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Revitalizing Convolutional Network
for Image Restoration

Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll, Fellow, IEEE

Abstract—Image restoration aims to reconstruct a high-quality image from its corrupted version, playing essential roles in many
scenarios. Recent years have witnessed a paradigm shift in image restoration from convolutional neural networks (CNNs) to Transformer-
based models due to their powerful ability to model long-range pixel interactions. In this paper, we explore the potential of CNNs for
image restoration and show that the proposed simple convolutional network architecture, termed ConvIR, can perform on par with or
better than the Transformer counterparts. By re-examing the characteristics of advanced image restoration algorithms, we discover
several key factors leading to the performance improvement of restoration models. This motivates us to develop a novel network for
image restoration based on cheap convolution operators. Comprehensive experiments demonstrate that our ConvIR delivers state-of-
the-art performance with low computation complexity among 20 benchmark datasets on five representative image restoration tasks,
including image dehazing, image motion/defocus deblurring, image deraining, and image desnowing.

Index Terms—Convolutional neural networks, frequency modulation, image restoration, representation learning
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1 INTRODUCTION

A S one of the most fundamental vision tasks, image
restoration aims to restore a clean image from its

degraded counterpart, playing an important role in remote
sensing, unmanned systems, photography, and medical
imaging [1]–[3]. Due to the ill-posedness of this inverse
problem, many conventional algorithms have been devel-
oped based on hand-crafted features to reduce the solution
space, which are impractical for real-world scenarios [4].

With the development of deep learning, manifold CNN-
based frameworks have been proposed based on ingenious
modules or borrowed units, such as encoder-decoder ar-
chitecture [5], [6], dilated convolution [7]–[9], dense con-
nection [10], and attention mechanisms [11], [12]. Recent
years have witnessed a paradigm shift from CNN-based
architectures to Transformer models [13], [14]. These models
have significantly advanced state-of-the-art performance of
image restoration by providing long-range pixel interactions
and adaptivity ability regarding input features. Despite a
few remedies [15]–[17], reducing the complexity of self-
attention for image restoration is still a non-trivial problem.

The main goal of this paper is to exploit an efficient
and effective image restoration architecture based on CNNs,
which can perform on par with or better than Transformer
models. By delving into previous advanced image restora-
tion approaches, we summarize several critical factors that
a successful image restoration model has: (a) Multi-scale
representation learning. Recent deep architectures resort
to a single encoder-decoder [6], [18], [19] or multi-stage
paradigm [9], [12], [20] to learn multi-scale feature represen-
tations, which help remove degradation blurs of different
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Fig. 1. Comparisons between multi-scale architectures. (a) Multi-stage
isotropic design [9], [25]. (b) Multi-stage U-shaped design [26]. (c)
Single U-shaped design [6], [18]. (d) Our network that imitates the multi-
stage design in a U-shaped pipeline.

sizes. (b) Spatial attention. Spatial attention facilitates mod-
els to attend to the important region, which is useful for han-
dling spatially-varying blurs [11], [21], [22]. (c) Frequency
modulation. Frequency modulation operation is a powerful
complement to the spatial feature refinement by reducing
the frequency discrepancy between sharp and degraded
image pairs [23], [24]. (d) Low computational complexity.
This is essential for image restoration, which often involves
high-resolution images.

Considering the above analyses, we rethink the de-
sign of convolutional networks and develop an efficient
and effective architecture for image restoration. Firstly,
towards multi-scale learning, we review several represen-
tative multi-scale architectures in Figure 1 and propose
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Fig. 2. Comparisons between the proposed models and state-of-the-art algorithms for four image restoration tasks. (a) PSNR vs. FLOPs on the
SOTS-Indoor [27] dataset for image dehazing; (b) PSNR vs. FLOPs on the GoPro [25] dataset for image motion deblurring; (c) PSNR vs. parameters
on the CSD [28] dataset for image desnowing; and (d) PSNR vs. parameters on the DPDD [29] dataset for image defocus deblurring.

imitating the multi-stage mechanism in a single U-shaped
network. Specifically, for each scale of the U-shaped ar-
chitecture, we downsample the feature map into different
sizes so that the model can handle blurs in a coarse-to-
fine manner. Secondly, regarding the attention mechanism
design, we develop a multi-shape attention module, which
not only can perform efficient information aggregation in
multiple shapes, i.e., square and two-directional rectangle
regions, but is adaptive to the input feature. Furthermore,
this module adopts the idea of dilated convolution to en-
large perception fields. Thirdly, due to significant frequency
discrepancies between shape and degraded image pairs
and the varying importance of different spectral compo-
nents [30], we accentuate the informative frequency com-
ponents for high-quality restoration by recalibrating the
weight of the high-pass filter in the obtained attention map
of the multi-shape attention module. Finally, we insert the
above modules into a convolutional U-shaped backbone to
establish our ConvIR, which obtains comparable or better
performance than Transformer models.

For image dehazing, our model outperforms the pre-
vious state-of-the-art method (MB-TaylorFormer-L [31]) by
0.08 dB and 1.33 dB PSNR on the SOTS-Indoor [27] and
SOTS-Outdoor [27] benchmarks, respectively, with higher
efficiency, as illustrated in Figure 2 (a). For the motion
blur removal task, our method achieves a performance
gain of 0.22 dB PSNR over the recent Transformer-based
PromptRestorer [32] on the GoPro [25] dataset. Further-
more, our model shows potential on the desnowing task
and outperforms TransWeather [33] by 7.34 dB PSNR on
the CSD [28] dataset. Also, on the DPDD [29] dataset for
defocus deblurring, our network obtains 26.36 dB PSNR in
the combined category, an improvement of 0.38 dB PSNR
over Restormer [16].

Overall, the main contributions of this paper can be
summarized as follows:

• We identify the properties that a successful im-
age restoration method possesses and propose a
novel convolutional model, ConvIR, which enhances
multi-scale representation learning by incorporating
the multi-stage mechanism into a U-shaped network.

• We present an efficient content-aware dilated multi-
shape attention module that can emphasize the in-
formative frequency components by reweighing the
weight of the high-pass filter.

• Extensive experiments demonstrate that our model
delivers state-of-the-art performance on 20 datasets
for five typical image restoration tasks, i.e., image
dehazing, image motion/defocus deblurring, image
deraining, and image desnowing.

This study is an extension of our conference paper [34].
Compared to the preliminary version, the main improve-
ments of this paper are:

a) Architectural improvements. In comparison to the
single-shape attention mechanism in the conference pa-
per [34], we develop a multi-shape attention (MSA) module
by additionally incorporating a two-directional rectangle
attention unit. Moreover, we inject the dilated operation
with different rates into the proposed MSA to enlarge
the receptive fields. The architectural modifications boost
the performance of the model while requiring negligible
computation overhead. For example, our model produces
a performance gain of 0.09 dB PSNR over IRNeXt [34] on
the GoPro [25] dataset with extra only 0.07M parameters
and 0.01G FLOPs.

b) Experiments. Our model is extended to the nighttime
(NHR [35], GTA5 [36]) and remote sensing (SateHaze1k-
Thin/Moderate/Thick [37]) image dehazing problems and
achieves state-of-the-art performance. Furthermore, we
evaluate our model on more synthetic and real-world
datasets, such as Haze4K [38], O-HAZE [39], and I-
Haze [40]. In addition, we carry out more ablation studies
for the key components of our method.

c) Model diversity. To promote deployment convenience
and demonstrate the effectiveness of our design, we pro-
vide three versions of our model, i.e., ConvIR-S (Small),
ConvIR-B (Base), and ConvIR-L (Large), for comprehen-
sive comparisons with state-of-the-art algorithms on dif-
ferent problems. In the conference version [34], we mostly
adopt ConvIR-L for image deblurring tasks and ConvIR-
S for image dehazing and desnowing. It is worth men-
tioning that our small version still outperforms the strong
Transformer-based Restormer [16] with fewer parameters
on the DPDD [29] dataset for image defocus deblurring, as
illustrated in Figure 2 (d). Also, ConvIR-B achieves state-
of-the-art performance on the SOTS-Indoor [27] dataset,
producing a performance gain of 0.08 dB PSNR with 19%
lower complexity compared to the recent Transformer-based
MB-TaylorFormer-L [31], as shown in Figure 2 (a).
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2 RELATED WORK

2.1 Image Restoration

As a long-standing task, image restoration provides high-
quality images for visibility and downstream high-level
tasks, such as object detection [41] and segmentation [42].
CNNs have become the mainstream in this field for sev-
eral years and achieved many successful stories on various
restoration tasks [25], [29], [43], [44]. To boost performance,
numerous advanced modules have been developed and
borrowed from other domains to strengthen the ability
of these CNN-based frameworks [45]. For example, the
encoder-decoder architecture is popular for efficient hier-
archical representation learning [5], [6], [46]. Multi-stage
paradigms [26], [47] and multi-patch learning methods [12],
[21], [48] are used to restore clean images in a coarse-to-
fine manner. Dilated convolutions help extract multi-scale
features and capture large receptive fields [7], [23].

More recently, Transformer models have been intro-
duced in image restoration and have significantly advanced
the state-of-the-art performance of various image restora-
tion tasks due to the powerful ability of self-attention to
model long-range dependencies [13]. For instance, Guo et
al. [49] first introduce Transformer into image dehazing.
Chen et al. [50] propose a multi-scale projection trans-
former for snow removal. However, the key component of
Transformer models, self-attention, has quadratic complex-
ity with respect to the input size. A few remedies alleviate
this issue by reducing the attention operation size [51] or
switching the operation dimension. Liang et al. [52] and
Tsai et al. [17] compute self-attention within local windows
and strip regions, respectively. Zamir et al. [16] seek so-
lutions by applying self-attention across channels instead
of the spatial dimension. Nonetheless, how to reduce the
complexity of Transformer remains an intractable problem
in this domain for practical applications.

2.2 Attention Mechanisms

Driven by the success of attention mechanisms in high-level
tasks, such as classification and detection, various attention
modules have been proposed to attend to essential contents
for image restoration [20], [21], [53]. For example, Qin et
al. [11] combines channel attention and pixel attention mech-
anisms for image dehazing to treat different features and
pixels unequally. Zamir et al. [12] devise a supervised atten-
tion module to control the signal flow between stages. Our
attention module mimics the depth-wise convolution [54]
to conduct information aggregation, which has the content-
aware property of self-attention while remaining computa-
tionally efficient. The most related works to our module are
the methods that learn the dynamic filter for restoration [6],
[55], [56]. Instead of directly applying the learned attention
weights to the input feature, we perform filter modulation in
advance to accentuate the informative spectral component
in the feature by rescaling the importance of the high-
pass filter in the attention map. Furthermore, our module
provides multi-shape representation learning and does not
produce as many attention weights as them, resulting in
fewer parameters and lower complexity.

2.3 Spectral Networks

Since there is a big difference between the spectral features
of sharp and degraded image pairs [30], [57], frequency
processing is widely adopted in the conventional algorithms
for the restoration problem [58], [59]. Recently, researchers
have incorporated frequency-based modules into CNNs and
Transformer models to bridge the spectral gap. For instance,
Mao et al. [57] enables low- and high-frequency learning
for motion deblurring based on the Fourier transform and
CNNs. Zou et al. [23] propose a wavelet-based reconstruc-
tion module to recover more high-frequency details. Yu et
al. [60] reconstruct the phase component under the guidance
of the amplitude spectrum by revisiting the haze degrada-
tions in the frequency domain. Zhou et al. [61] incorporate a
Fourier-based general prior into the spatial interaction and
channel evolution. Chen et al. [28] present a hierarchical
network for snow removal based on the dual-tree complex
wavelet transform [62]. The common practice of these algo-
rithms is first to transform spatial features into the frequency
domain through wavelet and Fourier transforms, and then
utilize convolutions to modulate the resulting spectra.

Instead of following the above-mentioned paradigm of
transform-CNN-inverse transform, ConvIR performs filter
modulation on the attention weights using lightweight at-
tention parameters. As such, the importance of filters for
informative frequency signals is lifted. Furthermore, our
refined filters are imposed on spatial features without trans-
forming these features into the spectral domain using any
existing transformation tools, such as Fourier and wavelet
transforms, saving computation overhead.

3 METHOD

In this section, we first describe the overall pipeline of our
network. Then, we present the core components: Multi-Scale
Module (MSM) and Multi-Shape Attention (MSA). The loss
functions are introduced in the final part.

3.1 Overall Architecture

As illustrated in Figure 3 (a), the proposed network adopts
a U-shaped architecture for image restoration. Specifically,
given any degraded image I∈ R3×H×W , ConvIR first ap-
plies a 3 × 3 convolution layer to generate the shallow
features with the size of C ×H ×W , where C denotes the
number of channels and H×W represents spatial locations.
Then, the shallow features pass through three CNNBlocks to
yield the in-depth features. Each CNNBlock contains multi-
ple residual blocks with our MSM inserted into the last one,
as depicted in Figure 3 (c). During this process, the channels
are expanded, whereas the spatial resolution is reduced.
Moreover, following previous algorithms [5], [47], [57], mul-
tiple downsampled degraded images are merged into the
main path to better handle different blur levels in images.
Concretely, ConvS is used to extract the features from the
downsampled degraded images by gradually increasing the
number of channels. Subsequently, the extracted features are
concatenated with those from the main path, followed by a
convolution to reduce the channel quantity.

Next, the in-depth features are fed into another three
CNNBlocks to restore the high-resolution features. During

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3419007

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 26,2024 at 14:00:35 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

CNNBlock

Conv Conv

CNNBlock CNNBlock

CNNBlock

Conv

Concat

Concat

Concat

Concat

Conv

Conv

ConvS

ConvS Conv

Conv

C
o
n
v

C
o
n
v

C
o
n
v

C
o
n
v

(c) CNNBlock(b) ConvS

C
o
n
v

M
S

M

C
o
n
v

C
o
n
v

C
o
n
v×n

(e) Dilated Square Attention (DSA)

Downsample

Upsample

* Convolution

(G)AP
(Global)

Average 

Pooling

Addition

(a) ConvIR

ConvCNNBlockCNNBlock

Skip Connections

4𝐶 ×
𝐻

4
×
𝑊

4

2𝐶 ×
𝐻

2
×
𝑊

2

𝐶 × 𝐻 ×𝑊

3 × 𝐻 × 𝑊

Degraded (I1) Restored (መ𝐈1)

Restored (መ𝐈2)

Restored (መ𝐈3)

Degraded (I2)

Degraded (I3)

𝐶 × 𝐻 ×𝑊

2𝐶 ×
𝐻

2
×
𝑊

2

3 ×
𝐻

2
×
𝑊

2

3 ×
𝐻

4
×
𝑊

4

AP

AP

AP

Conv
𝐻 × 𝑊

𝐻

2
×
𝑊

2

𝐻

4
×
𝑊

4

𝐻

8
×
𝑊

8

↑× 2

↑× 4

↑× 8

MSA

MSA

MSA

D
S

A

MSA

D
R

A

(d) MSM

C
o
n
v

𝐴𝑙

𝐴ℎ

*

×𝑊

G
A

P

T
an

h

C
o
n
v

FM

𝐴𝑙

𝐴ℎ

*

×𝑊

G
A

P

T
an

h

C
o
n
v

FM 𝐴𝑙

𝐴ℎ

*

×𝑊

G
A

P

T
an

h

C
o
n
v

FM

(f) Dilated Rectangle Attention (DRA)

3 ×
𝐻

2
×
𝑊

2

3 ×
𝐻

4
×
𝑊

4

𝐶 × 𝐻 ×𝑊

2𝐶 ×
𝐻

2
×
𝑊

2

4𝐶 ×
𝐻

2
×
𝑊

2

3
×

෠ 𝐻
×

෡ 𝑊

መ 𝐶 4
×

෠ 𝐻
×

෡ 𝑊

መ 𝐶 2
×

෠ 𝐻
×

෡ 𝑊

መ 𝐶 2
×

෠ 𝐻
×

෡ 𝑊

መ 𝐶
×

෠ 𝐻
×

෡ 𝑊

4𝐶 ×
𝐻

4
×
𝑊

4

8𝐶 ×
𝐻

4
×
𝑊

4

Fig. 3. The architecture of the proposed ConvIR. (a) ConvIR comprises six CNNBlocks and adopts the multi-input and multi-output strategies for
image restoration. (b) ConvS extracts the shallow features from low-resolution degraded images, which includes a series of convolutions with kernel
sizes of 3×3, 1×1, 3×3, and 1×1, and gradually increases the channel number from 3 to the target quantity. (c) CNNBlock contains multiple residual
blocks with the proposed multi-scale module (MSM) inserted into the last one. (d) MSM provides multi-scale representation learning in each scale
of the U-shaped network. The main operator, multi-shape attention (MSA), contains dilated square attention (DSA) and dilated rectangle attention
(DRA) in parallel. (e) DSA performs information aggregation within dilated square regions based on filter modulation (FM). (f) DRA harvests signals
within two-directional rectangles based on FM.

training, the multi-output strategy is adopted, where the
low-resolution clean images are predicted after the first two
CNNBlocks of the decoder using 3 × 3 convolutions and
image-level skip connections, which are omitted in Figure 3
(a) for simplicity. Furthermore, decoder features are concate-
nated with the encoder features to assist restoration, and a
1 × 1 convolution layer is subsequently used to halve the
number of channels. The residual clean image is produced
via a 3 × 3 convolution, to which the degraded input is
added to output the final restored image. Next, we detail
the proposed modules: MSM and MSA.

3.2 Multi-Scale Module (MSM)

The single encoder-decoder paradigm is commonly applied
in recent deep restoration architectures to learn hierarchical
representations efficiently. However, the number of scales
in those works is limited to handle degradation blurs of
different sizes. To enhance multi-scale learning and remove
blurs in a coarse-to-fine manner in each scale, we mimic

the multi-stage network and implement it in each scale of a
single U-shaped framework, as illustrated in Figure 1 (d).

The architecture of MSM is shown in Figure 3 (d). For
an input tensor X∈ RH×W , where the channel dimension is
ignored for clarity, our MSM utilizes average pooling (AP)
operators with different downsampling ratios to convert X
into distinct features spaces. In each branch, the resulting
features after MSA are incorporated into the next branch via
an addition operator. In this way, MSM can remove degra-
dations progressively by imitating the multi-stage network.
Finally, the outputs of all branches are unified to the original
input size and added together. In ConvIR, we empirically
adopt three branches plus the identity connection, where
the downsampling rates are set to {8,4,2}. For the ith

(i ∈ {1, 2, 3}) branch (except the identity path), the output
features can be obtained by:

X̂i = MSA(AP24−i(X) + X̂i−1 ↑2) ↑24−i , (1)

where X̂0=0; AP24−i denotes average pooling with the
downsampling rate as 24−i; and ↑2 represents the bilinear
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interpolation with the upsampling rate as 2. To summarize,
the whole process of MSM can be formally expressed as:

X̂ = Conv3×3(
3∑

i=1

X̂i + X), (2)

where Conv3×3 denotes a convolution of 3× 3 kernel size.

3.3 Multi-Shape Attention (MSA)
To facilitate multi-scale learning, we aim to devise an effi-
cient module inserted into each branch of MSM to refine
features. Equipped with self-attention, Transformer models
have achieved promising performance on various image
restoration tasks [13], [14]. Despite a few remedies [15], [17],
however, the issue of quadratic complexity of self-attention
remains intractable. On the other hand, the convolution
operator has the static filter, which is incompetent to deal
with spatially-varying degradation blurs [16].

In this work, we present MSA by combining the merits of
self-attention and convolution operator. Our MSA inherits
the content-aware property of the former and maintains
the efficiency characteristic of the latter. Furthermore, our
MSA involves operators with different shapes and dilation
mechanisms with different rates to enhance multi-shape and
multi-scale representation learning and enlarge receptive
fields. As illustrated in Figure 3 (d), MSA consists of Dilated
Square Attention (DSA) and Dilated Rectangle Attention
(DRA) in parallel. Next, we delineate DSA and DRA.

3.3.1 Dilated Square Attention (DSA)
As presented in Figure 3 (e), DSA leverages a simple con-
volution block to generate attention weights, which are
adaptive to the input feature, and then performs aggrega-
tion using the convolution operation. In the canonical self-
attention, Softmax is used to normalize attention weights.
However, the resulting sum-to-one weights can be con-
sidered as the kernel of a low-pass filter [63], which is
unsuitable for image restoration, because the significant dis-
crepancies between the sharp and degraded images mainly
lie in the high-frequency components [30], [57].

We resolve the above issue in the attention weights gen-
eration step from two aspects: (i) bypassing the limitation of
low-pass filters with the hyperbolic tangent function (Tanh),
and (ii) elevating the significance of high-pass filters in
attention weights via the proposed filter modulation (FM).

Utilization of Tanh. We substitute Tanh for Softmax.
This scheme enjoys two advantages. Firstly, we steer clear
of the limitation of the low-pass filter. Secondly, since Tanh
projects attention weights into (-1, 1), the negative weights
can help suppress the detrimental pixels when performing
information aggregation. Formally, given X ∈ RC×H×W , the
attention weights generating process can be expressed as:

ADSA = Tanh(Conv1×1(GAP(Conv3×3(X)))), (3)

where GAP denotes the global average pooling, and Tanh
represents the hyperbolic tangent function. To strike a better
trade-off between the complexity and diversity of atten-
tion weights, instead of producing attention weights for
each channel [6], [55], we impose attention weights on the
input feature in groups. In each feature group, attention
weights are shared across channel and spatial dimensions.

ADSA ∈ RG×K×K , where G is the number of groups and
K2 is the absolute region size for integration.

FM. In addition to using Tanh, we propose reweighing
the ratio of high-pass filters in the attention map to enable
the network to focus more on the informative frequency
components. To this end, as illustrated in Figure 3 (e), we
first decompose the attention map ADSA into low-/high-
pass filters, and then reweigh the high-pass one using
trainable channel-wise parameters. Thus, the reassembled
filter becomes adaptive to emphasize the useful frequency.
In practice, due to its ease of implementation, we refer to
the low-pass filter as a particular filter that only preserves
the direct-current component of the input, which can be
extracted from ADSA by:

ADSA
l =

1

K2
E, (4)

where E∈ RG×K×K has the same shape as ADSA with all
values being 1. See Appendix for more details of Eq. 4. Then,
the high-pass filter can be considered as the complementary
part of the low-pass filter:

ADSA
h = ADSA − ADSA

l . (5)
Next, the modulated attention map can be obtained by:

Ã
DSA

= ADSA
l +WADSA

h , (6)
where W denotes the learnable parameters directly opti-
mized by backpropagation and initialized as 1.

Finally, we apply the resulting attention weights to the
input feature via the convolution operation, where the pixels
from the input features are sampled in a dilated manner for
a large receptive field. Formally, for each channel in the gth

group, the output can be obtained by:

X̂g,h,w =
K−1∑
i=0

K−1∑
j=0

Xg,(h−⌊K
2 ⌋+i)d,(w−⌊K

2 ⌋+j)dÃ
DSA

g,i,j +Xg,h,w,

(7)
where g, h, w are the indexes of the group, height, and
width, respectively. d denotes the dilation rate.

3.3.2 Dilated Rectangle Attention (DRA)
Apart from DSA, we propose DRA that integrates infor-
mation within rectangles in orthogonal directions to im-
prove multi-shape representation learning. The architecture
is shown in Figure 3 (f). Similar to DSA, we employ a con-
volutional network for generating raw attention weights,
the high-pass filter of which is then reassessed through
rectangle-shaped FM. Subsequently, the modulated atten-
tion weights are imposed on the dilated pixels of input
features for information integration. Taking the horizontal
unit as an example and denoting the input features as
X∈ RC×H×W , the output features of each group can be
formally obtained by:

X̂
H

g,h,w =
K−1∑
j=0

Xg,h,(w−⌊K
2 ⌋+j)dÃ

H

g,j + Xg,h,w, (8)

Ã
H

= RFM(AH), (9)

AH = Tanh(Conv1×1(GAP(X))) ∈ RG×K , (10)

where g, h, w index the group, height, and width; d is
the dilation rate; AH denotes the attention map of the
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horizontal unit in DRA; RFM means applying FM to the
rectangle-shaped attention weights. The horizontal unit can
be concluded as X̂

H
= H(X).

Similarly, taking X̂
H

as the input, the output of the
vertical unit can be yielded by X̂

V
= V(X̂

H
). Finally, the

result of DRA is generated by X̂ = X̂
V
+ X.

3.4 Loss Functions

Since we introduce FM in MSA, besides the spatial L1

loss, we adopt the spectral L1 loss to accentuate the useful
frequency. The dual-domain loss functions are given by:

Lspatial =
3∑

i=1

1

Pi
∥Îi − Yi∥1, (11)

Lfrequency =
3∑

i=1

1

Si
∥[R(̂Ii), I (̂Ii)]− [R(Yi), I(Yi)]∥1,

(12)

where i is the index of multiple outputs as shown in
Figure 3 (a); Î and Y are the restored image and ground
truth, respectively; P and S denote the total elements for
normalization; [·, ·] is a concatenation operator; and R and
I are the real and imaginary components yielded by the fast
Fourier transform. The final loss function is obtained by:

Ltotal = Lspatial + λLfrequency, (13)

where λ is set to 0.1 for balancing dual-domain training.

4 EXPERIMENTS

To verify the efficacy of our method, we evaluate ConvIR on
20 different datasets for five image restoration tasks: image
dehazing, image defocus deblurring, image desnowing, im-
age deraining, and image motion deblurring. In this section,
we first introduce the experimental setup. Then, we present
the results of our models and compare them quantitatively
and qualitatively with state-of-the-art schemes. Finally, we
conduct extensive ablation studies to verify the efficacy of
our proposed components. In the tables, the best and second
best results are in boldface and underlined, respectively.

4.1 Experimental Setup

Implementation details. We train separate models for dif-
ferent problems. Unless mentioned otherwise, the following
hyper-parameters are adopted in all experiments. The num-
ber of the group (G) and the region size (K) are set to 8 and
3, respectively. The dilation rates in the three branches (from
top to bottom) of MSM are 7, 9, and 11, respectively. We train
our model using the Adam optimizer [64] with the initial
learning rate as 1e−4, which is gradually reduced to 1e−6

with cosine annealing [65]. For data augmentation, we only
use random horizontal flips. According to the complexity of
different problems, we introduce three ConvIR variants in
our experiments by varying the number of regular residual
blocks (n) in CNNBlock to validate the effectiveness com-
prehensively. Expressly, we set n = 3, n = 7, and n = 15
in our ConvIR-S (Small), ConvIR-B (Base), and ConvIR-L
(Large). All models are trained on an NVIDIA Tesla A100

TABLE 1
Image dehazing comparisons on the synthetic SOTS [27] dataset.

SOTS-Indoor SOTS-Outdoor Params FLOPs
Methods PSNR SSIM PSNR SSIM (M) (G)

GridDehazeNet [20] 32.16 0.984 30.86 0.982 0.956 21.5
MSBDN [10] 33.67 0.985 33.48 0.982 31.35 41.54
FFA-Net [11] 36.39 0.989 33.57 0.984 4.456 287.8
AECR-Net [68] 37.17 0.990 - 2.611 52.2
DeHamer [49] 36.63 0.988 35.18 0.986 132.50 60.3
DehazeFormer-L [51] 40.05 0.996 - 25.44 279.7
MAXIM [47] 38.11 0.991 34.19 0.985 14.1 216
PMNet [69] 38.41 0.990 34.74 0.985 18.90 81.13
MB-TaylorFormer-B [31] 40.71 0.992 37.42 0.989 2.68 38.5
MB-TaylorFormer-L [31] 42.64 0.994 38.09 0.991 7.43 88.1

ConvIR-S (Ours) 41.53 0.996 37.95 0.994 5.53 42.1
ConvIR-B (Ours) 42.72 0.997 39.42 0.996 8.63 71.22

TABLE 2
Image dehazing results on the Haze4K [38] dataset.

Methods PSNR SSIM Params/M FLOPs/G

DehazeNet [43] 19.12 0.84 0.01 0.58
AOD-Net [70] 17.15 0.83 0.002 0.12
GridDehazeNet [20] 23.29 0.93 0.956 21.5
MSBDN [10] 22.99 0.85 31.35 41.54
FFA-Net [11] 26.96 0.95 4.456 287.8
DMT-Net [38] 28.53 0.96 - -
PMNet [69] 33.49 0.98 18.90 81.13
FSNet [71] 34.12 0.99 13.28 110.5

ConvIR-S (Ours) 33.36 0.99 5.53 42.1
ConvIR-B (Ours) 34.15 0.99 8.63 71.22
ConvIR-L (Ours) 34.50 0.99 14.83 129.34

GPU with PyTorch. More details of the datasets and specific
training configurations are provided in the Appendix.

Evaluation metrics. We adopt the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [66] metrics
for all datasets. Higher PSNR and SSIM indicate that the
restored image is closer to the target one in terms of pixel-
wise contents and structural properties. In addition, mean
absolute error (MAE) and learned perceptual image patch
similarity (LPIPS) [67] are employed for defocus deblurring,
with a lower score indicating better performance. Unless
stated otherwise, FLOPs are measured on 256×256 patches.

4.2 Experimental Results
4.2.1 Image Dehazing
For this problem, we first compare our methods with state-
of-the-art algorithms on the SOTS [27] dataset in Table 1. As
can be seen, our ConvIR-B achieves the best accuracy results
on all metrics. In particular, ConvIR-B outperforms the first
Transformer-based dehazing algorithm, DeHamer [49], by
6.09 dB and 4.24 dB PSNR on the SOTS-Indoor [27] and
SOTS-Outdoor [27] datasets, respectively, with 93% fewer
parameters. Our small model is significantly superior to the
expensive Transformer-based DehazeFormer-L [51] with a
performance gain of 1.48 dB PSNR on SOTS-Indoor, con-
suming 85% lower complexity. Furthermore, our two mod-
els surpass the corresponding variants of the recent MB-
TaylorFormer [31] with comparable computation overhead.
Moreover, we present the comparisons on a more realisti-
cally synthetic Haze4K [38] dataset in Table 2. ConvIR-B
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Fig. 4. Image dehazing comparisons on the SOTS-Indoor [27] dataset.
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Fig. 5. Image dehazing comparisons on the SOTS-Outdoor [27] dataset.
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Fig. 6. Image dehazing comparisons on the Haze4K [38] dataset.

outperforms the recent FSNet [71] by 0.03 dB PSNR, with
only 65% parameters and 64% FLOPs. To further demon-
strate the superiority of our model, we present the results of
our large model, which has comparable computation costs
with FSNet. ConvIR-L produces a substantial performance
gain of 0.38 dB PSNR over FSNet [71].

TABLE 3
Image dehazing comparisons on four real-world datasets:

Dense-Haze [72], NH-HAZE [73], O-HAZE [39], and I-Haze [40].

Dense-Haze NH-HAZE O-HAZE I-Haze
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

GridDehazeNet [20] 13.31 0.368 13.80 0.537 18.92 0.672 18.73 0.769
MSBDN [10] 15.13 0.555 19.23 0.706 24.36 0.749 19.62 0.618
FFA-Net [11] 15.70 0.549 19.87 0.692 22.12 0.770 19.72 0.733
DeHamer [49] 16.62 0.560 20.66 0.684 25.11 0.777 -
PMNet [69] 16.79 0.510 20.42 0.730 - -
MB-TaylorFormer-B [31] 16.66 0.560 - 25.05 0.788 -
MB-TaylorFormer-L [31] 16.64 0.566 - 25.31 0.782 -

ConvIR-S (Ours) 17.45 0.648 20.65 0.807 25.25 0.784 21.95 0.888
ConvIR-B (Ours) 16.86 0.621 20.66 0.802 25.36 0.780 22.44 0.887

The visual comparisons on these synthetic day-
time datasets, SOTS-Indoor [27], SOTS-Outdoor [27], and
Haze4K [38], are illustrated in Figure 4, Figure 5, and Fig-
ure 6, respectively. The haze-free images generated by our
models are more visually faithful to ground-truth images.

We further extensively compare our models with state-
of-the-art schemes on four real-world datasets, i.e., Dense-
Haze [72], NH-HAZE [73], O-HAZE [39], and I-Haze [40].
Table 3 shows that the best results are mostly generated by
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Fig. 7. Nighttime image dehazing comparisons on the NHR [35] dataset.
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Fig. 8. Nighttime image dehazing comparisons on the GTA5 [36] dataset.

TABLE 4
Image dehazing comparisons on the remote sensing datasets:

SateHaze1k-Thin, SateHaze1k-Moderate, and SateHaze1k-Thick [37].
† denotes methods that are specially designed for remote sensing.

Thin Moderate Thick
Methods PSNR SSIM PSNR SSIM PSNR SSIM

AOD-Net [70] 19.54 0.854 20.10 0.885 15.92 0.731
H2RL-Net† [74] 20.91 0.880 22.34 0.906 17.41 0.768
FCFT-Net† [75] 23.59 0.913 22.88 0.927 20.03 0.816
Uformer [15] 22.82 0.907 24.47 0.939 20.36 0.815
C2PNet [76] 19.62 0.880 24.79 0.940 16.83 0.790
Restormer [16] 23.08 0.912 24.73 0.933 18.58 0.762
Trinity-Net† [77] 21.55 0.884 23.35 0.895 20.97 0.823
UMWTransformer [78] 24.29 0.919 26.65 0.946 20.07 0.825
FocalNet [46] 24.16 0.916 25.99 0.947 21.69 0.847

ConvIR-S (Ours) 25.11 0.978 26.79 0.978 22.65 0.950

our models. Specifically, our base version ConvIR-B yields
performance gains of 0.22 dB and 0.05 dB PSNR over the
recent MB-TaylorFormer-L [31] on the Dense-Haze [72] and
O-HAZE [39] datasets, respectively. Noticeably, ConvIR-
S outperforms the MB-TaylorFormer-L with a remarkable
performance gain of 0.81 dB PSNR on the Dense-Haze with
only half complexity.

Since image dehazing plays an essential role in remote
sensing. We provide experimental results on the remote
sensing SateHaze1k [37] dataset. The models are trained
and tested separately on its three sub-sets. Table 4 shows
that our model performs best on all metrics. In particular,
our small model remarkably outperforms the general image
restoration method [46] and remote sensing method [77] by

TABLE 5
Nighttime image dehazing comparisons on the NHR [35] dataset. †

denotes methods that are specially designed for nighttime dehazing.

Methods PSNR SSIM

NDIM† [80] 14.31 0.526
GS† [81] 17.32 0.629
MRPF† [82] 16.95 0.667
MRP† [82] 19.93 0.777
OSFD† [35] 21.32 0.804
HCD [83] 23.43 0.953
FocalNet [46] 25.35 0.969
Jin et al† [79] 26.56 0.890

ConvIR-S (Ours) 28.85 0.981
ConvIR-B (Ours) 29.49 0.983

0.96 dB and 1.68 dB PSNR for the thick level, respectively.
Additionally, we conduct experiments on two nighttime

datasets, i.e., NHR [35] and GTA5 [36]. The quantitative
comparisons on NHR [35] are presented in Table 5. Our
ConvIR-B and ConvIR-S obtain the best and second-best
results, respectively. In particular, ConvIR-S outperforms
the recent algorithm [79] with a remarkable gain of 2.29
dB PSNR, using 3.8× fewer parameters. Figure 7 illus-
trates that our ConvIR-S restores a crisper daytime image
than other algorithms. Moreover, we provide results on
another nighttime dehazing dataset, GTA5, whose ground-
truth images are in the nighttime scenes. Table 6 shows that
our two versions are superior to the algorithm [79], which
is specially devised for nighttime haze removal. Figure 8
demonstrates that our model is robust in nighttime scenes.
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Fig. 9. Image desnowing comparisons on the CSD [28] dataset.

TABLE 6
Nighttime image dehazing comparisons on the GTA5 [36] dataset. †

denotes methods that are specially designed for nighttime dehazing.

Methods PSNR SSIM

GS† [81] 21.02 0.639
MRP† [82] 20.92 0.646
Ancuti et al† [84] 20.59 0.623
Yan et al† [36] 27.00 0.850
CycleGAN [85] 21.75 0.696
Jin et al† [79] 30.38 0.904

ConvIR-S (Ours) 31.68 0.917
ConvIR-B (Ours) 31.83 0.921

TABLE 7
Image desnowing comparisons on the CSD [28], SRRS [86], and

Snow100K [87] datasets.

CSD SRRS Snow100K Params FLOPs
Methods PSNR SSIM PSNR SSIM PSNR SSIM (M) (G)

DesnowNet [87] 20.13 0.81 20.38 0.84 30.50 0.94 15.6 1.7K
All in One [88] 26.31 0.87 24.98 0.88 26.07 0.88 44 12.26
JSTASR [86] 27.96 0.88 25.82 0.89 23.12 0.86 65 -
HDCW-Net [28] 29.06 0.91 27.78 0.92 31.54 0.95 6.99 9.78
SMGARN [89] 31.93 0.95 29.14 0.94 31.92 0.93 6.86 450.3
TransWeather [33] 31.76 0.93 28.29 0.92 31.82 0.93 21.9 5.64
MSP-Former [50] 33.75 0.96 30.76 0.95 33.43 0.96 2.83 4.42
FocalNet [46] 37.18 0.99 31.34 0.98 33.53 0.95 3.74 30.63
IRNeXt [34] 37.29 0.99 31.91 0.98 33.61 0.95 5.46 42.09

ConvIR-S (Ours) 38.43 0.99 32.25 0.98 33.79 0.95 5.53 42.1
ConvIR-B (Ours) 39.10 0.99 32.39 0.98 33.92 0.96 8.63 71.22

4.2.2 Image Desnowing
We compare desnowing performance on three widely-
adopted datasets: CSD [28], SRRS [86], and Snow100K [87].
Table 7 shows that our ConvIR-B yields the best results on
all metrics. In particular, ConvIR-B outperforms the recent
IRNeXt [34] by 0.48 dB and 0.31 dB in terms of PSNR on
SRRS and Snow100K, respectively, with comparable compu-
tation overhead. On a challenging CSD dataset containing
more intricate snow scenes, the advantage of our ConvIR-B

TABLE 8
Image deraining comparisons on Test100 [90] and Test2800 [91].

Test100 Test2800
Methods PSNR SSIM PSNR SSIM

DerainNet [92] 22.77 0.810 24.31 0.861
SEMI [93] 22.35 0.788 24.43 0.782
UMRL [94] 24.41 0.829 29.97 0.905
RESCAN [95] 25.00 0.835 31.29 0.904
PreNet [96] 24.81 0.851 31.75 0.916
MSPFN [97] 27.50 0.876 32.82 0.930
MPRNet [12] 30.27 0.897 33.64 0.938
FSNet [71] 31.05 0.919 33.64 0.936

ConvIR-L (Ours) 31.40 0.919 33.73 0.937

becomes more pronounced, showcasing the superior ability
of our network in snow removal. It is worth mentioning that
our small model is superior to the Transformer-based Tran-
sWeather [33] on all metrics while consuming 75% fewer
parameters. Furthermore, compared with MSP-Former [50],
which is elaborately designed for desnowing, our small
model shows a significant performance boost of 4.68 dB
PSNR on the CSD dataset.

Figure 9 shows that our model is more effective than the
competitors in removing snow degradations and recovers
more detailed contours without noticeable artifacts, such as
the road divider in the second image.

4.2.3 Image Deraining

We perform experiments for image deraining by training the
model on a compound dataset [91], [99]–[101]. The evalua-
tion results on Test100 [90] and Test2800 [91] are presented in
Table 8. Our model significantly surpasses the CNN-based
FSNet [71] and MPRNet [12] by 0.35 dB and 1.13 dB PSNR,
respectively, on the Test100 [90] dataset. The superiority of
our model can also be found on the Test2800 [91] dataset
when compared with other state-of-the-art schemes.

The visual comparisons on the Test100 [90] dataset are
illustrated in Figure 10. As we can see, our method generates
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Fig. 10. Image deraining comparisons on the Test100 [90] dataset.
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Fig. 11. Image defocus deblurring comparisons on the DPDD [29] dataset.

TABLE 9
Image defocus deblurring comparisons on the DPDD [29] dataset. FLOPs are measured under the resolution of 3× 720× 1280.

Indoor Scenes Outdoor Scenes Combined Params FLOPs
Methods PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ (M) (G)

DPDNet [29] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277 31.03 770
KPAC [7] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227 2.06 113
MDP [98] 28.02 0.841 0.027 - 22.82 0.690 0.052 - 25.35 0.763 0.040 - 46.86 1898
IFAN [6] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217 10.48 363
DRBNet [19] - - 25.73 0.791 - 0.183 11.69 693
FocalNet [46] 29.10 0.876 0.024 0.173 23.41 0.743 0.049 0.246 26.18 0.808 0.037 0.210 12.82 1376
Restormer [16] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178 26.16 1983
IRNeXt [34] 29.22 0.879 0.024 0.167 23.53 0.752 0.049 0.244 26.30 0.814 0.037 0.206 14.76 1778

ConvIR-S (Ours) 28.95 0.877 0.024 0.158 23.32 0.747 0.050 0.221 26.06 0.810 0.037 0.190 5.53 579
ConvIR-B (Ours) 29.06 0.879 0.024 0.156 23.42 0.752 0.049 0.219 26.16 0.814 0.037 0.188 8.63 979
ConvIR-L (Ours) 29.37 0.887 0.023 0.143 23.51 0.757 0.049 0.203 26.36 0.820 0.036 0.174 14.83 1778

a higher quality image than other competitors by better
removing rainy degradations and restoring color.

4.2.4 Image Defocus Deblurring

We conduct image defocus deblurring experiments on the
widely used DPDD [29] dataset with our three variants to
comprehensively compare with state-of-the-art approaches.

The image fidelity scores are presented in Table 9. Our
ConvIR-L achieves 26.36 dB PSNR in the combined cate-
gory, which is 0.06 dB higher than the recent CNN-based
IRNeXt [34] algorithm with similar parameters and FLOPs.
Compared to the strong Transformer-based Restormer [16],
our large model obtains a substantial average performance
gain of 0.38 dB in terms of PSNR. It is worth noting that
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Fig. 12. Image motion deblurring comparisons on the GoPro [25] dataset.

TABLE 10
Image motion deblurring results on GoPro [25]. The inference time is

tested on 3× 720× 1280 images in a synchronized manner with
torch.cuda.synchronize() using an NVIDIA Tesla V100 GPU.

Methods PSNR SSIM FLOPs Params Time Memory
(G) (M) (s) (G)

MIMO-UNet++ [5] 32.68 0.959 617.64 16.1 1.277 10.395
MPRNet [12] 32.66 0.959 777.01 20.1 1.148 10.415
MAXIM-3S [47] 32.86 0.961 119.5 22.2 - -
Restormer [16] 32.92 0.961 140.99 26.1 1.218 12.333
Stripformer [17] 33.08 0.962 170.46 20.0 1.054 12.149
PromptRestorer [32] 33.06 0.962 - - - -
IRNeXt [34] 33.19 0.963 129.33 14.76 0.291 6.865

ConvIR-L (Ours) 33.28 0.963 129.34 14.83 0.323 6.867

our small version still outperforms Restormer with a gain of
0.08 dB in PSNR for the combined scenes despite using only
21% parameters and 29% FLOPs.

The visual comparisons are illustrated in Figure 11. As
seen, our method recovers more structural details from hard
defocus degradations, such as the words on the poster.

4.2.5 Image Motion Deblurring

We evaluate our model on a widely used synthetic Go-
Pro [25] dataset and a real-world RSBlur [102] dataset. The
overall comparisons in terms of accuracy and computa-
tional costs on the GoPro [25] dataset are presented in Ta-
ble 10. Compared with Transformer models Restormer [16]
and Stripformer [17] that have quadrative complexity, our
network, ConvIR-L, is built on the efficient convolutional
network and receives remarkable performance gains of 0.36
dB and 0.20 dB PSNR respectively, with fewer parameters,
lower complexity, and less memory footprint. Furthermore,
our model runs 3.77× and 3.26× faster than these two
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Fig. 13. Image deblurring comparisons on the real-world RSBlur [102].

algorithms, respectively, suggesting that our model strikes
a better trade-off between the accuracy and computation
overhead. Compared to the more recent Transformer model,
PromptRestorer [32], our method continues to demonstrate
superior performance, achieving a 0.22 dB higher score.
Compared to CNN-based methods, such as MPRNet [12]
and MIMO-UNet++ [5], our method showcases superiority
on all metrics due to the more advanced network design,
such as the cost-effective frequency modules. Additionally,
our model surpasses IRNeXt [34] by 0.09 dB PSNR with
similar computation overhead owing to the cheap two-
directional rectangle attention unit and dilated operation.

The visual comparisons on the GoPro [25] dataset are
illustrated in Figure 12. Our ConvIR-L produces more vi-
sually pleasing results than other algorithms by removing
large motion blurs.

In addition, we report the results on the real-world
RSBlur [102] in Table 11. As can be seen, our method
outperforms the Transformer-based Uformer [15] and
Restormer [16] by 0.08 dB and 0.37 dB in PSNR, respectively.
The visual comparisons in Figure 13 illustrate that the image
produced by our model is much closer to the reference,
demonstrating the robust property of our method in real-
world scenarios.
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TABLE 11
Image motion deblurring results on the real-world RSBlur [102] dataset.

Methods PSNR SSIM

SRN-DeblurNet [103] 32.53 0.840
MIMO-UNet [5] 32.73 0.846
MIMO-UNet+ [5] 33.37 0.856
MPRNet [12] 33.61 0.861
Restormer [16] 33.69 0.863
Uformer [15] 33.98 0.866

ConvIR-L (Ours) 34.06 0.868

TABLE 12
Break-down ablation studies toward better performance. To separately
study the effect of MSM, we deploy a 3× 3 convolution in each branch
to form MSM/Conv. Here, MSM denotes the pure multi-scale paradigm

without MSA. DSA/Conv denotes a degraded version of DSA by
excluding the FM and dilation mechanism.

Methods a b c d e f

Baseline ! ! ! ! ! !

MSM/Conv ! ! ! ! !

DSA/Conv ! ! ! !

DSA/FM ! ! !

DSA/Dilation ! !

DRA !

PSNR 31.23 31.46 31.53 31.64 31.76 31.92
Params/M 6.90 8.45 8.55 8.56 8.56 8.63
FLOPs/G 66.32 71.17 71.19 71.19 71.19 71.22
Time/s 0.134 0.152 0.165 0.166 0.170 0.206

4.3 Ablation Study

Following previous schemes [34], [47], we conduct ablation
studies on the GoPro [25] dataset with ConvIR-B. The base-
line model is obtained by removing MSM and its inclusions
from our network. All models are trained for 1000 epochs.

Break-down ablation. We perform the break-down ab-
lations by applying our components to the baseline succes-
sively. The results are reported in Table 12. The baseline
receives 31.23 dB PSNR on GoPro (Table 12a). After deploy-
ing MSM with only a 3×3 convolution in each branch, the
model achieves a 0.23 dB improvement (Table 12b). We then
replace this 3× 3 convolution with DSA/Conv, a degraded
version of DSA by excluding FM and the dilation mecha-
nism, the model obtains a further boosted performance of
0.07 dB PSNR (Table 12c). Refining filters in the attention
map using FM leads to a performance gain of 0.11 dB PSNR
(Table 12d). Enlarging receptive fields with the dilation
mechanism advances the performance to 31.76 dB PSNR
(Table 12e). Additionally deploying rectangle-shaped atten-
tion, the complete model achieves the best performance,
0.69 dB higher than the baseline model, and introduces only
1.73M parameters and 4.9G FLOPs. The results suggest the
effectiveness of our proposed components.

The number of branches in MSM. The number of
branches plays an essential role in the coarse-to-fine mecha-
nism of MSM. Therefore, we conduct experiments by vary-
ing the number of branches. Table 13 shows that employing
more branches leads to better performance. Specifically,
when using a single branch with a downsampling rate of
2, the model receives a gain of 0.22 dB PSNR over the

Blurry Image

Sharp Image Branch 8

3 Branches2 Branches1 Branch

Branch 4 Branch 2

Fig. 14. Visualization of intermediate feature maps. The top three fea-
tures exhibit the difference in using different numbers of branches in
MSM. The corresponding models are shown in Table 13. The feature
maps in the second line showcase the outcomes of branches with
different downsampling rates when using three branches. The numbers
in the bottom line indicate downsampling rates.

TABLE 13
The number of branches in MSM. The number indicates the

downsampling rate of a branch.

2 4 8 PSNR Params/M FLOPs/G

31.23 6.90 66.32
! 31.45 7.74 70.91
! ! 31.62 8.18 71.15
! ! ! 31.92 8.63 71.22

TABLE 14
Ablation study for different pooling operations.

Pooling Types Convolution Max Pooling Average Pooling

PSNR 31.75 31.65 31.92

baseline model. When equipped with three branches, the
model demonstrates the efficacy of the proposed coarse-to-
fine mechanism by producing a 0.69 dB PSNR improvement.

We further visualize the intermediate features in Fig-
ure 14 to investigate the effect of our coarse-to-fine mech-
anism. We first exhibit the features obtained from the last
scale of the models that deploy different branches. The
features in the first line illustrate that using more branches
recovers more high-frequency signals for motion deblur-
ring, such as the outlines in the yellow rectangles. Then, we
plot feature maps obtained from each branch of the model
that utilizes three branches. The second line shows that the
model restores shaper features progressively, such as the
face in the red regions. The visualizations demonstrate the
effectiveness of the coarse-to-fine mechanism.

Pooling operation choices. We study the influence of
using different pooling techniques in MSM, i.e., depth-wise
convolution, max pooling, and average pooling. We adopt
the same downsampling rate in all variants. These three op-
erations have the same computational complexity, whereas
convolution introduces extra parameters. The results are
shown in Table 14. The average pooling variant achieves
a better result than the other two alternatives. Therefore, we
choose average pooling as the default configuration.

Different activation functions. Instead of inheriting
Softmax from self-attention to normalize attention weights,
we employ Tanh in MSA. This allows the network to steer
clear of the low-pass filters and generate negative weights
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TABLE 15
Ablation studies for different functions.

Methods Softmax Linear Sigmoid Tanh

PSNR 31.75 31.79 31.83 31.92

TABLE 16
Ablation studies for the number of groups in MSA.

Methods 2 4 8 16

PSNR 31.80 31.79 31.92 31.85
Params/M 8.51 8.55 8.63 8.79

TABLE 17
Ablation studies for dilation rates. (a, b, c) means setting dilation rates

of a, b, and c in three branches of MSM, respectively.

Dilation Rates (3,2,1) (7,5,3) (7,9,11)

PSNR 31.67 31.75 31.76

TABLE 18
Ablation studies for the multi-input and multi-output mechanisms.

Methods a b c d

Multi-output !

Multi-input (3nd scale) ! !

Multi-input (2rd scale) ! ! !

PSNR 31.23 30.77 30.39 28.97

for pixels that may have a detrimental impact during in-
formation aggregation. Table 15 shows that compared with
Softmax, the linear projection and the Sigmoid version
achieve gains of 0.04 dB and 0.08 dB PSNR, respectively, by
breaking away from the sum-to-one property. Tanh projects
attention weights into (-1, 1), producing a considerable
improvement of 0.17 dB PSNR over the baseline model.

The number of groups in MSA. In MSA, we learn
group-wise attention weights for information aggregation.
To study the impact of the diversity of attention weights,
we perform experiments by varying the number of groups.
The results are presented in Table 16. Generally, as we
increase the number of groups, the performance improves.
However, group 8 appears to be saturated, a phenomenon
likely attributed to overfitting.

Dilation rates. We use the dilation mechanism in MSA to
enlarge receptive fields. We conduct experiments by deploy-
ing different combinations of dilation rates in three branches
of MSM. Table 17 shows that increasing the dilation rates
leads to better results by perceiving larger receptive fields.
Finally, we simply choose the combination of (7,9,11) in
our models. Here, we only experiment with a limited set
of dilation rate combinations to verify the validity of our
design instead of exhaustively searching for the best option.

Effects of multi-input and multi-output strategies.
We investigate the effects of the adopted multi-input and
multi-output strategies [5], [34], [47] by gradually remov-
ing these techniques from the baseline model in Table 12.
Table 18 shows that the model receives 31.23 dB PSNR

TABLE 19
The overall comparisons between the convolution and self-attention

models using the same number of parameters (0.09M). The memory is
the memory usage for training.

Methods FLOPs/G Memory/G PSNR Time/s

Conv 6.19 14.3 25.86 0.019
Attention 8.28 (+2.09) 43.7 (+29.4) 25.85 (−0.01) 0.085 (+0.066)

using the multi-input/output mechanisms. Removing the
multi-output method, the performance degrades to 30.77 dB
PSNR. Unloading multi-input layers leads to further perfor-
mance degradation. These results suggest the effectiveness
of the multi-input and multi-output schemes.

5 DISCUSSION

Recent years have witnessed a paradigm shift from CNN-
based architectures to Transformer models, which fea-
ture quadratic complexity. Some literature has investi-
gated the connections between the convolutions and Trans-
former models from various perspectives, including channel
mixing, normalization, filter generation [54] and applica-
tion [104], and frequency preference [63]. In this study, we
revitalize the convolutional network simply due to the high
complexity of self-attention.

We conduct toy experiments for clear demonstration.
Specifically, we build two tiny models by respectively de-
ploying only five residual convolution blocks and five pure
self-attention units [105]. We keep the number of parameters
equal for a fair comparison by adjusting the channel count.
The models are trained on the GoPro [25] dataset for 100
epochs with an initial learning rate of 16e−4 and a batch
size of 64. The obtained models are tested on the GoPro [25]
test set using an NVIDIA Tesla V100 GPU. Table 19 shows
that the model built on self-attention consumes higher com-
plexity and memory footprint during training. By contrast,
the convolution version achieves comparable accuracy with
lower computation overhead and faster speed. Therefore,
we revitalize the convolution network for effective and ef-
ficient image restoration. The comprehensive experimental
results demonstrate that using proper designs, the convolu-
tional networks can perform better or favorably against the
elaborately devised Transformer models. We hope this study
could inspire researchers to further exploit the potential of
CNN-based models for image restoration.

6 CONCLUSION

In this study, we analyze previous successful image restora-
tion models and identify the good properties owned by
them. Based on the observation, we present an effective
and efficient convolutional model for image restoration.
Extensive experimental results on 20 benchmark datasets
demonstrate that the proposed network matches Trans-
former models and achieves state-of-the-art performance for
five representative image restoration tasks.

Our work also has limitations. For example, we only
experiment with limited combinations of dilation rates in
MSM to demonstrate the validity of our design. Promising
directions include learning the optimal dilation rates or
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combining the deformable operator [106] to capture adap-
tive and flexible receptive fields. Further work can also
involve using cheaper alternatives, e.g., Ghost module [107],
to supplant the regular residual blocks in our model for
lightweight design. Our model also has the potential for all-
in-one image restoration tasks due to the adaptive frequency
learning ability for different degradation types.
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