray-tracing techniques during the
visibility grid construction could improve the functionality of the algorithm. Moreover,
implementing the interpolation routine in C++ rather than Python should deliver a
substantial increment in computational speed. Finally, by restricting the interpolation to
confined areas, the online feasibility of the feature-density method could be analyzed.

Machine learning: With the rising use of supervised and unsupervised learning
approaches, the problem of path planning with active perception could be tackled using
alternative cost functions, system modeling or, alternatively, entirely learned through
reinforcement learning.
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Abbreviations

DLR Deutsches Zentrum für Luft- und Raumfahrt

MPC Model Predictive Control

ISS International Space Station

JEM Japanese Experiment Module

USL U.S. Laboratory Module

ROS Robot Operating System

LN Links and Nodes

OOS-SIM On-Orbit Servicing Simulator

FAM Force Allocation Module

SLAM Simulataneous Localization And Mapping

RRT Rapidly Exploring Random Trees

GBO Gradient based Optimization

EKF Extended Kalman Filter

OCP Optimal Control Problem

VIO Visual-Inertial Odometry
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Abbreviations

LTI Linear Time Invariant

PRM Probabilistic Roadmaps

BIT Batch Informed Trees

NLP Nonlinear Programming

SQP Sequential Quadratic Progamming

QP Quadratic Progamming

SLSQP Sequential Least Squares Programming

AVP Admissible Velocity Propagation

VI-SLAM Visual-Inertial SLAM

VIL Visual-Inertial Localization

POMDP Partially Observable Markov Decision Process

MAV Micro Aerial Vehicle

MAP Maximum A Posteriori
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