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Abstract

Graphical continuous Lyapunov models offer a new perspective on modeling causally
interpretable dependence structure in multivariate data by treating each independent
observation as a one-time cross-sectional snapshot of a temporal process. This
dissertation provides basic research for the new approach in the field of graphical
modeling and is divided into three parts.

The covariance matrix for the data is obtained by solving a continuous Lyapunov
equation that is parametrized by the drift matrix of the dynamic process. In this
context, different statistical models postulate different sparsity patterns in the drift
matrix, and it becomes a crucial problem to clarify whether a given sparsity assumption
allows one to uniquely recover the drift matrix parameters from the covariance matrix
of the data. We study this identifiability problem by representing sparsity patterns by
directed graphs. Our main result proves that the drift matrix is globally identifiable if
and only if the graph for the sparsity pattern is simple (i.e., does not contain directed
two-cycles). Moreover, we present a necessary condition for generic identifiability and
provide a computational classification of small graphs with up to 5 nodes.

Each graphical continuous Lyapunov model assumes the drift matrix to be sparse,
with support determined by a directed graph. A natural approach to model selection
in this setting is to use an ℓ1-regularization technique that, based on a given sample
covariance matrix, seeks to find a sparse approximate solution to the Lyapunov
equation. We study the model selection properties of the resulting lasso technique
to arrive at a consistency result. Our detailed analysis reveals that the involved
irrepresentability condition is surprisingly difficult to satisfy. While this may prevent
asymptotic consistency in model selection, our numerical experiments indicate that
even if the theoretical requirements for consistency are not met, the lasso approach
is able to recover relevant structure of the drift matrix and is robust to aspects of
model misspecification. The analysis concludes by applying the lasso approach in
combination with the (extended) Bayesian Information Criterion to real-world data.
Despite the simplicity of the approach, the method is able to recover many important
connections of an among scientists accepted protein-signalling network.

Advances in Mixed Integer Quadratic Programming (MIQP) allowed the best subset
selection (ℓ0-penalized) to compete with ℓ1-penalized approaches. We rigorously
study the strengths and weaknesses of the best subset selection for Lyapunov models
(BSSLM). First, we provide examples that show how ℓ1-penalized methods tend to
produce a lot of undesired symmetry in the estimates, which can be resolved by
using the BSSLM. Making the connection to the best subset selection for regression
problems, we show how the problems are set up to make them feasible for MIQP
solvers. Analyzing the time consumption, we suggest to settle for smaller problem
sizes up to 25× 25. In settings where the nonzero entries are clearly distinguishable
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Abstract

from zero, the BSSLM performs much better than the ℓ1-competitors. Furthermore,
we show that the BSSLM is able to jointly estimate the drift and a diagonal volatility
matrix. In particular, regarding the quality of the estimate of the drift matrix, the
method shows the best performance when compared to the ℓ1-competitors in our
simulation setting. To conclude, we present a potential application by estimating
a protein-signaling network purely from observational data. There, we include the
information regarding the diagonal of C by coloring the nodes.
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Zusammenfassung

Grafische stetige Lyapunov-Modelle bieten eine neue Perspektive für die Modellierung
kausal interpretierbarer Abhängigkeitsstrukturen in multivariaten Daten, indem sie
jede unabhängige Beobachtung als einmaligen Schnappschuss einer Zeitreihe im Gle-
ichgewichtszustand behandeln. Diese Dissertation liefert Grundlagenforschung für den
neuen Ansatz im Bereich der grafischen Modelle und gliedert sich in drei Teile.

Die Kovarianzmatrix für die Daten ist durch Lösen der stetigen Lyapunov-Gleichung
gegeben, die durch die Driftmatrix des dynamischen Prozesses parametrisiert wird. In
diesem Zusammenhang postulieren verschiedene statistische Modelle unterschiedliche
Sparsity-Muster in der Driftmatrix, und eine entscheidende Frage ist, ob eine gegebene
Sparsity-Annahme es erlaubt, die Einträge in der Driftmatrix eindeutig aus der
Kovarianzmatrix der Daten wiederherzustellen. Wir untersuchen dieses Identifizier-
barkeitsproblem, indem wir Sparsity-Muster durch gerichtete Graphen darstellen.
Unser Hauptergebnis beweist, dass die Driftmatrix genau dann global identifizierbar
ist, wenn der Graph für das Sparsity-Muster keine 2-Zyklen enthält. Darüber hinaus
formulieren wir eine notwendige Voraussetzung für die generische Identifizierbarkeit
und präsentieren eine rechnerische Klassifizierung kleiner Graphen mit bis zu 5 Knoten.

Jedes grafische stetige Lyapunov-Modell nimmt an, dass die Driftmatrix dünnbesetzt
ist und das Sparsity-Muster durch einen gerichteten Graphen beschrieben werden
kann. Ein natürlicher Ansatz zur Modellauswahl ist die Verwendung einer ℓ1-
Regularisierungstechnik, die auf der Grundlage einer gegebenen Kovarianzmatrix der
Stichprobe versucht, eine dünn besetzte Näherungslösung für die Lyapunov-Gleichung
zu finden. Wir untersuchen die Modellauswahleigenschaften der resultierenden Lasso-
Technik, um ein Konsistenzresultat herzuleiten. Unsere detaillierte Analyse zeigt, dass
die damit verbundene Irrepresentabilitätsbedingung überraschend schwer zu erfüllen
ist. Während dies möglicherweise die asymptotische Konsistenz bei der Modellauswahl
verhindert, zeigen unsere numerischen Experimente, dass der Lasso-Ansatz selbst
dann in der Lage ist, die relevante Struktur der Driftmatrix wiederherzustellen, wenn
die theoretischen Anforderungen an die Konsistenz nicht erfüllt sind. Weiterhin ist
er robust gegenüber milder Misspezifikation des Modells. Die Analyse endet mit der
Anwendung des Lasso-Ansatzes in Kombination mit dem (erweiterten) Bayes’schen
Informationskriterium auf reale Daten. Trotz der Einfachheit des Ansatzes ist die
Methode in der Lage, viele wichtige Verbindungen eines unter Wissenschaftlern akzep-
tierten Protein-Signalnetzwerk korrekt zu schätzen.

Fortschritte in der gemischten ganzzahligen quadratischen Optimierung (MIQP)
ermöglichten, dass Methoden mit einer ℓ0-Regularisierung, wie die beste Teilmen-
genauswahl, mit Methoden mit ℓ1-Regularisierung konkurrieren können. Wir un-
tersuchen gründlich die Stärken und Schwächen der besten Teilmengenauswahl für
Lyapunov-Modelle (BSSLM). Zunächst stellen wir Beispiele bereit, die zeigen, wie
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Zusammenfassung

ℓ1-regularisierte Methoden dazu neigen, unerwünschte Symmetrie in den Schätzern zu
erzeugen, die durch die Verwendung des BSSLM behoben werden kann. Wir stellen den
Zusammenhang zur besten Teilmengenauswahl für Regressionsprobleme her und zeigen,
wie die Probleme so formuliert werden können, dass sie für MIQP-Solver lösbar sind.
Bei der Analyse des Zeitaufwands empfehlen wir, sich mit kleineren Problemgrößen bis
zu 25 ×25 zufrieden zu geben. In Szenarien, in denen die Nicht-Null-Einträge klar von
Null unterscheidbar sind, schneidet die BSSLM viel besser ab als die ℓ1-Konkurrenten.
Darüber hinaus zeigen wir, dass die BSSLM in der Lage ist, die Drift und eine diagonale
Volatilitätsmatrix gemeinsam zu schätzen. Insbesondere hinsichtlich der Qualität der
Schätzung der Driftmatrix zeigt die Methode im Vergleich zu den ℓ1-Konkurrenten in
unserem Simulationssetting die beste Leistung. Abschließend stellen wir eine mögliche
Anwendung vor, indem wir ein Protein-Signalnetzwerk ausschließlich anhand von
Beobachtungsdaten abschätzen. Dort beziehen wir die Informationen zur Schätzung
der Diagonale von C ein, indem wir die Knoten einfärben.
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Notation and Acronyms

A(Σ) Design matrix of Lyapunov Models when C is assumed
to be known.

B(Σ) Design matrix of Lyapunov models when C is assumed
to be unknown.

C Volatility Matrix of the Ornstein-Uhlenbeck-Process.
Kp The p× p commutation matrix.
M Drift matrix of the Ornstein-Uhlenbeck-Process.
Γ Hessian matrix of Lyapunov Models.

x̂ or X̂ An estimate of the vector x or of the matrix X.
MG,C GCLM defined by the directed graph G and by a

known volatility matrix C.
MG GCLM defined by the directed graph G with unknown

volatility matrix C.
PDp Positive definite p× p matrices.
Stab(E) Stable matrices supported over a graph with edgeset

E.
det(A) Determinant of the matrix A.
ker(A) Kernel of the matrix A.
tr(A) Trace of the matrix A.
vech(A) Half-vectorization of the matrix A.
vec(A) Vectorization of the matrix A.

∥A∥b ∥A∥b=(
∑p

i=1

∑n
j=1 |aij |b)1/b.

|||A|||b |||A|||b=max{∥Ax∥b : ∥x∥b = 1}.
⊗ Kronecker Product.
x∗ or X∗ The data generating parameter vector or matrix when

assessing an estimation method.
acc Accuracy.
auc/aucroc Area under the roc curve.
aupr Area under the precision curve.
BSSLM Best subset selection for Lyapunov models.
DAG Directed acyclic graph.
fdr False Discovery Rate.
fpr False Positive Rate.
GCLM Graphical continuous Lyapunov model.
pr Precision.
tpr True Positive Rate.
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Chapter 1

Introduction

The relevance and also the availability of data is greater than ever before. In its
early days, statistics was mainly descriptive and a tool for research in other fields
such as medicine, psychology, or economics. Standard methods are still often used
today to evaluate previously established hypotheses. At the same time, however,
technological advances and developments in the field of computer science also increased
the ambitions of statisticians. One of these ambitions includes understanding or even
reconstructing complex networks with many interacting units in a data-driven way.
For this, simultaneous observations of the units must be available, i.e., a multivariate
data set.

1.1 Motivation

Graphical models are powerful tools for analyzing complex dependencies in multivariate
observations. In particular, directed graphical models allow one to capture and explore
dependencies induced by cause-effect relations [Pearl, 2009, Spirtes et al., 2000, Peters
et al., 2017]. The connection to causality is made by hypothesizing that each variable
is a function of parent variables and independent noise. This approach is also known
as structural causal modeling or structural equation modeling. The simplest example
is the equation

X2 = f(X1) + ϵ,

where X1, X2 are random variables, f is a (possibly linear) function and ϵ is stochastic
noise. This is visualized by the graph in Figure 1.1.

X1 X2

Figure 1.1: X2 is a cause of X1.

For directed acyclic graphs (DAGs), the resulting models have simple interpretation
and statistically favorable density factorization properties that facilitate large-scale
analyses [Maathuis et al., 2019]. Difficulties arise when introducing cycles into the
framework. Bongers et al. [2021] list several problems when allowing for cycles. For
instance, they do not always have a unique solution or induce a unique observational
distribution. Nevertheless, the mentioned work extends the acyclic framework to the
simple cyclic graphs where the desirable properties hold under solvability assumptions.
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Other problems with cycles are that they prevent density factorizations, making it
more challenging to solve tasks such as computation of maximum likelihood estimates
[Drton et al., 2019] or model selection [e.g., Richardson, 1996, Amendola et al., 2020].
Importantly, the interpretation of the models also becomes more involved and typically
appeals to dynamic processes in a post-hoc way. For example, Fisher [1970] provided
an interpretation based on data that are time averages. Alternative interpretations in
terms of differential equations were suggested by Mooij et al. [2013] and Bongers and
Mooij [2018].

Therefore, one might search for alternative modeling approaches that allow for cyclic
models in a more organic way. Recently, Fitch [2019] proposed graphical models arising
from a dynamical systems perspective. In independent work by Varando and Hansen
[2020], the modeling setup of the previous work is refined, and they provide an efficient
algorithm for structure learning and establish theoretical results on marginalization.

The novel idea is to start with a temporal process in equilibrium. That is, an i.i.d. sam-
ple X1, . . . , Xn ∈ Rp is assumed to arise from multivariate Ornstein-Uhlenbeck pro-
cesses (i.e., multivariate continuous-time autoregressive processes) withXi representing
a single cross-sectional observation of the i-th process in equilibrium. Under this
assumption, Xi is a multivariate normal random vector with a covariance matrix
given by a (continuous) Lyapunov equation. Note that this framework considers data
to be drawn from multiple time series in equilibrium and not from a single process
Ornstein-Uhlenbeck process, as in related work of Gäıffas and Matulewicz [2019] or
Ciolek et al. [2020].

The p-dimensional Ornstein-Uhlenbeck process is the solution to the stochastic differ-
ential equation

dX(t) = M(X(t)− a) dt+D dW (t), (1.1)

where W (t) is a Wiener process and a ∈ Rp and M,D ∈ Rp×p are non-singular
parameter matrices. The drift matrix M is the key object of interest in the work of
Fitch [2019] and Varando and Hansen [2020] as it determines the relations between the
coordinates of the Ornstein-Uhlenbeck process X(t); see also Mogensen et al. [2018].
Provided M is stable (i.e., all eigenvalues have a strictly negative real part), X(t)
admits an equilibrium distribution that is multivariate normal with a positive definite
covariance matrix Σ determined by the continuous Lyapunov equation

MΣ+ ΣM⊤ + C = 0, (1.2)

where C = DD⊤. As M captures relationships among variables, it is natural to
represent the connections by a (directed) graph.

For instance, the drift matrix

M =

m11 0 m13

m21 m22 0
0 m32 m33

 (1.3)

translates to the graph presented in Figure 1.2.
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1

2 3

Figure 1.2: The directed 3-cycle.

Assuming C to be known, every graph (i.e. sparsity pattern of M) induces a statistical
model by determining a set of covariance matrices (see Definition 1.3.2). This is also
possible without assuming C to be known (see Definition 1.3.5). However, most parts
of the work focus on the first setting.

1.2 Structure of the Thesis and Contributions

While the existing theory for structural equation models is huge, the basic questions of
the “graphical model program” are yet to be asked for Graphical Continuous Lyapunov
Models (GCLM). Two relevant topics are:

1. Parameter Identifiability

2. Model Selection

Topic 1) is discussed in Chapter 2. This is a fundamental theoretical question and
directly proves its importance in Chapter 3 where a consistency result of a model
selection method is derived. It poses the question if it is possible to uniquely recover
the numerical values of the entries in the drift matrix from the true covariance matrix
when fixing the nonzero pattern of M and assuming C to be known. Fixing the
nonzero pattern of M coincides with considering a specific directed graph.

Topic 2) is discussed in Chapter 3 and Chapter 4. The objective is to obtain an
estimate for the drift matrix or a joint estimate where the volatility matrix is also
estimated.

In Chapter 3 we consider a lasso-type (ℓ1-penalized) approach that was initially
proposed by Fitch [2019]. We use the convexity of the optimization problem to
derive a probabilistic guarantee for support recovery. The crucial condition is an
irrepresentability condition that is discussed in great detail. A potential application
of Lyapunov models to real-world data is presented using a biological dataset.

In Chapter 4, we consider a variant of the best subset selection and apply it in the
context of GCLMs. The idea originates from the work by Bertsimas et al. [2016] in
regression contexts. The motivation is to directly control the number of active and
inactive variables when seeking sparse estimates. The ℓ1-penalized method discussed
in Chapter 3 is only a convenient surrogate problem and does not directly control the
number of active variables. The best subset selection serves the desired purpose at the
cost of a non-convex and computationally expensive problem. We rigorously analyze
the strengths and weaknesses of this approach and demonstrate the superiority over
the ℓ1-penalized methods in certain settings. Furthermore, we extend both the method

3
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discussed in Chapter 3 and the one of this chapter to jointly estimate the drift matrix
and the volatility matrix.

The thesis is based on, and parts of it have been quoted verbatim from the following
research articles:

Chapter 2 is based on the publication by Dettling et al. [2023]:

P. Dettling, R. Homs, C. Améndola, M. Drton, and N. R. Hansen. Identifiability in
continuous Lyapunov models. SIAM J. Matrix Anal. Appl., 44(4):1799–1821, 2023.

Permission for use in the doctoral thesis granted by Managing Director Kelly Thomas
(SIAM), 30.05.2024.

Chapter 3 is based on the publication by Dettling et al. [2024]:

P. Dettling, M. Drton, and M. Kolar. On the lasso for graphical continuous Lyapunov
models. In Proceedings of the Third Conference on Causal Learning and Reasoning,
pages 514–550. PMLR, 2024.

Chapter 4 is based on unpublished work by Dettling and Drton [2024]:

P. Dettling and M. Drton. On the best subset selection for graphical continuous
Lyapunov models, 2024.

The content in Chapter 1 is mainly an introduction and does intersect with all three
papers this work is based on. Furthermore, a work on the related structural equation
models by Amendola et al. [2020] was co-authored by the author of this thesis:

C. Améndola, P. Dettling, M. Drton, F. Onori, and J. Wu. Structure learning for
cyclic linear causal models. In Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), pages 999–1008. PMLR, 2020.

However, the paper is not part of this thesis.

1.3 Graphical Continuous Lyapunov Models

Before discussing the three topics above, we introduce graphical continuous Lyapunov
models and make some preliminary observations. To formalize graphical continuous
Lyapunov models, we need to introduce a notion of directed graphs.

Definition 1.3.1. A directed graph G on p nodes is defined by a pair (V,E) with
V = [p] = {1, . . . , p} being the set of nodes and E = {i→ j : i, j ∈ V } the set of edges.

The graph displayed in Figure 1.2 is then given by G = (V,E) with V = {1, 2, 3} and
E = {1→ 1, 2→ 2, 3→ 3, 1→ 2, 2→ 3, 3→ 1}.

We consider an i.i.d. sample X1, . . . , Xn ∈ Rp taken from multivariate Ornstein-
Uhlenbeck processes (1.1) in equilibrium. As the drift matrix M captures relationships
among the coordinates of the Ornstein-Uhlenbeck process, we represent its non-zero
pattern by a directed graph following the convention that

mij = 0⇒ j → i /∈ E.

For illustration, compare (1.3) with Figure (1.2).
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1.3 Graphical Continuous Lyapunov Models

We assume C to be a known positive definite matrix. This assumption needs further
explanation that we provide at a later point in this work. If all the eigenvalues of
M have a strictly negative real-part, the equilibrium distribution of the Ornstein-
Uhlenbeck process is Gaussian. Then, the unique covariance matrix Σ of the Gaussian
distribution N(a,Σ) is determined by the continuous Lyapunov equation (1.2), see
Lyapunov’s theorem [Horn and Johnson, 1991, Theorem 2.2.1].

Without loss of generality we assume that the observations are centered, i.e. that
a = 0. A graph, reflected by a fixed non-zero pattern of the drift matrix, together
with a positive definite matrix C, defines a model.

Definition 1.3.2. Let G = (V,E) be a directed graph with vertex set V = [p] and an
edge set E that includes all self-loops i→ i, i ∈ [p]. Given a choice of C ∈ PDp, the
graphical continuous Lyapunov model of G is the set of covariance matrices

MG,C =
{
Σ ∈ PDp : MΣ+ ΣM⊤ = −C with M ∈ RE

}
,

where we write RE for the space of matrices M = (mij) ∈ Rp×p with mji = 0 whenever
i→ j /∈ E.

One might ask why we do not force M to be stable in Definition 1.3.2.

Remark 1.3.3. Let Stab(E) ⊆ RE be the subset of stable matrices, which is always
non-empty and open. When C is positive definite, the Lyapunov equation from (1.2)
has a positive definite solution Σ if and only if M is stable [Bhaya et al., 2003, Theorem
1.1]. Hence, the definition of the model MG,C remains unchanged if we replace the
requirement M ∈ RE by M ∈ Stab(E).

There is one subtlety of the Lyapunov equation that we want to mention here. It is
central to correctly interpret the results throughout this work.

Remark 1.3.4. If a matrix Σ solves the Lyapunov equation (1.2) for a pair (M,C)
then Σ also solves the equation given by (γM, γC) for any γ ∈ R\{0}

γMΣ+ ΣγM⊤ + γC = 0⇐⇒MΣ+ ΣM⊤ + C = 0. (1.4)

Even though this might seem a bit vague at this point, a lot of the times obtaining
results for a modelMG,C implies that the results also hold for the modelMG,γC with
γ ∈ R+.

In Chapter 4.4, we consider estimating M and the diagonal of C jointly. In this work,
we advocate for assuming that the matrix C is diagonally unknown with c11 = 1.
Setting c11 = 1 takes into account the scaling invariance of the Lyapunov equation
and admits for unique solutions.

Definition 1.3.5. Let G = (V,E) be a directed graph with vertex set V = [p] and
an edge set E that includes all self-loops i → i, i ∈ [p]. The graphical continuous
Lyapunov model of G with C diagonally unknown is the set of covariance matrices

MG =
{
Σ ∈ PDp :MΣ+ ΣM⊤ = −C for some M ∈ RE , (1.5)

C ∈ PDp diag and c11 = 1
}
.
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Chapter 1 Introduction

Estimating off-diagonal entries for C is also possible and they are represented by
bidirected edges by Varando and Hansen [2020]. However, the authors mention
themselves that a lot of desirable properties are only available when assuming C
diagonal. For instance, assuming C diagonal, the local independence graph has the
global Markov property [Mogensen et al., 2018]. With the limited theory available,
assuming C to be diagonal is also a natural starting point for analyzing model geometry
and extending parameter identifiability.

We end this section with an illustration of the two variants of graphical continuous
Lyapunov models (GCLM).

Example 1.3.6. First, we consider the models in Definition 1.3.2 where C is assumed
to be known. The directed 3-cycle G with vertex set V = {1, 2, 3} and edge set
E = {1 → 1, 2 → 2, 3 → 3, 1 → 2, 2 → 3, 3 → 1}, which is displayed on the left of
Figure 1.3, encodes drift matrices of the form

M =

m11 0 m13

m21 m22 0
0 m32 m33

 .

Considering the models in Definition 1.3.5 where C is assumed to be diagonally
unknown, the directed 3-cycle on the left in Figure 1.3 is expanded by the coloring
of nodes on the right in Figure 1.3 and encodes drift matrices of the form of M and
volatility matrices

C =

1 0 0
0 c22 0
0 0 c33


with 1 > c22 > c33. The coloring allows for a relative comparison of the diagonal
entries in C. The smallest entry is turquoise and the largest one is pink. The color
progression is from small to large is: .

1

2 3

1

2 3

Figure 1.3: Left: Directed 3-cycle. Right: Directed 3-cycle with information on C.

1.4 Vectorization of the Lyapunov Equation

The Lyapunov equation (1.2) is a matrix equation that can be vectorized in which case
it takes the form of a classical linear equation system Ax = b. This comes in handy
both for investigating identifiability of Lyapunov models and for model selection. In
particular for model selection, the similarity to regression problems allows to modify
known variable selection techniques and apply them in the context of GCLMs.
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1.4 Vectorization of the Lyapunov Equation

We present all the notation that is needed to derive the vectorized Lyapunov equation
having the form

A(Σ)vec(M) = −vec(C). (1.6)

Definition 1.4.1. Let A be a p× p matrix. The vec-operator vec(·) transforms

A =


a11 a12 . . . a1p
a21 a22 . . . a2p
...

...
. . .

...
ap1 ap2 . . . app


into a vector of length p2 by stacking the columns of A below one another, i.e.

vec(A) = (a11, a21, . . . , ap1, a12, a22, . . . ap2, . . . , a1p, a2p, . . . , app)
⊤.

When vectorizing the Lyapunov equation (1.2) we apply the vec-operator to a product
of two matrices which can be rewritten using the Kronecker product, see the work by
Horn and Johnson [1991] for instance.

Definition 1.4.2. Let A and B be p× p matrices. The Kronecker product of A and
B is a p2 × p2 matrix

A⊗B =


a11B a12B . . . a1pB
a21B a22B . . . a2pB
...

...
. . .

...
ap1B ap2B . . . appB


where

aijB =


aijb11 aijb12 . . . aijb1p
aijb21 aijb22 . . . aijb2p

...
...

. . .
...

aijbp1 aijbp2 . . . aijbpp

 .

Lastly, we need to transform vec(M⊤) to vec(M) to bring the summands of the
Lyapunov equation together which is done using the commutation matrix, see [Magnus
and Neudecker, 1999, p. 54].

Definition 1.4.3. The p× p commutation matrix is given by

Kp =

p∑
i=1

p∑
j=1

(ep,ie
T
p,j)⊗ (ep,je

T
p,i),

It transforms vec(A) for A ∈ Rp×p to vec(AT ), i.e.

Kpvec(A) = vec(AT ).

The vector ep,i denotes the i-th canonical vector of dimension p.
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Chapter 1 Introduction

Having introduced the above notion, we can finally vectorize the Lyapunov equation.

Lemma 1.4.4. Vectorizing the Lyapunov equation (1.2), we obtain the system

((Σ⊗ Ip) + (Ip ⊗ Σ)Kp)vec(M) = −vec(C), (1.7)

where Kp is the p× p commutation matrix.

Proof. It holds that

vec(MΣ+ ΣM⊤) = vec(MΣ) + vec(ΣM⊤)

= (Σ⊤ ⊗ Ip)vec(M) + (Ip ⊗ Σ)vec(M⊤) = ((Σ⊗ Ip) + (Ip ⊗ Σ)Kp)vec(M).

□

Defining

A(Σ) := (Σ⊗ Ip) + (Ip ⊗ Σ)Kp

we obtain the vectorized Lyapunov equation (1.6). In general, we use this definition
throughout the thesis. The formulation as sum of Kronecker products involving the
covariance matrix is especially useful for the probabilistic analysis in Chapter 3 and
the computational study in Chapter 4. However, the analysis in Chapter 2 focuses on
the rank of submatrices of A(Σ). The matrix A(Σ), as defined above, has redundant
rows that are hindering when analyzing the rank. Therefore, we only select the rows
of

(Σ⊗ Ip) + (Ip ⊗ Σ)Kp

indexed by pairs (k, l) with k ≤ l to obtain the matrix A(Σ) in Chapter 2. To avoid
confusion, we clarify which version of A(Σ) is used in the individual chapters.

In this work we often use submatrices. For an index set S, we write A·S for the
submatrix of A that is obtained by selecting the columns indexed by S. The matrices
AS· and ASS are defined analogously by selection of rows or both rows and columns,
respectively.
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Chapter 2

Parameter Identifiability

This chapter is largely based on the publication Dettling et al. [2023]. However,
Section 2.11 contains new material.

Parameter identifiability is an essential theoretical question for the validity of statistical
models. Different statistical models postulate different sparsity patterns in the drift
matrix, and it becomes a crucial problem to clarify whether a given sparsity assumption
allows one to uniquely recover the drift matrix parameters from the covariance matrix
of the data. We study this identifiability problem by representing sparsity patterns by
directed graphs. Primarily, the chapter focuses on assuming the volatility matrix C
to be known, which is the case for the models in Definition 1.3.2.

2.1 Organization of the Chapter

In Section 2.3 we introduce the notions of generic and global identifiability and make
some preliminary observations. In Section 2.4, we explain the structure of the matrix
A(Σ) that arises from (half-)vectorization of the Lyapunov equation. We also highlight
how the rank of a submatrix of A(Σ) determines generic and global identifiability
of a model. Exploiting block structure in the relevant submatrix of A(Σ), we prove
global identifiability for all directed acyclic graphs (DAGs) in Section 2.5. Our proof
also yields that the models given by DAGs are closed algebraic subsets of PDp, and
that the models associated to complete DAGs are equal to PDp (Corollary 2.5.4).
In Section 2.6, we turn to cyclic graphs for which the relevant matrices no longer
exhibit block structure. We demonstrate that for small graphs the approach studying
factorizations of determinants can still be implemented using sum of squares methods
to certify that the relevant polynomials are positive on PDp. When feasible, such
computations prove again that identifiable models are closed subsets of PDp. In
Section 2.7 we present our main result (Theorem 2.7.1), which proves that global
model identifiabilty holds if the underlying graph is simple (i.e., does not contain any
2-cycle). If C is diagonal—the case of primary practical interest, then the requirement
that the graph be simple is also necessary for global identifiability. Moreover, we are
able to show that for all C ∈ PDp, all simple graphs yield models MG,C that are
closed algebraic subsets of PDp. We discuss further the diagonal hypothesis on C in
Section 2.9. In Section 2.8, we turn to the weaker notion of generic identifiability, for
which we develop a necessary criterion and computationally classify all non-simple
graphs with up to 5 nodes. The results in Section 2.10 are additional information that
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Chapter 2 Parameter Identifiability

comes in handy throughout this chapter. In Section 2.11 we provide a small outlook
into how the results in this chapter could be used to investigate the case C unknown.

2.2 Motivation

The Lyapunov equation from (1.2) is a symmetric matrix equation providing p(p+1)/2
constraints. In contrast, the drift matrix M is a p× p matrix that does not need to
be symmetric. Hence, without any assumptions on its structure, M is never uniquely
determined by the covariance matrix Σ of the observations. For graphical Lyapunov
models, this leads to a key identifiability question: For which sparsity patterns can
the drift matrix M be recovered from the positive definite covariance matrix Σ?
Our treatment of this question will assume that the volatility matrix C is a known
positive definite matrix. While some of our results hold for all positive definite C,
others require the assumption that C is diagonal. This is a sensible assumption as
it corresponds to the setting of uncorrelated noise. A special case is the assumption
C = 2Ip that covers the natural setting of homoscedastic noise.

The identifiability question we pose asks if a covariance matrix Σ in the modelMG,C

may simultaneously solve the Lyapunov equation for more than one choice of a matrix
M ∈ RE . In other words, we study the injectivity of the (rational) parametrization
map

ϕG,C : Stab(E)→ PDp

M 7→ Σ(M,C),
(2.1)

where Σ(M,C) is the unique matrix Σ that solves the Lyapunov equation given by
the stable matrix M and positive definite C. See (2.6) for details on this uniqueness.

Example 2.2.1. By vectorization, the Lyapunov equation (1.2) is transformed into
the linear equation system

A(Σ)vec(M) = −vech(C), (2.2)

where vech(C) is the half-vectorization of a fixed symmetric matrix C ∈ PDp, and
A(Σ) is a p(p + 1)/2 × p2 matrix depending on Σ whose form will be discussed in
Section 2.4. In the case of p = 3 variables the matrix A(Σ) equals

1→ 1 1→ 2 1→ 3 2→ 1 2→ 2 2→ 3 3→ 1 3→ 2 3→ 3


(1, 1) 2Σ11 0 0 2Σ12 0 0 2Σ13 0 0
(1, 2) Σ12 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
(1, 3) Σ13 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

(2, 2) 0 2Σ12 0 0 2Σ22 0 0 2Σ23 0
(2, 3) 0 Σ13 Σ12 0 Σ23 Σ22 0 Σ33 Σ23

(3, 3) 0 0 2Σ13 0 0 2Σ23 0 0 2Σ33

,

where the column index i→ j corresponds to entry mji of the drift matrix M = (mij).

Given a graph G with p(p + 1)/2 edges, unique solvability of (2.2) for M ∈ RE is
equivalent to a certain maximal square submatrix of A(Σ) being invertible. This
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2.2 Motivation

submatrix is formed by all columns of A(Σ) corresponding to edges of the graph.
Observe that two columns indexed by i → j and k → l have the same zero pattern
whenever j = l. This motivates ordering the columns of A(Σ)·,E increasingly with

i→ j < k → l if j < l or j = l, i < k. (2.3)

Moreover, note that for simple graphs there is a natural pairing between pairs (i, j)
with i ≤ j and edges between i and j. In this case, we will order rows accordingly with
their corresponding pair (i, j).

Consider the 3-cycle G from Figure 1.2. Then unique solvability of (2.2) for M ∈ RE

is equivalent to a submatrix of A(Σ) being invertible, namely, the submatrix

A(Σ)·,E =

1→ 1 3→ 1 1→ 2 2→ 2 2→ 3 3→ 3


(1, 1) 2Σ11 2Σ13 0 0 0 0
(1, 3) Σ13 Σ33 0 0 Σ12 Σ13

(1, 2) Σ12 Σ23 Σ11 Σ12 0 0
(2, 2) 0 0 2Σ12 2Σ22 0 0
(2, 3) 0 0 Σ13 Σ23 Σ22 Σ23

(3, 3) 0 0 0 0 2Σ23 2Σ33

.

To show invertibility of A(Σ)·,E, we may inspect its determinant, which factorizes as

| det(A(Σ)·,E)| = 23 · det(Σ) · (Σ11Σ22Σ33 − Σ12Σ13Σ23). (2.4)

All displayed factors are positive when Σ is positive definite. Indeed, det(Σ) > 0 and
the fact that det(Σij,ij) = ΣiiΣjj − Σ2

ij > 0 for all i ̸= j implies that Σ2
11Σ

2
22Σ

2
33 >

Σ2
12Σ

2
13Σ

2
23, which clarifies that the last factor is also positive. Alternatively, we can

show this using the identity

(Σ11Σ22Σ33)
2 − (Σ12Σ13Σ23)

2 =

(Σ13Σ23)
2 det(Σ12,12) + Σ11Σ22Σ

2
23 det(Σ13,13) + Σ2

11Σ22Σ33 det(Σ23,23) > 0.

We conclude that when G is the 3-cycle, then for all covariance matrices Σ ∈MG,C ⊆
PD3 there is a unique matrix M ∈ RE such that Σ = ϕG,C(M). We will refer to this
property as the 3-cycle defining a globally identifiable model. Note that our argument
also shows thatMG,C = PD3.

This small example already reveals some of the subtleties arising when analyzing
identifiability of continuous Lyapunov models. The problem can be reduced to
determining whether a particular submatrix that is sparsely populated with covariances
has full rank (see Lemma 2.4.3 and Lemma 2.6.4) but the resulting matrices have
involved graph-dependent structures.

The choice of ordering in (2.3) is especially insightful for directed acyclic graphs.
After sorting the nodes such that if i→ j then i ≤ j, any DAG yields a block upper-
triangular matrix, as in Example 2.5.2, from which identifiability for all associated
models follows (Theorem 2.5.3). For cyclic graphs, however, the polynomials that
appear while factoring determinants, as in (2.4), quickly increase in complexity, and it
is not easy to determine whether they are non-zero. In our main result (Theorem 2.7.1)
we thus consider alternative spectral arguments that use the stability of the drift
matrix M in order to derive identifiability.
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2.3 Notions of Identifiability

We begin by recalling the concept of fibers that is useful to define the different notions
of identifiability we study in subsequent sections. Let C ∈ PDp, and letMG,C be the
graphical continuous Lyapunov model associated to a directed graph G = (V,E) with
vertex set V = [p] and edge set E. Let ϕG,C be the parametrization from (2.1). The
fiber of a matrix M0 ∈ Stab(E) is the set

FG,C(M0) = {M ∈ Stab(E) : ϕG,C(M) = ϕG,C(M0)}. (2.5)

In other words, a fiber comprises all drift matrices M ∈ RE whose Lyapunov equation
(for the fixed matrix C ∈ PDp) is solved by a given covariance matrix Σ.

We will consider three natural notions of identifiability.

Definition 2.3.1. LetMG,C be the graphical continuous Lyapunov model given by a
directed graph G = (V,E) with V = [p] and C ∈ PDp. The modelMG,C is

(i) globally identifiable if FG,C(M0) = {M0} for all M0 ∈ Stab(E);

(ii) generically identifiable if FG,C(M0) = {M0} for almost all M0 ∈ Stab(E), i.e.,
the matrices with FG,C(M0) ̸= {M0} form a Lebesgue null set in RE;

(iii) non-identifiable if |FG,C(M0)| =∞ for all M0 ∈ Stab(E).

Remark 2.3.2. The generic properties we prove in this work are derived by showing
that they hold outside a strict subset of Stab(E) that is described by polynomials in the
entries of the drift matrix; see e.g. Lemma 2.4.3. Hence, in a generically identifiable
model the exception set is not merely a set of Lebesgue measure zero, but also a
lower-dimensional algebraic subset of Stab(E).

Remark 2.3.3. Characterizing identifiability is also a key problem for standard
directed graphical models; see Drton [2018] and Sullivant [2018, Chap. 16] for a
discussion of the different notions of identifiability in this context. For standard
graphical models, necessary and sufficient conditions for global identifiability have
been obtained [Drton et al., 2011]. However, many models of interest are not globally
identifiable, and much work has also gone into criteria for generic identifiability [Brito
and Pearl, 2006, Kumor et al., 2019, Foygel et al., 2012, Drton and Weihs, 2016].

The 3-cycle from Example 2.2.1 is an example of global identifiability. Under global
identifiability, no two distinct stable matrices may define the same covariance matrix
in the model given by the graph. Unfortunately, this is not always the case.

Example 2.3.4. Consider the 2-cycle G = (V,E) with V = {1, 2} and E = {1 →
1, 2→ 2, 1→ 2, 2→ 1}. Then ϕG,C maps the 4-dimensional parameter space Stab(E)
to the 3-dimensional PD2-cone. Hence, when computing any fiber we have to solve a
linear system that is underdetermined, with 3 equations in 4 unknowns. Therefore,
MG,C is non-identifiable, no matter the choice of C ∈ PD2.

The example just given generalizes as follows:

Lemma 2.3.5. Let G = (V,E) be a directed graph with vertex set V = [p], and let
C ∈ PDp. If |E| > dim(MG,C), i.e., the number of free parameters in Stab(E) is
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greater than the dimension of the model, thenMG,C is non-identifiable. In particular,
all graphs with |E| > p(p+ 1)/2 give non-identifiable models.

Proof. By the Hurwitz criterion, the set of sparse stable matrices Stab(E) is semialge-
braic, see Horn and Johnson [1991, Theorem 2.3.3]. As its dimension is dim(Stab(E)) =
|E| > dim(MG,C), it follows that the rational map ϕG,C defined on Stab(E) is generi-
cally infinite-to-one; see, e.g., Barber et al. [2022, Lemma 2.5]. Apply Lemma 2.4.3
below to conclude that all fibers are infinite. □

A straightforward but very useful fact when studying global identifiability is that if
a graph G = (V,E) yields a globally identifiable model then so does every subgraph
H = (V,E′), E′ ⊆ E, that is obtained by removing edges of the form i→ j with i ̸= j.
We record this fact as:

Proposition 2.3.6. Let MG,C be a globally identifiable model given by a directed
graph G = (V,E) with V = [p] and C ∈ PDp. Let E′ ⊂ E be a subset of the edges.
Then the modelMH,C defined by the subgraph H = (V,E′) is globally identifiable.

Proof. It holds that Stab(E′) ⊆ Stab(E). Therefore, for every matrix M0 ∈ Stab(E′),
we have FH,C(M0) ⊆ FG,C(M0) = {M0}, where the last equality is due to the assumed
global identifiability ofMG,C . □

In the case where C is diagonal, further conclusions can be made.

Proposition 2.3.7. Let G = (V,E) be a directed graph with V = [p]. Let C ∈ PDp

be diagonal, and let Ip be the p× p identity matrix. Then the models for C versus Ip
are isomorphic, and so are their fibers:

(i) MG,C = C1/2MG,IpC
1/2, and

(ii) FG,C(M) = FG,Ip(C
1/2MC−1/2) for all M ∈ Stab(E).

In particular,MG,C is globally/generically identifiable if and only ifMG,Ip is global-
ly/generically identifiable.

Proof. Since C is diagonal, the similarity transformation τ1 : M 7→ C−1/2MC1/2 is
an automorphism of RE , with τ1(Stab(E)) = Stab(E). Define a second linear map
τ2 : Σ 7→ C−1/2ΣC−1/2, an automorphism of the space of symmetric matrices with
τ2(PDp) = PDp. Now

MΣ+ ΣM⊤ + C = 0 ⇐⇒
(C−1/2MC1/2)(C−1/2ΣC−1/2) + (C−1/2ΣC−1/2)(C−1/2MC1/2)⊤ + Ip = 0.

Thus,MG,Ip = τ2(MG,C) and FG,Ip(M) = FG,C(τ
−1
1 (M)). □

In Proposition 2.3.6 only edges are removed when forming a subgraph. When C is
diagonal we may strengthen the result to subgraphs in which we also remove vertices;
compare Drton et al. [2011, Lemma 1] in the context of standard graphical models.

Proposition 2.3.8. Let G = (V,E) be a directed graph with V = [p], and let
H = (V ′, E′) be a subgraph with V ′ ⊆ V and E′ ⊆ E. If the modelMG,C is globally
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identifiable for a diagonal matrix C ∈ PDp, thenMH,C′ is globally identifiable for all
diagonal matrices C ′ ∈ PDp′, where p′ = |V ′|.

Proof. By Proposition 2.3.6, it suffices to prove that removing an isolated vertex from
G preserves global identifiability of the model for C diagonal. By Proposition 2.3.7,
we may assume that C = Ip and C ′ = Ip−1, where p is an isolated node of G. Let
M ∈ Stab(E), and let M[p−1],[p−1] be the submatrix comprising the first p− 1 rows
and columns. Since p is isolated, the pth row and column of M is zero with the
exception of the diagonal entry mpp. It is not difficult to see that Σ = ϕG,Ip(M) also
has its pth row and column equal to zero except for the diagonal entry which equals
Σpp = −1/(2mpp). Hence, the entry mpp is always uniquely determined by Σ, and
we conclude that the cardinality of the fiber FG,Ip(M) is equal to the cardinality of
FH,Ip−1(M[p−1],[p−1]). Since every matrix in Stab(E′) is a submatrix M[p−1],[p−1] of a
matrix M ∈ Stab(E), the modelMH,Ip−1 is globally identifiable. □

Combining Proposition 2.3.8 with Example 2.3.4, we obtain that the graph of a
globally identifiable model cannot contain any 2-cycles.

Definition 2.3.9. A directed graph G = (V,E) is simple if it is free of 2-cycles, i.e.,
there do not exist two distinct nodes i, j ∈ V such that i → j ∈ E and j → i ∈ E.
Otherwise, we call G non-simple.

Proposition 2.3.10. If a directed graph G = (V,E), V = [p], defines a globally
identifiable modelMG,C when C ∈ PDp is diagonal, then G must be simple.

Remark 2.3.11. Proposition 2.3.8 and Proposition 2.3.10 may fail for non-diagonal
C ∈ PDp. See Section 2.9 for an example.

Unfortunately, similar subgraph arguments cannot be made for generic instead of
global identifiability. Indeed, generic identifiability may be lost but also restored when
removing an edge. Example 2.8.4 illustrates this phenomenon.

2.4 Rank Conditions

In this section, we discuss solving the Lyapunov equation (1.2) for the generally non-
symmetric drift matrix M given the symmetric matrices Σ and C. We will proceed
by vectorizing the Lyapunov equation, and we will state necessary and sufficient
conditions for identifiability based on the ranks of submatrices of the coefficient matrix
A(Σ) of the vectorized Lyapunov equation.

First, recall that when the matrices M and C are given, the continuous Lyapunov
equation from (1.2) is uniquely solvable for the symmetric matrix Σ if and only if
no two eigenvalues of M add up to zero. This well known fact can be shown by
vectorizing the equation to

(Ip ⊗M +M ⊗ Ip)vec(Σ) = −vec(C), (2.6)

where ⊗ is the Kronecker product and vec(·) is the columnwise vectorization of a
matrix; see, e.g., Bernstein [2018]. The coefficient matrix Ip⊗M+M⊗Ip is a Kronecker
sum, and it follows that its eigenvalues are the pairwise sums of the eigenvalues of M .
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If we now additionally assume that C is positive definite, then Lyapunov’s theorem
[Horn and Johnson, 1991, Theorem 2.2.1] yields that the Lyapunov equation from (1.2)
has a unique positive definite solution Σ if and only if M is a stable matrix.

However, solving for M given two symmetric (and in our context positive definite)
matrices Σ and C is a more difficult question. In general, it is not possible to have a
unique solution for M due to the dimensionality problems mentioned in Lemma 2.3.5.
The graphical perspective of the Lyapunov models motivates considering sparse
matrices M and asking the solvability question in a new light, as we illustrated in
Example 2.2.1.

Lemma 2.4.1. Vectorizing the Lyapunov equation (1.2), we obtain the system

((Σ⊗ Ip) + (Ip ⊗ Σ)Kp)vec(M) = −vec(C), (2.7)

where Kp is the p× p commutation matrix.

The commutation matrix Kp is the symmetric permutation matrix that transforms
the vectorization of a p× p matrix to the vectorization of its transpose [Magnus and
Neudecker, 1999, p. 54].

Proof of Lemma 2.4.1. It holds that

vec(MΣ+ ΣM⊤) = vec(MΣ) + vec(ΣM⊤)

= (Σ⊤ ⊗ Ip)vec(M) + (Ip ⊗ Σ)vec(M⊤) = ((Σ⊗ Ip) + (Ip ⊗ Σ)Kp)vec(M).

□

The Lyapunov equation (1.2) is symmetric and therefore p(p− 1)/2 equations of the
equation system (2.7) are redundant.

Definition 2.4.2. Given a p× p symmetric matrix Σ, we define the p(p+ 1)/2× p2

matrix A(Σ) by selecting the rows of

(Σ⊗ Ip) + (Ip ⊗ Σ)Kp

indexed by pairs (k, l) with k ≤ l.

Let vech(C) = (Ckl : k ≤ l) be the half-vectorization of the symmetric matrix C.
Then we can write the Lyapunov equation as

A(Σ)vec(M) = −vech(C).

As noted, we index the rows of A(Σ) by pairs (k, l) with k ≤ l. To index the columns
of A(Σ) we will use the potential edges i → j, where we recall that the edge i → j
corresponds to the entry mji of the matrix M .

Example 2.2.1 displayed A(Σ) for the case of p = 3. In general, we have

A(Σ)(k,l),i→j =


0, if j ̸= k, l;

Σli, if j = k, k ̸= l;

Σki, if j = l, l ̸= k;

2Σji, if j = k = l.

(2.8)
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Any specific graphical continuous Lyapunov model assumes that M has non-zero
entries only for pairs (j, i) for which the underlying graph contains the edge i → j.
We are thus led to select a subset of columns of the coefficient matrix A(Σ) when
studying solvability of the Lyapunov equation. By the next lemma, generic and
global identifiability of a graphical continuous Lyapunov model are equivalent to rank
conditions on the relevant submatrix of A(Σ).

Lemma 2.4.3. Let G = (V,E) be a directed graph with V = [p], and let C ∈ PDp.
Let A(Σ)·,E be the submatrix of A(Σ) obtained by selecting the columns indexed by the
edges in E. Then the modelMG,C is

(i) globally identifiable if and only if A(Σ)·,E has full column rank |E| for all
Σ ∈MG,C ;

(ii) generically identifiable if and only if there exists a matrix Σ ∈MG,C such that
A(Σ)·,E has full column rank |E|.

IfMG,C is not generically identifiable, then it is non-identifiable.

Proof. Let M0 ∈ Stab(E), and let Σ0 = ϕG,C(M0) be the associated covariance
matrix. The fiber FG,C(M0) is the set of all matrices M ∈ RE with

A(Σ0)·,E vec(M)E = −vech(C), (2.9)

where vec(M)E is the subvector of vec(M) that comprises the entries indexed by (j, i)
with i→ j ∈ E. Hence, FG,C(M0) = {M0} precisely when A(Σ0)·,E has full column
rank such that (2.9) has a unique solution. Claim (i) is now evident.

To prove (ii), note that A(Σ)·,E has full column rank if and only if the vector of all
maximal minors of A(Σ)·,E is non-zero. By (2.6), the map ϕG,C is a rational map.
Consequently, the map taking M ∈ Stab(E) to the maximal minors of A(ϕG,C(M))·,E
is rational as well. Now a rational map is non-zero outside a measure zero set if and
only if there exists a single point where it is non-zero. Consequently, the existence of
Σ ∈MG,C with A(Σ)·,E of full column rank implies generic identifiability ofMG,C .

Finally, ifMG,C is not generically identifiable then the column rank of A(Σ0)·,E is
strictly smaller than |E| for all Σ0 = ϕG,C(M0) ∈ MG,C . The fiber FG,C(M0) ⊆
Stab(E) is then the affine subspace of solutions to (2.9) of dimension ≥ 1. Hence,
|FG,C(M0)| =∞ for all M0 ∈ Stab(E), andMG,C is non-identifiable. □

2.5 Directed Acyclic Graphs

In this section, we prove that all models that are given by directed acyclic graphs
(DAGs) are globally identifiable. In our setting, a DAG is a directed graph that does
not contain any directed cycles other than the always present self-loops i→ i, i ∈ [p].
This case is special in that we are able to make a simple argument based on block
structure in the coefficient matrix A(Σ).

By Proposition 2.3.6, in order to prove global identifiability for all DAGs it suffices to
treat DAGs that are complete in the sense of the following definition.
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2.5 Directed Acyclic Graphs

Definition 2.5.1. A directed simple graph G = (V,E) with V = [p] is complete if
there is an edge between every pair of distinct nodes.

A simple graph that also contains all self-loops i→ i, i ∈ [p], is complete if and only
if |E| = p(p + 1)/2. Because vertex relabelling has no impact on identifiability, we
can furthermore restrict attention to a single topological ordering. In other words, it
suffices to consider the single complete DAG G∗ whose edge set comprises all edges
i→ j with i ≥ j.

1

2 3

Figure 2.1: The complete DAG G∗ on 3 nodes.

Example 2.5.2. Consider the case of p = 3 nodes, for which the complete DAG
G∗ = (V,E∗) is shown in Figure 2.1. The graph encodes the drift matrix

M =

m11 m12 m13

0 m22 m23

0 0 m33

 ,

and the submatrix A(Σ)·,E∗ is equal to

1→ 1 2→ 1 3→ 1 2→ 2 3→ 2 3→ 3


(1, 1) 2Σ11 2Σ12 2Σ13 0 0 0
(1, 2) Σ21 Σ22 Σ23 Σ12 Σ13 0
(1, 3) Σ31 Σ32 Σ33 0 0 Σ13

(2, 2) 0 0 0 2Σ22 2Σ23 0
(2, 3) 0 0 0 Σ32 Σ33 Σ23

(3, 3) 0 0 0 0 0 2Σ33

.

Up to some rows being scaled by 2, the three diagonal blocks are principal minors of
the positive definite matrix Σ. Therefore, it holds for all Σ ∈ PD3 that

| detA(Σ)·,E∗ | =

∣∣∣∣∣∣
2Σ11 2Σ12 2Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33

∣∣∣∣∣∣ ·
∣∣∣∣2Σ22 2Σ23

Σ23 Σ33

∣∣∣∣ · |2Σ33|

= 23 · det(Σ) · det(Σ{2,3},{2,3}) · Σ33 > 0.

The block structure found in Example 2.5.2 generalizes and gives the main result of
this section.

Theorem 2.5.3. Let G = (V,E) be a DAG with V = [p]. Then the modelMG,C is
globally identifiable for every matrix C ∈ PDp.
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Proof. As noted above, it suffices to consider the complete DAG G∗ = (V,E∗) whose
edges are i→ j for i ≥ j. Our proof then applies Lemma 2.4.3, which states that model
MG∗,C is globally identifiable if and only if det(A(Σ)·,E∗) ̸= 0 for all Σ ∈MG∗,C .

In what follows, let Σ ∈ PDp. Partition the edge set as E∗ = E∗
1 ∪ E∗

2 ∪ · · · ∪ E∗
p ,

where E∗
i = {j → i : j ≥ i}. Similarly, partition the row index set of A(Σ) into the

disjoint union of the sets Rk = {(k, l) : l ≥ k}, k = 1, . . . , p. Inspecting (2.8), we see
that the submatrix

A(Σ)Rk,E
∗
i
= 0 if k > i.

Hence, the matrix A(Σ) can be arranged in block upper-triangular form, and

det (A(Σ)·,E∗) =

p∏
i=1

det
(
A(Σ)Ri,E∗

i

)
.

Inspecting again (2.8), we find that A(Σ)Ri,E∗
i
is equal to the principal submatrix

P (Σ)≥i := Σ{i,...,p},{i,...,p} but with the first row of P (Σ)≥i (the one indexed by i)
being multiplied by 2 in A(Σ)Ri,E∗

i
. Since all principal minors of a positive definite

matrix Σ are positive, we obtain that

|det
(
A(Σ)·,E∗

)
| = 2p

p∏
i=1

det
(
P (Σ)≥i

)
> 0 for all Σ ∈ PDp.

In particular, A(Σ)·,E∗ has non-vanishing determinant for all Σ ∈MG∗,C . □

The proof of Theorem 2.5.3 shows that for any complete DAG G = (V,E) the matrix
A(Σ)·,E is invertible for all Σ ∈ PDp. Using this fact, the proof of the theorem reveals
more information about Lyapunov models arising from DAGs.

Corollary 2.5.4. Let G = (V,E) be a DAG with V = [p]. ThenMG,C is an algebraic
and thus closed subset of PDp. If G is complete thenMG,C = PDp.

Proof. Let G be a complete DAG. By Theorem 2.5.3, the square matrix A(Σ)·,E has
full rank for all Σ ∈ PDp. Therefore, the solution vec(M) to the vectorized Lyapunov
equation (2.9) exists uniquely for all Σ ∈ PDp. The resulting drift matrix M has the
right support by construction, henceMG,C = PDp.

If G is a non-complete DAG, then we may add edges to obtain a complete DAG
Ḡ = (V, Ē). As A(Σ)·,Ē has full column rank for all Σ ∈ PDp the same is true for
A(Σ)·,E ; recall Proposition 2.3.6. Hence, a matrix Σ ∈ PDp is inMG,C if and only if
vech(C) is in the column span of A(Σ)·,E if and only if the (|E|+ 1)-minors of the
augmented matrix (A(Σ)·,E | vech(C)) vanish. The modelMG,C is thus an algebraic
subset: it is the set of positive definite matrices at which these minors vanish. □

2.6 Sums of Squares Decompositions and Finer Rank
Conditions

Directed cycles break the block-diagonal structure found for DAGs (Theorem 2.5.3)
making it difficult to check rank conditions on A(Σ). In this section we show that small
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cyclic graphs can nevertheless be handled by applying sums of squares decompositions
to certify positivity of subdeterminants. Moreover, we show that our rank conditions
may be placed on a smaller matrix containing a basis for the kernel of A(Σ).

In Example 2.2.1, we proved global identifiability for the 3-cycle by showing that
the key factor Σ11Σ22Σ33 − Σ12Σ13Σ23 in the determinant of A(Σ)·,E is positive on
PD3. We were able to argue this via the positivity of 2 × 2 principal minors of Σ.
However, a direct extension of this approach to cyclic graphs with a larger number
of nodes is difficult. Nevertheless, some headway can be made by exploiting the
positive-definiteness of Σ via its Cholesky decomposition.

1

2 3

4

Figure 2.2: A completion of the 4-cycle.

Example 2.6.1. Let G = (V,E) be the completion of the 4-cycle with V = [4] and
E = {1 → 1, 2 → 2, 3 → 3, 4 → 4, 1 → 2, 1 → 3, 2 → 3, 2 → 4, 3 → 4, 4 → 1}. It is
displayed in Figure 2.2. Let Σ = LL⊤ be the Cholesky decomposition of Σ ∈ PD4 in
terms of the lower-triangular matrix

L =


l11 0 0 0
l12 l22 0 0
l13 l23 l33 0
l14 l24 l34 l44


with l11, l22, l33, l44 > 0. Then

| det(A(LL⊤)·,E)| = 16 l244l
2
33l

4
22l

6
11 · |f(L)|,

where the key factor is

f(L) = l214l
2
22l

2
33 − l12l14l22l24l

2
33 + l212l

2
24l

2
33 + l222l

2
24l

2
33 − l13l14l

2
22l33l34

+ l12l14l22l23l33l34 + l12l13l22l24l33l34 − l212l23l24l33l34 + l213l
2
22l

2
34

− 2l12l13l22l23l
2
34 + l212l

2
23l

2
34 + l212l

2
33l

2
34 + l222l

2
33l

2
34 + l213l

2
22l

2
44

− 2l12l13l22l23l
2
44 + l212l

2
23l

2
44 + l212l

2
33l

2
44 + l222l

2
33l

2
44.

A computer algebra system such as Macaulay2 with the package from Cifuentes et al.
[2020] quickly finds a sum of squares (SOS) decomposition for f as

f(L) =

(
1

2
l14l22l33 −

1

2
l12l24l33 − l13l22l34 + l12l23l34

)2

+ (−l13l22l44 + l12l23l44)
2 + (l12l33l34)

2 + (l12l33l44)
2 + (l22l24l33)

2

+ (l22l33l34)
2 + (l22l33l44)

2 +
3

4

(
l14l22l33 −

1

3
l12l24l33

)2

+
2

3
(l12l24l33)

2 .

Since l22l33l44 > 0, it follows that f is strictly positive for any Cholesky factor L.
Therefore, |det(A(Σ)·,E)| > 0 and we conclude thatMG,C is globally identifiable, no
matter the choice of C ∈ PD4.
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Remark 2.6.2. A polynomial being a sum of squares is a stronger requirement than
the polynomial being non-zero. Therefore, we could have a non-vanishing determinant
even if the considered polynomial factor failed the SOS test. However, we do not know
of an example where this might be the case.

Observe that det(Σ) = (detL)2 = l211l
2
22l

2
33l

2
44 appears as a factor of det(A(Σ)·,E) in

all our examples so far (recall Example 2.2.1, Example 2.5.2, and Example 2.6.1).
This phenomenon actually occurs for any complete simple graph (see Corollary 2.10.2)
and suggests that identifiability should be encoded in a smaller matrix. Indeed, this
information is carried by a specific row restriction of a matrix whose columns form a
basis of the kernel of A(Σ).

The kernel of A(Σ) is described by the following fact, straightforward to verify; see also
Barnett and Storey [1967]. It parametrizes the stable matrices M that are solutions
to the Lyapunov equation in terms of skew-symmetric matrices (matrices K with
K⊤ = −K).

Lemma 2.6.3. Consider the continuous Lyapunov equation from (1.2) for given
Σ, C ∈ PDp. Then a matrix M ∈ Rp×p solves the Lyapunov equation if and only if
there exists a skew-symmetric matrix K such that

M =

(
K − 1

2
C

)
Σ−1.

The space of skew-symmetric matrices has dimension p(p− 1)/2. Hence, for Σ ∈ PDp,
the kernel of A(Σ) also has dimension p(p − 1)/2. We give further details about
the spectral properties of A(Σ) in Theorem 2.10.1. The following result now gives
simplified rank conditions for identifiability.

Lemma 2.6.4. Let G = (V,E) be a directed graph with V = [p], and let C ∈ PDp.
For every Σ ∈ PDp, let H(Σ) be a p2 × p(p− 1)/2 matrix whose columns form a basis
of the kernel of A(Σ), and let H(Σ)Ec,· be the submatrix obtained by restriction to
rows corresponding to non-edges Ec of G. Then the associated modelMG,C is

(i) globally identifiable if and only if H(Σ)Ec,· has full column rank p(p− 1)/2 for
all Σ ∈MG,C ;

(ii) generically identifiable if and only if there exists a matrix Σ ∈MG,C such that
H(Σ)Ec,· has full column rank p(p− 1)/2.

Proof. Recall from Lemma 2.4.3 that the elements of the fiber are solutions of the
equation system (2.9), which has a unique solution for a given (positive definite)
matrix Σ ∈MG,C if and only if A(Σ)·,E has linearly independent columns. The latter
condition can be rephrased as follows: the kernel of A(Σ) does not contain any element
vec(M) ̸= 0 such that M ∈ RE . Put differently, (2.9) admits a unique solution if and
only if the column span of H(Σ) does not contain any element vec(M) ̸= 0 for M ∈ RE .
As H(Σ) has linearly independent columns, this latter condition is equivalent to the
linear independence of the columns of the extended matrix (H(Σ) | vec(M)) for any
non-trivial M ∈ RE . It remains to be proven that this, in turn, is equivalent to the
|Ec| × p(p− 1)/2 submatrix H(Σ)Ec,· having rank p(p− 1)/2.
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2.6 Sums of Squares Decompositions and Finer Rank Conditions

Assume that H(Σ)Ec,· has rank p(p − 1)/2, and consider one of its non-vanishing
maximal minors. This minor can always be extended to a non-vanishing maximal
minor of (H(Σ) | vec(M)) by adding one of the rows corresponding to mji ≠ 0.
Therefore, the extended matrix has full rank.

For the converse implication, note that if H(Σ)Ec,· has rank strictly less than p(p−1)/2,
then there exists a (not unique) non-trivial M ∈ RE such that vec(M) belongs to the
kernel of A(Σ). □

For a convenient choice of a basis of the kernel of A(Σ) we may appeal to the following
fact.

Lemma 2.6.5. For a matrix Σ ∈ PDp, the kernel of A(Σ) equals

kerA(Σ) = {vec(KΣ−1) : K skew-symmetric}
= {vec(ΣK) : K skew-symmetric}.

Proof. The first equality holds by Lemma 2.6.3. The second equality follows from
the fact that K is skew-symmetric if and only if ΣKΣ is skew-symmetric. □

For 1 ≤ k, l ≤ p, let K(k,l) = ek ⊗ el − el ⊗ ek be the skew-symmetric matrix whose
only non-zero entries are 1 in place (k, l) and −1 in place (l, k). Then the set
{K(k,l) : k < l} is a basis of the space of p × p skew-symmetric matrices and, thus,
the set {vec(ΣK(k,l)) : k < l} is a basis of kerA(Σ). We may thus choose the matrix
H(Σ) in Lemma 2.6.5 as the matrix with entries

H(Σ)i→j,(k,l) = vec(ΣK(k,l))ji =


−Σlj if i = k,

Σkj if i = l,

0 otherwise.

(2.10)

Note that we index the rows of H(Σ) by all possible edges of a directed graph (including
self-loops), in accordance with the indexing of the columns of A(Σ).

Example 2.6.6. Consider the 6× 9 matrix A(Σ) in Example 2.2.1 corresponding to
p = 3. Then the matrix from (2.10) is

H(Σ) =





−Σ12 0 −Σ13 1→ 1
−Σ22 0 −Σ23 1→ 2
−Σ23 0 −Σ33 1→ 3
Σ11 −Σ13 0 2→ 1
Σ12 −Σ23 0 2→ 2
Σ13 −Σ33 0 2→ 3
0 Σ12 Σ11 3→ 1
0 Σ22 Σ12 3→ 2
0 Σ23 Σ13 3→ 3

.

Consider the DAG on 3 nodes given in Figure 2.1, for which the set of non-edges is
Ec = {1→ 2, 1→ 3, 2→ 3}. Then

|detH(Σ)Ec,·| =

∣∣∣∣∣∣det
−Σ22 0 −Σ23

−Σ23 0 −Σ33

Σ13 −Σ33 0

∣∣∣∣∣∣ = Σ33(Σ22Σ33 − Σ2
23)
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is a product of two principal minors of Σ, as expected from Theorem 2.5.3.

Next, let Ec = {1 → 3, 2 → 1, 3 → 2} be the set of non-edges of the 3-cycle from
Figure 1.2. Then

|detH(Σ)Ec,·| =

∣∣∣∣∣∣det
−Σ23 0 −Σ33

Σ11 −Σ13 0
0 Σ22 Σ12

∣∣∣∣∣∣ = Σ11Σ22Σ33 − Σ12Σ13Σ23,

which is what we obtained in (2.4).

Following Example 2.6.1, we can establish global identifiability by computing an SOS
decomposition of the determinant of the restricted kernel H(Σ)Ec,· using the Cholesky
decomposition of Σ. Such computations allowed us to establish:

Proposition 2.6.7. Let G = (V,E) be a simple graph with V = [p], and let C ∈ PDp.
Let L ∈ Rp×p be lower-triangular. If p ≤ 4, then there exists a permutation matrix P
such that detH(PLL⊤P⊤)Ec,· is an everywhere positive sum of squares in the entries
of L, implying thatMG,C is globally identifiable. The same is true for p = 5 with the
exception of two computationally intractable types of graphs, which are depicted in
Figure 2.3.

For our computer proof of the claims in the proposition, we applied the computer
algebra system Macaulay2. For the graphs in Figure 2.3, we additionally employed
Matlab toolboxes, but our computations did not terminate. It is natural to conjecture
that Proposition 2.6.7 holds for all graphs with p = 5, and even all simple graphs.

1

2

3

45

1

2

3

45

Figure 2.3: The two simple cyclic graphs on 5 nodes, for which a sum of squares decomposition
of the determinant of interest is computationally difficult.

2.7 Simple Cyclic Graphs

In this section we establish our main result: global identifiability of all Lyapunov
models given by simple cyclic graphs. Moreover, we can show that simple cyclic
graphs give models that are algebraic subsets of the positive definite cone. Our proofs
exploit the parametrization of stable matrices M that are solutions to the Lyapunov
equation in terms of skew-symmetric matrices (matrices K with K⊤ = −K); recall
Lemma 2.6.3.

Theorem 2.7.1. Let G = (V,E) be a directed graph with V = [p].
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2.7 Simple Cyclic Graphs

(i) If G is simple, then the modelMG,C is globally identifiable for all C ∈ PDp.

(ii) If C ∈ PDp is diagonal, then the modelMG,C is globally identifiable if and only
if G is simple.

Proof. It suffices to prove (i), as (ii) then follows from Proposition 2.3.10.

To prove (i), suppose G is indeed simple. Let M1,M2 ∈ Stab(E) be any two matrices
that solve the Lyapunov equation (1.2) for the same Σ ∈ MG,C . According to
Lemma 2.6.3 there exist two skew-symmetric matrices K1 and K2 such that M1 =
(K1 − 1

2C)Σ−1 and M2 = (K2 − 1
2C)Σ−1. For the difference we obtain

M := M1 −M2 = (K1 − 1
2C)Σ−1 − (K2 − 1

2C)Σ−1 = (K1 −K2)Σ
−1.

The difference K = K1 −K2 is again skew-symmetric, so that M is the product of a
skew-symmetric matrix K and the positive definite matrix Σ−1.

Consider now the square M2. We have

M2 = KΣ−1KΣ−1.

As Σ is positive definite, the square root Σ
1
2 exists, and M2 is similar to

Σ− 1
2M2Σ

1
2 = Σ− 1

2KΣ−1KΣ− 1
2 .

As K is skew-symmetric,

Σ− 1
2KΣ−1KΣ− 1

2 = −(Σ− 1
2K)Σ−1

(
Σ− 1

2K
)⊤

.

We observe that M2 is similar to a symmetric and negative semi-definite matrix.
Therefore, the eigenvalues of M2 are non-positive and tr(M2) ≤ 0.

As M is supported over a simple graph, it holds for all pairs of indices i ̸= j that
mij ̸= 0 implies that mji = 0. Hence, the diagonal of M2 is given by the squared
diagonal elements of M , i.e., (M2)ii = m2

ii. It follows that

0 ≤
p∑

i=1

m2
ii = tr(M2) ≤ 0,

which implies that tr(M2) = 0.

Let λ1, . . . , λp ∈ C be the eigenvalues of M . The eigenvalues of M2 are then λ2
1, . . . , λ

2
p.

Since M2 is similar to a negative semi-definite matrix, all its eigenvalues satisfy
λ2
1, . . . , λ

2
p ≤ 0. Then,

0 = tr(M2) =

p∑
i=1

λ2
i ≤ 0,

which implies that λ2
i = 0 for all i ∈ 1, . . . , p. But this is only true if λi = 0 for all

i = 1, . . . , p. Therefore, all eigenvalues of M are zero.
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Observe that M = KΣ−1 is similar to M̃ = Σ− 1
2KΣ−1Σ

1
2 , which is skew-symmetric

since

M̃⊤ = (Σ− 1
2KΣ− 1

2 )⊤ = Σ− 1
2K⊤Σ− 1

2 = −Σ− 1
2KΣ− 1

2 = −M̃.

Skew-symmetric matrices are diagonalizable, and we deduce that M is similar to the
zero matrix. But then M = 0 and consequently M1 = M2, which shows that the
Lyapunov equation admits a unique sparse solution. □

In addition to global identifiability, we have a generalization of Corollary 2.5.4 to
general simple graphs.

Corollary 2.7.2. Let G = (V,E) be a simple graph with V = [p]. ThenMG,C is an
algebraic and thus closed subset of PDp. If G is complete thenMG,C = PDp.

Proof. Consider first the case where G is complete (with an edge between every
pair of nodes). Let Σ0 ∈ PDp be an arbitrary positive definite matrix. Choosing
M = −Ip, the negated identity matrix, shows that Σ0 belongs to the modelMG,C0

for C0 = 2Σ0. By Theorem 2.7.1 and Lemma 2.4.3, we obtain that the determinant of
A(Σ)·,E is non-zero at every matrix inMG,C0 and, in particular, at Σ0. We conclude
that det(A(Σ)·,E) ̸= 0 on all of PDp. As in the proof of Corollary 2.5.4, we deduce
thatMG,C = PDp for all C ∈ PDp.

If G is not complete, then it can be augmented to a complete graph Ḡ = (V, Ē), and
we may complete the proof in analogy to the proof of Corollary 2.5.4. □

2.8 Non-Simple Graphs

In this section, we consider directed graphs G = (V,E) that are allowed to be non-
simple, i.e., may contain a two-cycle. In our study, we restrict attention to the case
where C ∈ PDp is diagonal. Proposition 2.3.10 tells us that, for C diagonal, a model
MG,C given by a non-simple graph G can never be globally identifiable. However, non-
simple graphs with at most p(p+1)/2 edges may still give generically identifiable models
(Definition 2.3.1, Lemma 2.3.5). We are able to provide a combinatorial condition that
is necessary for generic identifiability, and we computationally classify all graphs with
p ≤ 5 nodes. Our study reveals examples for which generic identifiability depends in
subtle ways on the pattern of edges.

1 2 3

Figure 2.4: Non-simple graph on 3 nodes.

We begin with a small example.

Example 2.8.1. Let G = (V,E) be the graph from Figure 2.4, a 2-cycle with an
additional edge pointing to a third node, and let C ∈ PD3 be a diagonal matrix. To
inspect identifiability ofMG,C , we may use the kernel basis of Example 2.6.6 with the
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set of non-edges Ec = {1→ 3, 3→ 1, 3→ 2}. We find

detH(Σ)Ec,· = det

−Σ23 0 −Σ33

0 Σ12 Σ11

0 Σ22 Σ12

 = Σ23

(
Σ11Σ22 − Σ2

12

)
.

SinceMG,C contains positive definite matrices with both vanishing and non-vanishing
Σ23, we conclude thatMG,C is generically (but not globally) identifiable.

Note that the matrices Σ ∈ MG,C with Σ23 = 0 are obtained precisely from the
drift matrices in the lower-dimensional set {M ∈ Stab(E) : m32 = 0}. Indeed, if
m32 = 0, then the situation is as if the 2→ 3 edge were removed, and we will see in
Proposition 2.8.3 that this implies Σ23 = 0 when C is diagonal. Conversely, when
solving for Σ given a drift matrix M ∈ RE we find that Σ23 is a rational function of
(M,C) whose numerator is

m32

(
c11m

2
21tr(M) + c22m

2
11tr(M) + c22 det(M)

)
.

As C is positive definite and M stable, the second factor is negative. Thus, if
Σ = Σ(M,C) is a positive definite matrix inMG,C , then Σ23 = 0 implies m32 = 0.

By Lemma 2.3.5, |E| ≤ p(p+ 1)/2 is a necessary condition for generic identifiability
of the model of a graph G = (V,E). We now show how this bound may be improved
by accounting for knowledge about vanishing covariances.

Definition 2.8.2. A trek is a sequence of edges of the form

lm ← lm−1 ← · · · ← l1 ← t→ r1 → · · · → rn−1 → rn.

The node t is the top node of the trek. The directed paths lm ← lm−1 ← · · · ← l1 and
r1 → · · · → rn−1 → rn are the left and the right side of the trek, respectively. The
definition allows for one or both sides to be trivial, so directed paths and also single
nodes are treks.

From Varando and Hansen [2020, Corollary 2.3], we deduce the following fact.

Proposition 2.8.3. Let G = (V,E) be a directed graph with V = [p], and let C ∈ PDp

be diagonal. If there is no trek from i to j in G, then Σij = 0 in all matrices Σ ∈MG,C .

Example 2.8.4. Let C ∈ PD4 be diagonal. Then the left graph G1 = (V,E1) in
Figure 2.5 defines a generically identifiable model but its subgraph G2 = (V,E2) does
not. This example stresses that global identifiability is needed in Proposition 2.3.6. But
why is MG2,C non-identifiable despite G2 having fewer edges? We observe that G2

contains no trek between 2 and 4 and no trek between 3 and 4. Proposition 2.8.3 yields
Σ24 = Σ34 = 0. Although the PD4-cone has dimension

(
4+1
2

)
= 10, the existence of the

constraints Σ24 = Σ34 = 0 implies that dim(MG2,C) ≤ 10− 2 = 8. Since |E2| = 9 > 8,
non-identifiability follows from by Lemma 2.3.5.

As a last subtlety, we emphasize that if we remove one of the edges 2→ 1, 3→ 1, or
4→ 1 of G2, we are left again with a generically identifiable model.

The ideas in Example 2.8.4 can be generalized into a sharper necessary condition for
identifiability that is a consequence of Lemma 2.3.5 and Proposition 2.8.3.
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Figure 2.5: Left: graph G1 on 4 nodes withMG1,C generically identifiable. Right: subgraph
G2 of G1 such thatMG2,C is non-identifiable. C ∈ PD4 is diagonal.

Corollary 2.8.5. Let G = (V,E) be a directed graph with V = [p]. If MG,C is
generically identifiable for a diagonal matrix C ∈ PDp, then it has to hold that

|E| ≤ p(p+ 1)

2
−#

{
{i, j} : i, j ∈ V with no trek between them

}
. (2.11)

With this criterion in hand, we can construct graphs of arbitrary size p and fewer
than p(p+ 1)/2 edges that yield non-identifiable models.

Corollary 2.8.6. Consider the graph G = (V,E) with p ≥ 4 nodes displayed in
Figure 2.6. The modelMG,C is non-identifiable for any diagonal C ∈ PDp.

1

2

3

4

p

5

Figure 2.6: Graph G with V = [p] such thatMG,C is non-identifiable for diagonal C ∈ PDp.

Proof. The number of parameters |E| is

2 (edges from 2-cycle) + p− 1 (edges pointing to node 1)

+ p (parameters due to the selfloops) = 2p+ 1.

There are no treks between any pair of nodes {2, . . . , p} except for the pair (2, 3). This
results in

(
p−1
2

)
− 1 (unordered) pairs of nodes with no trek. Corollary 2.8.5 implies

that

dim(MG,C) ≤
p(p+ 1)

2
−
(
p− 1

2

)
+ 1 = 2p.

□

Unfortunately, the criterion in Corollary 2.8.5 is not sufficient.
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Figure 2.7: Left: graph fulfilling the criterion in Corollary 2.8.5, yet yields a non-identifiable
model. Right: Reversing edges retains non-identifiability, due to Corollary 2.8.5,
as Σ14 = 0.

Example 2.8.7. Let G1 = (V,E) be the left graph in Figure 2.7. Graph G1 fulfills the
necessary condition of Corollary 2.8.5 as the number of parameters is 6 + 4 = 10 and
all pairs of nodes are connected with a trek, which is why the right side of equation
(2.11) is also

(
4+1
2

)
= 10. However, A(Σ)·,E ∈ R10×10 does not have full rank because

the columns of A(Σ) may be linearly combined to

Σ13A(Σ)·,2→1 +Σ23A(Σ)·,2→2 +Σ33A(Σ)·,2→3 +Σ34A(Σ)·,2→4

−Σ12A(Σ)·,3→1 − Σ22A(Σ)·,3→2 − Σ23A(Σ)·,3→3 − Σ24A(Σ)·,3→4 = 0.

Therefore, the model MG1,C is non-identifiable for C diagonal despite fulfilling the
necessary criterion. The right graph in Figure 2.7 yields a non-identifiable model for
the simple reason that the necessary condition of Corollary 2.8.5 is violated due to the
absence of a trek between nodes 1 and 4.

For smaller examples, we may check generic identifiability by choosing random drift
matrices and determining whether the resulting matrix Σ satisfies the rank condition
from Lemma 2.4.3. When this does not succeed we can check symbolically whether
the corresponding restriction of the coefficient matrix A(Σ) or the restricted kernel
basis H(Σ) from Lemma 2.6.4 is rank-deficient, thus implying non-identifiability. We
implemented this strategy for all non-simple graphs with p ≤ 5 nodes and less than
p(p + 1)/2 parameters. As justified by Proposition 2.3.7, we took C = Ip in our
computations. This led to the results displayed in Table 2.1, which shows that the
majority of graphs are generically identifiable. The details of the computations can
be found at https://mathrepo.mis.mpg.de/LyapunovIdentifiability.

Table 2.1: Classification of models with p = 3, 4, 5 nodes and C = Ip. The last column
displays the number of non-identifiable models whose underlying graphs satisfy
the necessary criterion for generic identifiability in Corollary 2.8.5.

nodes total non-simple non-identifiable non-identifiable satisfying (2.11)

3 2 0 0

4 80 3 2

5 4862 68 37
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2.9 Volatility Matrix: Diagonal vs. Non-Diagonal PD Matrix

This section aims at providing insight into the need of the diagonality constraint on
the volatility matrix C ∈ PDp of the Lyapunov equation to ensure that some of the
stronger results of this chapter hold.

Example 2.9.1. Let G be the 2-cycle with an additional third node, so V = [3] and
E = {1→ 1, 1→ 2, 2→ 1, 2→ 2, 3→ 3}, which encodes drift matrices

M =

m11 m12 0
m21 m22 0
0 0 m33

 .

Let C = (cij) ∈ PD3. Clearly, the graph does not contain any treks between nodes 1
and 3, nor between nodes 2 and 3. However, a matrix Σ = ϕG,C(M) has

Σ13 =
c23m12 − c13(m22 +m33)

(m11m22 −m12m21) +m33(m11 +m22 +m33)
,

with a denominator that is positive on Stab(E) and a numerator that is constant zero
only if c13 = c23 = 0. The same holds for Σ23 by symmetry. This example serves to
highlight that Proposition 2.8.3 may be false when C is not diagonal. Indeed, the treks
would need to be allowed to move along new edges that reflect presence of non-zero
diagonal entries in C; compare Varando and Hansen [2020].

Example 2.9.2. Consider again the 2-cycle with an additional third node from the
previous example. Again, consider an arbitrary matrix C = (cij) ∈ PD3. The kernel
basis of Example 2.6.6 restricted to the set of non-edges Ec = {1 → 3, 2 → 3, 3 →
1, 3→ 2}, namely

H(Σ)Ec,· =


−Σ23 0 −Σ33

Σ13 −Σ33 0
0 Σ12 Σ11

0 Σ22 Σ12

 ,

is rank deficient for any Σ ∈ PD3 if and only if Σ13 = Σ23 = 0. Adding this constraint
to the Lyapunov equation yields c13 = c23 = 0. Therefore, it follows from Lemma 2.6.4
thatMG,C is globally identifiable for any C = (cij) ∈ PD3 in which c13 and c23 do not
vanish simultaneously.

Observe that this provides a counterexample to Proposition 2.3.10 and Proposition 2.3.8
when dropping the diagonality assumption. To begin with, suchMG,C is an instance of
a globally identifiable model associated to a non-simple graph. Moreover, the subgraph
H obtained by removing node 3 from G defines a non-identifiable model for all positive
definite volatility matrices by Lemma 2.3.5.

For the sake of completeness, note that, by Example 2.9.1, c13 = c23 = 0 completely
describes when the rank of H(Σ)Ec,· drops for all Σ ∈ MG,C . In other words, the
model is non-identifiable if and only if c13 = c23 = 0 and globally identifiable otherwise.

28



2.10 Spectral Description, Kernel and Factorization

2.10 Spectral Description, Kernel and Factorization

Here, we collect spectral properties of A(Σ), derived more conveniently for its square
p× p version

Ã(Σ) = Σ⊗ Ip + (Ip ⊗ Σ)Kp,

which features in Lemma 2.4.1. We will then use this information to clarify that
det(Σ) is a factor of det(A(Σ)·,E) for complete graphs which have edge sets of size
|E| = p(p+ 1)/2; see Corollary 2.10.2.

Theorem 2.10.1. Let Σ ∈ PDp, and let (λi)i∈[p] be its eigenvalues with corresponding
orthogonal eigenvectors (zi)i∈[p].

(i) The matrix Ã(Σ) has rank p(p+ 1)/2, and (2.10) gives a basis for its kernel.

(ii) The transposed matrix Ã(Σ)⊤ has rank p(p+ 1)/2, and a basis for its kernel is
given by vec(ei ⊗ ej − ej ⊗ ei) for 1 ≤ i < j ≤ p.

(iii) Counting with multiplicities, the p(p+ 1)/2 non-zero eigenvalues of Ã(Σ) and of
Ã(Σ)⊤ are given by the sums λi + λj for 1 ≤ i ≤ j ≤ p and for either matrix the
associated set of orthogonal eigenvectors is vec(zi⊗zj+zj⊗zi) for 1 ≤ i ≤ j ≤ p.

Proof. (i) follows from (2.10), and (ii) follows from the symmetry of the Lyapunov
(matrix) equation.

For (iii), the claim about Ã(Σ) follows from the calculation

(zi ⊗ zj + zj ⊗ zi)Σ + Σ(zi ⊗ zj + zj ⊗ zi)
⊤

= [λj(zi ⊗ zj) + λi(zj ⊗ zi)] + [λi(zi ⊗ zj) + λj(zj ⊗ zi)]

= (λi + λj)(zi ⊗ zj + zj ⊗ zi).

The transpose Ã(Σ)⊤ = Σ ⊗ Ip +Kp(Ip ⊗ Σ) encodes the Lyapunov equation with
M replaced by M⊤ and the claim about Ã(Σ)⊤ follows from the symmetry of the
matrices zi ⊗ zj + zj ⊗ zi. The orthogonality of the eigenvectors holds because

tr ((zi ⊗ zj + zj ⊗ zi)(zk ⊗ zl + zl ⊗ zk)) = 0

unless {i, j} = {k, l}. □

As a consequence of Theorem 2.10.1, we can conclude information regarding the
factorization of the determinant of A(Σ)·,E when |E| = p(p+ 1)/2 such that A(Σ)·,E
is a square matrix.

Corollary 2.10.2. Let G = (V,E) be a directed graph with V = [p] and |E| =
p(p+ 1)/2. The polynomials det(Σ) and det(H(Σ)Ec,·) are factors of det(A(Σ)·,E).

Proof. The zero set of the determinant det(Σ) is the set of singular symmetric
matrices. Since det(Σ) is an irreducible polynomial, every polynomial that vanishes
at all singular matrices must be a polynomial multiple of det(Σ). Hence, it suffices to
show that det(A(Σ)·,E) = 0 for all singular matrices Σ. So let Σ be a singular matrix.
Then there exists an eigenvalue λi = 0 with i ∈ [p]. Using Theorem 2.10.1 this implies
that the eigenvalue λi+λi of Ã(Σ) is zero (the theorem is written for Σ positive definite
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but the fact we used also holds for Σ singular). Hence, rank(Ã(Σ)) ≤ p(p+ 1)/2− 1
which implies that rank(A(Σ)·,E) ≤ p(p+ 1)/2− 1 and thus det(A(Σ)·,E) = 0.

The fact that det(H(Σ)Ec,·) is a factor of det(A(Σ)·,E) follows from the proof of
Lemma 2.6.4. □

2.11 Outlook: Identifiability for Partially Unknown Volatility
Matrices

Compared to standard directed graphical models, our approach starting with C known
is in the spirit of the work of Peters and Bühlmann [2014] on homoscedasticity. From
an application perspective, assuming C to be known is a limitation. Ideally, one
would like to estimate M and C simultaneously. This requires a solid theoretical
basis including identifiability theory for that case. There are no “cheap” results in the
sense that the results Theorem 2.5.3 and Theorem 2.7.1 can immediately be extended
to the case C unknown. Nevertheless, some considerations regarding the structure
of A(Σ) used in Theorem 2.5.3 might be helpful when investigating this case. The
objective of this section is not to provide detailed identifiability theory for the case
C unknown but to showcase that the general patterns of this chapter also reoccur if
the volatility matrix is assumed to be (partially) unknown. We present a simple and
straightforward example in this section.

We consider a setup where the diagonal entries in C are assumed to be known,
but unknown off-diagonal entries in C might exist. This results in a mixed graph
G = (V,E,B) where V and E are as in Definition 1.3.1 and B = {i↔ j : i, j ∈ V } is
the set of blunt edges with Cij = 0 implying i↔ j /∈ B. More details on blunt edges
are given in the work of Varando and Hansen [2020]. The models associated to such
graphs G = (V,E,B) are then given by the set of covariance matrices

M̃G =
{
Σ ∈ PDp : MΣ+ ΣM⊤ = −C with (M,C) ∈ RE × PDdiag=1

p (B)
}
, (2.12)

where PDdiag=1
p (B) are the positive-definite matrices supported over B where the

diagonal elements c11, . . . , cpp are set to 1.

Remark 2.11.1. The diagonal elements of the volatility matrix C are fixed to be one
without loss of generality. Other choices for the diagonal elements are possible too.

Again, we can ask if it is possible to uniquely recover the entries in M and C from
the equilibrium covariance matrix Σ if we fix the support of M and C. This can be
proven in certain cases simply by using the observations made in Theorem 2.5.3.

Corollary 2.11.2. Let G = (V,E,B) be a mixed graph and let Ẽ = {(i, j) : j →
i ∈ E and i ≠ j} and let B̃ = {(i, j) : i ↔ j ∈ B and i ̸= j}. If Ẽ ⊔ B̃ = {(i, j) :
i, j ∈ 1, . . . , p and i < j}, we have that A(Σ)−B̃,E has a block-structure with principal

minors of Σ ∈ PDp as blocks. The subscript −B̃ indicates that the rows indexed by
B̃ are dropped. Moreover provided Σ ∈ PDp, a unique solution for the entries in
M ∈ Stab(E) and C ∈ PDdiag=1

p (B) exists.

Proof. Consider the complete directed acyclic graph H = (V,D) where D is used
to denote the set of directed edges of G. By Theorem 2.5.3, the matrix A(Σ)·,D has
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an upper triangular blockstructure with principal minors of Σ of decreasing size as
diagonal blocks. In the equation system

A(Σ)·,D vec(M)D = −vech(C)

each row of A(Σ)·,D corresponds to an element of vech(C). To solve for the unknown
entries in C, the rows indexed by B̃ are required. As the matrix A(Σ)·,D has an upper
triangular blockstructure, removing the rows indexed by B̃ and the columns indexed
by {i→ j : (j, i) ∈ B̃} preserves the blockstructure. The resulting equation system

A(Σ)−B̃,Evec(M)E = −vech(C)−B̃,

is uniquely solvable for vec(M)E . □

Example 2.11.3. Consider the mixed graph G = (V,E,B) with V = {1, 2, 3} and
E = {1 → 1, 2 → 2, 3 → 3, 2 → 1, 3 → 1} and B = {1 ↔ 1, 2 ↔ 2, 3 ↔ 3, 2 ↔ 3}
presented in Figure 2.8. We omit drawing the self-loops.

1

2 3

Figure 2.8: G, a DAG with a blunt edge.

The corresponding volatility matrix C ∈ PDdiag=1
p (B) is

C =

1 0 0
0 1 c23
0 c23 1

 .

Then, we have

∆C =

1 ⋆ ⋆
0 1 ⋆
0 c23 1

 and vech(C) =
(
1 0 0 1 c23 1

)⊤
.

Recall that the matrix A(Σ)·,D for the complete DAG G̃ = (V,D) presented in Exam-
ple 2.5.2 where we use D to denote the set of G̃

A(Σ)·,D =

1→ 1 2→ 1 3→ 1 2→ 2 3→ 2 3→ 3


(1, 1) 2Σ11 2Σ12 2Σ13 0 0 0
(1, 2) Σ21 Σ22 Σ23 Σ12 Σ13 0
(1, 3) Σ31 Σ32 Σ33 0 0 Σ13

(2, 2) 0 0 0 2Σ22 2Σ23 0
(2, 3) 0 0 0 Σ32 Σ33 Σ23

(3, 3) 0 0 0 0 0 2Σ33

.
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The equation resulting from row (2, 3) is needed to determine the entry c23 and the
directed edge 3→ 2 is missing in Figure 2.8. We obtain

A(Σ)−B̃,E =

1→ 1 2→ 1 3→ 1 2→ 2 3→ 3


(1, 1) 2Σ11 2Σ12 2Σ13 0 0
(1, 2) Σ12 Σ22 Σ23 Σ12 0
(1, 3) Σ13 Σ23 Σ33 0 Σ13

(2, 2) 0 0 0 2Σ22 0
(3, 3) 0 0 0 0 2Σ33

which has a blocktriangular structure with the diagonal elements being principle minors.

2.12 Summary of the Chapter

This chapter addresses the fundamental problem of whether, up to joint scaling, the
parameters of the dynamic process can be identified from the covariance matrix of the
cross-sectional equilibrium observations. Our main contribution shows that simple
graphs yield globally identifiable models, and that the graph being simple is necessary
and sufficient for global identifiability in the case where the volatility matrix C is
diagonal. Moreover, we are able to show that the models of simple graphs are closed
algebraic subsets of the positive definite cone. In particular, the models of complete
simple graphs equal the entire positive definite cone.

Our analysis of directed acyclic graphs (DAGs) highlights block structure in the
coefficient matrix for the Lyapunov equation. This leads to a straightforward proof
of global identifiability and also reveals that the determinant studied in our rank
conditions is a positive sum of squares in the entries of a Cholesky factor. This sum
of squares property was also observed in small cyclic graphs.

While we were able to characterize global identifiability, we know less about generic
identifiability of graphical Lyapunov models. Our results include an effective necessary
but not sufficient graphical criterion for non-simple graphs to be generically identifiable.
We also obtain a computational classification of graphs with up to 5 nodes, and we hope
that future research will lead to an improved understanding of generic identifiability
of the models we considered.
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Chapter 3

Direct Lyapunov Lasso

This chapter is largely based on the publication by Dettling et al. [2024]. However,
Section 3.1 and Section 3.7 contain new material. We omit drawing self-loops in this
Chapter and in Chapter 4.

3.1 Introduction

In this chapter, we thoroughly analyze the direct Lyapunov lasso which is an intuitive,
easy-to-implement and convex model selection method for Lyapunov models. The
idea was raised by Fitch [2019] and by Varando and Hansen [2020] in independent
work.

In Chapter 2, we vectorize the Lyapunov equation for the purpose of analyzing the
identifiability question. At the same time, the vectorization reveals a similarity of
Lyapunov models and classical regression problems.

For a better comparison, we briefly introduce (sparse) regression. Of course, there
exist many works on that topic. However, the work by Hastie et al. [2015] provides a
complete overview over sparse regression.

They consider the classical regression setup with n observations of multiple variables
that are contained within the rows of the design matrix X of size n × p. One row
of the design matrix is given by Xi· = (xi1, xi2, . . . , xip) where the individual entries
are the p predictor variables. Based on the observation, a linear regression model
postulates that the outcome yi depends linearly on the predictors assuming

yi = β0 +

p∑
j=1

xijβj + ϵi. (3.1)

The unknown parameters are the intercept β0 and the vector β = (β1, . . . , βp)
⊤ and

ϵi is an additive noise term. Naturally, the question arises how to estimate β based
on a given design matrix X and a response vector y. Neglecting the intercept and
using matrix notation, the least squares estimate is given by solving

β̂ = arg min
β∈Rp2

1

2n
∥Xβ − y∥22.
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However, this method does not work if the number of variables is larger than the
sample size (p > n). The reason is visible when deriving the closed form solution for
β̂. Simple calculations yield

β̂ = (X⊤X)−1X⊤y.

The matrix X⊤X is not invertible in the setting where p > n. There is a solution to
this problem by assuming that only some of the variables are active. The so-called
Lasso method was introduced in statistics by Tibshirani [1996] although the idea
existed previously in natural sciences. A detailed summary of the Lasso method is
given by Hastie et al. [2015]. Additionally to minimizing the squared ℓ2-norm, an
ℓ1-penalty is added. In Lagrangian form the optimization problem is

β̂Lasso = arg min
β∈Rp2

1

2n
∥Xβ − y∥22 + λ∥β∥1,

where λ > 0 is a tuning parameter. The Lasso usually shrinks a lot of entries in β̂Lasso
and allows for a solution even in high-dimensional setting (p > n).

When thinking about model selection in graphical models, one aims for graphs that
only have a limited number of edges to make them meaningful connections. Obviously,
this comes with the assumption that the true underlying structure is sparse. Moreover,
high-dimensional regimes might occur. This motivates applying a Lasso-type method
for graphical continuous Lyapunov models. Consider the vectorized Lyapunov equation

A(Σ)vec(M) = −vec(C).

Based on data, we can calculate the sample covariance matrix Σ̂ and obtain an
estimated version of A(Σ) that takes on the role of the design matrix X. We assume
the matrix C to be known and therefore −vec(C) coincides with the response vector y
in the regression setup. We want to obtain an estimate for the drift matrix M which
is why vec(M) coincides with the vector β in the classical regression setup. This leads
to the optimization problem

arg min
M∈Rp×p

1

2
∥A(Σ)vec(M) + vec(C)∥22 + λ∥M∥1, (3.2)

which can be computed analogously to the classical Lasso regression. At first glance,
one might wonder why it is interesting to analyze this problem which seems to be just
another Lasso problem. From a probabilistic perspective, there is quite a difference. In
the classical regression setup (3.1), additive noise is considered whereas the uncertainty
is contained in the estimation of the matrix A(Σ) in Lyapunov models. This makes the
probabilistic analysis very different. Moreover, the matrix A(Σ) is of fixed size (p2×p2)
and does not contain the observations as rows, but has a predetermined structure with
covariances as entries. As we show in this chapter, this has further implications on the
theoretical results. At the same time, the computational results are also influenced
by the different problem structure. Overall, the problem is quite different with the
pleasant aspect that the methods to compute estimates are analogous to those for
Lasso regression.
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3.1.1 The Role of Parameter Identifiability for Estimation

In Chapter 2, we investigate parameter identifiability for graphical continuous Lya-
punov models. This is a fundamental theoretical question when thinking about
estimation. To obtain unique estimates, we have to be able to uniquely recover the
entries in M (and possibly C) when provided the covariance matrix Σ and when fixing
the support of M (and possibly C). Otherwise, even if we select the correct tuning
parameter λ in (3.2), there would be no possibility of obtaining a unique estimate.
We briefly recall the main aspects of the previous chapter.

It is evident that the equilibrium distribution of the observations does not uniquely
determine the pair of drift and volatility matrices (M,C) as we have discussed in
Remark 1.3.4. In particular, if (M,C) solves the Lyapunov equation, so does any
scalar multiple of (M,C). As scaling does not change the support of the drift matrix
M , we solve this problem by assuming that C is fully known. Even after reducing
to the case of a known volatility matrix C, the drift matrix M is not identifiable
without exploiting further structure, such as sparsity. Indeed, the Lyapunov equation
is a symmetric matrix equation with (p + 1)p/2 individual equations, whereas M
contains p2 unknown parameters. However, M becomes identifiable when it is known
to be suitably sparse. In particular, we show that all simple cyclic graphs are globally
identifiable. Many graphs with two-cycles permit almost sure unique recovery when
the sparse entries of the drift matrix are selected randomly according to a continuous
distribution, although here we cannot yet offer a concise sufficient condition.

3.1.2 Support Recovery for the Direct Lyapunov Lasso - Motivation

We study an ℓ1-regularization method for estimating the support of the drift matrix
M from an i.i.d. sample consisting of centered observations X1, . . . , Xn ∈ Rp. Let

Σ̂ = Σ̂(n) =
1

n

n∑
i=1

XiX
⊤
i (3.3)

be the sample covariance matrix. The direct Lyapunov lasso finds a sparse estimate
of M as a solution of the convex optimization problem

min
M∈Rp×p

1

2
∥M Σ̂ + Σ̂M⊤ + C∥2F + λ∥M∥1 (3.4)

with tuning parameter λ > 0. This method is considered in numerical experiments
by Fitch [2019] as well as by Varando and Hansen [2020] who additionally explore
non-convex methods based on regularizing Gaussian likelihood or a Frobenius loss.
The direct Lyapunov lasso yields matrices in Rp×p that can be non-stable. If a stable
estimate is required in such a case, one can appeal to projection onto the set of stable
matrices; e.g., using techniques by Noferini and Poloni [2021].

Before developing a detailed analysis of the direct Lyapunov lasso, we present an
example that illustrates the behavior of estimates for growing sample size and highlights
the impact of the irrepresentability condition.

Example 3.1.1. Let G1 be the path from 1 to 5, and let G2 be the 5-cycle obtained
by adding the edge 5 → 1; see Figure 3.1. For G1 we define a (well-conditioned)
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stable matrix M∗
1 by setting the diagonal to (−2,−3,−4,−5,−6) and the four nonzero

subdiagonal entries to 0.65. For G2, we consider two cases. In the first case, we add
the entry m15 = 0.65 to M∗

1 to obtain the matrix M∗
2 . We then draw 100 samples of

size n = 100, 200, 500, 1000, 5000, 104, 105,∞ from N(0,Σ∗
j ) for j = 1, 2, where Σ∗

j is
the covariance matrix obtained from M∗

j . When n = ∞, the population covariance
matrices are taken as input to the method. In the second case, we generate 100
stable matrices M∗

2,1, . . . ,M
∗
2,100 from M∗

1 by selecting 100 entries m15 according to a
uniform distribution on [0.5, 1]. Let Σ∗

2,1, . . . ,Σ
∗
2,100 be the corresponding equilibrium

covariance matrices. In the second case, we generate one sample from N(0,Σ∗
j ),

j = 1, (2, 1), . . . , (2, 100) for each of the sample sizes given above. direct Lyapunov
lasso is used for support recovery, with the penalty parameter λ chosen on a grid
λ1 = λmax/10

4, . . . , λ100 = λmax that is equidistant on the log-scale. The value
λmax is the minimal λ-value such that the estimate is diagonal. To implement the
direct Lyapunov lasso, we use the R package glmnet, which runs a coordinate descent
algorithm for fitting the Lasso, see Friedman et al. [2010]. For each data set, we
calculate the maximum accuracy, the maximum F1-score and the area under the ROC
curve. We give the details for the metrics in Definition 3.5.11. Figure 3.2 plots the
performance measures, averaged over the 100 datasets in each pairing of setup and
sample size. There the blue curves refer to G1, the red curves to G2 with m15 = 0.65
fixed, and the green curves to G2 with m15 chosen randomly. We observe that for
every sample size and performance measure, the direct Lyapunov lasso performs better
for the path G1 than for the cycle G2. When the sample size is n = 104, we observe
an almost perfect recovery of G1. However, increasing the sample size when recovering
G2 does not result in perfect recovery. The choice of m15 = 0.65 is not particularly
unfortunate—averaging over various completions does not improve the metrics. We
conclude that while learning useful structure in either case, the direct Lyapunov lasso is
consistent only for the considered path. Our subsequent analysis explains this behavior,
which is a consequence of the failure of the irrepresentability condition in (3.15).

1

2 3

4

5

1

2 3

4

5

Figure 3.1: Left: The graph G1, a path 1 to 5. Right: The graph G2, the 5-cycle.
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Figure 3.2: Performance measures for sample sizes n = 101, . . . , 104,∞ and models given
by the graphs G1 and G2 from Figure 3.1, one choice of edgeweights for the
path, one choice of edgeweights for the cycle (Cycle fixed) and 100 random
completions to the 5-cycle (Cycle random). Left: maximal accuracy, Middle:
maximal F1-score, Right: area under the ROC curve.

3.1.3 Organization of the Chapter

We first connect the direct Lyapunov lasso to more standard lasso problems by vector-
izing the Lyapunov equation and describing the structure of the Hessian matrix for the
smooth part of the direct Lyapunov lasso objective (Section 3.2). In Section 3.3, we
derive a deterministic guarantee for support recovery based on the primal-dual witness
approach (Theorem 3.3.1). We then extend this guarantee to a statistical consistency
result (Corollary 3.3.3), where the solution M̂ of (3.4) is shown to converge in the
max norm at a rate ∥M̂ −M∗∥∞ = O(

√
dp/n) with d being the number of nonzero

entries in the true drift matrix M∗. The necessary probabilistic analysis is based
on the concentration results for the spectral norm of the sample covariance matrix,
from which we are able to deduce the concentration results for the direct Lyapunov
lasso Hessian (Section 3.4). The consistency result depends on an irrepresentability
condition, which turns out to be more subtle than in the classical lasso regression. As
we explore in Section 3.5, the condition is highly dependent on the structure of the
graph associated with the true signal and appears to be particularly restrictive for
graphs with directed cycles. At least for DAGs (directed acyclic graphs) we are able to
always construct matrices at which the condition holds. In Section 3.6 we show that
the direct Lyapunov lasso is somewhat robust to both misspecification of the volatility
matrix C and the irrepresentability condition being not fulfilled. Towards the end of
the chapter, we apply the direct Lyapunov lasso to real world data. In Section 3.7, we
first analyze two Bayesian information criteria on synthetic data and then proceed
to present estimates of a protein-signalling network purely from observational data.
Despite the simplicity of the approach, some estimates recover most of the important
connections in the network. We conclude the chapter with a discussion in Section 3.8.

3.1.4 Notation - Chapter 3 and Chapter 4

Let b ∈ [1,∞]. The ℓb-norm of v ∈ Rp is ∥v∥b = (
∑p

i=1 |vi|b)1/b, with ∥v∥∞ =
max1≤i≤n |vi|. We may apply this vector norm to a matrix A = (aij) ∈ Rp×p and obtain
the norm ∥A∥b = (

∑p
i=1

∑n
j=1 |aij |b)1/b. In particular, ∥A∥F := ∥A∥2 is the Frobenius

norm. We denote the associated operator norm by |||A|||b = max{∥Ax∥b : ∥x∥b = 1}.
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Specifically, we use |||A|||2 to denote the spectral norm, given by the maximal singular
value of A, and |||A|||∞ = max1≤i≤p

∑p
j=1 |aij | to denote the maximum absolute row

sum.

3.2 Gram Matrix of the Direct Lyapunov Lasso

In this section, we rewrite the smooth part of the objective of the direct Lyapunov
lasso from (3.4) in terms of the vectorized drift matrix and present the resulting
Hessian matrix.

The Lyapunov equation from (1.2) is a linear matrix equation and may be rewritten
as

A(Σ) vec(M) + vec(C) = 0, (3.5)

where the p2 × p2 matrix A(Σ) has its rows and columns indexed by pairs (i, j) ∈
{1, . . . , p}2 and takes the form

A(Σ) = (Σ⊗ Ip) + (Ip ⊗ Σ)K(p,p). (3.6)

We have vec(MΣ) = (Σ⊗ Ip)vec(M) and vec(ΣM⊤) = (Ip ⊗Σ)K(p,p)vec(M). By the
symmetry of the Lyapunov equation, A(Σ) has two copies of each row corresponding
to an off-diagonal entry in the Lyapunov equation. Retaining this redundancy will be
helpful for later arguments, as it preserves the Kronecker product structure in (3.6).

Example 3.2.1. When p = 3, the matrix A(Σ) is a 9× 9 matrix and has the form

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)



(1, 1) 2Σ11 0 0 2Σ12 0 0 2Σ13 0 0
(1, 2) Σ21 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
(1, 3) Σ31 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

(2,1) Σ21 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
(2, 2) 0 2Σ21 0 0 2Σ22 0 0 2Σ23 0
(2, 3) 0 Σ31 Σ21 0 Σ23 Σ22 0 Σ33 Σ23

(3,1) Σ31 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

(3,2) 0 Σ31 Σ21 0 Σ23 Σ22 0 Σ33 Σ23

(3, 3) 0 0 2Σ31 0 0 2Σ23 0 0 2Σ33

.

Rows with an italicized index correspond to strictly upper triangular entries in the
Lyapunov equation from (1.2).

Define the Gram matrix

Γ(Σ) := A(Σ)⊤A(Σ) ∈ Rp2×p2 (3.7)

and the vector
g(Σ) := −A(Σ)vec(C) ∈ Rp2 . (3.8)

Omitting a constant from the objective function, the direct Lyapunov lasso problem
from (3.4) may be reformulated as

min
M∈Rp×p

1

2
vec(M)⊤Γ(Σ̂)vec(M)− g(Σ̂)⊤vec(M) + λ∥vec(M)∥1. (3.9)
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As noted in the introduction, one difficulty that arises in the analysis of the solution of
(3.9) is the fact that the Gram matrix has entries that are quadratic polynomials in Σ
with p terms (i.e., the number of terms scales with the size of the problem). This fact
can be seen in the appearance of Σ2 in the following formula for the Gram matrix.

Lemma 3.2.2. The Gram matrix for a given covariance matrix Σ is equal to

Γ(Σ) = A(Σ)⊤A(Σ) = 2(Σ2 ⊗ Ip) + (Σ⊗ Σ)K(p,p) +K(p,p)(Σ⊗ Σ).

Proof. Apply the rules (A ⊗ B)⊤ = (A⊤ ⊗ B⊤), (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD)
and K(p,p)(A⊗B)K(p,p) = B ⊗A to deduce that

A(Σ)⊤A(Σ) = [(Σ⊗ Ip) +K(p,p)(Ip ⊗ Σ)][(Σ⊗ Ip) + (Ip ⊗ Σ)K(p,p)]

= 2(Σ2 ⊗ Ip) + (Σ⊗ Σ)K(p,p) +K(p,p)(Σ⊗ Σ).

□

3.3 Consistent Support Recovery with the Direct Lyapunov
Lasso

In this section, we now provide a probabilistic guarantee that the direct Lyapunov
lasso is able to recover the support of the true population drift matrix that defines
the data-generating distribution. This result is based on a slightly adapted version of
[Lin et al., 2016, Theorem 1] that we also present in this section.

We start by introducing some more notation. The matrix M∗ denotes the true drift
matrix in (1.1) and M̂ denotes the solution of the direct Lyapunov lasso problem in
(3.4). The support of M∗ is the set of all indices of nonzero elements and is denoted
by

S ≡ S(M∗) = {(j, k) : M∗
jk ̸= 0}.

We write d = |S| for the size of the support of M∗. The support set of the estimate
M̂ is written

Ŝ ≡ S(M̂) = {(j, k) : M̂jk ̸= 0}.

Let Γ̂ = Γ(Σ̂), Γ∗ = Γ(Σ∗), ĝ = g(Σ̂), g∗ = g(Σ∗). Furthermore, let ∆Γ = Γ̂− Γ∗ and
∆g = ĝ − g∗, and define the quantities

cΓ∗ = |||(Γ∗
SS)

−1|||∞ and cM∗ = ∥vec(M∗)∥∞.

The definition of cΓ∗ requires Γ∗
SS to be invertible, which is an implicit assumption on

the identifiability of the parameters; recall Section 3.1.1.

We provide the deterministic result that Corollary 3.3.3 is based on. We adapt
Theorem 1 by Lin et al. [2016] to arrive at our deterministic result. This requires
resolving only a few differences, as we describe in Remark 3.3.2. The underlying
construction for the proof is the Primal-Dual-Witness (PDW) method [Wainwright,
2009].
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Theorem 3.3.1. Let M∗ ∈ Stabp be the true drift matrix, and let S be its support.
Assume that Γ∗

SS is invertible and that the irrepresentability condition

|||Γ∗
ScS(Γ

∗
SS)

−1|||∞ < 1− α (3.10)

holds with parameter α ∈ (0, 1]. Furthermore, assume that Γ̂ is a matrix such that

|||(∆Γ)·S |||∞ < ϵ1, ∥∆g∥∞ < ϵ2,

with ϵ1 ≤ α/(6cΓ∗). If

λ >
3(2− α)

α
max{cM∗ , ϵ1, ϵ2},

then the following statements hold:

a) The LSGE M̂ is unique, has its support included in the true support (Ŝ ⊆ S),
and satisfies

||M̂ −M∗||∞ <
2cΓ∗

2− α
λ.

b) If

min
1≤j<k≤m

(j,k)∈S

|M∗
jk| >

2cΓ∗

2− α
λ,

then Ŝ = S and sign(M̂jk) = sign(M∗
jk) for all (j, k) ∈ S.

Proof. The proof is very similar to the proof of Theorem 1 by Lin et al. [2016].
However, there are a few subtle differences and missing explanations that we add in
this proof. For all the calculations that are already carried out by Lin et al. [2016], we
refer to the original manuscript for these passages.

We use the PDW technique to prove the result. The estimate M̂ satisfies the KKT
conditions

Γ̂vec(M̂)− ĝ + λẑ = 0, (3.11)

where ẑ ∈ ∂∥vec(M̂)∥1 is an element of the subdifferential of the ℓ1-norm, that is, the
elements of the vector ẑ ∈ Rp2 satisfy that elements

ẑ(i,j) =

{
sign(vec(M̂)(i,j)) if vec(M̂)(i,j) ̸= 0,

∈ [−1, 1] if vec(M̂)(i,j) = 0.

Here, we index ẑ by pairs (i, j) with 1 ≤ i, j ≤ p. The optimization problem in (3.9)
is convex as Γ is positive semidefinite by construction, and the KKT conditions are
necessary and sufficient for a solution to be optimal for the problem. The PDW
technique constructs, in three steps, a primal-dual pair (M̂, ẑ) that satisfies (3.11) and
has the support of M̂ contained in S.

Since the true signal M∗ ∈ Stabp and C ∈ PDp, there exists a unique positive definite
Σ∗ determined by the continuous Lyapunov equation in (1.2). As a result

Γ∗vec(M∗)− g∗ = 0,
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and we can rewrite the KKT conditions in (3.11) in the following block form[
Γ∗
SS Γ∗

SSc

Γ∗
ScS Γ∗

ScSc

] [
(∆M )S
(∆M )Sc

]
+

[
(∆Γ)SS (∆Γ)SSc

(∆Γ)ScS (∆Γ)ScSc

] [
vec(M̂)S
vec(M̂)Sc

]
+

[
(∆g)S
(∆g)Sc

]
+ λ

[
ẑS
ẑSc

]
=

[
0
0

]
,

where ∆M = vec(M̂)− vec(M∗). We now construct a pair (M̂, ẑ) that satisfies the
equation.

Step 1. We solve the restricted optimization problem

vec(M̃) = arg min
vec(M)Sc=0

1

2
vec(M)⊤Γ̂vec(M)− ĝ⊤vec(M) + λ∥vec(M)∥1. (3.12)

Since Γ∗
SS is invertible, under our assumptions, Γ̂SS is also invertible. The matrix Γ̂SS

can be expressed as

Γ̂SS = Γ∗
SS + (Γ̂SS − Γ∗

SS) = Γ∗
SS + (∆Γ)SS

Factoring out Γ∗
SS , we obtain

Γ∗
SS + (∆Γ)SS = Γ∗

SS(I|S| + (Γ∗
SS)

−1(∆Γ)SS)

where I|S| denotes the identity matrix of size |S| × |S|. Then, the matrix Γ̂SS is
invertible if

ρ((Γ∗
SS)

−1(∆Γ)SS) < 1.

This is true as the spectral norm is bounded by the maximum absolute row sum norm
and

|||(Γ∗
SS)

−1(∆Γ)SS |||∞ ≤ |||(Γ∗
SS)

−1|||∞|||(∆Γ)SS |||∞ < 1

with the second inequality being true because of |||(∆Γ)SS |||∞ < ϵ1 < α/6cΓ∗ < 1/cΓ∗

and cΓ∗ = |||(Γ∗
SS)

−1|||∞.

Therefore, the solution vec(M̃) is unique. Furthermore, we have

(vec(M̃))S = (Γ̂SS)
−1(ĝS − λsign((vec(M̃))S).

Let ∆̃M = vec(M̃)− vec(M∗). Following the proof of Theorem 1 by Lin et al. [2016],
we have

∥∆̃M∥∞ ≤
cΓ∗

1− α/6
· 6− α

3(2− α)
λ =

2cΓ∗

2− α
λ. (3.13)

Step 2. Let z̃S = sign(vec(M̃)S). Then z̃S ∈ ∂∥vec(M̃)∥1.

Step 3. Let

z̃Sc =
1

λ

[
−Γ∗

ScS(Γ
∗
SS)

−1((∆Γ)SSvec(M̃)S + (∆g)S) + (∆Γ)ScSvec(M̃)S

+(∆g)Sc + λΓ∗
ScS(Γ

∗
SS)

−1sign(vec(M̃)S)
]
. (3.14)
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We show that ∥z̃Sc∥1 < 1, which is a dual feasibility condition. Once this is shown,
we have that the pair (vec(M̃), z̃) satisfies (3.11) by construction, and (vec(M̂), ẑ) =
(vec(M̃), z̃) is the solution to the optimization problem in (3.9). Furthermore, Lemma
1 of Wainwright [2009] implies that the strict dual feasibility implies that Ŝ ⊆ S.
Following Theorem 1 by Lin et al. [2016], we have

∥z̃Sc∥∞ ≤
2− α

λ
∥(∆Γ)·Svec(M

∗)S∥∞︸ ︷︷ ︸
G1

+
2− α

λ
|||(∆Γ)·S |||∞∥∆S∥∞︸ ︷︷ ︸

G2

+
2− α

λ
∥∆g∥∞︸ ︷︷ ︸
G3

+(1− α).

For G1, we have that

G1 ≤
2− α

λ
|||(∆Γ)·S |||∞∥vec(M∗)∥∞ =

2− α

λ
cM∗ϵ1 ≤

α

3
.

For G3, we have that

G3 =
2− α

λ
∥∆g∥∞ <

2− α

λ
ϵ2 ≤

α

3
.

Finally, for G2, we have that

G2 <
2− α

λ
· α

6cΓ∗
· ϵ1 ·

cΓ∗

1− α/6
· 6− α

3(2− α)
<

α

3
.

Combining these bounds, we have that ∥z̃Sc∥∞ < 1, which establishes the strict dual
feasibility.

Finally, for any (j, k) ∈ S, we have that

|M̂jk| ≥ |M∗
jk| − |M̂jk −M∗

jk| > min
1≤j<k≤p
(j,k)∈S

|M∗
jk| − ∥vec(M̂)− vec(M∗)∥∞ > 0,

which shows that Ŝ = S. □

Remark 3.3.2. The distinction between Theorem 3.3.1 and Theorem 1 of Lin et al.
[2016] lies in the steps of our analysis that involve the maximal absolute row sum
norm in the bound for the difference between the estimated Hessian Γ̂ and the true
Hessian Γ⋆. In Lin et al. [2016], the bound was based on the maximal entry. This
difference requires adjustments in certain steps of the proof. Consequently, our above
proof also provides a more detailed explanation of certain arguments that were omitted
by Lin et al. [2016], but are of greater significance in our work. For example, we
address the issue of invertibility of Γ̂. We also indicate when parts of the proof by Lin
et al. [2016] are unaffected to ensure clarity and consistency.

Theorem 3.3.1 provides a deterministic result for the estimation error and support
recovery under a general bound on ∆Γ and ∆g. It leads to the following probabilistic
result.

42



3.3 Consistent Support Recovery with the Direct Lyapunov Lasso

Corollary 3.3.3. Suppose that the data are generated as n i.i.d. draws from the Gaus-
sian equilibrium distribution of a p-dimensional Ornstein-Uhlenbeck process defined
by a drift matrix M∗ ∈ Stabp and a matrix C ∈ PDp. Let S be the support of M∗.
Assume that Γ∗

SS is invertible and that the irrepresentability condition

|||Γ∗
ScS(Γ

∗
SS)

−1|||∞ < 1− α (3.15)

holds for α ∈ (0, 1]. Let cΣ∗ = |||Σ∗|||2, cC = ∥vec(C)∥2,

c̃ =max

{
4max{1, c2Σ∗}(4 + 8cΣ∗)2

c3
, 16c21c

2
Σ∗(4 + 8cΣ∗)2,

16max{1, c2Σ∗}c2C
c3

, 64c21c
2
Σ∗c2C

}
,

c∗ =
6

α
cΓ∗ ,

where {ci}3j=1 are universal constants (from Theorem 3.4.4 below) with

c1 > max{1, |||Σ∗|||2}. Suppose the sample size satisfies n > τ1c̃dpmax{c2∗, 1/4} for
τ1 > 1, and the regularization parameter is chosen as

λ >
3cM∗(2− α)

α

√
τ1c̃dp

n
.

Then the following statements hold with probability at least 1− c2 exp (−τ1p):

a) The minimizer M̂ is unique, has its support included in the true support (Ŝ ⊂ S),
and satisfies

∥M̂ −M∗∥∞ <
2cΓ∗

2− α
λ.

b) Furthermore, if

min
1≤j<k≤m

(j,k)∈S

|M∗
jk| >

2cΓ∗

2− α
λ,

then Ŝ = S and sign(M̂jk) = sign(M∗
jk) for all (j, k) ∈ S.

The Corollary follows from Theorem 3.3.1 together with the concentration results we
obtain in Section 3.4. We defer the proof of Corollary 3.3.3 to the end of Section 3.4.

The reader may be surprised by the sample size requirement of n = Ω(dp); recall that
d = |S| is the size of the support of M∗. Since S includes the diagonal of M∗, we have
d ≥ p. Under sparsity, however, dp is not much larger than the number of unknown
parameters p2.

This said, Ω(dp) is far larger than the sample size requirement a reader may be familiar
with from the glasso for learning undirected conditional independence, which is on the
order of d2 log p but with d being the maximum number of nonzero entries in any row of
a true precision matrix [Ravikumar et al., 2011]. This allows for far higher-dimensional
settings, but crucially relies on the glasso having a Hessian that concentrates well
entry-wise and a simple connection between the covariance matrix and the sparse
precision matrix. In contrast, the Lyapunov Lasso has a denser Hessian/Gram matrix
that includes entries that become heavier-tailed as the dimension p grows.
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3.4 Probabilistic Analysis

The direct Lyapunov lasso depends on the loss being sufficiently close to its population
version in the sense of ∆Γ = Γ̂− Γ∗ and ∆g = ĝ − g∗ being sufficiently small. In this
section, we bound ∆Γ and ∆g in terms of ∆Σ = Σ̂ − Σ∗ and, subsequently, use a
concentration inequality for |||∆Σ|||2 to probabilistically bound ∆Γ and ∆g.

Deriving an inequality for Γ̂ is most critical as the matrix contains sums of products
of covariances and a careful analysis is required to obtain a non-trivial requirement on
the sample size. Let Γ(Σ) = Γ1(Σ) + Γ2(Σ), where

Γ1(Σ) = 2(Σ2 ⊗ Ip) and Γ2(Σ) = (Σ⊗ Σ)K(p,p) +K(p,p)(Σ⊗ Σ).

Lemma 3.4.1. Let cΣ∗ = |||Σ∗|||2. Then

|||Γ1(Σ̂)− Γ1(Σ
∗)|||2 ≤ 2|||∆Σ|||22 + 4cΣ∗ |||∆Σ|||2.

Proof. Using that |||A⊗B|||2 = |||A|||2|||B|||2, we obtain that

|||Γ1(Σ̂)− Γ1(Σ
∗)|||2 = 2|||(Σ̂2 − (Σ∗)2)⊗ Ip)|||2

= 2|||Σ̂2 − (Σ∗)2)|||2
≤ 2|||∆Σ|||22 + 2|||∆ΣΣ

∗|||2 + 2|||Σ∗∆Σ|||2.

Since the spectral norm of a symmetric matrix is the absolute maximal eigenvalue,
and the eigenvalues of a squared matrix are the squared eigenvalues of the original
matrix, we find as claimed that

|||Γ1(Σ̂)− Γ1(Σ
∗)|||2 ≤ 2|||∆Σ|||22 + 4|||Σ∗|||2|||∆Σ|||2.

□

Lemma 3.4.2. Let cΣ∗ = |||Σ∗|||2. Then

|||Γ2(Σ̂)− Γ2(Σ
∗)|||2 ≤ 2|||∆Σ|||22 + 4cΣ∗ |||∆Σ|||2.

Proof. The commutation matrix K(p,p) is an orthonormal matrix. Therefore,
|||K(p,p)|||2 = 1 and

|||K(p,p)(Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗)|||2 = |||(Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗)K(p,p)|||2 = |||Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗|||2.

We obtain that

|||Γ2(Σ̂)− Γ2(Σ
∗)|||2 ≤2|||Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗|||2

=2|||∆Σ ⊗∆Σ +∆Σ ⊗ Σ∗ +Σ∗ ⊗∆Σ +Σ∗ ⊗ Σ∗ − Σ∗ ⊗ Σ∗|||2
≤2|||∆Σ ⊗∆Σ|||2 + 2|||∆Σ ⊗ Σ∗|||2 + 2|||Σ∗ ⊗∆Σ|||2
≤2|||∆Σ|||22 + 4|||Σ∗|||2|||∆Σ|||2,

which was the claim. □
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For a matrix A ∈ Rp×d, it holds that |||A|||∞ ≤
√
d|||A|||2. Then it follows from

Lemma 3.4.1 and Lemma 3.4.2 that

|||(∆Γ)·S |||∞ ≤
√
d
(
4|||∆Σ|||22 + 8cΣ∗ |||∆Σ|||2

)
. (3.16)

We note that bounding |||(∆Γ)·S |||∞ using ∥(∆Γ)·S∥∞, as was done in Lin et al. [2016],
leads to a worse bound. While such an approach might seem simpler, it does not
exploit the structure of the Hessian Γ in Lemma 3.2.2.

We now provide a bound on ∥∆g∥∞.

Lemma 3.4.3. We have ∥∆g∥∞ ≤ 2cC |||∆Σ|||2, where cC = ∥vec(C)∥2.

Proof. Similar to the proof of Lemma 3.4.1 and Lemma 3.4.2, we have

∥∆g∥∞ ≤ ∥∆g∥2
≤ cC |||Σ∗ ⊗ Ip − (Ip ⊗ Σ∗)K(p,p) − Σ̂⊗ Ip + (Ip ⊗ Σ̂)K(p,p)|||2
≤ cC(|||Ip ⊗ (Σ̂− Σ∗)|||2 + |||(Σ̂− Σ∗)⊗ Ip|||2) (since |||K(p,p)|||2 = 1)

= 2cC |||∆Σ|||2.

□

The bounds in (3.16) and Lemma 3.4.3 depend on the spectral norm of ∆Σ. We adapt
Theorem 6.5 in Wainwright [2019] to our setting to upper bound |||∆Σ|||2 under the
assumption that (xi)

n
i=1 are sub-Gaussian.

Theorem 3.4.4 (Theorem 6.5. in Wainwright [2019]). Suppose that (Xi)
n
i=1 are

σ sub-Gaussian random variables. Then the sample covariance matrix Σ̂ in (3.3)
satisfies

P

(
|||Σ̂− Σ∗|||2

σ2
≥ c1

{√
p

n
+

p

n

}
+ δ

)
≤ c2 exp(−c3nmin{δ, δ2}) ∀δ ≥ 0,

where {cj}3j=0 are universal constants.

Corollary 3.4.5. Let {cj}3j=1 be the universal constants from Theorem 3.4.4, but
ensuring that c1 > max{1, 1/|||Σ∗|||2}. Let (Xi)

n
i=1 be Gaussian random variables. For

any ϵ ∈ (4c1|||Σ∗|||2
√

p/n, 2), we have

P
(
|||Σ̂− Σ∗|||2 ≥ ϵ

)
≤ c2 exp

(
− c3
4max(1, |||Σ∗|||22)

nϵ2
)
.

Proof. A Gaussian random vector is sub-Gaussian with parameter σ = |||Σ∗|||2.
Set δ = min

(
ϵ

2|||Σ∗|||2 ,
ϵ
2

)
. Since p

n < ϵ2

16c21|||Σ∗|||22
, we have

|||Σ∗|||2
(
c1

{√
p

n
+

p

n

}
+ δ

)
< c1|||Σ∗|||2

{
ϵ

4c1|||Σ∗|||2
+

ϵ2

16c21|||Σ∗|||22

}
+

ϵ

2

=
ϵ

4
+

ϵ2

16c1|||Σ∗|||2
+

ϵ

2
<

ϵ

4
+

ϵ

4
+

ϵ

2
= ϵ.
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Since δ < 1, it holds that δ2 < δ. Then

P
(
|||Σ̂− Σ∗|||2 ≥ ϵ

)
≤ P

(
|||Σ̂− Σ∗|||2 ≥ |||Σ∗|||2

(
c1

{√
p

n
+

p

n

}
+ δ

))
≤ c2 exp(−c3nδ2) = c2 exp

(
− c3
4max(1, |||Σ∗|||22)

nϵ2
)
.

□

We finally have the following result.

Lemma 3.4.6. In the event that

|||∆Σ|||2 = |||Σ̂− Σ∗|||2 < min

{
ϵ1√

d(4 + 8cΣ∗)
,
ϵ2
2cC

}

it holds that

|||(∆Γ)·S |||∞ < ϵ1 and ∥∆g∥∞ < ϵ2.

Proof. The result follows directly from (3.16), where |||∆Σ|||22 ≤ |||∆Σ|||2, and
Lemma 3.4.3. □

With this preparation we can complete the proof of our main result. Using the
preparation in Section 3.4, we prove the main result.

Proof of Theorem 3.3.3. We prove the result in three steps.

1) It has to hold that

ϵ√
d(4 + 8cΣ∗)

,
ϵ

2cC
∈
(
4c1|||Σ∗|||2

√
p/n, 2

)
.

2) Then Corollary 3.4.5 gives us that

|||∆Σ|||2 < min

{
ϵ√

d(4 + 8cΣ∗)
,

ϵ

2cC

}

with probability at least 1−c2 exp (−τ1p). Then |||(∆Γ)·S |||∞ < ϵ and ∥∆g∥∞ < ϵ,
using Lemma 3.4.6.

3) We verify that ϵ ≤ α
6cΓ∗ under the assumption on the sample size. Then, the

result follows from Theorem 3.3.1.

In the following, we go through the steps in detail.
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1) Using the lower bound on the sample size, it holds that

ϵ√
d(4 + 8cΣ∗)

=

√
τ1c̃dp/n√

d(4 + 8cΣ∗)

<

√
τ1c̃dp/τ1c̃dpmax{c2∗, 1/4}√

d(4 + 8cΣ∗)

=

√
1/max{c2∗, 1/4}√
d(4 + 8cΣ∗)

≤
√
1/max{c2∗, 1/4}

≤
√
4 = 2.

Using τ1 ≥ 1, we obtain

ϵ√
d(4 + 8cΣ∗)

=

√
τ1c̃dp/n√

d(4 + 8cΣ∗)

>

√
c̃
√
p/n

(4 + 8cΣ∗)

≥

√
(4 + 8cΣ∗)216c21c

2
Σ∗

√
p/n

(4 + 8cΣ∗)

= 4c1cΣ∗
√
p/n.

2) Using Corollary 3.4.5 we obtain

P
(
|||∆Σ|||2 ≥

ϵ√
d(4 + 8cΣ∗)

)
≤c2 exp

(
− c3
4max(1, c2Σ∗)

n
τ1c̃dp/n

d(4 + 8cΣ∗)2

)
≤c2 exp

(
− c3c̃

4max(1, c2Σ∗)(4 + 8cΣ∗)2
τ1p

)
≤c2 exp (−τ1p)

3) We verify that ϵ ≤ α
6cΓ∗ under the assumption on the sample size.

ϵ =
√
τ1c̃dp/n

≤
√

τ1c̃dp/τ1c̃dpmax{c2∗, 1/4}

=
√

1/max{c2∗, 1/4}

≤ α

6cΓ∗

For the same choice of ϵ and ϵ/2cC steps 1) - 3) can be carried out analogously and
we obtain

P
(
|||∆Σ|||2 ≥

ϵ

2cC

)
≤ c2 exp (−τ1dp) .

The result follows by applying Theorem 3.3.1. □
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3.5 Irrepresentability Condition

The irrepresentability condition is vital for Theorem 3.3.1. The condition is well-
known from the standard lasso regression, but appears to be much more subtle in
the Lyapunov model. In regression and in the Lyapunov model, the irrepresentability
condition makes an assumption about the Gram matrix in light of the signal. However,
the Gram matrix in regression depends solely on the predictors, whereas the Gram
matrix for the Lyapunov model is obtained from the matrix A(Σ) which depends on
the signal itself; recall Example 3.2.1. This section is structured in 3 parts. First, we
prove that for every support corresponding to a directed acyclic graph (DAG), there
exists a drift matrix that fulfills the irrepresentability condition from Theorem 3.3.1.
Second, we present a theoretical result that a weaker notion of the irrepresentability
condition is necessary for consistent support recovery. Third, we investigate both
irrepresentability conditions by the means of simulations. Naturally, we observe that
the irrepresentability condition presented in Theorem 3.3.1 is fulfilled less often than
its weaker notion introduced in Section 3.5.2. Nevertheless, the frequency with which
the irrepresentability conditions are met for randomly drawn signals is surprising. In
a last step, we present simulation results suggesting that despite the fact that only
the necessity of the weak irrepresentability condition is proven in this thesis, the weak
irrepresentability condition being fulfilled results in an extremely positive influence on
support recovery.

In our study of the irrepresentability condition, we will consider the case where the
volatility matrix C is a multiple of the identity, specifically, we assume C = 2Ip
throughout this section. (Other diagonal matrices C would also be tractable for
analysis and would yield analogous conclusions.) Before proceeding, we recall that a
matrix M∗ ∈ Stabp with support S satisfies the irrepresentability condition if

ρ(M∗) := ∥Γ∗
ScS(Γ

∗
SS)

−1∥∞ (3.17)

is strictly smaller than 1; the condition in (3.15) stated an explicit gap α > 0. In the
sequel, we will refer to the number ρ(M∗) as the irrepresentability constant of M∗.

3.5.1 Theoretical Analysis of the (Sufficient) Irrepresentability Condition

In standard lasso regression, the irrepresentability condition is fulfilled when each
irrelevant predictor exhibits little correlation with the active predictors. In particular,
the condition would hold in a neighborhood of a diagonal Gram matrix. Under the
Lyapunov model, it is not obvious how to suggest points for which the irrepresentability
condition may be fulfilled. By the analogy with regression, natural candidates are
obtained from drift matrices that are close to diagonal, for which the resulting
covariance matrices are close to diagonal as well. Such candidates are the topic of the
analysis presented in this subsection.

Example 3.5.1. Consider the graph G = (V,E) in Figure 3.4, a path on 3 nodes.
For small e ∈ R, we define two stable matrices M1(e) and M2(e) with support given
by G. We set their diagonals to diag(M1(e)) = (−1/2,−1,−3/2) and diag(M2(e)) =
(−3/2,−1,−1/2), respectively, and we set all non-zero off-diagonal entries equal to
e. Note that the diagonal of M2(e) is the reverse of the diagonal of M1(e). In Figure
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3.5 Irrepresentability Condition

3.3, we plot the two irrepresentability constants ρ(M1(e)) and ρ(M2(e)) as functions
of the off-diagonal value e. We observe that irrepresentability holds in a neighborhood
of M1(0), but not around M2(0).

Figure 3.3: Values of the irrepresentability constants ρ(M1(e)) and ρ(M2(e)) for the two
matrices from Figure 3.4 plotted against the size of the off-diagonal entries e.
Left: ρ(M1(e)) where diag(M1(e)) = (−1/2,−1,−3/2). Right: ρ(M2(e)) where
diag(M2(e)) = (−3/2,−1,−1/2).

In the example just presented, the order of diagonal entries is seen to impact whether
irrepresentability holds near a diagonal matrix. As we prove in the theorem below
this fact is not a coincidence but rather a general phenomenon.

Let S ⊆ {(i, j) : 1 ≤ i, j ≤ p} be a given support set. We say that the irrepresentability
condition for support S holds uniformly over a set U ⊂ Stabp if there exists α > 0
such that ρ(M∗) ≤ 1 − α for all M∗ ∈ U with support S(M∗) = S. By our
convention, the edge set of a directed graph G = (V,E) determines the support set
SG = {(j, i) : i→ j ∈ E}.

1 2 3

Figure 3.4: Directed graph on 3 nodes.

Theorem 3.5.2. Let G = (V,E) be a graph with p nodes. Let
M0 = diag(−d1, . . . ,−dp) be a stable diagonal matrix. Then, the irrepresentabil-
ity condition for support SG holds uniformly over a neighborhood of M0 if and only
if

di < dj for every edge i→ j ∈ E.

In particular, it is necessary that the graph G is a DAG.

Proof. Let Σ0 = Σ(M0, C) be the covariance matrix associated to the drift matrix
M0. As we assume that C = 2Ip, we have

Σ0 = −(M0)−1 = diag(1/d1, . . . , 1/dp).

Writing Γ0 = Γ(Σ0) for the resulting Gram matrix, we define the local irrepresentability
constant

ρ̃G(M
0) = |||Γ0

Sc
GSG

(Γ0
SGSG

)−1|||∞.
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Chapter 3 Direct Lyapunov Lasso

If a small open ball around M0 contains a matrix M , then the ball also contains all
matrices that are obtained from M by negating one or more of the off-diagonal entries.
Hence, by continuity, the irrepresentability condition for support SG holds uniformly
over a neighborhood of M0 if and only if (i) the submatrix Γ0

SGSG
= (Γ0)SGSG

is

invertible and (ii) ρ̃G(M
0) < 1.

Since Σ0 is diagonal, plugging it into the coefficient matrix from (3.6) gives a symmetric
matrix with entries

A(Σ0)(i,j),(k,l) =


2/dl if i = j = k = l,

1/dl if i = k, j = l and k ̸= l,

1/dl if i = l, j = k and k ̸= l,

0 otherwise.

The entries of the Gram matrix Γ0 = Γ(Σ0) are the inner products of the columns of
A(Σ0). That is,

Γ0
(i,j),(k,l) =


4/d2l if i = j = k = l,

2/d2l if i = k, j = l and k ̸= l,

2/(dkdl) if i = l, j = k and k ̸= l,

0 otherwise.

Note that the only off-diagonal entries in Γ0 occur when the row index is (i, j) and
the column index is (j, i) with i ̸= j. We display the matrices A(Σ0) and Γ0 for a
graph with p = 3 nodes in Example 3.5.3.

Case I: Graph contains a two-cycle. Suppose G contains a two-cycle, say k → l→ k
with k ̸= l. The two edges on the cycle index two columns of A(Σ0) that are linearly
dependent. Indeed, the column indexed by (k, l) has only two nonzero entries in
rows (k, l) and (l, k), both of which are equal to dl, and the same holds for the
column indexed (l, k) except that the common value of its two nonzero entries is
dk. The columns (k, l) and (l, k) of Γ0 are similarly linearly dependent. Therefore,
the submatrix Γ0

SGSG
fails to be invertible, if the graph G contains a two-cycle.

Consequently, the irrepresentability condition holds uniformly over a neighborhood of
M0 only if G is free of two-cycles, in which case we call G simple.

Case II. Graph is simple. In the rest of the proof suppose that G is simple. In this
case, the submatrix Γ0

SGSG
is diagonal with entries

Γ0
(k,l),(k,l) =

{
4/d2l if k = l,

2/d2l if k ̸= l,

where l→ k is an edge of G. The second submatrix of interest, Γ0
Sc
GSG

, also has only

one nonzero entry in each column. If l→ k is an edge, indexing column (k, l), then
the entry is

(Γ0
Sc
GSG

)(l,k),(k,l) = 2/(dkdl).
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3.5 Irrepresentability Condition

Note that G being simple implies that k → l is not an edge of G. Multiplying the
second submatrix to the inverse of the first, we obtain that

(Γ0
Sc
GSG

(Γ0
SGSG

)−1)(i,j),(l,k)

=

{
dk/dl if (i, j) = (k, l) and (l, k) ∈ SG, (k, l) ∈ Sc

G,

0 otherwise.

Since ρ̃G(M
0) is obtained via the maximum absolute row sum, we have

ρ̃G(M
0) < 1 if and only if di/dj < 1 for all pairs (j, i) ∈ SG, or equivalently, all

edges i → j ∈ E, as the theorem claims. If G contains a cycle of at least length
3, there exists a sequence of edges in E such that i1 → i2 → i3 → im → i1 with
i1, . . . , im ∈ V . Then, we have ρ̃G(M

0) < 1 if and only if

di1/di2 < 1, di2/di3 < 1, . . . dim−1/dim < 1, dim/di1 < 1.

Multiplying yields

di1/di2 · di2/di3 · . . . · dim−1/dim · dim/di1 = 1

which contradicts that all individual quotients are smaller than one. □

We illustrate the matrix calculations in the proof of Theorem 3.5.2 for a graph on
p = 3 nodes.

Example 3.5.3. We consider the 3-chain G = (V,E) displayed in Figure 3.4, and
the matrices

M0 = diag(−d1,−d2,−d3) and Σ0 = diag(1/d1, 1/d2, 1/d3).

Ordering rows as
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) and columns as
(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3), we find

A(Σ0) =



2/d1 0 0 0 0 0 0 0 0
0 1/d1 0 1/d2 0 0 0 0 0
0 0 1/d1 0 0 0 1/d3 0 0
0 1/d1 0 1/d2 0 0 0 0 0
0 0 0 0 2/d2 0 0 0 0
0 0 0 0 0 1/d2 0 1/d3 0
0 0 1/d1 0 0 0 1/d3 0 0
0 0 0 0 0 1/d2 0 1/d3 0
0 0 0 0 0 0 0 0 2/d3
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and for Γ0 using the labelling (1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3)
both for rows and columns we obtain

4/d21 0 0 0 0 0 0 0 0
0 2/d21 0 2/d1d2 0 0 0 0 0
0 0 2/d21 0 0 0 2/d1d3 0 0
0 2/d1d2 0 2/d22 0 0 0 0 0
0 0 0 0 4/d22 0 0 0 0
0 0 0 0 0 2/d22 0 2/d2d3 0
0 0 2/d1d3 0 0 0 2/d23 0 0
0 0 0 0 0 2/d2d3 0 2/d23 0
0 0 0 0 0 0 0 0 4/d23


.

Since

SG = {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3)} and

Sc
G = {(3, 1), (1, 2), (1, 3), (2, 3)}

we obtain

(Γ0
SGSG

)−1 = diag(d21/4, d
2
1/2, d

2
2/4, d

2
2/2, d

2
3/4),

Γ0
Sc
GSG

=


0 0 0 0 0
0 2/d1d2 0 0 0
0 0 0 0 0
0 0 0 2/d2d3 0

 ,

and

Γ0
Sc
GSG

(Γ0
SGSG

)−1 =


0 0 0 0 0
0 d1/d2 0 0 0
0 0 0 0 0
0 0 0 d2/d3 0

 .

To have |||Γ0
Sc
GSG

(Γ0
SGSG

)−1|||∞ < 1, we need d1/d2 < 1 and d2/d3 < 1. With the edges

1 → 2 and 2 → 3 present in G, this requirement coincides with the statement of
Theorem 3.5.2.

3.5.2 Necessity of the Weak Irrepresentability Condition

In Theorem 3.3.1 we show that the irrepresentability condition

|||Γ∗
ScS(Γ

∗
SS)

−1|||∞ ≤ (1− α), α ∈ (0, 1)

is sufficient for model selection consistency. As we show in the subsequent Proposition,
a weaker version of the condition is indeed necessary for model selection consistency.

Definition 3.5.4. Let M∗ ∈ Stabp and S = S(M) its corresponding support set.
Then, the weak irrepresentability condition is fulfilled if

∥Γ∗
ScS(Γ

∗
SS)

−1sign(vec(M∗))S∥∞ ≤ 1. (3.18)
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3.5 Irrepresentability Condition

We would like to address a small subtlety regarding the relation of the irrepresentability
condition to the weak irrepresentability condition.

Remark 3.5.5. Consider a matrix M∗ ∈ Stabp fulfilling the irrepresentability con-
dition (3.15), then it also fulfills the weak irrepresentability condition (3.18). The
reasoning is that by multiplying Γ∗

ScS(Γ
∗
SS)

−1 with sign(vec(M∗))S the absolute values
of the entries in a row of Γ∗

ScS(Γ
∗
SS)

−1 are added up in the “worst case”. By applying
∥ · ∥∞ the maximum value is chosen. That is exactly what |||Γ∗

ScS(Γ
∗
SS)

−1|||∞ is.

If the slightly weaker condition (3.18) is violated and the entries in the drift matrix
fulfill a minimal signal strength condition, we cannot recover the correct support
asymptotically.

Proposition 3.5.6. Consider the setting of Corollary 3.3.3. Let M∗ ∈ Stabp with
S = S(M∗) such that

min
1≤j<k≤p
(j,k)∈S

|M∗
jk| >

2cΓ∗

2− α
λ

holds and that the weak irrepresentability condition (3.18) is violated. For a fixed
positive definite matrix C, the equilibrium distribution for M∗ is given by N (0,Σ∗).
Let X1, . . . , Xp ∈ Rp be an i.i.d sample of centered observations and let

Σ̂n =
1

n

n∑
i=1

XiX
⊤
i

be the sample covariance. We denote the estimate obtained by the direct Lyapunov
lasso (3.4) using Σ̂n by M̂n. Then it holds that

P(S(M̂n) = S(M∗)) −→ 0 for n→∞.

Proof. The proof is based on the proof of Theorem 3.3.1. Since the optimization
problem (3.4) is convex, the KKT - conditions

Γ̂nvec(M̂n)− ĝn + λẑn = 0, (3.19)

with

ẑn(i,j) =

{
sign(vec(M̂n)(i,j)) if vec(M̂n)(i,j) ̸= 0,

∈ [−1, 1] if vec(M̂n)(i,j) = 0,

are necessary and sufficient for optimality of M̂n. Assume that S(M̂n) = S(M∗).
Then, M̂n is the unique solution of the support restricted problem (3.12) and following
the calculations in the proof of Theorem 3.3.1, the subgradient ẑnSc is given by

ẑnSc =
1

λ

[
−Γ∗

ScS(Γ
∗
SS)

−1((∆n
Γ)SSvec(M̂

n)S + (∆n
g )S) + (∆n

Γ)ScSvec(M̂
n)S

+(∆n
g )Sc + λΓ∗

ScS(Γ
∗
SS)

−1sign(vec(M̂n)S)
]
. (3.20)
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We need ∥z̃nSc∥∞ ≤ 1 for M̂n to satisfy the KKT-condtions (3.19). Using Lemma 3.4.6

together with Corollary 3.4.5, we obtain that ∆n
g

P→ 0 and that ∆n
Γ

P→ 0. Moreover,

the inequality (3.13) holds for n large enough for M̂n resulting in

∥vec(M̂n)S − vec(M∗)S∥∞ ≤
2cΓ∗

2− α
λ.

Then, we obtain for the weak irrepresentability condition that

Γ∗
ScS(Γ

∗
SS)

−1sign(vec(M̂n)S) = Γ∗
ScS(Γ

∗
SS)

−1sign(vec(M∗)S).

Therefore, we obtain

∥z̃nSc∥∞
P→ ∥Γ∗

ScS(Γ
∗
SS)

−1sign(vec(M∗))S)∥∞ > 1.

Asymptotically, the subgradient condition is violated for M̂n with S(M̂n) = S(M∗)
and probability 1. Hence,

P(S(M̂n) = S(M∗)) −→ 0

as the sample size n→∞. □

It is also easily possible to construct drift matrices fulfilling the weak irrepresentability
condition (3.18).

Remark 3.5.7. The same construction as in Theorem 3.5.2 is applicable to the weak
irrepresentability condition (3.18).

3.5.3 Simulation Studies: Fulfillment of the Irrepresentability Condition
and the Weak Irrepresentability Condition

In this section, we want to answer two urgent questions. We have shown that for
every DAG there exist non-trivial stable drift matrices such that the irrepresentability
condition (3.15) holds. The same is possible for the weak irrepresentability condition
(3.18). These signals were constructed to be in a neighborhood of diagonal matrices
whose diagonal entries are ordered in accordance with the topological ordering of
the DAG. As the size of the graphs increases, this diagonal ordering becomes more
restrictive. Moreover, there might be signals that have a different diagonal ordering,
but still fulfill the irrepresentability condition. Therefore, the first question is how
often the conditions are fulfilled when selecting random drift matrices according to a
predetermined distribution.

Given a graph G = (V,E), we generate signals M∗ ∈ Stabp(E) by drawing from the
uniform distribution on the subset of matrices in Stabp(E) that have all entries in
[−1, 1]. The sampling is carried out by rejection sampling, with rejection of matrices
that are not stable.

We consider connected graphs with p = 2, 3, 4 nodes and at most p(p+ 1)/2 edges.
This includes all DAGs but also many cyclic graphs. Furthermore, we only consider
one labeling of vertices for every graph. For every graph, we check for one million
simulated signalsM∗ if ρ(M∗) < 1 and store the signals that meet the irrepresentability
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Figure 3.5: Frequency of the irrepresentability condition (3.15) being met for one million
simulated stable matrices M∗ for DAGs up to 4 nodes. The number of edges is
given by the coloring.

1 2

34

Figure 3.6: The graph on three nodes with highest frequency of simulated signals satisfying
irrepresentability.

condition (3.15). The frequency of signals that meet the irrepresentability condition
is shown in Figure 3.8.

The frequency with which the irrepresentability condition is fulfilled decreases with
increasing number of edges. The decrease is not monotonic in the number of edges,
since the restrictiveness is tied to whether an edge adds a new condition on the
quotient of the diagonal elements as presented in Theorem 3.5.2. An investigation
of the drift matrices in Figure 3.5 shows that those who fulfill the irrepresentability
condition (3.15) all have a diagonal ordering according to our theoretical result.

Example 3.5.8. Consider the graph shown in Figure 3.6. The drift matrices supported
on this graph have the highest frequency of irrepresentability among the graphs with
three edges in Figure 3.5. Since there is no edge between the nodes {1, 2, 3}, the only
conditions on the diagonal are d1/d4 < 1, d2/d4 < 1 and d3/d4 < 1. Translated, this
means that d4 has to be bigger than d1, d2, d3.

Following Theorem 3.3.1, the conditions on the diagonal elements for the drift matrices
supported in Figure 3.7 are d1/d2 < 1, d2/d3 < 1 and d3/d4 < 1. In particular, these
conditions also contain the requirement that d4 has to be bigger than d1, d2, d3. In
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1 2 3 4

Figure 3.7: The path from 1 to 4.

addition, they contain the requirement that d3 has to be bigger than d1, d2 and that d2
has to be bigger than d1.

Another important observation is that the condition is extremely restrictive when
selecting stable drift matrices according to a uniform distribution. In Figure 3.5 we
observe that already if a graph on 4 nodes has 3 or more edges, the irrepresentability
condition is only fulfilled in less than 1 % of the cases. There even exist some graphs
for which the irrepresentability condition is never met. These graphs are displayed
in Table 3.1. We tried to find stable drift matrices by applying the above mentioned
selection procedure ten million times to these critical graphs. For only two of the
graphs we were able to select drift matrices fulfilling the irrepresentability condition.
Theorem 3.5.2 guarantees that there must exist stable drift matrices supported over
the two remaining graphs. Using Theorem 3.5.2, we put one choice for each of the
two graphs in red in Table 3.1.
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Table 3.1: Left: The four graphs where none of the one million randomly selected drift
matrices M fulfilled the irrepresentability condition in Figure 3.5. Right: Drawing
another ten million drift matrices, we obtain for the second and third graph drift
matrices that fulfill the irrepresentability condition (black). For the first and
fourth graph, we use Theorem 3.5.2 to construct drift matrices that fulfill the
irrepresentability condition (red).

1 2

34


−0.5 0 0 0.05
0.05 −1 0.05 0.05
0.05 0 −0.75 0
0 0 0 −0.25



1 2

34


−0.584860503 0.03949857 0.0000000 −0.05605342
0.000000000 −0.35729470 0.0000000 −0.00303305
0.005031837 −0.08209815 −0.7782385 0.00000000
0.000000000 0.00000000 0.0000000 −0.22854795



1 2

34


−0.7388917 0.0000000 −0.1277403 0.01491351
−0.1184546 −0.9615896 0.0000000 −0.09631827
0.0000000 0.0000000 −0.4652617 0.04858871
0.0000000 0.0000000 0.0000000 −0.23807701



1 2

34


−1 0.05 0.05 0.05
0 −0.75 0.05 0.05
0 0 −0.5 0.05
0 0 0 −0.25



We also carried out the simulation study for simple cyclic graphs. None of the
cyclic graphs on 4 nodes fulfilled the irrepresentability condition for ten million
randomly selected drift matrices for each graph structure. This is not a proof that
the irrepresentability condition (3.15) is never met for a cyclic graph, but at least
a strong computational evidence. In a next step we carry out the same sampling
procedure for graphs on 4 nodes for the weak irrepresentability condition (3.18) than
we did previously for the irrepresentability condition (3.15). The results are displayed
in Figure 3.8.

Table 3.2: Left: All simple cyclic graphs with 4 nodes, up to relabelling of the nodes. Edges
on cycles are highlighted in red. Right: Specific choice of matrices M matching
the graph on the left and fulfilling the weak irrepresentability condition (3.18), all
entries are rounded to 10 digits.

1 2

34


−0.0444620792 −0.5733500496 0.0000000000 0.0000000000
0.0000000000 −0.0153532191 0.0054622865 0.0000000000
0.8317033453 0.0000000000 −0.8824298000 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.3405775614



1 2

34


−0.9780979650 0.1042322782 0.0000000000 0.3752107187
0.0000000000 −0.7998522464 −0.4260628200 0.0000000000
0.2079165080 0.0000000000 −0.6517819995 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.8112314143
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1 2

34


−0.6792729949 −0.6022921619 0.0000000000 0.0000000000
0.0000000000 −0.1733464822 0.5762203289 0.0000000000
0.0383909321 0.0000000000 −0.1785332798 0.0000000000
0.2089620568 0.0000000000 0.0000000000 −0.6556593408



1 2

34


−0.5008390141 0.0000000000 −0.3301411900 0.0000000000
0.0000000000 −0.0754047022 0.0000000000 −0.2224099669
0.0000000000 0.9894780936 −0.8953534714 0.0000000000
−0.4568265276 0.0000000000 0.0000000000 −0.6545859827



1 2

34


−0.9852473154 0.0237436080 0.0000000000 −0.1801203806
0.0000000000 −0.9146776730 −0.6301784553 −0.3625553502
0.0314035588 0.0000000000 −0.7371845325 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.2936787312



1 2

34


−0.6168078599 −0.4643970933 0.0000000000 0.0000000000
0.0000000000 −0.8265482867 0.0118716909 0.4726413568
0.3998511671 0.0000000000 −0.8792877044 0.0000000000
−0.5496377517 0.0000000000 0.0000000000 −0.7865214688



1 2

34


−0.2066421132 −0.0034684981 0.1383411973 0.0000000000
0.0000000000 −0.9617960961 0.0000000000 −0.7641737331
0.0000000000 −0.3169060163 −0.7561623598 0.0000000000
−0.7012514030 0.0000000000 0.0000000000 −0.2419070452



1 2

34


−0.8234110032 −0.6069790549 0.0000000000 0.0000000000
0.0000000000 −0.4768311884 0.0000000000 −0.5430481988
−0.1151224086 0.5541216009 −0.8947804412 0.0000000000
−0.1818817416 0.0000000000 0.0000000000 −0.6244826200



1 2

34


−0.7566250684 0.1517044385 0.0000000000 0.0068894741
0.0000000000 −0.9917302341 0.5077337530 0.3153799707
0.0895817326 0.0000000000 −0.7472212519 −0.1730670566
0.0000000000 0.0000000000 0.0000000000 −0.3600410065



1 2

34


−0.8680259003 0.4557597358 −0.0925138230 0.0000000000
0.0000000000 −0.9139470784 −0.1607573517 0.3138186112
0.0000000000 0.0000000000 −0.9212171654 −0.9521876550
−0.5101859323 0.0000000000 0.0000000000 −0.2475099666



1 2

34


−0.6688544271 0.0000000000 −0.7215559445 0.0000000000
−0.4272868899 −0.9967063963 0.0374428187 −0.8531300114
0.0000000000 0.0000000000 −0.6779836947 −0.5781906121
−0.6749138949 0.0000000000 0.0000000000 −0.5980373188



Comparing the results in Figure 3.8 with those in Figure 3.5, we observe that the weak
irrepresentability condition is fulfilled much more often than the irrepresentability
condition. The reason is that the sign vector in (3.18) enables fortunate cancellation.
Moreover, this allows us to find a suitable drift matrix for every simple cyclic graph
on 4 nodes. In Table 3.2, we list all cyclic graphs on 4 nodes together with examples
of drift matrices that satisfy the irrepresentability condition. The selection of graphs
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Figure 3.8: Frequency of the weak irrepresentability condition (3.18) being met for one
million simulated stable matrices M∗ for DAGs up to 4 nodes. The number of
edges is given by the coloring.

1 2

34

Figure 3.9: 3-cycle in a four node setting.

includes all graphs that contain at least one directed cycle and are simple (i.e., do not
contain a two-cycle).

Calculations are carried out with the statistical software R. A natural suspicion is that
these very few matrices were only selected due to numerical imprecision. In addition,
one might wonder if the 10 digits are really necessary. Example 3.5.9 provides more
insight using a representative from Table 3.2.

Example 3.5.9. For the graph in Figure 3.9 (or first row of Table 3.2) the matrix

M =


−0.0444620792 −0.5733500496 0.0000000000 0.0000000000
0.0000000000 −0.0153532191 0.0054622865 0.0000000000
0.8317033453 0.0000000000 −0.8824298000 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.3405775614


fulfills the weak irrepresentability condition. The margins to satisfy the weak irrepre-
sentability condition are thin. Rounding the entries of M potentially yields matrices
M that do not satisfy the weak irrepresentability condition. The matrix M displayed
in this example results in a value for the left side of (3.18) of 0.9960339 while the
2 - digit version yields a value of 1.011801, i.e. the longer version fulfills the weak

59



Chapter 3 Direct Lyapunov Lasso

irrepresentability condition while the shorter version does not. This is the reason for
the long displays in Table 3.2. However, for the matrix M in this Example, we are
able to rationalize the entries with a tolerance of 0.0001 to obtain

MR =


−2/45 −43/75 0 0

0 −1/65 1/183 0
84/101 0 −15/17 0

0 0 0 −31/91


fulfilling the weak irrepresentability condition with all calculations being carried out
rationally in Mathematica [Wolfram Research, Inc., 2022]. This allays the concern
that these matrices only exist due to numerical imprecision in the calculations.

Summing up the situation for simple cyclic graphs, extensive computation was neces-
sary to present an example for every simple cyclic graph up to four nodes. We were
unable to discern the structure that would suggest how to construct such examples in
general.

The last class of graphs that misses are the non-simple graphs. We omit discussing
them in detail, but the work by Dettling et al. [2023] suggests that there exist drift
matrices M∗ supported over non-simple graphs such that Γ∗

SS is invertible. This leaves
the possibility for drift matrices fulfilling the irrepresentability condition. We observed
that the drift matrices that satisfy the weak irrepresentability condition fulfill the
diagonal ordering of Theorem 3.3.1 for the “DAG part” of the graph over which the
drift matrix is supported.

3.5.4 Simulation Studies: Impact of the Weak Irrepresentability Condition

Corollary 3.3.3 ensures that if the irrepresentability condition (3.15) is fulfilled and
some assumptions about minimal signal strength and sample size hold, we are able to
recover the support of a drift matrix correctly when applying the direct Lyapunov
lasso (3.4). We were not able to prove this for the weak irrepresentability condition
(3.18), only its necessity in Proposition 3.5.6 in case a minimal signal requirement
is fulfilled. Nevertheless, the condition is quite close to the sufficient condition and
is fulfilled much more often, as we show in Section 3.5.3. Therefore, we want to
investigate the impact of the fulfillment of the weak irrepresentability condition on
support recovery. The positive computational results in this section also translate to
the irrepresentability condition as every drift matrix fulfilling the irrepresentability
condition also fulfills the weak irrepresentability condition.

For every DAG on 4 nodes, we select 10 drift matrices fulfilling the weak irrepre-
sentability condition. The selection procedure is the same that we use to obtain
Figure 3.8 (uniform distribution of stable matrices with entries between -1 and 1).
Furthermore, we select 100 stable drift matrices supported over the DAGs that do no
necessarily fulfill the irrepresentability condition. Based on the drift matrices M∗ and
the Lyapunov equation (1.2) with C = 2Ip, we calculate the equilibrium covariance
matrices Σ∗. We then sampled the data with n = 100 from the normal distributions
N (0,Σ∗). Then, we apply the direct Lyapunov lasso (3.4) along a regularization path

λ1 = λmax, . . . , λ100 =
λmax

104
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where λmax is chosen on an initial grid such that M̂ is diagonal. For the estimates
M̂1, . . . , M̂100 obtained along the regularization path, we calculate some basic metrics
regarding support recovery of the data generating M∗.

Definition 3.5.10. Let M̂ ∈ Rp×p be an estimate and let M∗ be the estimation target.
Then, we define

tp = |{M̂ij : M̂ij ̸= 0 andM∗
ij ̸= 0}|,

fp = |{M̂ij : M̂ij ̸= 0 andM∗
ij = 0}|,

tn = |{M̂ij : M̂ij = 0 andM∗
ij = 0}|,

fn = |{M̂ij : M̂ij = 0 andM∗
ij ̸= 0}|.

While these metrics already provide some insights, there exist more refined metrics to
evaluate the performance of a structure learning algorithm.

Definition 3.5.11. Let M̂ ∈ Rp×p be an estimate and let M∗ be the estimation target
and let
tp, fp, tn, fn be defined as in Definition 3.5.10. Then, we define

tpr (true positive rate) =
tp

tp+ fn
,

fpr (false positive rate) =
fp

fp+ tn
,

acc (accuracy) =
tp+ tn

tp+ tn+ fp+ fn
,

f1-score =
2tp

2tp+ fp+ fn
,

pr (precision) =
tp

tp+ fp
.

Calculating tpr and fpr for all regularization parameters, we define the roc curve as
plotting tpr vs. fpr with fpr ranging from 0 to 1 using interpolation and extrapolation
if necessary. The auc roc or just auc is then defined as the area under the roc curve.
Calculating pr and tpr for all regularization parameters, we define the pr curve as
plotting pr vs. tpr with tpr ranging from 0 to 1 using interpolation and extrapolation
if necessary. The aupr curve is then defined as the area under the precision curve.

For the estimates M̂1, . . . , M̂100 obtained for each DAG and for each initial drift
matrix M∗, we calculate the metrics mean tpr, mean fpr and max acc, max f1-
score. All metrics are then averaged over the 10 drift matrices that satisfy the weak
irrepresentability condition per DAG or over the 100 randomly selected drift matrices,
respectively. The results are displayed in Figure 3.10. The empty triangles correspond
to the average over the randomly selected drift matrices while the full triangles
correspond to the average over the drift matrices fulfilling the weak irrepresentability
condition.

Generally, there are many subtleties to be discovered in the plots. For conciseness, we
limit our discussion to the key observation that across all metrics, the results for the
signals that fulfill the weak irrepresentability condition are almost perfect and much
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Figure 3.10: Four metrics measuring the quality of the estimate for DAGs with up to 4
nodes. The number of edges is given by the coloring. Empty: irrepresentability
condition in general not fulfilled, Full: weak irrepresentability condition fulfilled.

better than for randomly selected ones. Of course, for graphs with fewer edges, more
randomly selected drift matrices already fulfill the weak irrepresentability condition,
which explains why the difference is not severe.

Lastly, we present the results for the area under the roc curve (auc) using the exact
same simulation setup as for Figure 3.10. The auc is particularly insightful as the roc
curve is obtained by plotting the trade-off of tpr vs. fpr. An auc value of 0.5 means
that the method applied performs badly (random guessing), while a value of 1 is
optimal. For drift matrices fulfilling the weak irrepresentability condition, we observe
that the auc is above 0.9 for almost all graphs that fulfill the weak irrepresentability
condition while the performance is very poor for randomly selected ones.

We do not include further simulations for cyclic graphs in the above setting, which
is mainly because we already struggle to find 10 drift matrices supported over cyclic
graphs fulfilling the weak irrepresentability condition. In particular, we struggle to
find 10 “really different” drift matrices that do not only differ by a small margin in
the individual entries.
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Figure 3.11: The auc values for DAGs with up to 4 nodes. The number of edges is given by
the coloring. Empty: irrepresentability condition in general not fulfilled, Full:
weak irrepresentability condition fulfilled.

3.6 Simulation Studies

In this section, we present simulation studies that provide insight into the performance
of the direct Lyapunov lasso in seemingly unfavorable settings. First, most drift
matrices do not satisfy the irrepresentability condition; compare Section 3.5.3. Second,
while our assumption that C is fixed up to a scalar multiple is made similarly in the
related case where actual time series data is considered [Gäıffas and Matulewicz, 2019],
it is an assumption that may be overly simple for many applications. Nevertheless, our
simulations suggest robustness of the direct Lyapunov lasso to the irrepresentability
condition not being fulfilled and to mild misspecification of the volatility matrix C,
where by robustness we mean that a part of signal is being learned correctly.

For the simulations in this section, we use a similar setting as in Varando and
Hansen [2020]. Each stable matrix M was generated with Mij = ωijϵij for i ̸= j
and Mii = −

∑
j ̸=i |Mij | − |ϵii| where ωij ∼ Bernoulli(d) and ϵij ∼ N(0, 1). Unlike in

Varando and Hansen [2020], we consider four different choices for C. The label in
brackets corresponds to the one used in Figure 3.12.

1) We choose C = 2Ip (C ID).

2) We choose C diagonal with Cii ∼ Unif[0.5, 4] (C Random Diag).

3) We choose C diagonal with Cii ∼ Unif[2, 4] (C Random Min Diag).

4) We choose C symmetric but non-diagonal. Let ω̃ij ∼ Bernoulli(2/p) and ϵ̃ij ∼
N(0, 1) be independent random variables, i, j = 1, . . . , p. Then the off-diagonal
entries of C are set to Cij = ω̃ij ϵ̃ij + ω̃jiϵ̃ji and the diagonal entries to Cii =∑

j ̸=i |Cij |+ |ϵ̃ii|+ 0.5 (C Random Full).

For each k ∈ {1, 2, 3, 4} and p = {10, 15, 20, 25, 30, 40, 50}, the edge probability is set
as d = k/p. For each choice of C, we generate 100 pairs of signals (M,C). We generate
n = 1000 observations from a multivariate Gaussian distribution with covariance
matrix solving the Lyapunov equation for (M,C). Note that p2 > n for p = {40, 50}
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Legend C_ID C_Random_Diag C_Random_Min_Diag C_Random_Full
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Figure 3.12: The maximum accuracy (top left), maximum F1-score (top right), area under
the ROC curve (bottom left) and area under the precision curve (bottom right)
in support recovery with the direct Lyapunov lasso using parameter C = 2Ip.
The data has been generated using the choices 1) C ID, 2) C Random Diag, 3)
C Random Min Diag, and 4) C Random Full. The error bars are the estimated
standard errors of the average of a metric for a specific problem size over the
400 randomly generated drift matrices.

which corresponds to the high-dimensional setting. Then we apply the direct Lyapunov
lasso with C = 2Ip for model selection. The results are calculated along the λ-grid:

0 <
λmax

104
= λ1 < · · · < λ100 = λmax, (3.21)

with λmax being the minimal λ-value such that M is diagonal. We compute the
maximum accuracy, the maximum F1-score, the area under the ROC curve and the
area under the precision curve; more details on the metrics are given in Definition 3.5.11.
The metrics are averaged over the 4 different sparsity levels k and the 100 randomly
selected drift matrices M . The results are shown in Figure 3.12.

Choice 1) for C is used when applying direct Lyapunov lasso for model selection. Thus,
it is natural to expect the best results for this choice. Choices 2) and 3) allow for
variability on the diagonal. The second choice allows for larger differences (Unif[0.5, 4])
in the size of the diagonal entries, while the third choice is more conservative (Unif[2, 4]).
Choices 1) and 3) perform best in our simulations. We observe that there are few
differences in all metrics among the choices between choice 1) and choice 3), indicating
that the direct Lyapunov lasso with C = 2Ip possesses a certain robustness to
the exact diagonal matrix C of the data generating model. This is true for all
p ∈ {10, 15, 20, 25, 30, 40, 50}. For choice 2), we observe that the results in all metrics
except maximum accuracy fall with increasing p. For p = 40 and especially for p = 50,
the results for all metrics are similar to choice 4). Choice 4) allows for data generating
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models for which C is no longer diagonal. For this choice, the worst results are to be
expected as the matrix C used for data generation is much different from the one used
for estimation. Another interesting point revealed by the simulations is that although
the irrepresentability condition is not satisfied in almost any of the signals, it is still
possible to get estimates that recover much of the support of the drift matrix.

3.7 Real World Data

Previous simulations in Section 3.6 assess the performance of the direct Lyapunov
lasso on synthetic data and along a path of regularization parameters λ. However,
when applying the method to a real-world dataset, the objective is to provide a single
estimate of a network. This can be engineered by applying the Bayesian information
criterion (BIC) or its extended version (EBIC). In this section, we revisit both of them
in the context of Lyapunov models and showcase the simplicity and strength of the
approach by applying the method to the famous Sachs dataset by Sachs et al. [2005].
This dataset has been a testing field for graphical models for many years and was, in
particular, analyzed by Fitch [2019] and Varando and Hansen [2020] in the context of
Lyapunov models.

3.7.1 Sachs Dataset

The famous dataset collected and first analyzed by Sachs et al. [2005] has become
a testing field for graphical models and model selection algorithms. Some recent
examples are the review paper of causal discovery methods based on Graphical Models
by Glymour et al. [2019], the application of classical structure equation models allowing
for cycles by Amendola et al. [2020] or the application of Lyapunov models and a
specific model selection technique by Varando and Hansen [2020]. The dataset consists
of flow cytometry measurements of 11 phosphorylated proteins and phospholipids
in human T-cells captured under different experimental conditions, resulting in 14
independent datasets of varying sizes (n = 707 to n = 927). When flow cytometry
is applied, the cells are destroyed during the measurement process, and hence, the
measurements are collected at one point in time. Every sample consists of the
quantitative and simultaneous measurements of the 11 phosphorylated proteins and
phospholipids of single cells. The way in which the dataset was collected, and previous
works in the context of structural equation models make it an interesting choice
for Lyapunov models (Definition 1.3.2) despite the strong and ambitious parametric
assumption.

As the main focus in this work lies on the mathematical properties of Lyapunov
models and not so much on the application, we refer to the datasets by numbering
them. Table 3.3 provides the assignment of actual names of the datasets (different
experimental conditions) in https://zenodo.org/records/7681811 to the numbers
used in this work.
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Table 3.3: Listing the datasets obtained under different experimental conditions (perturba-
tions) presented by Sachs et al. [2005]. The table displays the ordering used in
this work.

Perturbation/Filename Number of the Dataset

b2camp.csv Dataset 1

cd3cd28 aktinhib.csv Dataset 2

cd3cd28 g0076.csv Dataset 3

cd3cd28 icam2.csv Dataset 4

cd3cd28 ly.csv Dataset 5

cd3cd28 psitect.csv Dataset 6

cd3cd28 u0126.csv Dataset 7

cd3cd28.csv Dataset 8

cd3cd28icam2 aktinhib.csv Dataset 9

cd3cd28icam2 g0076.csv Dataset 10

cd3cd28icam2 ly.csv Dataset 11

cd3cd28icam2 psitect.csv Dataset 12

cd3cd28icam2 u0126.csv Dataset 13

pma.csv Dataset 14

The protein-signaling network displayed in Figure 3.13 shows an among scientist
accepted network for molecule interactions for the datasets by Sachs et al. [2005].
The authors also mention that there is some ambiguity regarding some connections.
Nevertheless, we refer to this network as “ground truth”.

PIP3

PIP2

Plcg
Mek

Raf

Jnk

P38

PKC

PKA
Akt

Erk

Figure 3.13: Among scientists accepted signaling molecule interactions for the dataset by
Sachs et al. [2005].
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3.7.2 Direct Lyapunov Lasso with the (Extended) Bayesian Information
Criterion

The first few steps are identical to Section 3.6. Based on a data matrix X ∈ Rn×p,
we calculate the sample covariance matrix Σ̂ on the standardized data. Setting
C = 2Ip, we apply the direct Lyapunov lasso along a regularization path. We set the
regularization path to be the logarithmic sequence

λ1 = λmax, . . . , λ100 =
λmax

104
.

where λmax is chosen such that the estimated drift matrix is diagonal. Using the direct
Lyapunov lasso, we compute the estimates M̂1, . . . , M̂100 along this grid. Extracting
the non-zero structure, each estimate M̂i defines a directed graph Gi and thus a model
MGi,2Ip . To decide which model to pick, we use the BIC/extended BIC (Bayesian
Information Criterion). First, we recall the idea of the classical BIC. Initially, the
BIC criterion for model selection was proposed by Schwarz [1978]. The purpose of
this criterion is to select a unique model out of many models of different dimensions.

The idea behind the BIC criterion is to maximize the posterior probability of a model
given the data x1, . . . , xn which we denote by P(MG,C |x1, . . . , xn). Direct application
of Bayes Theorem yields that

P(MG,C |x1, . . . , xn) ∝ P(x1, . . . , xn|MG,C)P(MG,C).

If we assume that all models are equally likely (P(MG,C) = const.), maximizing
P(MG,C |x1, . . . , xn) is the same as maximizing the likelihood L integrated over the
parameter space

P(x1, . . . , xn|MG,C) =

∫
StabCp (E)

L(M |x1, . . . , xn)gG,C(M)dM

where we denote by StabCp (E) the set of parameters and by gG,C(M) the density
function of the parameters associated with modelMG,C . Taking the logarithm and
applying a second-order Taylor series expansion, we arrive at

log(P(x1, . . . , xn|MG,C)) = logL(M̂ |x1, . . . , xn)−
|E|+ p

2
log n,

where L(M̂ |x1, . . . , xn) is the maximized likelihood function. In the literature, the
BIC criterion is ultimately defined as the minimizing −2 log(P(x1, . . . , xn|MG,C)),
that is

BIC(MG,C) = (|E|+ p) log n− 2 log L̂, (3.22)

where L̂ is the abbreviation for L(M̂ |x1, . . . , xn). For more details on the derivation,
we refer to [Ghosh et al., 2007, Section 6.1.1].

To apply the BIC criterion to the path of Lasso solutions M̂1, . . . , M̂100 defining the
models MG1,2Ip , . . . ,MG100,2Ip , we first minimize two times the negative Gaussian
log-likelihood

L(M) = n(− log det((Σ(M, 2Ip))
−1) + tr(Σ̂(Σ(M, 2Ip))

−1))
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for these models. Then, we plug L̂ into (3.22) and select the model that has the
minimal BIC score.

The BIC criterion has a tendency to produce estimates with too many edges, i.e., it
produces false positives. This can be seen in our experiments with the Sachs data
(Figure 3.14). Therefore, Chen and Chen [2008] propose an extended BIC criterion for
model selection that takes into account both the number of unknown parameters and
the complexity of the model space and is particularly useful for large model spaces
with varying dimensions. We explain the issue with the BIC for Lyapunov models and
provide a reasoning for the formulation of the extended BIC for Lyapunov models; a
more general view on the issue is given in [Chen and Chen, 2008, Section 2].

The main problem of the BIC in its original formulation is that it is not equally
likely to select models of different dimensions. There exist exactly p2 − p models

MG,C with |E| = 1 while there already exist
(
p2−p
2

)
= (p2−p)!

2!(p2−p−2)!
= (p2−p)(p2−p−1)

2

models MG,C with |E| = 2. This strong increase in the number of models of the
same dimensionality continues till |E| = ⌊(p2 − p)/2⌋. To only consider identifiable
models, we restrict ourselves to models with |E| ≤ ⌊(p2 − p)/2⌋. In particular, when
the number of variables is high compared to the sample size, we have to aim for sparse
models. In these cases, assigning much higher probabilities to more complex models is
not desirable. We try to mitigate this problem by putting less weight on more complex
models and more on sparse ones.

Note the way we count our models is such the diagonal elements in the drift matrix
are always assumed to be present. This results for a modelMG,C in the probability

P(MG,C) =
1(
p
2

) 1(p2−p
|E|
) ∝ 1(p2−p

|E|
) .

If the model dimension is not too big, we can approximate the binomial coefficient by(
p2 − p

|E|

)
≈ p2|E|.

Using this approximation, we obtain

−2 log(P(MG,C)) ≈ 2 log p2|E| = 4|E| log p.

Introducing an additional tuning parameter γ ∈ (0, 1) to regulate between the classical
BIC (γ = 0) and the full penalization of the extended BIC (γ = 1), we obtain

EBICγ(MG,C) = (|E|+ p) log n+ 4γ|E| log p− 2 log L̂. (3.23)

Both for the BIC and EBIC, we provide additional simulations with synthetic data in
Appendix B.1 that indicate consistency for the undirected structure for these model
selection methods.

3.7.3 Standardization of the Sachs Dataset

For one simulation, we consider one of the 14 datasets given by the matrix X ∈ Rn×11

where one row corresponds to one observation of the flow cytometry measurements and
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the columns are the 11 phosphorylated proteins and phospholipids. We standardize
every column of X by calculating

Xstd
·,i =

X·,i − µ

σ

where µ is the mean and σ the standard deviation of X·,i. This standardization has
a practical motivation. The expression levels of the individual proteins differ in size.
The observations for Mek are around 1, while those for PKA are in the thousands.
Without standardization, we observe that some relevant connections present in the
among scientist accepted network (“ground truth” by Sachs et al. [2005]) cannot be
estimated. The reason is that these small entries are shrunk to zero by the ℓ1-penalty.
The standardization allows to recover more connections of the ground truth network.
A justification could lie in interpreting the standardization as a weighted penalty with
the weights being dependent on the estimated covariances.

PIP3

PIP2

Plcg
Mek

Raf

Jnk

P38

PKC

PKA
Akt

Erk

Figure 3.14: Estimated Sachs Network using the direct Lyapunov lasso and the BIC criterion
(Dataset 7)

3.7.4 Estimation Results for the Sachs Dataset with the Direct Lyapunov
Lasso and (Extended) BIC

In Figure 3.14 we present the estimate of the protein signalling network using dataset 7
in Table 3.3 and the BIC criterion for scoring. The datasets in Sachs et al. [2005] also
contain a graph that shows the conventionally accepted signaling molecule interactions
to which we refer as ground truth. A visualization of the ground truth is given in
Figure 3.13. There exists doubt regarding some connections in this network; see, for
instance, [Ramsey and Andrews, 2018, Section 2]. Therefore, there is some ambiguity
in all comparisons between our estimates and the ground truth. Note that we do not
draw self-loops in this section. The graph in Figure 3.14 shows all the edges estimated
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by the combination of the direct Lyapunov lasso and BIC. The red edges are the edges
that are correctly recovered by the estimate. The orange edges are the edges where
the reversed edges are present in the ground truth. The black edges are additional
edges that are not present in the ground truth. The ground truth has 20 edges, while
our estimate has 37 edges. This drastic difference is not immediately visible when
comparing the networks. The reason is that our estimate also contains a few 2-cycles
that are only present between PIP3 and PKA in the ground truth. Only counting the
edges of the skeleton, i.e. not counting the 2-cycles twice, there exist 27 connections in
the estimated network. The authors Sachs et al. [2005] categorize the connections in
the network by how certain they are. Subsequently, they provide detailed explanations
of well-established mechanisms that we use to evaluate our estimate. Among the
correctly estimated connections are the direct enzyme-substrate relationships PKA
→ Raf, Raf → Mek, Mek → Erk and PIP3 → Pcl−γ. Only the connection Pcl−γ
→ PIP2 is missing in Figure 3.14, but the pathway Pcl−γ → PIP3 → PIP2 suggests
the presence of this interaction. Another interesting relationship is the influence of
PKC and PKA on P38 and Jnk. We observe that the influence of PKC and PKA
on P38 is correctly estimated, while the influence of PKC on Jnk is reversed in the
estimated network. Of course, there exist also parts of the network that are not
correctly captured by our estimate. In particular, in our estimate, PKA has outgoing
edges to PIP2, Akt, P38 and Raf while only the edges PKA→ Akt, PKA → P38 and
PKA → Raf are also present in the ground truth and the edges PKA → Erk, PKA
→ Mek and PKA → PIP3 are not present in our estimate, but in the ground truth.
Overall, Lasso together with BIC for scoring provides a reasonable estimate that
recovers many important connections in the network, but tends to produce estimates
with too many edges.

We introduce the EBIC criterion in Section 3.7.2 as a possibility to deal with the
tendency of the BIC criterion to include too many variables into the estimate. With
this new criterion, we revisit dataset 7 in Table 3.3. The steps are exactly the same as
for the classical BIC, but we use the extended BIC (3.23) in the final step for scoring.
The model that minimizes EBICγ with γ = 1 is selected. The estimated graph is
displayed in Figure 3.15. The estimate has 17 edges and 11 connections when counting
the 2-cycles only once. Among the correctly estimated connections are the direct
enzyme-substrate relationships Raf → Mek and PIP3 → Pcl−γ. The connections
Pcl−γ → PIP2 and PKA→ Raf are missing in Figure 3.15, but the Pcl−γ → PIP3→
PIP2 and Pcl−γ → PIP3 → PIP2 pathways suggest the presence of these interactions.
Only the connection Mek → Erk is not present at all. In general, direct Lyapunov
lasso with extended BIC is an intuitive and easy-to-implement method that produces
a sparse estimate with most edges (or their reverse) present in the ground truth, and
even some additional edges such as Akt → Raf can be interpreted as connecting pieces
of meaningful pathways.

Based on this experiment, we observe that both BIC and the extended BIC have their
advantages and disadvantages. While the BIC leads to an estimate that contains more
true connections among its edges, it also produces many false positives. The estimate
using the extended BIC has fewer edges and also misses a couple of well-established
connections, but produces fewer false positives. Using the tuning parameter γ ∈ (0, 1)
one can try to find the “sweet spot”. We present an example for γ = 1/2 in Figure 3.16.
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Figure 3.15: Estimated Sachs Network using the direct Lyapunov lasso and the extended
BIC criterion with γ = 1 for scoring (Dataset 7)
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Erk

Figure 3.16: Estimated Sachs Network using the direct Lyapunov lasso and the extended
BIC criterion with γ = 1/2 for scoring (Dataset 7)

This estimate contains most of the important edges of Figure 3.14, but does not
produce as many false positives.
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3.8 Summary of the Chapter

We investigated model selection properties of the direct Lyapunov lasso when applied
to data distributed according to the graphical continuous Lyapunov model. Although
the optimization problem that direct Lyapunov lasso solves is similar to the lasso
penalized linear regression objective, there are several surprising differences. The
role of the matrix A(Σ), which is analogous to the design matrix in the regression
setting, is subtle under the Lyapunov model. We established a reasonable bound
on sample complexity by careful investigation of the Hessian matrix whose elements
are sums of p products of covariances. Furthermore, while the irrepresentability
condition can be assumed in the linear regression setting, this is not the case for the
model considered here. Indeed, our detailed analysis of the irrepresentability condition
illustrates the reasons for its restrictiveness. We formulated conditions under which the
irrepresentability condition is guaranteed to hold for DAGs based on the topological
ordering of the nodes and provided insight into why a similar result is difficult to
obtain in the presence of cyclic structures. Simulations further provided evidence to
the extent to which one can hope that the irrepresentability condition is satisfied for a
randomly drawn signals. In fact, we are not able to present a drift matrix supported
over a cyclic graph that fulfills the irrepresentability condition. We show that a slightly
weaker notion of the irrepresentability is necessary for asymptotic support recovery.
This condition is fulfilled much more often than the irrepresentability condition and we
are even able to present drift matrices fulfilling the weak irrepresentability condition
for all simple cyclic graph up to 4 nodes. Interestingly, the weak notion already has a
strong effect on the quality of the estimation results. Despite the irrepresentability
conditions being rarely fulfilled for randomly selected drift matrices and the problem of
misspecification of the volatility matrix when applying the direct Lyapunov lasso, we
showed that the method is quite robust and performs decently in seemingly unfavorable
settings. We investigated the direct Lyapunov lasso alongside with the (Extended)
Bayesian Information Criterion to select specific drift matrices along a regularization
grid. We observe that the undirected structure is recovered very well, but the tendency
to produce estimates with a lot of symmetry prevents fully satisfying results regarding
the directed structure. We applied this combination of direct Lyapunov lasso and
(Extended) Bayesian Information Criterion onto the Sachs dataset. Despite the
mentioned issues with symmetry, the method manages to recover important structures
of a protein-signaling network purely based on observational data.
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Beyond the Lasso - Best Subset Selection
with Mixed Integer Programming

Recently, Bertsimas et al. [2016] demonstrated with the help of more efficient solvers
that the best subset selection represents an alternative to the classic ℓ1-penalized
lasso regression. They connect the best subset selection to Mixed Integer Quadratic
Programs (MIQP) for which efficient solvers exist [Gurobi Optimization, LLC, 2023].
The authors even claim clear superiority of the best subset method over the lasso in
all circumstances. This ambitious view is put into perspective by Hastie et al. [2020b],
and a more nuanced picture emerges. Nevertheless, the advantages of the best subset
method raised interest from statisticians working in the field of graphical modeling.
For instance, Gao et al. [2023] consider a variant of the best subset selection in the
context of structural equation models. Additionally, there is an ongoing effort to
improve the algorithms solving best subset problems [Zhu et al., 2020].

This motivates applying the best subset selection to graphical continuous Lyapunov
models. In this chapter, we show that the method can be used when aiming to estimate
the drift matrix and also when estimating the drift and the volatility matrix. When
setting up the best subset selection for estimating both matrices, we obtain a variant
of the direct Lyapunov lasso (3.2) that is also able to estimate the volatility matrix as
a by-product. However, the main focus lies on the best subset selection.

4.1 Difficulties of Existing Methods

As introduced, this chapter aims to present a new method for model selection for
graphical continuous Lyapunov models based on the best subset selection. Using
concrete examples, we illustrate that this method can offer advantages over the ℓ1-
penalized methods direct Lyapunov lasso (3.2) and the likelihood-based method by
Varando and Hansen [2020]. In particular, the estimates of the ℓ1-penalized methods
contain a lot of symmetry.

4.1.1 Revisiting Existing Methods

First, we briefly revisit the existing methods for structure learning for GCLMs. All
methods rely on an estimated version of the covariance matrix which is given by the
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sample covariance matrix

Σ̂ = Σ̂(n) =
1

n

n∑
i=1

XiX
⊤
i (4.1)

in all instances. In order to connect the estimation of sparse graphs with sparse
regression, it is helpful to consider the vectorized Lyapunov equation

A(Σ)vec(M) + vec(C) = 0, (4.2)

where A(Σ) := (Σ⊗ Ip)+ (Ip⊗Σ)K(p,p) is a p2× p2 matrix with covariances as entries.
We denote by K(p,p) the p2 × p2 commutation matrix and by vec(·) the vec-operator.
For more details, we refer to Section 1.4. We show that the direct Lyapunov lasso

arg min
M∈Rp×p

1

2
∥A(Σ)vec(M) + vec(C)∥22 + λ∥M∥1 (4.3)

is an intuitive and easy to implement method to perform model selection for GCLMs.
The convexity of the optimization problem allows for consistency results as Corol-
lary 3.3.3. However, we also mention the downsides of the approach. The weak irrepre-
sentability condition is necessary for consistent support recovery, see Proposition 3.5.6.
In particular, consistent support recovery is only proven if the irrepresentability
condition holds, see Corollary 3.3.3.

Recall the irrepresentability condition (3.15)

|||Γ∗
ScS(Γ

∗
SS)

−1|||∞ < 1− α (4.4)

and the weak irrepresentability condition (3.18)

∥Γ∗
ScS(Γ

∗
SS)

−1sign(vec(M∗))S∥∞ ≤ 1. (4.5)

Both conditions turn out to be extremely restrictive. For further details and numerical
experiments we defer to Section 3.5.3. Subsequently, we show that a variant of the
best subset selection presented by Bertsimas et al. [2016] is able to recover the correct
support even in the unfavorable settings where it is theoretically not possible for the
direct Lyapunov lasso.

We also revisit one of the optimization problems by Varando and Hansen [2020]. The
loss function considered is the negative Gaussian log-likelihood

L(M,C) = log det(Σ(M,C)) + tr(Σ̂Σ(M,C)), (4.6)

where Σ(M,C) is the solution to the Lyapunov equation (1.2) for given matrices M
and C. For the purpose of variable selection, an ℓ1-penalty is added. In addition, a
penalty that regulates how close the estimated C is to the identity is included. The
optimization problem is given by

argmin L(Σ(M,C)) + λ∥vec(M)∥1 + κ∥vec(C)− vec(Ip)∥2F (4.7)

s.t. M stable and C diagonal.
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4.1.2 Main Examples

Without discussing the method in detail at this point, we present concrete examples to
show that the best subset selection for Lyapunov Models (BSSLM) can offer advantages
over the direct Lyapunov lasso and over the method of Varando and Hansen [2020].

First, we consider the path from 1 to 5 displayed in Figure 4.1. We choose the entries
of the drift matrix supported over the path to be

M∗
path =


−2 0 0 0 0
1 −2 0 0 0
0 1 −2 0 0
0 0 1 −2 0
0 0 0 1 −2

 . (4.8)

Then, we use the Lyapunov equation (1.2) with C = 2Ip to calculate the equilibrium
covariance matrix Σ∗

path. We do not sample data from the equilibrium distribution
N (0,Σ∗

path), but directly use Σ∗
path for estimation mimicking the setting of “n =∞”.

We apply three estimation methods for model selection.

1 2 3 4 5

1

2 3

4

5

Figure 4.1: Left: The path 1 to 5. Right: The 5-cycle.

For the direct Lyapunov lasso we calculate the estimates along the λ-grid

0 <
λmax

102
= λ1 < · · · < λ100 = λmax (4.9)

with λmax being the minimal λ-value such that M is diagonal. For the Gaussian
likelihood based method “loglik-0.01” of Varando and Hansen [2020], we use M̂0 =
−0.5 · (Σ∗

path)
−1 as initialization and a lambda grid

0 <
λmax

104
= λ1 < · · · < λ200 = λmax

with λmax being again the minimal λ-value such that M is diagonal. Further details
on the method are given in [Varando and Hansen, 2020]. Finally, we apply the best
subset method where the number of active variables is directly controlled by a sparsity
tuning parameter k. We calculate the estimates for values of k = 1, . . . , 15. The
diagonal is always included and a value of k = 1 results in one off-diagonal element
being selected. For all methods and estimates along the regularization paths, we check
if at least one estimate on the path fulfills fp = fn = 0 (Definition 3.5.10), i.e. that
the support of the data generating M∗

path is correctly recovered.
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In general, all calculations are deterministic, however there are some aspects making
the calculations for the best subset approach non-deterministic. This is due to the time-
limit and current machine workload, for more details we refer to the documentation
of Gurobi [Gurobi Optimization, LLC, 2023]. Therefore, we carry out the calculations
for the best subset method 100 times and count how often we obtain a perfect result.

Example 4.1.1. Initially, we calculate the irrepresentability condition (3.15) and
the weak irrepresentability condition (3.18). For the left side of the irrepresentability
condition we obtain a value of 1.726225 and for the weak irrepresentability condition a
value of 1.208417. Both conditions are violated. In fact, the direct Lyapunov lasso (3.2)
is not able to recover the support of M∗

path in our simulations. The main issue of the

estimates M̂DL
λ1

, . . . , M̂DL
λ100

is that a nonzero off-diagonal entry in position (i, j) often
results in a nonzero off-diagonal entry in position (j, i). Below we present the first
three estimates of the direct Lyapunov lasso starting with the regularization parameter
λ100 that yields the diagonal matrix. Already for λ98 and small absolute value of the
off-diagonal elements, we observe that both the entry (2, 3) and the entry (3, 2) are
included in the support. The entries are marked in red. We have

M̂DL
λ100

=


−1.61 0.00 0.00 0.00 0.00
0.00 −1.51 0.00 0.00 0.00
0.00 0.00 −1.52 0.00 0.00
0.00 0.00 0.00 −1.58 0.00
0.00 0.00 0.00 0.00 −1.88

 ,

M̂DL
λ99

=


−1.63 0.04 0.00 0.00 0.00
0.00 −1.51 0.00 0.00 0.00
0.00 0.00 −1.52 0.00 0.00
0.00 0.00 0.00 −1.58 0.00
0.00 0.00 0.00 0.00 −1.88

 ,

M̂DL
λ98

=


−1.64 0.08 0.00 0.00 0.00
0.00 −1.52 0.005 0.00 0.00
0.00 0.03 −1.54 0.00 0.00
0.00 0.00 0.03 −1.59 0.00
0.00 0.00 0.00 0.00 −1.88

 .

The pattern is observed along the whole path. The estimate for λ50 is

M̂DL
λ50

=


−1.81 0.32 0.00 0.00 0.00
0.57 −1.91 0.20 0.00 0.00
0.00 0.68 −1.92 0.08 0.00
0.00 0.00 0.78 −1.96 0.00
0.00 0.00 0.00 0.78 −2.18

 .

Except for the entry (4, 5), all other entries on the subdiagonal have their counterpart
on the superdiagonal. The estimates obtained by the direct Lyapunov lasso are not
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entirely bad as the skeleton (i.e. the undirected structure) is estimated correctly. One
might even argue that the estimate M̂DL

λ50
contains the correct directionality of the edges

by comparing the magnitude of the subdiagonal and the superdiagonal. All entries in
the subdiagonal are smaller than those in the superdiagonal.

Subsequently, we investigate the other ℓ1-penalized method by Varando and Hansen
[2020].

Example 4.1.2. Similarly, the “loglik-0.01” does not produce an optimal result along
the regularization path. Below we present the most interesting segment. The first
nonzero off-diagonal elements appear for λ189. As for the direct Lyapunov lasso,
the estimate has nonzero entries on the sub- and superdiagonal. In this case only
(1, 2), (2, 1). The best estimate in terms of support is then the next estimate on the
path for λ188 as it contains the full nonzero subdiagonal and the only wrong entry is
(1, 2). We have

M̂ML
λ190

=


−1.80 0.00 0.00 0.00 0.00
0.00 −1.88 0.00 0.00 0.00
0.00 0.00 −1.88 0.00 0.00
0.00 0.00 0.00 −1.91 0.00
0.00 0.00 0.00 0.00 −2.07

 ,

M̂ML
λ189

=


−1.38 0.21 0.00 0.00 0.00
0.25 −1.05 0.00 0.00 0.00
0.00 0.44 −1.21 0.00 0.00
0.00 0.00 0.46 −1.64 0.00
0.00 0.00 0.00 0.00 −2.06

 ,

M̂ML
λ188

=


−1.34 0.20 0.00 0.00 0.00
0.25 −0.96 0.00 0.00 0.00
0.00 0.42 −1.14 0.00 0.00
0.00 0.00 0.47 −1.59 0.00
0.00 0.00 0.00 0.28 −2.07

 .

Progressing the path, we observe that more entries in the superdiagonal of the estimate
are included in its support. For instance, consider the estimate for λ130 below

M̂ML
λ130

=


−1.26 0.22 0.00 0.00 0.00
0.32 −0.79 0.00 0.00 0.00
0.00 0.43 −0.96 0.00 0.00
0.00 0.00 0.57 −1.40 0.02
0.00 0.00 0.00 0.67 −2.00

 .
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If we further continue the path, we observe nonzero entries not even matching the
skeleton of the path.

In the spirit of the direct Lyapunov lasso, we tried to find a concrete counterexample
where perfect support recovery is not possible. However, the non-convexity of the
optimization problem makes theoretical analysis extremely difficult. We provide
insights in Section 4.1.3.

Third, we present the results of the best subset method.

Example 4.1.3. For 94 out of 100 attempts, the best subset method produces an
estimate that recovers the support of M∗

path correctly. Of course, we obtain these
estimates for k = 4 and it is even true that

M̂BS
k=4 = M∗

path =


−2 0 0 0 0
1 −2 0 0 0
0 1 −2 0 0
0 0 1 −2 0
0 0 0 1 −2

 .

Finally, we carry out the same calculations, but consider a drift matrix that is supported
over the 5-cycle in Figure 4.1. We choose the same order of magnitude for the entries
in the drift matrix as for the path which results in

M∗
cycle =


−2 0 0 0 1
1 −2 0 0 0
0 1 −2 0 0
0 0 1 −2 0
0 0 0 1 −2

 .

Running the best subset method we obtain 52 estimates that recover the support and
the magnitude of the entries while 48 do not estimate the support correctly. These
estimates are mostly the cycle in the reverse direction. The reason is that

Σ(M∗
cycle, C) = Σ((M∗

cycle)
⊤, C).

Obviously, if two drift matrices with different underlying graph structure and the
same number of edges yield the same covariance matrix, no method can guarantee
to recover the support correctly. However, the best subset method does what it is
expected to do. The other two methods fail by estimating to recover the support of
the cycle correctly. They do not fail by estimating the reversed cycle, but a similar
problem as for the path occurs.

The results in this section are in line with the observations in Appendix B.1 where we
observe that the direct Lyapunov lasso is much better in recovering the undirected
structure than the directed structure. In summary, we find that the best subset
method leads to predominantly very good results. It is able to recover the support of
the data generating drift matrices correctly while the direct Lyapunov lasso and the
loglik-0.01 fail to do so. Natural limitations due to model geometry exist.
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Obviously, these are very specific examples that do not allow any general conclusions
to be drawn. However, they definitely provide motivation to study the method in
more detail. Before we study this further, we explain the difficulties of the theoretical
analysis of the method by Varando and Hansen [2020].

4.1.3 KKT-Conditions for the Loglik-Method

For the direct Lyapunov lasso (3.2), the KKT-conditions are a necessary and sufficient
criterion for support recovery, see Theorem 3.3.1. The optimization problem (4.7)
is non-convex. Therefore, the KKT-conditions are not sufficient, but they are still
necessary for optimality. The optimization problem considered by Varando and Hansen
[2020] in matrix notation is

argmin
(M,C)

log detΣ + tr(Σ̂Σ−1) + λ∥M∥1 + κ∥C − I∥2F . (4.10)

The results for this method in Section 4.1.2 suggest that perfect support recovery is not
possible for the drift matrix presented in (4.8) and for C = 2I5. Unlike for the direct
Lyapunov lasso where calculating the irrepresentability conditions suffices, more work
is required for the method by Varando and Hansen [2020]. In this section, we present
two intriguing examples. First, we show in Example 4.1.5 that deciding whether the
KKT-conditions are fulfilled is already extremely difficult for p = 3. In Example 4.1.6
we present a 2×2 example where perfect support recovery is not possible for the direct
Lyapunov lasso, but a solution with the correct support for the loglik-κ method exists
(4.10). First, we have to calculate all derivatives for the summands of (4.10). They
are given in Lemma C.0.3. Using the derivative, the following fact is an immediate
consequence.

Remark 4.1.4. Let G be a non-empty directed graph and let M be a stable matrix that
is supported over G. Furthermore, we consider C ∈ PDp. Using the true covariance
matrix Σ = Σ(M,C), the KKT-conditions of (4.10) are not fulfilled for the pair
(M,C).

The natural follow-up question is to ask if there exists another drift matrix supported
over the same graph that fulfills the KKT-conditions. We showcase how difficult it is
to solve this question for a 3× 3 matrix.

Example 4.1.5. Consider the data generating drift and volatility matrix

M =

−2 0 0
1 −2 0
0 1 −2

 , C =

2 0 0
0 2 0
0 0 2

 , (4.11)

where we choose Σ̂ = Σ∗ = Σ(M,C). Is it possible that a pair

Mvar =

−d1 0 0
m1 −d2 0
0 m2 −d3

 , C =

2 0 0
0 2 0
0 0 2

 (4.12)
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fulfills the KKT condition with d1, . . . , d3 > 0? The subsequent computations are
symbolic and can be carried out with various computer algebra programs. First, we
calculate

(∇ΣL)var = (Σ(Mvar, C))−1 − (Σ(Mvar, C))−1Σ̂(Σ(Mvar, C))−1.

Then, we obtain the gradient of the log-likelihood-loss (C.3) w.r.t. M by

(∇ML)var = (2Σ(Mvar, C)Σ(M⊤
var, (∇L)var).

This is a (very) long rational expression in the variables d1, d2, d3,m1,m2. The
KKT-conditions (sum of the three parts: gradient loss + subgradient drift matrix
+ gradient of squared ℓ2-norm for C, see Lemma C.0.3) are zero if all entries in
(∇ML)var are the same (up to sign) such that they can be shrunk to zero by the
subgradient (C.5). The subgradient is λsign(Mij) if Mij ̸= 0. Therefore, the entries
(1, 2), (2, 3), (1, 1), (2, 2), (3, 3) of (∇ML)var need to have the same absolute value. If
one does not penalize the diagonal, it reduces to (1, 2), (2, 3) being the same.

In addition, the subgradient of the remaining entries is given by λ[−1, 1] if Mij = 0.
That means the absolute values of the entries (1, 3), (2, 1), (2, 3), (3, 1) of (∇ML)var
need to be smaller than the absolute value of the entries (1, 2), (2, 3), (1, 1), (2, 2), (3, 3).
If we find choices d1, d2, d3, m1,m2 such that all of this holds, a matrix Mvar fulfills the
KKT-conditions. If one does not penalize the diagonal, the entries (1, 1), (2, 2), (3, 3)
of (∇ML)var need to be zero. Still the entries (1, 3), (2, 1), (2, 3), (3, 1) of (∇ML)var
need to be smaller than the absolute value of the entries (1, 2), (2, 3).

We try to find parameters d1, d2, d3,m1,m2 such that the pair (M,C) displayed in (4.12)
fulfills the KKT-conditions. Here, we write out the conditions when not penalizing the
diagonal. We denote the entry (i, j) in (∇ML)var by Gi,j. The KKT-conditions imply
that

G1,1 = 0 , G2,2 = 0 , G3,3 = 0 and G2,1 = G3,2

G1,2 < |G2,1| , G1,3 < |G2,1| , G2,3 < |G2,1| and G3,1 < |G2,1|
G1,2 > −|G2,1| , G1,3 > −|G2,1| , G2,3 > −|G2,1| and G3,1 > −|G2,1|.

Additionally, it has to hold that d1, d2, d3 > 0. At first glance it might seem surprising,
but all attempts solving this system failed due to its computational complexity. A
reason why these problems are so hard to solve is given in [Basu et al., 2006, Chapter
11]. Quantifier Elimination which is used for solving this problem can at worst be
doubly exponential. We want to mention that it is computationally feasible to analyze
the problem when setting the diagonal entries to a fixed value. We consider

Mvar =

−2 0 0
m1 −2 0
0 m2 −2

 , C =

2 0 0
0 2 0
0 0 2

 , (4.13)

where in fact no choice of parameters m1,m2 ∈ R exists such that the KKT-conditions
are met.
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The previous example shows how hard it is to analyze problems as small as p = 3.
Although the setup is very idealistic, we present a 2× 2 example where we make an
interesting observation.

Example 4.1.6. Equivalently to the 3× 3 case, we consider

M =

(
−2 0
1 −2

)
, C =

(
2 0
0 2

)
.

The left side of the irrepresentability condition (3.15) has a numeric value of 1.625
and the left side of the weak irrepresentability condition (3.18) has a value of 1.125.
Therefore, the KKT-conditions for the direct Lyapunov lasso cannot be fulfilled. Can
we find parameters d1, d2,m1 such that

Mvar =

(
−d1 0
m1 −d2

)
, C =

(
2 0
0 2

)
fulfill the KKT-conditions for the loglik-κ method with Mvar being stable? First, we
calculate (∇ML)var with the entries being rational functions in the variables d1, d2,m1.
The KKT-conditions imply that

G1,1 = 0 and G2,2 = 0,

G1,2 < |G2,1|,
G1,2 > −|G2,1|.

More details on the notation are given in Example 4.1.5. Additionally it has to hold
that d1, d2 > 0. This system can be solved and the solution is given by

M̃ ≈
(
−1.98438 0
0.149253 −1.79699

)
.

To illustrate that the computations are already surprisingly complex for the 2× 2 case,
the unrounded expression for m1 is given by

m1 =
48678659497325− 9047381575

√
13860921

100467168307456
.

Here a solution with the same support exists.

Overall, the method by Varando and Hansen [2020] is extremely hard to analyze
theoretically as already the seemingly trivial structure of the path from 1 to 3 results
in very difficult and lengthy rational functions in the gradient of the loss function.

4.2 Best Subset Selection with MIQP for Lyapunov Models

In this section, we introduce the best subset selection for Lyapunov models. The
general setup is similar to the work by Bertsimas et al. [2016], who considered the best
subset selection in regression settings. However, there exist a lot of subtle differences
that we solve. We explain how to phrase the problem such that it is suitable for
large-scale numerical computations using the commercial optimizer Gurobi [Gurobi
Optimization, LLC, 2023]. We consider different warm starts and compare them
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both with respect to the time consumption and result-wise. Ultimately, we compare
the method with the ℓ1-penalized methods in various simulation settings. There, we
observe quite a few differences when compared to the regression setting.

We already know from the direct Lyapunov lasso (3.2) that optimization problems with
an objective function being the penalized squared Frobenius norm of the continuous
Lyapunov equation (1.2) are computationally identical to classical sparse regression
problems. Similar to the best subset problem (1.1) of Bertsimas et al. [2016], we can
formulate the optimization problem

argmin
M∈Rp×p

∥A(Σ)vec(M) + vec(C)∥22 (4.14)

s.t. ∥vec(M)∥0,off ≤ k

with

∥vec(M)∥0,off =

p∑
i,j=1
i ̸=j

1{Mi,j ̸=0}.

for GCLMs. From a dynamical systems perspective, many stable signals possess
negative diagonal entries that are (possibly) significantly larger than the off-diagonal
entries. This motivates only penalizing the off-diagonal elements and ensuring they are
selected more carefully. The problem (4.14) is non-convex. Moreover, the best subset
problems are shown to be NP-hard in [Natarajan, 1995]. According to the current
knowledge, there is no solution to these problems in polynomial time (Presumption:
NP ̸= P). Despite this limitation, researchers are searching for algorithms that solve
these problems with high probability in a reasonable amount of time. The authors
Bertsimas et al. [2016] show that the classical best subset selection can be phrased
as a MIQP. More details on Mixed Integer Optimization are given by Bertsimas and
Weismantel [2005]. A general form of a MIQP with binary variables is

min
x

x⊤Qx+ c⊤x (4.15)

s.t.


Ax ≤ b,

xi ∈ {0, 1} i ∈ I,

l ≤ xi ≤ r i /∈ I,

where A ∈ Rn×p, c ∈ Rp, b ∈ Rn
∞, l ∈ Rp

∞, r ∈ Rp and Q ∈ Rp×p positive semidefinite
are the parameters. The variables xi indexed by I are binary, while those not in I
are continuous. There are several solvers that can deal with problems of this type.
Explicitly, we want to mention the optimizers SCIP [Bestuzheva et al., 2021], CPLEX
[Cplex, 2009] and Gurobi [Gurobi Optimization, LLC, 2023]. We use the latter in
this work. To our knowledge, Gurobi is currently still one of the fastest software
packages to solve MIQPs of the form (4.15). In [Bertsimas et al., 2016, Section 2.1],
the development of MIO solvers till 2013 is explained. A detailed discussion about the
ins and outs of the solvers for these problems would exceed the scope of this work.

Naturally, the question arises what the connection of MIQPs and problem (4.14) is as
the variables vec(M) are all continuous. We can formulate (4.14) as MIQP.
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Proposition 4.2.1. We consider the binary variables z(i,j) ∈ {0, 1} with i, j ∈
{1, . . . , p} and i ̸= j. Then, a solution to

argmin
M,z

∥A(Σ)vec(M) + vec(C)∥22 (4.16)

s.t.


−BUz(i,j) ≤ vec(M)(i,j) ≤ BUz(i,j) for i, j ∈ 1, . . . , p with i ̸= j,

z(i,j) ∈ {0, 1} for i, j ∈ 1, . . . , p with i ̸= j,∑p
i,j=1
i ̸=j

z(i,j) ≤ k

is also a solution to (4.14) for a sufficiently large constant BU .

Proof. The idea behind this formulation, presented in Bertsimas et al. [2016], is that if
vec(M̂) is a solution to (4.16), we have that ∥vec(M̂)∥∞,off ≤ BU . The binary variables

posses the function of “selecting” variables. If z(i,j) = 1, then |vec(M̂)(i,j)| ≤ BU and

if z(i,j) = 0, then vec(M̂)(i,j) = 0. Choosing BU sufficiently large, the solution of (4.16)
is also a solution of (4.14). □

Naively, one might think that choosing a large BU and solving the problem is a good
idea. However, this is not the case. A sensible choice of BU is necessary to obtain
good lower bounds.

The authors Bertsimas et al. [2016] present two formulations of the problem (4.16)
that are then used for the actual computations. The reason behind this is that
the MIO solver of Gurobi Optimization, LLC [2023] deals best with an objective
function that has a small-dimensional quadratic objective. Writing out the squared
ℓ2-norm of problem (8) of Bertsimas et al. [2016], we obtain a quadratic objective
involving the matrix X⊤X which is of size p× p and might be large when considering
high-dimensional settings (p > n). Therefore, they use one formulation (2.5) that has
a quadratic objective involving the matrix X⊤X for the cases when (p ≤ n) and a
second formulation (2.6) that has a quadratic objective of size n× n making use of
the design matrix X having n rows for the cases (p > n). For Lyapunov models, we
consider the p2 × p2 matrix A(Σ) that takes on the role of the design matrix. No
matter what the sample size is, we are “in between” these formulations. Therefore, we
only consider the first formulation. Preliminary computations that are not included
in this work show that there is no advantage. The second formulation seems to be
slightly worse for Lyapunov models.

4.2.1 Solving the MIQP with Gurobi

In this section, we adapt formulation (2.5) of Bertsimas et al. [2016] in such a way
that it is suitable to solve (4.14) and explain how to input it into Gurobi [Gurobi
Optimization, LLC, 2023]. They use the notion of specifically ordered sets which
ensures that at most k variables vec(M) can be nonzero. This can directly be passed
to the Gurobi optimizer and leads to a specific problem structure. As this type of
problem formulation is not conducive to this work, we forego it and stick to the classic
formulation in the style of (4.16).
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Problem 4.2.2. Adding a constraint on the ℓ1-norm of the off-diagonal entries in
vec(M) and different constants for the diagonal and off-diagonal entries compared to
(4.16), we formulate

argmin
M,z

1

2
vec(M)⊤(A(Σ)⊤A(Σ))vec(M) + ⟨A(Σ)⊤vec(C), vec(M)⟩ (4.17)

+
1

2
∥vec(C)∥22

s.t.



z(i,j) ∈ {0, 1} for i, j ∈ 1, . . . , p with i ̸= j,∑p
i,j=1
i ̸=j

z(i,j) ≤ k,

−BoffU z(i,j) ≤ vec(M)(i,j) ≤ B
off
U z(i,j) for i, j ∈ 1, . . . , p with i ̸= j,

−BdiagU ≤ vec(M)(i,i) ≤ B
diag
U for i ∈ 1, . . . , p,

∥vec(M)∥1,off ≤ Bl.

We further comment on the exact choices of the constants Boff
U , Bdiag

U and Bl in
Section 4.2.2. Provided suitable constants, a solution of (4.17) is also a solution of
(4.14). To implement (4.17) in R [R Core Team, 2021], we make use of code that has
been used to implement the numerical experiments in Hastie et al. [2020b]. They
implemented the exact problem formulations of Bertsimas et al. [2016] while there are
a few differences in (4.17) that we want to mention here. Gurobi allows for a MIQP
of the form

min
x

x⊤Qx+ q⊤x (4.18)

s.t.


Ax comp b comp consists of ≤,=,

l ≤ x ≤ u,

some or all x must take integer values.

Lemma 4.2.3. Problem 4.2.2 can be written in form of (4.18).

Proof. To apply the Gurobi optimizer, we restructure the problem. We define

Ã(Σ) =
(
A(Σ)·,(1,2),(1,3),...,(2,1),(2,3),...,(p,p−1)|A(Σ)·,(1,1),(2,2),...,(p,p)

)
, (4.19)

ṽec(M) = (m21,m31, . . . ,m12,m32, . . . ,mp−1p,m11,m22, . . . ,mpp)
⊤ .

The vector of variables is

x = ( ˜vec(M), z12, z13, . . . , z21, z23, zp,p−1)
⊤.

Then we set Q = Ã(Σ)⊤Ã(Σ) and q⊤ = −2Ã(Σ)⊤vec(C). The linear constraint is
implemented by choosing

A =

 I Z −BoffU I
−I Z −BoffU I

zv ov

 ,
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where I is the identity matrix of size p2− p× p2− p, Z is the zero matrix of size p× p,
zv is the vector of zeros of length p2 and ov is the vector of ones of length p2 − p. To
complete the linear constraint, we set

b = (0, . . . , 0︸ ︷︷ ︸
2(p2−p)

, k)⊤.

The constant bounds on the variables are set to

l = (−BoffU , . . . ,−BoffU︸ ︷︷ ︸
p2−p

,−BdiagU , . . . ,−BdiagU︸ ︷︷ ︸
p

0, . . . , 0︸ ︷︷ ︸
p2−p

)⊤,

u = (BoffU , . . . ,BoffU︸ ︷︷ ︸
p2−p

,BdiagU , . . . ,BdiagU︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
p2−p

)⊤.

□

From now on, we refer to solving Problem 4.2.2 as best subset selection for Lyapunov
Models (BSSLM).

4.2.2 Warm Starts of the BSSLM

Prior to solving the MIQP, an initial estimate can be passed to the MIO (Mixed
Integer Optimization) solver. There are several options to provide a prior estimate
for a warm start. A comparison between cold starts and warm starts for the classical
best subset problem in regression is made in [Bertsimas et al., 2016, Section 5.2.2].
We discuss the following options for Lyapunov models:

a) Warm start using a projected gradient descent as in [Bertsimas et al., 2016].

b) Warm start using the direct Lyapunov lasso (3.2).

c) Cold start initializing with a vector where all entries are set to a constant value.

a) The warm start option presented in [Bertsimas et al., 2016] is a projected gradient
descent that is based on Appendix C.0.1 and uses ideas from projected gradient
descent methods in first-order convex optimization problems by Nesterov [2013], see
Appendix C.0.2. This results for Lyapunov models in the Algorithm:

Input: A parameter L, a convergence tolerance ϵ, the matrices A(Σ) and C with Σ
and C being positive-definite.

1) Initialize with the vector vec(M)1 that contains the k largest entries of

vec(M)init =
−A(Σ)⊤vec(C)

colsums(A(Σ)2)
,

where A(Σ)2 and the division are elementwise operations.

2) For m ≥ 1, we obtain

vec(M)m+1 ∈ Hk

(
vec(M)m −

2

L
A(Σ)⊤(A(Σ)vec(M)m + vec(C))

)
,

where Hk is defined in C.0.1.
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3) Repeat step 2), until

|∥A(Σ)vec(M)m + vec(C)∥22 − ∥A(Σ)vec(M)m+1 + vec(C)∥22| ≤ ϵ.

Detailed analysis of the convergence of the above algorithm is given in [Bertsimas
et al., 2016, Section 3.1.].

b) Another possibility is to calculate a warm start using the direct Lyapunov lasso
(3.2). The direct Lyapunov lasso as model selection technique is discussed in great
detail in Chapter 3. It is computationally much faster than solving a MIQP which
motivates using the method as a warm start. For this purpose we run the direct
Lyapunov lasso along a λ-grid

0 <
λmax

104
= λ1 < · · · < λ100 = λmax

with λmax being again the minimal λ-value such that M is diagonal. Then, we select
the estimate along the path for which the number of nonzero entries is closest to k,
the parameter restricting the number of active variables in (4.14).

c) One might be curious how important is the warm start for the MIO solver in the
context of Lyapunov models. For classical regression problems, [Bertsimas et al., 2016,
Table 1, Figure 3] suggest that warm starts are beneficial both time wise and result
wise. However, despite some computational similarities, the matrix A(Σ), contrary to
a classical design matrix, possesses a very specific structure (4.2) that might affect
the impact of warm starts.

Problem 4.2.2 contains constant bounds on the parameters vec(M). Based on the
warm starts a)-c), we select these constants. For choices a) and b) we select

Boff
U = 2max

(i,j)
i ̸=j

(|(vec(M)best|)(i,j))

with vec(M)best being the estimate obtained by a) and b). Then, we define

Bl = (p2 − p)Boff
U ,

BdiagU = 2max
(i,j)

(|(vec(M)best|)(i,j)).

For the cold start, i.e. initialization c) we choose BoffU = BdiagU = 10000. This choice is
arbitrary but much larger than any entry in the drift matrices M in our simulations.
It reflects that by initializing with a constant vector, no data dependant estimate is
available that could provide a sensible choice for the constant bounds. Based on this
choice for BoffU ,BdiagU , we choose the parameter Bl as for a) and b).

4.2.3 BSSLM - Time Consumption and Comparison of Initializations

In this section, we study the time consumption of the BSSLM for the three initialization
methods in Section 4.2.2 and compare them with the direct Lyapunov lasso. In
particular, we observe that the optimistic view on time consumption in regression
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settings by Bertsimas et al. [2016] does not transfer to GCLMs. However, warm starts
have also proven to be beneficial for GCLMs. Moreover, we illustrate how much slower
the method is compared to the direct Lyapunov lasso (3.2).

The simulation setting we consider is similar to Section 3.6. Each stable matrix M
is generated with Mij = ωijϵij for i ̸= j and Mii = −

∑
j ̸=i |Mij | − |ϵii| where ωij ∼

Bernoulli(d) and ϵij ∼ N(0, 1). We fix the matrix C = 2Ip. For each m ∈ {1, 2, 3, 4}
and p = {10, 15, 20}, the edge probability is set as d = m/p. For each value of m, we
generate 10 pairs of signals (M,C). Then, we generate n = 1000 observations from
a multivariate Gaussian distribution with covariance matrix solving the Lyapunov
equation for (M,C). We apply the BSSLM (4.17) with initialization a)-c) from
Section 4.2.2 for p = {10, 15, 20} to all 40 datasets. We choose the parameter k to be
the number of nonzero entries in the true drift matrix M that is used to generate the
dataset. To solve the problem, we use the Gurobi optimizer [Gurobi Optimization,
LLC, 2023] along with the R package gclm by Hastie et al. [2020b] where the functions
are adjusted such that they are feasible for our problem. The maximal computation
time for the Gurobi optimizer is set to 400 seconds per value of k. For the direct
Lyapunov lasso (3.2), we calculate estimates along a regularization path of length 100.
The path is chosen as in (4.9) with the difference that the start is set to λmax/10

4.

First, we compare the time consumption of the three initializations a)-c). We measure
the total time required to calculate the BSSLM estimate for M with the respective
initialization method. Therefore, the maximal computation time can be slightly above
the 400 seconds we set as the time limit for the solver. We compare the initialization
methods for p = {10, 15, 20} using boxplots in Figure 4.2. The x-axes for p = {10, 15}
are logarithmized with base 10. More detailed summary statistics for Figure 4.2 are
given in Appendix B.3.

Initialization lasso plain proj_grad

0.1 1.0 10.0 100.0
time p=10

0.1 1.0 10.0 100.0
time p=15

0 100 200 300 400
time p=20

Figure 4.2: Boxplots summarizing the time used to calculate the solution of (4.17) for
one value of k across 40 randomly selected drift matrices and for the three
initializations in Section 4.2.2. We have a) proj grad, b) lasso and c) plain.
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Neglecting the subtle differences, we observe a straightforward pattern. For almost
all drift matrices, the BSSLM is solved within less than a second for p = 10 for all
initialization methods. The time consumption is already significantly higher for p = 15,
but almost all problems are still solved within 400 seconds. However, for p = 20, we
observe that for the majority of drift matrices, the BSSLM is not solved within 400
seconds. The projected gradient descent initialization that is the favorite of Bertsimas
et al. [2016] also performs best for Lyapunov models. This can be seen in particular
for p = {10, 15}.

Remark 4.2.4. We want to emphasize that even p = 20 is relatively problematic
regarding time consumption. This is not so apparent in the work by Bertsimas et al.
[2016], where they consider vectors rather than matrices. This means that graphs
with p = 20 for Lyapunov models have to be compared with regression problems with
p = 400. Moreover, the matrices we consider are sparse but not to such an extreme
degree as in most of their examples and makes the task more challenging.

The above discussion raises two questions. First, what does it mean if we call the
MIQP solved? Second, is the result unusable if the MIQP solver cannot certify
optimality?

The MIP (MIQP) solver terminates when the gap between the lower and upper
objective bound is less than MIPGap times the absolute value of the incumbent
objective value [Gurobi Optimization, LLC, 2023, MIPGap]. If this is the case, we call
the MIQP solved. In a small simulation study in Appendix B.2 with MIPgaps ranging
from 0.001 to 0.1, we conclude that setting the MIPgap to 0.01 is the best choice
from a practical perspective. Answering the second question requires more detailed
simulations regarding the quality of the estimates for the different sample sizes.

Before we present more detailed simulations for the different initialization methods,
we want to compare them to the computation time of the direct Lyapunov lasso. The
computation is carried out using R along with the glmnet package [Friedman et al.,
2010]. The computation times for the full path of length 100 are displayed in Table 4.1.

Table 4.1: Summary statistics of the time used to calculate the full path of length 100 of the
direct Lyapunov lasso (3.2) across 40 randomly selected drift matrices M∗.

prob. size Min. 1st Qu. Median Mean 3rd Qu. Max.

p=10 0.004046 0.005453 0.007455 0.025579 0.016832 0.450402

p=15 0.01184 0.01850 0.03562 0.43298 0.18698 4.00151

p=20 0.03920 0.05945 0.11445 0.64046 0.30020 9.67137

Despite calculating estimates along a path of length 100, the direct Lyapunov lasso
is much faster than the BSLMM. The authors Bertsimas et al. [2016] consider more
favorable settings where this downside is not that apparent. The consequence for
graphical continuous Lyapunov models is that unless there are major technological
advances, larger problems need to be solved using the direct Lyapunov lasso (3.2) or
the loglik-0.01 method (4.7).

Subsequently, we analyze the quality of the results in the above simulation setting
using the four well-known metrics that are used by Varando and Hansen [2020] and in
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Section 3.6. The metrics are the maximum accuracy (max acc) and the maximum
f1-score (max f1). They are calculated as the maximum along the grid of regularization
parameters. The other two metrics are the area under the roc curve (auc) and the
area under the precision curve (aupr), which provide an average of the regularization
path. Details on the metrics are provided in Definition 3.5.11.

Unlike for the time comparison, we also include p = 25. We investigate two settings.
First, we select 10 equidistant sparsity levels k starting with k = 1 and ranging to
k =

(
p+1
2

)
/3. The reason behind this maximal k-value is that, in most cases, we do

not know the correct number of nonzero entries beforehand. Ideally, we would like to
include every possible sparsity level in the grid. However, the extremely high time
consumption does not allow for such a scenario. The upper limit for the sparsity level
is set to k =

(
p+1
2

)
/3 as more than

(
p
2

)
entries result in a non-identifiable graph, see

Lemma 2.3.5. We choose the maximal number of sparsity parameters to be smaller as
we assume the underlying structure to be sparse. We set the computation time to 100
seconds per value of k. The results are displayed in Figure 4.3.

Legend proj_grad lasso plain

0.92

0.93

0.94

0.95

0.96

0.97

10 15 20 25
p

m
ax

_a
cc

0.50

0.55

0.60

0.65

0.70

10 15 20 25
p

m
ax

_f
1

0.65

0.70

0.75

0.80

10 15 20 25
p

au
c

0.45

0.50

0.55

0.60

10 15 20 25
p

au
pr

Figure 4.3: Four evaluation metrics comparing support recovery for (4.17) with initializations
a)-c) described in section 4.2.2 with C = 2Ip where data has been generated
using C = 2Ip. The path is of length ten and ranges from k = 1 to k =

(
p+1
2

)
/3.

The maximal computation time per value of k is 100 seconds. Initialization
proj grad is a), lasso is b), and plain is c).

We observe that the cold “plain” start is much worse than the warm starts with
the projected gradient descent or the direct Lyapunov lasso. Regarding the warm
starts, both methods exhibit similar performance. A comparison with Figure 3.12
reveals that although most estimates for p = {20, 25} are labeled suboptimal by the

89



Chapter 4 Beyond the Lasso - Best Subset Selection with Mixed Integer Programming

solver, the simulation results can compete with those of the direct Lyapunov lasso. We
provide a more detailed comparison in Section 4.2.4. Second, we select 15 equidistant
sparsity levels k starting with k = 1 and ranging to k =

(
p+1
2

)
/3 and set the maximal

computation time to 250 seconds per sparsity level k. These results are displayed in
Figure 4.4.
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Figure 4.4: Four evaluation metrics comparing support recovery for (4.17) with initializations
a)-c) described in section 4.2.2 with C = 2Ip where data has been generated
using C = 2Ip. The path is of length 15 and ranges from k = 1 to k =

(
p+1
2

)
/3.

The maximal computation time per value of k is 250 seconds. Initialization
proj grad is a), lasso is b), and plain is c).

The general ordering of the methods remains the same. A warm start is clearly
advantageous. Overall, the metrics for this expensive simulation run are similar when
compared to Figure 4.3. This is unsurprising for p = {10, 15} as many computations
finish within 100 seconds. However, it is pretty interesting that the improvement for
p = {20, 25} is also not significant. There is a mild improvement for the projected
gradient descent initialization, which seems to dominate the lasso initialization. This,
in conjunction with the slightly better time consumption for p = 15, leads us to the
suggestion to use the projected gradient descent initialization for the warm start.

Note that it is possible to push the computational boundaries of the BSSLM further.
We omit it when presenting Figure 4.3 and Figure 4.4. The purpose is to show that
when the optimality of the estimate for a certain MIPGap is not achieved, this does not
result in the estimate being useless. The results can keep up with those of the direct
Lyapunov lasso presented in Section 3.6. The clear conclusion of the section is that
warm starts are definitely required, with the projected gradient descent initialization
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having a slight edge. The time consumption of the BSSLM seems to be its biggest
issue.

4.2.4 Comparing the BSSLM with the direct Lyapunov lasso and the
Loglik-0.01

In this section, we compare the BSSLM with the direct Lyapunov lasso (3.2) and the
loglik-0.01 method (4.7). The loglik-0.01 method jointly estimates M and C, while the
other methods only estimate the drift matrix M . In this section, we only compare the
quality of the estimated M . We consider different simulation settings to investigate in
which scenario the BSLMM performs best and where the ℓ1-penalized methods have
their advantages. Our results confirm that in settings where the active variables are
clearly recognizable, the BSSLM is superior to the ℓ1-penalized methods. The setting
where the ℓ1-penalized methods perform best in the work by Hastie et al. [2020b] can
not easily be translated to GCLMs and proves to lead to similarly bad performances
across all methods. However, we show that generally, the ℓ1-penalized methods can
offer advantages when the number of active variables is relatively big and, at the same
time, the size of the entries is small.

First, we outline the general simulation setup and then give the specifics for the
individual simulation runs. We consider problem sizes p = {10, 15, 20, 25}. We select
100 drift matrices M according to the respective setting. The volatility matrix C = 2Ip
in all settings. Then, we generate n = 1000 observations from a multivariate Gaussian
distribution with a covariance matrix solving the Lyapunov equation for (M,C).
Subsequently, the following three estimation methods are applied.

a) Best Subset stands for the Best Subset Selection for Lyapunov Models (BSSLM):
Solving Problem 4.2.2 using an equidistant grid of sparsity levels k ranging
from k = 1 to k =

(
p+1
2

)
/3 of length 20. We select C = 2Ip. The time

limit is set to 400 seconds per value of k. The initialization method is the
projected gradient descent with the number of runs being set to 50 and the
maximum number of iterations to 1000. The initialization method is method a)
in Section 4.2.2. The computations are carried out using an adapted version of
the best-subset package by Hastie et al. [2020a]. The MIQP solver is the one
by Gurobi Optimization, LLC [2023].

b) loglik-0.01: Solving (4.7) using the negative Gaussian log-likelihood (4.6) where
the parameter κ is set to 0.01. The maximum number of iterations is set to
1000. The path of regularization parameters is set to be

0 <
λmax

104
= λ1 < · · · < λ100 = λmax (4.20)

with λmax being chosen such that the matrix M is diagonal. The computations
are carried out using the gclm package by Varando [2020].

c) Direct Lasso stands for the direct Lyapunov lasso: Solving (3.2) while setting
C = 2Ip and using the same regularization path as for the loglik-0.01 method
(4.9). The maximum number of iterations is set to 10000. This is the default
value in the glmnet package Friedman et al. [2010] that is used for computations.
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For these problem sizes, the methods b) and c) can be calculated relatively quickly
on a standard local computer. However, the BSSLM has a total computation time
of multiple days. Therefore, the simulations are carried out on the CooLMUC2
Cluster with 28-way Haswell-based nodes and 64 GB RAM per node at Leibniz-
Rechenzentrum (LRZ) supercomputing facility (www.lrz.de). Unless there are major
technical advances, we find that the BSSLM is only applicable to problems up to sizes
30× 30 at maximum. For an exhaustive simulation study that we present here, the
limit seems to be 25× 25. Now, we present the different simulation settings in which
we apply the methods a)-c).

1) We consider drift matrices M selected as in Section 4.2.3. The difference is
that we consider 25 randomly selected drift matrices for the 4 sparsity levels
m/p with m ∈ {1, 2, 3, 4}. This setting leads to drift matrices with entries that
having varying sizes. However, no extreme setting is considered.

2) We consider drift matrices M with an edge probability of 0.15 and off-diagonal
entries selected according to Unif[1,2]. The diagonal of the drift matrices is
chosen as the negative absolute row sum of the off-diagonal entries minus a
small safety margin to make them stable. This setting is the ideal scenario for
variable selection. The drift matrices are reasonably sparse, and the nonzero
entries are all relatively equal in size. Furthermore, they match the size of the
diagonal entries in C = 2Ip.

3) We consider drift matrices M with an edge probability of 0.3 and off-diagonal
entries selected according to N(0, σ2) with σ = 0.1 and using C = 2Ip. The
diagonal of the drift matrices is chosen as the negative absolute row sum of
the off-diagonal entries minus a small safety margin to make them stable. This
setting is supposed to be the opposite of 2). The edge probability is double the
one in 2), and almost all entries in the drift matrix are much smaller than those
in C = 2Ip. This setting is less desirable for variable selection.

4) We consider drift matrices M with an edge probability of 0.3. One-third of
these entries are set to 1, and two third are selected as a decreasing sequence
(2−

n
4 )n∈N. The diagonal of the drift matrices is chosen as the negative absolute

row sum of the off-diagonal entries minus a small safety margin to make them
stable. In this setting, the drift matrices are reasonably dense, and the entries
vary a lot in size. This is the setting where the Lasso method in the work by
Hastie et al. [2020b] proved to be superior to the best subset method in the
context of sparse regression. However, there is a subtle difference. For graphical
continuous Lyapunov models the number of active variables is usually much
higher than in their examples which results in some entries being very small due
to the exponential decrease.

The metrics for evaluation are those that are used in Section 4.2.3. Namely, we use
the maximum accuracy (max acc) and the maximum f1-score (max f1). The other
two metrics are the area under the roc curve (auc) and the area under the precision
curve (aupr). Details on the metrics are provided in Definition 3.5.11. The results for
setting 1) are displayed in Figure 4.5.

92

www.lrz.de


4.2 Best Subset Selection with MIQP for Lyapunov Models
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Figure 4.5: Comparison of 3 methods for model selection for Lyapunov models. We consider
the simulation setting 1) in Section 4.2.4. The graphic shows four evaluation
metrics comparing support recovery for the best subset method (4.17), the loglik-
0.01 (4.7), and the direct Lyapunov lasso (3.2) using C = 2Ip for the best subset
method and the direct Lyapunov lasso.

There are a couple of interesting observations to be made. First, we observe that the
best subset approach performs better than the ℓ1-penalized methods for p = {15, 20, 25}
except for the auc. The reason why the auc score is worse is because the metric
focuses both on the correctly classified true positives and true negatives and calculates
an “average” along the regularization path. The ℓ1-penalized methods tend to have
a lot of symmetry in their nonzero pattern. For instance, consider the Examples in
Section 4.1. As the number of zero entries is larger than the number of nonzero entries,
this results in decent ratios and an overall good auc score. The proportion of zero
entries to nonzero entries is increasing with increasing problem size. This seems to
favor the best subset method except for p = 25 where the metrics auc, max f1-score
and aupr decrease a little. This might be because the computation time does not
suffice to produce optimal estimates. The loglik-0.01 method is superior to the direct
Lyapunov lasso overall. The results for setting 2) are displayed in Figure 4.6.

This is the dream setting for the best subset method. The drift matrices possess
entries that are more or less equal in size and, more importantly, are similar to the
entries of C = 2Ip in size. No small entries exist for which it might be hard for a
ℓ0-penalized method to distinguish if an entry is zero. Moreover, the drift matrices
are relatively sparse. The simulation results reflect this. The BSSLM dominates the
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Legend Best_Subset loglik−0.01 Direct_Lasso

0.90

0.93

0.96

10 15 20 25
p

m
ax

_a
cc

0.5

0.6

0.7

0.8

10 15 20 25
p

m
ax

_f
1

0.8

0.9

10 15 20 25
p

au
c

0.4

0.6

0.8

10 15 20 25
p

au
pr

Figure 4.6: Comparison of 3 methods for model selection for Lyapunov models. We consider
the simulation setting 2) in Section 4.2.4. The graphic shows four evaluation
metrics comparing support recovery for the best subset method (4.17), the loglik-
0.01 (4.7) ,and the direct Lyapunov lasso (3.2) using C = 2Ip for the best subset
method and the direct Lyapunov lasso.

ℓ1-penalized methods. The loglik-0.01 method is superior to the direct Lyapunov lasso
in this setting. The results for setting 3) are displayed in Figure 4.7.

Setting 3) is challenging. The drift matrices are twice as dense as in setting 2). The
normal distribution with mean zero and small standard deviation leads to the majority
of the entries being close to zero while those in C = 2Ip are much larger. Moreover,
there is quite some variability in the size of the entries when compared relatively.
Overall, the loglik-0.01 method produces the best results. The direct Lyapunov lasso
performs well for the smaller problem sizes p = {10, 15}, but its performance falls
of for p = {20, 25}. The best subset method is for no metric and for no problem
sizes better than the ℓ1-penalized methods. It is worth pointing out that all methods
are performing worse as in setting 2). However, the decrease in performance is most
drastic for the BSSLM. The results for setting 4) are displayed in Figure 4.8.

In classical sparse regression, this is the setting where Hastie et al. [2020b] show that the
lasso regression is able to outperform the best subset method. Of course, the simulation
setting for GCLMs is slightly different and the problem is only computationally a
classical lasso problem. Indeed, the results do not allow the same conclusion. No
method does particularly well. The best subset method is not inferior to the other
methods. The decrease in all metrics for increasing problem size can be traced back
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Figure 4.7: Comparison of 3 methods for model selection for Lyapunov models. We consider
the simulation setting 3) in Section 4.2.4. The graphic shows four evaluation
metrics comparing support recovery for the best subset method (4.17), the loglik-
0.01 method by (4.7) and the direct Lyapunov lasso (3.2) using C = 2Ip for the
best subset method and the direct Lyapunov lasso.

to the simulation setting. With increasing problem size, the additional entries in the
drift matrices become smaller due to the exponential decrease.
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Figure 4.8: Comparison of 3 methods for model selection for Lyapunov models. We consider
the simulation setting 4) in Section 4.2.4. The graphic shows four evaluation
metrics comparing support recovery for the best subset method (4.17), the loglik-
0.01 method by (4.7) and the direct lyapunov lasso (3.2) using C = 2Ip for the
best subset method and the direct lyapunov lasso.

4.3 BSSLM and the Extended BIC

In Section 4.2.4, we show that the BSSLM is superior to the ℓ1-penalized model
selection methods, in particular, when there is a clear distinction between zero and
nonzero entries in the true drift matrix. This is done by calculating metrics along a
grid of sparsity levels k. The ultimate goal of a model selection method is to produce
one estimate. For this purpose, we use the extended Bayesian information criterion
(EBIC) in Section 3.7. In this section, we investigate the EBIC together with the
BSSLM on two specific structures. This reveals subtle issues with structure recovery.

For a more detailed explanation of the application of the EBIC for tuning parameter
selection we defer to [Chen and Chen, 2008, Foygel and Drton, 2010] and for GCLMs
to Section 3.7.2. We recall the central criterion. The general concept is to minimize
the two times negative Gaussian log-likelihood

L(M) = n
[
log det

(
Σ(M, 2Ip)

)
+ tr

(
Σ̂(Σ(M, 2Ip))

−1
)]

(4.21)

for all models that are obtained by restricting the support of M for the considered
sparsity levels k. The models are labelled as Gj for j ∈ I with I being the indices of
the considered sparsity levels. The minima of (4.21) are denoted by L̂j . Using the
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1 2 3 4 5 1 2 3 4 5

Figure 4.9: Left: The path 1 to 5. Right: The Double Path from 1 to 5.

convention that Ej is the edge set of Gj and substituting the values into

EBICγ(Gj) = (|Ej |+ p) log n+ 4γ|Ej | log p+ L̂j , (4.22)

one selects the graph with the lowest score. We consider two graph structures. First,
the path of length 11. Second, the “double path” of length 11 where the path is
extended by edges connecting nodes i and i+2 with a directed edge where i ∈ 1, . . . , 9.
A visualization for p = 5 is given in Figure 4.9.

We choose drift matrices with the diagonal entries in M∗
path and M∗

doublepath set to -2
and the off-diagonal entries set to 1. Choosing C = 2Ip and solving the continuous
Lyapunov equation (1.2), we obtain the covariance matrices Σ∗

path and Σ∗
doublepath.

Using them, we generate 100 datasets of sizes n = {100, 500, 1000, 5000, 10000, 100000}
for both graphs. We select an equidistant grid of 20 k-values ranging from k = 1 to
k =

(
p+1
2

)
/3 + p. We make sure that the true number of nonzero entries of the drift

matrices is included in the grid of k-values, sometimes resulting in a grid of length 21.
The computation time per value of k is set to 400 seconds. Then, we use the EBIC
criterion with γ = 1 to select one structure. We calculate the true positive rate (TPR)
and false discovery rate (FDR) and average out over the 100 datasets for each sample
size and for both graph structures. The TPR is defined in Definition 3.5.11, and
the FDR is given by fp/(fp+ tp). Additionally, we carry out the same calculation
where we only take into account the skeleton (undirected structure) of the graphs.
For instance, an edge from 2→ 1 is classified as tp despite only the edge 1→ 2 being
present in the graph. The results are displayed in Figure 4.10.

Consistency has been proven for BIC-type criteria for Gaussian graphical models
[Foygel and Drton, 2010]. The natural question is how the EBIC behaves for Lyapunov
models. The blue curve displays the TPR and FDR if we take out the directionality
of the edges and simply calculate the metrics for the undirected structure for the
double path. The red curve displays the same for the path. The pink curve is the
result of the double path for the directed structure. The orange curve displays the
same for the path. The results for the undirected structure show the consistency that
is desired. With increasing sample size, the TPR tends to be one. This happens faster
for the path than for the double path, which is quite natural as the double path has
a more complicated structure. The FDR is relatively close to zero, but some false
positives always seem to be present. Regarding the directed structure, we observe
similar behavior for the path. The TRP is increasing and almost one for n = 100000.
The FDR decreases with the increasing sample size and is almost zero for n = 100000.
The convergence is much slower than for the undirected structure. The results for
the directed structure of the double path are most surprising. The TPR is increasing
only very slightly for increasing sample size and is overall very low. The FDR is even
increasing. At first glance, one might think that the method does not work at all.
However, how does this align with the great results when considering the undirected
structure? A more detailed investigation of the estimates shows that the direction
of some edges is reversed. This is also reflected by the number of colliders displayed
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in Figure 4.11. A collider triple in G = (V,E) is a triple of vertices (i, j, k) such that
there are directed edges from i to j and from k to j, i.e. a structure of the form
i→ j ← k.
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Figure 4.10: TPR (true positive rate) and FDR (false discovery rate) of the estimated drift
matrix obtained with the best subset method (4.17) and EBIC with γ = 1 for
increasing sample size. The results are averaged over 100 datasets generated by
the same drift matrix.
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Figure 4.11: Number of nodes with collider and the total number of colliders of the estimated
drift matrix obtained with the best subset method (4.17) and EBIC with γ = 1
for increasing sample size. The results are averaged over 100 datasets generated
by the same drift matrix.
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We observe that the number of colliders goes to zero for the path while the number
of colliders is increasing with increasing sample size for the double path. This is not
because the results get worse per se with increasing sample size. More edges are
included with increasing sample size, but with the wrong direction.

Sometimes, there seem to exist issues with the direction of the edges. Despite this
exact condition not being necessary, we want to mention that the left side of the
irrepresentability condition (3.15) is much higher (≈ 4.7) than 1 for the double path.
In the subsequent application example, we also indicate the edges where the reverse
direction is correct.

4.3.1 Application - Sachs Dataset with the BSSLM and the Extended BIC

In this section, we showcase that the BSSLM with the EBIC is a method that can
recover important connections of an among scientist-accepted protein-signaling network
purely from observational data. The network has initially been analyzed by Sachs
et al. [2005]. There exist better methods if the only goal is to provide the best
network estimate. Of course, this is also due to the limited theory on the relatively
new Lyapunov models. For more details, we defer to Section 3.7. However, the
way the dataset has been collected makes it a suitable and interesting application
case for these models. This is for two reasons. First, there exist feedback loops in
the among scientists accepted network that are always problematic to deal with in
classical structural equation modeling setups. Second, the cells have been destroyed
in the measurement process, which is in line with snapshots of a temporal process
in equilibrium. This motivated the authors Fitch [2019], Varando and Hansen [2020]
and ourselves in Section 3.7 to study the dataset in the context of GCLMs. We refer
for the details regarding the dataset and standardization to the mentioned section.

We use a grid of 21 k-values from k∗ − 10 to k∗ + 10 with k∗ being the true number of
connections in the protein-signaling network, i.e., k∗ = 20. This reflects that some
prior guesses on the number of connections might be available. The computation time
per value of k is set to 400 seconds. The extended BIC criterion is used to select the
graph structure. We present the estimate for dataset 2 in Figure 4.12.

In total, the estimate has 11 edges which are way fewer than the 20 edges of the among
scientist accepted protein-signalling network in Figure 3.13. Although there is some
debate about some connections in the network, we refer to the network in Figure 3.13
as “ground truth”. The edges of the estimate that are marked in red are also present
in the ground truth and for the orange edges the reverse edge is present. Out of
the edges present in the estimate, we have six edges that are estimated completely
correctly and two more where the reverse direction is present in Figure 3.13. For the
additional edges, we have that Jnk and P38 are connected via a trek JNK ← PKC
→ P38 and that Akt and Erk are connected via the trek Akt ← PKA → Erk. The
implication of the absence of such a trek is discussed in [Varando and Hansen, 2020,
Section 2.3.], but as both the ground truth and the estimate connect these pairs of
variables with a trek, there is at least no evidence for a difference in the covariance
matrices zero pattern. The edge PKC → ERK is missing in the ground truth, too.
However, the pathway PKC → Raf → Mek → ERK is present.
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Figure 4.12: Estimated Sachs Network using the BSSLM (4.17) assuming C = 2Ip and
selecting the structure according to the extended BIC (3.23) with γ = 1
(Dataset 2)

Among the correctly estimated connections are the direct enzyme-substrate relation-
ships PKA → Raf, Mek → Erk, and PIP3 → Pcl−γ and the connection Raf → Mek
is estimated with the wrong directionality. Only the connection Pcl−γ → PIP2 is
missing, but a trek via PIP3 is present. Of course, quite a few connections are missing
in the network presented in Figure 4.12, but the majority of the edges are present
in the ground truth; some are reversed, and even the ones that are not present can
be explained by pathways or treks. Overall, the estimate reveals a lot of important
connections with the correct directionality and produces a low number of false positives.
One might even argue to which extent these edges are false positives.

4.4 Diagonally Unknown Volatility Matrix

Both methods, the direct Lyapunov lasso (3.2) and the best subset method (4.14)
are adaptable such that M and C can be estimated jointly. A detailed theoretical
discussion requires more theory for Lyapunov models, such as the extension of the
results on parameter identifiability in Chapter 3. However, computations can be
carried out relatively easily, and we present a simulation study that indicates the
potential of this generalization. We limit ourselves to the analysis of C diagonally
unknown.

The idea to adapt the optimization problems is quite simple and based on the idea by
Varando and Hansen [2020]. We add an additional penalty term to both objective
functions that regulate how close the matrix C is to the identity matrix Ip. The larger
the parameter κ, the closer the matrix C to Ip. The direct Lyapunov lasso for C
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unknown is given by

arg min
M,C∈Rp×p

C diag

1

2
∥A(Σ)vec(M) + vec(C)∥22 + λ∥M∥1 +

κ

2
∥vec(C)− vec(Ip)∥22 (4.23)

and the best subset selection (BSSLM) for C unknown is given by

argmin
M,C∈Rp×p

C diag

∥A(Σ)vec(M) + vec(C)∥22 + κ∥vec(C)− vec(Ip)∥22 (4.24)

s.t. ∥vec(M)∥0,off ≤ k.

We transform the optimization problems such that they follow a more standard form
of a quadratic program that eases analysis and computations. The transformation
appears in the master thesis by Szekeres [2023] that the author of this thesis co-
supervised. When optimizing over M and C diagonal jointly, we consider a vector of
variables that is given by

vec(M,C) = (m11,m21,m31, . . . ,mp1, . . . ,m1p, . . . ,mpp, c11, c22, . . . , cpp)
⊤ ∈ Rp2+p.

For C known, we only vectorize

vec(MΣ+ ΣM⊤) = A(Σ)vec(M),

while here, we need to find a matrix B(Σ) such that

vec(MΣ+ ΣM⊤ + C) = B(Σ)vec(M,C).

The matrix B(Σ) is the matrix A(Σ) with additional columns that emerge from
including the diagonal elements of C into the vector of variables. The p2 × (p2 + p)
matrix B(Σ) is given by

B(Σ)ij =


A(Σ)ij if i, j ∈ 1, . . . , p2,

1 if i = (k − 1)p+ k, j = p2 + k, k = 1, . . . , p,

0 otherwise.

This notation allows to formulate

∥A(Σ)vec(M) + vec(C)∥22 = vec(M,C)⊤B(Σ)⊤B(Σ)vec(M,C).

Additionally, we have to rephrase

∥vec(C)− vec(Ip)∥22 = vec(C)⊤vec(C)− 2vec(C)⊤vec(Ip) + vec(Ip)
⊤vec(Ip).

For this purpose, we introduce

Ωij =

{
κ if i = j and i, j ≥ p2,

0 otherwise,
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and the notation that 1p is the vector of ones of length p and that 0p×p is the matrix
of zeros of size p× p. This yields

κ

2
∥vec(C)− vec(Ip)∥22 =

1

2
vec(M,C)⊤Ωvec(M,C)− κ(0p×p,1p)

⊤vec(M,C) + 1p
⊤1p.

Using the notation that D(Σ) = B(Σ)⊤B(Σ) + Ω, we can rephrase the optimization
problems for the direct Lyapunov lasso and the best subset method.

Direct lyapunov lasso for C diagonally unknown:

arg min
M,C∈Rp×p

C diag

1

2
vec(M,C)⊤D(Σ)vec(M,C)− κ(0p×p,1p)

⊤vec(M,C) + λ∥M∥1 (4.25)

Best subset selection (BSSLM) for C diagonally unknown:

arg min
M,C∈Rp×p

C diag

vec(M,C)⊤D(Σ)vec(M,C)− 2κ(0p×p,1p)
⊤vec(M,C) (4.26)

s.t. ∥vec(M)∥0,off ≤ k

These optimization problems can easily be solved using the statistic software R [R Core
Team, 2021]. For the best subset selection, we additionally require a solver for MIQPs.
As for C known, we use the Gurobi optimizer Gurobi Optimization, LLC [2023]. We
do not want to go into too many technical details regarding the computations as
this is similar to the case C known. However, there are some subtle changes. The
optimization problem for the direct Lyapunov lasso cannot be passed to the glmnet
function [Friedman et al., 2010]. Therefore, the optimization package smde that is able
to deal with more general ℓ1-penalized quadratic forms is used [Hansen, 2014]. Using
a mildly modified version of (4.17) works for the best subset selection. Moreover, we
fix c11 = 1 to take into account the scaling invariance, see Remark 1.3.4.

4.4.1 Simulations - Diagonally Unknown Volatility Matrix

In this section, we show how the BSSLM for C diagonally unknown provides more
information on the unknown diagonal of the matrix C. At the same time, the way
the problem is set up with the tuning parameter κ, the estimation results for C are
not perfect. We investigate which choice of the tuning parameter leads to the most
favorable results for M and C. To conclude, we present a small simulation study that
indicates that the BSSLM can offer advantages over the direct Lyapunov lasso and
the loglik-0.01 method for C diagonally unknown.

The problems get computationally even harder when solving for M and C. Therefore,
we only consider problems of size p = 10. For the drift matrices, we consider the setting
outlined at the beginning of Section 4.2.3 with the difference that the edge probability
is set to d = 2/10. We consider 100 choices of drift matrices M∗. Simultaneously, we
select 100 diagonal matrices C∗ where the entries are selected according to N (1, σ) with
σ ∈ {0, 0.1, 0.5, 1, 10}. We hereby truncate smaller values at 0.1. Then, we generate
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n = 1000 observations from a multivariate Gaussian distribution with covariance
matrix solving the Lyapunov equation for the pairs (M∗, C∗). We apply (4.26) using
an equidistant grid of sparsity levels k ranging from k = 1 to k =

(
p+1
2

)
/3 of length

20. The time limit is set to 400 seconds per value of k. The initialization method
is the projected gradient descent with the number of runs being set to 50 and the
maximum number of iterations to 1000. We carry out the estimation procedure for
κ = {0.001, 0.01, 0.1, 1, 10, “∞′′}. With “∞′′ we refer to the case C known.

First, we standardize the estimated volatility matrix Ĉ by multiplying it with c∗11
to put both on the same scale. We calculate Cdiff = ∥Ĉ · c∗11 − C∗∥1 to measure the
difference between the estimated and the true covariance matrix. We average out
Cdiff over the 100 choices of pairs (M∗, C∗), but also calculate the minimum. We plot
both metrics for the different values of κ where the x-axis is given by the increasing
standard deviation σ. We display the results in Figure 4.13.
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Figure 4.13: The method applied is the BSSLM for C diagonally unknown (4.26). Left:
Cdiff averaged out over 100 randomly selected pairs (M∗, C∗). Right: The
minimum of Cdiff across 100 randomly selected pairs (M∗, C∗).

We observe that the tendencies for the average and minimum Cdiff across 100 randomly
selected pairs (M∗, C∗) are pretty similar. The larger the parameter κ is, the closer
the matrix C is to Ip. As we expect, the case C known leads to the worst results
as the matrix C is not estimated. The only exception is σ = 0, which is clear as
there is nothing estimated, and the matrix used for data generation equals the one
for estimation (C = Ip). The larger choices for κ, namely κ = {1, 10} produce
significantly worse results than the smaller choices κ = {0.001, 0.01, 0.1}. Even though
the difference between the smaller values of κ and the case C known is visible, the
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estimation results are far from perfect. Regarding the minimal difference, we observe
for κ = {0.01, 0.001} and σ = {0.5, 1, 10} that the results are four times better than
for C known. A deeper look into the estimates reveals that the way the penalty is
formed, the entries are mostly correctly ordered but are closer to the identity matrix
than those in C∗. This trade-off is made to make it a feasible optimization problem.

Estimating (M,C) not only provides information on the volatility matrix but might
also be beneficial for the estimation results for the drift matrix M . The simulations
used for Figure 4.13 also produce estimation results for M . We use the metrics
maximum accuracy (max acc), maximum f1-score (max f1), the area under the ROC
curve (auc), and the area under the precision curve (aupr). More details are provided
in Definition 3.5.11. We display the simulation results in Figure 4.14.

Interestingly, the results for C known are not the worst ones per se. The results for
κ = 10 are the worst, which is natural as this choice of κ essentially mimics the case
C known, but with a more involved problem structure. Not across all metrics, but in
particular for the max acc and the max f1-score, the lower κ-values seem to produce
better results than C known for σ = 0. The flexible setup for smaller κ-values might
be favorable in some instances. Generally, we observe that all approaches are much
worse for σ = 10 than for the milder changes in the diagonal. However, the decrease
for C known is much worse than for any other method. The results for the smaller
κ-values are stable for σ = {0, 0.1, 0.5}. The decrease for σ = {1, 10} for κ = 0.01
is the mildest. For Figure 4.14 we use datasets of size n = 1000. To provide more
insights, we carry out the same calculations for n = “∞′′ which means that no data is
sampled, but the true covariance matrix Σ∗ is directly inputted into the BSSLM. The
results are displayed in Figure 4.15.
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Figure 4.14: The method applied is the BSSLM for C diagonally unknown (4.26) and using
datasets of size n = 1000. The graphic shows four evaluation metrics comparing
support recovery averaged out over 100 randomly selected pairs (M∗, C∗).
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Figure 4.15: The method applied is the BSSLM for C diagonally unknown (4.26) and using
the true covariance matrices Σ̂ as input. The graphic shows four evaluation
metrics comparing support recovery averaged out over 100 randomly selected
pairs (M∗, C∗).
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The results confirm the observations that were previously made but are a little more
stable, which is not surprising as “perfect” data is used. The dominance of the method
of for κ = {0.001, 0.01} over C known is even more obvious. To conclude this section,
we use the exact same simulation setting, but we compare the BSSLM for C diagonally
unknown (4.26) with the direct Lyapunov lasso for C diagonally unknown (4.25) and
with the loglik-0.01 method (4.7). The κ-value is set to 0.01 for all methods. The
results are displayed in Figure 4.16.
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Figure 4.16: Comparing the model selection methods loglik-0.01 (4.7), direct Lyapunov lasso
(4.25) and the BSSLM (4.26) using four evaluation metrics comparing support
recovery averaged out over 100 randomly selected pairs (M∗, C∗).

We observe that the BSSLM performs best for all metrics except for the auc. This
holds true no matter what the variance of the diagonal entries of C∗ is. The inferior
results for the auc are also observed in Figure 4.5. The ℓ1-penalized methods tend to
produce estimates with many symmetric entries, for instance consider the examples in
Section 4.1. Oftentimes, they are present for large parts of the grid. This results for
relatively sparse graphs in a high tpr while the fpr is moderate. Therefore, the auc
values are quite good. The BSSLM includes variables more carefully which results in
inferior auc values, but better aupr values.

Overall, the results show that there exist cases where the BSSLM for C diagonally
unknown can offer advantages over the ℓ1-penalized methods and also provides infor-
mation about the volatility matrix C.
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PIP3

PIP2

Plcg
Mek

Raf

Jnk

P38

PKC

PKA
Akt

Erk

Figure 4.17: Estimated Sachs Network using the BSSLM for C diagonally unknown (4.26)
and selecting the structure according to the extended BIC (3.23) with γ = 1
(Dataset 1)

4.4.2 Application - Sachs Dataset with the BSSLM for Diagonally
Unknown Volatility Matrix and EBIC

This short section is an extension of Section 4.3.1 using the BSSLM for C diagonally
unknown (4.26). The simulation setup is exactly the same as in Section 4.3.1. The
only difference is that we jointly estimate the drift matrix M and the diagonal entries
of the volatility matrix C. The relative comparison of the entries in C is displayed
using the coloring presented in Figure 1.3. The results are displayed in Figure 4.17.

The estimate has more edges than the one for C known for dataset 2 presented in
Figure 4.12. Again, the estimate contains many important connections as the direct
enzyme-substrate relationship Raf→ Mek. For the other enzyme-substrate connection
PKA → Raf, Mek → Erk and Pcl-γ → PIP2 are either the reverse directions or treks
via other nodes present. The estimate contains an edge from Pcl-γ → PIP3 which
the authors Sachs et al. [2005] mention could be another potential true connection of
the network. It is also worth mentioning that the two “triangles” Jnk,P38,PKC and
Pcl-γ,PIP2 and PIP3 are well-estimated and connected contrary to the estimate for C
known. On the other side, the estimate contains more false positives. We observe that
most of the diagonal entries of the volatility matrix are estimated to be relatively equal
in size (pink), two are medium-sized (violet), and two are relatively small (turquoise).
Despite there not being a direct interpretation of these values by Sachs et al. [2005]
or by Varando and Hansen [2020] for this modeling setup, they provide additional
information and lead to a more stable estimation procedure.
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4.5 Summary of the Chapter

In this chapter, we connected the best subset selection, that recently gained popularity
due to modern solvers, with graphical continuous Lyapunov models. We showed that
the problem sizes that are considered in sparse regression settings do not translate
to the estimation of the slightly denser drift matrices in the context of GCLMs.
Therefore, the time consumption seems to be the bottleneck for a broader range of
applications. We conclude that problems up to sizes 25×25 can extensively be studied
in a reasonable amount of time when only estimating the drift matrix. Furthermore,
the strength of the BSSLM becomes particularly apparent when the active variables
are clearly distinguishable from the zero entries. There the method clearly dominates
the ℓ1-penalized methods. We also extended the BSSLM and the direct Lyapunov
lasso to the case C diagonally unknown where we showed that the BSSLM is also able
to dominate the ℓ1-penalized methods. Moreover, information about the diagonal of
the volatility matrix is provided. As a by-product we discovered that the ℓ1-penalized
methods tend to produce estimates with a lot of symmetry where the undirected
structure is much better estimated than the directed structure.
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Chapter 5

Conclusion of the Thesis

Content and Takeaway of the Thesis

The idea for graphical continuous Lyapunov models and the direct lyapunov lasso is
relatively new and was raised by Fitch [2019]. In independent work by Varando and
Hansen [2020], an additional likelihood-based estimation approach was introduced.
However, the theory for the GCLMs was very limited prior to this thesis. The goal of
this thesis was to kick-start the theoretical discussion of Lyapunov models and, at the
same time, explore alternative approaches to model selection.

In Chapter 2, we address a fundamental question for statistical models, namely,
parameter identifiability. We consider the setting where the volatility matrix is
assumed to be known. The main result is the proof that a GCLM based on a simple
graph is globally identifiable. This comes with many subtle observations concerning
the structure of A(Σ) and with an equivalence result regarding global identifiability for
simple graphs and diagonal volatility matrices. Furthermore, we provide a necessary
criterion for the generic identifiability of non-simple graphs. The results of this chapter
increase the validity of GCLMs as there exist unique solutions for the parameters in
MG,C , which becomes immediately necessary in Chapter 3. Furthermore, the overall
gain in information about the structure of A(Σ) might come in handy for further
theoretical analysis.

In Chapter 3, we show that the Direct Lyapunov Lasso can be, under certain as-
sumptions, a consistent estimation method for the drift matrix M when assuming the
volatility matrix C to be known. Despite the restrictiveness of the irrepresentability
condition, it is important to note that a consistent model selection method for GCLMs
exists. In addition, the probabilistic result has a reasonable sample size requirement
given the complexity of the structure of the “design matrix” A(Σ). The structure of
A(Σ) is also the cause why the irrepresentability condition is much more subtle than
in classical regression settings. We provide a detailed study in the context of GCLMs.

We start Chapter 4 by mentioning one of the main problems of the Direct Lyapunov
Lasso. The method tends to produce estimates with a lot of symmetry where the
undirected structure is much better estimated than the directed structure. This
motivated studying a variant of the best subset selection as a model selection method
for GCLMs. The problem allows direct control of the number of active variables but
is computationally expensive. Despite its computational bottleneck, we show that the
method is able to outperform the ℓ1-penalized methods in certain settings. This is
particularly obvious if the active variables(nonzero entries in the true drift matrix)
are clearly distinguishable from zero. We adapted the Direct Lyapunov Lasso from
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Chapter 3 and we also adapted the BSSLM such that they are able to jointly estimate
the drift matrix M and the diagonal of the volatility matrix C. For the BSSLM, we
gain information about the diagonal elements in C, but at the same time, we obtain
excellent simulation results for the drift matrix M in the considered setting.

We applied the Direct Lyapunov Lasso and the BSSLM in Chapter 3 and Chapter 4
onto a dataset containing the simultaneous measurements of 11 proteins. The way
the dataset is collected makes it an interesting application for GCLMs despite the
ambitious parametric assumptions. Using the extended Bayesian information criterion
in combination with the Direct Lyapunov Lasso or the BSSLM, we were able to present
estimates that recover large parts of an among scientists accepted protein-signalling
network.

Potential Subjects of further Research

The theory for structural equation models has been developed in a period of multiple
decades [Maathuis et al., 2019]. As the graphical continuous Lyapunov models are
supposed to compete with them, quite a few questions need to be studied. This thesis
is a good starting point for further analysis.

Starting from Chapter 2, the natural follow-up is to analyze parameter identifiability
for C (partially) unknown. A starting point could be analyzing C diagonally unknown.
Our observations regarding the structure of A(Σ) might be particularly helpful.

A related topic is the distributional equivalence of graphical continuous Lyapunov
models. For structural equation models, this is done by Nowzohour et al. [2017], for
instance. Solving this question immediately impacts other aspects of the graphical
models. For model selection, it is beneficial if sets of models can be formed that best
explain the observational data that is considered.

We extensively studied the model selection methods Direct Lyapunov Lasso in Chap-
ter 3 and the BSSLM in Chapter 4. A detailed study on support recovery for the case
C unknown could be an exciting subject of further research. Moreover, the symmetry
of the Direct Lyapunov Lasso estimates and the fact that the undirected structure is
very well estimated motivates a theoretical investigation of support recovery for the
undirected structure.

110



Appendix A

Failure of Entry-Wise Concentration
Inequalities

We mention in Chapter 3 that the careful analysis of the Hessian Γ = A(Σ)⊤A(Σ)
in Section 3.2 and the subsequent derivation of concentration results using spectral
properties of the Hessian in Section 3.4 is required to arrive at a reasonable sample size
requirement in Corollary 3.3.3. Previously, we attempted a derivation of an entry-wise
concentration result. This is of course possible, however, yields a much higher sample
size requirement. In this section, we present the entry-wise analysis that reveals some
difficulties when dealing with the direct Lyapunov lasso compared to Lasso regression
or usual Gaussian graphical models; for instance, consider the work by Lin et al. [2016].
We show that the complexity obtained by the entry-wise concentration inequalities
(n = Ω(log pd̃2p2)) is much higher than the one that we obtain in Corollary 3.3.3
(n = Ω(dp)). By d̃ we denote the total number of non-zero entries in the true drift
matrix M∗

As in Section 3.4, the derivation of the concentration result is based on a concentration
result for Gaussian covariance matrices, [Ravikumar et al., 2011, Lemma 1].

Lemma A.0.1. Consider a zero-mean random vector (X1, . . . , Xp) with covariance
Σ∗ such that each Xi/

√
Σ∗
ii is sub-Gaussian with parameter σ. Given n i.i.d. samples,

the associated sample covariance Σ̂n satisfies the tail bound

P[|Σ̂n
ij − Σ∗

ij | > ϵ] ≤ 4 exp

{
− nϵ2

128(1 + 4σ2)2maxi(Σ∗
ii)

2

}
for all ϵ ∈ (0, maxi(Σ

∗
ii)8(1 + 4σ2)).

Throughout the remainder of this section, we use the notation

∆Σ := Σ̂− Σ∗ and c∗ = ∥Σ∗∥∞ (A.1)

with ∆Γ and ∆g being defined equivalently. Applying a union bound, the above result
can be transformed to a concentration result for ∥∆Σ∥∞.

Lemma A.0.2. Under the assumptions of A.0.1 it holds that

P(∥∆Σ∥∞ > ϵ) ≤ 4

(
p+ 1

2

)
exp

{
− nϵ2

128(1 + 4σ2)2maxi(Σ∗
ii)

2

}
.

Proof. Union bound and application of Lemma A.0.1. □
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At this point an improvement may be possible by deriving or applying direct concen-
tration inequalities for ∥∆Σ∥∞. To our knowledge, there is no such result yet. The
subsequent calculations to arrive at concentration inequalities for g,Γ are deterministic.
Similar to Lemma 3.4.2 and Lemma 3.4.3, we have to express ∥∆Γ∥∞ and ∥∆g∥∞ by
∥∆Σ∥∞ to apply Lemma A.0.2.

Lemma A.0.3. Let ∆Σ and c∗ be defined as in (A.1). For the estimation error of
the product of two covariances it holds that

|Σ̂ijΣ̂kl − Σ∗
ijΣ

∗
kl| ≤ 2c∗∥∆Σ∥∞ + ∥∆Σ∥2∞. (A.2)

Proof. We define wij = Σ̂ij − Σ∗
ij , then

Σ̂ijΣ̂kl − Σ∗
ijΣ

∗
kl =(Σ∗

ij + wij)(Σ
∗
kl + w∗

kl)− Σ∗
ijΣ

∗
kl

=Σ∗
ijwkl + wijΣ

∗
kl + wijwkl

Using the definition of c∗ and δ we obtain

|Σ̂ijΣ̂kl − Σ∗
ijΣ

∗
kl| ≤ c∗∥∆Σ∥∞ + ∥∆Σ∥∞c∗ + ∥∆Σ∥2∞ = 2c∗∥∆Σ∥∞ + ∥∆Σ∥2∞

□

Applying a union bound yields a straightforward result for Γ as well.

Lemma A.0.4. Let ∆Σ,∆Γ and c∗ be defined as in (A.1). For the maximal error in
Γ it holds that

∥∆Γ∥∞ ≤ (2p+ 2)(2c∗∥∆Σ∥∞ + ∥∆Σ∥2∞).

Proof. Note that the most critical entries in Γ = A(Σ)⊤A(Σ) consist of a sum of
length p of products of two covariances where one coefficient is 4 and the remaining
are 2 (A visualization of the structure of A(Σ) for p = 3 is given in Example 3.2.1).
Thus, using Lemma A.0.3 we can bound

∥∆Γ∥∞ ≤ 4(2c∗∥∆Σ∥∞ + ∥∆Σ∥2∞) + 2(p− 1)(2c∗∥∆Σ∥∞ + ∥∆Σ∥2∞)

= (2p+ 2)(2c∗∥∆Σ∥∞ + ∥∆Σ∥2∞).

□

In fact, most of the entries in Γ are not of the type of the worst case entries in
Lemma A.0.4, but can be bounded by 2(2c∗∥∆Σ∥∞ + ∥∆Σ∥2∞). This come in handy
when bounding |||∆Γ|||∞ or |||(∆Γ)·,S |||∞ for S = {(i, j) : i, j ∈ [p]}. Depending on
the length of the entries included in the rows of Γ·,S we either add (2c∗δ + δ) or
(2p+ 2)(2c∗δ + δ) out of the modular system to the bound.

Finally, we formulate the concentration inequality for Γ. We will require that ϵ
2p+6 < 1.

This is only for technical reasons and is always fulfilled for a small ϵ.
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Lemma A.0.5. Let the same assumption apply as in Lemma A.0.1. Furthermore,
let ϵ

2p+6 < 1 and let ∆Σ, ∆Σ, c
∗ be as in (A.1). Let c∗∗ =

√
(c∗)2 + 1 + c∗. Then it

holds that

P(∥∆Γ∥∞ > ϵ) < 4

(
p+ 1

2

)
exp

{
− n (ϵ/(2p+ 6)c∗∗)2

128(1 + 4σ2)2maxi(Σ∗
ii)

2

}
.

Proof. Making use of the inequality presented in Lemma A.0.4 we obtain

P(∥∆Γ∥∞ > ϵ) ≤ P((2p+ 6)(2c∗∥∆Γ∥∞ + ∥∆Γ∥2∞) > ϵ).

To bound ∥∆Γ∥∞ we solve the quadratic equation

∥∆Γ∥2∞ + 2c∗∥∆Γ∥∞ −
ϵ

(2p+ 2)
= 0.

After simplification we obtain

∥∆Γ∥∞ = −c∗ ±
√

(c∗)2 +
ϵ

2p+ 2
.

Since ∥∆Γ∥∞ is supposed to be positive, we only take

∥∆Γ∥∞ = −c∗ +
√
(c∗)2 +

ϵ

2p+ 2

into account. Therefore

P((2p+ 6)(2c∗∥∆Γ∥∞ + ∥∆Γ∥2∞) > ϵ) = P
(
∥∆Σ∥∞ > −c∗ +

√
(c∗)2 +

ϵ

2p+ 2

)
.

Under the assumption that ϵ
2p+2 < 1 we obtain

−c∗ +
√

(c∗)2 +
ϵ

2p+ 2
>

ϵ/(2p+ 2)√
(c∗)2 + 1 + c∗

=
ϵ/(2p+ 2)

c∗∗
.

In total we can bound
P(∥∆Γ∥∞ > ϵ)

through

P
(
∥∆Σ∥∞ >

ϵ

(2p+ 2)c∗∗

)
.

Employing Lemma A.0.2 leads to

P
(
∥∆Σ∥∞ >

ϵ

(2p+ 2)c∗∗

)
≤ 4

(
p+ 1

2

)
exp

{
− n (ϵ/(2p+ 2)c∗∗)2

128(1 + 4σ2)2maxi(Σ∗
ii)

2

}
.

□

We define Cmax := max
i
|Cii|. Remember that we assume C to be diagonal as we only

consider directed graphs. We formulate the concentration inequality for g which places
less stringent conditions on the sample size than the one for Γ.
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Lemma A.0.6. Let the same assumption apply as in Lemma A.0.1 and let δ, c∗ be
as in (A.1), then it holds that

P(∥∆g∥∞ > ϵ) ≤ 4

(
p+ 1

2

)
exp

{
− n (ϵ/2Cmax)

2

128(1 + 4σ2)2maxi(Σ∗
ii)

2

}
.

Proof. Inserting the definition of g we obtain

∥∆g∥∞ = 2∥vec(C)TA(Σ̂)− vec(C)TA(Σ∗)∥∞
= 2∥vec(C)T · (A(Σ̂)−A(Σ∗))∥∞
≤ 2Cmax · ∥∆Σ∥∞.

Therefore

P(∥∆g∥∞ > ϵ) ≤ P
(
∥∆Σ∥∞ >

ϵ

2Cmax

)
≤ 4

(
p+ 1

2

)
exp

{
− n(ϵ/2Cmax)

2

128(1 + 4σ2)2maxi(Σ∗
ii)

2

}
.

□

The Lemma above indicates that the concentration inequality for g is not as important
as the concentration inequality for Γ when aiming for precision with a minimal amount
of samples required. The exact amount is ultimately determined when using the
concentration inequalities on an adapted version of Theorem 1 in Lin et al. [2016] or,
phrased differently, on an adapted version of Theorem 3.3.1 to arrive at a probabilistic
guarantee. We do not present the whole Theorem, but only the requirements that
influence the sample size when deriving a probabilistic result. Instead of requiring
that |||∆Γ|||∞ < ϵ1 for ϵ1 > 0 and ϵ1 ≤ α/(6cΓ∗) as in Theorem 3.3.1, it has to hold
that ∥∆Γ∥∞ < ϵ1 and 2d̃ϵ1 ≤ α/(6cΓ∗) with d̃ being the total number of non-zero
entries in the true drift matrix M∗.

Lemma A.0.7. Let

ϵ1 =

√
c̃(log pτ1 + log 4)

n
,

then P (∥∆Γ∥∞ > ϵ1) < 1 if

τ1 ≥
(
log 4

log p
+ 2

)
max

{
(c∗∗)2(2p+ 2)2, 4C2

max

}
.

Proof. Without changing the order of magnitude of the overall result we substitute
the factor

(
p+1
2

)
with p2 in Lemma A.0.5 as

(
p+1
2

)
≤ p2. Inserting ϵ1 into the bound

P (∥∆Γ∥∞ > ϵ1) < 41−1/(2p+2)2(c∗∗)2p2−τ1/(2p+2)2(c∗∗)2 < 4p2−τ1/(2p+2)2(c∗∗)2 (A.3)

We choose τ1 such that the right side in (A.3) is less than 1 making it a valid

probabilistic statement. We require that p
2− τ1

(2p+2)2(c∗∗)2 is less than 1
4 . Therefore, we

have to solve

px ≤ 1

4
⇐⇒ x ≤ − log 4

log p
.
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It has to hold that

2− τ1
(2p+ 2)2(c∗∗)2

≤ − log 4

log p
.

Therefore

τ1 ≥
(
log 4

log p
+ 2

)
(c∗∗)2(2p+ 2)2.

This implies that P(∥∆Γ∥∞) > ϵ1) < 1 and more precisely

P(∥∆Γ∥∞) > ϵ1) < 41−1/(2p+2)2(c∗∗)2p2−τ1/(2p+2)2(c∗∗)2

for our choice of τ1. □

We mentioned that it also has to hold that 2d̃ϵ1 ≤ α/(6cΓ∗). Using

n > 4c̃ c21d̃
2(log pτ1 + log 4) (A.4)

this holds true. In total this results in requiring that n = Ω(log pd̃2p2) which is
much worse than n = Ω(dp) in Corollary 3.3.3. This is quite intriguing as entry-wise
concentration inequalities are oftentimes used in the context of Lasso problems [Hastie
et al., 2015] and in the context of Gaussian graphical models [Ravikumar et al., 2011].

Appendix B

Additional Simulations

B.1 Direct Lyapunov Lasso with BIC and EBIC

In this section, we apply the direct Lyapunov lasso with BIC or EBIC on synthetic
data. Consider the graph structures in Figure B.1.1. Instead of 5 nodes, we consider
these graphs with 11 nodes matching the number of variables in the dataset by Sachs
et al. [2005]. We fix C = 2Ip and consider M∗ supported over the path or the double
path. Furthermore, we set the diagonal entries in M∗ to be -2 and choose 1 for the
off-diagonal entries. We generate 100 times n = {100, 500, 1000, 5000, 10000, 100000}
observations from a multivariate Gaussian distribution N(0,Σ∗) with covariance
matrix Σ∗ = Σ(M∗, C) solving the Lyapunov equation for (M∗, C). As introduced,
we apply the direct Lyapunov lasso with the BIC criterion or the EBIC criterion
to obtain an estimated drift matrix M̂ . For each value of n and for both graph
structures, we calculate the true positive rate (TPR) and the false discovery rate
(FDR) comparing the estimate M̂ with the true drift matrix M∗ based on the directed
graph and the skeleton. For the TPR we refer to Definition 3.5.11 and the FDR is
given by fp/(fp+ tp).
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1 2 3 4 5 1 2 3 4 5

Figure B.1.1: Left: The path 1 to 5. Right: The Double Path from 1 to 5.
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Figure B.1.2: TPR (true positive rate) and FDR (false discovery rate) of the estimated drift
matrix obtained with the direct Lyapunov lasso (3.4) and BIC for increasing
sample size. The results are averaged over 100 datasets generated by the same
drift matrix.

In Figure B.1.2 we present the estimation results for the BIC criterion. We label the
results only using the skeleton by “ud” for “undirected structure”. With increasing
sample size we observe an increase in the TPR. For the path and the skeleton of the
double path, we observe a TPR of 1 for n = 100000. This translates to all positive
entries in the true drift matrix M∗ being recovered by the estimate M̂ . Only for the
directed double path not all nonzero entries are recovered, but we observe an increasing
trend. The plot of the FDR is intriguing. When only considering the directed path
and the directed double path, we observe a surprisingly high FDR of around 0.5 that
does not decrease substantially for increasing sample size. This means that only half
of the nonzero entries present in M̂ are also present in M∗. At first glance, this might
seem quite bad. However, when looking at the results for the undirected structure,
we observe that the FDR is quite low for both the path and the double path for
n ≥ 500. This can only be explained in one way. Many of the false positive entries in
M̂ coincide with the reversed edges of the path and the double path. The tendency of
the direct Lyapunov lasso to select symmetric estimates reoccurs in Section 4.1.
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B.1 Direct Lyapunov Lasso with BIC and EBIC

Legend double_path_ud double_path path_ud path

0.25

0.50

0.75

1.00

100 500 1000 5000 10000 100000
sample_size_n

T
P

R

0.0

0.2

0.4

0.6

100 500 1000 5000 10000 100000
sample_size_n

F
D

R

Figure B.1.3: TPR (true positive rate) and FDR (false discovery rate) of the estimated drift
matrix obtained with the direct Lyapunov lasso (3.4) and EBIC with γ = 1 for
increasing sample size. The results are averaged over 100 datasets generated
by the same drift matrix.

In Figure B.1.3 we present the estimation results for the EBIC criterion with γ = 1.
The general behaviour that we observed for the direct Lyapunov lasso with the BIC
criterion in Figure B.1.2 also applies to the simulations with EBIC. The differences
are very subtle. The TPR increases slightly faster with the BIC criterion than with
the EBIC criterion. While the TPR is already around 1 for the skeleton of the path
and double path for n = 500, this only happens with the EBIC for n = 1000. At the
same time, we observe a slightly lower FDR for the EBIC criterion. This holds true
for n ≥ 500, but is particularly interesting for n = 500, n = 1000 as the Sachs data set
if of sizes n = 707 to n = 927.

Overall, both methods seem to be a decent choice for model selection alongside with
direct Lyapunov lasso when considering synthetic data. In particular, estimating
the undirected structure seems to work very well. The theoretical derivation of the
BIC and EBIC in Section 3.7.2 is also somewhat reflected by the simulation results.
The BIC tends to produce estimates with a higher TPR for sample sizes around
n = 500, 1000. At the same time, the EBIC results in a lower FDR for these sample
sizes. Asymptotically, the TPR of the directed and undirected structure is increasing
for both selection methods with the TPR being 1 for the undirected structure for
higher sample sizes. Neglecting the false positives that are reversed edges of those
being present in the true drift matrix, we observe an overall low FDR.
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B.2 Additional Simulations - Comparing the BSSLM w.r.t.
Initializations

Here, we present simulation results for varying MIPGap [Gurobi Optimization, LLC,
2023]. We consider the same simulation setting as in Section 4.2.3. The metrics
considered are displayed in Definition 3.5.11. The results are displayed in Figure B.2.1.
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Figure B.2.1: The method applied is the BSSLM (4.17) using C = 2Ip and using the
projected gradient descent initialization a) in Section 4.2.2. The results are
displayed for the varying tuning parameter MIPGap (mio gap). The number
in the label refers to the problem size p.

We observe that across all problem sizes there is little to no difference between MIPGap
0.001 and MIPGap 0.01. For coarser MIPGaps, there is a more significant decrease in
some metrics. Therefore, we select the MIPGap 0.01 as the solution can be certified
optimal in more cases due to the milder requirement.

B.3 BSSLM - Time Consumption and Comparison of
Initializations - Additional Information

In this section, we provide additional information for Section 4.2.3.
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Table B.1: Summary statistics of the time used to calculate the solution of (4.17) for one
value of k across 40 randomly selected drift matrices M∗. The initialization
methods are proj grad, lasso and plain which are labelled as methods a)-c) in
Section 4.2.2.

prob. size Min. 1st Qu. Median Mean 3rd Qu. Max.

p=10 proj grad 0.0920 0.1643 0.2032 8.4511 0.4515 322.5318

p=10 lasso 0.0537 0.1130 0.5519 42.0854 0.9855 400.6142

p=10 plain 0.1014 0.2562 0.5500 10.7348 1.0670 401.0197

p=15 proj grad 0.3585 2.9118 8.0261 78.2780 30.0132 401.1775

p=15 lasso 0.116 1.249 7.452 123.788 400.380 400.771

p=15 plain 1.066 8.463 19.068 117.058 207.980 400.708

p=20 proj grad 40.81 233.67 401.82 324.86 403.26 404.77

p=20 lasso 3.19 196.30 400.97 306.33 401.17 402.36

p=20 plain 24.33 188.15 400.92 308.06 401.22 401.67

Appendix C

Auxiliary Results

In this section, we present auxilary results that are needed in this work. The first two
results concern the understanding of the projected gradient descent initialization in
Section 4.2.2. They are already presented in the work by Bertsimas et al. [2016] when
the initialization method was introduced for the Best Subset method for regression
problems. In Lemma C.0.3 we present the derivative of eq. (4.10) which is the
optimization problem introduced by Varando and Hansen [2020].

Proposition C.0.1 (Proposition 3 in [Bertsimas et al., 2016]). If a vector vec(M̂) is
an optimal solution to

vec(M̂) ∈ argmin
∥vec(M)∥0≤k

∥vec(M)− c∥22, (C.1)

then vec(M) retains the k largest (in absolute value) elements of c ∈ Rp and sets
the rest to zero, i.e., if |c(1)| ≥ |c(2)| ≥ · · · ≥ |c(p)|, denote the ordered values of the
absolute values of the vector c, then

vec(M̂)i =

{
ci, if i ∈ |(1), . . . , (k)|,
0, otherwise,

where vec(M̂)i is the i-th coordinate of vec(M̂). We will denote the set of solutions to
problem (C.1) by the notation Hk(c).

Proposition C.0.2 (Proposition 4 [Bertsimas et al., 2016] based on [Nesterov, 2013]).
For a convex function g(vec(M)) satisfying

∥∇g(vec(M))−∇g(vec(M̃))∥ ≤ l∥vec(M)− vec(M̃)∥
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and for any L ≥ l, we have

g(vec(M̃)) ≤ QL(vec(M̃), vec(M)) := g(vec(M)) +
L

2
∥vec(M̃)− vec(M)∥ (C.2)

+⟨∇g(vec(M)), vec(M̃)− vec(M)⟩

for all vec(M̃), vec(M) with equality holding at vec(M̃) = vec(M).

Following [Bertsimas et al., 2016, p. 829] and applying Proposition C.0.1, it holds that

argmin
∥vec(M̃)∥0≤k

QL(vec(M̃), vec(M)) = Hk

(
vec(M)− 1

L
∇g(vec(M))

)
.

Lemma C.0.3. The derivative for the first summand in eq. (4.10) is

∇(M,C)L(Σ(M,C)) = (2Σ(M,C)Σ(M⊤,∇L), 2Σ(M⊤,∇L)) (C.3)

where

∇L(Σ) = dL(Σ)

dΣ
= Σ−1 − Σ−1Σ̂Σ−1.

The derivative for the second summand is

∇(M,C) λ∥M∥1 =
(
Ẑ,0

)
(C.4)

where 0 is a p× p matrix of zeros.

Ẑij =

{
sign(Mij) if Mij ̸= 0,

∈ [−1, 1] if Mij = 0.
(C.5)

The derivative of the third summand is

∇(M,C) κ∥C − Ip∥2F = κ(0, C⊤ − 2Ip).

Proof. For the function L(Σ(M,C)) = log detΣ(M,C) + tr(Σ̂(Σ(M,C))−1), we
obtain by differentiating with respect to (M,C) and using Proposition 3.1 by Varando
and Hansen [2020]:

∇(M,C)L(Σ(M,C)) = (2Σ(M,C)Σ(M⊤,∇L), 2Σ(M⊤,∇L))

By ∇L we denote the derivative of the function Σ → L(Σ). Using the identity
( d
dX tr(AX−1B) = −X−1BAX−1) given in [Bernstein, 2018, Proposition 10.7.3.] we
obtain

d

dΣ
tr(Σ̂Σ−1) = −Σ−1Σ̂Σ−1.
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Using the identity ( d
dX log detAXB = B(AXB)−1A) given in [Bernstein, 2018, Propo-

sition 10.7.2.] we obtain

d

dΣ
log detΣ = Σ−1.

This yields

∇L(Σ) = dL(Σ)

dΣ
= Σ−1 − Σ−1Σ̂Σ−1.

The second summand is directly obtained by calculating the subgradient of the ℓ1-norm.
For the third summand, we calculate

d

dC
∥C − Ip∥2F =

d

dC
tr((C − Ip)

⊤(C − Ip))

=
d

dC
tr(C⊤C − C⊤Ip − IpC + Ip)

=
d

dC
tr(C⊤C)− d

dC
tr(C⊤Ip)−

d

dC
tr(IpC)

= C⊤ − Ip − IP

= C⊤ − 2Ip.

This results in

∇(M,C) κ∥C − Ip∥2F = κ(0, C⊤ − 2Ip).

□
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