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A B S T R A C T

The upcoming HL-LHC run at CERN will allow the search for BSM signals in the tails
of kinematic distributions with an unprecedented level of statistics. In this thesis,
we investigate how corresponding state-of-the-art theoretical predictions for BSM
collider signals are obtained, focusing on two approaches.
The first, the precision approach, assumes that signals of multi-TeV BSM physics are
hidden within the current uncertainty bands of generic LHC measurements. This
creates a need for precise theoretical predictions for BSM signals, which, in this
context, are most effectively described in an EFT approach. We review both the
POWHEG framework, allowing for the consistent matching of fixed-order calculations
to PS generators, and the SMEFT in the precision context. We then present our
NNLO+PS-accurate event generator for SMEFT effects in pp! Vh production based
on the POWHEG MiNNLOPS method, and perform a detailed phenomenological analysis
of the pp! Zh! `+`� channel.
In the second, the novel signatures approach, we investigate two UV models that lead
to non-standard signatures at the LHC, which stand out from the SM backgrounds
in targeted searches. First, we calculate the contributions of the VLQ that arises
in the 4321 gauge completion to pp ! t+t� production at NLO+PS accuracy. The
additional requirement of a b-tagged jet in the final state greatly increases the
sensitivity to the signatures of the bottom-philic VLQs. Second, in the 2HDM+a
model, an interesting LLP phenomenology can arise in the limit of minimal mixing
between the DM mediator and the extended scalar sector. We present the constraints
from LLP searches of the ATLAS and CMS experiments, demonstrating their distinctive
role in constraining such feebly interacting DM mediator scenarios.
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Z U S A M M E N FA S S U N G

Der bevorstehende HL-LHC-Run am CERN wird die Suche nach BSM-Signalen in
den Randbereichen kinematischer Verteilungen mit einer noch nie dagewesenen
statistischen Genauigkeit ermöglichen. In dieser Dissertation untersuchen wir, wie
entsprechende theoretische Vorhersagen für BSM-Signale auf dem neuesten Stand
der Technik gewonnen werden können.
Der erste, Präzisionsansatz, geht davon aus, dass die BSM-Physik innerhalb der derzei-
tigen Unsicherheitsbänder von Standardmessungen am LHC verborgen ist. Daraus
ergibt sich der Bedarf an präzisen theoretischen Vorhersagen für BSM-Signale, die in
diesem Kontext am effektivsten durch einen EFT-Ansatz beschrieben werden kön-
nen. Wir diskutieren sowohl die POWHEG-Methode, die eine konsistente Kombination
von Berechnungen fester Ordnung mit PS-Generatoren ermöglicht, als auch die
SMEFT im Präzisionskontext. Anschliessend stellen wir unseren NNLO+PS-präzisen
Ereignisgenerator für SMEFT-Effekte in der pp ! Vh Produktion vor, der auf der
POWHEG MiNNLOPS-Methode basiert, und führen eine detaillierte phänomenologische
Analyse für den Kanal pp! Zh! `+`� durch.
Im zweiten Teil, dem Ansatz der neuartigen Signaturen, diskutieren wir zwei UV-
Modelle, die zu ungewöhnlichen Signaturen am LHC führen. Erstens berechnen wir
die Effekte der VLQs, die aus dem 4321-Eichmodell resultieren, auf die pp! t+t�

Produktion mit NLO+PS Genauigkeit. Die zusätzliche Forderung nach einem b-Jet
im Endzustand erhöht die Sensitivität gezielter Analysen auf die Signaturen der
hauptsächlich an b-Quarks gekoppelten VLQs erheblich. Zweitens kann im 2HDM+a-
Modell eine interessante LLP-Phänomenologie im Grenzfall minimaler Mischung
zwischen dem pseudoskalaren DM-Mediator und dem erweiterten Skalarsektor
auftreten. Wir stellen die Limits aus LLP-Suchen der ATLAS- und CMS-Experimente
vor und demonstrieren ihre besondere Rolle bei der Eingrenzung solcher schwach
wechselwirkender DM-Mediatoren.
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1
I N T R O D U C T I O N

This is the Jurassic Park for particle physicists...
Some of the particles they are making now or are about to make

haven’t been around for 14 billion years.

— Phil Schewe, on the LHC

It all begins with a small bottle of hydrogen gas, approximately the size of The LHC

a human hand. It is located on the premises of the Conseil Européen pour la
Recherche Nucléaire (CERN), situated on the Franco-Swiss border near Geneva.
This is the world’s largest particle physics laboratory. Here, the hydrogen atoms
contained in the bottle are ionized, and the resulting protons accelerated to 450 GeV.
At this energy, the protons are fed into a 27 km long circular accelerator ring known
as the Large Hadron Collider (LHC). The LHC is the world’s highest-energy particle
accelerator. The protons circulate it in two oppositely running beams and are
bunched into 2808 groups of 2⇥ 1011 particles. They reach energies close to 7 TeV.
At four interaction points along the ring, the beams are brought to intersect, and
some of the protons collide at energies close to 14 TeV [1]. This process occurs
40 000 000 times per second, recreating the conditions that prevailed in our Universe
split-seconds after the Big Bang. At the interaction points, large detectors are placed
to measure the collision products. The four detectors are named ATLAS, ALICE,
CMS, and LHCb. Each has a distinct setup and targets (slightly) different particle
interactions. Of the 40 MHz of collisions, the detectors’ triggering systems select up
to 1 kHz of particularly interesting events, which, in the cases of ATLAS and CMS,
corresponds to 1 GB of data collected every second [2]. By analyzing this data and
comparing it to theoretical predictions, particle physicists can test their theories on
the fundamental particles and interactions in our Universe.

The current best theory is the Standard Model (SM), which up to date describes The SM and the
Higgs mechanismall interactions among fundamental particles observed at the LHC. Its theoretical

formulation was completed in the 1970s, building on important ideas developed by
numerous scientists. In the context of LHC physics, an idea known as spontaneous
symmetry breaking or the Higgs mechanism is particularly relevant. The concept was
independently conceived by Brout–Englert [3], Higgs [4], and Guralnik–Hagen–
Kibble [5] in 1964. The three groups realized that gauge symmetries could be
symmetries of the Lagrangian but not of the vacuum, which allows to incorporate
non-vanishing gauge boson masses without having to abandon gauge symmetries
per se. This is achieved by introducing a scalar field that is charged under the gauge
symmetry and a corresponding scalar potential with non-trivial minima. As the
scalar field vacuum arbitrarily falls into one of these minima, the gauge symmetry is
broken. Furthermore, for each gauge group symmetry direction (generator) broken
by the vacuum, there must be a corresponding massless mode in the particle
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2 Introduction

spectrum. These are known as Goldstone bosons, after the corresponding theorem
published by Goldstone in 1961 [6]. The convincing feature of the Higgs mechanism
is that these Goldstone bosons turn into the longitudinal modes of the gauge bosons,
explaining both how the massive gauge bosons acquire the additional polarization
and why the Goldstone bosons have not been observed experimentally as massless
modes [7]. In contrast, all remaining scalar degrees of freedom are physical. The
formulation of the SM electroweak (EW) sector by Glashow [8], Salam–Ward [9]
and Weinberg [10] between 1961 and 1967 revealed the necessity of at least one
Higgs doublet to impart mass to the Z and W± gauge bosons. Of the four real
degrees of freedom of the doublet, three are absorbed into the longitudinal gauge
boson modes, leaving one physical scalar particle. It is referred to as Higgs boson,
and while its mass is a free parameter of the theory, its couplings to the other SM
particles are clearly defined by the Higgs mechanism. The experimental hunt for a
scalar particle fitting the bill of the Higgs boson was on.

This hunt was successfully concluded at the LHC. From fits to EW precisionThe discovery of
the Higgs boson data, where the mass of the Higgs boson mh enters logarithmically through loop

contributions, it was anticipated that mh would be situated within [40, 180] GeV
at 95% confidence level (CL) [11, Fig. 10.5]. Given that the Large Electron-Positron
Collider (LEP) and the Tevatron, two earlier collider experiments, were able to
exclude the parameter space up to around 110 GeV in direct searches, it was
anticipated that a significant discovery would be near. This was corroborated by the
fact that, in the absence of the Higgs mechanism, the EW SM would break down at
scales of approximately 1.2 TeV due to unitarity-violating longitudinal contributions
from the gauge bosons [12]. Consequently, any mechanism responsible for restoring
the symmetry would have to be discernible at the LHC. This argument was coined
the no-lose theorem. And indeed, the LHC did not lose. In July 2012, the ATLAS and
CMS collaborations announced the discovery of a new particle in the mass range
of 125 GeV, which was consistent with the Higgs boson. Further analyses [13] have
since demonstrated that the 125 GeV scalar exhibits all the properties of the SM
Higgs, at least within the experimental precision achieved. The discovery of this
particle represents the final piece of evidence required to establish the SM. It appears
evident that any theory that most accurately describes the fundamental interactions
within our Universe must be constructed on top of the SM.

Yet, paradoxically, while the 125 GeV scalar was a smoking gun for the SM, it alsoGoing beyond the
SM lies at the heart of many arguments and searches for physics beyond the SM (BSM).

Firstly, this is due to the fact that the Higgs boson couples to all other known
massive fundamental particles by virtue of the Higgs mechanism. If new particles
exist at a scale L far above the EW scale and couple to the Higgs boson, thenIn the context of

Quantum Gravity,
one for example

expects new
structures to appear

at the Planck scale
L ⇠ 1019 GeV.

loop corrections on the order of the scale L would affect the Higgs mass. Indeed,
as a scalar particle, there is no symmetry that protects the Higgs mass against
such contributions. The O(L) terms must largely cancel out in order to arrive at
mh ⌧ L, which physicists do not consider to be natural, barring an explanation.
Many BSM models with additional symmetries have been proposed to address this
hierarchy problem. These models typically require additional structures at the TeV
scale to shield the Higgs mass from the ultraviolet (UV). Additionally, given the
astrophysical evidence for the presence of non-baryonic dark matter (DM) in our



Introduction 3

Universe, which at most interacts weakly with the SM particles, it is plausible that
the Higgs may act as a portal to new massive dark states. This is also motivated by
the special role of the Higgs in the SM. Experimental collaborations are investigating
Higgs portal scenarios by searching for final states that include SM particles in
conjunction with invisible dark states. Secondly, the addition of one Higgs doublet
to the SM spectrum is based on simplicity rather than experimental evidence – we
are only just now beginning to probe the scalar potential. Therefore, considering
models with extended Higgs sectors seems well motivated. The two-Higgs-doublet
model (2HDM), the most well-known realization of these extended sectors, has been
the subject of numerous theoretical and experimental analyses. It would manifest
generically in the presence of heavier scalar modes in the TeV range. Thirdly, the
couplings of the Higgs boson to the SM fermions, which are implemented ad hoc
in the SM via the addition of the Yukawa terms, appear to have a highly non-
trivial structure. In particular, they exhibit an approximate flavor symmetry that
distinguishes the third generation of fermions from the first two. This structure
is not motivated in the SM and can be considered a preliminary indication of the
existence of flavor-dependent BSM physics. Interesting BSM models with additional
complexity on the TeV scale have also been developed in this direction.

In light of this, the direct evidence for BSM physics has become one of the Searching for BSM
physics at the
LHC

main physics objectives of the LHC [14]. Numerous searches for well-motivated
BSM theories have been conducted, resulting in competitive constraints on their
parameter spaces. To date, no clear deviation from the SM has been found. Does
this mean that there is no BSM physics within the reach of the LHC? Not necessarily.
The previous runs have demonstrated that if new physics is to be discovered at the
LHC, it must be better concealed than expected. There are a multitude of potential
explanations for this, and indeed a multitude of potential explanations are being
pursued within the BSM community. We focus on two of these, which we consider
to be particularly motivated:

(I) The first layer of BSM physics lies in the multi-TeV range, so that the small
indirect signals it induces currently hide within the uncertainty bands.

(II) The BSM physics is non-standard and its signals are easily missed unless
targeted in dedicated analyses.

We broadly define non-standard as any particle that does not couple to light partons
or that does not produce high (missing) transverse momentum signatures [15].
Examples of such particles include those exclusively coupled to the heavy fermion
flavors or weakly coupled light particles.

In the forthcoming years, the LHC experiments will continue to focus on both The
High-Luminosity
LHC (HL-LHC)

of these possibilities. In the context of scenario (I), the upcoming runs of the
High-Luminosity LHC (HL-LHC) will play a pivotal role. These are projected to
commence in 2029 and conclude in 2041 [16]. The HL-LHC will be equipped with an
instantaneous luminosity that is five times higher than the current one. It is projected
to provide a total integrated luminosity of 3 ab�1, extending the current 140 fb�1 by
a factor of 20 [14]. In terms of the relevant Higgs couplings, it is projected that the
uncertainties will be reduced from the current order of magnitude of O(15-30%)
to O(2-5%). For the first time in history, the HL-LHC will thus provide access to
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the Higgs interactions with appreciable precision, which will facilitate the search
for BSM physics therein. In order to explore possibility (II), a broad search must be
conducted. This can be achieved through the use of smaller LHC experiments, which
have been designed with this purpose in mind. These include FASER, MATHUSLA,
MilliQan, MoEDAL and SND@LHC. Additionally, the larger LHC collaborations are
continuously working on improving the sensitivity of their detectors to exotic
signatures. The projects presented in part (II) discuss non-standard signatures that
could be observed by the ATLAS and CMS detectors in dedicated analyses.

In order to facilitate the search for BSM physics, it is essential to provide supportThe need for
improved BSM

predictions
from the theoretical side. In the context of scenario (I), in order to meet the precision
requirements of the HL-LHC, the predictions for SM backgrounds and BSM signals
must be improved. It is frequently argued that the precision requirements for BSM
signals are less stringent than for the SM backgrounds, as the former must be at
least an order of magnitude smaller than the latter at the energies accessible at
the LHC. Otherwise, they would have been discovered already. While this is true,
we argue that the probability of finding the needle in the haystack is significantly
enhanced when both the hay and the needle are precisely defined. In particular, the
potential to construct improved signal discriminators through the application of
machine learning or matrix element techniques necessitates a precise modelling
of BSM physics in order to tune our searches to the right signatures. We therefore
argue that enhancing the precision of BSM signal predictions for well-motivated
scenarios is a worthwhile pursuit.

This is accomplished by incorporating higher-order perturbative corrections toPrecise predictions
for BSM signals theoretical predictions, extending to the next-to-leading order (NLO) or even next-

to-next-to-leading order (NNLO) in the SM coupling constant expansions for the
BSM contributions. With the enhanced precision, the complexity of the calculations
is markedly increased. Nowadays, numerical tools are employed to evaluate the
parton distribution functions (PDFs), to perform the phase-space integration, to
simulate the splittings of partonic final states into high-multiplicity final states and
more. In Section 2, we review the basic ingredients necessary for obtaining NLO-
accurate theoretical predictions matched to parton shower (PS) systems. In part (I),
we will then examine how the precision of these predictions can be enhanced,
with a particular focus on the predictions for BSM signals. The SM effective field
theory (SMEFT) plays an essential role in this regard, as it enables the incorporation
of the indirect effects of arbitrary high-scale new physics into a systematically“Arbitrary” needs

some fine print – the
EW symmetry

breaking must be
realized linearly,

i.e. SM-like.

improvable framework. In Chapter 3.1, we introduce the SMEFT. In Section 4, we
review the methods required to improve the SMEFT predictions by including higher-
order perturbative corrections. Finally, in Section 5, we exemplify this with the
calculation of NNLO+PS-accurate predictions for SMEFT effects in the Higgsstrahlungs
process.

In the context of scenario (II), two fully specified BSM UV models are presentedImproved searches
for BSM physics

targeting
non-standard

signatures

in Chapters 3.2 and 3.3. The first is a vector LQs (VLQs) model arising in the
SU(4)[3] ⇥ SU(3)[12] ⇥ SU(2)L ⇥U(1)X (4321) gauge unification (the superscripts
refer to the fermion generations that are charged under the corresponding gauge
group). The second features an extended scalar sector coupled to the dark sector
via a pseudoscalar DM mediator, the so-called two-Higgs-doublet plus pseudoscalar
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dark matter mediator model (2HDM+a). Both models are connected to open ques-
tions regarding the SM Higgs sector: where does the highly nongeneric flavor
structure of the SM come from, and why is the SM Higgs the only scalar particle
realized in nature? In Sections 6 and 7, we present details of non-standard LHC
signatures induced by these models, which provide a special handle to search
for them. In the former model, the VLQs are primarily coupled to fermions of the
third family, which gives rise to effects in pp! t+t� in association with b-quarks.
By implementing these in the POWHEG framework at NLO+PS accuracy, we provide
support for corresponding analyses searching for signals in pp ! t+t� in asso-
ciation with b-tagged jets. As will be demonstrated, the latter 2HDM+a model can
exhibit a long-lived particle (LLP) phenomenology if the pseudoscalar DM mediator
only mixes minimally with the extended scalar sector. Then, conventional missing
transverse energy searches for DM mediators at the LHC are inadequate, and instead
targeted analyses for LLP signatures represent the optimal approach.





2
T H E O R E T I C A L P R E D I C T I O N S F O R T H E L H C

Our work is a delightful game.
I am frequently astonished

that it so often results in correct predictions
of experimental results.

— Murray Gell-Mann

In order to predict new effects in proton collisions at the LHC, a comprehensive un-
derstanding of a vast range of phenomena is required. This encompasses the physics
of the proton, hard scatterings between constituents of the proton (the partons),
the transformation of individual partons into high-multiplicity final-state jets, and
many other phenomena. Over the course of several decades, significant research
has been conducted with the objective of developing theoretical predictions for the
LHC that are both precise and accurate. This chapter presents the fundamentals of
these techniques. We consider proton-proton collisions of the form Proton-proton

collisions
P�(K�) P (K )! F , (2.1)

where P�, P are the incoming protons with momenta K�, K and F is an arbitrary
(hadronic) final state. The subscripts � and  indicate the direction in which the Note that there is no

distinguished beam
direction in pp
collisions, therefore
the assignment of �
and  is somewhat
arbitrary.

protons enter the collision along the beam axis. A schematic representation of this
process is provided in Figure 2.1. In this explanation, we will start at the center
of Figure 2.1 and move outward. The light green circle represents a hard collision
event among partons, which are constituents of the proton. One incoming parton
from P� (illustrated in Figure 2.1 as a gluon) scatters with one incoming parton
from P (also a gluon), resulting in a small number of outgoing daughter particles.
The hard parton scatterings are described by fixed-order calculations, which will be
introduced in Subchapter 2.1.1. As more and more orders in perturbation theory
are included, the resulting descriptions become increasingly precise, capturing the
physics occurring at the hardest scale Q.

At the other end of the energy spectrum, at the scale LQCD, resides the physics
occurring inside the protons. The incoming protons P� and P are depicted as two
dark rectangles in Figure 2.1. They transform into three narrow arrows, reflecting
the composite nature of protons. Finally, they provide the partons that undergo the
hard scatterings. The probability of finding a parton at a given energy fraction inside
the proton is described by the PDFs, which will be introduced in Subchapter 2.1.2.

In order to bridge the gap between the scales Q and LQCD, which are usually
separated by several orders of magnitude, PS generators are employed. These
generators model the splittings of partons into the high-multiplicity final state F,

7
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Figure 3: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event generator. The red
blob in the center represents the hard collision, surrounded by a tree-like structure representing
Bremsstrahlung as simulated by parton showers. The purple blob indicates a secondary hard
scattering event. Parton-to-hadron transitions are represented by light green blobs, dark
green blobs indicate hadron decays, while yellow lines signal soft photon radiation.

At hadron colliders, multiple scattering and rescattering e�ects arise, which must be simulated by Monte-
Carlo event generators in order to reflect the full complexity of the event structure. This will be discussed
in Sec. 5. Eventually we need to convert the full partonic final state into a set of color-neutral hadrons,
which is the topic of Sec. 6. The interplay of all these e�ects makes for the full simulation of hadron-hadron
collisions. This is sketched in Fig. 3.

2 The hard scattering

Event simulation in parton-shower Monte-Carlo event generators starts with the computation of the hard-
scattering cross section at some given order in perturbation theory. Traditionally, this calculation was
performed at leading order (LO), but nowadays, with next-to-leading-order (NLO) calculations completely
automated, it is often done at NLO. Computing the hard cross section at NLO requires a dedicated
matching to the parton shower, which will be discussed in Sec. 4. For now we focus on the evaluation of
the di�erential cross sections and the related phase-space integrals.

The basis for our calculations is the factorization formula, Eq. (1.1). We rewrite it here, in order to
simplify the discussions in the following sections. The full initial and final state in a 2 ! (n � 2)
reaction can be identified by a set of n particles, which is denoted by {~a} = {a1, . . . , an}. Their flavors

and momenta are similarly specified as {~f } = {f1, . . . , fn} and {~p} = {p1, . . . , pn}. The di�erential
cross section at leading order is a sum over all flavor configurations, and it depends only on the parton
momenta:

d�(LO)({~p}) =
�

{�f }

d�(B)
n ({~a}) , where d�(B)

n ({~a}) = d�̄n({~p}) Bn({~a}) . (2.1)

Each individual term in the sum consists of the di�erential phase-space element, d�n, the squared matrix

6

2.2 
(PS)

2.1.1 
(hard scattering)

P⊕ (K⊕) P⊖ (K⊖)

F

2.1.2 
(PDFs)

2.3 
(POWHEG+PS)

Figure 2.1: A schematic representation of proton-proton collisions at the LHC. The funda-
mental process is the hard scattering of partons (see Subchapter 2.1.1), which is
described by fixed-order calculations. These partons originate from the incoming
protons (depicted as dark rectangles), whose physics is described by the PDFs
(see Subchapter 2.1.2). The splitting of the partons into high-multiplicity jets
(see Chapter 2.2) outside the hard scattering process is modelled by the PS. The
POWHEG framework (see Chapter 2.3) finally allows for the consistent matching
of fixed-order matrix elements to PS generators. Figure adapted from [17].

which is depicted by the tree-like branchings of the particles in Figure 2.1. The
theoretical predictions made by the PS are accurate, in the sense that the modeled
events closely resemble final states observed at the LHC. Ideally, the fixed-order
description and the PS modelling should go hand in hand. This is accomplished by
the POWHEG framework, which will be introduced in Chapter 2.3.

2.1 Fixed-Order Predictions

This chapter draws upon the review of NLO calculations presented in [18]. Further
details on automated NLO calculations in the POWHEG framework can be found there.

High-energy collisions between protons at the LHC originate from underlying hard
scattering events between constituent partons. These are of the formThe underlying

partonic hard
scattering process pi,�(k�) pj, (k )! F(k1, . . . , kn) , (2.2)

where pi,�, pj, are the partons originating from P�, P and F represents a partonic
final state. We assume that F is composed of n particles with momenta k1, . . . , kn.
The subscripts i, j of the partons reflect the fact that different underlying parton
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configurations can contribute to the overall P�P ! F process. The partons carry
a fraction of the total proton momentum, this is expressed as

k� = x�K� , k = x K , (2.3)

with momentum fractions x�, x 2 [0, 1]. Energy and momentum are conserved in Given that partons
appear to be
fundamental
particles at the
current experimental
precision, scatterings
between them are
necessarily elastic.

elastic scattering processes, therefore

x�K� + x K = k1 + · · · + kn . (2.4)

The cross section s(P�P ! F) can be expressed as

s(P�P ! F) = Â
ij

Z
dx�x Lij(x�, x , µF) sij,F(x�, x , µR, µF) , (2.5)

where the indices i, j label the possible combinations of initial-state parton flavors,
the parton luminosity Lij describes the probability to find partons pi,�, pj, with
momentum fractions x�, x inside the protons, and sij,F ⌘ s(pi,�pj, ! F) is the
partonic cross section. Eq. (2.5) is the result of a fundamental concept known as
factorization [19], which allows us to separate the low-energy proton physics con- Factorization
tained in Lij (occurring at LQCD) from the high-energy parton scattering physics
contained in sij,F (occurring at the hard scale Q). This is crucial, as it allows us to
calculate sij,F with a procedure known as perturbation theory, while non-perturbative
effects are encapsulated in Lij, which are determined once-and-for-all in exper-
iments. This approach is valid as long as the typical scale Q of the considered
process is large compared to the scale LQCD, which is approximately 0.2 GeV. Below
this scale, the perturbative treatment of Quantum Chromodynamics (QCD) becomes
invalid. The meanings of the unphysical renormalization scale µR and factorization
scale µF will be elucidated below. We will now discuss the elements of (2.5) in
greater detail.

2.1.1 The Partonic Scattering Process

We write the partonic cross section sij,F = s(pi,�pj, ! F) as Partonic cross
section

sij,F(x�, x , µR, µF) =
Z

dFF(k� + k ; k1, . . . , kn)

��Mij,F(FF, µR, µF)
��2

2 s� 
, (2.6)

where s� = (k� + k )2, FF = {x�, x ; k1, . . . kn} is the so-called n-particle phase
space, and Phase space

element

dFF ⌘ dFF(q; k1, . . . , kn) = (2p)d dd

 
q�

n

Â
i=1

ki

!
n

’
i=1

dd�1ki

(2p)d�1 2k0
i

. (2.7)

Here, d is the number of spacetime dimensions (usually d = 4). The functions Mij,F
are called matrix elements, we can expand them as a perturbative series. Matrix elements
In the context of QCD, this is a series in the strong coupling constant gs =

p
4pas.
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One writesPerturbative series

Mij,F = M
(0)
ij,F +

g2
s

16p2 M
(1)
ij,F + O

⇣
g4

s

⌘
, (2.8)

the series in the squared matrix elements of (2.6) then becomes

��Mij,F
��2 =

���M(0)
ij,F

���
2
+

as

2p
Re

n
M

(0)⇤
ij,F M

(1)
ij,F

o
+ O

�
a2

s
�

. (2.9)

���M(0)
ij,F

���
2

is called the leading order (LO) contribution, whereas Re
n
M

(0)⇤
ij,F M

(1)
ij,F

o

constitutes the corresponding NLO virtual correction.

(a) LO diagram (b) NLO virtual diagram

Figure 2.2: Feynman diagrams for the partonic scattering processes qq̄ ! t+t� with a Z
boson exchange.

Example : Drell-Yan (DY) To illustrate, let us consider the case of DY
production pp! t+t�. One of the partonic scattering processes contributing
to this is qq̄ ! t+t� with a Z boson exchange. The corresponding LO and
NLO virtual correction Feynman diagrams are shown in Figure 2.2. The LO
squared matrix element is given by

���M(0)
qq̄,tt

���
2

=

⇣
g�Zq

⌘2 ⇣�
g�Zt

�2 t2
 1 +

�
g+

Zt

�2 t2
�1

⌘

Nc
�
(s� �mZ)2 + G2

Zm2
Z
� +

�
g+

• $ g�•
�

, (2.10)

where the Mandelstam variables

sij =
�
ki + kj

�2 , tij =
�
ki � kj

�2 (2.11)

have been introduced. The Z boson is assumed to have mass mZ, width GZ,
and SM fermion couplings gh

Z f , where h = ± is the fermion helicity (see (A.2)).
It should be noted that (2.10) is averaged over the spins and colors of the
fermions. It is convenient to express (2.10) in terms of the Mandelstam
variables (2.11), given that these are Lorentz-invariant quantities and therefore
do not depend on the chosen frame. The NLO virtual diagram in Figure 2.2b
involves integrals over the loop momentum, which we will refer to as q.
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(a) B2,1 (b) C3,1

Figure 2.3: Scalar one-loop integrals.

In four spacetime dimensions, the integrals that occur are of the form
Z d4q

q4 ,
Z d4q

q2(q + k)2 ,
Z d4q

q2(q + k1)2(q + k1 + k2)2 , (2.12)

and are in fact divergent. In order to address the divergences, it is necessary
to regularize them. This entails the introduction of a procedure that allows
to isolate the singularities and to derive analytical expressions for (2.12).
The most commonly employed regularization scheme is based on the fact
that (2.12) are only divergent in four spacetime dimensions, not however
in general d dimensions. The integrals may therefore be rendered finite by
generalizing them to d dimensions, a procedure known as dimensional regu-
larization. By subsequently setting d = 4� 2e, the divergences are recovered
as poles of the form 1/e or 1/e2. It is important to ensure that all objects
of the theory are changed consistently. This includes the introduction of an
unphysical renormalization scale, µR, which ensures that the dimensionality
of the integrals remains the same. We define

B2,1(k2) ⌘ µ4�d
R

Z ddq
(2p)d

1
q2(q + k)2 ,

C3,1(k2
1, k2

2, (k1 + k2)
2) ⌘ µ4�d

R

Z ddq
(2p)d

1
q2(q + k1)2(q + k1 + k2)2 ,

(2.13)

with no internal masses. Diagrammatic representations of the scalar one-loop
integrals B2,1, C3,1 are shown in Figure 2.3. The analytical expressions for the
integrals in (2.12) are [20]

B2,1(0) =
iN

16p2

✓
�

µ2
R
s

◆e ✓ 1
eUV
�

1
eIR

◆
,

B2,1(s) =
iN

16p2

✓
�

µ2
R
s

◆e ✓ 1
eUV

+ 2
◆

,

C3,1(0, 0, s) =
iN

16p2

✓
�

µ2
R
s

◆e ✓ 1
s e2

IR

◆
,

(2.14)

which come with two different kinds of e labelled eUV, eIR. They indicate the
different origins of the poles, which can either be the infrared (IR) or the UV
regions. We will discuss these different divergences and how to handle them
in more detail below.
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First, we wish to provide a brief commentary on the normalization in (2.14).
We have employed the conventions of the POWHEG-BOX [21] with

N = (4p)e/G(1� e) , (2.15)

where G is the gamma function. This convention will be followed throughout
the thesis. Another frequent normalization of loop integrals involves the
factor

Se = (4p)ee�gEe , (2.16)

with gE the Euler-Mascheroni constant. At the one-loop level, the two are
identical, since

✓
Se

N

◆2
= 1 + z2 e2 +

2 z3 e3

3
+

7 z2
2 e4

10
+ O(e5) (2.17)

only starts to deviate from unity at O(e2). In above expression, z1, z2 are val-
ues of the Riemann zeta function. At the two-loop level, however, expressions
based on the different conventions start to differ, necessitating the inclusion
of (2.17).
Let us now return to the virtual diagram depicted in Figure 2.2b. It can be
demonstrated that the (unrenormalized) NLO virtual matrix element, derived
from the Feynman diagram depicted in Figure 2.2b, is proportional to the LO
one. Using the integrals in (2.14), it reads

as

4p
M

(1)
0, qq̄,tt =

CF as

4p
((d� 7) B2,1(s)� 2s C3,1(0, 0, s) + 4 B2,1(0))

| {z }
⌘K(1)

0

M
(0)
qq̄,tt ,

(2.18)
where CF = 4/3 is the Casimir invariant of the fundamental representation
of SU(3). In (2.18), we introduced the factor K(1)

0 that is multiplied in the
NLO virtual amplitude. It contains divergences both of the IR and UV type

K(1)
0 =

CF as

4p
N

✓
�

µ2
R
s

◆e ✓
�

2
e2

IR
�

4
eIR

+
1

eUV
� 8 + O(e)

◆
. (2.19)

Let us first address the UV pole. The divergences 1/eUV in (2.14) originate
from the regions in (2.13) where the momentum q grows large. These regions
are detached from those where q is on the order of the momenta produced
at the LHC. As only the latter are relevant to experimentally measurable
quantities, we may absorb the UV divergences into redefinitions of our theory
parameters, without affecting the physical regions. This process is referred to
as renormalization. We write

y0 =
q

1 + dZy
| {z }

Z1/2
y

y , A0 =
p

1 + dZA| {z }
Z1/2

A

A , g0 =
�
1 + dZg

�
| {z }

Zg

g ,
(2.20)
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Figure 2.4: Self-energy diagram for the quark fields q that contributes to Gq.

where y, A and g generically represent fermion fields, vector fields and
coupling strengths, respectively. The unrenormalized parameters, designated
by the subscript 0, are equal to the renormalized parameters up to the factors
Z, which have been introduced to cancel the UV poles. Regarding (2.18), it is
sufficient to consider Zq for the quark fields, which can be determined from
the corresponding self-energy Gq. Up to O(as), we find

Gq(s) =

✓
1�

(2� d) CF as B2,1(s)
8p

+ O(a2
s )

◆ �
1 + dZq

�
, (2.21)

where s = k2 with k the quark momentum and expressed in terms of the
renormalized parameters, adding the factor (1 + dZq). The term proportional
to as originates from the Feynman diagram depicted in Figure 2.4. The poles
of this expression must be cancelled by dZq. While this uniquely specifies
the O(e�1) terms of dZq, there is some freedom associated with the choice
of its constant parts O(e0). Different renormalization schemes exist, which
correspond to different constant parts being absorbed into dZq. In our case,
these are

dZOS
q =

(2� d) CF as B2,1(0)
8p

, (OS) ,

dZMS
q =

CF as

4p

✓
N

eIR
�

N

eUV

◆
, (MS) .

(2.22)

The on-shell (OS) scheme is predicated on the requirement G(s)|s=m2 = 1,
where m is the mass of the corresponding particle. In other words, all higher-
order corrections are cancelled when the particle is on-shell. The minimal
subtraction (MS) schemes only subtract the 1/e poles, in the case of the
standard MS scheme up to the normalization factor N , which transforms
1/e into 1/e + log(4p)� gE, where gE is the Euler gamma. Given that the
factor N is always encountered in loop expressions, its multiplication to
dZq serves to considerably simplify the expressions. All dependence on the
renormalization scheme is unphysical and drops out in the limit of infinite
orders in perturbation theory. It is acknowledged that in the example at hand,
the distinction in (2.22) is a rather academic exercise, as the two expressions
are in fact identical and vanish for eIR = eUV. Nevertheless, we thought it
appropriate to introduce the renormalization schemes at this point.
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Finally, the renormalized virtual NLO matrix element in the MS scheme is

as

2p
Re

n
M

(0)⇤
qq̄,ttM

(1)
qq̄,tt

o
= 2 Re

⇢
K(1)

0 + dZq| {z }
K(1)

� ���M(0)
qq̄,tt

���
2

=
CF as

2p
N Re

(✓
�µ2

R
s

◆e ✓
�

2
e2

IR
�

3
eIR
� 8

◆) ���M(0)
qq̄,tt

���
2

=
CF as

2p
N

✓
�

2
e2

IR
�

2Lµ + 3
eIR

+ p2
� 8� 3Lµ � L2

µ

◆ ���M(0)
qq̄,tt

���
2

,

(2.23)

where we introduced the renormalized one-loop factor K(1) as well as
Lµ = log(µ2

R/s), and used the analytic continuation log(�x) = log(x) + ip
for real x. The only poles that remain now are of IR type. In many calculations,
the origin of the poles is inconsequential, and thus, we will often omit the
indices IR, UV of the e from now on, unless they are relevant to the specific
discussion.

Figure 2.5: Schematic depiction of the q̄qg Green’s function including the higher-order cou-
pling corrections (Zas ) and the higher-order contributions from the wavefunction
renormalization (Zq, Zg).

Before addressing the IR divergences, let us discuss the UV renormalization of
the strong coupling constant as. Following (2.20), we may rewrite the Lagrangian
expressed in terms of the bare couplings and fields as

p
4pas,0 (q̄0gµTaq0) Ga

0,µ =
q

4pas(µR) µe
R Z1/2

as Z1/2
g Zq (q̄gµTaq) Ga

µ , (2.24)

where q are the quark fields and G the gluon. Once the renormalization factors
Zq, Zg have been determined from the self-energies of the quarks and the gluon,
one can use the q̄qg Green’s function to find Zas . This is illustrated schematically in
Figure 2.5. The MS expression for Zq at O(as) has been determined in (2.22). We
refrain from calculating Zg explicitly, and instead directly quote the well-known
MS result for Zas [22, 23]

Zas = S�1
e

 
1�

b0

e

✓
as(µR)

4p

◆
+

✓
b2

0
e2 �

b1

2e

◆✓
as(µR)

4p

◆2

+ O(a3
s )

!
, (2.25)



2.1 Fixed-Order Predictions 15

with

b0 =
11 CA

3
�

2 n f

3
, b1 =

34 C2
A

3
�

10 CA n f

3
� 2 CF n f . (2.26)

Here, CA = 3 is the Casimir invariant of the adjoint representation of SU(3)
and n f is the number of (light) quark flavors. In the renormalization (2.24), the QCD beta

functions b0, b1unphysical renormalization scale µR is once again introduced to ensure the proper
dimensionality of the integrals. Consequently, the renormalized coupling constant
as(µR) exhibits a dependence on µR Of course, the bare

coupling constant
as,0 is independent
of the scale µR.

das

d log µR
⌘ b(as, e) , (2.27)

which using as,0 = as(µR) µ2e
R Zas results in [24]

b(as, e) =
d

d log µR

⇣
as,0 µ�2e

R Z�1
as

⌘
= as,0 µR

d
dµR

⇣
µ�2e

R Z�1
as

⌘

= as,0

✓
�2e µ�2e

R Z�1
as � µ�2e+1

R
1

Z2
as

dZas

dµR

◆

= �2eas � as
1

Zas

dZas

d log µR
⌘ �2eas + b(as) .

(2.28)

The function b(as) is called the renormalization group (RG) function. In MS, it can be
determined directly from the poles in (2.25), since writing Zas = 1 + Â•

n=1 Sn
e /enZas,n

yields [24]

b(as)

✓
1 + Zas,1

Se

e
+ O(e�2)

◆
= b(as)Zas = �as

dZas

d log µR

(2.27)
= �as b(as, e)

dZas

das

= �as b(as, e)

✓
dZas,1

das

Se

e
+ O(e�2)

◆
,

(2.29)

and equating the non-singular terms results in

b(as)
(2.28)
= 2a2

s
dZas,1

das

(2.25)
= �2b0

a2
s

4p
� 2b1

a3
s

(4p)2 + O(a4
s ) . (2.30)

The RG equation (RGE) for as in MS therefore reads Renormalization
group running
of asdas

d log µR
= �2b0

a2
s

4p
� 2b1

a3
s

(4p)2 + O(a4
s ) . (2.31)

Its solution is

as(µR) =
as(mZ)
v(µR)

✓
1�

b1

b0

as(mZ)
4p

log v(µR)
v(µR)

◆
, (2.32)

with
v(µR) = 1 + b0

as(mZ)
2p

log
✓

µR

mZ

◆
, (2.33)
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and where the experimental value as(mZ) is assumed to be given as a boundaryThere would have to
be n f � 33/2
effective quark

flavours for b0 to
change sign.

condition. Since b0 > 0, the denominator (2.33) grows with µR, meaning that as(µR)
decreases with increasing µR. The change of coupling constants with µR is called the
RG running, the fact that as becomes small for large µR is known as the asymptotic
freedom of QCD.

Example : DY We will now return to the IR singularities that remained
present in (2.23) following the renormalization of the UV poles. To ad-
dress them, it is essential to recognize that certain partonic contributions to
P�P ! F have been overlooked so far. These are of the form

P�P ! F J . . . J| {z }
l times

⌘ FJl , (2.34)

where the final state FJl contains l 2 N additional massles partons J. If
these carry very little energy or are collinear to some of the massless partons
in F, then the final state FJl is experimentally indistinguishable from F.
Consequently, these contributions must be included as well.

For our underlying partonic scattering events, we extend (2.2) and consider

pi,�(k�) pj, (k )! FJl(k1, . . . , kn, kn+1, . . . , kn+l) , (2.35)

where FJl is a final state including l 2 N additional massless partons in the final
state associated with the momenta kn+1, . . . , kn+l in addition to the partonic final
state F introduced earlier. ThenUnderlying

partonic
configurations

with additional
real radiation

s(P�P ! F) = Â
l

s(P�P ! FJl) , (2.36)

with the right-hand side (r.h.s) given by (2.6) replacing n! n + l. In practice, since
all emissions of additional massless partons are associated with factors gs in the
matrix elements, we have s(P�P ! FJl) µ al

s in QCD. Consequently, only the first
few elements in the sum of (2.36) have to be considered at a given order in as.

Figure 2.6: Feynman diagrams for the partonic scattering processes qq̄! t+t�g with a Z
boson exchange. Crossings of above diagrams with the gluon in the initial state
contribute as well, but we do not discuss these contributions here.
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Example : DY In the DY production pp! t+t� case, we consider NLO
real diagrams as those shown in Figure 2.6, with additional gluons in the
final state. It should be noted that further contributions arise from crossings
of these diagrams with an initial-state gluon, which are not discussed here.
The matrix element for the diagrams in Figure 2.6 is given by

���M(0)
qq̄,ttg

���
2

= �
8pasCF

Nc

(s� + t�3 + t 3)(g�Zq)
2

t�3t 3

⇣
G2

Zm2
Z +

�
m2

Z � s� � t�3 � t 3
�2
⌘

✓
(g�Zt)

2 �(s� + t�1 + t�3)
2 + t2

 1
�

+ (g+
Zt)

2 �(s� + t 1 + t 3)
2 + t2

�1
� ◆

+
�

g+
• $ g�•

�
.

(2.37)

Eq. (2.37) has interesting features: if the momentum k3 of the additional
final-state gluon goes to zero, we observe that t�3 = t 3 = 0, resulting in
the divergence of (2.37). In a similar manner, if the momentum k3 becomes
collinear to the initial-state parton that emitted it, either k� or k , we also
have t�3 µ k2

� = 0 or t 3 µ k2
 = 0. Due to these poles, the phase space

integral (2.6) of (2.37) cannot be computed directly in four spacetime dimen-
sions. The divergences are related to the IR poles that we previously encoun-
tered in the virtual matrix element. For NLO real diagrams, the divergences
can be classified into two categories: soft divergences, which occur when a
parton momentum approaches zero, and collinear divergences, which arise
when a parton momentum becomes collinear to another parton momentum.
In order to address these divergences, we follow the subtraction formalism,
which entails the introduction of counterterms that mimick the behavior
of the full NLO real matrix element in the singular regions. By subtracting
these counterterms from the matrix element, the phase space integral (2.6)
can be performed in four dimensions. The integral over the subtraction terms
themselves is performed in d dimensions and added back to the total result. It
contains IR poles of the form 1/eIR. For so-called IR-collinear safe observables
(formally introduced below), these poles always cancel against the IR poles
we encountered in the NLO virtual matrix element. The cancellation of IR
divergences was proven formally by Kinoshita and Lee-Nauenberg in what
is now known as the Kinoshita-Lee-Nauenberg (KLN) theorem [25, 26]. Note
that for initial-state collinear (ISC) singularities in proton-proton collisions
the cancellation is somewhat more intricate, as will be discussed below.

In order to focus on the important aspects of the subtraction formalism, let us
simplify our notation. First, we combine (2.5) and (2.6) into

s(P�P ! F) = Â
ij

Â
l

Z
dFFJl Lij(x�, x )

���Mij,FJl (FFJl )
���
2

2 s� 
, (2.38)
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where dFFJl = dx� dx dFFJl and we have omitted the dependence on the renor-
malization scales µR, µF. Furthermore, we will refrain from including indices related
to the flavor structure of the process. Strictly speaking, we have already begun to do
so. For a given final state F, multiple final states FJ are possible with an additional
parton emission. In the case of pp! t+t�, for example, pp! t+t�g (see (2.37)),
pp ! t+t�q and pp ! t+t�q̄ are all valid FJ states. Consequently, we should
have included not just the sum over l but also over the possible flavor combinations
for FJl in (2.38). We will continue to omit the summation over flavors to keep
our notation simple. To facilitate a straightforward extension to multiple flavor
combinations nevertheless, we collect the flavors FF ⌘ { f�, f ; f1, . . . , fn} of all
particles and pair them with their phase space configuration FF into

PF ⌘ (FF, FF) , (2.39)

and analogous for PFJ . This allows us to express the LO, NLO virtual and NLO real
contributions as

L B(PF) ⌘Â
ij

Lij(x�, x )

���M(0)
ij,F(FF)

���
2

2 s� 
,

L Vb(PF) ⌘Â
ij

Lij(x�, x )
2 Re

n
M

(0)⇤
ij,F (FF)M(1)

ij,F(FF)
o

2 s� 
,

L R(PFJ) ⌘Â
ij

Lij(x�, x )

���M(0)
ij,FJ(FFJ)

���
2

2 s� 
,

(2.40)

including the flux factor 1/(2 s� ) and where the NLO virtual matrix element is
renormalized, but still contains IR poles. The fact that it is still divergent in four
dimensions is indicated by the subscript b. The NLO cross section then reads

sNLO =
Z

dFF L

⇣
B(PF) + Vb(PF)

⌘
+
Z

dFFJ L R(PFJ) , (2.41)

the NLO expectation value for an arbitrary observable O is

hOiNLO =
Z

dFF L O(FF)
⇣
B(PF) + Vb(PF)

⌘

+
Z

dFFJ L O(FFJ)R(PFJ) .
(2.42)

As previously stated, Vb still contains IR poles and R diverges in the collinear and
soft regions of FFJ . In order to be able to compute (2.41) and (2.42), it is necessary
to introduce appropriate subtraction counterterms.

In order to cancel the ISC poles, which correspond to a situation where a final-stateFactorization
counterterms parton becomes collinear to the initial-state parton that emitted it, two factorization
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counterterms, G�,b and G ,b, must be introduced. They depend on the ISC collinear
phase spaces FF,� and FF, 

FF,� ⌘
n

(
FF, z

o
⌘ {{zx�, x ; k1, . . . , kn} , z} with zx�K� + x K =

n

Â
i=1

ki ,

FF, ⌘
n

(
FF, z

o
⌘ {{x�, zx ; k1, . . . , kn} , z} with x�K� + zx K =

n

Â
i=1

ki ,

(2.43)
where z is the momentum fraction of the initial-state parton after radiating off the
collinear final-state parton. We further write

dFF,� = d(
FF dz = dx� dx dFF (zk� + k ; k1, . . . , kn) dz ,

dFF, = d(
FF dz = dx� dx dFF (k� + zk ; k1, . . . , kn) dz ,

(2.44)

with the n-body phase space element dFF given in (2.7). The corresponding flavor
configurations FF,� are of the n-body type. The factorization counterterms are
added to the NLO cross section and expectation values as additional terms

sNLO �

Z
dFF,� L G�,b(PF,�) +

Z
dFF, L G ,b(PF, ) ,

hOiNLO �

Z
dFF,� L O(FF,�) G�,b(PF,�)

+
Z

dFF, L O(FF, ) G ,b(PF, ) .

(2.45)

In order to cancel the remaining poles, we introduce real counterterms C(a) for Real counterterms
each region a in the (n + 1)-body phase space where a soft or collinear divergence For readability, we

omit the superscripts
(a) of the parameters
in the body of the
text from now on,
and only keep them
in the main
equations as a
reminder for the
a-dependence.

occurs. For a given singular region a, a mapping (M of the form

(M
(a)

(PFJ) =

8
<

:
FFJ !

⇣
(
F

(a)
F , z(a)

⌘

FFJ = { f�, . . . , a, b, . . . , fn+1}!
(
F

(a)
F ⌘ { f�, . . . , ab, . . . , fn}

,

(2.46)
is defined. The input is an (n + 1)-parton configuration PFJ , which is mapped into
an n-parton phase space configuration (

FF, a real number z 2 [0, 1] and an n-body
flavor configuration (

F F. The flavors a, b, ab 2 {q, q̄, g} are related to splittings of the
form ab! ab (i.e. q! gq, g! gg or g! qq̄). The phase space configuration (

FF is
called the underlying n-body configuration . The definition of (M is contingent upon The underlying

n-body
configuration

the nature of the divergence associated with a:

• If it is a soft (S) divergence, FFJ is first mapped into a configuration where
one of the final-state partons has zero momentum. (

FF and (
F F are derived by

removing this parton. The value of z is set to 1.

• If it is a final-state collinear (FSC) divergence, FFJ is first mapped into a
configuration where two of the final-state partons have collinear momenta.
(
FF ((

F F) is then obtained by replacing the corresponding partons by a single
parton that carries the combined momentum (flavor) of the original partons.
The value of z is set to 1.
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• If it is an ISC� divergence, FFJ is mapped into a configuration where a final-
state parton has a momentum that is collinear to the momentum k� of the
initial-state parton p�. (

FF ((
F F) is then obtained by removing this final-state

parton and replacing the momentum (flavor) of the initial-state parton with
the momentum (flavor) after radiation. The value of z is set to the momentum
fraction after radiation.

Furthermore, it is required that the configurations of the remaining partons (i.e. those
not mentioned in the aforementioned replacement rules) in (PF ⌘ (

(
FF, (

F F) remain
unchanged in the asymptotic limit where FFJ approaches the singular region a and
that

O(FFJ) R(PFJ)�Â
a

O

⇣
(
F

(a)
F

⌘
C

(a)(PFJ) (2.47)

has at most integrable singularities in FFJ for suitable observables O. In this
context, suitable means IR-collinear safe, i.e. O(FFJ) ! O

�(
FF

�
as FFJ approachesIR-collinear safe

observables the singular region a. In other words, O should not depend on the details of the
emitted parton in the collinear limits, since these correspond to low-energy physics
that we assumed to be separable from the high-energy parton scattering physics
in (2.5). Otherwise, the factorization of the high-energy parton scattering from the
low-energy proton physics will not be valid.

Using (2.47), we rewrite the NLO real contribution in (2.42) as
Z

dFFJ L O(FFJ) R(PFJ) = Â
a

Z
dFFJ L

(a)
O

⇣
(
F

(a)
F

⌘
C

(a)(PFJ)

| {z }
1�

+
Z

dFFJ

⇣
L O(FFJ) R(PFJ)�Â

a

L
(a)

O

⇣
(
F

(a)
F

⌘
C

(a)(PFJ)
⌘

| {z }
2�

.
(2.48)

We have introduced

L
(aFS) = L

⇣
(x (aFS)
� , (x (aFS)

 

⌘
for aFS 2 {FSC, S} ,

L
(a�) = L

⇣
(x (a�)
� /z(a�), (x (a�)

 

⌘
for a� 2 {ISC�} ,

L
(a ) = L

⇣
(x (a )
� , (x (a )

 /z(a )
⌘

for a 2 {ISC } .

(2.49)

The term 2� of (2.48) is integrable in four dimensions, as a consequence of how
the counterterms C have been set up. In contrast, the term 1� necessarily diverges.
The form (2.48) is nevertheless of use, as the C can be implemented in a general
manner suitable for arbitrary processes. Consequently, the term 1� can be calculated
once-and-for-all.

In order to determine 1�, we introduce the parametrization

FFJ b=
⇢

(
F

(a)
F , F(a)

rad

�
and dFFJ b= d(

F
(a)
F dF(a)

rad (2.50)
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in each singular region a. Here, (
FF is the underlying n-body configuration as before,

while Frad parameterises the phase space of the additional emitted parton. Using
this, we define

(
C

(a�)
⇣

(P(a�)
F , z

⌘
⌘

Z
dF(a�)

rad C
(a�)(PFJ) z d

⇣
z� z(a�)

⌘
for a� 2 {ISC�} ,

(
C

(aFS)
⇣

(P(aFS)
F

⌘
⌘

Z
dF(aFS)

rad C
(aFS)(PFJ) for aFS 2 {S, FSC} .

(2.51)
In the former case, term 1� becomes

Â
a�

Z
dFFJ L

(a�)
O

⇣
(
F

(a�)
F

⌘
C

(a�)(PFJ)

= Â
a�

Z
d(

F
(a�)
F

dz
z

L
(a�)

O

⇣
(
F

(a�)
F

⌘
(
C

(a�)
⇣

(P(a�)
F , z

⌘

= Â
a�

Z
dFF,� L O

⇣
(
FF

⌘
(
C

(a�) (PF,�) .

(2.52)

The last step is non-trivial. We have used the fact that the integration over d(
FFdz

is equivalent to the integration over dFF,�, and the factor 1/z on the second
line of (2.52) is cancelled by the Jacobian factor from the transformation between
(x
�

/z b= x�. The latter identity also allowed us to replace L(a�) by L. The total NLO
expectation value for O now reads

hOiNLO =
Z

dFF L O(FF)
⇣
B(PF) + Vb(PF)

⌘

+
Z

dFFJ

⇣
L O(FFJ)R(PFJ)�Â

a

L
(a)

O

⇣
(
F

(a)
F

⌘
C

(a)(PFJ)
⌘

+ Â
aFS

Z
d(

F
(aFS)
F L

(aFS) O

⇣
(
F

(aFS)
F

⌘
(
C

(aFS)
⇣

(P(aFS)
F

⌘

+
Z

dFF,� L O

⇣
(
FF

⌘ 

Â
a�

(
C

(a�) (PF,�) + G�,b(PF,�)

!

+
Z

dFF, L O

⇣
(
FF

⌘ 

Â
a�

(
C

(a�) (PF, ) + G ,b(PF, )

!
.

Moreover, it turns out that one can always write

Â
a�

(
C

(a�)(PF,�) + G�,b(PF,�) = G�(PF,�) + d(1� z) G
div
�

(
(PF) , (2.53)

where G� is finite in four dimensions, while Gdiv
�

contains divergences that are
related to soft gluon emissions. Overall, the quantity Cancellation of

the IR poles

V(PF) ⌘ Vb(PF) + Â
aFS

(
C

(aFS)(PF) + G
div
� (PF) + G

div
 (PF) (2.54)

is finite in four dimensions. In the total sum of (2.54), the IR divergences we have
found in Vb are exactly cancelled, as guaranteed by the KLN theorem [25, 26].
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It should be noted, however, that some of the ISC divergences have been absorbed
by the G�,b along the way. Finally, we can write the NLO expectation value asThe subtraction

formalism master
formula

hOiNLO =
Z

dFF O(FF)
h

B(PF) + V(PF)
i

+
Z

dFFJ

h
O(FFJ) R(PFJ)�Â

a

O

⇣
(
F

(a)
F

⌘
C(a)(PFJ)

i

+
Z

dFF,�O

⇣
(
FF

⌘
G�(FF,�)

+
Z

dFF, O

⇣
(
FF

⌘
G (FF, ) ,

(2.55)

where we have introduced the abbreviations

R = L R , C(a) = L
(a)

C
(a) , G� = L G� , B = L B , V = L V (2.56)

for ease of notation. Equation (2.55) is finite in four dimensions and can be inte-
grated numerically. It may be viewed as the master formula for NLO subtraction
schemes.

Example : DY In practice, subtraction formalisms known as Frixione-
Kunszt-Signer (FKS) subtraction [27, 28] or Catani-Seymour (CS) subtrac-
tion [29] are employed in Monte Carlo (MC) codes. We refrain from explicitly
writing down the corresponding counterterms for the DY process. Neverthe-
less, we wish to outline a subtraction formalism for DY based on the plus
distribution. This will allow us to recover the additional IR poles from the
NLO real matrix element and demonstrate how they are cancelled. As a first
step, we re-express the part of the phase space element (2.7) that pertains to
the additional emitted gluon as

dd�1k3

2k0
3(2p)d�1 =

✓
µ2

s� 

◆e s� 
(4p)d�1 (1� z)1�2e(1� x2)�edz dx dWd�2 , (2.57)

where z = (1� 2k0
3/
p

s� ) 2 [0, 1] parameterises the momentum fraction
of the quark after radiating off the gluon and x = cos q 2 [�1, 1] relates to
the collinearity of the gluon with q the angle between the three-momentum
of the gluon and the � axis. Using this parametrization, the Mandelstam
variables t�3, t 3 that appear in (2.37) become

t�3 = �
s� 

2
(1� z) (1� x) , t 3 = �

s� 
2

(1� z) (1 + x) . (2.58)

The singular part in (2.37) behaves as

R µ
1

t�3t 3
µ

1
(1� z)2(1� x2)

, (2.59)

making the different kinds of IR singularities apparent. For z! 1, the emitted
gluon is soft, resulting in a divergence of type S. For x ! 1, the gluon becomes
collinear to the � direction, leading to a divergence of type ISC�. Finally, for
x ! �1, a divergence of type ISC emerges.
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These divergences can be cured by multiplying appropriate factors. The
combination [(1� z)2(1� x)R] is finite for x 2 [0, 1], while [(1� z)2(1 + x)R]
is finite for x 2 [�1, 0]. Overall, we rewrite the integral over R as
Z

dFrad R µ
Z 1

0
dx

Z 1

0
dz (1� z)�1�2e (1� x)�1�e

⇥
(1� z)2(1� x)R

⇤

+
Z 0

�1
dx

Z 1

0
dz (1� z)�1�2e (1 + x)�1�e

⇥
(1� z)2(1 + x)R

⇤
,

(2.60)
where we have focussed on the divergent parts and included the Jacobian
factors from (2.57). The expressions within the square brackets are finite. We
proceed by rewriting the factors in front of the square bracket, focusing on
the first term in (2.60). The procedure for the second term is analogous. Using

(1� z)�1�2e = �
1
2e

d(1� z) +

✓
1

1� z

◆

+
� 2e

✓
log(1� z)

1� z

◆

+
+ O(e2) ,

(1� x)�1�e = �
2�e

e
d(1� x) +

✓
1

1� x

◆

+
+ O(e) ,

(2.61)
where the plus distributions are defined as

Z 1

0
dz
✓

1
1� z

◆

+
f (z) =

Z 1

0
dz

f (z)� f (1)
1� z

,

Z 1

0
dz
✓

log(1� z)
1� z

◆

+
f (z) =

Z 1

0
dz log(1� z)

f (z)� f (1)
1� z

,

Z 1

0
dy

✓
1

1� y

◆

+
f (y) =

Z 1

0
dy

f (y)� f (1)
1� y

,

(2.62)

the first term in (2.60) becomes

Z 1

0
dx

Z 1

0
dz (1� z)�1�2e (1� x)�1�eg(z, x)

=�
1
2e

Z 1

0
dx (1� x)�1�e g(1, x)

�

Z 1

0
dz


2�e

e

✓
1

1� z

◆

+
� 2

✓
log(1� z)

1� z

◆

+

�
g(z, 1)

+
Z 1

0
dx

Z 1

0
dz
✓

1
1� z

◆

+

✓
1

1� x

◆

+
g(z, x) + O(e) .

(2.63)

We have abbreviated g(z, x) ⌘
⇥
(1� z)2(1� x)R

⇤
. The last term of (2.63) is

finite in four dimensions. It corresponds to the term 2� in (2.48). In fact, the
plus distribution precisely induces the subtraction terms that are needed in
order to cancel the divergences in R. The other two terms, meanwhile, are
divergent. They correspond to the term 1� in (2.48). To better understand
how the cancellation of their singularities with the singularities recovered in
the NLO matrix element plays out, let us calculate them explicitly.
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We start with the first term on the r.h.s. In the limit z ! 1, we have
t�3, t 3 ! 0, and g(z, x) becomes

g(1, x) µ lim
z!1

(1� z)2(1� x)
���M(0)

qq̄,ttg

���
2

=
4pasCF

Nc

(g�Zq)
2 �(g�Zt)

2 t2
 1 + (g+

Zt)
2 t2
�1
�

(1 + x) s� 
⇣

G2
Zm2

Z +
�
m2

Z � s� 
�2
⌘ +

�
g+

• $ g�•
�

,

=
4pasCF

(1 + x) s� 

���M(0)
qq̄,tt

���
2

.

(2.64)
It is not a coincidence that the LO matrix element appears, as the radiation
of the gluon factorizes from the remaining process in the soft limit at this
order in perturbation theory. This is illustrated schematically in Figure 2.7a.
Overall, we obtain

asCF

2p

���M(0)
qq̄,tt

���
2
✓

2
e2

IR
+

2Lµ

eIR
+ O

�
e0

IR
�◆

(2.65)

for the first term on the r.h.s of (2.63), which exactly cancels the 1/e2
IR term in

the NLO virtual matrix element (2.23). Let us now turn to the divergence in
the second term. In the limit x ! 1, the factor g(z, x) becomes

g(z, 1) µ lim
x!1

(1� z)2(1� x)
���M(0)

qq̄,ttg

���
2

=
16pasCF

Nc

 
z (g�Zq)

2(g�Zt)
2 �(s� + t�1)2 + t2

 1
�

s� 
⇣

G2
Zm2

Z +
�
m2

Z � z s� 
�2
⌘

+
z (g�Zq)

2 �(g+
Zt)

2(z s� + t 1)2 + t2
�1
�

s� 
⇣

G2
Zm2

Z +
�
m2

Z � z s� 
�2
⌘

!
+
�

g+
• $ g�•

�
(2.66)

=
16pasCF (1 + z2)

Nc

(g�Zq)
2 �(g�Zt)

2 t̃2
 1 + (g+

Zt)
2 t̃2
�1
�

s̃� 
⇣

G2
Zm2

Z +
�
m2

Z � s̃� 
�2
⌘ +

�
g+

• $ g�•
�

,

=
16pasCF (1 + z2)

Nc

���M(0)
qq̄,tt

���
2

,

where we have used that in the collinear limit x ! 1 we can rewrite
s� = s̃� /z, t�1 = t̃�1/z and t 1 = t̃ 1 to express the Mandelstams in
terms of the momenta k̃� = zk� and k̃ = k after the radiation of the
gluon. Once more, the LO matrix element is recovered, as the emission of the
gluon factorizes in the collinear limit, illustrated schematically in Figure 2.7b.
Overall, we obtain the pole

�
asCF

p

���M(0)
qq̄,tt

���
2 Z 1

0
dz

1
e

✓
1 + z2

1� z

◆

+
(2.67)



2.1 Fixed-Order Predictions 25

(a) Soft limit (b) Collinear limit

Figure 2.7: Schematic depiction of the factorization of the gluon emission from the remain-
ing diagram in the soft (left) and collinear (right) limits. The physics of the
remaining diagram is described by the LO matrix element |M

(0)
qq̄,tt |2.

from the second term on the r.h.s of (2.63). Combined with the 1/eIR pole of
the NLO virtual contribution (2.23), it results in
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| {z }
⌘ P(0)

qq (z)

. (2.68)

In this expression, the LO Altarelli-Parisi splitting function P(0)
qq (z) appeared.

The corresponding pole resulted from the ISC� divergences of the NLO real
and virtual contributions, and is absorbed by the collinear counterterm G�,b.
In the language of the subtraction formalism, the term proportional to
3/(2e) d(1 � z) is part of d(1 � z)Gdiv

� and cancels the 1/eIR poles in the
NLO virtual matrix element Vb. To understand where the counterterm G�,b
comes from, it is necessary to discuss the PDFs in greater detail.

2.1.2 Parton distribution functions

In (2.5), we introduced the parton luminosity Lij(x�, x , µF), which encapsulates the
low-energy physics of the proton. As previously stated, the latter can be factorized Parton luminosity
from the high-energy hard scatterings of the partons. One decomposes the Lij as

Lij(x�, x , µF) = fi(x�, µF) f j(x , µF) , (2.69)

where the fi(x, µF) are the PDFs. They describe the probability of finding a parton The PDFs

of type i in the proton, which carries the momentum fraction x 2 [0, 1] of the total
proton momentum.

As previously demonstrated in the DY example, in the case of ISC singularities,
not all of the IR divergences are cancelled between the NLO virtual and real matrix
elements. There are divergences such as the pole proportional to P(0)

qq (z) that remain.
These divergences factorize from the hard scattering matrix elements. In the above
example, this manifested in the form of the poles being equal to the LO matrix
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element, |M
(0)
qq̄,tt|

2, times additional structure. The latter is general and originates
from the soft-collinear part of the process. As such, it should be removed from the
hard scattering matrix elements and added to the PDFs, which were designed to
contain the low-energy physics. This is achieved in a procedure called factorization.Factorization
The ISC poles are absorbed into the divergent bare PDFs f bare

i (x), which thereby turn
into the finite physical PDFs fi(x, µF) and gain a dependence on the factorization
scale µF. Or, expressed differently in the framework of the subtraction formalism,
the divergent bare PDFs f bare

i (x) are replaced by the finite physical PDFs fi(x, µF)
and the collinear counterterms G�,b, G ,b, which cancel the remaining IR poles from
the ISC divergences. The µF-dependence of the fi(x, µF) is described by

∂

∂ ln µ2
F
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, (2.70)

an equation known as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolutionDGLAP evolution
equation equation. At the LO, the Altarelli-Parisi splitting functions Pij read
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(2.71)

The splitting functions Pij(z) represent the probability that a parton j emits a partonAltarelli-Parisi
splitting functions i with a momentum fraction z, as we have seen in the DY example. In contrast, the

x-dependence of the PDFs must be determined based on experimental data. The
corresponding distributions for the light parton flavors are shown in Figure 2.8 for
the PDF set NNPDF40_nnlo_as_01180 [30]. The distributions of the valence quarks ux-dependence of

the PDFs and d show bumps around x ⇠ 1/3, as expected from the parton model. In contrast,
the sea quarks ū, d̄ and the gluon PDFs do not exhibit this bump and instead grow
monotonously towards smaller x.

This concludes our discussion of the fixed-order predictions. We have demon-
strated how the high-energy hard scatterings of partons are described by LO, NLO
virtual and NLO real matrix elements, and how the divergences that appear therein
are cancelled. In particular, we have delineated the framework of the subtraction
formalism and demonstrated how the ISC divergences are absorbed into the PDFs,
thereby factorizing the hard scattering from the low-energy proton physics.
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Figure 2.8: This plot illustrates the x-dependence of the parton distribution func-
tions (PDFs) at a factorization scale µF = 91.187 GeV. The distributions are
shown for the light parton flavors only. The data was derived from the PDF
set NNPDF40_nnlo_as_01180 [30], extracted using the Mathematica package
ManeParse [31].

2.2 Parton Showers

This chapter draws upon the lecture notes on PS event generators in reference [17].
An extensive yet pedagogical introduction into the topic can be found there.

Thus far, we have described the hard scatterings of initial-state partons pi,�(k�),
pj, (k ) into final states FJl(k1, . . . , kn, kn+1, . . . , kn+l) that include l additional par-
tonic emissions. We have demonstrated how cross sections for such interactions can
be calculated by combining real contributions with virtual ones that include up to l
additional loops. However, the fixed-order description is only accurate in describing
the physics that occurs at the high scale, Q � LQCD. In order to include physics
at lower scales, in particular the final-state particles that interact with the material
of the LHC detectors, it is necessary to employ PSs to bridge the gap between the
hard scale Q and LQCD. In this chapter, we will elucidate the main concepts of PS
generators.

A final-state parton produced in the hard scattering process and with an energy
on the order of Q can undergo a splitting into two daughter partons, of the form
ab! ab with ab, a, b 2 {q, g} (i.e. q! gq, g! gg or g! qq̄). The daughter partons
have lower energies, but may also subsequently split into two partons. And so on.
The splitting process continues until the resulting partons have energies on the
order of LQCD, at which point the shower terminates and hadronization begins. The
spray of particles produced in this manner is called a final-state shower. In a similar
manner, the partons in the initial state of the hard scattering process may have
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originated from a long sequence of initial-state splittings occurring at progressively
higher energies, starting at the energy scale of the proton, LQCD, and extending to
the scale of Q. The corresponding spray of particles is called an initial-state shower.
Both types of showers are depicted schematically in Figure 2.1.

It is evident that attempting to describe the large number of parton shower
splittings in a full fixed-order prescription is unfeasible. Fortunately, the factor-
ization of the real NLO matrix element in the soft and collinear limits, which we
have observed in (2.64), (2.64), and which is shown schematically in Figure 2.7,
allows us to describe the parton shower in an approximate manner. In (2.46), we
have introduced a mapping (M(PFJ) between an (n + 1)-body parton configuration
PFJ and its underlying n-body configuration (PF for singular regions a. PSs are
based on an analogous mapping, but in the reverse direction. Given an n-body
parton configuration PF, the parton shower selects possible singular regions a and
corresponding (n + 1)-body configurations of the formThe inverse map

*M : PF ! *P F J

*M
(a)

(PF) =

8
<

:
FF !

*
F

(a)
FJ b=

⇣
FF, F(a)

rad

⌘

FF = { f1, . . . , ab, . . . , fn}!
*
F

(a)
FJ = { f1, . . . , a, . . . , fn, b}

, (2.72)

with d*
FFJ = dFF dFrad and where ab ! ab is the splitting associated with a. In

this case, several splittings are possible for a given emitter parton, which must be
chosen on a statistical basis using MC methods. Consequently, each a is associated
with a specific flavor choice, which we again collect together with the momenta as
*PFJ = (

*
FFJ ,

*
F FJ).

The one-particle emission phase-space, dFrad, can be described in terms of threeThe one-particle
emission

phase-space
variables: the evolution variable t, the splitting variable z and an azimuthal angle f,
i.e.

dF(a)
rad =

1
16p2 dt(a) dz(a) df(a)

2p
J (t(a), z(a), f(a)) , (2.73)

where J is the Jacobian factor associated with the variable transformation. We
have previously encountered z, which represents the momentum fraction after
radiation in the collinear limit. There exist various formally equivalent definitions
for t in the literature. For the most well-known PS generator systems Pythia [32, 33],
Herwig [34, 35] and Sherpa [36, 37], these include the energy-weighted emission
angle (Herwig), the virtuality (early versions of Pythia and Sherpa) or the transverse
momentum (current versions of Pythia and Sherpa). In the following, we do not
specify t precisely, but assume that it has the dimensions of an energy squared
and can be related to the transverse momentum of the radiated parton. Let us now
recall the real counterterms C that we introduced in Subchapter 2.1.1 in order to
cancel the IR divergences. The C model the behavior of the full real matrix element
R in the singular regions a, where, as previously demonstrated, R decomposes
into the Born matrix element B and a universal splitting function. The latter can be
uncovered by writing

Z
d*
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for a given singular region a. A concrete example for (2.74) is

Z
dF(a)

rad

C(a)
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*P(a)
FJ

⌘

B(PF)
=

Z
dt(a)

Z
dz(a) 1
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as

2p
P(0)

ab b
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z(a)

⌘
, (2.75)

taking the collinear limit and averaging over the helicities for an ab(k)! a(k1)b(k2)

splitting, where P(0)
ab b are the Altarelli-Parisi splitting functions from (2.71). In order

to construct the complete PS in successive collinear limits, it is possible to simply
iterate (2.74), multiplying more and more emission factors. However, this approach
would result in a violation of unitarity, as each integral contributes positively to the
total cross section. This issue can be resolved by introducing the Sudakov form factor,
which provides the approximate virtual corrections that cancel the real corrections
computed above and allows the removal of all real emissions below a certain scale
tc ⇠ LQCD. It is of the form The Sudakov form

factor

P(a)
F (ti+1, ti) ⌘ exp

2

64�
Z ti

ti+1

dF(a)
rad

C(a)
FJ

⇣
*P(a)

FJ

⌘

BF(PF)

3

75 , (2.76)

for a splitting associated with the singular region a. The total Sudakov form factor is
given by the product PF(ti+1, ti) = ’a P(a)

F (ti+1, ti) and represents the probability
for no parton branching to occur in the evolution from ti to ti+1. We can now
formulate the PS evolution in terms of a generating functional PSF(t, PF), which
allows the expectation value of an observable O to be computed as

hOiPS =
Z

dFF BF(PF)PSF(t0, PF) . (2.77)

The starting scale t0 ' Q2 of the PS is on the order of the hard scattering scale Q.
The generating functional is defined recursively via Recursive

definition of the PS
generating
functional

PSF(ti, PF) = PF (tc, ti) O (FF)| {z }
virtual + unresolved

+ Â
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dF(a)
rad
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⌘
.

(2.78)

Expressed in words, it means that there are two possible outcomes in the evolution
from ti to lower scales: The first, represented by the first term in (2.78), is that there
is no emission from ti all the way to tc ⇠ LQCD, where the shower terminates and
hadronization begins. This encompasses the virtual and unresolved contributions
necessary to restore unitarity. The second, represented by the second term in (2.78),
posits that another emission occurs at tc < t < ti, with no emissions in between.
Then, the evolution must be repeated with ti+1 = t as the initial scale. In this
manner, emission by emission, the PS is built up from Q all the way to LQCD.
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2.2.1 Resummation

This subchapter draws upon [38], which offers a more comprehensive presentation
of the subject.

Thus far, we have frequently expanded observables as a perturbative series in the
coupling constant (see e.g. (2.8)). However, in full generality, the expansion is more
complicated, as contributions with an increasing number of loops are accompanied
by an increasing number of powers of logarithms. The virtual NLO contribution
to pp ! t+t� in (2.23), for example, included two powers of Lµ. In general, an
observable ds can be expanded asLarge logarithms

ds = O(1) + O(as)
�

L2 + L + 1
�
+ O(a2

s )
⇣

L4 + L3 + L2 + L + 1
⌘

+ . . . , (2.79)

where L = log(r) are logarithms. The leading logarithmic contributions at each
order, i.e. those with the highest exponent (the Sudakov logarithms), correspond to
the case where all emissions are simultaneously soft and collinear to their parent
particles. The form of r is contingent upon the quantity ds under consideration. For
ds(pp! ZJl)/dpT,Z, for example, r is of the form mZ/pT,Z. If the spectrum is con-
sidered at small pT,Z, r and L both grow large, which may spoil the convergence of
the series in as. In such instances, it is necessary to perform an all-order summation
of the large logarithms, resummation in short. This corresponds to transforming ds
into the formResummed

differential
distributions dsres = D(as) exp [Lg1(asL) + g2(asL) + asg3(asL) + . . . ] + R f (as) , (2.80)

where D(as) and R f (as) are free of logarithms. In a manner analogous to the
theoretical accuracy specified for the perturbative series expansion in terms of the
powers of the coupling constant involved (i.e. LO, NLO, etc.), the theoretical accuracy
of resummed results is reported in terms of the powers of the logarithms. Including
g1 in (2.80) corresponds to the leading logarithmic (LL) approximation, g2 to the
next-to-leading logarithmic (NLL) approximation, and so on.

With (2.74) accurately describing the parton emission in the limit where it is bothLL accuracy of PS
generators soft and collinear, the Sudakov form factor of PSs corresponds to the LL resum-

mation of the corresponding observables. Consequently, PSs not only contribute
the additional splittings in the evolution from Q to LQCD, but also enhance the
convergence of the perturbative series by resumming the LL contributions in the
expansion (2.79).
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(a) Full NLO diagram (b) LO+PS approximation

Figure 2.9: Schematic depiction of the overcounting of real emissions in a naive NLO+PS
combination for pp ! t+t�. The full NLO real diagram in (a) includes the
emission of an additional gluon, while the LO+PS contribution in (b) contains
similar emissions in their approximated limits. If a phase space overlap between
the two contributions exists, the gluon emission probability is overcounted.

2.3 Going to NLO+PS: The POWHEG method

In Chapters 2.1 and 2.2 we have discussed the theoretical framework underlying the
description of hard parton scatterings at fixed order, including the incorporation of
QCD corrections. Furthermore, we have demonstrated the potential of PS generators
in modelling the branchings of partonic final-state particles into high-multiplicity
jets. Ideally, the two prescriptions should work hand-in-hand. This is not straight-
forward to achieve, however, as a naive combination of NLO fixed-order results with
the PS leads to an overcounting of real emission contributions. This is illustrated
schematically in Figure 2.9, once more using the DY pp ! t+t� process as an
example. While the full NLO real matrix element (Figure 2.9a) includes the emission
of additional partons, such emissions are also approximated by the PS applied to
the LO matrix element (Figure 2.9b). A naive NLO+PS implementation thus results Overcounting of

soft-collinear
emissions

in an overcounting (or undercounting) of soft-collinear parton emissions.
In order to improve on this, let us first recall the LO+PS expression from (2.77).

Up to one parton emission, the expectation value of an observable O is given by

hOiLO+PS =
Z

dFF B(PF)

"
PF (tc, t0) O (FF)

+ Â
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.

(2.81)

The POWHEG method (short for positive weight hardest emission generator) allows for It should be noted
that R may also
contain non-singular
pieces R f that are
not associated with
any a. By definition,
these can be
integrated over in
four dimensions
directly. We will
therefore not
consider these
contributions
further.

the extension of (2.81) to the NLO+PS accuracy. To this end, two important concepts
are introduced: the POWHEG B̄ function and the POWHEG Sudakov form factor Dpwg.
For the former, we reorganize the terms in the NLO subtraction scheme formula
from (2.55). Instead of integrating over dFFJ and using (M from (2.46) to connect to
the underlying n-body configuration, we may begin with an n-body configuration
and use the inverse *M from (2.72) to reach the corresponding singular (n + 1)-body
configurations. For this we decompose

R(PFJ) = Â
a

R(a)(PFJ) , G�(PF,�) = Â
a�

G(a�)
�

(PF,�) , (2.82)
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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(2.83)

The Sudakov form factor Dpwg is defined asThe POWHEG
Sudakov form

factor Dpwg

Dpwg(PF, pT,pwg) ⌘ exp
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75 , (2.84)

where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula

hOiNLO =
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dFFB̄(PF)
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Dpwg(PF, pT,pwg)O(FF)

+ Â
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(2.85)

A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.55) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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Host: The Higgs particle was celebrated world-wide back then.
As explanation for mass itself. It seemed like we actually

explained something really fundamental.
John Ellis: Yeah, we did.

Host: But all is not well, John!

— Panel discussion The future of particle physics [41]

This section introduces three significant BSM scenarios that, if realized in nature,
would result in discernible signals at the LHC. These scenarios are based on two
main approaches to BSM physics: the first, the effective field theory (EFT) approach, The EFT approach
is to assume that the SM is the correct theory up to energy scales much higher
than those currently accessible at the LHC. Then, the SM Lagrangian is equivalent to
the lowest-dimensional terms in a tower of higher-dimensional terms that result
from the complete UV model. These higher-dimensional terms induce small indirect
signals in SM precision observables that can be investigated at the LHC. The EFT
approach is agnostic regarding the specific UV model, thereby providing an ideal
framework for interpreting and comparing SM precision measurements in a BSM
context. In Chapter 3.1, we introduce the SMEFT as an example of the EFT approach.
This will be the main theory discussed in part (I).

The second approach is to assume that there is BSM physics at or below the
TeV scale and to construct complete UV models. These can either involve extended Complete UV

modelssymmetries of the SM or an enlargement of its particle content. In Chapter 3.2, we
discuss the 4321 model as an example of the former. It extends the gauge group of
the SM in a flavor non-universal way, serving as an example both for an extension
of the SM symmetries and an exotic bottom-philic scenario where the BSM sector is
mainly coupled to the third fermion family. In Chapter 3.3, we introduce the 2HDM
as an example for models with an enlargement of the SM particle spectrum. The
extended scalar sector of the 2HDM can further be linked to DM via mixing with
a pseudoscalar DM mediator, which results in the 2HDM+a. Both the 4321 and the
2HDM+a will be discussed in further detail in part (II).

3.1 The SM Effective Field Theory

This chapter draws upon [42], which presents a comprehensive and lucid review of
the SMEFT.

33
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Figure 3.1: For momenta k2 ⇠ mL ⌧ mH , the heavy field fH is no longer a dynamical
degree of freedom. Interactions where fH is exchanged turn into local contact
interactions involving only the light fields fL.

3.1.1 The Philosophy of EFTs (top-down)

The SMEFT applies the ideas of quantum EFTs to high-scale BSM extensions of the
SM. In general, EFTs are employed when the masses mL, mH of two fields fL, fH
differ significantly, we will assume mL ⌧ mH. At energies Q ⇠ mL (Q being the
characteristic energy of a given process), the fields fH are too heavy to be produced
resonantly and therefore cease to constitute dynamical degrees of freedom. The
propagators of the heavy fields are replaced byContraction of

heavy-field
propagators 1

k2 �m2
H
' �

1
m2

H
+ O

✓
k2

m2
H

◆
, (3.1)

in the case k2 ⇠ Q2 ⇠ m2
L ⌧ m2

H. Consequently, interactions where the heavy
field fH is exchanged are transformed into local higher-dimensional contact inter-
actions among the light fields fL. This is illustrated schematically in Figure 3.1.

The contraction of the heavy field propagators can be formulated rigorously
using the path integral formalism. Starting from the generating functional for the
full theory

Z [JL] =
Z

DfHDfL exp
Z

dx4 (L(fL, fH) + fL JL)

�
(3.2)

(we only couple the sources JL to the light fields, as we are only interested in Green’s
functions involving the fL), we integrate out the heavy fields fH. This results in

Z [JL] =
Z

DfL exp
Z

dx4 (LEFT(fL) + fL JL)

�
, (3.3)

where LEFT contains a renormalizeable part and a tower of higher-dimensional
operators

LEFT = Ld4 +
•

Â
d=5

1
md�4

H

nd

Â
i=1

C(d)
i O

(d)
i . (3.4)

In this context, d specifies the mass dimension, the Lagrangian Ld4 contains theTower of higher-
dimensional EFT

operators
renormalizable terms, the O

(d)
i are higher-dimensional local operators involving

the light fields fL, the C(d)
i are prefactors (referred to as Wilson coefficients), and nd

counts the number of independent operators at a given mass dimension d. In prin-
ciple, in order to calculate Green’s functions for the light fields fL, all terms in (3.4)
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have to be included. This results in a non-renormalizable theory, as evidenced by
the necessity of an infinite tower of higher-dimensional counterterms to render the
theory finite. For example, two insertions of the dimension-five operators require
a counterterm of dimension six to cancel the divergences, while two insertions of
dimension-six operators require a counterterm of dimension eight, and so on. How- Renormalizability

of the truncated
SMEFT series

ever, when considering processes occurring at a given energy scale Q, the operators
Od

i pick up a factor Qd�4, meaning that their contributions scale as (Q/mH)d�4.
As long as Q⌧ mH, we can truncate the series in (3.4) at a certain dmax. In phe-
nomenological SMEFT applications, this is typically dmax = 6. This approach allows
the theory to be renormalized systematically, with contributions beyond dmax being
neclected.

3.1.2 The Philosophy of EFTs (bottom-up)

Thus far, we have taken a top-down perspective on EFTs. If the full UV field theory
is known, one can construct a corresponding low-energy EFT by integrating out
the heavy modes fH. However, EFTs can also be applied from the bottom up. It
is possible to assume that the SM is extended by a more complete BSM theory at
energy scales much higher than those currently attainable in experiments, without
knowing the exact details of this UV theory. In such a scenario, after integrating out
the heavy modes, the effective Lagrangian LSMEFT is necessarily of the form (3.4)
with Ld4 = LSM. Here, the O

(d)
i are composed of the SM fields fSM and conserve

the symmetries of the SM. In concrete terms, The SMEFT
Lagrangian

LSMEFT = LSM +
n5

Â
i=1

C(5)
i O

(5)
i

L
+

n6

Â
i=1

C(6)
i O

(6)
i

L2 + O

✓
1

L3

◆
, (3.5)

where we have denoted the scale of the first layer of BSM physics by L. The O
(d)
i

include all local higher-dimensional operators that are permitted by symmetry
considerations. The symmetries of the SM include Lorentz invariance, the SM gauge
symmetry, and potentially the global lepton and baryon number symmetries. The
latter two may be fundamental symmetries of the BSM theory, instead of just arising
accidentally at lower energies.

The task of writing down a basis of operators O
(d)
i of a given mass dimension d

that are allowed by the SM symmetries is non-trivial. There are many redundancies
among different operators, in the sense that they induce exactly the same contribu- The elimination of

redundant
operators

tions to all physical observables. In order to arrive at a minimal set of operators,
it is necessary to eliminate such redundancies. This is done using the following
techniques:

• Integration by parts (IBP) identities: Assuming that all fields vanish at IBP relations
infinity, the IBP identity can be applied to relate different operators. For
example, the operators (DµH)†(DµH) and �H†D2H are equivalent.

• Field redefinitions (and equations of motion): One can show that field Field redefinition
relationsredefinitions of the form

f! f̃(f) = f + eF(f) , (3.6)



36 Going Beyond the SM

applied to the action S[f]! S[f̃(f)], leave the S-matrix invariant and there-
fore do not change physical observables. Here, F(f) is an analytic function
(and may in general not just depend on f, but other SM fields as well) multi-
plied by a small expansion parameter e⌧ 1. In the context of the SMEFT, the
expansion parameter is typically a power of (Q/L). A special case of field
redefinitions is f! f̃ = f + edf, resulting in

S[f]! S[f̃] = S[f̃]|f̃=f + e
dS[f̃]

df̃

����
f̃=f

+ O(e2)

= S[f] + e
Z

d4x E[f]df + O(e2) ,
(3.7)

where E[f] = (dL[f̃]/df̃)|f̃=f are the equations of motion for the field f.Equations of
motion relations Consequently, to leading order in e, one may use the equations of motion

of the SM to relate effective operators giving the same contribution to the
S-matrix. The SM equations of motion are listed in [43, (2.8)-(2.12)].

• Fierz identities: The Fierz identities follow from completeness relations. ForFierz indentities
the Lorentz group, they read

(PA)ij ⌦ (PA)kl =
1
2

(PA)il ⌦ (PA)kj +
1
8

(sµnPA)il ⌦
�
sµnPA

�
kj ,

(PA)ij ⌦ (PB)kl =
1
2

(gµPB)il ⌦
�
gµPA

�
kj ,

(gµPA)ij ⌦
�
gµPA

�
kl = � (gµPA)il ⌦

�
gµPA

�
kj ,

(gµPA)ij ⌦
�
gµPB

�
kl = 2 (PB)il ⌦ (PA)kj ,

(sµnPA)ij ⌦
�
sµnPA

�
kl = 6 (PA)il ⌦ (PA)kj �

1
2

(sµnPA)il ⌦
�
sµnPA

�
kj ,

(sµnPA)ij ⌦
�
sµnPB

�
kl = 0 ,

(3.8)

where A, B 2 {L, R} with A 6= B, and sµn = i
2 [gµ, gn]. In (3.8), we have not

included minus signs that arise from the anticommutation of fermion fields.
These must be included in the case of Fierz relations among SMEFT operators.
Furthermore, (3.8) only holds in four spacetime dimensions. When expres-
sions are evaluated in general d dimensions, as is the case in dimensional
regularization discussed below (2.12), the equations in (3.8) no longer hold.Evanescent

operators The application of these identities leads to the introduction of evanescent oper-
ators, which are operators that scale as (d� 4) and vanish in four spacetime
dimensions. However, they can still induce non-vanishing contributions. We
will discuss them in more detail in Subchapters 3.1.3 and 4.1.2. An analogous
Fierz identity also exists for SU(N) groups

(Ta)ij ⌦ (Ta)kl =
1
2

✓
1il ⌦ 1kj �

1
N

1ij ⌦ 1kl

◆
, (3.9)

where the Ta are the generators of the fundamental representation.
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• Dirac structure reduction: In four spacetime dimensions, the structures that Dirac structure
reductionappear in (3.8) serve as a basis for the Dirac algebra. More complex structures

can be reduced to simpler forms by means of the identities [44]

gµgnPA ⌦ gµgnPA = (4� 2e)PA ⌦ PA � sµnPA ⌦ sµnPA ,

gµgnPA ⌦ gµgnPB = 4(1 + aeve)PA ⌦ PB + E(2)
AB ,

gµgngrPA ⌦ gµgngrPA = 4(4 + beve)gµPA ⌦ gµPA + E(3)
AA ,

gµgngrPA ⌦ gµgngrPB = 4(1 + ceve)gµPA ⌦ gµPB + E(3)
AB ,

gµgngrglPA ⌦ gµgngrglPA = 32(2 + deve)PA ⌦ PA

� 8(2 + eeve)sµnPA ⌦ sµnPA + E(4)
AA ,

gµgngrglPA ⌦ gµgngrglPB = 16(1 + feve)PA ⌦ PB + E(4)
AB ,

(3.10)

where once more A, B 2 {L, R} with A 6= B. In (3.10), we have added
terms in light gray that vanish identically in four spacetime dimensions. In
d dimensions, however, the reduction of Dirac structures is more complex.
In fact, the d-dimensional Dirac algebra is no longer closed, and a basis of
four-quark operators contains an infinite number of elements. These can be
written as antisymmetric products of gamma matrices [45], specifically

g[µ1 gµ2 . . . gµn]
⌦ g[µ1

gµ2 . . . gµn] , (3.11)

for all n 2 N. Nevertheless, we may still use (3.10) in loop calculations,
provided we consistently include the terms in green. The operators E are
evanescent and vanish in four spacetime dimensions. When the Dirac struc-
tures on the left-hand side (l.h.s) of (3.10) are replaced by those on the r.h.s,
it is necessary to consider the contributions from the corresponding E. For
practical purposes, they can be defined as Evanescent

operators arising
in Dirac structure
reductions

E(2)
AB ⌘ gµgnPA ⌦ gµgnPB � 4(1 + aeve)PA ⌦ PB ,

. . .

E(4)
AB ⌘ gµgngrglPA ⌦ gµgngrglPB � 16(1 + feve)PA ⌦ PB .

(3.12)

There is some freedom in defining the O(e) terms, and different definitions
exist in the literature. We chose to introduce general coefficients aev, . . . , fev
in (3.10), fixing them corresponds to a scheme choice. Consequently, whenever
results including evanescent contributions are reported, it is necessary to
specify the aev, . . . , fev. It is only when the Wilson coefficients are combined
with the matrix elements induced by the SMEFT operators in a consistent
manner that the scheme dependence will drop out. A more detailed discussion
of the inclusion of evanescent operators in Dirac structure reductions will be
presented in Subchapter 4.1.2.
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Bosonic operators

X3 H6 and H4D2

OG f abc Ga,n
µ Gb,r

n Gc,µ
r OH (H†H)3

OG̃ f abc G̃a,n
µ Gb,r

n Gc,µ
r OH⇤ (H†H)⇤(H†H)

OW eI JK WI,n
µ W J,r

n WK,µ
r OHD (H†DµH)⇤(H†DµH)

OW̃ eI JK W̃ I,n
µ W J,r

n WK,µ
r

X2H2

OHG (H†H)Ga
µnGa,µn OHB (H†H)BµnBµn

OHG̃ (H†H)G̃a
µnGa,µn OHB̃ (H†H)B̃µnBµn

OHW (H†H)WI
µnWI,µn OHWB (H†t I H)WI

µnBµn

OHW̃ (H†H)W̃I
µnWI,µn OHW̃B (H†t I H)W̃I

µnBµn

Table 3.1: Bosonic dimension-six operators O
(6)
i in the Warsaw SMEFT basis. See main text

for further details.

3.1.3 The Warsaw Basis

The SM symmetry considerations and the aforementioned techniques have been
employed to eliminate redundancies among different operators, thereby enabling
the construction of bases for the SMEFT operators. At dimension five, a single
operator (and its hermitian conjugate) exists, which is of the formThe Weinberg

operator

O
(5)
Weinberg = eijekl HjHl

⇣
¯̀c,i

L `k
L

⌘
. (3.13)

Here, eij represents the two-dimensional fully antisymmetric tensor with e12 = 1.
This operator violates the lepton number symmetry, and, after EW symmetry break-
ing, contributes a Majorana mass term for the left-handed neutrinos

O
(5)
Weinberg �

v2

2
(n̄c

LnL) . (3.14)

At dimension six, there are 59 independent operators that conserve baryon andThe Warsaw basis
X generically

denotes a gauge
boson field, H the

Higgs doublet, D a
covariant derivative

and y a fermion field.

lepton number. If one includes the full flavor structure for the fermions, this number
is increased to 2499 operators. They were first classified in [46], the corresponding
minimal set of dimension-6 SMEFT operators is known as the Warsaw basis. Table 3.1
presents the Warsaw operators of types X3, H6, H4D2, and X2H2, which exclusively
involve bosonic fields. Here, f abc and eI JK are the structure constants of SU(3) and
SU(2), respectively, withWe follow the

conventions of [46],
where t I are the

Pauli matrices. [Ta, Tb] = i f abcTc and


t I

2
,

t J

2

�
= ieI JK tK

2
, (3.15)
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Two-fermion operators

y2XH

OeW ( ¯̀ i
Lsµnej

R)t I H WI
µn OuB (q̄i

Lsµnuj
R)H̃ Bµn

OeB ( ¯̀ i
Lsµnej

R)H Bµn OdG (q̄i
LsµnTadj

R)H ga
µn

OuG (q̄i
LsµnTauj

R)H̃ ga
µn OdW (q̄i

Lsµndj
R)t I H WI

µn

OuW (q̄i
Lsµnuj

R)t I H̃ WI
µn OdB (q̄i

Lsµndj
R)H Bµn

y2H2D

O
(1)
H` (H†i

$

Dµ H)( ¯̀ i
Lgµ`j

L) O
(3)
Hq (H†i

$

DI
µ H)(q̄i

Lt Igµqj
L)

O
(3)
H` (H†i

$

DI
µ H)( ¯̀ i

Lt Igµ`j
L) OHu (H†i

$

Dµ H)(ūi
Rgµuj

R)

OHe (H†i
$

Dµ H)(ēi
Rgµej

R) OHd (H†i
$

Dµ H)(d̄i
Rgµdj

R)

O
(1)
Hq (H†i

$

Dµ H)(q̄i
Lgµqj

L) OHud i( eH†DµH)(ūi
Rgµdj

R)

y2H3

OeH (H†H)( ¯̀ i
Lej

RH)

OuH (H†H)(q̄i
Luj

R
eH)

OdH (H†H)(q̄i
Ldj

RH)

Table 3.2: Two-fermion dimension-six operators O
(6)
i in the Warsaw SMEFT basis. The indices

i, j 2 {1, 2, 3} denote the fermion generations. See main text for further details.
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Four-fermion operators

(L̄L)(L̄L) (L̄R)(R̄L) and (L̄R)(L̄R)

O`` ( ¯̀ i
Lgµ`j

L)(
¯̀k

Lgµ`l
L) O`edq ( ¯̀ i

L,mej
R)(d̄k

Rql
L,m)

O
(1)
qq (q̄i

Lgµqj
L)(q̄k

Lgµql
L) O

(1)
quqd (q̄i

L,muj
R)emn(q̄k

L,ndl
R)

O
(3)
qq (q̄i

Lgµt Iqj
L)(q̄k

Lgµt Iql
L) O

(8)
quqd (q̄i

L,mTauj
R)emn(q̄k

L,nTadl
R)

O
(1)
`q ( ¯̀ i

Lgµ`j
L)(q̄k

Lgµql
L) O

(1)
`equ ( ¯̀ i

L,mej
R)emn(q̄k

L,nul
R)

O
(3)
`q ( ¯̀ i

Lgµt I`j
L)(q̄k

Lgµt Iql
L) O

(3)
`equ ( ¯̀ i

L,msµnej
R)emn(q̄k

L,nsµnul
R)

(R̄R)(R̄R)

Oee (ēi
Rgµej

R)(ēk
Rgµel

R) Oed (ēi
Rgµej

R)(d̄k
Rgµdl

R)

Ouu (ūi
Rgµuj

R)(ūk
Rgµul

R) O
(1)
ud (ūi

Rgµuj
R)(d̄k

Rgµdl
R)

Odd (d̄i
Rgµdj

R)(d̄k
Rgµdl

R) O
(8)
ud (ūi

RgµTauj
R)(d̄k

RgµTadl
R)

Oeu (ēi
Rgµej

R)(ūk
Rgµul

R)

(L̄L)(R̄R)

O`e ( ¯̀ i
Lgµ`j

L)(ēk
Rgµel

R) O
(1)
qu (q̄i

Lgµqj
L)(ūk

Rgµul
R)

O`u ( ¯̀ i
Lgµ`j

L)(ūk
Rgµul

R) O
(8)
qu (q̄i

LgµTaqj
L)(ūk

RgµTaul
R)

O`d ( ¯̀ i
Lgµ`j

L)(d̄k
Rgµdl

R) O
(1)
qd (q̄i

Lgµqj
L)(d̄k

Rgµdl
R)

Oqe (q̄i
Lgµqj

L)(ēk
Rgµel

R) O
(8)
qd (q̄i

LgµTaqj
L)(d̄k

RgµTadl
R)

Table 3.3: Four-fermion dimension-six operators O
(6)
i in the Warsaw SMEFT basis. The in-

dices i, j, k, l 2 {1, 2, 3} denote the fermion generations, m, n 2 {1, 2} are the
SU(2)L indices. See main text for further details.
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where Ta and t I/2 are the corresponding Lie algebra generators. Furthermore, the
field strengths are given by

Ga
µn = ∂[µGa

n] � gs f abcGb
µGc

n , G̃µn =
1
2

eµnrsGrs , (3.16)

where ∂[µGa
n] = ∂µGa

n � ∂nGa
µ and eµnrs is the four-dimensional fully-antisymmetric

tensor with e0123 = +1. Analogous definitions hold for WI
µn, Bµn with the corre-

sponding couplings constants g2, g1. The Higgs doublet H will be introduced in
detail around (3.100), the D’Alembert operator of OH⇤ is defined as ⇤ ⌘ ∂µ∂µ.

Table 3.2 lists the operators of types y2XH, y2H2D, and y2H2, which involve two
fermion fields. Here, sµn = i

2 [gµ, gn] is the usual Dirac tensor and the convention
for the covariant derivatives is exemplified by [46]

�
DµqL

�
c1,m =

✓
dc1c2 dmn(∂µ + ig1YqBµ)

+ ig2dc1c2

t I
mn
2

WI
µ + igsdmnTa

c1c2
Ga

µ

◆
qL,c2,n .

(3.17)

Furthermore, H†i
$

DµH = iH† �Dµ �
 

Dµ
�

H, H̃m = emnH⇤n with emn the two-dimen-
sional fully-antisymmetric tensor and qL, `L, uR, dR, eR are the usual SM fermion
fields. Finally, the four-fermion operators y4 are listed in Table 3.3, and grouped
according to the possible helicity combinations (L̄L)(L̄L), (L̄R)(R̄L), (L̄R)(L̄R),
(R̄R)(R̄R) and (L̄L)(R̄R).

Example : The Top Basis It should be noted that the Warsaw basis [46]
represents but one of a number of dimension-six SMEFT bases that have been
proposed in the literature. In [47], the LHC Top Working Group defined a
SMEFT basis that is specifically tailored to the interpretation of top-quark mea-
surements at the LHC. For instance, they replace the four-fermion operators

h
O

(1)
qq

i

3333
= (q̄3

Lgµq3
L)(q̄3

Lgµq3
L) ,

h
O

(3)
qq

i

3333
= (q̄3

Lgµt Iq3
L)(q̄3

Lgµt Iq3
L)

(3.18)

of the Warsaw basis by
h
O

(1)
QQ

i
=

1
2
(q̄3

Lgµ q3
L)(q̄3

Lgµ q3
L) ,

h
O

(8)
QQ

i
=

1
2
(q̄3

LgµTaq3
L)(q̄3

LgµTaq3
L) ,

(3.19)

in order to separate operators that do or do not interfere with SM QCD
amplitudes (e.g. bb̄ ! tt̄). Bases with (3.18) or (3.19) are equivalent in four
dimensions, since (we will henceforth omit the flavor indices)

O
(1)
qq = (q̄3

Lgµq3
L)

2 =
�
t̄LgµtL + b̄LgµbL

�2 ,

O
(3)
qq = (q̄3

Lgµt Iq3
L)

2 = (t̄LgµbL + b̄LgµtL)
2

+ (�it̄LgµbL + ib̄LgµtL)
2 + (t̄LgµtL � b̄LgµbL)

2

= 4(t̄LgµbL)(b̄LgµtL) + (t̄LgµtL � b̄LgµbL)
2 ,

(3.20)
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and therefore

O
(1)
QQ =

1
2
O

(1)
qq ,

O
(8)
QQ =

1
2
�
q̄3

LgµTaq3
L
� �

q̄3
LgµTaq3

L
�

(3.9)
=

1
4

✓�
q̄3

L,c1
gµq3

L,c2

� �
q̄3

L,c2
gµq3

L,c1

�
�

1
3
�
q̄3

Lgµq3
L
�2
◆

(3.8)
=

1
4
�
q̄3

L,mgµq3
L,n
� �

q̄3
L,ngµq3

L,m
�
�

1
12

O
(1)
qq

=
1
4

⇣�
t̄LgµtL

�2
+
�
b̄LgµbL

�2
+ 2

�
t̄LgµbL

� �
b̄LgµtL

�⌘
�

1
12

O
(1)
qq

=
1
4

✓
1
2
O

(1)
qq +

1
2
O

(3)
qq

◆
�

1
12

O
(1)
qq

=
1
24

O
(1)
qq +

1
8
O

(3)
qq ,

(3.21)

where we have used the Fierz identities (3.8) and (3.9). As the former are only
exact in four dimensions, the second equality in (3.21) should be extended
by an evanescent operator in d dimensions. We define it as

O
(8)
QQ ⌘

1
24

O
(1)
qq +

1
8
O

(3)
qq + EQQ . (3.22)

Note that the relations among the Wilson coefficients are transposed and
inverted, i.e.

C(1)
QQ = 2C(1)

qq �
2
3

C(3)
qq ,

C(8)
QQ = 8C(3)

qq ,
(3.23)

in order to obtain C|
WarsawOWarsaw = C|

topOtop.

3.1.4 The SMEFT Renormalization Group Running

As previously stated, the SMEFT is systematically improvable. Higher-order loop
diagrams can be calculated and renormalized order-by-order in powers of the EFT
expansion parameter L. However, certain complexities arise in such calculations,The mixing of

SMEFT operators
under the RG

running

which will be discussed in subsequent chapters. One noteworthy aspect of the
SMEFT is the operator mixing under the RG running. To illustrate it, let us consider
the effective bt̄W vertex.



3.1 The SM Effective Field Theory 43

(a) O
(3)
Hq (tree-level) (b) O

(1)
qq , O(3)

qq (one-loop)

Figure 3.2: Contributions from various SMEFT operators to the bt̄W vertex.

Example : The W Penguin The Warsaw operator [O(3)
Hq,0]33 (we will

henceforth omit the flavor indices, all fermion fields are of the third family)
contributes to bt̄W via the tree-level amplitude

g2
p

2
v2

L2 C(3)
Hq,0 [ūt/eW PLub] , (3.24)

where ut, ub represent the fermion spinors, eW denotes the polarization vector
of the W boson and v ' 246 GeV is the vacuum expectation value (VEV) of
the SM Higgs field. The subscript 0 in C(3)

Hq,0 is indicative of the fact that this is
the unrenormalized Wilson coefficient. The corresponding Feynman diagram
is shown in Figure 3.2a. At the one-loop level, the four-quark operators C(1)

qq,0

and C(3)
qq,0 induce the same current contribution via the Penguin diagram

depicted in Figure 3.2b. This contribution is of the form

g2
p

2
N m2

t
8p2L2

✓
µ2

R
m2

t

◆e
 

C(1)
qq,0 + 5C(3)

qq,0

e
�

C(1)
qq,0 � 7C(3)

qq,0

2

!

[ūt/eW PLub] . (3.25)

Before embarking on the discussion of the renormalization of (3.25), let us
revisit the evanescent operator introduced in (3.22). If one were to apply the
Wilson coefficient relations (3.23) directly to (3.25), the resulting expression
would be

g2
p

2
N m2

t
48p2L2

✓
µ2

R
m2

t

◆e
 

3C(1)
QQ + 4C(8)

QQ

e
�

3C(1)
QQ + (9� 5)C(8)

QQ

2

!

[ūt/eW PLub]

(3.26)
without the term in light gray (i.e. with a factor �5 in front of C(8)

QQ in the con-
stant part) for the one-loop SMEFT amplitude in the LHC Top Working Group
basis. It is incorrect. The color factors of the C(1)

QQ and C(8)
QQ contributions are

1c1c2 and Â
c

Ta
c1cTa

cc2
= CF 1c1c2 , (3.27)

respectively, which is why the ratio between the two contributions has to
be CF. In (3.26), without the green term, the factor is �5/3 in the constant
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part. The discrepancy can be attributed to the fact that (3.23) only hold
in four dimensions. In general d dimensions, the evanescent operator EQQ
from (3.22) must be included. When multiplied by the 1/e pole from the
loop, this operator contributes a finite rational term in (3.25). Indeed, the
inclusion of the evanescent contribution adds the green term 9 to (3.25) and
the correct result with the correct color factor is recovered.
We now turn to the renormalization of (3.25). Upon examination of (3.25),
we observe that the poles proportional to C(1)

qq,0 and C(3)
qq,0 exhibit the same

structure as the tree-level contribution proportional to C(3)
Hq,0 in (3.24). In order

to be able to absorb these poles, it is necessary to introduce renormalization
factors of the form

Ci,0 = Â
j

Z̃ij Cj and Oi,0 = Â
j

Zij Oj , (3.28)

with Z̃|
ij = Z�1

ij and where the sum goes over all dimension-six operators in
the Warsaw basis. We get

C(3)
Hq,0 = Â

j
Z̃(3)

Hq j
Cj � Z̃(3)

Hq
(1)
qq

C(1)
qq + Z̃(3)

Hq
(3)
qq

C(3)
qq . (3.29)

Inserting (3.29) into (3.24) and comparing the resulting expression with (3.25),
we find that

Z̃(3)
Hq

(1)
qq

= �
1

8p2
m2

t
v2

N

e
and Z̃(3)

Hq
(3)
qq

= �5
1

8p2
m2

t
v2

N

e
(3.30)

are needed in the MS scheme to get rid of the poles.
For completeness, let us add that C(1)

qq,0, C(3)
qq,0 also induce poles proportional to

⇥
ūt
�
k2

W/eW � (kW · eW)/kW
�

PLub
⇤

(3.31)

via the Penguin diagram shown in Figure 3.2b. At the tree level, the corre-
sponding operator is of the form [43]

⇣
O

(3)
DW

⌘

ij
⌘
⇥
Dµ, Wµn

⇤I q̄i
Lgnt Iqj

L , (3.32)

with
⇥
Dn, Wnµ

⇤I the covariant derivative in the adjoint representation. In
order to cancel these poles, renormalization factors of the form

Z̃(3)
DW

(3)
qq

= 5 Z̃(3)
DW

(1)
qq

=
g2

2
96p2

N

e
(3.33)

are necessary. It should be noted that the operator (3.32) is not part of the
Warsaw basis, as it can be removed by a field redefinition (see (3.7)). Indeed,
using the SM equation of motion

⇥
Dµ, Wµn

⇤I
=

g2

2

⇣
q̄i

Lgnt Iqi
L + `i

Lgnt I`i
L + H† iDI

n H
⌘

, (3.34)
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the operator in (3.32) can be decomposed into a linear combination of
O

(3)
qq , O(3)

`q and O
(3)
Hq . Consequently, in the Warsaw basis, the renormaliza-

tion factors in (3.33) are replaced by

Z̃(3)
qq

(1)
qq

= Z̃(3)
`q

(1)
qq

= Z̃(3)
Hq

(1)
qq

=
g2

2
96p2

N

e
,

Z̃(3)
qq

(3)
qq

= Z̃(3)
`q

(3)
qq

= Z̃(3)
Hq

(3)
qq

=
5g2

2
96p2

N

e
.

(3.35)

We will now examine the RG running of the SMEFT Wilson coefficients. In analogy
to the b(as) function in (2.28), we define

g̃ij(g) ⌘ Z̃�1
ik

dZ̃kj

d ln µR
and gij(g) ⌘ Z�1

ik
dZkj

d ln µR
, (3.36)

where g denotes a generic coupling (e.g. g1, g2, gs, etc.) of the SM and Z̃ij, Zij are
the renormalization factors introduced in (3.28). The matrix gij is designated as The ADM of the

SMEFTthe anomalous dimension matrix (ADM) of the SMEFT. In analogy to (2.30), writing
Zij = dij + Â•

n=1 Sn
e /en Zij,n (and equivalently with the tilde), the MS ADM can be

determined straightforwardly via

gij = �2g2 ∂Zij,1(g)

∂g2 . (3.37)

Using (3.28) and the fact that the bare Wilson coefficients are independent of µR,
we find The SMEFT RG

running
dCi

d ln µR
= �Z̃�1

ik
dZ̃kj

d ln µR
Cj = �g̃ijCj = �Zki

dZ�1
jk

d ln µR
Cj = gji Cj , (3.38)

showing that the renormalization group running is controlled by gji = �g̃ij. In
analogy to (2.32), the solution to (3.38) is

Ci(µR) = Uij(µR, mZ) Cj(mZ) , (3.39)

with the evolution matrix Uij given by

Uij(µR, mZ) = exp
Z g(µR)

g(mZ)
dg0

gji(g0)
b(g0)

�
. (3.40)

As the Zij contain non-diagonal terms, so does gij. Consequently, the evolution
matrix Uij mixes Wilson coefficients of different operators into each other. A Wilson
coefficient that vanishes at the scale mZ may be non-zero at a different µR, with
potentially important phenomenological consequences. The complete one-loop ADM
of the dimension-six SMEFT operators in the Warsaw basis has been calculated
in [43, 48, 49], the running is solved numerically in [50–56].
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Example : The W Penguin Recalling equation (3.30) and mt = yt v/
p

2
with yt the Yukawa coupling of the top quark, we find

Z̃(3)
Hq

(1)
qq

=
1
5

Z̃(3)
Hq

(3)
qq

= �
N

16p2
y2

t
e

, (3.41)

which using (3.37), (3.38) gives

dC(3)
Hq

d ln µR
= �Â

j
g̃(3)

Hq j
Cj � �

y2
t

8p2

⇣
C(1)

qq + 5 C(3)
qq

⌘
. (3.42)

This result, in accordance with [48, (A.28)], demonstrates that the renormal-
ization group running with the Yukawa coupling yt leads to a mixing of C(1)

qq

and C(3)
qq into C(3)

Hq . Similarly, in the Warsaw basis, the running with g2 from
the other contributions mentioned earlier is given by

dC(3)
`q

d ln µR
=

dC(3)
Hq

d ln µR
=

g2
2

48p2

⇣
C(1)

qq + 5 C(3)
qq

⌘
, (3.43)

consistent with [49]. There are additional contributions to the C(3)
qq running

proportional to g2 that are not covered by the Z̃ in (3.35). The complete
running ends up being [49]

dC(3)
qq

d ln µR
=

g2
2

48p2

⇣
11C(1)

qq � 8C(3)
qq

⌘
. (3.44)
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3.2 The SU (4)[3 ] ⇥ SU (3)[12 ] ⇥ SU (2)L ⇥ U (1)X (4321) Model

In order to introduce the 4321 gauge unification, we begin with the Yukawa sector of
the SM. The Yukawa interactions between the SM Higgs doublet and the SM fermions
are given by

LYukawa = �
⇣
(Yu)ij q̄i

L H̃uj
R + (Yd)ij q̄i

LHdj
R + (Ye)ij

¯̀ i
LHej

R + h.c.
⌘

, (3.45)

where the Yukawa couplings Yu,d,e are complex 3 ⇥ 3 matrices in flavor space.
A priori, one would expect the Yukawa couplings to have entries that are all on The flavor puzzle
the order O(1). However, experimental data shows that their flavor structure is
highly non-generic. This can be demonstrated by employing the singular value
decomposition Yf = (UL

f )
†l f UR

f , where UL
f and UR

f are unitary matrices and l f is
diagonal. Neglecting all values smaller than 0.01, the l f take the form [57]

lu ⇡ diag(0, 0, yt) , ld ⇡ diag(0, 0, yb) , le ⇡ diag(0, 0, yt) , (3.46)

with

yt =

p
2 mt

v
⇡ 0.96 , yb =

p
2 mb
v
⇡ 0.02 , yt =

p
2 mt

v
⇡ 0.01 . (3.47)

This indicates that, to a good approximation, there is a The approximate
U(2)5 flavor
symmetry of the
SM

U(2)5 = U(2)q ⇥U(2)u ⇥U(2)d ⇥U(2)` ⇥U(2)e (3.48)

flavor symmetry underlying the SM, which distinguishes the fermions of the third
generation from those of the lighter two. In other words, the lighter fermion flavors
can be rotated (via the U(2) transformations) without changing the SM Lagrangian
to a good approximation. This structure does not have an explanation in the SM,
which is known as the flavor puzzle.

The flavor puzzle has inspired a great deal of theoretical work attempting to
address it with BSM physics. In particular, the idea of embedding the SM into a
larger gauge group that is flavor non-universal, meaning that it couples differently
to the different fermion generations, has gained traction. Such flavor non-universal
gauge models can have multiple layers of new physics at different energy scales,
which induce the structure of the Yukawa couplings that is observed experimentally.
However, in order to avoid exacerbating the Higgs naturalness problem, the initial The inescapable

link between
Higgs and flavor

layer of BSM physics that distinguishes the third generation from the light families
typically occurs at the TeV scale. In [58], the authors demonstrated that the generic
model building assumptions

• Flavor non-universality: The flavor structure of the SM Yukawas emerges as
an accidental symmetry resulting from the embedding of the SM into a flavor
non-universal gauge group in the UV.

• Semi-simple embedding in the UV: The TeV scale model is ultimately incor-
porated into an anomaly-free semi-simple gauge theory, which provides an
explanation for the quantization of hypercharge.
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• Fundamental and (quasi)-natural Higgs at the TeV scale: The Higgs boson
is a fundamental scalar field up to scales well above the TeV. Consequently, the
Higgs mass corrections should not be too large in order to avoid exacerbating
the Higgs hierarchy problem.

• Avoiding proton decay and µ ! e at low scales: In order to comply with
experimental data, the BSM model should not induce excessive proton decay
or µ! e transitions.

lead to a very constrained set of viable BSM scenarios. All of these scenarios share a
common feature: an SU(4)[3] gauge group that only couples to the third fermion
generation (as indicated by the superscript [3]). Such models feature a quark-leptonNon-universal

SU(4),
quark-lepton

unification and
the U1 VLQ

unification in the third family, where the third-generation fermions are collected in
SU(4)[3] multiplets of the form

y3
L =

 
q3

L,c1

`3
L

!
, y3

R =

 
d3

R,c1

e3
R

!
, (3.49)

with c1 2 {1, 2, 3} specifying the color of the quarks. As usually, the interactions
between the SU(4)[3] gauge bosons Ha

µ with a 2 {1, . . . , 15} and the fermions y
follow

� ig4Ha
µTay , (3.50)

where g4 is the SU(4)[3] coupling strength and Ta are the SU(4) generators

Ta =

 
Ta 03⇥1

01⇥3 0

!
,

T9 =
1
2

0

BBBB@

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1

CCCCA
, T10 =

1
2

0

BBBB@

0 0 0 �i
0 0 0 0
0 0 0 0
i 0 0 0

1

CCCCA
, T11 =

1
2

0

BBBB@

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

1

CCCCA
,

T12 =
1
2

0

BBBB@

0 0 0 0
0 0 0 �i
0 0 0 0
0 i 0 0

1

CCCCA
, T13 =

1
2

0

BBBB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1

CCCCA
, T14 =

1
2

0

BBBB@

0 0 0 0
0 0 0 0
0 0 0 �i
0 0 i 0

1

CCCCA
,

T15 =
1

2
p

6
diag (1, 1, 1,�3) ,

(3.51)
with Ta for a 2 {1, . . . , 8} the usual SU(3) generators. The generators T9-T14 induce
tree-level interactions between quarks and leptons. Writing

U1,2,3
µ ⌘

1
p

2

⇣
H9,11,13

µ � iH10,12,14
µ

⌘
, (3.52)

the corresponding Lagrangian becomes

L f �
g4
p

2

⇥
q̄3

L,c1
gµ`3

L + d̄3
R,c1

gµe3
R
⇤

Uc1
µ . (3.53)
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The field Uc1
µ is the singlet VLQ U1. It attracted attention in the context of the

flavor anomalies in b ! s`+`� and b ! ct�n̄ transitions, since the singlet VLQ
was able to explain both deviations from the SM predictions jointly. However,
the recent publication of the b ! s`+`� lepton flavor universality (LFU) ratios
RK, RK⇤ by LHCb at the end of 2022 [59], in agreement with the SM, has severely
restricted the possibility of having LFU-violating BSM physics in the b sector [60].
Consequently, the bottom-up motivation for the singlet VLQ has been largely lost.
Nevertheless, singlet VLQ models remain motivated by top-down considerations
such as the interplay between the flavor puzzle and the hierarchy problem, which
point towards non-universal SU(4)[3] unifications. This is in line with our previous
discussion.

3.2.1 The SU(4)[3] ⇥ SU(3)[12] sector of the 4321

In order to construct a phenomenologically viable model based on SU(4)[3], let us
examine the generators T1-T8 and T15, which exist in addition to the six generators
T9-T14 associated with the VLQ interactions. The generators T1-T8 are part of the
subgroup SU(3)[3] ⇢ SU(4)[3], and induce QCD-like interactions among the third-
family quarks. In a model based on a single SU(4)[3] gauge group, one identifies
g4 = gs to obtain the usual QCD interactions of the SM. Consequently, the VLQ
interactions are also proportional to gs and such a model is stringently constrained
by experimental data. Therefore, as a next-to-minimal setup involving SU(4)[3], let
us consider

SU(4)[3]
⇥ SU(3)[12] . (3.54)

The gauge bosons Ca
µ with a 2 {1, . . . , 8} of the SU(3)[12] group only couple to

first- and second-generation quarks (as indicated by the superscript [12]). The
group (3.54) is broken spontaneously to the SM gauge group SU(3)c and additional
subgroups via two scalar fields W1, W3 that acquire VEVs v1, v3. The scalar fields
take the form The 4321 scalar

sector

W3 =

0

@
v3p

2
13⇥3 + 1p

6
S3 13⇥3 + 2OaTa

Tc1
3

1

A , W1 =

0

@ Tc1⇤
1

v1p
2
+ S1

1

A , (3.55)

where Oa is an octet, Tc1
1 , Tc1

3 are triplets and S1, S3 singlets under SU(3)c. The usual
kinetic terms for the scalar fields,

Lkin �
�

DµW1
�† DµW1 + Tr

h�
DµW3

�† DµW3

i
, (3.56)

with
DµW3 = ∂µW3 + ig4Ha

µTa⇤W3 � ig3Ca
µW3 (Ta)| ,

DµW1 = ∂µW1 + ig4Ha
µTa⇤W1 ,

(3.57)
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then lead to the mass eigenstates

U1,2,3
µ =

1
p

2

⇣
H9,11,13

µ � iH10,12,14
µ

⌘
, M2

U =
g2

4
4
�
v2

1 + v2
3
�

,

G0aµ =
g4Ha

µ � g3Ca
µq

g2
4 + g2

3

, M2
G0 =

v2
3

2
�

g2
4 + g2

3
�

,

Ga
µ =

g3Ha
µ + g4Ca

µq
g2

4 + g2
3

, m2
G = 0 .

(3.58)

Here, g3 represents the coupling strength of SU(3)[12]. It should be noted that
in addition to the VLQ U1 and the usual SU(3)c gluon Ga

µ, the particle spectrum
also contains a massive gluon (coloron) G0aµ . This is the result of the two groupsThe coloron G0

SU(3)[3] ⇢ SU(4)[3] and SU(3)[12] mixing to yield both G0aµ , Ga
µ in (3.58). The inter-

actions of these particles with the quarks of the third generation read

L f �
g2

4q
g2

4 + g2
3| {z }

p
g2

4�g2
s

⇥
q̄3gµTaq3⇤G0aµ +

g4g3q
g2

4 + g2
3| {z }

gs

⇥
q̄3gµTaq3⇤Ga

µ ,
(3.59)

for q = qL, uR, dR. Equating the interaction strength of the gluon with gs, the

interaction strength of the coloron becomes equal to
q

g2
4 � g2

s . This has significant
implications. Whenever a diagram features a gluon exchange proportional to g2

s ,
there is a corresponding diagram with a coloron exchange proportional to g2

4 � g2
s .

Consequently, the contributions proportional to g2
s cancel among the two, up to the

difference in mass MG0 6= mG = 0.
It is worth briefly mentioning the EW part of the 4321 model at this point. We

have listed 22 bosonic degrees of freedom in (3.58), whereas SU(4)[3] comes with
15 generators and SU(3)[12] with additional 8, giving a total of 23. Indeed, the
spectrum of SU(4)[3] also contains the degree of freedom

� ig4H15
µ T15y , (3.60)

which induces interactions among the quarks and the leptons separately, as can be
seen from T15 in (3.58). In the full 4321, the gauge group (3.54) is accompanied by
the flavor-universal

SU(2)L ⇥U(1)X . (3.61)

The group SU(2)L is identical to that of the SM, whereas after spontaneous symme-
try breaking, U(1)X combines with the U(1)[3] ⇢ SU(4)[3] from the 15th generator
to yield the usual U(1)Y and an additional heavy Z0µ . As the effects of the Z0µ willThe Z0

not be significant below, we have chosen not to discuss it in detail here.

3.2.2 Goldstone boson and ghost interactions

Finally, when higher-order calculations of the O(as) sector of the 4321 model are
performed in Feynman gauge, it is necessary to include the contributions from the



3.2 The SU(4)[3] ⇥ SU(3)[12] ⇥ SU(2)L ⇥U(1)X (4321) Model 51

Goldstone bosons and the ghosts. The scalar sector of the 4321 is notable for the
inclusion of scalar fields that are charged under QCD. Let us derive the Feynman
rules of these fields that will be relevant below. In addition to the mass terms for the
gauge bosons, (3.56) also contains the interaction terms between the gauge bosons
and the Goldstone bosons. We have

Tr
h�

DµW3
�† DµW3

i
� Tr

h
W†

3

⇣
�ig4HA

µ T A⇤
⌘

(ig4Ha,µTa⇤) W3

i

+ Tr
h
W†

3

⇣
�ig4HA

µ T A⇤
⌘

(�ig3Ca,µ) W3 (Ta)|
i
+ h.c.

= g2
4

v3
p

2
Tr


Tc1†
3

1
p

2
Uc2

µ Ta⇤
c2c1

�
Ha,µ

� 2g3g4
v3
p

2
Tr


Tc1†
3

1
p

2
Uc2

µ Ta⇤
c2c1

�
Ca,µ + h.c.

=
g4v3

2

h
T†

3 Ta Uµ

i
(g4Ha,µ

� 2g3Ca,µ) + h.c. ,

(3.62)

where we split a 2 {1, . . . , 15} into a = {1, . . . , 8} and A = {9, . . . , 14}, and used

HA
µ T A⇤ =

1
p

2

 
03⇥3 Uc1†

µ

Uc1
µ 0

!
, (3.63)

as well as (Ta)| = Ta⇤. Similarly,

�
DµW1

�† DµW1 � W†
1

⇣
�ig4HA

µ T A⇤
⌘

(ig4Hµ,aTa⇤) W1 + h.c.

=
g2

4v1
p

2


1
p

2
Uc2

µ Ta⇤
c2c1

Tc1†
1

�
Ha,µ + h.c.

=
g2

4v1

2

h
T†

1 TaUµ

i
Ha,µ + h.c. .

(3.64)

Using (3.58) and the fact that the Goldstone bosons associated with the radial mode
of the VLQ are given by

pc1
U ⌘

v1Tc1
1 � v3Tc1

3q
v2

1 + v2
3

, (3.65)

we arrive at Goldstone boson
interactions

Lkin � gs MU

h
p†

UTaUµ

i
Ga,µ

+
q

g2
4 � g2

s
M2

U �M2
G0

MU

h
p†

UTaUµ

i
G0a,µ + h.c.

(3.66)

Furthermore, the Goldstone bosons associated with the radial mode of the coloron
are given by

pG0a = Im {Oa
} . (3.67)

One can show that there are no terms of the form pG0a [U†
µTaUµ] in the 4321 La-

grangian. The interactions of the ghosts with the corresponding gauge bosons are
given by

Lghost � g4 f abg
�
∂µ c̄a

4
�

Hb,µcg
4 + g3 f abc �∂µ c̄a

3
�

Cb,µcc
3 , (3.68)
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where f abg, f abc are the structure constants of SU(4)[3], SU(3)[12] and c4, c3 are the
corresponding ghost fields. They are directly related to the trilinear gauge boson
vertices

Lkin �
1
4

Ha
µnHa,µn +

1
4

Ca
µnCa,µn

� �g4 f abg
�
∂µHa

n

�
Hb,µHg,n

� g3 f abc �∂µCa
n

�
Cb,µCc,n ,

(3.69)

where the field strengths Ha
µn, Ca

µn are defined in analogy to (3.16). The trilinear
gauge boson vertices involving the VLQ are given byTriple gauge boson

interactions

Lkin � igs

h⇣
∂[µU†

n]T
aUn Ga,µ + h.c.

⌘
� ∂[µGa

n] Uµ†TaUn
i

+ i
q

g2
4 � g2

s

h⇣
∂[µU†

n]T
aUn G0a,µ + h.c.

⌘
� ∂[µG0an] Uµ†TaUn

i
.

(3.70)

Similarly, we obtainGhost interactions

Lghost � igs

h �
∂µ c̄U

�
TaUµcGa �U†

µTa (∂µ c̄U†) cGa

�
�
∂µ c̄Ga

�
cU† TaUµ +

�
∂µ c̄Ga

�
Uµ†TacU

i

+ i
q

g2
4 � g2

s

h �
∂µ c̄U

�
TaUµcG0a �U†

µTa (∂µ c̄U†) cG0a

�
�
∂µ c̄G0a

�
cU† TaUµ +

�
∂µ c̄G0a

�
Uµ†TacU

i
.

(3.71)

3.2.3 Partial decay width

Decay width G(U ! bt+) As an application of the above Feynman
rules, we calculate the O(as) corrections to the decay width G(U ! bt+).
The corresponding Feynman rules are shown in Figure 3.3. The Born matrix
element is

M
(0)
U,bt = g2

4 M2
U

d� 2
d� 1

(3.72)

in d dimensions, averaged over colors and the VLQ polarization. The decay
width is calculated via

dG(U ! bt+) =
|MU,bt|

2

2MU
dFbt(k; k1, k2) , (3.73)

where dFbt(k; k1, k2) was defined in (2.7). Since (3.72) does not depend on
the decay kinematics, we calculate

Fbt ⌘

Z
dFbt(k; k1, k2) =

(4p)2�dp
d�1

2

G
⇣

d�1
2

⌘ (3.74)

in isolation, the LO decay width then reads

G(0)(U ! bt+) =

���M(0)
U,bt

���
2

2MU
Fbt =

g2
4 MU

24p
. (3.75)
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Figure 3.3: A selection of Feynman diagrams contributing to the decay width U ! bt+.
The diagram on the left shows the Born contributions. The diagrams on the
right depict O(as) virtual and real corrections to the same process.

As in pp! t+t�, the virtual NLO corrections manifest as K factors to the LO
matrix element. We write

M
(1)
U,bt ⌘

⇣
K(1)

b + K(1)
U + K(1)

V

⌘
M

(0)
U,bt , (3.76)

where K(1)
b comes from the field strength correction of the b quark, K(1)

U

comes from the field strength correction of the VLQ U and K(1)
V comes from

the vertex corrections. Examples of the latter two are depicted in Figure 3.3,
while the former is shown in Figure 2.4.
We have previously calculated the one-loop field strength correction of quarks
from a gluon loop in (2.22). In this context, it is necessary to include the
coloron running in the loop as well, which results in the OS scheme expression

K(1)
b =

1
2

dZb =
CF as

8p
N

✓
1

eIR
+ Lµ + ln(xU)�

1
2

◆
, (3.77)

where Lµ = ln(µ2
R/M2

U) and xU = M2
U/MG0 . It should be noted that as a

consequence of the coupling structure in (3.59), the UV poles proportional
to gs are always cancelled between the gluon and coloron contributions. To
facilitate the presentation of intermediate results, we will set xU = 1 in the
following. Our final result will again contain the full dependence on xU .
The VLQ OS field strength correction is defined as

dZU(k2) =
d

dk2 SU(k2)

����
k2=M2

U

, (3.78)

including all diagrams with gluons, colorons, Goldstone bosons and ghosts
running in the loop (see Figure 3.3), one finds

K(1)
U =

1
2

dZU =
as

8p
N

✓
�

8
3

✓
1

eIR
+ Lµ

◆
+

56
9
�

8
9
p

3p

◆
(3.79)

for xU = 1. This agrees with [61, (14)].
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The vertex correction for xU = 1 reads

K(1)
V =

as CF

4p
N

 
�

1
e2

IR
�

2 + Lµ

eIR
�
p

3p +
7p2 � 12

12
�

4Lµ + L2
µ

2

!
, (3.80)

consistent with [61, (15)]. The total virtual NLO correction to the decay width
G(U ! bt+) is finally given by

G(1)
virtual(U ! bt+) = 2 Re

n
K(1)

b + K(1)
U + K(1)

V

o
���M(0)

U,bt

���
2

2MU
Fbt . (3.81)

For the real contribution, we express the matrix element MU,btg in terms
of the Mandelstam variables s12, s13 and s23 (see (2.11)), where k3 denotes
the momentum of the radiated gluon (coloron radiation is neglected, which
is suppressed by the coloron mass and does not contribute to the cancel-
lation of the IR poles). We then parametrise the three-body phase space
dFbtg(k; k1, k2, k3) as [62]

Z
dFbtg =

�
M2

U
�1�2e Fbt

(4p)
d
2 G(1� e)

Z 1

0
dl1dl2 l�e

1 (1� l1)
�el�e

2 (1� l2)
1�2e, (3.82)

where d = 4� 2e. Inserting

s12 = M2
U (1� l2)(1� l1) , s13 = M2

U (1� l2)l1 , s13 = M2
U l2 , (3.83)

and performing the integral over dl1dl2, we find

G(1)
real(U ! bt+) =

g2
4

4p

MU

(d� 1)
as CF

4p

 
1

e2
IR

+
7

2eIR
+

2Lµ

eIR

+ 7Lµ + 2L2
µ �

5p2

6
+

155
12

!
.

(3.84)

Finally, combining everything, we obtain

G(U ! bt+) =
g2

4 MU

24p
[1 + D(xU)] , (3.85)

with

D(x) =
as

4p

✓
�

4
9
�
7x2
� 27x� 37

�
�

16p2

9

�
4
9
�
7x2
� 22x� 9

�
B(x)�

16
3

(2x + 1) C(x)

+
2
9
�
7x3
� 36x2 + 21x + 30

�
ln x

◆
,

(3.86)
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Figure 3.4: Numerical size of the O(as) correction to the partial decay width U ! bt+

as a function of the coloron mass MG 0 , fixing the VLQ mass to MU = 2 TeV.
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(3.87)

It should be noted that D(1) = as/4p [76/3� 32p/3
p

3], which is in agree-
ment with [61, (18)]. The numerical size of the NLO QCD correction D(xU)
is shown in Figure 3.4. In the plot the mass of the singlet VLQ is set to
MU = 2 TeV. It can be observed that the O(as) corrections to the partial de-
cay width U ! bt+ grow with increasing coloron mass MG 0 . Notice that the
observed enhancement originates from logarithmic non-decoupling contribu-
tions of the form ln

�
M2

G 0/M2
U
�
. Further details can be found in [61, 63].
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3.3 Extended Scalar Sectors and dark matter (DM)

In order to introduce extended scalar sectors and their connections to DM, we begin
by examining the EW sector of the SM in more detail. It is a gauge theory based onThe EW sector of

the SM the gauge group
SU(2)L ⇥U(1)Y , (3.88)

accordingly, the EW Lagrangian contains the part

Lgauge = �
1
4

BµnBµn �
1
4

WI,µnWI
µn , (3.89)

with WI
µn, Bµn defined in analogy to (3.16). Experimentally, one finds that not the

WI
µ, Bµ are the physical states, but rather the linear combinations

W±
µ =

1
p

2

⇣
W1

µ ⌥ iW2
µ

⌘
, Zµ =

g2W3
µ � g1Bµq
g2

1 + g2
2

, Aµ =
g1W3

µ + g2Bµq
g2

1 + g2
2

. (3.90)

They come with non-zero masses [64]Gauge boson
masses

mW = 80.377(12) GeV , mZ = 91.1876(21) GeV , mg = 0 . (3.91)

This presents a theoretical problem, as the introduction of mass terms of the form

m2
W W+

µ W�,µ (3.92)

violates gauge invariance, which can be seen by inserting the gauge transformation
of the fields W±. Similarly, mass terms for the fermions of the form

my (ȳLyR + ȳRyL) (3.93)

also violate gauge invariance. This follows from the fact that yL, yR are not in the
same representation under SU(2)L⇥U(1)Y. What are the consequences of including
such mass terms in the Lagrangian despite the violation of gauge invariance? Would
this lead to tangible problems in the calculation of physical predictions?

3.3.1 Unitarity violation without the Higgs

We test it by giving the V = W±, Z fields a mass without concern for the un-
derlying mechanism that provides it. The gauge boson at rest has momentum
kµ = (mV , 0, 0, 0), where mV is its mass. There are three polarization vectors

e
µ
1 = (0, 1, 0, 0) , e

µ
2 = (0, 0, 1, 0) , e

µ
3 = (0, 0, 0, 1) (3.94)

that satisfy ei · k = 0. A boost along the z-axis transforms the gauge boson’s mo-
mentum to kµ = (Ek, 0, 0, k). This results in the third polarization vector becoming

The longitudinal
polarization

modes of massive
gauge bosons

e
µ
L(k) ⌘ e

µ
3 (k) =

✓
k

mV
, 0, 0,

Ek
mV

◆
. (3.95)
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Figure 3.5: Feynman diagrams for the processes contributing to yȳ!W+
L W�L .

It corresponds to the longitudinal polarization of the massive gauge boson. The
gauge boson propagator becomes

�i
k2 �m2

V

✓
gµn
�

kµkn

m2
V

◆
. (3.96)

We will now consider the production of a gauge boson pair via the fusion of
fermions yȳ ! W+W�, which could occur at a lepton or hadron collider. The
corresponding Feynman diagrams are shown in Figure 3.5. In particular, we will
focus on the production of longitudinal W± modes

y(k�)ȳ(k )!W+
L (k1)W�L (k2) . (3.97)

Since for large momenta e
µ
L behaves as e

µ
L(ki) ' kµ

i /mW , the corresponding contri-
bution may violate unitarity in the limit ki ! •. In the case of massless fermion
fields y, this is not the case, as the gauge symmetry ensures that the contribu- An explicit

calculation for
yȳ!W+

L W�L with
massless fermions is
given
in [65, Chapter 21.2].

tions violating unitary cancel in the total sum. However, if my 6= 0, additional
unitarity-violating contributions arise. Naively, one might expect these to originate
from the longitudinal mode of the Z propagator in the right Feynman diagram of
Figure 3.5. These contributions vanish, however, which is to be expected given the
Higgs mechanism and the Feynman rules for the Goldstone bosons in Feynman
gauge. There are no j0W+W� or j0 j+j� vertices. Nevertheless, we do obtain con-
tributions proportional to my from both diagrams in Figure 3.5. In the limit s! •
and by inserting e

µ
L(ki) ' kµ

i /mW , the leading contributions from the longitudinal
W modes are of the form Violation of

unitarity at high
energies

imy
g2

2
4m2

W
v̄y(k )uy(k�) ⇠ my

p
s . (3.98)

One can show that such contributions lead to a violation of unitarity at
p

s ⇠ 1 TeV [12].

3.3.2 Adding one Higgs doublet

In order to address this issue, we introduce a complex scalar doublet field, desig-
nated as H = (f1 + if2, f3 + if4), in the representation (2, 1) of the SU(2)L⇥U(1)Y
group. This field is endowed with a potential of the form The Higgs

mechanism
V(H) = �µ2H†H + l (H†H)2 , (3.99)
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Figure 3.6: Additional process contributing to yȳ! W+
L W�L via the s channel exchange of

a Higgs h.

where µ2 > 0. The potential is minimized by the VEV

hHi =

0

@ 0
vp
2

1

A , (3.100)

with v =
p

µ2/(2l). We reparameterize H by expanding its modes around the VEV

H =

0

@ j+

1p
2

�
v + h + j0�

1

A , (3.101)

and find that the terms
�

DµH
�†

(DµH) with

DµH =

✓
∂µ + ig2

sI

2
WI

µ + ig1 Bµ

◆
H (3.102)

generate the correct mass terms for the vector bosons, while the Yukawa terms of
the form (3.45) generate the masses for the fermions. How does this address the
issue of unitarity violation in the UV?

In addition to the diagrams in Figure 3.5, there is now a contribution from the
Higgs boson h running in the s-channel, depicted in Figure 3.6. It gives a leading
contribution of the formCancellation of

the unitarity-
violating

contributions by
the Higgs

�i
yyg2

2mW
v̄y(k )uy(k�) , (3.103)

which, using yy =
p

2 my/v = g2my/2mW , exactly cancels the unitary-violating
contribution from (3.98). The SM with EW symmetry breaking based on one Higgs
doublet is a consistent theory.

3.3.3 Experimental evidence for the Higgs mechanism

What experimental evidence supports the Higgs mechanism as outlined above? InExperimental
evidence for the

Higgs mechanism
2012, the LHC collaborations identified a particle that closely resembles the massive
radial mode predicted by the Higgs mechanism. Its has a mass of [64]

mh = 125.25(17) GeV , (3.104)
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is a scalar, and has the predicted decay modes with signal strengths

µWW = 1.00(8) , µZZ = 1.02(8) , µgg = 1.10(7) ,
µbb = 0.99(12) , µtt = 0.91(9) , µµµ = 1.21(35) .

(3.105)

Its decays to invisible final states, i.e. in association with Emiss
T , have been constrained

to BR(h ! invisible) < 9%. The decays to undetected final states have been
constrained to BR(h ! undetected) < 19% [66]. In addition, we can define the
parameter r0, which is sensitive to new sources of SU(2)L ⇥U(1)Y breaking. This
parameter is given by [64, Review 10] The r parameter

r0 =
m2

W
m2

Z c2
w r

, (3.106)

where c2
w = g2

2/(g2
1 + g2

2) is the cosine of the weak mixing angle and r = 1 + rt
accounts for higher-order corrections proportional to the top mass. From a global
fit to experimental data, one finds [64, Review 10]

r0 = 1.00038(20) , (3.107)

which is consistent with the SM expectation r0 = 1. In the event that additional
scalar particles contribute to the breaking of the SU(2)L ⇥U(1)Y gauge symmetry,
the r0 parameter becomes [64, Review 10]

r0 =
Ân

i=1
�

Ii (Ii + 1)� 1
4Y2

i
�

v2
i

Ân
i=1

1
2Y2

i v2
i

. (3.108)

This formula indicates that additional Higgs particles in representations corre-
sponding to (Ii, Yi) =

� 1
2 , ±1

�
or (0, 0) may be added to the SM without affecting

the value of r0. Other scalars with small VEVs or scalars transforming in larger
SU(2)L representations may be added to the SM content as well. However, such
models necessarily have to be large and complex. Consequently, the simplest model
serving as a benchmark for extensions of the SM scalar sector are therefore models
with two Higgs doublets.

3.3.4 Adding a second Higgs doublet

In this subchapter, we will consider 2HDMs with two Higgs fields H1 and H2 of
hypercharge Y = 1. The most general scalar potential for H1 and H2 can have
CP-conserving and CP-violating minima. In order to simplify the analysis, we
will make the following assumptions: (1) CP is conserved in the Higgs sector, and
(2) discrete symmetries eliminate all quartic terms odd in either of the doublets
from the potential. In this case, the most general scalar potential is given by [67, 68]

The scalar
potential of the
2HDM

V(H1, H2) = m2
11 H†

1 H1 + m2
22 H†

2 H2 �m2
12

⇣
H†

1 H2 + H†
2 H1

⌘
+

l1

2

⇣
H†

1 H1

⌘2

+
l2

2

⇣
H†

2 H2

⌘2
+ l3 H†

1 H1H†
2 H2 + l4 H†

1 H2H†
2 H1

+
l5

2

⇣
H†

1 H2

⌘2
+
⇣

H†
2 H1

⌘2
�

,

(3.109)
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where all parameters are real. As in the case of the SM, we expand both Higgs
doublets around their VEVs vi for i = 1, 2. We obtain

Hi =

0

@ j+
i

1p
2

�
vi + hi + ij0

i
�

1

A , (3.110)

having a total of 8 real degrees of freedom in the fields H1 and H2. Considering the
mass matrices resulting from the scalar potential [67],The mass

eigenstates
✓

m2
12 �

l4 + l5

4
v2 sin 2b

◆⇣
j�1 j�2

⌘ tan b �1
�1 1/ tan b

! 
j+

1

j+
2

!
,

✓
m2

12 �
l5

2
v2 sin 2b

◆⇣
j0

1 j0
2

⌘ tan b �1
�1 1/ tan b

! 
j0

1

j0
2

!
,

�

⇣
h1 h2

⌘ m2
12 tan b + l1v2 cos2 b �m2

12 + l345
2 v2 sin 2b

�m2
12 + l345

2 v2 sin 2b m2
12/ tan b + l2v2 sin2 b

! 
h1

h2

!
,

(3.111)

where tan b = v2/v1, v2 = v2
1 + v2

2 and l345 = l3 + l4 + l5, it can be observed that
the first two matrices have a vanishing determinant. This is to be expected from
Goldestone’s theorem, given that three degrees of freedom are required to give the
W± and Z bosons their masses. The states corresponding to the zero eigenvalues
are the Goldstone bosons that provide the longitudinal modes of the gauge bosons.
The remaining mass eigenstates can be found by diagonalizing the first two mass
matrices by a rotation with angle b and the last mass matrix by a rotation with
angle a (a 6= b in general). This results in the physical mass eigenstates [67]

H± = �j±

1 sin b + j±

2 cos b , A = �j0
1 sin b + j0

2 cos b ,
h = �h1 sin a + h2 cos a , H = h1 cos a + h2 sin a ,

(3.112)

which generically all have non-vanishing masses MH+ , MA, MH, mh. It is implicitly
assumed that h is the lighter of the two scalar states, i.e. mh  MH. It should be
noted that if the initial Higgs doublets were rotated by H̃1 = H1 cos b + H2 sin b
and H̃2 = �H1 sin b + H2 cos b, only H̃1 would come with a non-zero VEV, while
the VEV of H̃2 would vanish. Accordingly, the scalar state obtained via [67]The alignment

limit

hSM = h1 cos b + h2 sin b = h sin (a� b)� H cos(a� b) (3.113)

has the exact properties of the SM Higgs. It follows that for cos (a� b) = 0, we have
h = hSM, i.e. the lightest scalar mode of the 2HDM exhibits the exact properties of
the SM Higgs. This is referred to as the alignment limit.

In order to couple the Higgs doublets to the SM fermions, we write down Yukawa
interactions analogous to (3.45)

LYukawa = � Â
k=1,2

⇣
(Yk

u)ij q̄i
L H̃kuj

R + (Yk
d )ij q̄i

LHkdj
R

+ (Yk
e )ij ¯̀ i

LHkej
R + h.c.

⌘
.

(3.114)
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The presence of two Higgs doublets introduces a new complexity. While in the
case of a single Higgs doublet the Yukawa interactions are diagonal in flavor space
with respect to the fermion mass basis, this is generically no longer the case in the
2HDM. When both Higgs doublets couple to the same fermion flavor, diagonalizing
the mass matrices in general no longer coincides with diagonalizing the Yukawa
interaction matrices. This results in flavor-changing Higgs interactions (i.e. flavor-
changing neutral currents). Since the experimental bounds on such processes are
strong, one generally assumes a natural flavor conservation hypothesis, which states
that only one of the two Higgs doublets couples to a given fermion flavor. This
can be achieved, for instance, by imposing a Z2 symmetry under which the two
doublets are charged differently. This also eliminates the quartic terms odd in
either of the doublets from the potential in (3.109). The possibilities for the Yukawa
assignments are then [69] Yukawa

assignments under
the flavor
conservation
hypothesis

Y1
u = Y1

d = Y1
e = 0 , (type I) , Y1

u = Y2
d = Y2

e = 0 , (type II) ,

Y1
u = Y1

d = Y2
e = 0 , (type III) , Y1

u = Y2
d = Y1

e = 0 , (type IV) .
(3.115)

For the type II 2HDM in the alignment limit, the phenomenologically relevant
Yukawa interactions are [69]

LYukawa ��
yt
p

2
t̄
�
h� cot b H + i cot b Ag5� t

� Â
y=b,t

yy
p

2
ȳ
�
h + tan b H + i tan b Ag5�y

+

✓
yt
p

2
Vtb cot b H+ t̄RbL +

yb
p

2
Vtb tan b H+ t̄LbR + h.c.

◆
,

(3.116)

with yt, yb, yt the Yukawa couplings of (3.46). In above expression, the element Vtb
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix appeared. It is given by

Vtb ⌘ [UL
u ]⇤i3 [UL

d ]i3 , (3.117)

where UL
u , UL

d are the unitary 3 ⇥ 3 matrices introduced in the singular value
decomposition of the Yukawa couplings Yf below (3.45). It quantifies the shift
between the fermion mass eigenstates, for which the Yukawa couplings take the
diagonal form l f , and the flavor eigenstates, for which all gauge interactions are
flavor-independent.

3.3.5 The 2HDM with a pseudoscalar DM mediator

There is compelling evidence for the existence of additional matter within our
galaxies. This matter interacts gravitationally but is not composed of ordinary
baryonic matter. It constitutes approximately 25% of the energy density in the
Universe and is referred to as DM. While the true nature of DM remains unknown,
numerous experiments are currently searching for corresponding signals. These
experiments can be broadly categorized into three classes: accelerator experiments
attempting to create DM in collisions, indirect detection experiments searching for the
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annihilation products of DM, and direct detection experiments searching for direct
interactions of DM with baryonic matter.

Direct detection experiments look for low-energy interactions between DM and a
detector body made up of baryonic matter. Such interactions can be described in
a model-independent way by using an EFT. Assuming that the DM particle c is a
Dirac fermion, the possible effective interaction vertices at zero momentum transfer
are [70]Effective DM

interactions
lN,e [c̄c] [ȳNyN ] + lN,o [c̄gµc] [ȳNgµyN ]

+xN,e [c̄gµg5c] [ȳNgµg5yN ]�
xN,e

2
[c̄sµnc] [ȳNsµnyN ] ,

(3.118)

where yN is the nucleon spinor. One can show that lN,e, lN,o lead to interactions
that do not depend on the nucleon spin, i.e. are spin-independent (SI), while
the interactions induced by xN,e, xN,o are spin-dependent (SD). In the SI case, the
contributions from the individual nucleons add up, resulting in a DM-nucleus
interaction cross section of [70]SI DM-nucleus

interactions

sSI =
4µ2

c

p

�
lpZ + ln (A� Z)

�2 , (3.119)

where µc = McmA/ (Mc + mA) with mA the nucleus mass and Z (A) is the nucleus
charge (total number of nucleons). It is noteworthy that there is a strong enhance-
ment sSI ⇠ A2 for lp ⇡ ln in the case of heavy nuclei. For SD interactions, theSD DM-nucleus

interactions differing spins of the various nucleons result in cancellations among the various in-
teraction amplitudes, thereby reducing the overall cross section for the DM-nucleus
interaction. Consequently, the constraints derived from direct detection experiments
on lN,e, lN,o are considerably stronger than those on xN,e, xN,o.

In contrast, accelerator experiments, including the LHC, search for DM particles
produced directly in high-energy collisions. An intriguing class of DM models that
can be probed at colliders is that of mediator models featuring a mediator particle
charged under both the SM and dark quantum numbers. In particle collisions,DM mediator

scenarios the mediator particle is produced and then subsequently decays to a pair of DM
particles. In order to describe such scenarios, it is not sufficient to employ EFTs of
the form (3.118), since the DM mediator must be treated as a dynamical degree of
freedom to describe its production at the LHC. It is therefore desirable to establish
suitable benchmarks for the DM mediator that capture the main signatures to be
expected at colliders. Given that models inducing effective interactions proportional
to lN,o, lN,e at low energies are already subject to stringent constraints from direct
detection searches, it is reasonable to consider mediator benchmarks that do not
generate these at the tree level. Such models include mediators with pseudo-scalar
or axial-vector interactions.

Consequently, we introduce a new pseudoscalar P coupled to DM viaCoupling a
pseudoscalar DM

mediator to an
extended scalar

sector

Lc = �iycPc̄g5c . (3.120)
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We can further couple P to the extended scalar sector of the 2HDM (and thus, the
SM) by adding the terms

1
2

M2
PP2 + P

⇣
ibPH†

1 H2 + h.c.
⌘

+ P2
⇣

lP1 H†
1 H1 + lP2 H†

2 H2

⌘
(3.121)

to the scalar potential in (3.109). This does not alter the mass eigenstates H±, h, H,
but in the pseudoscalar sector the mass eigenstate A now mixes with the state P.
The resulting mass matrix can be diagonalized by a rotation with angle q, giving
two mass eigenstates

 
A0

a

!
=

 
cos q sin q

� sin q cos q

! 
A
P

!
, (3.122)

where we assume Ma < MA0 without loss of generality. From this point forward,
we will refer to A0 simply by A, dropping the dash. The resulting model is known
as 2HDM+a. The Yukawa assignments of the type II 2HDM+a in the alignment limit
are [69] Yukawa

assignments in the
2HDM+a

LYukawa ��
yt
p

2
t̄
�
h� cot b H + i cot b (cos q A� sin q a) g5� t

� Â
y=b,t

yy
p

2
ȳ
�
h + tan b H + i tan b (cos q A� sin q a) g5�y

+
yt
p

2
Vtb cot b H+ t̄RbL +

yb
p

2
Vtb tan b H+ t̄LbR + h.c.

� iyc (sin q A + cos q a) c̄g5c .

(3.123)

Further phenomenologically relevant trilinear interaction terms arise from the scalar
potentials (3.121) and (3.109). The corresponding couplings in the alignment limit
are of the form [69] Trilinear Higgs

interactions

ghaa =
1

mhv

h �
m2

h � 2M2
H + 4M2

H± � 2M2
a � 2l3v2� sin2 q

� 2
�
lP1 cos2 b + lP2 sin2 b

�
v2 cos2 q

i
,

gHaa =
1

MHv

h
cot(2b)

�
2m2

h � 4M2
H + 4M2

H± � 2l3v2� sin2 q

+ sin(2b) (lP1 � lP2) v2 cos2 q
i

,

gAah =
1

MAv

h
m2

h � 2M2
H �M2

A + 4M2
H± �M2

a � 2l3v2

+ 2
�
lP1 cos2 b + lP2 sin2 b

�
v2
i

sin q cos q .

(3.124)

Note that ahh is CP-violating and Hhh vanishes in the alignment limit. Furthermore,
there are trilinear vertices involving gauge bosons. Phenomenologically, the most
relevant are HaZ and H+aW�, which are given in [69, (4.8), (4.12)]. Note that
aW+W� and aZZ are CP-violating, while ahZ, HW+W�, HZZ and H+hW� all
vanish in the alignment limit.
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This concludes our introduction of the 2HDM+a model. We have demonstrated
why the Higgs doublet must be introduced in the SM in order to avoid the violation
of unitarity at large energies, that additional Higgs doublets may be added without
causing tension with experimental data, and how such an extended scalar sector
may be connected to DM.



Part (I)

P R E C I S I O N

Precision matters.

— Mookie Betts (baseball player)
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Be precise.
A lack of precision is dangerous

when the margin of error is small.

— Donald Rumsfeld
(former US Secretary of Defense)

In Section 2, we presented the fundamental concepts underlying the calculation of
NLO+PS accurate predictions for the LHC. By now, NLO+PS has become standard in
particle physics phenomenology, certainly for SM processes, but also for many BSM
scenarios. Even automated NLO+PS tools are available that, in principle, allow to
simulate arbitrary BSM models. With the HL-LHC on the horizon, however, and its
ability to measure SM observables with percent-level uncertainties, NLO+PS is no
longer sufficient to match the precision on the theoretical side. Consequently, the
community has progressed towards NNLO or even next-to-next-to-next-to-leading
order (N3LO) accurate theoretical predictions. This section will highlight important
concepts of precision phenomenology, with a particular focus on calculations in
the SMEFT. It is beyond the scope of this section to provide a comprehensive review
of the field. Indeed, many of the topics would warrant a separate thesis in their
own right. Nevertheless, we aim to provide an overview of aspects of precision
calculations that will be relevant to the project presented in Section 5.

In essence, there are two main components that render beyond-NLO calculations
more complex: The first is the increase in the number of loops, which correspond
to complicated integrals that have to be solved. The second is the increase in
the number of final-state particles, which leads to more scales (more degrees of
freedom) being present in the corresponding amplitude expressions. In Chapter 4.1,
we will discuss how to deal with the former, including the renormalization of the
SMEFT contributions at the two-loop level. The efficient calculation of diagrams
with more final-state particles will be the topic of Chapter 4.2. Finally, as in the
NLO case, the virtual and real corrections must be combined in order to cancel
all IR poles, and the full NNLO predictions must be consistently matched to the
PS generators in order for the latter to provide subsequent emissions without
overcounting. This is accomplished by the POWHEG MiNNLOPS method, which will be
introduced in Chapter 4.3.
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4.1 Multiloop Diagrams (Virtual Corrections)

4.1.1 Solving Loop Integrals

This chapter draws upon the introduction to IBP relations presented in [71].

Solving the integrals that arise in multiloop Feynman diagrams is frequently
a major bottleneck in precision calculations. While the evaluation of integrals
remains a challenging undertaking, there are now a number of techniques available
that decompose the problem into more manageable components. A few of these
techniques will be introduced below, including the tensor reduction, the integration
by parts (IBP) relations, and the expansion in external momenta.

Let us define a generic two-loop integral. The integral is defined by two inte-Note that due to
momentum

conservation, a
diagram with

(E + 1) external legs
generally has E

linearly independent
momenta.

gration momenta q1, q2, and E linearly independent external momenta labelled
k1, . . . , kE. We combine the two writing pi = q1, q2, k1, . . . , kE with i 2 [0, M] and
M = 2 + E. As previously defined, the Mandelstam invariants are sij = qi · qj
for i  j. This implies that

N = 3 + 2E (4.1)

of them, namely those with i  2, contain integration variables. The remaining sij
are products of external momenta ki · kj. Furthermore, the diagram must contain
I = 4 + E internal lines that are associated with the propagators Da for a = [1, I]. In
general, N� I = E� 1 can be greater than zero, indicating that there are more scalar
products sij containing integration variables than there are denominators. In this
case, we extend the denominators by additional irreducible numerators DI+1, . . . , DN ,Irreducible

numerators which allow us to write

Da =
2

Â
i=1

M

Â
j=1

a
ij
a sij + ba , (4.2)

where a
ij
a , ba are numbers, such that D1, . . . , DN are linearly independent. Conse-

quently, one can solve for sij, giving

sij =
N

Â
a=1

aa
ij (Da � ba) . (4.3)

A generic two-loop integral is then of the formTwo-loop
integrals (tensor)

I [ f (q1, q2); n1, . . . , nN ] ⌘ (µ2
R)2e

Z ddq1

(2p)d
ddq2

(2p)d
f (q1, q2)

Dn1
1 . . . DnN

N
, (4.4)

with (n1, . . . , nN) 2 ZN . In general, the numerator f (q1, q2) may involve products of
integration variables, such as q1 · q2, or tensor structures with open Lorentz indices,
such as qµ

1 qn
2. Fortunately, these integrals can always be reduced to a sum of scalar

integrals with f (q1, q2) = 1.
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Tensor Reduction The tensor structure of integrals with open Lorentz indices Tensor reduction
can be inferred from Lorentz symmetry arguments. The first few are

I
⇥
qµ
• ; n1, . . . , nN

⇤
= C•

i kµ
i ,

I
⇥
qµ
• qn

•; n1, . . . , nN
⇤

= C•
00gµn + C•

ij kµ
i kn

j ,

I
⇥
qµ
• qn

• qr
•; n1, . . . , nN

⇤
= C•

00ig
{µnkr}

i + C•

ijk k{µ
i kn

j kr}

k ,

I
⇥
qµ
• qn

• qr
• qs

• ; n1, . . . , nN
⇤

= C•
0000g{µngrs} + C•

00ij g{µnkr
i ks}

j + C•

ijkl k{µ
i kn

j kr
kks}

l .

(4.5)

In above equation, q• is used to represent an integration momentum q1, q2. The
coefficients C• are composed of loop integrals that do not contain open Lorentz
indices in the numerator. It should be noted that these coefficients are dependent
on the specific combination of integration momenta q1, q2 on the l.h.s, indicated by
the superscript •. The coefficients C• can be determined by contracting both sides
of (4.5) with external loop momenta or the metric tensor, resulting in a linear set of
equations.

Upon solving these equations, only integrals with scalar products of the integra-
tion variables in the numerators remain. These can be further decomposed into
scalar integrals with f (q1, q2) = 1. To demonstrate this, let us consider an integral
of the form I

⇥
sij; n1, . . . , nN

⇤
. By means of (4.3), it can be transformed to

N

Â
a=1

aa
ij I [1; n1, . . . , na � 1, . . . , nN ]�

N

Â
a=1

aa
ij ba I [1; n1, . . . , nN ] , (4.6)

which only involves scalar integrals. The recursive application of this strategy to
integrals involving multiple scalar products in the numerator equally results in a
sum of scalar integrals.

IBP Relations Thus far, we have achieved to reduce all two-loop integrals to a
sum of scalar integrals of the form Two-loop

integrals (scalar)

I [n1, . . . , nN ] ⌘ (µ2
R)2e

Z ddq1

(2p)d
ddq2

(2p)d
1

Dn1
1 . . . DnN

N
, (4.7)

with (n1, . . . , nN) 2 ZN . Fortunately, such integrals can be decomposed further into
a linear combination of so-called master integrals by applying symmetry relations.
The most well-known of these are IBP identities. They result from the invariance of
Feynman integrals under infinitesimal transformations of the form

qi ! qi + da pj , (4.8)

once more using the notation introduced at the beginning of this subchapter. Such
infinitesimal transformations form a Lie algebra

(µ2
R)2e

Z ddq1

(2p)d
ddq2

(2p)2 Oij
1

Dn1
1 . . . DnN

N
= 0 (4.9)

with Oij = ∂
∂qi

· qj, where i  2 and j � i. The corresponding Lie bracket is
⇥
Oij, Oi0 j0

⇤
= dij0Oi0 j � di0 jOij0 . (4.10)
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Rewriting the Oij in terms of the propagators Da, one findsIBP relations

Oij = d dij +
N

Â
a=1

N

Â
b=1

M

Â
m=1

ami
a ab

mj(1 + dmi)(Db � bb)
∂

∂Da
(j  2) ,

Oij =
N

Â
a=1

"
2

Â
m=1

N

Â
b=1

ami
a ab

mj(1 + dmi)(Db � bb) +
M

Â
m=3

ami
a smj

#
∂

∂Da
(j > 2) .

(4.11)

It should be noted that multiplying Db to the scalar integral will result in a lowering
of the corresponding index nb, while the action of ∂/∂Da will result in an increase
of na by one (or, in the case when na = 0, the integral will be set to zero). Therefore,
the operators Oij relate integrals with different (n1, . . . , nN) by virtue of (4.9). If
these relations are used in a clever manner, it is possible to relate complicated
integrals to a sum of less complicated ones. Applying this recursively results in a
small subset of master integrals that must be calculated. This can either be done
analytically or with numerical techniques. To illustrate the power of IBP relations,
we present an example.

Figure 4.1: Feynman diagrams for the two-loop K-factor to the partonic scattering process
qq̄! t+t� with a Z boson exchange.

Example : DY As in the one-loop case (see (2.18)), the two-loop contribu-
tion to the qq̄! Z vertex can be expressed as the tree-level matrix element
multiplied by a K-factor

⇣ as

4p

⌘2
M

(2)
qq̄,tt = K(2)

M
(0)
qq̄,tt . (4.12)

Examples of Feynman diagrams that contribute to the bare K(2)
0 are shown in

Figure 4.1. Let us examine the first diagram in greater detail. Its contribution
to K(2)

0 can be determined from

M
(2)⇤
0,qq̄,ttM

(0)
qq̄,tt , (4.13)
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(a) B3,1 (b) B4,2

(c) C4,1 (d) C6,2

Figure 4.2: Scalar two-loop integrals.

to which we get a contribution from the vector coupling of the Z (we avoid
the discussion of the treatment of g5 in d dimensions here, see [24, Sec. 4.4]
for further information) proportional to

Z ddq1ddq2

(2p)2d
Tr
⇥
/k2ga

�
/k2+/q2

�
gb
�
/k2+/q12

�
gµ
�
/k1+/q12

�
gb

�
/k2+/q2

�
ga/k1gµ

⇤

(k2 + q2)
2 (k2 + q12)

2 (k1 + q12)
2 (k1 + q2)

2 q2
1 q2

2
(4.14)

in the unpolarized case, with q12 = q1 + q2 for brevity. In (4.14), we have used
Casimir’s trick for massless fermions and further stripped off all couplings
and the color factor

TaTbTbTa = C2
F 1 . (4.15)

After simplifying the Dirac algebra, the numerator of (4.14) decomposes
into a sum of scalar products of the integration momenta q1, q2 and external
momenta k1, k2. As denominators, we choose

D1 = (k2 + q2)
2 , D2 = (k2 + q12)

2 , D3 = (k1 + q12)
2

D4 = (k1 + q2)
2 , D5 = q2

1 , D6 = q2
2 ,

(4.16)

which we extend by the irreducible numerator

D7 = (q1 + q2)
2 . (4.17)

Without the trace in the numerator, (4.14) is of the form I [1, 1, 1, 1, 1, 1, 0].
With the trace, and employing the strategy outlined in (4.6), (4.14) can be
expressed as a sum over integrals of lower sectors (including less denomina-
tors), such as I [0, 1, 1, 1, 1, 1, 0] or I [0, 1,�1, 1, 1, 1, 0]. After the IBP reduction,
the master integrals that remain are

B3,1 ⌘ I [0, 1, 0, 1, 0, 1, 0] , B4,2 ⌘ I [1, 1, 1, 1, 0, 0, 0] ,
C4,1 ⌘ I [0, 1, 1, 0, 1, 1, 0] .

(4.18)
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They are depicted diagrammatically in Figure 4.4, along with the integral C6,2
that appears in other Feynman diagrams of Figure 4.1. The aforementioned
master integrals are sufficiently simple to be calculated analytically, given
that all internal lines are massless. They are [23]

B3,1(s) =
�N 2

(16p2)2

✓
�

µ2
R
s

◆2e

s
✓
�

1
4e
�

13
8

◆
,

B4,2(s) =
�N 2

(16p2)2

✓
�

µ2
R
s

◆2e ✓ 1
e2 +

4
e

+ 12
◆

,

C4,1(0, 0, s) =
�N 2

(16p2)2

✓
�

µ2
R
s

◆2e ✓ 1
2e2 +

5
2e

+

✓
z2 +

19
2

◆◆
,

C6,2(0, 0, s) =
�N 2

(16p2)2

✓
�

µ2
R
s

◆2e 1
s2

✓
1
e4 �

5 z2

e2 �
27 z3

e
� 23 z2

2

◆
,

(4.19)

where z2, z3 are values of the Riemann zeta function and where we followed
the conventions of (2.13). The total unrenormalized K(2)

0 in terms of these
master integrals is given in [23, (2.25)], which we have recalculated explic-
itly using FeynCalc [72–75] and LiteRed [76], finding perfect agreement. The
renormalization of K(2) is achieved via [23]

K(2)
⌘ K(2)

0 �
b0

e
K(1)

0 , (4.20)

where K(1)
0 is the bare one-loop K factor defined in (2.18) and b0 is the usual

renormalization group factor of QCD given in (2.26). Overall, one finds

K(2) =
⇣ as

4p

⌘2
✓
�

µ2
R
s

◆2e

N
2

⇥

"
C2

F

✓
2
e4 +

6
e3 +

41
2e2 +

6 z2 � 20 z3 + 221
4

e
�

68 z2
2

5

+ 29 z2 � 54 z3 +
1151

8

◆

+CF CA

✓
�

11
6e3 +

z2 �
83
9

e2 +
�

11 z2
3 + 13 z3 �

4129
108

e

+
49 z2

2
5
�

202 z2

9
+

152 z3

3
�

89173
648

◆

+CF n f

✓
1

3e3 +
14
9e2 +

2 z2
3 + 353

54
e

+
28 z2

9
�

8 z3

3
+

7541
324

◆#
,

(4.21)

which agrees with [77, (17)] up to the different normalization with N instead
of Se (see (2.15)).
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(a) A1,1 (b) A3,1

Figure 4.3: Scalar one- and two-loop bubble integrals.

Before concluding this subchapter, it is worth briefly mentioning one additional
technique for calculating loop integrals. It is particularly useful in the context of
EFT matching calculations, where the external momenta are assumed to be small
compared to the scales of the UV theory. Expansion in

external momenta

Expansion in External Momenta The calculation of scalar multiloop in-
tegrals can be approximated by expanding them in the external momenta. The
expansion of an arbitrary scalar two-point function with external momentum k and
internal masses {mi} is given by [78] Two-point

integrals

B(k2, {mi}) =
•

Â
n=0

bn(k2)n , (4.22)

with

bn =
1

4n n!

G
⇣

d
2

⌘

G
⇣

d
2 + n

⌘
�
⇤n

k B(k2, {mi})
���

k=0 . (4.23)

The operator ⇤k ⌘ ∂2/
�
∂kµ∂kµ

�
and d are the number of space-time dimensions. It

should be noted that the integrals on the r.h.s of (4.23) only involve bubble integrals
that can be reduced to a small number of master integrals via partial fraction
decomposition and IBP relations. Similarly, the expansion of an arbitrary scalar
three-point function with external momenta k1, k2 and internal masses {mi} is given
by [79] Three-point

integrals
C(k1, k2, {mi}) =

•

Â
L=0

Â
l+m+n=L

clmn (k2
1)

l(k2
2)

m(k1k2)
n , (4.24)

with
clmn = (Dlmn C(k1, k2, {mi}))|k1=k2=0 , (4.25)

and

D00n =
[ n

2 ]+1

Â
i=1

(�4)1�i G
⇣

d
2 + n� i

⌘
G(d� 1)

2 G(i)G(n� 2i + 3)G(n + d� 2)G
⇣

n + d
2

⌘ (⇤12)
n�2i+2 (⇤11⇤22)

i�1 ,

Dl0n =
G
⇣

d
2 + n

⌘

G(l + 1)G
⇣

d
2 + l + n

⌘
✓⇤11

4

◆l
D00n .

(4.26)
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The operators ⇤ij are defined as ∂2/(∂ki,µ∂kµ
j ). We finally list one- and two-loop

bubble integrals that are relevant in the SMEFT example presented below [80, 81]

A1,1({M}) =
iN
16p

✓
µ2

R
M2

◆e

M2 csc(p e)
1� e

,

A3,1({M1, M2, 0}) =
�N 2

(16p2)2

✓
µ2

R
M2

1

◆2e

M2
1

⇥

"
(1 + x2)

2 e2 +
3x2 � 2x2 ln(x2) + 3

2 e
+

1
6

⇣
� 6(x2 � 1)Li2(1� x2)

+(21 + p2)(1 + x2) + 3x2(ln(x2)� 6) ln(x2)
⌘

+ O(e)

#
,

(4.27)

where x2 = M2
2/M2

1, csc denotes the cosecant and where we followed the conven-
tions of (2.13). The integral A3,1({M1, 0, 0}) may be obtained from above expression
in the limit x2 ! 0.

4.1.2 Multiloop Calculations in the SMEFT

The mixing of SMEFT operators under the RG running (discussed in Subchapter 3.1.4)
makes the renormalization of multiloop SMEFT amplitudes more complex than the
usual QCD renormalization. To illustrate this, we present a specific example and
subsequently provide a general recipe for the renormalization of two-loop SMEFT
amplitudes.

(a) Two-Loop Diagram (b) One-Loop Counterterm Diagram

Figure 4.4: The two-loop contribution of O
(1)
qq , O(3)

qq to the bs`+`� box parameter B, together
with the appropriate one-loop counterterm contribution.

Example : SMEFT Contribution to the B Parameter The B param-
eter is defined as the coefficient of the bs`+`� box contribution in the broken
phase

LEFT � �4V⇤tbVts
GF
p

2
a

2ps2
w

B(xt)
�
b̄gµPLs

� � ¯̀gµPL`
�

, (4.28)
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where ` = e, µ, t represents an arbitrary charged lepton, Vtb, Vts are elements
of the CKM matrix, and xt = m2

t /m2
W . It receives a two-loop contribution from

the dimension-six SMEFT operators [O(1)
qq ]3333, [O(3)

qq ]3333, the corresponding
diagram is depicted in Figure 4.4a.
We work in the down basis, whereby the flavor and mass eigenstates are
aligned in the down sector, while they are rotated by the corresponding
elements of the CKM matrix in the up sector. Although [O(1)

qq ]3333, [O(3)
qq ]3333

(henceforth, we will omit the flavor indices) only involve third-family quarks
in the flavor basis (see (3.20)), in the mass basis they also involve left-handed
charm and up quarks. Consequently, the corresponding contributions must
be included, as indicated in Figure 4.4a. Indeed, the contributions with the
top, charm, and up quark scale as V⇤tbVts, V⇤cbVcs and V⇤ubVus, respectively. In
the limit of vanishing quark masses, the contribution from the first cancels
against the latter two, as can be seen from the unitarity of the CKM matrix

V†V = 1 ! Â
q=t,c,u

V⇤qbVqs = 0 ! V⇤tbVts = � (V⇤cbVcs + V⇤ubVus) . (4.29)

This cancellation is known as the Glashow-Iliopoulos-Maiani (GIM) mecha-
nism. In the case of a non-vanishing top mass, however, the cancellation is
not exact, and terms proportional to mt remain. It should be noted that the
contributions with the other top line in Figure 4.4a replaced by charm or
up are subleading (|Vtb|

2
� |Vcb|

2 , |Vub|
2), and therefore neglected. The two-

loop diagram in Figure 4.4a can be computed using the methods outlined in
Subchapter 4.1.1, setting all external momenta to zero. The bare result has
poles of the form

DB0(xt) � �
N

e

av2
|Vtb|

2

32p s2
w

xt (xt � ln(xt)� 1)

(xt � 1)2

⇣
C(1)

qq + 5 C(3)
qq

⌘
. (4.30)

They are non-rational, as evidenced by their dependence on ln(xt). The
cancellation of these singularities is once more related to the non-diagonal
renormalization constants Ci,0 = Âj Z̃ij Cj, which were introduced in (3.28).

The operators O
(3)
Hq and O

(3)
DW (defined in Table 3.2 and (3.32), respectively)

contribute to DB0(xt) at the one-loop level via the diagram shown in Fig-
ure 4.4b. In the renormalization procedure, the bare Wilson coefficients
C(3)

Hq,0, C(3)
DW,0 are replaced by

C(3)
Hq,0 = Â

j
Z̃(3)

Hq j
Cj � Z̃(3)

Hq
(1)
qq

C(1)
qq + Z̃(3)

Hq
(3)
qq

C(3)
qq ,

C(3)
DW,0 = Â

j
Z̃(3)

DW j
Cj � Z̃(3)

DW
(1)
qq

C(1)
qq + Z̃(3)

DW
(3)
qq

C(3)
qq ,

(4.31)

with the corresponding one-loop renormalization factors Z̃ calculated in (3.30)
and (3.33). This results in counterterms proportional to C(1)

qq , C(3)
qq . As previ-

ously demonstrated in (3.42) and below, the aforementioned counterterms
are related to the one-loop ADM of the SMEFT.
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Including the counterterm diagrams shown in Figure 4.4b, the contributions
to the renormalized DB become finite and of the form

DB(xt) = �
a |Vtb|

2

384p s2
w

v2

L2

⇣
x(1)

qq (xt) C(1)
qq + x(3)

qq (xt) C(3)
qq

⌘
, (4.32)

where

x(1)
qq (xt) = 2 x2

t
�
p2(2 xt � 1)� 12

�
� 24 x2

t ln(xt) + 6 x2
t (2 xt � 1) ln2(xt)

+ 12 x2
t (2 xt � 1)Li2(1� xt) + 12 f (xt) ln(xµt) ,

x(3)
qq (xt) = 5 x(1)

qq (xt) + 72 f (xt) ,
(4.33)

and

f (x) ⌘
x2

x� 1
�

x2

(x� 1)2 ln(x) . (4.34)

The fact that x(3)
qq is almost (but not entirely) proportional to x(1)

qq can again be
understood from the perspective of the Top Working Group basis (see (3.19)).
In this basis, the contributions from C(1)

QQ and C(8)
QQ are proportional by virtue

of (3.27). This exact proportionality is spoiled in the Warsaw basis due to
evanescent contributions from EQQ (see discussion around (3.26)). It should
further be noted that all terms in (4.33) vanish for xt ! 0, as required by the
GIM mechanism. In the derivation of (4.33) we have used

gµgngrPL ⌦ gµgngrPL = 4(4 + beve)gµPL ⌦ gµPL + E(3)
LL (4.35)

from (3.10). The definition of the evanescent (i.e., the choice of bev) is not
relevant in this case, as the final result does not depend on it. Similarly, the
replacement in (4.35) is not necessary to obtain the poles in (4.30), and thus
no evanescent counterterms need to be included.

We are now in a position to present the general recipe for renormalizing two-loopRecipe for
renormalizing

two-loop
amplitudes in the

SMEFT

SMEFT amplitudes in MS, which has been adapted from [24]:

• Calculate the full (bare) two-loop amplitude A0 with contributions from the
SMEFT operators {Oi} ({O

(1)
qq , O(3)

qq } in the example above). If needed, reduce
the Dirac structures using (3.10) with an explicit choice of aev, . . . , fev. The
result is of the formBare two-loop

integral

A0 = Â
i

✓
µ2

R
Q2

◆2e
"

x(�2)
i
e2 +

x(�1)
i
e

+ x(0)
i + O(e)

#
Ci , (4.36)

where Q is the typical scale of the process.

• Take the divergent one-particle-irreducible subdiagrams of the full two-Subdivergences
loop diagrams (the bt̄W vertex above), and determine the operators

�
Oj
 

({O
(3)
Hq , O(3)

DW} above) that receive poles from {Oi}. It should be noted that
operators of a given dimension only mix into operators of the same or lower
dimension. Consequently, only operators Oj of dimension equal or lower to
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the dimension of the Oi have to be considered. Should the need arise, reduce
the

�
Oj
 

by means of (3.10). The coefficients aev, . . . , fev are irrelevant in this
step. Determine the MS renormalization constants Z̃ji ⇠ O(e�1) needed to
cancel the poles proportional to the Wilson coefficients Ci.

• Insert the
�
Oj
 

into the remaining one-loop subdiagram of the full two-loop Insertion of
subdivergences
into the remaining
diagram

diagram (in the example above, this was the one-loop diagram shown in
Figure 4.4b). If needed, reduce the resulting Dirac structures with (3.10), using
the same coefficients aev, . . . , fev as before. Replace the Wilson coefficients Cj
by Z̃jiCi. The result is of the form

AC = Â
i,j

✓
µ2

R
Q2

◆e
2

4
x̃(�1)

C,j

e
+ x̃(0)

C,j + x̃(1)
C,j e + O(e2)

3

5 Z̃jiCi

⌘Â
i

✓
µ2

R
Q2

◆e
2

4 x(�2)
C,i
e2 +

x(�1)
C,i
e

+ x(0)
C,i + O(e)

3

5Ci .

(4.37)

• If (3.10) has been used in the reduction of the
�
Oj
 

above, insert the corre-
sponding evanescent operators {Ej} (defined via (3.12)) into the remaining
one-loop subdiagram. Reduce the resulting Dirac structures with (3.10), and
insert Z̃jiCi. The result is of the form Evanescent

counterterms

AE = Â
i,j

✓
µ2

R
Q2

◆e h
x̃(0)

E,j + x̃(1)
E,j e + O(e2)

i
Z̃jiCi

⌘Â
i

✓
µ2

R
Q2

◆e
2

4 x(�1)
E,i
e

+ x(0)
E,i + O(e)

3

5Ci .

(4.38)

The total result finally reads

A ⌘ A0 + AC +
1
2
AE

= Â
i

0

@ x(�2)
i + x(�2)

C,i
e2 +

x(�1)
i + x(�1)

C,i + 1
2 x(�1)

E,i
e

+
x(0)

i + x(0)
C,i + 1

2 x(0)
E,i

e

1

ACi .
(4.39)

One finds that the coefficients of the double poles satisfy

x(�2)
C,i = �2x(�2)

i , (4.40)

i.e. they do not cancel exactly. The cancellation is only complete after the inclusion
of diagrams with two counterterm insertions. Since the latter are exclusively O(e�2),
they may be omitted in the determination of the O(e�1) and O(e0) pieces of the
total result. The single poles of A should only contain rational coefficients. It is
important to note that due to the differing exponents of (µ2

R/Q2) in (4.36) and (4.37),
as well as because of (4.40), terms of the form log(µ2

R/Q2)/e cancel out in (4.39).
The remaining rational poles are related to the two-loop ADM of the SMEFT. The
additional terms x(�1)

E,i serve to remove the mixing of evanescent operators with
physical operators.
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4.2 Multiemission Diagrams (Real Corrections)

4.2.1 The Spinor-Helicity Formalism

The spinor-helicity formalism offers a concise representation of matrix elements with
a large number of final-state particles. We will use it below, and thus provide a brief
introduction here. The starting point is the realization that the positive and negative
energy solutions of the massless Dirac equation are identical up to normalization
conventions. Indeed, one can choose the spinors u±(k) ⌘ P±u(k) ⌘ 1

2 (1 ± g5) u(k)Spinor-helicity
brackets and v⌥(k) ⌘ P⌥v(k) ⌘ 1

2 (1⌥ g5) v(k) to be equal to each other. We introduce [82]

|ii = u+(ki) = v�(ki) , hi| = u�(ki) = v+(ki) ,
|i] = u�(ki) = v+(ki) , [i| = u+(ki) = v�(ki) .

(4.41)

The usual bilinears are given by

hi ji = u�(ki)u+(kj) , [i j] = u+(ki)u�(kj) , hi|gµ
|j] = u�(ki)gµu�(kj) , (4.42)

for scalar and vector currents. Furthermore, the identities

hi ji = �hj ii , [i j] = �[j i] ,
|ii[i| = P+/k i , |i]hi| = P�/k i ,

hi ji[j i] =
�
ki + kj

�2 , hi|gµ
|j] = [j|gµ

|ii ,
hi|gµ

|i] = 2kµ
i , [i|gµ

|ji[k|gµ|li = 2[i k]hl ji ,
hi jihk li = hi kihj li+ hi lihk ji ,

(4.43)

hold, which may be used to simplify calculations. The polarization vectors e±
µ ofPolarization

vectors massless gauge bosons can also be expressed in terms of the bracket notation

e+
µ (ki, q) =

hq|gµ|ki]
p

2 hq kii
, e�µ (ki, q) = �

hki|gµ|q]
p

2 [q ki]
. (4.44)

In this context, ki prepresents the gauge boson momentum, while q is an auxiliary
massless vector, commonly referred to as the reference momentum. The choice of
q corresponds to a gauge fixing. One can choose a different q for each gluon
momentum k in an amplitude. However, one should not change it within the
calculation of a gauge-invariant quantity. The identities

⇣
e+

µ

⌘⇤
= e�µ ,

e+
·
�
e+�⇤ = �1 , e+

·
�
e�
�⇤

= 0 ,
(4.45)

and
e±(ki, q) · ki = 0 , e±(ki, q) · q = 0 ,

e+(ki, q) · e+(kj, q) = 0 , e�(ki, q) · e�(kj, q) = 0 ,
e+(ki, kj) · e�(kj, q) = 0 , e+(ki, q) · e�(kj, ki) = 0 ,

/e+(ki, kj)|ji = 0 , /e�(ki, kj)|j] = 0 ,
[j|/e+(ki, kj) = 0 , hj|/e�(ki, kj) = 0 ,

(4.46)

usually lead to substantial simplifications if the q are chosen apropriately. The
relevant formulas for the numerical implementation of the spinor-helicity brackets
can be found in [82, Sec. 2.2].
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F F J F JJ F Jl�3

POWHEG (F) NLO LO LL LL

POWHEG (FJ) – NLO LO LL

MiNLO0 NLO NLO LO LL

MiNNLOPS NNLO NLO LO LL

Table 4.1: Formal accuracies achieved by the POWHEG, MiNLO0 and MiNNLOPS methods for dif-
ferent final states involving a color singlet F and a variable number of additional
partonic emissions J. LL accuracy in this context means that the corresponding
contributions are only generated by the PS system.

4.3 Going to NNLO+PS: The POWHEG MiNLO 0 and MiNNLOPS Methods

In Chapter 2.3, we have described the POWHEG method, which allows for the calcula-
tion of NLO+PS accurate predictions for inclusive F observables that are agnostic
about additional parton emissions J. However, if one imposes cuts on J, the accuracy
of the prediction reduces to LO. This is because only the LO matrix elements R(PFJ)
for FJ production are included in (2.85). The formal accuracies of the various POWHEG
methods for different FJl final states are summarized in Table 4.1. An approach to
improve the precision of the FJ prediction is to apply the POWHEG procedure to the
final state FJ directly, with B(PFJ) as the Born and R(PFJ J) as the real contribution.
This approach is effective for observables exclusive in the hardest emission, but it is
evident that the NLO prediction for FJ diverges when integrated over all emissions J.
This is because it lacks the virtual contributions V(PF) that cancel the IR diver-
gences of B(PFJ). It is therefore of interest to ask whether it is possible to combine
NLO+PS accurate predictions for F and FJ in a consistent manner, such that the
NLO accuracy is retained in both classes of observables. This merging problem was Merging NLO+PS

generators for F
and F J

solved by the POWHEG MiNLO0 method, an extension of the POWHEG MiNLO method,
which achieves NLO accuracy for F and FJ simultaneously in the case where F is a
massless color singlet system. It was later extended to the POWHEG MiNNLOPS method,
which achieves full NNLO+PS accuracy for colorless F.

We will start our discussion with an examination of the POWHEG MiNLO method, The MiNLO method
and subsequently detail its extension to MiNLO0 and MiNNLOPS. MiNLO [83], an acronym
for multi-scale improved NLO, was conceived as an NLO extension of the Catani-
Krauss-Kuhn-Webber (CKKW) [84] merging procedure. The CKKW procedure allows
for the consistent combination of fixed-order LO matrix elements with PS systems,
thereby resumming large logarithms that arise from kinematic configurations in-
volving disparate scales.

In order to formulate the MiNLO method, let us consider an event produced by the In the case of
gluon-gluon
fusion (ggF) Higgs
production pp! h,
for example, the
production of F = h
is associated with
two powers of as.

Born or virtual (real) contributions in an NLO simulation where l (l + 1) partons are
emitted in association with a color singlet state F. We further assume that m powers
of as are associated with the production of F. We proceed in the following way:

• First, we recursively cluster the colored partons in the event using a kt cluster-
ing algorithm. To each vertex i 2 [1, l] of the branching history, we assign a
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scale qi (q1 < · · · < ql), which is equal to the relative transverse momentum
at which the branching occurred. In the case of (l + 1) partons, we assign q0
to the first clustering. We set Q to the invariant mass of F and Q0 to q1, where
Q0 is the scale below which all radiation is interpreted as inclusive.

• l powers of as are evaluated at the scales µ1, . . . , µl with µi = KR qi, where KR
is the usual renormalization scale variation factor – equal to 1 for the central
value and varied between 0.5 and 2 to study scale variation uncertainties. We
will describe later how to set the scale of the additional factor of as present in
the virtual and real contributions. The scales of all m remaining powers of as
are set to KR Q.

• The renormalization scale µR present in the virtual contributions is set toThis choice of µR
allows for the

cancellation between
the µ-dependence in

’l
i=1 as(µl) · as(µQ)m

multiplied to the
Born matrix element

with the
µ-dependence in the

logarithm ln µ2
R

Q2 of
the virtual matrix

element.

µR =

 
(µQ)m

⇥

l

’
i=1

µi

! 1
l+m

, (4.47)

the factorization scale is set to KF q1, with KF being the usual factorization
scale variation factor.

• For each internal line between vertices i and j of the branching history, the
factor

Dg(Q0, qi)

Dg(Q0, qj)
(4.48)

with Dg the gluon Sudakov form factor

Dg(Q, qT) ⌘ exp
�
�S̃(qT)

�

= exp
✓
�2

Z Q

qT

dq
q

✓
A(as(q)) ln

Q2

q2 + B(as(q))
◆◆ (4.49)

is multiplied. It may be interpreted as the probability for the corresponding
parton to evolve from qi to qj without branching. In the case of a real contri-
bution, the factor (4.48) involving q0 is not considered. The coefficients A, B
in (4.49) permit a perturbative expansionGenerally, [...](n)

denotes the nth-order
coefficient of

(as/2p)n in the
following discussion.

A(as) =
•

Â
n=1

[A](n)
⇣ as

2p

⌘n
, B(as) =

•

Â
n=1

[B](n)
⇣ as

2p

⌘n
. (4.50)

This also allows for an expansion Dg(Q, qT) = 1� as
2p

⇥
S̃(qT)

⇤(1)
+ O(a2

s ) to
first order in as.

• Given that multiplying the factor (4.48) to the Born matrix element results in
terms that are already accounted for in the NLO matrix elements, it is necessary
to subtract the LO contribution from the Sudakov factor. Schematically, a
replacement

B! B⇥
⇣

1 +
as

2p

⇥
S̃(qT)

⇤(1)
⌘

(4.51)

therefore has to be performed.
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In [85], the authors realized the full potential of the MiNLO method, extending it The MiNLO0 method
to MiNLO0. They applied the method outlined above to a POWHEG FJ NLO generator.
The corresponding POWHEG formula is given by The MiNLO0 master

formula

hOiNLO =
Z

dFFJ B̄(PFJ)

"
Dpwg(pT,pwg)O(FFJ)

+ Â
a

Z

pT,pwg

dF(a)
rad

R(a)
⇣

*P(a)
FJ J

⌘

B(PFJ)
Dpwg

⇣
q(a)

T,rad

⌘
O

⇣
*
F

(a)
FJ J

⌘#
,

(4.52)

in complete analogy to (2.85). Implementing the MiNLO procedure, however, the B̄
function has to be modified to The B̄ function in

MiNLO0

B̄(PFJ) ⌘ am
s (Q) as(q1) exp(�S̃(q1))


B(PFJ)

✓
1 +

as(q1)
2p

[S̃(q1)]
(1)
◆

+ V(PFJ) + Â
a

Z
dF(a)

radR(a)�*P(a)
FJ J
��

.
(4.53)

In above formula, we have omitted the subtraction counterterms for the sake of
clarity, and have also stripped (m + 1) powers of as from the Born (B), virtual (V),
and real (R) matrix elements. The scale of the remaining factor of as in V and R is
set to KR q1, where q1 is the transverse momentum of F. This choice of notation is
made to facilitate an analogy with MiNLO.

Now, the central claim is the following: the FJ POWHEG NLO generator implemented NLO+PS accuracy
for F and F Jin the above manner retains its accuracy when integrated over the phase space of

the emitted parton J, provided that the expansion up to O(a2
s ) is included in (4.50).

Consequently, MiNLO0 solves the aforementioned merging problem, and achieves
NLO accuracy for F and FJ simultaneously.

The correctness of the claim can be substantiated by reference to the all-order
analytic formula [86] pT resummation

formula
ds

dFF dpT
= exp(�S̃(pT))D(pT) + R f (pT)

= exp(�S̃(pT))


D(pT) +

R f (pT)

exp(�S̃(pT))

�

| {z }
1�

(4.54)

for the production of a color singlet state F with transverse momentum pT in
association with additional radiation. The R f terms are non-singular in the small pT
limit. It is worth noting the similarities between (4.54) and our general resummation
formula in (2.80). We further write

D(pT) ⌘ �
dS̃(pT)

dpT
L(pT) +

dL(pT)
dpT

, (4.55)

where L (see [86, (4.31)]) involves the parton luminosities, the Born squared ampli-
tude for the production of the color-singlet F, the hard-virtual corrections up to two
loops and the collinear coefficient functions up to second order. The Sudakov form
factor S̃ has been defined in (4.49). We now seek to expand 1� in (4.54) to the right
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order to achieve NLO accuracy in ds integrated over pT. For this purpose, we notice
that all terms in 1� contain at most a singularity of the form 1/pT and factors of
the order aa

s(pT) logb Q
pT

with b  1. Since

Z Q

pT,pwg

dpT

pT
aa

s(pT) logb
✓

Q
pT

◆
exp[�S̃(pT)] ⇠ O

✓
a

a� b+1
2

s (Q)

◆
, (4.56)

we have to expand 1� up to order a2
s (pT) in order to reach NLO accuracy inclusively.

Using (4.54) to write

R f (pT) =
as(pT)

2p


dsFJ

dFFdpT

�(1)

+
a2

s (pT)
4p2


dsFJ

dFFdpT

�(2)

� exp[�S̃(pT)]D(pT) ,

(4.57)

plugging this into 1� and expanding 1� to O(a2
s ), one obtains

ds

dFFdpT
= exp(�S̃(pT))

"
as(pT)

2p


dsFJ

dFFdpT

�(1) ✓
1 +

as(pT)
2p

[S̃(pT)](1)
◆

+
a2

s (pT)
4p2


dsFJ

dFFdpT

�(2)
#

,

(4.58)

which is equivalent to (4.53) for pT = q1. In conclusion, one can demonstrate that
the FJ generator based on the MiNLO0 method achieves full NLO accuracy when
integrating over the pT of J, provided that all terms [A](1), [A](2), [B](1), [B](2) in S̃
are included.

Conceptually, we are now close to a full NNLO + PS method. In proposing the
MiNLO0 method [85], the authors noted that an a posteriori reweighting of events
generated by MiNLO0 to the differential NNLO cross sectionNNLO+PS via

reweighting

w(FF) =

⇣
ds

dFF

⌘

NNLO⇣
ds

dFF

⌘

MiNLO0

(4.59)

leads to predictions that are NNLO accurate in F and retain the NLO accuracy ofThe MiNNLOPS
method

In the first MiNNLOPS
publication [86], the

term in square
brackets was

(as/2p)2[D(pT)](3),
it was later

realized [87] that
keeping the

higher-order terms
O(a4

s ) in D(pT) is
beneficial.

MiNLO0 in FJ. This approach yields a complete NNLO+PS method. Nevertheless,
while this technique was applied to a few LHC processes, the reweighting proved to
be a significant computational burden, prompting the development of an NNLO+PS
method that eliminates the need for reweighting. This was accomplished by the
POWHEG MiNNLOPS [86] method.

In order to promote (4.58) to NNLO accuracy, one has to expand 1� in (4.54) to
O(a3

s ). This adds

ds

dFFdpT
� Fcorr(FFJ)


D(pT)�

as(pT)
2p

[D(pT)](1)

�

✓
as(pT)

2p

◆2

[D(pT)](2)
�

+ R f terms
(4.60)
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to (4.58), where the R f terms arise from the O(a3
s ) expansion of R f (pT)/ exp[�S̃(pT)]

and can be ignored as they do not contain a 1/pT factor and therefore only con-
tribute to the total cross section at N3LO. The factor Fcorr(FFJ) is needed in the
POWHEG MiNNLOPS implementation to determine the appropriate function to spread
the NNLO corrections in the FJ phase space (see [86, Sec. 3]). Finally, the POWHEG

MiNNLOPS master formula is given by The MiNNLOPS
master formula

hOiNNLO =
Z

dFFJ B̄MiNNLOPS(PFJ)

"
Dpwg(pT,pwg)O(FFJ)

+ Â
a

Z

pT,pwg

dF(a)
rad

R(a)
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*P(a)
FJ J

⌘

B(PFJ)
Dpwg

⇣
q(a)

T,rad

⌘
O
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*
F

(a)
FJ J

⌘#
,

(4.61)

with B̄ in the MiNNLOPS
method

B̄MiNNLOPS(PFJ) = exp[�S̃(q1)]

"
as(q1)

2p


dsFJ

dFFdq1

�(1) ✓
1 +

as(q1)
2p

[S̃(q1)]
(1)
◆

+
a2

s (q1)
4p2


dsFJ

dFFdq1

�(2)

+ Fcorr(FFJ)

⇥

✓
D(q1)�

as(q1)
2p

[D(q1)]
(1)
�

a2
s (q1)
4p2 [D(q1)]

(2)
◆#

.

(4.62)

As in (4.53), we denote the transverse momentum of F by q1. The full expanded
expression for (4.62) can be found in [86].

In summary, the POWHEG MiNNLOPS method works as follows: Summary of the
MiNNLOPS method

• FJ is generated at NLO accuracy according to the POWHEG method, inclusive in
the radiation of a second light parton J.

• The limit in which the first J becomes unresolved is corrected by supplement-
ing appropriate Sudakov form factors and higher-order terms, following the
MiNLO0 method and supplying the additional D terms (see (4.62)). This ensures
the NNLO accuracy in F.

• The kinematics of the second radiated J (accounted for inclusively in the
first step above) is generated through the POWHEG method, preserving the NLO
accuracy of the FJ cross section.

• All subsequent radiation is added by the PS.

While other frameworks for the consistent matching of NNLO predictions to PS
generators exist, notably the GENEVA [88, 89] and UNNLOPS [90, 91] methods, the
simplicity and flexibility of POWHEG MiNNLOPS method make it stand out.
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S M E F T E F F E C T S I N H I G G S S T R A H L U N G S P R O D U C T I O N AT
N N L O + P S

I think we have it.

— Rolf-Dieter Heuer,
announcing the discovery

of the Higgs

5.1 Introduction

In order to showcase how precise predictions for the effects of SMEFT operators
in LHC observables are obtained, we will present the relevant sections of our
publication [LS1]. We calculated NNLO+PS accurate predictions for the effects of the
SMEFT operators modifying the VVh (V = W, Z being the massive SM vector bosons)
and V f f̄ ( f being the SM fermions) couplings in the Higgsstrahlungs production
processes pp! Zh! `+`�h and pp!Wh! `nh employing the POWHEG MiNNLOPS
method.

The Higgsstrahlungs production channel pp ! Vh is particularly relevant Phenomenological
importance of
pp ! Vh

regarding the measurement of the SM Higgs boson decay to a pair of bottom
quarks (h! bb̄). The latter has the largest branching ratio, expected to be close to
60%, for the SM Higgs at 125 GeV. Even though ggF production gg! h is the domi-
nant production channel of the Higgs boson at the LHC, with a cross section that is
orders of magnitude larger than the one for pp! Vh, the large QCD backgrounds
from multi-jet production make a search for gg ! h ! bb̄ challenging. Instead,
the most sensitive production mode for detecting h ! bb̄ decays is pp ! Vh,
where the leptonic decay of the vector boson enables a clean selection, leading to a
significant background reduction. The h! bb̄ decay mode has been observed by
both ATLAS and CMS in LHC Run II [92, 93], and these measurements constrain the
h! bb̄ signal strength in the Higgsstrahlungs processes

�
µbb̄

Vh
�

to be SM-like within
about 25%. With LHC Run III ongoing and the high-luminosity upgrade (HL-LHC)
on the horizon, the precision of the µbb̄

Vh measurements is expected to improve
significantly, resulting in an ultimate projected HL-LHC accuracy of 15% (5%) in the
case of the Wh (Zh) production channel [94, 95].

Besides providing a probe of the dominant decay mode of the Higgs boson, pre- Higgs
characterization
program

cision Vh measurements also play an important role in the Higgs characterization
program which is commonly performed in the framework of the SMEFT [46, 96, 97].
In fact, radiative corrections in the SMEFT to both Vh production [98–103] and the
h! f f̄ decays [104–108] have been calculated. The existing studies for Vh produc-
tion have mostly focused on the subset of higher-dimensional interactions that mod-
ify the couplings of the Higgs to two vector bosons achieving NLO [98–100, 109, 110]

85
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and NNLO [111] accuracy in QCD, respectively, while in the case of h ! bb̄ both
NLO QCD and NLO EW corrections to the total decay width have been calculated
for the full set of relevant dimension-six SMEFT operators [104–106]. In the publica-
tions [101–103] special attention has finally been paid to the class of SMEFT operators
that lead to interactions between a Higgs, W or Z boson, and light quarks.

The goal of the project [LS1] is to generalise and to extend the recent SMEFT calcu-Implementing
SMEFT effects at

NNLO+PS accuracy
using the MiNNLOPS

method

lation [108] which has achieved NNLO+PS accuracy for the dimension-six operators
that contribute to the subprocesses pp ! Zh and h ! bb̄ directly in QCD. This
class of operators includes effective Yukawa- and chromomagnetic dipole-type
interactions of the bottom quark that modify the h ! bb̄ decay but do not play a
role in pp! Zh production. Purely EW effective interactions that alter the couplings
of the Higgs to gauge bosons are instead not included in the NNLO+PS MC generator
presented in [108]. Since these types of SMEFT contributions can lead to phenomeno-
logically relevant effects in the Higgsstrahlungs processes [98–100, 109–111], we
include these type of interactions in the current article, extending the NLO SMEFT cal-
culations [98–100] to the NNLO level. Likewise, we improve the precision of the calcu-
lations of SMEFT corrections to pp! Vh production that are associated to couplings
between a Higgs, W or Z boson, and light quarks [101–103] to NNLO in QCD. The
obtained fixed-order SMEFT predictions are implemented into the POWHEG-BOX [21]
and consistently matched to a PS using the MiNNLOPS method [86, 87]. In this way,
NNLO QCD accuracy is retained for both production and decays, while the matching
to the PS ensures a realistic exclusive description of the pp ! Zh ! `+`�h and
the pp! Wh! `nh process at the level of hadronic events. These features make
our new NNLO+PS generator a precision tool for future LHC Higgs characterization
studies in the SMEFT framework.

5.2 SMEFT operators

Throughout this section we neglect all light fermion masses in both the SM and
SMEFT corrections to the pp! Zh and pp! Wh processes. The Warsaw basis (see
Subchapter 3.1.3) contains the following three independent operatorsVVh operators

OHB = (H†H)BµnBµn , OHW = (H†H)Wa
µnWa,µn ,

OHWB = (H†t I H)WI
µnBµn ,

(5.1)

that modify the couplings between the Higgs and two vector bosons at tree level.
In the case of the operators that result in couplings between the Higgs, a W or a Z
boson and light quarks, we consider the following four effective interactionsV(h)qq̄ operators

O
(1)
Hq = (H†i

$

Dµ H)(q̄LgµqL) , O
(3)
Hq = (H†i

$

DI
µ H)(q̄Lgµt IqL) ,

OHd = (H†i
$

Dµ H)(d̄RgµdR) , OHu = (H†i
$

Dµ H)(ūRgµuR) ,

OHud = ( eH†iDµH)(ūRgµdR) .

(5.2)

Illustrative diagrams that contribute to Zh production and involve an insertion of
one of the operators in (5.1) or (5.2) are displayed in Figure 5.1. Notice that OHud
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Figure 5.1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on the
left involves an insertion of one of the operators defined in (5.1), while the two
graphs on the right stem from an insertion of one of the operators given in (5.2).
The operator insertions are indicated by the light green squares.

only contributes to pp!Wh production and the dimension-six SMEFT Lagrangian
includes the sum of the operator OHud and its hermitian conjugate.

Besides the two set of operators (5.1) and (5.2) that alter the pp! Vh production
process, we also consider effective interactions that modify the Z ! `+`� and
W ! `n decays at tree level. In the Warsaw basis there are three such operators,
namely V(h)` ¯̀ operators

O
(1)
H` = (H†i

$

Dµ H)( ¯̀Lgµ`L) , O
(3)
H` = (H†i

$

DI
µ H)( ¯̀Lgµt I`L) ,

OHe = (H†i
$

Dµ H)(ēRgµeR) .
(5.3)

Notice that in writing (5.2) and (5.3) we have assumed that the full SMEFT Lagrangian
respects an approximate U(3)5 flavor symmetry which allows us to drop all flavor
indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes
indirectly is provided by the Wilson coefficients of the operators that shift the Higgs
kinetic term and/or the EW SM input parameters. In order to fully describe these
shifts the following three additional operators are needed at tree level: Further operators

OH⇤ = (H†H)⇤(H†H) , OHD = (H†DµH)⇤(H†DµH) ,

O`` = ( ¯̀Lgµ`L)( ¯̀Lgµ`L) .
(5.4)

5.3 Calculation of Matrix Elements : qq̄! Vh

5.3.1 SM calculation

A core input of the NNLO QCD calculation are the squared matrix elements up to
O(a2

s ) in the SMEFT. To better explain how the calculation of these squared matrix
elements is performed, we first revisit the structure of the NNLO computation in
the SM, which we have repeated, and also implemented into the POWHEG framework.
Before doing so, we note that we will generically refer to the process pp! Vh (and
its corresponding subprocesses) in both the text and corresponding figures in what
follows, but it should be understood that V = W, Z refers to a final-state lepton pair,
and that the calculation does include spin-correlation effects in the gauge-boson
decays.
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Figure 5.2: Examples of higher-order QCD corrections to pp! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines
(B-type), the diagram in the middle involves a second quark line (C- and D-type)
and the diagram on the right is a ggF contribution (A-type). Consult the main
text for further details.

In the NNLO calculation of pp! Vh, the contributing partonic channels can beA-, B-, C- and
D-type amplitudes classified according to the number of external quark lines (A = 0, B = 1, C = D = 2),

external gluons, and also by the number of loops at the squared amplitude level –
see also [112]. Starting with the B-type corrections (i.e. those with a single external
quark line), the required squared matrix elements are called B0g0V, B1g0V, B0g1V,

B1g1V, B2g0V, B0g2V, where the number before g refers to the number of addi-
tional external gluons relative to the LO contribution for that type, and the number
after the g refers to the number of loops at the squared level. For example, the left
most diagram in Figure 5.2 contains one additional gluon (relative to the Born-level
contribution in the quark-antiquark fusion or ggF channel) and is a one-loop graph,
and would therefore contribute to B1g1V through interference with the correspond-
ing tree-level amplitude. In the case of the SM, the analytic expressions for the
corresponding spinor-helicity amplitudes can be found in [112–115]. To obtain the
desired squared matrix elements, the spinor-helicity amplitudes can be squared
and then summed over all contributing helicities numerically – an explicit example
of this procedure is given below. The C-type corrections feature two external quarks
lines, or in other words a double real emission contribution with two final-state
quarks, and arise from the interference of diagrams such as that represented in the
center of Figure 5.2. The D-type corrections account for the additional structures
that can appear when same-flavor quarks are considered. These squared matrix
elements are called C0g0V and D0g0V and within the SM the analytic expressions
for the corresponding spinor-helicity amplitudes are provided in the work [112].
Finally, the ggF contributions shown on the right in Figure 5.2 constitute the third
type of correction which are considered (A-type). They are referred to as A0g2V

and the corresponding SM spinor-helicity amplitudes are given in [116]. Notice
that due to charge conservation the third type of corrections only contributes to
the pp ! Zh but not the pp ! Wh process. We add that the corrections called
VI,I I and RI,I I that are related to top-quark loops and involve one external quark
line [117] are neglected in our SM calculation. Since in total the numerical effect of
these contributions amounts to only around 1% [108, 117, 118], ignoring the VI,I I
and RI,I I terms seems justified at present.

The corresponding calculation including the impact of SMEFT operators (which
will be discussed in the following subchapter) can also be performed using spinor-
helicity techniques. That calculation requires new helicity amplitudes which can (in
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part) be obtained from knowledge of the SM amplitudes. For clarity of explanation, Example of B1g0Z
it will be useful to first consider an explicit example in the SM. To do that we
consider the case of B1g0Z which involves a single external quark line and one
external gluon at tree level. A corresponding SM Feynman diagram is displayed on
the left-hand side in Figure 5.3. Note that we consider the leptons (quarks) to be
outgoing (incoming). The corresponding spinor-helicity amplitude with left-handed
fermion chiralities and a physical gluon with a negative helicity reads B1g0Z

spinor-helicity
amplitude in the
SM

AB1g0Z

⇣
1�q , 2�g , 3+

q̄ ; 4�` , 5+
¯̀

⌘
=

h34i
h12ih23i

⇣
h13i [51] + h23i [52]

⌘
, (5.5)

where hiji and [ij] denote the usual spinor products – see Chapter 4.2. Notice that the
semicolon in the expression on the l.h.s of (5.5) separates the particles with incoming
and outgoing convention, respectively. The amplitudes for the remaining helicity
combinations can be obtained via the following parity and charge conjugation
relations

AB1g0Z

⇣
1�q , 2+

g , 3+
q̄ ; 4�` , 5+

¯̀

⌘
= �AB1g0Z

⇣
3�q , 2�g , 1+

q̄ ; 5�` , 4+
¯̀

⌘⇤
,

AB1g0Z

⇣
1�q , 2hg

g , 3+
q̄ ; 4+

` , 5�¯̀
⌘

= AB1g0Z

⇣
1�q , 2hg

g , 3+
q̄ ; 5�` , 4+

¯̀

⌘
,

AB1g0Z

⇣
1+

q , 2hg
g , 3�q̄ ; 4�` , 5+

¯̀

⌘
= �AB1g0Z

⇣
3�q , 2hg

g , 1+
q̄ ; 4�` , 5+

¯̀

⌘
,

AB1g0Z

⇣
1+

q , 2hg
g , 3�q̄ ; 4+

` , 5�¯̀
⌘

= �AB1g0Z

⇣
3�q , 2hg

g , 1+
q̄ ; 5�` , 4+

¯̀

⌘
.

(5.6)

The resulting spin-averaged matrix element B1g0Z takes the form

B1g0Z =
8pas CF

CA
Â

hq,hg,h`

������

ghq
Zq gh`

Z` ghZZ

DZ(s123) DZ(s45)
AB1g0Z

⇣
1hq

q , 2hg
g , 3�hq

q̄ ; 4h`
` , 5�h`

¯̀

⌘
������

2

, (5.7)

where
sij =

�
ki + kj

�2 , sijk = sij + sjk + ski , (5.8)

are the usual Mandelstam invariants with ki the four-momentum of particle i.
We have furthermore introduced

DZ(s) = s�m2
Z + imZGz , (5.9)

with GZ denoting the total decay width of the Z boson. The symbols gh f
Z f and ghZZ

represent the Z f f̄ and hZZ coupling strengths, respectively. The explicit expressions
for these quantities are given in Appendix A.

To compute the SMEFT contributions that involve modified couplings between
the Higgs and two vector bosons, it is important to notice that by using the spinor
identity

hi ji[k l] =
1
2
hj|gµ

|k]hi|gµ|l] , (5.10)

the result (5.5) can be rewritten as

AB1g0Z

⇣
1�q , 2�g , 3+

q̄ ; 4�` , 5+
¯̀

⌘
= h4|gµ|5] Aµ

qgq(1�q , 2�g , 3+
q̄ ) . (5.11)
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Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with theSpinor-helicity
amplitude for the

qq̄g subprocess
indicated helicities is given by

A
µ
qgq(1�q , 2�g , 3+

q̄ ) =
h1 3ih3|gµ|1] + h2 3ih3|gµ|2]

2h1 2ih2 3i
. (5.12)

5.3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions
of the three operators introduced in (5.1) since OHB, OHW and OHWB generate
modified hVV vertices with helicity structures different from the one present in
the SM, i.e. the spinor chain h4|gµ|5] in (5.11). These modifications can be included
at the level of (5.5) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs
boson h [98]. If the initial-state quarks and final-state leptons are left-handed the
relevant generalised neutral currents are given byNew helicity

structures arising
in the SMEFT

A
µ
hZZ(k123, 4�` , 5+

¯̀ ) =
g�Zq g�Z`

DZ(s123) DZ(s45)

"
h4|gµ

|5]
⇣

ghZZ + dg(3)
hZZ

⌘

+ h4|gµ
|5]

⇣
dg(2)

hZZ (s123 + s45)
⌘
� dg(2)

hZZ kµ
123h4|/k123|5]

�
dg(1)

hZZ
2

⇣
h4|gµ/k123|4i[4 5] + h4 5i[5|/k123gµ

|5]
⌘#

,

A
µ
hgZ(k123, 4�` , 5+

¯̀ ) =
g�gq g�Z`

s123 DZ(s45)

"
�

dg(1)
hgZ

2

⇣
h4|gµ

|5]h4|/k123|4]

+ h4|gµ
|5]h5|/k123|5]� 2

�
kµ

4 + kµ
5
�
h4|/k123|5]

⌘

+ dg(2)
hgZ

⇣
h4|gµ

|5] s123 � kµ
123 h4|/k123|5]

⌘#
,

(5.13)

where the structures A
µ
hZZ and A

µ
hgZ encode the modified hZZ and hgZ vertices,

respectively, and k123 denotes the four-momentum of the incoming vector boson.
The symbols ghq

gq are the gqq̄ coupling strengths while dg(1)
hZZ, dg(2)

hZZ, dg(3)
hZZ, dg(1)

hgZ

and dg(2)
hgZ are anomalous couplings that describe the interactions between the Higgs

boson and the relevant vector bosons as indicated by the subscript. The explicit
expressions for all the couplings appearing in (5.13) can be found in Appendix A.
We stress that although the anomalous couplings dg(2)

hZZ and dg(2)
hgZ do not receive

corrections from the Wilson coefficients CHB, CHW , and CHWB our POWHEG-BOX

implementation contains the full generalised neutral currents (5.13). The presented
MC code can therefore be used to extend the Higgsstrahlungs computations in the
anomalous-coupling framework [109–111] to the NNLO+PS level.

By looking at (5.11) and (5.13) it is now readily seen that in order to obtain the
spin-averaged squared matrix element B1g0Z that contains the contributions from
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Figure 5.3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT
correction that receives contributions from the generalised hZZ and hgZ currents
introduced in (5.13). The four-momentum flow is indicated by the black arrows
and labels. See the main text for additional explanations.

the SM as well as the Wilson coefficients CHB, CHW , and CHWB one just has to replace
the coupling and propagator dressed helicity amplitude appearing in the modulus
of (5.7) by the following spinor contraction Full SMEFT

amplitude for
B1g0Z

Aqgq,µ

⇣
1hq

q , 2hg
g , 3�hq

q̄

⌘ h
A

µ
hZZ(k123, 4h`

` , 5�h`
¯̀ ) + A

µ
hgZ(k123, 4h`

` , 5�h`
¯̀ )

i
. (5.14)

A schematic depiction of (5.14) is given on the right in Figure 5.3. Notice that all
helicity configurations of A

µ
qgq can be obtained from (5.11) and (5.12) using the

relations (5.6) while in the case of A
µ
hZZ and A

µ
hgZ one just has to perform the

replacements g�V f ! gh f
V f for f = q, ` and V = Z, g.

Insertions of the operators (5.2) and (5.3) lead to the Feynman diagrams shown on
the right-hand side in Figure 5.1 at tree level. In order to capture this contribution
in the case of the squared matrix element B1g0Z, one simply has to add the term Contributions

with quartic Vh f f̄
vertices

0

@
dg(1)hq

hZq gh`
Z`

DZ(s45)
+

ghq
Zq dg(1)h`

hZ`

DZ(s123)

1

A AB1g0Z

⇣
1hq

q , 2hg
g , 3�hq

q̄ ; 4h`
` , 5�h`

¯̀

⌘
, (5.15)

to the corresponding dressed SM amplitude appearing within the modulus of (5.7).
The analytic expressions for the couplings dg(1)h f

hZ f are given in Appendix A. In (5.15),

the first term in the brackets describes the contribution from O
(1)
Hq , O

(3)
Hq , OHd,

and OHu, while the second term is induced by O
(1)
H` , O

(3)
H` and OHe. Notice that

compared to the corresponding SM contribution in (5.7), the SMEFT correction
proportional to dg(1)hq

hZq in (5.15) is missing the Z-boson propagator depending on
s123. This feature explains the high-energy growth [101–103] of the SMEFT pp! Vh
amplitudes involving the Wilson coefficients C(1)

Hq , C(3)
Hq , CHd, and CHu.

The last type of SMEFT corrections to the matrix element B1g0Z is associated to the
tree-level shifts of the SM parameters and couplings. EW input scheme corrections
from CHD, CHWB, C(3)

H` , and C`` lead to the shifts dg1, dg2, and dv of the U(1)Y,
SU(2)L gauge coupling, and the Higgs VEV, respectively, that in turn induce the
shifts dg(0)

hZZ and dg(0)h f
Z f in the respective couplings of the Z boson. The expressions Input scheme

correctionsfor these shifts are listed in Appendix A. In practice, the input scheme corrections
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can be accounted for by applying the replacements ghZZ ! ghZZ + dg(0)
hZZ and

gh f
Z f ! gh f

Z f + dg(0)h f
Z f to (5.7). Similarly, the Wilson coefficients C(1)

Hq , C(3)
Hq , CHd, CHu,

C(1)
H` , C(3)

H` , and CHe lead to direct shifts in the Z f f̄ couplings that we include throughDirect shifts in the
Z f f̄ couplings the shifts gh f

Z f ! gh f
Z f + dg(1)h f

Z f in (5.7). The expressions for the latter shifts are again
given in Appendix A.

While we have used the spinor-helicity amplitudes AB1g0Z in this chapter as
examples to illustrate the general approach that we have employed in our SMEFT cal-
culation of pp! Vh at NNLO in QCD, it is important to realize that the computation
of all other spinor-helicity amplitudes and squared matrix elements proceeds in an
analogous manner. In the case of the SMEFT corrections arising from the choice of EW
input scheme as well as those associated to insertions of the operators (5.2) and (5.3),
this is clear in view of the factorization properties of these contributions

�
cf. (5.15)

�
.

Likewise, since the spinor-helicity structure of the partonic part of a given SMEFT
amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does
change. It follows that an explicit calculation of the full partonic structures for the
higher-order corrections to pp! Vh in the SMEFT can always be avoided, because
the relevant amplitudes can be obtained from those in the SM by applying relations
à la (5.11) and (5.14) which involves only spinor algebra. Still the calculation of all
spinor contractions needed to achieve NNLO accuracy for the pp! Vh processes in
the SMEFT is a non-trivial task and the final expressions for the spinor-helicity am-
plitudes turn out to be too lengthy to be reported here. All algebraic manipulations
of spinor products needed in the context of this work have been performed with
the aid of the Mathematica package S@M [119].

5.4 Calculation of Matrix Elements : gḡ! Vh

Our calculation of gg! Zh production is based on the spinor-helicity amplitudes
for the SM derived in [116] and implemented into MCFM [120]. In unitary gauge,
the expression for the triangle contributions with positive gluon helicities and
left-handed fermion chiralities readsSpinor-helicity

amplitude for
A0g2Z4 in the SM

A
q
A0g2Z4

⇣
1+

g , 2+
g , 3�` , 4+

¯̀

⌘
= �

2 [21]
�
[41] h13i+ [42] h23i

�

h12i

✓
1�

s12

m2
Z

◆

⇥m2
q C3,1(s12, 0, 0, mq, mq, mq) .

(5.16)

Notice that we have followed the convention of [116] and written the amplitude
for all momenta outgoing. In (5.16), the two terms in the last factor in the first
line stem from the transversal and longitudinal part of the Z-boson propagator
in unitary gauge, respectively, q is the quark running in the loop with mass mq
and C3,1 is the scalar triangle integral defined as in (2.13), but with masses for the
propagators [121, 122]. The corresponding SM Feynman diagram is displayed on the
right-hand side in Figure 5.2. Similarly, we have implemented the box amplitudes

A
q
A0g2Z⇤

⇣
1+

g , 2+
g , 3�` , 4+

¯̀

⌘
, A

q
A0g2Z⇤

⇣
1�g , 2+

g , 3�` , 4+
¯̀

⌘
, (5.17)
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Figure 5.4: Examples of contributions to gg! Zh production within the SMEFT. All graphs
involve an insertion of one of the operators given in (5.2) as indicated by the
light green squares. Further details can be found in the main text.

which are too lengthy to be reported here but may be inspected in our squared
matrix element library. The remaining non-zero helicity combinations may be
obtained via parity and charge conjugation relations. In the case of the triangle
contributions, these relations take the form

A
q
A0g2Z4

⇣
1�g , 2�g , 3⌥` , 4±

¯̀

⌘
= �A

q
A0g2Z4

⇣
1+

g , 2+
g , 4⌥` , 3±

¯̀

⌘
,

A
q
A0g2Z4

⇣
1±

g , 2±
g , 3+

` , 4�¯̀
⌘

= A
q
A0g2Z4

⇣
1±

g , 2±
g , 4�` , 3+

¯̀

⌘
,

(5.18)

where the overline means that the brackets should be exchanged, i.e. [. . .]$ h. . .i.
Analogous relations hold for the box contributions including the cases where the
gluons have opposite helicities which are only present for A

q
A0g2Z⇤.

Including the triangle and box contributions, the resulting spin-averaged matrix
element takes the form

A0g2Z =
a2

s
8p2 (C2

A � 1)2 Â
hg,h`=±

����� Â
q=t,b

 
A

q
4

+ Â
s=±

m2
q

m2
z
A

q,s
⇤

! �����

2

, (5.19)

with

A
q
4

=
(g�Zq � g+

Zq) gh`
Z` ghZZ

DZ(s12) DZ(s34)
A

q
A0g2Z4

⇣
1hg

g , 2hg
g , 3h`

` , 4�h`
¯̀

⌘
, (5.20)

A
q,±
⇤ =

(g�Zq � g+
Zq) gh`

Z` ghZZ

DZ(s34)
A

q
A0g2Z⇤

⇣
1hg

g , 2±hg
g , 3h`

` , 4�h`
¯̀

⌘
. (5.21)

Here DZ(s) has been defined in (5.9) while the expressions for the couplings g±

Z f
and ghZZ can be found in (A.2). The coupling ghZZ appearing in (5.21) requires
some explanation. In fact, the box contributions do not involve a hZZ vertex but
instead the Higgs boson couples directly to the quarks. However, since

ghZZ
m2

q

m2
Z

=
v
�

g2
1 + g2

2
�

2
m2

q

m2
Z

=
2m2

Z
v

m2
q

m2
Z

=
2m2

q

v
, (5.22)

with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the
mass insertion in the box diagram the expected mass dependence for A

q
A0g2Z⇤ is

recovered.
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It is important to realize that as a result of the generalised Furry theorem theFurry theorem
vector-current coupling of the Z boson, which is proportional to the combination
(g�Zq + g+

Zq) of couplings, does not contribute to the spin-averaged matrix element
A0g2Z as given in (5.19). However, the axial-current part contributes, as signalled
by the factor (g�Zq � g+

Zq) in both (5.20) and (5.21), and this contribution is directly
connected to the U(1)A ⇥ SU(3)c gauge anomaly. In fact, a regulator and a loop
routing scheme must be introduced to properly define the amplitude A

q
A0g2Z4,

rendering its expression scheme-dependent – for a detailed explanation of this
point see for example [15]. Within the SM, the axial parts of the top- and bottom-
quark couplings obeyAnomaly

cancellation in the
SM

(g�Zt � g+
Zt) = �(g�Zb � g+

Zb) , (5.23)

and as a result all gauge anomalies are cancelled. It follows that the sum over q that
appears in (5.19) evaluates to

Â
q=t,b

(g�Zq � g+
Zq)A

q
A0g2Z4 = (g�Zt � g+

Zt)
⇣
A

t
A0g2Z4 �A

b
A0g2Z4

⌘
, (5.24)

and in consequence any scheme-dependent constant shift in the amplitude A
q
A0g2Z4

drops out in the combination
�
At

A0g2Z4 �Ab
A0g2Z4

�
. Notice that in the degenerate or

zero mass case the sum (5.24) vanishes identically. Since we treat the light-quark
generations as massless, down-, up-, strange-, and charm-quark loops hence do not
need to be included in the spin-averaged matrix element (5.19).

The amplitudes including the SMEFT contributions to (5.19) were computed with
the procedure outlined in Subchapter 5.3.2. Since the SM amplitudes were derived
in unitary gauge, only SMEFT contributions to vertices involving the Z boson have to
be considered. We have checked explicitly that in Feynman gauge, the SMEFT effects
in the Goldstone diagrams are equivalent to the effects in the longitudinal part of
the amplitude in unitary gauge. In addition to the contributions with an effective
Zqq̄ or Z`+`� vertex represented by the diagram on the left in Figure 5.4, there
are also contributions with hZqq̄ or hZ`+`� vertices. A corresponding graph is
depicted on the right in Figure 5.4. In these cases only the transversal part of (5.16)
contributes – the longitudinal part vanishes because the Z boson couples directly
to the leptons that are treated as massless – and therefore in addition to dropping
the factor DZ(s12) in (5.20), one also has to discard the longitudinal part in (5.16) by
removing the factor (1� s12/m2

Z). This leads to the following contributionContributions
with quartic Vh f f̄

vertices 2

4

⇣
dg(1)�

hZq � dg(1)+
hZq

⌘
gh`

Z`

DZ(s34)
+

⇣
g�Zq � g+

Zq

⌘
dg(1)h`

hZ`

DZ(s12)

3

5
A

q
A0g2Z4

⇣
1hg

g , 2hg
g , 3h`

` , 4�h`
¯̀

⌘

1� s12
m2

Z

,

(5.25)

from SMEFT diagrams with a hZqq̄ or hZ`+`� vertex. This contribution can be
included by simply adding the expression (5.25) to the sum over q in (5.19).

The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 5.4 de-
serve further discussion. In fact, in their sum these contributions cancel exactly [123],
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which is an interesting feature of the SMEFT. To explicitly see this cancellation we
rewrite the SMEFT Zqq̄ contribution to (5.20) in the following way

A
q
4

µ

⇣
dg(1)�

Zq � dg(1)+
Zq

⌘
gh`

Z` ghZZ

DZ(s12)DZ(s34)
=

v
2

⇣
dg(1)�

hZq � dg(1)+
hZq

⌘
gh`

Z`
2m2

Z
v�

s12 �m2
Z
�

DZ(s34)

= �

⇣
dg(1)�

hZq � dg(1)+
hZq

⌘
gh`

Z`

DZ(s34)
1

1� s12
m2

Z

.

(5.26)

Here we have used (5.9), (A.2), and (A.5) in the first step. Notice that the final result
in (5.26) is up to an overall sign and the amplitude A

q
A0g2Z4 equal to the first term

in (5.25), which proves the cancellation. For simplicity, we have treated m2
Z as real

here, however, the discussion does not change if one replaces it by its complex
counterpart m2

Z � imZGZ in both DZ(s12) and ghZZ. The only contributions that
remain for the operators in (5.2) are therefore the box contributions shown in the
middle of Figure 5.4. Note that for the operators in (5.1) both the triangle and box
diagrams are non-vanishing.

Notice that the cancellation of the triangle contributions in pp! Zh production Anomaly
cancellation in the
SMEFT

guarantees that both relevant and irrelevant anomalous contributions depending
on the Wilson coefficients of the operators (5.2) automatically annul. In fact, it
can be shown [124–128] that the cancellation of relevant anomalous contributions
is a general feature of the SMEFT, while the cancellation of irrelevant terms can
always be achieved by adding an appropriate local counterterm, i.e. a Wess-Zumino
term [129], to the SMEFT Lagrangian. As a result, the condition for the cancellation of
relevant gauge anomalies in the SMEFT is the same as in the SM and only dependent
on the gauge quantum numbers of the fermionic sector, as one would naively expect
from an effective field theory point of view. The observed cancellation between the
triangle contribution with a Zqq̄ and a hZqq̄ vertex hence implies that one does not
need to introduce a Wess-Zumino term to obtain a scheme-independent expression
for the gg! Zh amplitudes in the SMEFT.

We finally note that the amplitude for the generalised neutral current proportional
to dg(1)

hZZ as given in (5.13) vanishes in A0g2Z. Also dg(1)
hgZ and dg(2)

hgZ have no effect,

since the photon couples vectorially to the quark loop. Only dg(3)
hZZ as given in (A.4)

and the corresponding SMEFT operators contribute to gg ! Zh production. This
contribution is however not anomalous and hence needs no special treatment. Let us
finally mention that we have used OpenLoops 2 [130] as well as the implementation
SMEFT@NLO [45] together with MadGraph5_aMC@NLO [131] to cross check the results
presented in this section.

5.5 POWHEG Implementation

5.5.1 Squared matrix element Fortran library

We provide all squared matrix elements discussed in the previous sections in a self- Squared matrix
element Fortran
library

contained Fortran library [132]. Our library includes the spinor-helicity amplitudes
for the dimension-four SM and dimension-six SMEFT contributions as well as the
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definitions for the couplings and the propagators depending on the EW input
scheme, which are combined and evaluated numerically in the squared matrix
elements up to the desired SMEFT power counting order. Details on the library can
be found in [LS1, Sec. 3.3].

5.5.2 NNLO+PS implementation in POWHEG

In the following, we briefly describe how we implemented the fixed-order NNLO
SMEFT calculations of pp ! Zh ! `+`�h and pp ! Wh ! `nh in the POWHEG

framework. We first recall that within the SM, calculations of the pp! Vh processes
have recently reached NNLO+PS accuracy [118, 133–135]. In fact, here we follow the
approach presented in [118].

In the case of Higgsstrahlung from qq̄F, we use the MiNNLOPS method to match ourqq̄F generator
using POWHEG

MiNNLOPS
fixed-order NNLO matrix elements to the PS. As described in Chapter 4.3, the starting
point of MiNNLOPS is the calculation of the qq̄ ! Vh channel in association with
one light QCD parton at NLO according to the POWHEG method [18, 136], inclusive
in the radiation of a second light QCD parton. The computation of the relevant
matrix elements has been outlined in Section 5.3 and relies on the SM spinor-helicity
amplitudes calculated in [112–115]. In a second step, an appropriate Sudakov form
factor and higher-order corrections are applied such that the calculation remains
finite in the unresolved limit of the light partons and NNLO accurate for inclusive
qq̄ ! Vh production. In the third step, the kinematics of the second radiated
parton (accounted for inclusively in the first step) is generated following the POWHEG

method to preserve the NLO accuracy of the Vh plus jet cross section, including
subsequent radiation through Pythia 8.2 [33]. We stress that since all emissions
are ordered in transverse momentum (pT) and the used Sudakov form factor
matches the LLs generated by Pythia 8.2, the MiNNLOPS approach maintains the
LL accuracy of the PS. While our MiNNLOPS generator for qq̄! Vh production uses
the infrastructure of the NNLO+PS SM Higgsstrahlungs generator [118], the parts of
the code that calculate the matrix elements are entirely new and independent. To
validate our implementation of the SM computation we have performed extensive
numerical checks against [118]. The individual spinor-helicity amplitudes were
furthermore compared to a private implementation of the results presented in [112]
(which entered the calculation [137]), and results for the squared amplitudes were
numerically validated with OpenLoops 2 [130].

The ggF one-loop contributions to Higgsstrahlung, i.e. the gg! Zh process, canggF generator using
POWHEG instead be computed independently at LO+PS and simply added to the qq̄F results.

We have written a corresponding generator using the POWHEG framework. We have
validated our implementation of the corresponding SM spinor-helicity amplitudes
numerically against OpenLoops 2 at the level of the squared matrix element.

Besides the direct SMEFT contributions described in Chapter 5.3, the pp ! Vh
processes also receive corrections from the propagators of the Z and W bosons,
because SMEFT operators generically modify the masses and the total decay widths
of all unstable particles. Our POWHEG-BOX implementation contains the complete
tree-level shifts of the relevant masses and total decay widths that are induced by
the Wilson coefficients of the operators (5.1) to (5.4) for the a, the aµ as well as the
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LEP scheme. For instance, in the case of the total decay width of the Z and W boson
in the LEP scheme, we find the relevant shifts Decay width

corrections

dGZ ' �
v2

L2

h
1.99CHWB � 1.14C(1)

Hq � 3.89C(3)
Hq + 0.46CHd � 0.62CHu

+ 0.46C(1)
H` + 4.98C(3)

H` + 0.46CHe + 1.63CHD � 3.25C``

i
GeV ,

dGW ' �
v2

L2

h
4.77CHWB � 2.67C(3)

Hq + 5.31C(3)
H` + 2.16CHD � 3.32C``

i
GeV .

(5.27)

These results agree with those presented in the literature
�
see for instance [138]

�
.

We stress that we do not perform an expansion in the SMEFT corrections to the
propagators of the Z and W boson. In consequence, the dependence on the Wilson
coefficients of our numerical results is generally non-linear. The resulting non-linear
effects are however always very small.

5.6 Phenomenological analysis

In the following, we present NNLO+PS accurate results for pp! Zh! `+`�h with a
stable Higgs boson including the SMEFT effects discussed in Chapter 5.3. All SM input
parameters are taken from the most recent Particle Data Group (PDG) review [64].
We use the values a = 1/127.951, GF = 1.1663788 · 10�5 GeV�2, mZ = 91.1876 GeV,
GSM

Z = 2.4952 GeV, mh = 125.09 GeV and GSM
h = 4.1 MeV. The values of the weak

mixing angle, the U(1)Y and SU(2)L gauge coupling and the Higgs VEV are cal-
culated in the LEP scheme {a, GF, mZ}. The NNPDF31_nnlo_as_01180 PDFs [139] are
employed in our MC simulations and events are showered with PYTHIA 8.2 [33]
utilising the Monash tune [140]. To target the Z ! `+`� decay, we select events
with two charged leptons (electrons or muons). The leptons are defined at the
dressed level, meaning the lepton four-momentum is combined with the four-
momenta of nearby prompt photons arising in the shower using a dressing-cone
size of DR`g < 0.1. The leptons are required to have pT,` > 15 GeV and a pseu-
dorapidity of |h`| < 2.5. The invariant mass of the dilepton pair is restricted to
m`+`� 2 [75, 105] GeV. These restrictions are close to those imposed by the existing
ATLAS and CMS studies of [92, 93, 141–143] and we will simply refer to them as
fiducial cuts in what follows.

In order to showcase the sensitivity of pp ! Zh to contributions of the SMEFT
dimension-six operators listed in Section 5.2, we worked out benchmark scenarios
for the values of their Wilson coefficients that are still allowed by current experi-
mental constraints. The details of this discussion can be found in [LS1, Sec. 4], it
considers the PDG average for the W mass, the Z boson coupling measurements from
LEP and SLD, as well as h!WW, h! ZZ, h! gg and h! gZ measurements at
the LHC. The benchmarks are SMEFT Wilson

coefficient
benchmarksCHB = 0.015 , CHW = �0.05 , CHWB = 0 , (5.28)

for the operators modifying the VVh vertex, and

C(3)
Hq = 0.05 , C(1)

Hq = CHd = CHu = 0 , (5.29)
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Figure 5.5: NNLO+PS predictions for pp! Zh! `+`�h production in the SMEFT benchmark
scenario (5.28) assuming a common operator suppression scale of L = 1 TeV.
The four panels show the fiducial cross section differential in |hZ| (upper left),
pT,Z (upper right), |hZ � hh| (lower left) and mZh (lower right) for proton-proton
collisions at 13 TeV. The SM predictions are indicated by the solid black lines
while the solid (dotted) orange curves represent the SMEFT contribution linear
(quadratic) in the Wilson coefficients. The solid dark orange lines correspond
to the sums of the linear and quadratic SMEFT contributions. The lower panels
depict the ratios between the BSM and the SM distributions with the gray band
representing the SM scale uncertainties. See main text for further details.
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CHd = �0.1 , C(1)
Hq = C(3)

Hq = CHu = 0 , (5.30)

CHu = 0.1 , C(1)
Hq = C(3)

Hq = CHd = 0 , (5.31)

C(1)
Hq = 0.05 , C(3)

Hq = CHd = CHu = 0 , (5.32)

for the operators modifying the V f f̄ vertices. Wilson coefficients that are not listed
in above benchmarks are set to zero, the SMEFT scale L is assumed to be 1 TeV.

The four panels in Figure 5.5 display our NNLO+PS predictions for the process CHB, CHW , CHW B

pp! Zh! `+`�h in the SMEFT benchmark scenario (5.28) assuming LHC collisions
with a center-of-mass energy of

p
s = 13 TeV. The fiducial cross sections differ-

ential in the Z-boson pseudorapidity |hZ| (upper left) and transverse momentum
pT,Z (upper right) as well as the pseudorapidity difference |hZ � hh| (lower left)
and the invariant mass mZh (lower right) of the Zh system are shown. The cen-
tral renormalization scale µR and factorization scale µF are set according to the
MiNNLOPS procedure [86, 87] (see Section 4.3) and the gray bands in the lower panels
represent the corresponding perturbative uncertainties in the SM. These uncertain-
ties have been obtained from seven-point scale variations enforcing the constraint
1/2  µR/µF  2. Within the SM they do not exceed 5% for what concerns the
considered distributions, and relative scale uncertainties of very similar size are
also found in the case of the SMEFT spectra. The SM predictions are indicated by
the solid black lines while the solid (dotted) orange curves represent the SMEFT
contributions that are linear (quadratic) in the Wilson coefficients. Notice that the
linear (quadratic) SMEFT contributions arise from the interference of the SMEFT and
SM amplitudes (self-interference of the SMEFT amplitudes). The solid dark orange
lines finally correspond to the sums of the linear and quadratic SMEFT contributions.
We observe that in the case of the |hZ| distribution the SMEFT effects related to CHB
and CHW to first approximation simply shift the spectra by a constant amount. In
the cases of the pT,Z, the |hZ� hh| and the mZh spectra the relative sizes of the SMEFT
corrections instead grow with increasing pT,Z, |hZ � hh| and mZh, respectively. It
is also evident from all panels that the quadratic SMEFT contributions are negligi-
bly small compared to the linear terms. Numerically, we find that the benchmark
scenario (5.28) leads to relative corrections of around +2% to +5% in the studied
distributions – the fiducial cross section is enhanced by +3.5% compared to the SM.

Notice that while the predicted deviations are sometimes larger than the cor-
responding SM scale uncertainties, they are typically smaller than the ultimate
projected HL-LHC accuracy in Zh production channel that amounts to 5% [94, 95].
From this numerical exercise one can conclude that future constraints on the Wilson
coefficients CHB, CHW and CHWB from Vh production are unlikely to be as stringent
as the limits that future determinations of the Higgs signal strengths in h ! gg
and h! gZ will allow to set.
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Figure 5.6: As Figure 5.5 but for benchmark scenario (5.29) with L = 1 TeV. The yellow
lines correspond to the BSM results.
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Figure 5.7: As Figure 5.5 but for benchmark scenario (5.30) assuming L = 1 TeV. The red
curves represent the BSM results.
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Figures 5.6 to 5.8 contain our NNLO+PS predictions for pp ! Zh ! `+`�hC(3)
Hq , CHd,

CHu, C(1)
Hq production in the SMEFT benchmark scenarios (5.29) to (5.31). In all cases we have

employed an operator suppression scale of L = 1 TeV. The results depicted in
the first three figures show very similar features. In all cases the relative SMEFT
corrections are rather flat in the |hZ| and |hZ � hh| distributions, while in the case
of the pT,Z and mZh spectra they get larger with increasing pT,Z and mZh. The
observed high-energy growth is expected from (5.15) and in all three cases most
pronounced in the pT,Z distribution. One also sees that the linear SMEFT effects are
largest in the benchmark scenario with C(3)

Hq = 0.05 where they can exceed +50%
compared to the SM for pT,Z > 300 GeV. The respective effects in the benchmark
scenario with CHd = �0.1 (CHu = 0.1) just correspond to around +7% (+20%).
The observed hierarchy of SMEFT effects can be traced back to the approximate
pattern g�Zd ' �g�Zu ' �6g+

Zd ' 3g+
Zu of left- and right-handed Z-boson couplings

within the SM and the feature dg(1)�
Zd µ �C(3)

Hq and dg(1)�
Zu µ C(3)

Hq – see (A.6). Notice
also that the size of the quadratic SMEFT corrections is relatively small in the case
of (5.29) while these effects are comparable to or even larger than the linear terms
for the benchmark scenarios specified in (5.30) and (5.31). In the case of the SMEFT
benchmark scenario (5.32) the pattern of SMEFT deviations turns out to be more
complicated. This is illustrated in the four panels of Figure 5.9. One observes that the
linear SMEFT effects are typically small and even change sign in some distributions as
indicated by the transitions from solid to dashed lines. To understand these features
it is important to realize that g�Zd ' �g�Zu, dg(1)�

Zd µ �C(1)
Hq and dg(1)�

Zu µ �C(1)
Hq and

to keep in mind that the down-quark luminosity in a proton is smaller than the up-
quark luminosity at large x while the two luminosities are of similar size at small x.
For the choice C(1)

Hq = 0.05, the down- and up-quark contributions thus tend to
cancel leading to a numerical suppression of the full linear SMEFT effects compared
to naive expectation. It is also evident from the shown results that the quadratic
SMEFT corrections are as large in magnitude as the linear terms. In fact, in the case
of the pT,Z and mZh spectra the two types of SMEFT effects have opposite relative
signs resulting in very small combined BSM contributions not exceeding the level of
+2% in the case of the pT,Z distribution. Notice finally that due to the energy growth
most of the sensitivity to the SMEFT effects considered in Figures 5.6 to 5.9 comes
from the high-energy tails of kinematic distributions such as the pT,Z and mZh
spectra. In such a case the Higgs-boson decay products are significantly boosted,
giving rise to very specific kinematic features and providing additional handles to
distinguish signal from background events. The articles [101–103] have exploited
this feature to obtain stringent constraints on the dimension-six operators (5.2)
using future hypothetical hadron collider measurements of Vh production. The
MiNNLOPS generator presented in this work would allow to improve the accuracy
of these studies from the NLO+PS to the NNLO+PS level. A comparison between
the NLO+PS of [100] and our NNLO+PS predictions detailing the size of the NNLO
corrections can be found in Appendix B.



5.6 Phenomenological analysis 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.001

0.010

0.100

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.950
0.975
1.000
1.025
1.050
1.075
1.100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.001

0.010

0.100

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.90
0.95
1.00
1.05
1.10

200 250 300 350 400 450
10-5

10-4

0.001

0.010

0.100

1

200 250 300 350 400 450
0.90
0.95
1.00
1.05
1.10

100 150 200 250 300 350

10-4

0.001

0.010

0.100

100 150 200 250 300 350
0.9
1.0
1.1
1.2
1.3
1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.001

0.010

0.100

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.950
0.975
1.000
1.025
1.050
1.075
1.100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.001

0.010

0.100

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.90
0.95
1.00
1.05
1.10

200 250 300 350 400 450
10-5

10-4

0.001

0.010

0.100

1

200 250 300 350 400 450
0.90
0.95
1.00
1.05
1.10

100 150 200 250 300 350

10-4

0.001

0.010

0.100

100 150 200 250 300 350
0.9
1.0
1.1
1.2
1.3
1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.001

0.010

0.100

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.950
0.975
1.000
1.025
1.050
1.075
1.100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.001

0.010

0.100

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.90
0.95
1.00
1.05
1.10

200 250 300 350 400 450
10-5

10-4

0.001

0.010

0.100

1

200 250 300 350 400 450
0.90
0.95
1.00
1.05
1.10

100 150 200 250 300 350

10-4

0.001

0.010

0.100

100 150 200 250 300 350
0.9
1.0
1.1
1.2
1.3
1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.001

0.010

0.100

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.950
0.975
1.000
1.025
1.050
1.075
1.100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.001

0.010

0.100

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.90
0.95
1.00
1.05
1.10

200 250 300 350 400 450
10-5

10-4

0.001

0.010

0.100

1

200 250 300 350 400 450
0.90
0.95
1.00
1.05
1.10

100 150 200 250 300 350

10-4

0.001

0.010

0.100

100 150 200 250 300 350
0.9
1.0
1.1
1.2
1.3
1.4

Figure 5.8: As Figure 5.5 but for benchmark scenario (5.31) with L = 1 TeV. The blue lines
are the BSM results.
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Figure 5.9: As Figure 5.5 but for benchmark scenario (5.32) assuming L = 1 TeV. The SMEFT
predictions are colored in magenta. In the case of the linear SMEFT contributions
the solid (dashed) lines correspond to positive (negative) corrections to the
relevant distribution.
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5.7 Summary

We have presented novel SMEFT predictions for Higgsstrahlung in hadronic colli-
sions. Specifically, we have calculated the NNLO QCD corrections for the complete
sets of dimension-six operators that describe the interactions between the Higgs
and two vector bosons and the couplings of the Higgs, a W or a Z boson, and
light fermions. These fixed-order predictions have been consistently matched to
a PS using the MiNNLOPS method and the matching has been implemented into the
POWHEG-BOX. Our new MC implementation allows for a realistic exclusive descrip-
tion of Vh production at the level of hadronic events including SMEFT effects. This
feature makes it an essential tool for future Higgs characterization studies by the
ATLAS and CMS collaborations, and we therefore make the relevant code available
for download on the official POWHEG-BOX web page [144]. Notice that together with
the MC code presented in [108], one can now simulate the pp ! Zh ! `+`�bb̄
and pp ! Wh ! `nbb̄ processes at NNLO+PS including a total number of 17
dimension-six SMEFT operators.

We have performed an NNLO+PS study of the impact of SMEFT contributions on
several kinematic distributions in pp! Zh! `+`�h production for a stable Higgs
boson considering the simple benchmark scenarios identified earlier. While in our
POWHEG implementation the user can choose between the a, aµ, and LEP schemes, for
concreteness our discussion was based on the LEP scheme which uses {a, GF, mZ} as
EW input parameters. Another feature of our MC code worth highlighting is that it is
able to compute separately both the SMEFT corrections that are linear and quadratic
in the Wilson coefficients. Our numerical analysis showed that once the stringent
constraints from mW , h ! gg and h ! gZ are imposed the numerical impact
of CHB, CHW and CHWB on the kinematic distributions in pp ! Zh ! `+`�h are
rather limited, amounting to relative deviations of no more than 5%. Future limits
on the Wilson coefficients of the effective interaction in (5.1) from Vh production
are therefore unlikely to be competitive with the limits that future determinations
of the Higgs signal strengths in h ! gg and h ! gZ will allow to set. This will
in particular be the case if the latter measurements turn out to be SM-like. The
situation turns out to be more promising in the case of the operators (5.2) that
induce couplings of the Higgs, a W or a Z boson and light quarks. The sensitivity of
pp! Zh! `+`�h to the Wilson coefficients C(1)

Hq , C(3)
Hq , CHd, and CHu arises from the

energy growth of the respective amplitudes which results in enhanced high-energy
tails of kinematic distributions such as the pT,Z and mZh spectra. Numerically, we
found that these enhancements can reach 50% in the pT,Z spectrum in the region
where the Higgs-boson decay products are significantly boosted. As shown in the
papers [101–103], future hypothetical HL-LHC measurements of Vh production can
therefore provide constraints on the Wilson coefficients C(1)

Hq , C(3)
Hq , CHd, and CHu

that are competitive with the bounds obtained from projected global SMEFT fits.
Utilising the MiNNLOPS generator presented in this work would allow to improve the
accuracy of the studies [101–103] from the NLO+PS to the NNLO+PS level.

Notice that in our phenomenological analysis we have focused on the 0-jet cate-
gories of the stage 1.2 simplified template cross sections (STXS) framework [145–147]
for the Vh production processes. However, it is important to realize that our POWHEG
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implementation of the Higgsstrahlungs processes also allows to simulate the dif-
ferent 1-jet STXS categories with NLO+PS accuracy. This represents an important
improvement compared to the MC code presented in [100] or the SMEFT@NLO pack-
age [45] which are only LO+PS accurate for 1-jet observables in Vh production.
Finally, the presented squared matrix element library contains all spinor-helicity
amplitudes that are needed to obtain NNLO+PS predictions for DY production taking
into account the effects of the dimension-six operators (5.2) and (5.3). Modify-
ing the code such that one can calculate the SMEFT effects in diboson production
at NNLO+PS due to operators that induce anomalous triple gauge couplings is also
relatively straightforward.



Part (II)

N O V E L S I G N AT U R E S

“What makes the desert beautiful”,
the little prince said, “is that it hides a well somewhere...” [...]

Whether it’s a house or the stars of the desert,
what makes them beautiful is invisible!

— Antoine de Saint-Exupéry





6
V E C T O R L E P T O Q UA R K E F F E C T S I N D R E L L - YA N AT N L O + P S

Walter Innes suggested that,
if a particle named “Upsilon” turned out to be a mirage,

they could simply call it an “Oops-Leon”.

— On the discovery of the U (bb̄) particle [148],
providing the first strong evidence for

the third fermion family

6.1 Introduction

In this section, we present aspects of our publication [LS3] that are particularly
relevant in the context of predicting novel signatures at the LHC. We derived
NLO+PS accurate predictions for VLQ effects in pp! t+t�, including the additional
structure from the full 4321 gauge completion entering in loops. As previously stated
in Chapter 3.2, VLQs are expected to mainly couple to the third fermion family,
assuming they are related to the flavor puzzle of the SM. It is therefore desirable
to combine both pp! t+t� and pp! t+t�b final states in a consistent MC code,
given that signatures with and without jets tagged as b-jets are studied in LHC
analyses. Although the b-tag category is subject to lower statistics, it benefits from a
much better signal-to-background ratio between the VLQ and SM contributions. As
such, VLQs provide an excellent benchmark for a bottom-philic scenario, i.e. a model
that is mainly coupled to the third fermion family. These evade searches involving
light quarks and therefore constitute a more exotic signature at the LHC.

Several different search strategies for third-generation LQs have so far been con- The t-channel LQ
exchange in DYsidered at the LHC. While the ATLAS and CMS collaborations have initially focused

on strong LQ pair production in gluon-gluon fusion or quark-antiquark annihilation, Further detailed
investigations of
other non-resonant
phenomena
in DY production
related to the semi-
leptonic B-decay
anomalies can be
found in the
articles [149–165].

recently also single LQ production in gluon-quark fusion and t-channel LQ exchange
in DY dilepton production have been exploited to constrain the LQ-quark-lepton
couplings. See [166–170] for the latest experimental results of these kinds. Reso-
nant LQ signatures arising from quark-lepton annihilation at the LHC [171–174] have
also been studied and found to provide complementary information compared to
the other third-generation LQ search strategies [175].

In the context of the singlet VLQ model, LHC searches for non-resonant di-tau
final states have been shown to be particularly important [169, 176–181]. Given the
relevance of the pp! t+t� process, the main goal of this article is to improve the
theoretical description of DY dilepton production in models with a singlet VLQ by
calculating the relevant NLO corrections in QCD. These fixed-order predictions are NLO+PS

implementation
based on the
POWHEG method

109
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then consistently matched to a PS utilising the POWHEG method [18, 136] as imple-
mented in the POWHEG-BOX [21]. This allows for a realistic exclusive description
of DY dilepton processes in singlet VLQ models at the level of hadronic events.
Similar calculations have been performed in the case of scalar LQs in [182, LS4]
and the research presented in the following constitutes a non-trivial extension
of [LS4]. The added complications that arise here are related to the fact that
unambiguous NLO QCD calculations are only possible in the case of a massive
VLQ if the corresponding field is embedded into a consistent UV-complete model.
An inescapable consequence of such an embedding is the presence of additional
states, like for example colorons, which carry non-zero SU(3)c charges and have
masses close to that of the VLQ [178, 183]. As stressed in the second part of the
trilogy [61, 63, 184], a proper treatment of all O(as) corrections is therefore nec-
essary to determine the full NLO QCD contributions. Calculations such as [185]
that only include the corrections associated to virtual and real QCD emissions can
lead to inaccurate results in realistic third-generation VLQ models. In order to
obtain the proper O(as) corrections to DY dilepton production in VLQ models,
our NLO+PS POWHEG-BOX implementation therefore contains the contributions from
virtual and real gluons as well as coloron loops. The obtained analytic expressions
furthermore serve as an independent cross check of the computations presented in
the publication [61].

In our phenomenological analysis, we discuss the numerical impact of the
NLO QCD corrections on the kinematic distributions that enter the existing ATLAS
and CMS searches for non-resonant phenomena in di-tau final states. Since it is
known that the requirement of additional final-state jets containing the decay of
a B hadron (i.e., jets tagged as b -jets) helps to improve the LHC sensitivity of third-
generation LQ searches [153, 157, 166, 169, 170, 186–191], we pay special attention
to this feature in our study. Based on our DY di-tau analyses we are able to derive
improved limits on the parameter space of third-generation singlet VLQ models us-
ing the results [169] that utilise the full LHC Run II integrated luminosity of 138 fb�1

obtained for proton-proton collisions at
p

s = 13 TeV.

6.2 Theoretical framework

As we have seen in Chapter 3.2, a singlet VLQ may be added to the SM LagrangianEffective
VLQ–fermion
interactions

with the effective fermion interactions

L f �
g4
p

2

h
b

ij
L q̄ i,c1

L gµ `j
L + b

ij
R d̄ i,c1

R gµ e j
R

i
Uc1

µ + h.c. (6.1)

In Chapter 3.2, we considered b
ij
R = b

ij
L = di3dj3 based on the SU(4)[3] unification,In our POWHEG-BOX

implementation
of the simplified

Lagrangian (6.1),
the relevant

third-generation
LQ-quark-lepton

couplings are treated
as real.

but from a general bottom-up point of view the fermion–VLQ interactions may
come with arbitrary bL, bR. In the context of the anomalies in b ! s`+`� and
b! ct�n̄, the LQ-quark-lepton couplings b33

L , b33
R , b23

L , b32
L , b22

L were usually chosen
to be non-zero and to follow the pattern |b33

L | ' |b33
R | & |b23

L |� |b32
L | ' |b22

L |, while
the remaining couplings were omitted.

The simplified interactions described by (6.1) do not provide a consistent UV com-
pletion for the singlet VLQ field which renders higher-order perturbative calculations
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based on (6.1) in general ambiguous. As we have seen, a well-motivated class of The need for a UV
completionUV-complete theories that incorporates a singlet VLQ are non-universal SU(4)[3]

theories. The minimal gauge group that leads to the effective interactions of the
form (6.1) and that is phenomenologically viable is The 4321 gauge

group
SU(4)[3]

⇥ SU(3)[12]
⇥ SU(2)L ⇥U(1)X , (6.2)

the 4321. Below, we restrict ourselves to the SU(4)[3] ⇥ SU(3)[12] sector of (6.2)
which includes the LQ interactions and O(as) corrections thereof (see Chapter 3.2
for an overview), while neglecting contributions that involve the SU(2)L ⇥U(1)X
subgroup. This means in particular that we do not consider contributions to DY
dilepton production that arise from the color singlet state Z0 that also appears in the
spectrum of the 4321 model after spontaneous symmetry breaking [183, 192–196].
This omission is firstly motivated because the Z0 does not contribute to the O(as)
corrections we are interested in. Secondly, while the color singlet does contribute to Contributions

from the Z0
DY dilepton production, the tree-level s-channel exchange of a Z0 leads to a narrow
resonance in the dilepton invariant mass spectrum of pp ! t+t�. In contrast,
the leading contribution to DY dilepton production due to (6.1) corresponds to
a non-resonant signal associated to t-channel exchange of the singlet VLQ. Since
experimentally resonant DY dilepton signatures can in principle be disentangled
from non-resonant ones, treating the Z0 and the U contributions also separately in
a theoretical analysis seems justified.

6.3 Calculation in a nutshell

Representative Feynman diagrams leading to DY di-tau production in the presence LO and NLO real
contributionsof (3.59), (6.1) are displayed in Figures 6.1 and 6.2. The first figure shows the tree-

level process involving t-channel singlet VLQ exchange (left) and the corresponding
real gluon corrections (middle and right). Notice that all depicted contributions
are initiated by bottom-quark (bb̄) fusion. We include real contributions with both We work in the

five-flavour scheme,
where charm- and
bottom-quarks are
considered as
partons in the proton
and as such have a
corresponding PDF.

non-resonant (middle) and resonant (right) intermediate U states, the latter case
corresponding to single-LQ production with a subsequent decay of the singlet VLQ to
a pair of a bottom quark and an anti-tau, i.e. gb ! Ut� followed by U ! bt+.
These resonant diagrams also contribute at O(as) and are particularly important for
invariant di-tau masses (mtt) close to the singlet VLQ mass MU . At the same time, we
neglect O(as) corrections associated to real coloron emissions. This is theoretically
justified because these contributions are, unlike the real gluon emissions, IR finite
by themselves. Furthermore, the stringent bounds on the coloron mass from LHC
searches for dijet and ditop production [181] that impose MG 0 & 3 TeV are expected
to render the resonant G 0 contribution to the bb̄! t+t� process insignificant for
all practical purposes.

In Figure 6.2, we display an assortment of the virtual O(as) contributions that NLO virtual
contributionsare included in our calculation. The three factorizable corrections shown on the left

exhibit UV divergences, which only cancel if both the gluon and coloron contribu-
tions are included. This shows that the coloron contributions are intimately tied to
the gluon corrections in the 4321 model. Notice that besides the interaction terms
between the SM fermions and the colored gauge bosons (3.59) also factorizable



112 Vector Leptoquark Effects in Drell-Yan at NLO+PS

Figure 6.1: Examples of singlet VLQ contributions to the DY di-tau spectrum initiated
by bottom-quark fusion. The left Feynman diagram describes the tree-level
process involving t-channel singlet VLQ exchange (U), while the middle (right)
graph represents the real gluon (g) corrections with non-resonant (resonant)
intermediate U. See main text for further details.

Figure 6.2: Virtual O(as) corrections to the singlet VLQ contribution in DY di-tau production,
with a gluon (g) or a coloron (G 0) running in the loop. The three graphs on
the left show the factorizable contributions. They arise from LQ-quark-lepton
vertex corrections as well as from LQ and quark wave function corrections. The
diagram on the far right depicts a non-factorizable contribution due to a box
diagram. For additional explanations consult the main text.

diagrams with vertices involving only colored gauge bosons and graphs with Gold-
stone bosons and ghosts need to be considered if the computation is performed
in the Feynman or any other renormalisable or Rx gauge (see Subchapter 3.2.2 for
details). Last but not least, the process bb̄! t+t� receives finite contributions from
the non-factorizable box diagram shown on the very right in Figure 6.2.

Besides QCD corrections to the bb̄! t+t� process, we also study the potential
size of interference effects between the SM background and the singlet VLQ signal.
We treat these effects at the LO in perturbation theory, which means that ourOur newest

POWHEG-BOX
implementation also

contains all
interference

contributions at
NLO+PS

accuracy [197].

POWHEG-BOX implementation of DY dilepton production contains the squared matrix
elements built from the SM corrections involving Z-boson or photon exchange
in the s-channel and the t-channel singlet VLQ exchange contribution (cf. the left
diagram in Figure 6.1).

In the calculation of the squared matrix elements, we use conventional dimen-
sional regularization for both UV and IR singularities. For the generation and
computation of the squared matrix elements, we rely on the Mathematica packages
FeynRules [198], FeynArts [199], FormCalc [122] and Package-X [200], while mak-
ing use of LoopTools [121] for the numerical evaluation of the Passarino-Veltman
integrals that appear in the one-loop contributions. Hereafter, we work in the OS
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scheme. To deal with the soft and collinear singularities of the real corrections to
the t-channel singlet VLQ exchange contribution, cf. the middle diagram in Fig-
ure 6.1, and to cancel the IR poles of the one-loop virtual corrections, cf. the first and
the third diagram in Figure 6.2, we exploit the FKS subtraction [27, 28]. Specifically,
we use the POWHEG-BOX to automatically build the soft and collinear counterterms
and remnants, also checking the behaviour of the real squared matrix elements in
the soft and collinear limits against their soft and collinear approximations. Notice
that the real NLO QCD contributions that describe resonant single production of a U
and its subsequent decay, cf. the right diagram in Figure 6.1, are IR finite and hence
do not require an IR subtraction. Our MC code therefore allows to achieve NLO+PS
accuracy for DY dilepton production in singlet VLQ models. The presented generator
is in particular able to generate events with one additional QCD parton from the
matrix element calculation without the need to introduce a spurious merging or
matching scale. Two-jet events are instead exclusively generated by the PS in our
MC setup.

6.4 Numerical applications

We have presented the calculation of the G(U ! bt+) partial decay width of the NLO partial decay
width
We neglect the
impact of radial
modes. In the case of
the partial decay
widths this has been
shown in [61] to be
an excellent
approximation for
MU , MG0 ⌧ MR
with MR denoting
the common mass of
the radial modes.

singlet VLQ at O(as) accuracy in Subchapter 3.2.3. The same calculation for the limit
xU = M2

U/M2
G0 = 1 has been published previously in [61]. Notice that in the more

generic case of the LQ-quark-lepton interactions (6.1), the total decay width of the
LQ includes the processes U ! bt+ and U ! tn̄t, and can be obtained from (3.85)
by the simple replacement

g2
4 ! g2

4

h�
2� 3xt/2 + x3

t /2
� ��b33

L
��2 +

��b33
R
��2
i

/2 . (6.3)

Here xt = m2
t /M2

U and we have included the corrections due to the non-negligible
top-quark mass mt ' 163 GeV that arise from the tree-level phase space and the
squared matrix element at LO. Top-quark mass terms that arise at O(as) and that
would lead to a flavour-dependent correction D(xU) are instead neglected. We
believe this simplification to be an excellent approximation for LQ and coloron
masses in the TeV range. Before moving on, let us finally add that the finite,
renormalization scale independent corrections (3.85) also appear as universal O(as)
contributions to all low-energy observables that involve a LQ-quark-lepton vertex
resulting from (6.1). These corrections can be simply included by using, instead
of the tree-level coupling g4, the QCD corrected on-shell coupling g4 (1 + D(xU)/2)
in the low-energy predictions [61]. We have displayed the numerical size of the
NLO QCD correction D(xU), as defined in (3.85), in Figure 3.4. There, we found a
large xU-dependence of D(xU). To gauge the ambiguities in our numerical analysis
that are related to the choice of the masses of the heavy colored vector states of the
4321 model, we will employ two benchmarks, namely MG 0 = MU and MG 0 = 2.5MU .
While the former choice is motivated by simplicity, the second option reflects the
fact that the existing LHC bounds on the mass of the coloron are more stringent
than those on the singlet VLQ by at least a factor of two [167, 181].
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Figure 6.3: Inclusive pp ! t+t� production cross sections as a function of mtt for
the parameter choices g4 = 1 and MU = 2 TeV. The blue and dark green
correspond to the LQ distributions at the LO (LQ LO) and the NLO (LQ NLO) in
QCD, respectively, while the light green histograms illustrate the magnitude
of the interference effects between the SM background and the LQ signal (SM-
LQ LO). In the case of the solid (dashed) dark green line the coloron mass is set
to MG 0 = 2 TeV (MG 0 = 5 TeV). The lower panel depicts the ratios between the
different LQ contributions and the relevant LQ LO distribution.

The simplest observable that one can study in DY di-tau production is the in-Inclusive mtt

spectrum variant mass mtt of the di-tau system. In Figure 6.3, we present our results for
the LQ corrections to the corresponding spectrum in inclusive pp ! t+t� pro-
duction, employing NNPDF40_nlo_as_01180 PDFs [201]. The blue and dark green
lines resemble the LQ distributions at the LO (LQ LO) and the NLO (LQ NLO) in QCD,
respectively, while the light green curve illustrates the size of the interference effects
between the SM background and the LQ signature (SM-LQ LO). In the case of the
solid (dashed) dark green line the coloron mass is set to MG 0 = 2 TeV (MG 0 = 5 TeV).
From the lower panel of the plot it is evident that the NLO QCD effects play an im-The SM-LQ LO

results shown in
Figures 6.3, 6.4 and

6.5 represent the
magnitudes of the

corresponding
predictions for the
interference effects

between the SM
background and

the LQ signal.

portant role in obtaining precise predictions as they amount to around 40% (150%)
at mtt = 1.5 TeV (mtt = 3 TeV) compared to the tree-level LQ prediction. Notice
that at NLO in QCD the DY di-tau production spectra resulting from LQ exchange
depend on the mass MG 0 of the coloron. For the two choices of MG 0 shown in the
figure, we find relative differences of the order of 10% between the two distributions.
The observed effects are therefore similar in size to the MG 0 dependence of the
O(as) corrections to the partial decay width of the U ! bt+ channel (cf. Figure 3.4).
The interference effects between the SM DY background and the LQ signal turn out
to be destructive in the shown mtt range, amounting to approximately 15% (5%)
for mtt = 1.5 TeV (mtt = 3 TeV).
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Figure 6.4: Ratios between the individual LQ corrections and the inclusive DY SM back-
ground calculated at the NLO in QCD. The shown results correspond to the
fiducial region defined by pT,t > 30 GeV, |ht | < 2.5 and mtt 2 [1300, 5000] GeV.
The left (right) plot depicts the results as a function of MU (g4) for fixed g4 = 1
(MU = 2 TeV). The color coding and meaning of the different curves resembles
those in Figure 6.3. Additional details can be found in the main text.

In Figure 6.4, we furthermore display the ratios between the individual LQ Dependence on
MUcontributions and the DY di-tau SM background. The normalization is calculated

at the NLO in QCD and we select events with two opposite-sign same-flavour tau
leptons that are both required to have a transverse momentum of pT,t > 30 GeV and
a pseudorapidity of |ht| < 2.5. The invariant masses of the di-tau pairs must fall into
the range mtt 2 [1300, 5000] GeV. Detector efficiency corrections are not taken into
account. The left panel displays our results as a function of MU fixing the overall
coupling strength that appears in (6.1) to g4 = 1. From this figure it is clearly visible
that the relative size of the NLO QCD corrections decreases for increasing singlet
VLQ mass. Numerically, we find relative effects of around 330%, 50% and 15% for
MU = 1 TeV, MU = 2 TeV and MU = 3 TeV, respectively. This feature can be traced
to the fact that the NLO QCD corrections related to s-channel single-LQ production
followed by the decay of the LQ, cf. the right Feynman diagram in Figure 6.1,
decouple faster than the real and virtual corrections to the t-channel Born-level LQ
contribution, cf. the middle graph in Figure 6.1 and the gluon-exchange diagrams in
Figure 6.2. One also observes that the interference effects represent only subleading
corrections in the mass window mtt 2 [1300, 5000] GeV, amounting to an effect of
at most �2% relative to the SM background for the considered MU values.

On the r.h.s in Figure 6.4, we finally depict our ratio predictions as a function Dependence on g4

of g4, setting the mass of the singlet VLQ to MU = 2 TeV. It is evident from the plot
that the relative size of the NLO QCD corrections decreases for increasing overall
coupling strength. In the case of MG 0 = 2 TeV, the higher-order QCD effects amount,
compared to the tree-level LQ result, to around 140%, 50%, and 30% for g4 = 0.5,
g4 = 1 and g4 = 2. For MG 0 = 5 TeV the corresponding numbers read 150%, 70%,
and 50%. This behaviour can be understood by realizing that the squared amplitude
of the t-channel Born-level LQ contribution scales as |g4|

4, while the resonant single-
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LQ production rate is proportional to |g4|
2. One again sees that the interference

contributions are numerically subleading even for large couplings g4 where they
just reach the level of �10%.

6.5 Phenomenological analysis

LHC searches for signatures involving tau pairs in the final state like those performedFull
phenomenological
analysis of b-veto

and b-tag
categories

in the publications [166, 169, 170] are known [176–181] to provide strong constraints
on LQ models. To illustrate the role that additional b -jets play in analyses of
this kind, we will consider as an example the recent CMS search [169] for tt
final states with both taus decaying to hadrons (th). These th candidates are
distinguished from jets originating from the hadronization of light-flavoured quarks
or gluons, and from electrons or muons by employing the t-tagger described in
the article [202]. The used working points have an efficiency of approximately 50%,
70% and 70% for identification in the case of jets, electrons and muons, respectively.
The corresponding rejection factors are about 230, 20, and 770. Both th candidates are
required to have pT,t > 40 GeV and |ht| < 2.1, and their pseudorapidity-azimuth
separation must be greater than DRtt = 0.3. Jets are clustered using the anti-kt
algorithm with radius R = 0.4, as implemented in FastJet [203]. Light-flavoured
quark or gluon jets need to fulfil pT,j > 30 GeV and |hj| < 4.7, while b -jets with
pT,b > 20 GeV and |hb| < 2.5 are selected. In order to identify b -jets, we employ
the CMS b -tagging efficiencies stated in [204, 205]. The used b -tagging working point
yields a b -tagging efficiency of around 80% and a rejection in the ballpark of 100
for jets arising from light-flavoured quarks or gluons. Our analysis is implemented
into MadAnalysis 5 [206] and employs Delphes 3 [207] as a fast detector simulator.
Pythia 8 [33] is used to shower the events. Effects from hadronization, underlying
event modelling or QED effects in the PS are not included in our MC simulations.
Applying our MC chain to the SM NLO DY prediction obtained with the POWHEG-BOX,
we are able reproduce the SM DY background as given in [169] to within around
30%. This comparison represents a non-trivial cross check of our di-tau analysis.

In order to separate the LQ signal from the SM background, the distributions ofTotal transverse
mass mtot

T the total transverse mass defined as [208]

mtot
T =

q
m2

T(~p t1
T ,~p t2

T ) + m2
T(~p t1

T ,~pmiss
T ) + m2

T(~p t2
T ,~pmiss

T ) , (6.4)

are considered. Here t1 (t2) refers to the first (second) hadronic t candidate and
~p t1

T , ~p t2
T and ~pmiss

T are the vectors with magnitude pT,t1 , pT,t2 and Emiss
T . The missing

transverse energy constructed from the transverse momenta of all the neutrinos in
the event is denoted by Emiss

T . The transverse mass of two transverse momenta pT,i
and pT,j entering (6.4) is given by

mT(~p i
T,~p j

T) =
q

2 pT,i pT,j (1� cos Df) , (6.5)

where Df is the azimuthal angular difference between the vectors ~p i
T and ~p j

T.
In Figure 6.5, we compare the mtot

T distributions as defined in (6.4) within the
SM and the 4321 model (6.1) for the parameter choices g4 = 1 and MU = 2 TeV.
The left (right) panel displays the results for the no b -tag (b -tag) category. The black
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Figure 6.5: Distributions of mtot
T in the no b -tag (left panel) and the b -tag (right panel)

category in the final state containing two hadronic tau leptons. The black curves
correspond to the SM expectations of the DY background provided by CMS
in [169]. This search is based on 138 fb�1 of integrated luminosity collected in
pp collisions at

p
s = 13 TeV. The blue and dark green curves instead represent

the LQ LO and LQ NLO predictions assuming g4 = 1 and MU = 2 TeV. In the case
of the solid (dashed) dark green lines the coloron mass is set to MG 0 = 2 TeV
(MG 0 = 5 TeV). The light green histograms illustrate the size of the interference
effects between the LQ signal and the SM background called SM-LQ LO. The defi-
nition of the signal regions (SRs) and other experimental details can be found in
the main text.

curves represent the SM expectations of the DY background taken from [169], while
the blue and dark green histograms are the LQ LO and LQ NLO predictions ob-
tained using our POWHEG-BOX code. The solid (dashed) dark green LQ NLO results
assume MG 0 = 2 TeV (MG 0 = 5 TeV). All predictions correspond to 138 fb�1 of pp
data collected at

p
s = 13 TeV. From the lower left panel one sees that in the no b -

tag category the NLO LQ contribution amounts to a relative correction of less than
10% compared to the SM DY background for mtot

T > 1300 GeV. For what concerns
the b -tag category, one instead observes from the lower right panel that in the
highest mtot

T bin with mtot
T > 900 GeV the NLO LQ signal constitutes around 85% of

the SM DY background. This feature clearly shows that for third-generation VLQs
the sensitivity of DY searches notably improves by demanding an additional b -jet
in the final state. It is furthermore important to realize that the NLO QCD effects
enhance the LO LQ predictions in the no b -tag (b -tag) category by approximately
35% (30%) in the highest mtot

T bin, making higher-order QCD effects phenomeno-
logically relevant. On the other hand, the dependence of the NLO LQ distributions
on MG 0 is weak. This renders the constraints derived below model-independent
in the sense that one can set a limit on g4 as a function of MU essentially without
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Figure 6.6: Comparison of the 95% CL constraints on the MU – g4 plane that arise from
the latest LHC Run II hadronic di-tau analysis [169]. The dark (light) green
exclusion corresponds to the no b -tag (b -tag) category of the latter search, while
the hatched gray parameter space is excluded by strong pair production of
third-generation LQs [209]. Consult the main text for additional explanations.

making a reference to the choice of the coloron mass as long as MG 0 = O(MU).
One finally sees that the considered SM-LQ LO interference effects amount to a few
permille in the case of the no b -tag category, while they can exceed the level of 5%
if one requires the presence of a b -tag in the events. In contrast to what has been
suggested in the recent work [169], interference effects therefore play only a minor
role in the SRs that are relevant for non-resonant DY searches for third-generation
singlet VLQs at the LHC.

Based on the di-tau search strategies detailed above, we now derive NLO+PSExclusion limits
accurate 95% CL limits on the MU – g4 plane. Since we have seen that the choice of
coloron mass has only a minor impact on the mtot

T spectrum, we employ MG 0 = MU
for simplicity when determining the exclusion bounds. Figure 6.6 shows our 95% CL
limits on the MU – g4 parameter space that follow from the two b -jet categories
considered in the CMS search [169] for two hadronic tau leptons. The dark and light
green exclusion corresponds to the no b -tag and the b -tag category of this analysis,
respectively, while the parameter space excluded by strong pair production of third-
generation LQs [168] is indicated by the hatched gray vertical band. This search ex-
cludes MU < 1650 GeV at 95% CL. The significance of the individual b -jet categories
of the search [169] is calculated as a ratio of Poisson likelihoods modified to incorpo-
rate systematic uncertainties on the background as Gaussian constraints [210]. Our
statistical analysis includes the six (three) highest mtot

T bins in the case of the no b -tag
(b -tag) category. One first observes that the bound on g4 that follows from the search
with a b -tag is more stringent than the one that derives from a strategy that requires
no b -jet. We add that the difference between the no b -tag and b -tag constraints
is rather pronounced in the case of the CMS analysis [169], because this search
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observes a resonant-like excess with a significance of around 3s at mtot
T ' 1.2 TeV

in the no b -tag sample. Consequently, the resulting no b -tag limits on the LQ pa-
rameter space are weaker than expected. Notice finally that for MU . 1.7 TeV the
exclusions contour starts to deviate from its linear behaviour. This is a consequence
of the contribution associated to single-LQ production with subsequent decay of
the LQ, cf. the right diagram in Figure 6.1, scaling as |g4|

2 compared to the |g4|
4

dependence of the squared amplitude of the t-channel Born-level LQ contribution.

6.6 Summary

Our main goal was to refine the theoretical description of DY dilepton production
in VLQ models. To this purpose, we have calculated the NLO QCD corrections to
the pp! t+t� process. The actual computation involves the evaluation of the real
and virtual corrections to the t-channel Born-level contribution and the calculation
of resonant single-LQ production followed by the decay of the LQ. One complication
compared to the computation of O(as) corrections to DY dilepton production in
scalar LQ models [182, LS4] arises from the fact that realistic VLQ models such
as the 4321 model contain additional states that carry non-zero SU(3)c charges
(see Chapter 3.2). In fact, in the case at hand, both gluon and coloron exchange has
to be considered in order to determine the full NLO QCD contributions to DY dilepton
production. Our O(as) computation furthermore serves as an independent cross
check of the calculation of the singlet VLQ decay width in the 4321 model presented
in [61]. Besides QCD corrections, we have also studied the size of interference effects
between the DY SM background and the LQ signature, finding that these effects are
in general small in the SRs of the existing LHC DY dilepton searches.

The calculated fixed-order predictions have been implemented into a dedicated
MC code, which consistently matches them to a PS employing the POWHEG method.
As a result, a realistic exclusive description of DY dilepton processes in the singlet
VLQ model at the level of hadronic events can be obtained without the introduction
of an unphysical merging or matching scale. Our MC generator should prove useful
for everyone interested in comparing accurate theory predictions to LHC data, and
we therefore make the relevant code to simulate NLO+PS events for the pp! t+t�

process in the singlet VLQ model of the form (6.1) available for download [197].
In our phenomenological analysis, we have studied the case of pp ! t+t�

production that arises from the LQ-quark-lepton couplings (6.1) supplemented by
the Goldstone boson, pure gauge and ghost contributions in (3.66), (3.69) and (3.70),
respectively. Since the pp ! t+t� signatures result from bottom-quark fusion,
initial-state radiation will always lead to an enhanced b -jet activity in the events.
Devising search strategies with different b -jet categories is therefore expected
to help improve the LHC sensitivity [153, 157, 166, 169, 170, 186–191]. To illustrate
this point, we have performed a recast of the search [169] that employs 138 fb�1

of pp data collected at
p

s = 13 TeV. This analysis studies two disjoint SRs, and we
found that the search strategy that requires the presence of an additional b -tagged
jet outperforms the search strategy that vetos b-jets. This provides an illustrative
example for a case where a dedicated search for a more exotic signal outperforms
the search based on a more generic final state.
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Utilising [169] together with our POWHEG-BOX implementation we have finallyFurther constraints
on the parameter

space of
third-generation

VLQs that arise from
the LHC Run II

analyses [166, 170]
may be found in our
[LS3, Appendix B].

derived NLO+PS accurate constraints on the masses and couplings of the 4321 model.
Again, the b-tag search targeting bottom-philic BSM scenarios clearly outperforms
the more generic b-veto search. Our POWHEG-BOX generator provides an improved
signal modelling compared to the matched MLM [211] LO MadGraph5_aMCNLO [131]
samples used in [169]. Similar statements also apply to the signal generations used
in the analyses [166, 170]. This makes our MC implementation an essential tool for
ATLAS and CMS searches for singlet VLQs in di-tau final states at future LHC runs.
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L L P S F R O M E X T E N D E D S C A L A R S E C T O R S

The master accomplishes more and more by doing less and less
until finally he accomplishes everything by doing nothing.

— Laozi (philosopher),
to be reinterpreted in the context of

sin q ! 0 in the 2HDM+a

7.1 Introduction

This section presents aspects of our publication [LS2] with a focus on the exotic
long-lived signatures that can arise in the 2HDM+a model. We demonstrate that as
sin q (see Subchapter 3.3.5) becomes small, the pseudoscalar Higgs boson a can
become long-lived. Consequently, rather than searching for SM particles and missing
transverse momentum (Emiss

T ) signatures from the a! cc̄ decay, it becomes advan-
tageous to probe for a via LLP searches at the LHC. As such, the LLP phenomenology
of the 2HDM+a provides an illustrative example of how dedicated searches for exotic
signatures can extend the reach of the LHC.

The 2HDM+a [69, 212–214], introduced in Subchapter 3.3.5, has by now established The 2HDM+a

itself as a pillar of the LHC DM search programme [215–236]. It includes a DM
candidate in the form of a Dirac fermion, which is a singlet under the SM gauge
group, four 2HDM spin-0 states and an additional CP-odd mediator that is meant
to provide the dominant portal between the dark and the visible sector. Since in
models with pseudoscalar mediators the DM direct detection constraints are weaker
compared to models with scalar mediators (see Subchapter 3.3.5), the former models
are more attractive from an astrophysical point of view, since they often allow to
reproduce the observed DM relic abundance in a wider parameter space and with
less tuning. These features admit a host of Emiss

T and non-Emiss
T signatures in the

2HDM+a model at colliders which can and have been consistently compared and
combined. See for instance [230, 232, 237] for such combinations.

BSM scenarios in which the hidden and the visible sectors are connected through
a Higgs portal are also being actively probed for at colliders. One rather generic LLPs

feature in such BSM models is the appearance of new electrically neutral LLPs
that give rise to displaced vertex signatures in the LHC detectors – see for exam-
ple [238–240] for detailed reviews of theoretical and experimental aspects of LLPs
at the LHC. The main goal of this section is to point out that besides interesting
prompt Emiss

T and non-Emiss
T signatures, the 2HDM+a model can also have an attrac-

tive LLP phenomenology. In fact, in the 2HDM+a model the role of the LLP is played

121
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by the additional pseudoscalar a, which depending on its mass can be pair pro-
duced efficiently in the decays of both the 125 GeV Higgs and the non-SM CP-even
Higgs, i.e. h ! aa and H ! aa. To illustrate the different facets of the LLP phe-
nomenology in the 2HDM+a model, we identify two suitable parameter benchmarks.
For these benchmark scenarios we determine the bounds on the mixing angle q of
the two CP-odd weak spin-0 eigenstates as a function of the mass of the LLP that are
set by the existing LHC searches for displaced Higgs decays [241–257]. It turns out
that depending on the precise mass spectrum of the spin-0 states, mixing angles q
from around a few 10�8 to about 10�5 can be excluded with LHC Run II data. To the
best of our knowledge, mixing angles q in this range cannot be tested by any other
means, which highlights the special role that LLPs searches play in constraining
the parameter space of the 2HDM+a model. In fact, as we will further demonstrate,
parameter choices that lead to an interesting LLP phenomenology can in general also
correctly predict the measured DM relic density. The regions of 2HDM+a parameter
space singled out in our article therefore deserve, in our humble opinion, dedicated
experimental explorations in future LHC runs.

7.2 2HDM+a model primer

In order to understand under which circumstances the additional pseudoscalar a in
the 2HDM+a model can be an LLP, it is useful to recall its partial decay modes. Further
details on the structure of the 2HDM+a model can be found for instance in [69, 219].
In the alignment limit, i.e. cos (b� a) = 0, and choosing for concreteness the
Yukawa sector of the 2HDM+a model to be of type-II, one has at tree levelPartial decay

widths to
fermions

G (a! cc̄) =
y2

c

8p
ma

s

1�
4m2

c

m2
a

cos2 q ,

G (a! f f̄ ) =
N f

c h2
f y2

f

16p
ma

s

1�
4m2

f

m2
a

sin2 q .

(7.1)

At the one-loop level, the pseudoscalar a can also decay to gauge bosons. The
largest partial decay width is the one to gluon pairs. It takes the formPartial decay

width to gluons

G (a! gg) =
a2

s
32p3v2 m3

a

����� Â
q=t,b,c

hq f

 
4m2

q

m2
a

!�����

2

sin2 q , (7.2)

with
f (z) = z arctan2

✓
1

p
z� 1

◆
. (7.3)

Here ma is the mass of the pseudoscalar a, mc is the mass of the DM particle, yc

is the Yukawa coupling of the pseudoscalar a to a pair of DM particles and sin q
quantifies the mixing of the two CP-odd weak spin-0 eigenstates. Furthermore,
Nq

c = 3, Nl
c = 1, hu = cot b, hd = tan b, hl = tan b and y f =

p
2m f /v with m f the

mass of the relevant SM fermion, v ' 246 GeV the Higgs VEV and as the strong
coupling constant. From the analytic expressions (7.1) and (7.2), it is evident that
the pseudoscalar a can only be long-lived if sin q is sufficiently small, i.e. sin q ! 0,
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Figure 7.1: Examples of tree-level Feynman diagrams representing pp! aa production via
gluon-gluon fusion (ggF) Higgs production (left) and pp! l+l�aa production
in associated Zh production (right) in the 2HDM+a model. The possible decay
modes of the pseudoscalar a are not shown. Consult the text for further details.

and decays to DM are strongly suppressed/absent which can be achieved either via
decoupling, i.e. yc ! 0, or by forbidding the process kinematically, i.e. mc > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM
fermions in the limit sin q ! 0, the only possibility to produce a long-lived a is via
the decay of heavier spin-0 state f into a pair of such pseudoscalars. In the case
that the scalar potential is CP conserving, the f has to be a CP-even state, which
implies that in the 2HDM+a model one can have both decays of the 125 GeV Higgs h
and the heavy CP-even Higgs H. The corresponding partial decay widths can be
written as Production of the

long-lived
pseudoscalar a via
the decays of
heavier Higgs
bosons

G (f! aa) =
g2

faa

32p
mf

s
1�

4m2
a

m2
f

, (7.4)

with f = h, H. For sin q ' 0, the relevant trilinear couplings are given by [69]

ghaa ' �
2v
mh

�
lP1 cos2 b + lP2 sin2 b

�
,

gHaa '
v

mH
sin (2b) (lP1 � lP2) ,

(7.5)

where mh ' 125 GeV is the mass of the SM-like Higgs, while lP1, lP2 are the quartic
couplings that appear in the 2HDM+a scalar potential as P2�lP1 H†

1 H1 + lP2 H†
2 H2

�
.

Here P denotes the additional pseudoscalar in the weak eigenstate basis, which
satisfies P ' a for sin q ' 0.

The trilinear couplings entering (7.5) can be constrained phenomenologically. In
the case of ghaa, one can require that the partial decay width G (h! aa) does not
exceed the total decay width Gh of the 125 GeV Higgs as measured directly at the
LHC. For ma ⌧ mh, this leads to the inequality [232]

|ghaa| .
s

32pGh
mh

' 0.94 , (7.6)

where in the last step we have employed the latest 95% CL bound of Gh < 1.1 GeV
that follows from the LHC measurements of the total SM-like Higgs width [258, 259].
Inserting the first expression of (7.5) into (7.6) then leads to the following relation

��lP1 cos2 b + lP2 sin2 b
�� . 0.24 . (7.7)
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In the case of gHaa, one obtains in a similar fashion

|gHaa| .
s

32pGH

mH
' 3.2 , (7.8)

where in the final step we have set the ratio between the total decay width and
the mass of the heavy Higgs to GH/mH = 10%. This choice is motivated by the
observation that for significantly larger ratios different treatments of the H prop-
agator lead to notable changes in the heavy Higgs production cross section, and
thus the LLP signal, compared to the case of a Breit-Wigner propagator with fixed
width. Combining the second relation in (7.5) with (7.8), it follows that

����
v

mH
sin (2b) (lP1 � lP2)

���� . 3.2 . (7.9)

The above discussion illustrated that in the limit sin q ! 0, an LLP signature can
arise in the 2HDM+a model from h or H production followed by the decay of the
intermediate Higgs to a pair of pseudoscalars. Representative tree-level graphs
showing pp ! aa production in ggF Higgs production (left) and pp ! l+l�aa
production in associated Higgs production (right) that appear in the 2HDM+a model
can be found in Figure 7.1. Notice that in the former case both the 125 GeV Higgs
and the heavy CP-even Higgs contribute in the alignment limit. This is not the
case for the latter process, as the HZZ vertex vanishes identically in the limit
cos (b� a)! 0.

7.3 Parameter benchmarks

Besides the phenomenological bounds (7.7) and (7.9) that constrain the sizes of
the quartic couplings lP1 and lP2, the requirement for the scalar potential to be
bounded from below also restricts the quartic couplings, as well as other parameters
of the 2HDM+a model. Assuming that lP1, lP2 > 0 and that sin q ' 0, one finds two
bounded-from-below conditions that take the form [219]

l3 > 2l , l3 & �2l cot2 (2b) . (7.10)

Here, the parameter l3 denotes the usual quartic coupling from the 2HDM scalar
potential and l = m2

h/(2v2) ' 0.13 is the cubic SM Higgs self-coupling. In order to
fulfil these relations and to avoid the tight constraints from Higgs and EW precision
physics, we make the following common parameter choicesGeneral parameter

choices

l3 = 0.3 , cos (b� a) = 0 , tan b = 1 , mH = mA = mH± , yc = 1 . (7.11)

For concreteness, we furthermore employ a Yukawa sector of type-II throughout
this work.

The first 2HDM+a benchmark scenario that we will study as an example to
illustrate the possible LLP phenomenology in the 2HDM+a model is:Benchmark I

�
lP1, lP2, mc

 
=
�

2 · 10�3, 2 · 10�3, 170 GeV
 

, (benchmark I) . (7.12)
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We furthermore treat sin q and ma as free parameters but require that ma < mh/2,
so that the LLP can be pair produced in the decay of the 125 GeV Higgs boson. The
precise value of the common heavy Higgs mass is irrelevant in such a situation and
we simply set it to mH = 600 GeV in benchmark I. Notice that the quartic couplings
lP1 and lP2 have been chosen such that the constraint (7.7) is easily fulfilled. In
fact, in the limit ma ! 0 the benchmark I parameter choices imply

Gh = 4.15 MeV , (7.13)

a value that is very close to the SM prediction of GSM
h = 4.07 MeV [260]. The

corresponding h! aa branching ratio is Partial decay
width of the SM
HiggsBR (h! aa) = 1.9% . (7.14)

The proper decay length of the pseudoscalar a for masses ma 2 [20, 60] GeV can be
approximated by Decay length

(benchmark I)
cta

m
' 4.8 · 10�12

✓
GeV
ma

◆0.9 1
sin2 q

, (7.15)

which means that for
sin q ' 4.2 · 10�7 , (7.16)

a pseudoscalar of ma = 40 GeV has a proper decay length of around 1m. The
result (7.15) includes higher-order QCD corrections employing the formulas pre-
sented in Appendix A of the paper [261] as implemented in [262]. Notice further
that for the choices (7.12) and assuming that sin q ' 0, the additional 2HDM Hig-
gses are all narrow, i.e. GH/mH ' 2%, GA/mA ' 4% and GH± /mH± ' 4%, with
BR (H ! tt̄) ' 100%, BR (A! tt̄) ' 100% and BR (H± ! tb) ' 100%.

In our second 2HDM+a benchmark scenario that leads to an interesting LLP
phenomenology, we consider the following parameter choices Benchmark II

�
lP1, lP2, mc

 
=
�

3, 0, 770 GeV
 

, (benchmark II) . (7.17)

The parameters sin q, mH and ma are instead treated as input with the requirements
ma > mh/2 and ma < mH/2, so that the LLP can only be pair produced in the
decay H ! aa of the heavy CP-even Higgs boson H. Notice that the values lP1
and lP2 in (7.17) satisfy the constraint (7.9). Taking for example mH = 600 GeV and
ma = 150 GeV, the total decay width of the heavy CP-even Higgs is given by

GH = 22 GeV , (7.18)

which implies that GH/mH = 3.7%. The corresponding branching ratios are

BR (H ! aa) = 35% , BR (H ! tt̄) = 65% , (7.19)

meaning that the decays of the heavy Higgs to two LLPs does not have the largest Partial decay
width of the heavy
Higgs H

branching ratio but that di-top decays are more frequent. Notice that given the
structure of the trilinear coupling gHaa in (7.5), this feature will be even more
pronounced for heavier CP-even Higgs bosons H.
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In the range ma 2 [100, 300] GeV, the proper decay length of the pseudoscalar a
is approximately given byDecay length

(benchmark II)

cta

m
' 1.2 · 10�10

✓
GeV
ma

◆1.6 1
sin2 q

, (7.20)

where again the results of [261, 262] have been used. It follows that for

sin q ' 2.1 · 10�7 , (7.21)

a pseudoscalar of ma = 150 GeV has a proper decay length of about 1m. No-
tice finally that in the case of (7.12) with sin q ' 0, one has GA/mA ' 4% and
GH± /mH± ' 4% with BR (A! tt̄) ' 100% and BR (H± ! tb) ' 100%.

7.4 LLP constraints

At the LHC, searches for displaced Higgs boson decays into LLPs have been carried
out by the ATLAS, CMS and LHCb collaborations in different final states, covering
proper decay lengths from around 10�3 m to 103 m [241–257]. The LLP mean de-
cay length determines the search strategies and reconstruction techniques that
are employed – see for instance Section 5 of the review [230] for comprehensive
descriptions of the details of the experimental techniques employed in LHC LLP
searches.

We first consider the 2HDM+a benchmark I scenario (7.12) with ma < mh/2. InConstraints on
benchmark I this case the pseudoscalar a can be pair produced in the decay of the 125 GeV Higgs

boson. The dominant decay modes of the pseudoscalar are BR (a! cc̄) ' 53%,
BR (a! t+t�) ' 38%, and BR (a! gg) ' 10% for the case when the mass of a
is below the bottom-quark threshold, and BR (a! bb̄) ' 85%, BR (a! cc̄) ' 4%,
BR (a! t+t�) ' 7%, and BR (a! gg) ' 3% when it is above. LLP searches that
target pseudoscalar pair production in ggF Higgs or associated Zh production
(cf. Figure 7.1) leading to multi-jet or four-bottom final states therefore provide
the most stringent constraints. Looking for displaced leptons instead leads to
significantly weaker restrictions because of the small leptonic branching ratios.

In Figure 7.2, we show an assortment of LLP constraints in the ma – sin q plane
that apply in the case of (7.12). All limits result from LHC searches that consider
this ggF Higgs production. The dotted red exclusion corresponds to the search [244]
that considers displaced hadronic jets in the ATLAS calorimeter (CM) and the muon
spectrometer (MS) [243], while the dotted blue constraint instead results from the
ATLAS search [245] that utilises the inner detector (ID) and the MS. These searches
use up to 36 fb�1 and 33 fb�1 of

p
s = 13 TeV data, respectively. The dotted green

(purple) lines represent an upgrade of the MS (CM) search strategy to 139 fb�1 of
luminosity collected in LHC Run II. The corresponding limits are reported in the
ATLAS publication [253] and [254], respectively. The dashed yellow contour is finally
the exclusion that derives from the CMS search [248] which employs the muon
endcap and 137 fb�1 of

p
s = 13 TeV data. From the figure it is evident that in

the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs
decays to hadronic jets allow to exclude values of sin q between around 10�7 and
10�5 with the exact bound depending on the mass of the pseudoscalar a. The
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Figure 7.2: 95% CL exclusion regions in the ma – sin q plane for the 2HDM+a benchmark I
scenario (7.12). The dotted red, blue, green and purple lines correspond to
the limits following from the ATLAS searches [243, 244], [245], [253] and [254],
respectively. The dashed yellow curves instead represent the bound that arises
from the CMS search [248]. The parameter space between the lines is disfavoured.
See main text for further details.

excluded parameter space corresponds to proper decay lengths cta in the range
from around 59 m to 0.08m. Notice that given the smallness of the h! aa branching
ratio

�
cf. (7.14)

�
, our benchmark I scenario easily evades the present bounds on the

undetected or invisible branching ratios of the 125 GeV Higgs [66] that amount to
19% and 9%, respectively. In fact, even a possible future HL-LHC upper limit on the
invisible branching ratio of the SM-like Higgs of BR (h! invisible) < 2.5% [263]
would not be stringent enough to test (7.12) indirectly. This feature underlines the
special role that LLP searches for displaced Higgs decays can play in testing 2HDM+a
models with mixing angles q close to zero.

Let us now turn our attention to the benchmark II scenario (7.17). In this case the Constraints on
benchmark IIparameters are chosen such that an LLP signal may arise from the prompt decay

of the heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the
pseudoscalars to a pair of SM fermions a! f f̄ or gluons a! gg. Given our choice
of Yukawa sector and tan b, the a dominantly decays to the heaviest SM fermion,
which means that depending on the precise value of its mass either a ! bb̄ or
a ! tt̄ provide the largest rate. To illustrate these two possibilities we consider
in benchmark II the mass combination mH = 600 GeV with ma 2 [50, 275] GeV
as well as mH = 1000 GeV with ma 2 [50, 475] GeV. At a center-of-mass energy
of
p

s = 13 TeV the relevant inclusive heavy Higgs production cross sections are
s (pp! H) ' 2.0 pb and s (pp! H) ' 0.12 pb [264], respectively. Notice that in
the first case and assuming ma = 150 GeV, the heavy Higgs branching ratios (7.19)
as well as BR (a ! bb̄) ' 62%, BR (a! cc̄) ' 3%, BR (a! t+t�) ' 7% and
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Figure 7.3: As Figure 7.2, but for the two 2HDM+a benchmark II scenarios (7.17). The
upper (lower) panel depicts the results for mH = 600 GeV (mH = 1000 GeV).
The dotted red, blue, green and purple lines in the upper panel correspond to
the bounds following from [243, 244], [245], [253] and [254], respectively. The
dotted red exclusion in the lower panel instead represents the combination
of the ATLAS searches [243, 244, 253, 254]. The shaded parameter regions are
disfavoured. Further explanations can be found in the main text.
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BR (a! gg) ' 28% apply. In the second case, one has instead BR (H ! aa) ' 9%,
BR (H ! tt̄) ' 91% and BR (a! tt̄) ' 100% for ma = 400 GeV.

In the upper panel of Figure 7.3, we display the relevant 95% CL exclusion regions
in the ma – sin q plane that apply in the case of the 2HDM+a benchmark II scenario
with mH = 600 GeV. One observes that the ATLAS searches [243–245, 253, 254] allow
to exclude sin q values between 2 · 10�8 and 2 · 10�6. The corresponding proper
decay lengths cta range from 53 m to 0.04m. The lower plot in Figure 7.3 shows
the limits on sin q that a combination of the four ATLAS searches [243, 244, 253, 254]
allow to set in the 2HDM+a benchmark II scenario (7.17), assuming mH = 1000 GeV.
One observes that the existing LLP searches can exclude mixing angles for the mass
points ma = 50 GeV, 150 GeV, 275 GeV, and 400 GeV, while the 2HDM+a realization
with ma = 475 GeV remains untested at present. For pseudoscalar masses below
the top-quark threshold, sin q values between around 4 · 10�8 and 2 · 10�6 are ex-
cluded, whereas for ma = 400 GeV mixing parameters in the range of about 4 · 10�9

and 1 · 10�9 are disfavoured. The excluded parameter space corresponds to cta
values ranging from around 9.7m to 0.06m. Notice that the order of magnitude im-
provement of the constraint on sin q from the point ma = 275 GeV to ma = 400 GeV
is readily understood by recalling that in the former case one has Ga ' 16 MeV sin2 q,
while in the latter case Ga ' 12 GeV sin2 q as a result of the open a ! tt̄ channel.
We add that improving the limits [253, 254] by a factor of four would allow to
probe our 2HDM+a benchmark II scenario for mH = 1000 GeV and ma = 475 GeV.
A final remark concerns the possibility to search for the heavy CP-even Higgs in
the processes pp ! H ! tt̄ or pp ! tt̄H ! 4t. While LHC searches for spin-0
resonances in both di-top [265–267] and four-top production [268–271] have been
performed, it turns out that the existing searches do not provide any bound on our
2HDM+a benchmark II model for both mH = 600 GeV and mH = 1000 GeV in the
ma ranges considered in Figure 7.3. This finding again stresses the unique role that
LLPs searches can play in the 2HDM+a model in constraining the parameter space.

7.5 Summary

The main lesson that can be learnt from the analytic and numerical results presented
in this section is that LHC searches for displaced Higgs decays can provide unique
constraints on 2HDM+a model realizations. In fact, LLP signatures appear in the
context of the 2HDM+a model in a natural fashion if the mixing angle q of the two
CP-odd weak spin-0 eigenstates is very small and the DM sector is either decoupled
or kinematically inaccessible. In order to emphasise this generic finding, we have
studied two distinct parameter benchmarks and explored the sensitivity of the
existing LHC LLP searches by performing parameter scans in the ma – sin q plane.
The results of these scans can be found in Figures 7.2 and 7.3.

In the benchmark I scenario, we have chosen the 2HDM+a parameters such that
the 125 GeV Higgs boson gives rise to an LLP signature through its prompt decay
h ! aa followed by the displaced decays of the pseudoscalars to SM fermions,
such as a ! bb̄ or gluons. One important feature that is nicely illustrated in our
benchmark I scan is that the LLP searches for displaced hadronic jets that have been
performed at LHC Run II can probe regions of parameter space with mixing angles q
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in the ballpark of 10�7 to 10�5 that are presently not accessible by any other means.
In fact, in our benchmark I scenario the predicted h! aa branching ratio turns out
to be below the target sensitivity that the HL-LHC is expected to reach on undetected
or invisible decays of the 125 GeV Higgs boson. 2HDM+a realizations like (7.12) are
therefore unlikely to be testable indirectly at the LHC in searches for both prompt
h! aa! 4 f production or through signatures involving a significant amount of
Emiss

T such as h! invisible or mono-jet final states.
The benchmark II parameters were instead chosen such that the LLP signal

arises from the prompt decay H ! aa of the heavy CP-even Higgs followed by
the displaced decays of the pseudoscalars to a pair of SM fermions or gluons.
Depending on the precise value of the LLP mass, either the a ! bb̄ or the a ! tt̄
mode turns out to provide the largest rate. In order to illustrate these two distinct
possibilities, we have considered in benchmark II the mass combination mH =
600 GeV with ma 2 [50, 275] GeV as well as mH = 1000 GeV with ma 2 [50, 475] GeV.
In the former case, we found that the existing LHC searches for displaced heavy
Higgs decays provide stringent constraints on q, excluding values of the mixing
angle between 2 · 10�8 and 2 · 10�6. The limits on the benchmark II scenario with
mH = 1000 GeV turned out to be noticeably weaker than the bounds for mH =
600 GeV, due to the order of magnitude smaller inclusive heavy Higgs production
cross section. Still, for the three mass values ma = 50 GeV, 150 GeV and 275 GeV, q
values between 4 · 10�8 and 2 · 10�6 are excluded, whereas for ma = 400 GeV mixing
parameters in the range of 4 · 10�9 and 1 · 10�9 are disfavoured by the searches for
the displaced heavy Higgs decays performed at LHC Run II. We expect that LLP
searches at LHC Run III and beyond will provide sensitivity to 2HDM+a models
à la (7.17) with heavy CP-even Higgs masses of the order of 1 TeV and pseudoscalar
masses ma above the top-quark threshold. Let us finally note that in future LHC
runs, it should also be possible to probe 2HDM+a benchmark II models with a heavy
CP-even Higgs that satisfies mH > 2ma and mH > 2mt through spin-0 resonance
searches in di-top and four-top production. A detailed analysis of this issue is
however beyond the scope of this work.

It has furthermore been demonstrated that parameter choices that give rise to
an interesting LLP phenomenology can simultaneously explain the observed DM
abundance without excessive tuning. The corresponding discussion can be found
in Appendix C. The results and parameter benchmarks presented in this section
should provide a useful starting point for interpretations of future ATLAS, CMS
and LHCb searches for displaced Higgs decays to hadronic jets in the context of
the 2HDM+a model. We therefore encourage and look forward to experimental
explorations in this direction.
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Nature’s music is never over;
her silences are pauses, not conclusions.

— Mary Webb (poet)

Where does BSM physics hide at the LHC? In the tails. As the LHC collaborations
are preparing for the HL-LHC run, scheduled to commence in 2029 and conclude in
2041, the particle physics phenomenology community is focussing on improving
their theoretical predictions. This thesis highlighted three studies, originally pub-
lished in [LS1, LS3, LS2], which contribute to the improvement of the theoretical
predictions for BSM signatures. In essence, they can be classified into two ways to
approach BSM searches at the LHC:

The first approach, discussed in part (I), entails the search for small deviations in
SM precision observables. In this context, precise predictions for the SM backgrounds
and BSM signals are required, to surpass the results achieved during previous LHC
runs. The formal fixed-order accuracies of these predictions have recently reached
the NNLO to N3LO and NLO to NNLO levels, respectively. In Section 2, we presented
a review of the fundamental techniques that are employed in this context. An
introduction the the SMEFT was given in Section 3, and in Section 4, we outlined
the extension of the theoretical techniques to higher orders perturbative, with a
particular focus on higher-order SMEFT calculations.

In Section 5, we then presented our calculation of SMEFT effects in the Hig-
gsstrahlung pp! Vh process at NNLO+PS accuracy, where we employed the recently
developed POWHEG MiNNLOPS method. MiNNLOPS allows for the on-the-fly simulation
of NNLO QCD corrections, consistently matched to PS generators in order to simulate
the subsequent emissions at LL accuracy. Our MiNNLOPS code allows for the simu-
lation of contributions from the operators OHB, OHW , OHWB, which modify the
VVh vertex, from the operators O

(1)
Hq , O

(3)
Hq , OHd, OHu, OHud, O

(1)
H` , O

(3)
H` , OHe, which

enter V(h) f f̄ , and OH⇤, OHD, O``, which shift the Higgs kinetic term and/or the
EW input parameter relations, both at the linear O(L�2) and the quadratic O(L�4)
level, and for the a, aµ and LEP EW input schemes individually. We consider it to
be an essential tool for future Higgs characterization studies by the ATLAS and CMS
collaborations.

In the matrix element calculation, we encountered interesting theoretical aspects.
Firstly, this included repurposing SM spinor-helicity expressions for the higher-order
diagrams contributing to pp ! Vh. Indeed, as the SMEFT operators entering the
VVh vertex modify its helicity structure but leave the helicity structure of the qq̄Z
vertex with all its QCD corrections invariant, it is possible isolate the qq̄Z structures
in the SM and re-contract them with the new SMEFT VVh vertices to obtain the full

133
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SMEFT amplitudes. Secondly, SMEFT operators entering the tt̄Z or bb̄Z vertices could
potentially spoil the cancellation of gauge anomalies in gg! Zh contributions with
a heavy-quark ggZ triangle. We showed that this is not the case. It is known that the
SMEFT is anomaly-free, which for the Z(h)qq̄ operators manifests as a cancellation
between the triangle diagrams involving Zqq̄ and Zhqq̄ vertices.

In Chapter 5.6, we then conducted a phenomenological analysis based on the
Wilson coefficient benchmark choices (5.28)-(5.32) allowed or even preferred by
current data, where we investigated the sensitivity of the Higgsstrahlungs pro-
cess pp ! Zh`+`� to SMEFT effects. Particularly noteworthy are the effects of
O

(3)
Hq , OHu, OHd, which are pronounced at high transverse momenta pT,Z of the Z

boson, as illustrated in the Figure 5.6. Indeed, the contributions from diagrams
with a quartic Zhqq̄ vertex begin to dominate over the SM background in the tail
of the pT,Z spectrum, as they do not receive the suppression from the first Z prop-
agator. Consequently, pp ! Zh is better suited to search for contributions from
O

(3)
Hq , OHu, OHd than e.g. pp ! Z, where only Zqq̄ corrections of these operators

enter. Improving the statistics of pp ! Vh searches in the tails could reveal such
BSM effects.

The second approach to maximizing the new physics potential of the HL-LHC is to
consider non-standard signatures that clearly stand out from the SM backgrounds
in dedicated analyses. This was the main topic of Part (II).

As a first example, we considered VLQs that are predominantly coupled to
third-family fermions. They arise in the 4321 gauge unification, which is built
upon a non-universal SU(4)[3] group. The latter is a general feature of models
addressing the SM flavor puzzle without causing tension with low-energy data or
exacerbating the Higgs hierarchy problem, as explained in Section 3. In Section 6,
we presented our NLO+PS calculation of VLQ effects in pp ! t+t�, which we
published for phenomenological applications as a POWHEG-BOX generator [197]. We
included effects of the G0, pU , pG0 gauge and Goldstone bosons as well as of the
gauge ghosts cU , cU† , cG0 present in the spectrum of the 4321 model in the Feynman
gauge. From a theoretical point of view, this calculation provides an intriguing
example of O(as) corrections with contributions from a scalar sector charged under
QCD. Practically, our POWHEG code consistently combines non-resonant t-channel
contributions of VLQs in pp ! t+t� with their single-resonant contributions in
pp ! t+t�b, rendering it an essential tool for searches conducted by the ATLAS
and CMS experiments. Indeed, we are currently assisting the ATLAS collaboration in
importing our POWHEG code into their event generation system.

In Chapter 6.5, we presented a phenomenological analysis of the VLQ signatures
in the pp! t+t� spectrum. Particularly relevant are the NLO real corrections in-
volving b quark emissions, which lead to t+t�b final states. These can be separated
from more generic t+t� final states by requiring an additional b-tagged jet. In the
b-tag category, the SM background contribution is significantly suppressed, as the
majority of the DY events originate from light initial-state quarks. Conversely, the
contributions of the bottom-philic VLQs are predominantly associated with b-quarks,
resulting in a weaker suppression than for the SM. This provides a compelling case
for VLQ signature searches in the tails of t+t�b distributions at the LHC.
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As a second example, we considered an extended scalar sector with two Higgs
doublets, whose pseudoscalar mode mixes with a pseudoscalar DM mediator. This
model is known as the 2HDM+a, and was introduced in Section 3. In Section 7, we
demonstrated that the 2HDM+a can exhibit an intriguing LLP phenomenology in the
limit sin q ' 0 of minimal mixing with the extended scalar sector. This scenario is
further compatible with current relic density measurements in the standard thermal
relic freeze-out scenario, as discussed in Appendix C. Consequently, the LLP limit
of the 2HDM+a serves as an important benchmark for LHC exotica searches: Firstly,
since the couplings of a to the SM fermions are inherited from the extended Higgs
sector, the 2HDM+a provides an LLP with clearly defined decay pattern. Indeed, only
a few parameters enter the expressions for the couplings of a to fermions in (3.123),
rendering the model highly predictive. Secondly, a light pseudoscalar mediator
coupled both to DM and, minimally, to the SM represents a prime example of models
on the lifetime or small coupling frontier. While the majority of LHC searches to
date have focused on heavy BSM physics leading to high-pT signals, it is possible
that new physics could be light, feebly interacting, and long-lived. At the ATLAS
and CMS experiments, such particles traverse macroscopic distances (millimeters to
meters) from the primary interaction point, until they decay in the outer layers of
the detector. This provides a clean search ground, with a small number of signal
events sufficing to claim a discovery, since so few of the SM particles produced in
LHC collisions live long enough to mimic a signal.

We have demonstrated the power of ATLAS and CMS LLP searches by reinterpreting
their constraints in the context of the 2HDM+a. Specifically, these include searches
that look for LLPs decaying to two narrow jets in the CM or MS, with no associated
activity in the tracker. The resulting constraints are particularly strong for a light
a pair-produced in decays of the SM Higgs (see Figure 7.2), where parts of the
2HDM+a parameter space can be probed that are currently inaccessible by any other
means. With the HL-LHC run probing further into the tails of lifetime distributions,
we may uncover such feebly interacting particles connected to the DM puzzle.

The next few decades of high-energy physics will be defined by the exploration
of the Higgs sector. Precise measurements of its couplings, including in particular
its trilinear self-interaction, will allow for the testing of the predictions of the SM
at unprecedented levels. As such, the HL-LHC program and the potential electron-
electron Future Circular Collider (FCC) extension will provide us with exciting new
insights into the fabrics of the Higgs. We believe that the final word regarding the
elementary scalar sector has not yet been spoken.
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A
H I G G S S T R A H L U N G : A N A LY T I C E X P R E S S I O N S F O R T H E
C O U P L I N G S

In this appendix, we provide the analytic formulas for the parameters and cou-
plings that appear in Sections 5.3 and 5.4. The presented expressions have been
implemented into our MC code which allows the user to choose between the a, aµ,
and LEP schemes. We refer the interested reader to the articles [97, 272, 273] for
additional technical details on EW input schemes in the SMEFT context.

In order to write the expression in this appendix as compactly as possible we
introduce the following abbreviations

g± =
q

g2
1 ± g2

2 , Dm =
q

m2
Z �m2

W ,

sw =

vuut1
2

"
1�

s

1�
2
p

2pa

GFm2
Z

#
, cw =

q
1� s2

w ,

(A.1)

where a is the fine-structure constant, GF is the Fermi constant as extracted from
muon decay and mZ (mW) is the mass of the Z (W) boson in the OS scheme. The
relevant expressions for the U(1)Y and SU(2)L gauge couplings g1 and g2 and the
Higgs VEV v in terms of the EW input parameters are given in Table A.1 for the a,
the aµ and the LEP scheme.

In terms of the parameters g1, g2 and v the Z f f̄ , g f f̄ and hZZ coupling strengths
take the following form in the SM

g±

Z f =
g2

1 Y±

f � 2g2
2 T3±

f

2g+
, g±

g f = �
g1g2 Q±

f

g+
, ghZZ =

vg2
+

2
. (A.2)

Notice that these relations are independent of the employed EW input scheme.
Here the symbol Yf represents the weak hypercharge, T3

f is the third component of
the weak isospin and Q f denotes the electric charge. The fermions are f = q, ` with
q = d, u and ` = e, n, and the helicity states f+ and f� are identical to the chirality
states fR and fL in the massless limit.

The relations among the EW input parameters and g1, g2, and v are modified at
tree level by the presence of some of the dimension-six SMEFT operators listed in (5.1)
to (5.4), leading to so-called input scheme corrections. These can be accounted for
via the shifts x ! x + dx for x = g1, g2, v. We summarise the relevant shifts in
Table A.2. The input scheme corrections dg1 dg2, and dv themselves lead to the
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g1 g2 v

a-scheme
{GF, mZ, mW}

2 4
p

2
p

GF Dm 2 4
p

2
p

GF mW
1

4
p

2
p

GF

aµ-scheme
{a, mZ, mW}

p

4pa
mZ

mW

p

4pa
mZ

Dm
mWDm
p

pa mZ

LEP-scheme
{a, GF, mZ}

p
4pa

cw

p
4pa

sw

1
4
p

2
p

GF

Table A.1: The parameters g1, g2, and v expressed in terms of the input parameters for the
three EW input schemes implemented in the POWHEG code.

shifts dg(0)±
Z f and dg(0)

hZZ of the Z f f̄ and hZZ couplings, respectively. We find the
following scheme-independent results

dg(0)±
Z f =

g3
1 dg1Y±

f � 2g3
2 dg2 T3±

f � g2
1 g2 dg2

⇣
Y±

f + 4T3±

f

⌘

2 3/2
pg+

+
2g1 g2

2 dg1

⇣
Y±

f + T3±

f

⌘

2 3/2
pg+

,

dg(0)
hZZ = v

�
g1dg1 + g2dg2

�
.

(A.3)

At the same time, the SMEFT operators listed in (5.1) to (5.4) give direct contribu-
tions to the Z-boson couplings to two gauge bosons. We find the following analytic
expressions for the non-zero couplings

dg(1)
hZZ =

4v
g2

+

h
g2

1 CHB + g2
2 CHW + g1g2 CHWB

i
,

dg(1)
hgZ =

4v
g2

+


g1g2 CHB � g1g2 CHW �

g2
�

2
CHWB

�
,

dg(3)
hZZ = v3


g1g2 CHWB +

3g2
+

8
CH⇤ +

g2
+

2
CHD

�
.

(A.4)

Furthermore, we obtain dg(2)
hZZ = dg(2)

hgZ = 0, meaning that the corresponding Dirac
structures are not generated at the dimension-six level in the SMEFT. The expressions
for the hZ f f̄ couplings can finally be written as

dg(1)±
hZ f =

2dg(1)±
Z f

v
, (A.5)
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dg1/g1 dg2/g2 dv/v

a-scheme
{GF, mZ, mW}

�

m2
Z CHD
4 Dm2 +C(3)

H`�
C``

2 +
mW CHWB
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�
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⇣
C(3)
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C``
2
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C(3)
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aµ-scheme
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�
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W Dm2
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sw
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sw CHD
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C(3)
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w)

�
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h
sw CHWB+

cw CHD
4 +cw
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C(3)
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⌘i

p
2GF(c2

w�s2
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1p
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C(3)
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C``
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⌘

Table A.2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.

where

dg(1)�
Zd =

v2 g+

2

⇣
C(1)

Hq + C(3)
Hq

⌘
, dg(1)�

Zu =
v2 g+

2

⇣
C(1)

Hq � C(3)
Hq

⌘
,

dg(1)�
Ze =

v2 g+

2
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C(1)

H` + C(3)
H`

⌘
, dg(1)�
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v2 g+

2
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H` � C(3)
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,
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v2g+

2
CHd , dg(1)+

Zu =
v2 g+

2
CHu , dg(1)+

Ze =
v2 g+

2
CHe ,

(A.6)

are the relevant direct SMEFT corrections to the Z f f̄ couplings.





B
H I G G S S T R A H L U N G : S M E F T E F F E C T S AT N L O + P S A N D
N N L O + P S

NLO QCD correction to Vh production in the SMEFT have been calculated by several
groups [98–103]. By now these computations can also be performed automatically by
means of the combination of SMEFT@NLO and MadGraph5_aMC@NLO. In what follows,
we will use the POWHEG-BOX implementation of pp ! Zh ! `+`�h production
presented in [100] to obtain the relevant NLO+PS predictions.

In Figure B.1, we compare the SM predictions for the |hZ| (upper left), pT,Z (up-
per right), |hZ � hh| (lower left) and mZh (lower right) distribution in pp! Zh
production obtained at NLO+PS and NNLO+PS, respectively. The dashed (solid) lines
correspond to the full NLO+PS (NNLO+PS) results, while the dotted curves depict the
ggF contributions that start to contribute at NNLO+PS. From the displayed results it
is evident that the NNLO corrections modify the NLO spectra in a non-trivial fashion.
The relative size of the NNLO corrections amounts to less than 15% in the |hZ|

spectrum, while in the case of the pT,Z, |hZ � hh| and mZh distributions the effects
can reach up to around 30%. Notice that for the pT,Z spectrum the NNLO corrections
are most pronounced in the vicinity of pT,Z ' mt, while in the case of |hZ � hh| and
mZh the largest corrections arise in the tail of the distribution for |hZ � hh| & 3 and
mZh & 350 GeV, respectively. The enhancement of the pT,Z spectrum at pT,Z ' mt is
related to the fact that for such transverse momenta the Z boson is able to resolve
the top-quark loop in the graph displayed on the right in Figure 5.2. In fact, another
feature that is apparent from the solid and dashed lines in the lower panels is
that within the SM the ggF NNLO effects are in general significantly larger than the
qq̄F NNLO counterparts.

The NLO+PS and NNLO+PS predictions corresponding to the SMEFT benchmark
scenario (5.28) and (5.29) are given in Figure B.2 and Figure B.3, respectively. The
dashed gray (solid black) histograms correspond to the NLO+PS (NNLO+PS) results
in the SM, while the dashed (solid) coloured results are the corresponding SM+SMEFT
predictions. One observes that while the NLO+PS and NNLO+PS results for the full
predictions involving the squared matrix elements including the sum of both the SM
and SMEFT contributions are notably different, the ratios between the SM+SMEFT and
SM results turn out to be essentially independent on whether they are calculated
at NLO or NNLO. In order to understand this feature one has to recall that in the
SM the dominant NNLO corrections to pp ! Zh ! `+`�h production arise from
the gg ! Zh channel, while the NNLO corrections associated to the qq̄ ! Zh and
qg ! Zh channels are small. The opposite is the case in the SMEFT, where effects
stemming from the gg ! Zh channel are suppressed compared to the SM as a
result of the cancellation of triangle contributions discussed in Section 5.4. We add
that the comparisons of SM+SMEFT predictions present in this appendix represent a
non-trivial validation of our new NNLO+PS MC code for Higgsstrahlung.
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Figure B.1: SM NLO+PS and NNLO+PS results for pp ! Zh ! `+`�h production. The |hZ|

(upper left), pT,Z (upper right), |hZ � hh| (lower left) and mZh (lower right) spec-
tra are shown. The dashed (solid) lines illustrate the NLO+PS (NNLO+PS) results,
while the dotted curves are the ggF NNLO+PS corrections. The solid (dotted) lines
in the lower panels depict the ratios between the full NNLO+PS (NLO+PS plus
ggF NNLO+PS) and the NLO+PS results. See main text for further explanations.
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Figure B.2: As Figure B.1, but for benchmark scenario (5.28). The curves called SM+SMEFT
correspond to the full squared matrix elements including the sum of both the
SM and SMEFT contributions. The lower panels show the ratios between the
SM+SMEFT and the SM predictions at the same order in QCD. For more details
consult main text.
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Figure B.3: As Figure B.2, but for benchmark scenario (5.29).
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In order to understand the physics of standard thermal relic freeze-out in 2HDM+a
realizations with sin q ' 0, we first write the cross section for annihilation of DM
into a final state X as

s (cc̄! X) vrel = s0
X + s1

X v2
rel , (C.1)

where vrel is the relative velocity of the DM pair and the coefficient s0
X (s1

X) describes
the s-wave (p-wave) contribution.

In the alignment limit, the possible DM annihilation channels involving a pseu-
doscalar a are cc̄! a! f f̄ , cc̄! a! ZH, cc̄! a! ah and cc̄! a! aH for
what concerns s-channel processes and cc̄! aa with DM exchange in the t-channel
(cf. also [219]). The annihilation cross sections (C.1) of the former two reactions are,
however, proportional to sin2 q, rendering them numerically irrelevant in the limit
sin q ! 0 unless ma = mc/2. Such highly tuned solutions to the DM miracle will not
be considered in what follows. Similarly, all DM annihilation contributions involving
the exchange of a heavy pseudoscalar A are suppressed by at least two powers of
the sine of the mixing angle q, so that only the processes depicted in Figure C.1 are
relevant for the calculation of the DM abundance in the context of this work.

The annihilation process cc̄! a! ah proceeds via s-wave and we find for the
corresponding coefficient the following analytic result

s0
ah =

y2
c g2

haa cos2 q

32p

s

1�
(mh+ma)

2

4m2
c

s

1�
(mh�ma)

2

4m2
c

v2

�
m2

a�4m2
c

�2
+m2

a G2
a

, (C.2)

where the expression for ghaa in the limit sin q ! 0 can be found in the first line
of (7.5) and Ga denotes the total decay width of the pseudoscalar a. Since s0

ah 6= 0,
we ignore the p-wave coefficient s1

ah below by setting it to zero. The result for the
s-wave coefficient s0

aH describing DM annihilation through cc̄! a! aH is simply
obtained from (C.2) by the replacements ghaa ! gHaa and mh ! mH.

In the case of cc̄ ! aa, the annihilation cross section is instead p-wave sup-
pressed (see [274] for the calculation of the t-channel contribution in the simplified
pseudoscalar DM model) and the corresponding expansion coefficients take the
form s0

aa = 0 and

s1
aa =

y4
c cos4 q

24p

s

1�
m2

a
m2

c

m2
c

�
m2

a �m2
c

�2

�
m2

a � 2m2
c

�4 . (C.3)

Using the velocity expansion (C.1), the DM relic density after freeze-out can be
approximated by

Wh2

0.12
'

1.6 · 10�10 GeV�2 x f

hsvreli f
, hsvreli f = Â

X

✓
s0

X +
3s1

X
x f

◆
. (C.4)
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Figure C.1: Feynman diagrams that lead to DM annihilation via cc̄! ah or cc̄! aH (left)
and cc̄ ! aa in the 2HDM+a model. The possible decay modes of the pseu-
doscalar a, the SM-like Higgs h and the heavy CP-even Higgs H are not shown.
Further details are given in the main text.
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Figure C.2: Predicted DM relic abundance in the ma– mc plane for the 2HDM+a bench-
mark I parameter choices (7.12). The contour lines indicated the value
of Wh2/0.12, meaning that the regions below (above) 1 correspond to a DM
underabundance (overabundance) in today’s Universe. For additional details
we refer the interested reader to the main text.

Here x f = mc/Tf 2 [20, 30] with Tf the freeze-out temperature, and the sum
over X in principle includes all possible final states. As we have explained above,
for sin q ' 0 and away from the exceptional points ma = mc/2, however, only
the channels X = ah, aH, aa are numerically important. In the limit of heavy
DM, i.e. mc � ma, mh, mH, the velocity-averaged annihilation cross section at the
freeze-out temperature can be further simplified:

hsvreli f '
y2

c

128pm2
c

"�
g2

haa + g2
Haa

�
v2

4m2
c

+
y2

c

x f

#
. (C.5)
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Figure C.3: As Figure C.2, but for the 2HDM+a benchmark II scenario with masses
mH = 600 GeV (upper panel) and mH = 1000 GeV (lower panel), respectively.
Additional details can again be found in the main text.

This approximation shows that the s-channel (t-channel) contributions to hsvreli f
scale as 1/m4

c

�
1/m2

c

�
in the limit of infinitely heavy DM.
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The formulas (C.4) and (C.5) represent useful expressions to estimate Wh2. In the
case of the benchmark I scenario (7.12) one has g2

haa ' 6 · 10�5 and g2
Haa = 0, and

it is thus a good approximation to neglect the s-channel contributions to hsvreli f .
It follows that

Wh2

0.12
'

0.9
y4

c

✓ x f

25

◆2 ⇣ mc

150 GeV

⌘2
. (C.6)

Using x f ' 25, the relic abundance of Wh2 = 0.120 ± 0.001, as determined by
Planck [275], is therefore obtained in the case of (7.12) for DM masses mc ' 160 GeV
while for parameter regions with mc . 160 GeV (mc & 160 GeV) one expects DM
underabundance (overabundance). These expectations agree quite well with the
results of our exact relic calculation that have been obtained with MadDM [276] and
are shown in Figure C.2. In fact, the exact computation for (7.12) and ma = 30 GeV
leads to Wh2 = 0.118, while (C.6) naively predicts a value that is larger by around
15%. The observed difference can be traced back to the fact that the MadDM calcu-
lation gives x f ' 21 in the parameter region of interest and correctly takes into
account the phase-space suppression present in (C.3) due to the non-zero values of
m2

a/m2
c. We add that cc̄! a! ah annihilation represents a relative contribution

to Wh2 of less than about 1% in the part of the ma– mc plane that is depicted in
the figure. Neglecting the s-channel contributions in the approximation (C.6) is
hence fully justified.

In the case of our 2HDM+a benchmark II parameter scenario (7.17), the coupling
ghaa is no longer small, in fact g2

haa ' 35 and we furthermore have g2
Haa 6= 0. On the

other hand, y2
c/x f ' 0.04 and thus one can neglect the cc̄! aa contribution to the

velocity-averaged annihilation cross section at the freeze-out temperature (C.5) to
first approximation. Doing this, one obtains the following simple expression

Wh2

0.12
'

43
y2

c

�
g2

haa + g2
Haa

�
x f

25

⇣ mc

800 GeV

⌘4
, (C.7)

which approximately describes the resulting DM relic abundance for parameter
choices à la benchmark II. From (C.7), one hence expects that the correct value of Wh2

is realized in the case of (7.17) for mc ' 770 GeV, while for smaller (larger) DM
masses one should have Wh2 & 0.12

�
Wh2 . 0.12

�
if mH = 600 GeV which implies

g2
Haa ' 1.5. The results of the corresponding MadDM computation is displayed in the

upper panel of Figure C.3. We find that for the parameters (7.17) together with
ma = 150 GeV as well as mH = 600 GeV, the exact calculation predicts Wh2 = 0.117,
a value less than 5% below the naive expectation. Numerically, we furthermore
obtain that the relative contribution of cc̄ ! aa to the DM relic density is always
below 1% in benchmark II with mH = 600 GeV, showing that it can be safely
neglected in the derivation of (C.7).

The result of our MadDM scan in the 2HDM+a benchmark II parameter scenario
with mH = 1000 GeV is presented in the lower panel of Figure C.3. It is evident from
the plot that in this case the above simplistic formula is not able to capture the more
intricate behaviour of the contours of constant relic density. In fact, this is not a big
surprise because in the derivation of (C.7) we have assumed that mc � ma, mh, mH ,
however, one has mc < mH in the entire ma– mc plane considered. Still, the values
mc 2 [680, 740] GeV of the DM mass that lead to the correct DM abundance for
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ma 2 [50, 500] GeV are only less than 10% smaller than what one would expect
from (C.7). As previously, it turns out that the relative contribution of s-channel
annihilation amounts to more than 99% of the predicted values of Wh2. This shows
again that DM annihilation via cc̄ ! aa is phenomenologically not relevant in
2HDM+a realizations of the type (7.17).

Before concluding, we add that DM direct detection experiments do not set
relevant constraints on the 2HDM+a benchmarks (7.12) and (7.17) for the mixing
angles q ' 0 necessary to have a long-lived a. This is a simple consequence of the
fact that the SI DM-nucleon cross section is suppressed by both a loop factor and
two powers of sin q – see the recent articles [218, 232, 277–279] for explicit formulas
and further explanations.
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“Probing B anomalies via dimuon tails at a future collider.” In: Phys. Rev.
D 105.11 (2022), p. 115017. doi: 10.1103/PhysRevD.105.115017. arXiv:
2112.05127 [hep-ph].

[163] Andreas Crivellin, Benjamin Fuks, and Luc Schnell. “Explaining the hints for
lepton flavour universality violation with three S2 leptoquark generations.”
In: JHEP 06 (2022), p. 169. doi: 10.1007/JHEP06(2022)169. arXiv: 2203.
10111 [hep-ph].

[164] Aleksandr Azatov, Francesco Garosi, Admir Greljo, David Marzocca, Jakub
Salko, and Sokratis Trifinopoulos. “New physics in b! sµµ: FCC-hh or a
muon collider?” In: JHEP 10 (2022), p. 149. doi: 10.1007/JHEP10(2022)149.
arXiv: 2205.13552 [hep-ph].

[165] Lukas Allwicher, Darius A. Faroughy, Florentin Jaffredo, Olcyr Sumensari,
and Felix Wilsch. “Drell-Yan tails beyond the Standard Model.” In: JHEP 03
(2023), p. 064. doi: 10.1007/JHEP03(2023)064. arXiv: 2207.10714 [hep-ph].

[166] Georges Aad et al. “Search for heavy Higgs bosons decaying into two tau
leptons with the ATLAS detector using pp collisions at

p
s = 13 TeV.” In:

Phys. Rev. Lett. 125.5 (2020), p. 051801. doi: 10.1103/PhysRevLett.125.
051801. arXiv: 2002.12223 [hep-ex].

[167] Georges Aad et al. “Search for pairs of scalar leptoquarks decaying into
quarks and electrons or muons in

p
s = 13 TeV pp collisions with the ATLAS

detector.” In: JHEP 10 (2020), p. 112. doi: 10.1007/JHEP10(2020)112. arXiv:
2006.05872 [hep-ex].

[168] Albert M Sirunyan et al. “Search for singly and pair-produced leptoquarks
coupling to third-generation fermions in proton-proton collisions at s=13 TeV.”
In: Phys. Lett. B 819 (2021), p. 136446. doi: 10.1016/j.physletb.2021.
136446. arXiv: 2012.04178 [hep-ex].

[169] Armen Tumasyan et al. “Searches for additional Higgs bosons and for vector
leptoquarks in tt final states in proton-proton collisions at

p
s = 13 TeV.” In:

JHEP 07 (2023), p. 073. doi: 10.1007/JHEP07(2023)073. arXiv: 2208.02717
[hep-ex].

[170] “The search for a third-generation leptoquark coupling to a t lepton and a
b quark through single, pair and nonresonant production at

p
s = 13 TeV.”

In: CMS-PAS-EXO-19-016 (2022).

[171] Luca Buonocore, Ulrich Haisch, Paolo Nason, Francesco Tramontano, and
Giulia Zanderighi. “Lepton-Quark Collisions at the Large Hadron Collider.”
In: Phys. Rev. Lett. 125.23 (2020), p. 231804. doi: 10.1103/PhysRevLett.125.
231804. arXiv: 2005.06475 [hep-ph].

[172] Luca Buonocore, Paolo Nason, Francesco Tramontano, and Giulia Zan-
derighi. “Leptons in the proton.” In: JHEP 08.08 (2020), p. 019. doi: 10.1007/
JHEP08(2020)019. arXiv: 2005.06477 [hep-ph].

[173] Admir Greljo and Nudzeim Selimovic. “Lepton-Quark Fusion at Hadron
Colliders, precisely.” In: JHEP 03 (2021), p. 279. doi: 10.1007/JHEP03(2021)
279. arXiv: 2012.02092 [hep-ph].

https://doi.org/10.1103/PhysRevD.105.115017
https://arxiv.org/abs/2112.05127
https://doi.org/10.1007/JHEP06(2022)169
https://arxiv.org/abs/2203.10111
https://arxiv.org/abs/2203.10111
https://doi.org/10.1007/JHEP10(2022)149
https://arxiv.org/abs/2205.13552
https://doi.org/10.1007/JHEP03(2023)064
https://arxiv.org/abs/2207.10714
https://doi.org/10.1103/PhysRevLett.125.051801
https://doi.org/10.1103/PhysRevLett.125.051801
https://arxiv.org/abs/2002.12223
https://doi.org/10.1007/JHEP10(2020)112
https://arxiv.org/abs/2006.05872
https://doi.org/10.1016/j.physletb.2021.136446
https://doi.org/10.1016/j.physletb.2021.136446
https://arxiv.org/abs/2012.04178
https://doi.org/10.1007/JHEP07(2023)073
https://arxiv.org/abs/2208.02717
https://arxiv.org/abs/2208.02717
https://doi.org/10.1103/PhysRevLett.125.231804
https://doi.org/10.1103/PhysRevLett.125.231804
https://arxiv.org/abs/2005.06475
https://doi.org/10.1007/JHEP08(2020)019
https://doi.org/10.1007/JHEP08(2020)019
https://arxiv.org/abs/2005.06477
https://doi.org/10.1007/JHEP03(2021)279
https://doi.org/10.1007/JHEP03(2021)279
https://arxiv.org/abs/2012.02092


Bibliography 169

[174] Luca Buonocore, Admir Greljo, Peter Krack, Paolo Nason, Nudzeim Se-
limovic, Francesco Tramontano, and Giulia Zanderighi. “Resonant lepto-
quark at NLO with POWHEG.” In: JHEP 11 (2022), p. 129. doi: 10.1007/
JHEP11(2022)129. arXiv: 2209.02599 [hep-ph].

[175] Ulrich Haisch and Giacomo Polesello. “Resonant third-generation lepto-
quark signatures at the Large Hadron Collider.” In: JHEP 05 (2021), p. 057.
doi: 10.1007/JHEP05(2021)057. arXiv: 2012.11474 [hep-ph].

[176] Darius A. Faroughy, Admir Greljo, and Jernej F. Kamenik. “Confronting
lepton flavor universality violation in B decays with high-pT tau lepton
searches at LHC.” In: Phys. Lett. B 764 (2017), pp. 126–134. doi: 10.1016/j.
physletb.2016.11.011. arXiv: 1609.07138 [hep-ph].

[177] Martin Schmaltz and Yi-Ming Zhong. “The leptoquark Hunter’s guide: large
coupling.” In: JHEP 01 (2019), p. 132. doi: 10.1007/JHEP01(2019)132. arXiv:
1810.10017 [hep-ph].

[178] Michael J. Baker, Javier Fuentes-Martín, Gino Isidori, and Matthias König.
“High- pT signatures in vector–leptoquark models.” In: Eur. Phys. J. C 79.4
(2019), p. 334. doi: 10.1140/epjc/s10052-019-6853-x. arXiv: 1901.10480
[hep-ph].
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