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Abstract

This dissertation introduces an innovative framework that unifies medical informatics, robotics, and orthope-
dics. It responds to the key challenge of achieving real-time, objective data for advanced joint analysis and
interventions, particularly in orthopedic patient care. To address this need, the work is organized into four
components—Wearable Technology, Diagnostic and Planning Algorithms, Robotic Testing Platforms, and
Optimization Algorithms—forming a comprehensive toolkit for clinicians and researchers.

Orthopedic care relies on timely, quantitative assessment of patient status. Two wearable solutions
were therefore developed. First, an Internal Measurement Unit (IMU) system for gait analysis consistently
matched near–Vicon-level precision, with a mean squared deviation of approximately 4.0° versus 18.8° using
single-camera methods. Second, a force-controlled exoskeleton for finger rehabilitation in Chronic Regional
Pain Syndrome (CRPS) patients improved QuickDASH scores (e.g., 50% down to 45%) in a six-week pilot
study. Although sample size was small, both systems showed promise for integrating quantitative data into
everyday orthopedic management.

AI-driven methods were also leveraged to automate diagnostic and surgical tasks. In detecting bone
tumors from radiographs, a multitask deep learning model achieved an accuracy of correctly classifying
primary bone tumors malignancy of over 80 %, approaching expert-level performance. For lower-limb
alignment analyses, a separate AI system processed long-leg radiographs four times faster than orthopedic
specialists while attaining an interrater reliability up to 0.99. Extending this to osteotomy planning resulted
in accuracy levels that matched or surpassed clinical benchmarks, substantially cutting manual workload
and illustrating AI’s capacity to streamline workflow and boost clinical precision.

Another persistent challenge in orthopedics lies in robustly measuring how joints react to varying surgeries
and rehab regimes. To meet this challenge, new robotic test benches were designed for the knee and hand.
Repeated cadaveric tests showed that merely 2° of malalignment in a femoral implant can disrupt knee
stability by over 6°, underscoring the critical importance of precise alignment. For hand biomechanics, an
eight-motor force-controlled platform reproduced complex finger movements, capturing grip forces up to
1.9 N. Although these platforms require specialized technical expertise, their reliability, repeatability, and
capacity for rich biomechanical data collection hold great potential for personalized intervention planning.

Finally, a key bottleneck in biomechanical research is building accurate digital twins that reflect complex
musculoskeletal interactions. Two AI-driven optimizers were therefore created: (1) an autoencoder-based
tool for refining kinematic parameters, showing reconstruction errors as low as 10e − 5, and (2) a rein-
forcement learning algorithm that adjusts dynamic parameters via proximal policy optimization, improving
simulation fidelity by over 30%. While both methods depend on specialized data curation, the resulting
gains in model accuracy broaden the opportunities for individualized orthopedic treatment.

In essence, this dissertation provides a comprehensive approach that incorporates wearable sensing,
AI-based surgical planning, robotic benchmarking and advanced optimization, demonstrating how robotics
and machine learning can solve long-standing problems in orthopaedic care. The key innovation is to
combine these elements into a single adaptive framework that ultimately leads to personalized, efficient and
evidence-based orthopaedic interventions.
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1 Introduction

1.1 Motivation

The global increase in the elderly population is sharply raising the demand for specialized healthcare
services, especially in orthopedics. In Germany alone, projections indicate that by 2055, the elderly
population requiring long-term orthopedic care will increase by 1.8 million [14]. This demographic trend
underscores the critical need for innovative solutions in managing and treating age-related orthopedic
conditions, such as joint degeneration and osteoarthritis. As people grow older, the health of their joints
becomes a key factor in their overall quality of life. Being able to move without pain is not just a part of
well-being; it is essential to it [15]. Therefore, the increasing number of orthopedic issues among the elderly
highlights the urgent need to prioritize joint health in medical care, ensuring that the later years of life are
characterized by continued mobility and satisfaction [16]. Compounding this challenge is a simultaneous
shift in the healthcare sector itself. The escalating demand for orthopedic care, coupled with a diminishing
healthcare workforce, is leading to a crisis in this field [17]. It highlights the urgent need for innovative
approaches to streamline orthopedic care, while making it more efficient and effective. This situation
highlights the need for rapid and innovative development of our current healthcare models to close the gap
between patient needs and available care.

In this scenario, the potential of robotics and Artificial Intelligence (AI) presents a significant opportunity.
These technologies, known for their precision, analytical capabilities, and consistent performance, are
well-suited to address the complex challenges in healthcare. The integration of AI and robotics in medical
settings is poised to improve care quality, enhancing diagnostic accuracy, surgical precision, and consistent
patient outcomes across different groups [18]. In addressing these orthopedic healthcare challenges,
the emerging roles of AI and robotics are not just futuristic concepts but present-day realities. These
technologies have already begun to transform various sectors, and their application in orthopedic care offers
a promising pathway to address these critical healthcare needs. Their track record in improving efficiency,
reducing human error, and driving innovation is a strong indicator of their potential impact on orthopedic
healthcare [19].

Orthopedics, a field often at the forefront of technological innovation, is uniquely positioned to leverage
the advancing capabilities of AI and robotics. The specific challenges that these technologies can address
include early detection of joint degeneration, tailored surgical planning, and postoperative monitoring for
optimal rehabilitation. By incorporating AI and robotics into orthopedic practice, the field can evolve to meet
the growing demands for joint health care, particularly in the context of an aging population. Embracing
these technologies offers a crucial opportunity to transform the treatment of orthopedic conditions, aiming
to enhance mobility, reduce pain, and improve the quality of life for the elderly. This shift not only promises
better patient outcome but also helps alleviate the pressure on healthcare systems. This thesis investigates
the interface between technology and orthopaedic care and outlines a vision for a future where technology
plays a central role in healing and support [20, 21].

1.2 Problem Statement

The drive to incorporate AI and robotics into orthopedic clinical practices faces considerable challenges,
despite the recognized potential to revolutionize the sector. The integration is primarily hindered by
technological limitations, resistance to change in clinical environments, and the inherently complex nature
of orthopedic care. These barriers underscore the critical need for tailored innovations that can seamlessly
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mesh with the unique demands of orthopedic treatments and enable smoother adoption into clinical
workflows [22, 23].

Compounding these integration challenges, the orthopedic clinical setting presents its own unique hurdles,
including patient diversity, case complexity, and the necessity for real-time decision-making. The existent
technological advancements, as promising as they may be, frequently fall short of offering targeted solutions
to these specialized needs. This discrepancy between potential and practical benefits necessitates the
development of AI and robotics solutions that are specifically tailored to the particular clinical requirements
of orthopaedic care [22].

Furthermore, the adoption of AI tools and robotic devices within healthcare practices is impeded by
their failure to integrate seamlessly into everyday clinical operations, which often necessitates additional
training or infrastructural modifications. This challenge is extended by an increasing demand for innovative
wearable devices driven by a surge in orthopedic conditions, especially among the aging population. These
wearables, essential for effective data collection and tailored for various stages of treatment, must enable
ongoing patient monitoring and feedback, highlighting the importance of developing devices that are both
efficient and specifically designed for orthopedic applications [22, 23].

Critical stages in the orthopedic treatment continuum, such as the preoperative and intraoperative
phases, further illustrate the necessity for sophisticated AI tools that offer automated decision support,
detailed operational planning, and comprehensive risk assessments. Advanced testbenches that provide
real-time feedback during surgical procedures underscore the need for precision and the ability to make
real-time adjustments. Moreover, the future of orthopedic care leans towards personalized treatments,
requiring the development of optimization algorithms capable of generating individualized models based on
extensive patient data. This approach promises to significantly enhance treatment efficacy by customizing
interventions to match each patient’s specific anatomical and health conditions [22, 24].

Ultimately, progress in orthopaedic care depends not only on the development of new AI and robotic
technologies, but above all on their successful integration. This involves not only optimizing and tailoring
these innovations to meet the specific demands of orthopedic treatments but also ensuring they function
cohesively to improve patient outcomes and streamline clinical operations [22, 23].

1.3 Research Questions and Contributions

Building on the identified challenges within the orthopedic field, this thesis aims to address the critical
gaps in technology integration and the application of AI and robotics in clinical settings. The focus is on
exploring innovative solutions that can be seamlessly integrated into existing clinical workflows, thereby
enhancing the precision and effectiveness of orthopedic care. The research questions are formulated to
examine the potential of these technologies in improving diagnostic accuracy, surgical planning, and patient
outcomes. They also seek to understand the challenges that must be overcome to realize the full benefits of
these technological advancements. In the following, the questions are listed first, followed by the resulting
contributions. These contributions can be summarized in Figure 1.1.

I. Integration of wearable and robotic technologies into clinical practice:

How can wearable and robotic technologies be effectively integrated into clinical orthopaedic workflows to
provide real-time objective data for the prevention and rehabilitation of joint disease?

This central question aims to find viable methods of incorporating these advanced technologies into
current medical protocols to improve the effectiveness of patient care and pave the way for customized
treatment approaches.

To address this question, two mechatronic innovations are presented in our research. The first is the
development of a low-cost IMU system designed for precise gait analysis to be rigorously tested in a
volunteer study. This system is able to improve the prevention of joint disease by providing important real-
time data that can be seamlessly integrated into clinical operations. The second innovation is a mechatronic
exoskeleton adapted to finger rehabilitation. This exoskeleton is unique in its ability to measure internal
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Figure 1.1 Overview of the individual research areas of the dissertation, which result from the four central research
questions (main topics) and the associated contributions to these questions.

finger loads while capturing comprehensive motion data and has been clinically validated to confirm its
effectiveness and integration capability in therapeutic situations. Overall, these devices will provide clinicians
with accurate, objective data for the prevention and rehabilitation of joint disorders and demonstrate their
practical application and potential for integration into clinical workflows through patient studies.

II. Leveraging AI in Orthopedic Diagnostics and Surgical Planning:

What are the potential benefits and challenges of using AI for image analysis in the diagnostic and surgical
planning phase, especially for orthopedic tasks such as bone tumor detection, kinematic alignment analysis,
and formulation of preoperative surgical planning strategies?

This question is about the use of AI technologies to improve the accuracy of orthopaedic diagnostics and
surgical planning. By focusing on critical areas such as bone tumor detection and alignment analysis, the
goal is to determine how AI can not only improve diagnostic accuracy, but also minimize planning errors
and tailor treatments to individual patient needs.

In answering this question, three AI-powered technological advances are at the center of this research.
The first innovation involves the development of a dedicated data annotation application tailored to or-
thopaedic imaging, designed to enable fast, accurate and intuitive analysis and interpretation of medical
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images. Next, AI algorithms for the detection of bone tumors will be presented to increase the early detection
rate and accuracy of diagnoses. Finally, the development of an automatic alignment analysis method for
the lower limbs represents a new approach to improving the precision of surgical planning. Based on the
alignment analysis, a preoperative planning system is developed to relieve the burden on the orthopaedic
diagnostics department. By providing clinicians with highly accurate, objective data and automated analysis
tools, these advances demonstrate their potential for practical application and seamless integration into
clinical workflows, as evidenced by extensive validation studies.

III. Robotic testbenches for joint analysis:

How can the projected benefits of robotics be used to perform detailed and comprehensive analyses of
human joints, with an orthopaedic focus on the complexity of the knee and hand?

This central question investigates how robotic testbeds can be utilized to conduct comprehensive analysis
of human joints, with a particular emphasis on the biomechanics of knee and hand movements. The
objective is to investigate how advanced robotic systems, capable of free translation and rotation, can
enhance our understanding of joint mechanics and support surgical interventions.

For this, our research advances the field of robotic testbeds for joint analysis. The first contribution is
the formulation of a suitable control algorithm in conjunction with the use of a 6-Degree of Freedom (DOF)
robotic arm test rig specifically tailored to the knee joint. This system enables a detailed investigation of the
knee joint mechanics and grants new insights into its biomechanical properties.

In addition, a special robotic test bench for the hand joint has been developed, introducing an innovative
testing device that captures measurement data with unprecedented detail, including precise motion se-
quences and force measurements of the muscles involved. This advance offers new insights into the careful
analysis of the musculoskeletal system of the hand. These innovations allow the test bed to generate high
quality data for biomechanical modeling, demonstrating its significant potential to improve orthopaedic care
and predictive accuracy.

IV. AI for biomechanical optimization:

How can AI algorithms be applied to highly individualized biomechanical systems to improve kinematic and
dynamic modeling and thereby create more accurate and efficient models for the analysis of joint behavior?

This question addresses the role of AI in the field of biomechanics and aims to improve the development
of models that mimic human joint behavior. By achieving higher levels of accuracy and efficiency, these
models will significantly increase the potential for the advancement of surgical techniques and rehabilitation
methods.

Our research contributes to the field of AI in biomechanical optimization through two key innovations.
First, the application of differentiable forward kinematics in human joint modeling is presented. This
approach enables the creation of models that can simulate and learn the complex movements of human
joints accurately, allowing a more comprehensive understanding of joint mechanics. Second, a model-free
Proximal Policy Optimization (PPO) approach is implemented for the dynamic optimization of biomechanical
systems. This technique represents an advance in optimizing the dynamic aspects of joint motion models
and provides a new level of precision and efficiency in the prediction and analysis of joint behavior.

1.4 Foundations and Related Work

This section provides a comprehensive review of the scientific literature in the field of joint analysis. Focusing
on the complex structures of the hand and knee joints, the key findings from a number of studies are
summarized, highlighting their contributions to our understanding of these complex anatomical areas.
The discussion ranges from basic anatomical details to the latest technological advances, reflecting the
multidisciplinary nature of joint analysis. The aim is to place the current research in the context of a broader
academic dialog and to highlight trends, challenges and opportunities in the field.
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To enable an in-depth investigation and assist in navigating the extensive literature, a thematic map is
presented in Figure 1.2. This visual representation provides a connected overview of the key topics and
research areas discussed and gives readers an understanding of how each topic is interconnected and
contributes to the field of orthopaedic care.

Modeling

Conventional Models 1.4.5

Deep Learning 1.4.6

Hybrid Models 1.4.7

Joint Anatomy 1.4.1

Therapy 1.4.2

Measurement

Motion Analysis 1.4.3

Robotic Validation 1.4.4

Figure 1.2 This figure provides a structured overview of the literature review, in which the main topics are categorized.
It begins with an examination of general joint anatomy and then addresses two main areas: Measurement Techniques
and Modeling Approaches, both of which are critical to comprehensive joint analysis. The image above right shows a
conventional modeling method as described in Beidokhti et al. [25].

The organization of the following sections has been designed to ensure a consistent progression that
transitions naturally from basic anatomical knowledge to the latest technological advances in the field.
Beginning with an examination of human joint morphology, focusing specifically on the hand and knee in
On the Complexity of Human Joint Morphology (Section 1.4.1), the foundation is laid for a comprehensive
understanding of the structural details that are critical for both diagnosis and treatment. This foundational
knowledge is crucial as the discussion progresses to Clinical Therapy Pipelines (Section 1.4.2), where the
presentation shifts to modern therapeutic strategies. The provided emphasis here lies on the fact that a
deep understanding of structural anatomy is essential for the development of effective interventions.

A critical evaluation of the development of motion analysis methods follows, highlighting their importance
for clinical application and the impact of technological advances on traditional health paradigms. This
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review forms the basis for examining the role of Smart Robots as Measurement and Validation Devices
(Section 1.4.4), which examines the precision and effectiveness of modern robotic technologies in improving
orthopaedic care through enhanced joint model validation.

The analysis then proceeds to Biomechanical joint analysis (section 1.4.5), where traditional analysis
methods are examined for their fundamental importance, but also their limitations in fully capturing the
complex interplay of biomechanical forces and anatomical structures in a personalized health context
are highlighted. These limitations are addressed in the section AI-assisted joint analysis (section 1.4.6),
where the integration of deep learning techniques into the joint analysis is investigated. This section
demonstrates how sophisticated AI methods are when processing complex datasets and improve the
precision of conventional analysis techniques.

Through this structured progression, the review aims to provide a detailed and differentiated overview of
the evolving landscape of joint analysis in orthopaedic care. This journey from basic concepts to advanced
applications forms the basis for the research presented in this thesis.

1.4.1 On the Complexity of Human Joint Morphology

This section presents the structural complexity and biomechanical background of the knee and hand joint.

The Knee Joint

The knee joint is composed of bone structures (patella, distal femur, proximal tibia), cartilage, menisci,
ligaments, muscles and a synovial membrane [26]. Each of these different tissue categories has anisotropic
material parameters and behaves differently according to the direction of their loads and kinematic structure.
An overview of the tibiofemoral joint is displayed in Figure 1.3.

tibial
cartilage

femoral
cartilage

femur

menisci

tibia

ligaments

Figure 1.3 Illustration of the tibiofemoral joint as modification of Cooper et al. [27].

The knee joint consists of the medial tibiofemoral, lateral tibiofemoral, patellofemoral, and proximal
tibiofibular joints [28]. However, the geometry of these joints is not congruent, so the connection between
the tibia and femur is never complete and geometry deviations are compensated by the menisci and
ligaments. The knee joint provides a range of motions in six DOF. The rotational motion consists of
flexion-extension, internal-external, and varus-valgus [28]. Furthermore, translational motion is composed
of anterior-posterior, medial-lateral, as well as compression and distraction of the knee joint. These six DOF
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compose the complex functionality of knee joint motion [29]. In our daily activities, this joint supports a large
portion of our body weight and allows a wide range of motion for flexion-extension and internal-external
rotation [28]. To provide sufficient stability for managing wide range of motion under heavy loads several
ligaments provide passive stability in all directions of the knee joint. The central pivot point is formed by the
Anterior Cruciate Ligament (ACL) and Posterior Cruciate Ligament (PCL) as well as the meniscofemoral
ligaments [30]. The menisci guide rotational stability of the knee and have fibre connections with the
ACL and PCL [30]. The peripheral ligaments like the collaterals are primary passive stabilizers against
varus-valgus rotation as well as internal and external rotation [30]. This kinematic structure enables a
highly optimized compromise between stability, sufficient loading capability and flexibility for covering the
desired range of motion. In detail, the loading and flexibility requirements result in a nonlinear kinematic
behaviour of the knee joint described by the burmester curve [31, 32]. This curve describes the flexion
motion generated by the four bar linkage between femur, tibia and the ACL and PCL ligaments as a result
of rolling and sliding between the femur and tibia. At full extension, when loads tend to be maximal, stability
is maximized and the femur and tibia are in almost complete rolling motion with respect to each other. With
increasing flexion, the loads tend to decrease and the movement between femur and tibia is more and more
dominated by sliding, stability decreases and flexibility increases. The knee joint is a dynamic system in the
sense that its internal parameters are highly time-dependent. Due to the circadian rhythm the cartilage
decreases in size throughout the day and increases during the night altering the kinematic and dynamic
behaviour trough the day. Further, bone shapes vary over age and sex and are in continues change.

Due to the high complexity of the knee joint in connection with high loads from the movement cycle and
the specific stability requirements for the ligaments, this joint is prone to injuries. Furthermore, the knee
is the joint that is most commonly affected by osteoarthritis [33, 34] being one of the leading causes to
disability [35]. Global trends suggest a significant increase in osteoarthritis prevalence over time and a shift
towards younger age groups [36]. It is therefore a crucial part of ongoing research to better understand the
exact processes within the joint. Increasing efforts are being made to develop early-stage interventions to
prevent knee degeneration and delay the need for joint replacement surgery. This includes regenerative
therapies for cartilage and bones [37] as well as repairs of the meniscus [38] and the ligaments [39].
However, if an implant is still needed, the patient-specific adaptation and development of the surgery and
the knee implant is of great importance.

The Human Hand

The human hand is composed of a multitude of bones, joints, tendons and muscles that are all in a complex
interaction with each other and enable humans to grasp, touch and in general interact with their environment.
As shown in Figure 1.4, the bones of the hand can be divided into the carpal bones, which form the wrist,
the metacarpal bones, and the phalanges, which in turn are divided into a distal phalanx, a middle phalanx,
and a proximal phalanx, with the thumb being the exception it has no middle phalanx [42]. Each long
finger is composed of three joints, named the Distal Interphalangeal Joint (DIP), the Proximal Phalangeal
Joint (PIP) and the Metacarpophalangeal Joint (MCP), while the thumb is composed of the Interphalangeal
Joint (IP), MCP and Carpometacarpal Joint (CMC). According to [43] the hand has 21 DOF as the MCP
joints and CMC joint of the thumb have two DOF while the PIP and DIP joints all only have one DOF.

1.4.2 Clinical Therapy Pipelines

In order to provide data and optimization possibilities for joint therapy a number of key challenges need to
be met. The proper acquisition of patient specific data and model validation for precise surgery or treatment
and long term predictions of the therapy process need to be handled. In order to improve this process,
Figure 1.5 shows a potential optimization pipeline streamlining the data acquisition process along the clinical
reality. During treatment, patient-specific data can be collected at four different stages. First, preoperative
data can be collected before surgery or treatment. This includes static demographic data such as age and
gender, but should also require more detailed dynamic data such as gait cycles recorded with measuring
devices. Secondly, imaging data from Magnet Resonance Imaging (MRI), Computer Tomography (CT)
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Figure 1.4 Bones and joints of the human hand. Original image from [40], as used in [41].

or X-rays are collected during preoperative planning. This step determines the geometry of the joint and
identifies further disease details or anatomical landmarks. Thirdly, data can be collected during the surgery
itself to determine the current Range of Motion (ROM) of the joint in combination with the implant parameters
or the exact positioning of the implant. Furthermore, this data can be complemented by ex-vivo validation to
compare surgical treatments with robotic interactions. Finally, patient-specific data such as gait cycles can
be collected again after surgery and during rehabilitation to objectively evaluate the success of the therapy.

Recent studies have further enriched our understanding of these processes. MacMahon, Rao, et
al. investigate the shift towards a more integrative approach in preoperative optimization for total joint
arthroplasty, underlining the shift from mere preoperative clearance to a more comprehensive preoperative
patient optimization [44]. Additionally, Heckmann and Glusenkamp investigates the potential of linking
databases in joint arthroplasty and orthopaedics and present this as an advanced way to improve clinical
outcomes through data integration [45]. Complementing these perspectives, Andrinopoulou, Harhay, et al.
addresses dynamic prediction models using joint models of longitudinal and time-to-event data, a method
that stands to improve long-term predictions in therapy processes [46]. These studies collectively contribute
to the evolving landscape of joint therapy, emphasizing the importance of data-driven and patient-centric
approaches.

Having established the fundamental anatomy and therapeutic strategies for joint care, the focus shifts
to the technological evolution in movement analysis. This transition reflects the progression from basic
understanding to the application and integration of advanced tools in monitoring and rehabilitation.

1.4.3 Kinematic Motion Analysis

Motion analysis, particularly gait analysis, is a central component in joint therapy, aiding in disease
progression monitoring, rehabilitation, and training. Technologies like Vicon [47] and OptiTrack [48] represent
the commercial gold standard, offering high-precision motion capture with an Root Mean Square (RMS)



9

preoperative
clinical patient
data

preoperative
planning

intraoperative
data

postoperative
clinical patient
data

AI data analysis

in vitro
validation

Outcome predicition
Optimization

Figure 1.5 Enhanced surgical data pipeline for joint procedures within a clinical setting. The process encompasses
four distinct stages aligned with the timeline from preoperative to postoperative patient data collection and care.
Comprehensive data analysis is conducted on all accumulated data, helping in the prediction and optimization of
subsequent preoperative planning phases.

error below 1 mm [49]. This precision has been instrumental in tasks such as characterizing joint torque
profiles post-ACL reconstruction [50].

However, these systems rely on marker placement, which causes challenges in practice. Accurate marker
positioning on anatomical landmarks is difficult, and skin-based markers may not precisely correspond to
true 3D joint positions due to soft tissue movement [51]. Additionally, high cost, the need for controlled
conditions, and marker attachment limit practicality in routine clinical settings, thus constraining the broader
application of motion analysis [51]. Overcoming these limitations therefore remains an essential goal for the
widespread clinical adoption of motion analysis technologies.

AI-Based Gait Analysis

Recent breakthroughs in computer vision and machine learning have led to more reliable markerless motion
capture systems. These innovations promise to transform sports biomechanics and rehabilitation, extending
motion analysis applications to routine training and competition environments [51]. This shift may resolve
the biomechanics dilemma of balancing accuracy with external validity. Widespread motion analysis could
yield substantial datasets, enhancing the benefits of deep learning in biomechanics. Key elements of
markerless systems include advanced camera setups and sophisticated algorithms. Optimal systems utilize
high-definition cameras (High Definition (HD)-Ultra High Definition (UHD)) with high frame rates (>100 Hz)
and depth sensing capabilities. A notable example is Microsoft’s "Kinect For Xbox One." However, limitations
persist in precision biomechanics due to accuracy issues, with active camera systems suffering from range
limitations, low frequency (30 Hz), and reduced effectiveness in bright light [51, 52].

Recent advancements have led to the use of passive camera systems in motion analysis, primarily driven
by deep learning techniques. These methods typically separate the problem of 3D human pose estimation
into two stages: initial 2D keypoint detection and subsequent 3D pose estimation [53–60]. A Convolutional
Neural Network (CNN) processes each image frame to detect 2D keypoints, followed by various algorithmic
steps to construct a coherent 3D model. This two-stage process, with intermediate supervision, allows for
refined tuning of networks and efficient data compression into keypoints, enabling streamlined processing.
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Pavllo et al. (2019) demonstrate a notable approach, using a CNN to integrate frame keypoints into a stable
3D model over time, validated on the Human3.6 dataset with a Mean Per-Joint Position Error (MPJPE) of
36.5 mm [61, 62]. Despite promising, the application of these models in biomechanical analysis remains
immature and far too inaccurate.

Internal Measurement Based Gait Analysis

Recent IMU systems have gained relevance as an effective alternative to conventional camera-based
methods in gait analysis. Integrating an accelerometer, gyroscope, and magnetometer, IMUs accurately
measure spatial orientation: The accelerometer tracks triaxial acceleration, the gyroscope detects angular
velocities, and the magnetometer assesses orientation against Earth’s magnetic field. This sensor combina-
tion ensures precise IMU alignment, crucial for capturing rapid movements, as evidenced by a reported
Root RMS error of 3.3 deg in knee flexion/extension measurements [63].

Gait analysis, vital for diagnosing and managing musculoskeletal and neurological conditions, has seen
significant advancements with IMU-based systems [64]. Offering portability and cost-effectiveness, these
systems are gaining traction in clinical and research settings. Research by [65–69] underscores the
versatility and dependability of IMU-based gait analysis. Beyond enhancing accessibility, IMU technology
enables remote monitoring in real-world settings, representing a substantial evolution from traditional
lab-based approaches.

Building upon the advancements in movement analysis, the next critical aspect is the anticipated key role
of robotic measurement and validation in enhancing the precision of biomechanical studies.

1.4.4 Smart Robots for Measurement and Validation

Robotic validation is a fundamental aspect of model development in biomechanics, ensuring that theoretical
models align with real-world conditions [70]. This is important in the study of complex joints such as the
knee and hand.

Recent advancements in robotic testbenches have improved our ability to conduct detailed biomechanical
analysis. In the field of knee biomechanics, innovative robotic testbenches have been developed to
overcome the constraints of fixed geometry found in earlier methods. These advanced systems enable a
more comprehensive exploration of knee joint behavior under various loading conditions, providing valuable
insights for surgical planning and prosthetic design [71–74].

The challenge of accurately capturing biomechanical data for the knee joint, considering its complexity and
the necessity to account for all six DOF, is substantial. Robotic methodologies offer significant advantages
in terms of applying precise movements and forces. The pioneering work by Frey et al. [75] introduced
advanced robotic testing for knee joint analysis, utilizing a 6 DOF robot with high-frequency control and
integrated force-torque sensors. This approach enabled the collection of critical data on varus-valgus
loading and its relationship with flexion loading. Subsequent studies have expanded these techniques to
other joints, such as the spine [76], and have introduced tools like CT data segmentation for enhanced
analysis in contexts like total knee replacement surgeries [77].

In hand biomechanics, the development of sophisticated testbenches has been instrumental in under-
standing the complex interactions within the hand structure, including cartilage, ligaments, and muscles.
These platforms have significantly advanced our knowledge of hand movements and force dynamics,
addressing the complex nature of joint behavior [78–82]. Insights gained from these studies are crucial for
developing more effective treatments and rehabilitation strategies for hand-related injuries and conditions.

Overall, the integration of advanced robotic testbenches in biomechanical research marks an improvement
in the validation process of the respective models. By ensuring that computational models accurately
reflect the complex dynamics of human joints, these developments not only enhance the robustness of
biomechanical models but also contribute to more effective and personalized medical interventions.
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Advancements in Robotic Exoskeletons for Hand Rehabilitation

Robotic exoskeletons have emerged as a transformative solution in hand rehabilitation, addressing limita-
tions in hand functionality due to various conditions such as neuromuscular diseases, hand injuries, and
age-related impairments [83]. Traditional therapy methods often fall short due to early hospital discharges,
limited therapist availability, and high costs [84, 85]. In contrast, robotic systems offer a promising alternative,
particularly in stroke rehabilitation, where repetitive motion training is crucial [86–88].

Studies have shown that robotic hand rehabilitation, through repetitive motion training, can be more
effective than conventional therapy [89]. Exoskeletons equipped with advanced sensors provide precise,
repeatable data, enabling the quantification of a patient’s functional status [90]. These systems simplify
high-frequency rehabilitation exercises without increasing financial burdens, allowing for consistent daily
training routines that are often unfeasible in manual therapy.

Still, despite their potential, the clinical application of exoskeleton systems remains limited due to their
complexity and usability challenges in clinical settings [90]. Addressing these issues, recent developments
have focused on enhancing usability through improved position sensing, user-friendly bi-directional actuators,
and integrated force sensors. These advancements aim to provide a more effective and accessible approach
to hand rehabilitation.

Over the past two decades, various hand exoskeleton systems have been developed for rehabilitation,
force assistance, or haptic feedback in virtual reality applications. A critical requirement for these systems
is biomechanical compatibility with the human hand to ensure safe operation [83]. Notable approaches
include underactuated kinematic structures with three degrees of freedom, encompassing all three finger
phalanges [91, 92]. Such designs enable the calculation of forces transmitted to the finger phalanges, given
the mechanism’s configuration and the actuator force.

In the context of CRPS, treatment goals focus on enhancing hand mobility and functionality while
alleviating pain. Conventional physiotherapy and ergotherapy often yield limited results due to time and
resource constraints [84, 85]. Robotic exoskeletons offer a viable alternative, providing precise, cost-
effective data for monitoring patient progress and enabling more frequent therapy sessions. However,
challenges remain in adapting these systems to individual patient needs, particularly in terms of direct fitting
and sensor integration [93–98].

Robotic Control Challenges

Especially in a medical context, developed models need to be reliable and proven in order to not develop
harmful consequences in application. However, especially for joint analysis which combines imaging
data with motion and load trajectories a sufficient validation becomes a challenging task. The recurring
application of position and load targets in combination with highly individual differences between joints
requires a complex testing environment. The described tactile task is an active part of robotics research [99].
There are multiple control strategies for solving this robot-joint interaction: Position control methods, force
control methods, impedance and admittance methods and hybrid-position and force control methods. Single
position control can not be used for individual biomechanical testing due to the risk of overloading and
destruction at alternating surfaces. Force control methods do not achieve any exact positional target such
as applying a flexion of 90 degrees of the knee joint and therefore make the comparison between specimen
not practical. Impedance and admittance control methods project the position or force control target via
stiffness and damping matrices into the same space [100]. However, neither position nor force precision
are deterministic and stability is limited by the achievable impedance [101, 102]. Further, the individual
specimens of the joint require to determine the parameters of these matrices. Hybrid position-force control
methods have a high potential, as they ensure position and force precision by dividing the work space into
force and position related DOF [103] and will therefore be considered for individual joint testing.

The drawback of the hybrid position-force control is the complete decoupling of position and force related
DOF via a selection matrix as proposed by Raibert and Craig [103]. This separation decouples the desired
goals for testing in task-space, however a coupling in the joint-space of the robot remains, leading to
instability. Schuetz, Pfaff, et al. [104] proposed an approach which used the null space in order to solve this
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coupling problem and proposed a tactile control scheme for stability. However, while Schuetz, Pfaff, et al.
[104] mainly focused on the task of obstacle avoidance these approaches have not been used for actual
force control in a complex testing environment such as an individual joint specimen.

While robotic technologies represent an important advancement in biomechanical validation, their utility
depends on the availability of accurate models for validation. This brings us into the domain of conventional
joint analysis techniques, where understanding their historical development and current relevance is crucial.
These traditional methodologies provide the foundational models that newer validation techniques, such as
those offered by robotics, seek to test and refine.

1.4.5 Biomechanical Joint Analysis

For predicting the knee joint behaviour and analyse its limitations and potential for therapeutic use, a
significant amount of research involves Finite Element (FE) modelling. Kazemi, Dabiri, et al. [105] and
Cooper, Wilcox, et al. [27] provide a comprehensive overview of current applications of such FE models and
their respective challenges. They range from cartilage degeneration and osteochondral effects [106–108] to
the influence of meniscal shape [109, 110] and the biphasic effects of cartilage on loading [111]. However,
the computational study of the contact mechanics of the knee joint remains a challenge due to the contact
dynamics between tissues and joint surfaces. Consequent validation of knee joint models is particularly
difficult. So far only limited progress has been reported in translating the findings and tools of modelling
research into clinical practice [27]. To overcome these problems, Cooper, Wilcox, et al. [27] summarizes
three main problems for joint analysis, defined as follows:

• Capture and representation of appropriate geometry and material properties,

• Representation of motions, loads and constraints.

• Establishment of relevant outputs in connection to clinical benefits.

Addressing these problems builds the foundation for current joint analysis research.

Geometry based Modeling

In order to achieve a certain level of detail, the geometry of all participating structures along the respective
motion has to be considered. This is usually done by utilising medical imaging (CT or MRI) [112–114],
providing an approximation of joint geometry altered by imaging artefacts and simplifications from the
segmentation process [115]. Models based on these approaches are broadly capable of investigating the
combined role of menisci and ligaments in load transmission and stability [116]. This study demonstrates
the potential of segmentation based models to predict complex stress and strain patterns [27]. However,
these models do not cover anisotropic material behaviour. An alternative to segmentation-based models
focuses on the mathematical description of geometry [117–119], enabling qualitative predictions of expected
trends. However, data extracted from such models does not match well with experimental predictions [109,
120] limiting their use to trend prediction only.

A problem with geometry-based modelling is its lack of automation and unknown inner material properties.
While mathematical models do not provide the required accuracy for clinical use, imaging-based models
lack validation and are often unpractical due to highly individual parameter optimization.

Motion and Load Modeling

An important part of appropriate modelling is ensuring that the model generates physiological motions
motivated by real world measurements. This does not only require understanding the moving joint parts,
but also a measurement system in order to extract relevant moving and load scenarios. A distinction is
made between applying loads and measuring the resulting movement, or measuring the movement and
extracting the loads from it [27]. To date, it has been difficult to deduce in-vivo movements. However, the
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joint kinematics can be inferred using CT bone models validated by a gold standard skin marking method for
movement detection [121]. Furthermore, in-vivo forces can be derived from quasi-static multibody models
[122, 123]. An essential part of understanding the entire motion of a complex joint such as the knee is to
further consider the role of ligaments and menisci. [112] suggests that providing patient-specific ligament
characteristics improves the prediction of kinematics and contact forces. Meniscal translation in response to
loading was captured using MRI [124] to create more advanced models [125].

The disadvantage of these movement and load-dependent models is their limited applicability for in-vivo
testing. The gold standard in motion capture involves considerable effort and creates unnatural conditions
for the test subject. In addition, all data collected are only associated with a single time stamp and do not
cover longitudinal effects over time.

Output Definition and Clinical Relevance

For medical modeling, it is important to consider the clinical relevance of extracted outputs to predict
intervention responses or disease progression [126]. In order to connect modelling to osteoarthritis
an important database is the Osteoarthritis Initiative (OI) introduced in [127], which contains clinical
evaluation data coupled with imaging (X-ray and MRI) of over 5000 subjects. Mononen, Tanska, et al. [106]
demonstrated how to combine model based approaches with clinical relevance by developing their models
based on the imaging data and defining the outputs in relation to it. In detail, they applied collagen fibril
damage on their models if tensile stresses exceeded a threshold during gait loading over successive
iterations. This enabled them to develop an algorithm capable of predicting cartilage degeneration in the
knee joint.

In general, databases like those by Peterfy, Schneider, et al. [127] suggest a more generic and general
approach towards modeling and clinical predictions. Especially with the rising potential of deep learning
analysis these databases can be exploited with new methods generating direct clinical benefit.

Transitioning from conventional approaches, we look at the impact of deep learning on joint analysis,
showcasing how this modern computational technique is reshaping our methods and insights in the field.

1.4.6 Artificial Intelligence-aided Joint Analysis

The applications of deep learning have achieved one of the most significant changes in research history.
Since the successful introduction of AlexNet in 2012 [128], which was capable of recognising images better
than any previously tuned algorithm, this research branch developed to the most active of modern history.
Today deep learning based algorithms succeed human performance in image recognition [129], are capable
of summarising complex text analysis [130] and solve the protein folding problem [131]. All these major
successes emphasise the capability of these algorithms to be successfully applied for joint analysis. For
these reasons, the most relevant algorithms with a potential for joint analysis are presented next.

Lesion Detection and Segmentation

In this subsection, the transformative impact of deep learning technologies in the field of medical imaging,
with a particular focus on orthopaedic applications is analyzed. The power of deep learning in tasks such as
classification and object recognition is well documented and represents an important milestone in medical
diagnostics. An example of this is the breakthroughs in skin cancer classification [132] and breast cancer
detection [133], which set a precedent for the application of these technologies in disease identification and
treatment.

The extension of these advances to the orthopaedic field has shown that deep learning holds great
promise. A notable development by Tiulpin, Klein, et al. [134], for example, presents a deep learning tool
for analyzing knee osteoarthritis that uses X-rays and medical history to predict the progression of the
disease. This is complemented by another significant project that uses MRI scans to classify various knee
joint conditions, such as ACL ruptures and meniscus damage. These examples underline the potential of
deep learning to refine orthopaedic diagnostics. In addition, the improvement of segmentation capabilities
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through object recognition networks, in particular Mask R-CNN [135], as shown in the example of automatic
3D knee segmentation [136], represents a major advance. The growth of datasets such as MRNet [137]
and the Osteoarthritis Initiative continues to drive progress in this area, particularly the improvement of
diagnostics related to knee joint analysis.

Building on this foundation, the discourse transitions to addressing the global challenge of lower extremity
Osteoathritis (OA) and malalignment issues, spotlighting the urgent need for more precise and reliable
diagnostic tools. Conventional methods for analyzing leg alignment are characterized by inefficiency and
inaccuracy, a gap that the recent innovations of Machine Learning (ML) and Deep Learning (DL) attempt
to close. The accuracy of the DL models in determining alignment parameters marks a shift towards
automated, sophisticated diagnostic systems that promise to improve orthopaedic care. Supported by
a breadth of research [138–149], these technological advancements suggest a future where orthopedic
practitioners are equipped with advanced tools to diagnose and manage complex pathologies with an
unprecedented level of precision and reliability. This narrative progression from the success of deep
learning in general medical applications to its specific impact on orthopedics, and finally to addressing
critical challenges in the field, illustrates a logical flow of how these technologies are shaping the future of
orthopedic diagnostics and treatment.

Dimensionality Reduction

A big problem of dealing with complex tasks such as joint analysis is the high dimensionality of the problem,
as large image sequences from MRI scans need to be analysed or long sequences or measurement
trajectories need to be handled. In order to compress this complexity into meaningful low-dimensional
representations a variety of deep learning based algorithms have been developed. Famous representatives
are the Variational Autoencoder (VAE) [150], Generative Adversarial Network (GAN) [151] or recent
approaches such as Momentum Contrastive (MoCo) encoders [152]. All these algorithms have a low
dimensional representation of the original high dimensional input enabling a simplified analysis and efficient
processing. Further, these training approaches work in an unsupervised manner enabling to extend these
algorithms for large datasets as no particular labelling is required. These generative algorithms are capable
of predicting disease progression or can improve image quality. A study by [153] has enabled an improved
resolution of knee MRI data due to GAN based image reconstruction. As these algorithms can both
compress and generate imaging data they also develop an understanding of the underlying data structure.
The full potential of these algorithms to actually create physics-based models for direct joint analysis
however remains an open challenge and further research is necessary in order to replace conventional
methods.

1.4.7 Hybrid Models and Optimization based Approaches

In the field of physical modeling, deep learning approaches often encounter challenges, particularly when
physics-based rules are absent. This can lead to issues like overfitting and limited applicability in complex
scenarios. Addressing this, a promising direction has emerged: the fusion of physics-based knowledge with
deep learning to enhance generalization. A key development in this area is the integration of differential
equations with deep learning algorithms, as exemplified by the work of Chen, Rubanova, et al. [154].
This hybrid approach enables the creation of models where neural networks compensate for unknown
parameters within a physics-based framework, thereby improving the model’s generalization capabilities
while maintaining adherence to physical laws.

In the fields of robotics and biomechanics, the efficacy of neural network-based solutions in kinematic
analysis has been increasingly recognized. The studies by Köker et al. [155], Duka [156], and Jiang et
al. [157] have demonstrated the accuracy and adaptability of neural networks in these domains. The
concept of differentiable kinematics, examined by Ono et al. [158] and Fang et al. [159], further underscores
the potential of learning-based methods in kinematic calculations. This potential is supported by the
development of emerging software solutions [160–162]. Additionally, autoencoders have been identified
as potent tools for kinematic optimization. The research conducted by Kubovčıék, Luptáková, et al. [163],
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Nagano, Nakamura, et al. [164], and S and Kurian [165] highlights their effectiveness. However, a notable
challenge arises in differentiable physics-based models, particularly with backpropagation in dynamic
parameters in complex biomechanical systems [166, 167]. This issue is being tackled by model-free
approaches like evolutionary algorithms and reinforcement learning, which have shown efficacy in aligning
simulated behaviors with real-world scenarios [168]. Reinforcement learning-based optimization techniques,
in particular, have demonstrated their utility across various fields, ranging from quantum control [169] to
enhancing the efficiency of thermal power units [170]. These techniques are especially valuable when
dealing with dynamic parameters such as stiffness and damping characteristics [171, 172], presenting a
compelling alternative to traditional differentiable models.

To conclude, the field is experiencing a significant convergence of methodologies, combining differentiable
modeling, neural networks, and reinforcement learning. This integration is forging a robust framework
capable of tackling the challenges inherent in physical systems modeling.

1.5 Thesis Structure

This dissertation offers a detailed examination of various innovative domains, including wearable technology,
diagnostic algorithms, robotic testbeds, control systems, and optimization algorithms, with a specific focus
on joint analysis and rehabilitation. The goal is to develop a personalized and adaptive framework that
supports comprehensive joint analysis and predictive modeling. This framework aims to enhance the
precision and effectiveness of diagnostics and interventions in orthopedic care. The structure of the thesis
is intentionally designed to illustrate how these technological components can be integrated into the clinical
workflow, as shown in Figure 1.1. This integration is critical for translating theoretical advancements into
practical applications that benefit patient care.

1.5.1 Chapter 2: Prevention and Rehabilitation through Wearables

This chapter presents a detailed analysis of wearable devices designed for gait analysis in knee joint
assessments, alongside an adaptive exoskeleton for hand assessment. It investigates the use and clinical
application of the adaptive exoskeleton specifically tailored for finger rehabilitation. To enable a structured
discussion, the chapter is organized into three main sections:

1. Section 2.1: Scalable Gait Analysis through accessible IMU Systems - Examines the development
and implementation of a cost-effective IMU system specifically for analyzing gait and knee joint
movements. It also includes an evaluation of this system through a clinical study.

2. Section 2.2: Finger Rehabilitation through an Introspective Mechatronic Exoskeleton - In-
troduces a novel architecture for an adaptive mechatronic exoskeleton for finger rehabilitation and
analysis.

3. Section 2.3: Clinical Application and Integration Study - Examines the development of an
exoskeleton platform designed for finger rehabilitation. It focuses on enhancing patient monitoring
and increasing patient motivation through the incorporation of gamification strategies.

1.5.2 Chapter 3: Diagnostics and Surgical Planning through Artificial Intelligence Image
Analysis

The third chapter deals with diagnostic and surgical planning algorithms. It covers data annotation, bone
tumor detection, automatic alignment algorithms and preoperative planning for the lower limbs. The chapter
is divided into four main sections:

1. Section 3.1: Data Annotation - Discusses the development of a rapid dataset creation application.
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2. Section 3.2: Bone Tumor Detection Algorithms - Presents algorithms for bone tumor identification
and classification.

3. Section 3.3: Automatic Alignment Analysis for the Lower Limb - Introduces a deep learning
model for alignment analysis of the lower extremity.

4. Section 3.4: Automated Preoperative Planning for Realignment Osteotomy - Covers automated
planning of medial open wedge high tibial osteotomy using AI.

1.5.3 Chapter 4: Reproducible Joint Analysis through Robotic Benchmarking Systems

The fourth chapter investigates the use of robotic testbenches for the analysis of knee and hand joints. It
focuses on methodologies, results, and broader implications of these studies. The chapter includes:

1. Section 4.1: Constraint-Tolerant Control for Biomechanical Systems - Discusses null space
control in robotic arm tasks and its applications.

2. Section 4.2: Ex-Vivo Human Knee Joint Analysis - Presents a validation study of a robotic
testbench for biomechanical evaluations of the knee joint.

3. Section 4.3: Ex-Vivo Human Hand Joint Analysis - Introduces a robotic testbench for analyzing
pincer grip execution in human specimen hands.

1.5.4 Chapter 5: Personalized Digital Twins through Artificial Intelligence-based
Optimization

The fifth chapter focuses on optimization algorithms for biomechanical systems, focusing on kinematic and
dynamic optimization. It presents methodologies in autoencoder-based kinematic optimization and system
identification through reinforcement learning. The chapter comprises:

1. Section 5.1: Differentiable Forward Kinematics for Kinematic Optimization - Researches differ-
entiable kinematic modeling.

2. Section 5.2: Model-Free Proximal Policy Optimization for Dynamic Optimization - Discusses the
adaptation of models for the human knee using reinforcement learning.

1.5.5 Chapter 6: Conclusions

The sixth chapter summarizes the key discoveries and critical evaluations made throughout the thesis.
It looks at the integration of robotics and AI in orthopaedic care and shows how this fusion answers
fundamental research questions and leads to notable advances.

1. Section 6.1: Contributions - Elaborates on the key contributions of the thesis, detailing the novel
approaches and methodologies developed within the context of robotics and AI in orthopedics.

2. Section 6.2: Addressing Objectives and Research Questions - Critically examines how the thesis
meets its set objectives and answers the research questions posed at its inception, linking these back
to the contributions made.

3. Section 6.3: Limitations - An introspective look at the main limitations encountered in the research.
This section discusses the boundaries and challenges of the methods and technologies employed,
providing a balanced view of the research.

4. Section 6.4: Achievements - Assesses the overall impact of the thesis, discussing how its findings
and contributions have influenced the field of orthopedics, both in academic and practical contexts.
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5. Section 6.5: Future Work - Outlines the potential paths for future research, this section suggests
improvements and areas of exploration that build upon the thesis’s findings, indicating directions for
continued innovation in orthopedic care.

1.6 Core Publications

The research conducted for this dissertation has led to several publications in the fields of wearable
technology, diagnostic algorithms, robotic testbenches, and control and optimization algorithms. These
publications are integral to the thesis, each contributing to the understanding and development of joint
analysis and rehabilitation. The following detailed list of these publications categorizes them along the
relevant chapters of the thesis.

1.6.1 Publications from Chapter 2: Prevention and Rehabilitation through Wearables

1. Wilhelm, N., Micheler, C. M., Lang, J. J., Hinterwimmer, F., Schaack, V., Smits, R., Haddadin, S., and
Burgkart, R. (2023). Development and Evaluation of a Cost-effective IMU System for Gait Analysis:
Comparison with Vicon and VideoPose3D Algorithms. Current Directions in Biomedical Engineering,
9(1), 254–257. [1] Published - This publication discusses a scalable, cost-effective IMU system for
gait analysis.

2. Wilhelm, N., Dickmann, T., Glowalla, C., Haddadin, S., van der Smagt, P., and Burgkart, R. (2021). An
Adaptive Mechatronic Exoskeleton for Force-Controlled Finger Rehabilitation. Frontiers in Robotics
and AI, 8. [2] Published - Introduces an adaptive mechatronic exoskeleton for finger rehabilitation.

3. Wilhelm, N., Haddadin, S., Lang, J. J., Micheler, C., Hinterwimmer, F., Reiners, A., Burgkart, R., and
Glowalla, C. (2022). Development of an Exoskeleton Platform of the Finger for Objective Patient
Monitoring in Rehabilitation. Sensors, 22(13), 4804. [3] Published - Focuses on an exoskeleton
platform for finger rehabilitation and patient monitoring.

1.6.2 Publications from Chapter 3: Diagnostics and Surgical Planning through Artificial
Intelligence-based Image Analysis

1. von Schacky, C. E., Wilhelm, N., Schäfer, V. S., Leonhardt, Y., Gassert, F. G., Foreman, S. C.,
Gassert, F. T., Jung, M., Jungmann, P. M., Russe, M. F., Mogler, C., Knebel, C., von Eisenhart-Rothe,
R., Makowski, M. R., Woertler, K., Burgkart, R., and Gersing, A. S. (2021). Multitask Deep Learning
for Segmentation and Classification of Primary Bone Tumors on Radiographs. Radiology, 301(2),
398–406. [4] Published - Presents multitask deep learning for bone tumor detection.

2. von Schacky, C. E., Wilhelm, N., Schäfer, V. S., Leonhardt, Y., Jung, M., Jungmann, P. M., Russe, M. F.,
Foreman, S. C., Gassert, F. G., Gassert, F. T., Schwaiger, B. J., Mogler, C., Knebel, C., von Eisenhart-
Rothe, R., Makowski, M. R., Woertler, K., Burgkart, R., and Gersing, A. S. (2022). Development
and evaluation of machine learning models based on X-ray radiomics for the classification and
differentiation of malignant and benign bone tumors. European Radiology, 32(9), 6247–6257. [5]
Published - Discusses ML models for classifying bone tumors.

3. Wilhelm, N., von Schacky, C. E., Lindner, F. J., Feucht, M. J., Ehmann, Y., Pogorzelski, J., Haddadin,
S., Neumann, J., Hinterwimmer, F., von Eisenhart-Rothe, R., Jung, M., Russe, M. F., Izadpanah, K.,
Siebenlist, S., Burgkart, R., and Rupp, M.-C. (2024). Multicentric Development and Validation of
a Multi-Scale and Multi-Task Deep Learning Model for Comprehensive Lower Extremity Alignment
Analysis. AI in Medicine. [6] Accepted - This work introduces a deep learning model for comprehensive
lower extremity alignment analysis, accepted at 11. March 2024.
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4. Wilhelm, N., von Schacky, C. E., Lindner, F. J., Feucht, M. J., Ehmann, Y., Pogorzelski, J., Haddadin,
S., Neumann, J., Hinterwimmer, F., von Eisenhart-Rothe, R., Jung, M., Russe, M. F., Izadpanah, K.,
Siebenlist, S., Burgkart, R., and Rupp, M.-C. (2024). Fully Automated Planning of Medial Open Wedge
High Tibial Osteotomy on Weight Bearing Anterior Posterior Long Leg Radiographs via Artificial
Intelligence – A Multicentric Development and Validation Study. Planned for The American Journal
of Sports Medicine. [7] Planned submission, Draft finished, Demo available online - This upcoming
submission covers the fully automated planning of medial open wedge high tibial osteotomy using AI.
Unsubmitted manuscript.

1.6.3 Publications from Chapter 4: Reproducible Joint Analysis through Robotic
Benchmarking Systems

1. Wilhelm, N., Burgkart, R., Lang, J., Micheler, C., and von Deimling, C. (2019). Exploiting Null Space
Potentials to Control Arm Robots Compliantly Performing Nonlinear Tactile Tasks. International
Journal of Advanced Robotic Systems, 16(6). [8] Published - Studies null space control in robotic
arm tasks.

2. Wilhelm, N., von Deimling, C., Haddadin, S., Glowalla, C., and Burgkart, R. (2023). Validation of a
Robotic Testbench for Evaluating Biomechanical Effects of Implant Rotation in Total Knee Arthroplasty
on a Cadaveric Specimen. Sensors, 23(17), 7459. [9] Published - Focuses on a robotic testbench for
knee joint analysis.

3. Wilhelm, N., Glowalla, C., Haddadin, S., Schote, J., Hoeppner, H., van der Smagt, P., Karl, M.,
and Burgkart, R. (2024). Design and Implementation of a Robotic Testbench for Analyzing Pincer
Grip Execution in Human Specimen Hands. Accepted for the 2024 IEEE International Conference
on Robotics and Automation (ICRA). [10] Accepted. - Presents a robotic testbench for hand joint
analysis.

1.6.4 Publications from Chapter 5: Personalized Digital Twins through Artificial
Intelligence-based Optimization

1. Wilhelm, N., Haddadin, S., Burgkart, R., van der Smagt, P., and Karl, M. (2024). Accurate Kinematic
Modeling using Autoencoders on Differentiable Joints. Accepted for the 2024 IEEE International
Conference on Robotics and Automation (ICRA). [11] Accepted. - Discusses kinematic modeling
using autoencoders.

2. Wilhelm, N., Burgkart, R., Hinterwimmer, F., Haddadin, S., and Karl, M. (2024). System Identification
of the Human Knee by Adaption of Plausible Models using Reinforcement Learning in Robotic Data
Acquisition. Submitted to IEEE IROS. [12] Under Revision - Focuses on model adaptation for the
human knee using reinforcement learning.
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2 Prevention and Rehabilitation through Wearables

Figure 2.1 Chapter overview.

In this chapter, a detailed investigation of wearable technologies for
orthopaedics is conducted as part of the research presented, which
is closely aligned with the research question: How can wearables and
robotic technologies be effectively integrated into clinical orthopaedic
workflows to provide real-time objective data for joint disease preven-
tion and rehabilitation? With the help of Figure 2.1, the development
of diagnostic tools into rehabilitative devices within the orthopaedic
discipline is outlined. It emphasizes the dual role of wearable tech-
nologies not only as instruments for data acquisition, but also as
active participants in changing biomechanical processes through
their motor functions.

In the field of orthopaedics, wearable technologies are moving
beyond their role as mere advanced measurement devices; they are
an integral part of musculoskeletal health management. This chapter
discusses the development of some of these technologies and their
impact on diagnostic and rehabilitation procedures. The research
begins with an introduction to an innovative gait analysis system
that utilizes IMU technology (Section 2.1), which is essential for the
early detection of limb deformities and the prevention of long-term
orthopedic complications suited for knee joint analysis. A state-of-
the-art exoskeleton developed for the rehabilitation of CRPS patients
of the hand is then presented (Section 2.2), marking the transition
to a rehabilitative focus and illustrating the adaptability of wearable
technologies in orthopaedic care. The chapter concludes with an
analysis of a patient-study evaluating the effectiveness of the exoskeleton in real-world applications (Section
2.3), which provides valuable insights into the practical implications of these technologies.

2.1 Scalable Gait Analysis through accessible IMU Systems

This section addresses the development and evaluation of a cost-effective IMU-based system tailored for
gait analysis, as reported in [1]. Gait analysis is crucial for diagnosing and managing various medical
conditions, including musculoskeletal injuries and neurological disorders [64]. Traditional systems for gait
analysis, though accurate, are often expensive and cumbersome, limiting their accessibility for widespread
clinical and research use. In response to this challenge, IMU-based systems offer a portable, affordable
alternative, as underscored by previous studies [65–69].

The IMU system developed in this study consists of five calibrated sensors integrated with a mobile
application, designed to capture the lower body orientation during various activities, including walking and
stair climbing. The system efficacy was benchmarked against the gold-standard Vicon system and the
modern VideoPose3D algorithm [61], involving eight healthy participants who each performed ten repetitions
of the specified activities. This setup aimed to accurately analyze the hip and knee flexion angles.

The findings revealed that the IMU system exhibited a significantly lower Mean Squared Error (MSE)
in comparison to single camera-based deep learning approaches, with its performance being notably
comparable to that of the Vicon system. Such results highlight the systems potential as a viable tool
for both clinical and research settings, offering a blend of affordability, robustness, and user-friendliness.
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Figure 2.2 Test bench architecture consisting of the primary IMU system (I) with five IMUs, a mobile application (II)
for data visualization and control and an offline evaluation system (III) from Wilhelm et al. [1].

This comparative study aims to position the IMU-based gait analysis system as a practical and efficient
alternative that provides broader access to accurate gait analysis for the diagnosis and management of
health conditions.

The IMU system developed in this study, as shown in Figure 2.2, is integrated into a mobile app and uses
five calibrated sensors to capture the orientation of the lower body. The application allows the system to
be started and stopped and serves as a visualization toolbox during data generation at 30 Hz. The entire
analysis is performed offline on the evaluation system with a sampling rate of 100 Hz.

Figure 2.3 Stairclimbing task study setup with joint angle graphs for Vicon (blue), VideoPose3D (red), and IMU (green)
systems. Left and right hip flexion angles are shown in (a) and (b), and left and right knee flexion angles in (c) and (d).
The central snapshot shows the camera image and an overlay of the model used for gait analysis [1].

The study was successful in acquiring all measurements, including those for a stair climbing task, as
depicted in Figure 2.3. Data for the flexion angles of the knee and hip was obtained from all three systems,
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with the Vicon system serving as gold standard. The results showed that the IMU system closely matched
the Vicon system in terms of the flexion angles of both the left and right hip and the right knee. However,
there was an offset observed for the left knee flexion. The VideoPose3D model showed moderate agreement
with the Vicon system for the flexion of the left and right hip but had significant accuracy loss for the flexion
angles of the knee.

Table 2.1 Assessment of the Mean Squared Deviation (MSD) in knee or hip flexion for the Gait and Stairclimbing task
from IMU and VideoPose3D systems compared to the Vicon system. Data represented as mean ± standard deviation.
Results from Wilhelm et al. [1].

Task Joint IMU VideoPose3D
Gait Knee 4.0 ± 1.1 18.8 ± 4.3

Hip 5.1 ± 1.7 24.4 ± 6.5
Stairclimbing Knee 5.9 ± 1.6 27.7 ± 4.9

Hip 6.6 ± 1.6 10.1 ± 3.0

Table 2.1 presents the MSD comparison of the IMU model, Vicon system, and VideoPose3D algorithm in
gait and stair climbing accuracy. The IMU system displayed a significantly lower MSD than VideoPose3D,
indicating its potential for clinical and research applications.

The design of the IMU system, which is low-cost, promotes its integration into daily use cases, potentially
bridging the gap between clinical and home-based monitoring. This accessibility allows patients and
healthcare professionals to track changes in gait over time. The findings of the present study emphasize the
promising potential of the IMU system as a valuable tool for both clinical and research contexts, meriting
further exploration of its performance in complex tasks and diverse populations.

The current system design supports up to five independent IMUs, and the devised model is tailored to the
proposed IMU configuration, necessitating further adaptations for incorporating additional IMUs. Although
the system offers satisfactory accuracy, the results indicate that, for highly precise movement analysis,
Vicon-based motion detection remains the gold standard. While the application provided should be user
friendly, this has not been adequately tested and will need to be worked out in the future.

To summarize, this study introduces a cost-effective IMU system for gait analysis that surpasses single
camera based deep learning methods and closely matches the performance of the more expensive gold-
standard system. The development of an affordable and precise IMU system for gait analysis presents
substantial potential for advancing clinical and research applications.

2.2 Finger Rehabilitation through an Introspective Mechatronic Exoskeleton

The previous section was focused on gait analysis, with the knee joint being the central subject of assess-
ment. To demonstrate the applicability of wearable technologies to various joints, attention is now shifted
to the assessment of the hand. In this section, an innovative mechatronic exoskeleton designed for finger
rehabilitation is discussed [2]. Equipped with motion detection and control sensors, this exoskeleton is
provided with three significant advantages for enhancing hand therapy.

First, it allows for precise measurement of patient-specific finger dynamics. The configuration of the
exoskeleton can be fully reconstructed using data from three angular position sensors placed on the
kinematic structure. Additionally, the actuation force acting on the exoskeleton is recorded, enabling
the determination of the ROM and the force and torque trajectories of each finger joint. Second, the
adaptive kinematic structure enables the patient to perform various functional tasks. The force control of the
exoskeleton acts as a safeguard, limiting the maximum possible joint torques during finger movement. Last,
the system is compact, lightweight, and does not require extensive peripherals. Its safety features make it
easy to use at home. The applicability of the system was tested on three healthy subjects. An overview of
the developed system can be seen in Figure 2.4.



22

Figure 2.4 Rendering (top) and application of the real system (bottom) of the exoskeleton [2]. In the bottom row, the
exoskeleton is attached to the index finger of three individual test subjects [2].

2.2.1 Exoskeletons

Impaired hand functionality can significantly hinder daily activities. Hand mobility can be limited due to
various conditions such as neuromuscular diseases, hand injuries, motor function restrictions resulting
from a stroke, age-related limitations, and CRPS [83]. Conventional therapy often leads to unsatisfactory
results due to early hospital discharges, insufficient availability of therapists, and high financial costs [84,
85]. Therefore, there is a growing interest in improving hand functionality through robotic rehabilitation
systems. Research on stroke rehabilitation has highlighted the potential of robotic hand rehabilitation [83].
Repetitive motion training plays a supportive role in the recovery of motor skills [86–88]. Hand rehabilitation
using repetitive motion training with a robotic system is likely more effective than conventional therapy [89].

Exoskeletons equipped with suitable sensors can provide accurate and repeatable data to quantify the
functional status of the patient hands [90]. Moreover, high-frequency rehabilitation exercises do not increase
the financial burden of the treatment. Therefore, using exoskeletons in therapy can allow patients to follow a
daily training routine, which is usually not possible in manual therapy. Despite the demonstrated potential
of exoskeleton systems for rehabilitation, their use in therapy is still limited [90]. The complexity of these
systems and the resulting poor usability in a clinical context are significant barriers. This work extends the
approaches of previous studies by adding position sensing, a more user-friendly bi-directional actuator, and
a force sensor. This simplifies the measurement process and extends the functionality in comparison to
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previous approaches [83]. We also provide a mathematical model to represent the actuation forces on the
load in the finger joints.

Over the past two decades, a variety of hand exoskeleton systems have been developed, most of
which are intended either for hand rehabilitation, force assistance, or to provide haptic feedback, e.g., for
virtual reality applications. Regardless of the intended use, all systems must meet the key requirement of
biomechanical compatibility with the human hand to enable safe operation [83]. The approach by previous
studies uses an underactuated kinematic structure with three degrees of freedom that incorporates all three
finger phalanges [91, 92]. This kinematic structure allows the computation of all forces transmitted to the
finger phalanges, provided that the configuration of the mechanism and the actuator force acting on the
structure are known.

To fully harness this potential, the methods from previous research were expanded in [2] by integrating
angular position sensors into the kinematic structure and coupling a bi-directional electric linear actuator
with a force sensor [91, 92]. By measuring the angles between linkages at three joints of the kinematic
structure, it is possible to develop a parameterized dynamic model of the index finger. This enhancement
allows for precise tracking of joint motion, which is critical for monitoring patient progress, as well as for
accurately mapping measured forces and calculating resulting loads and resistance torques across each
joint.

System Requirements

The rehabilitation effectiveness hinges on key requirements. It must ensure patient safety, be biome-
chanically compatible with the human hand, and prevent finger joint hyperextension and excessive force
application. The exoskeleton should accommodate various hand sizes and grasping tasks, leaving the palm
free for object interaction during training. It should stimulate all finger-flexion joints and record diagnostic
data of angle and torque trajectories for each joint. The system should be scalable for whole-hand use,
user-friendly for clinical and home settings, as well as comfortable and easy to wear and remove. It should
support various rehabilitation modes, including active, active-assistive, and resistive training. Safety is
ensured through mechanical end stops to prevent finger joint hyperextension. The force control should
allow fine-tuning of the maximum actuation forces on the fingers. The kinematic structure should be rigid for
precise positioning and accurate sensor data interpretation. A three DOF underactuated system is preferred
for natural finger motion, supporting bidirectional forces up to approximately 45 N. Direct control of the
kinematic structure is necessary for precise force control.

The key requirements for the system can be summarized as follows: It must be safe to use, suitable for
both clinical and home environments, scalable to accommodate the entire hand, comfortable and easy
to put on and take off, optimized for a wide range of motion, and designed to allow free movement of the
palm. Additionally, it should be capable of measuring the angle and torque of each joint and compatible with
various rehabilitation modes. No system known to the author fully met these requirements considering the
exhaustive literature review. However, the approach by [92], later modified by [91], was the closest match,
forming the basis for the common structure of the exoskeleton in development [2].

2.2.2 Exoskeleton Modeling

Kinematic Model

The kinematic structure of our approach is visualised in Figure 2.5. The rigid links lie in the plane of the
flexion/extension motion of the finger. They are connected by eleven rotational joints with six points of
connection to the finger and the back of the hand. The kinematic chain can be decomposed into three
five-bar linkages, each with two degrees of freedom, and two four-bar linkages, each with one degree of
freedom. This structure allows for greater flexibility and ROM compared to simpler variants with fewer
subsets of joints.
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Figure 2.5 Linkage structure of the proposed exoskeleton system as an extension to [91]. The finger joints are marked
in blue. Areas marked in grey are considered as rigid bodies within the structure [2].

The planar mechanism’s degrees of freedom can be calculated using equation (2.1), with n = 14 for the
number of links and g for the number of joints. Joints connecting three links are counted twice, resulting in
10 + 2 · 4 = 18 joints. Each rotational joint has one degree of freedom, represented by fi.

F = 3 (n− 1) − 3g +
g∑
i=1

fi

= 3 (14 − 1) − 3 · 18 + 18 = 3
(2.1)

The kinematic model is calculated using the tan-half-angle technique ([173], p. 412), which determines
a joint’s two potential positions based on its distance to two known joints. The system employs a linear
actuator with respective actuation force Fact, allowing multiple actuators on the hand’s dorsal side for
simultaneous finger actuation.
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Dynamic Model of the Finger

The dynamic model is derived from the contact forces between the exoskeleton and finger. This model
comprises three finger joints moving in a plane, interconnected by revolute joints. Each joint experiences
an unknown torque (M1 −M3), symbolizing either the joint’s resistance to motion or the actuation torque
applied by the patient. The minimum coordinates q = (α, β, γ)T are represented by the respective joint
angles of the MCP, PIP and DIP joints. Contact forces are the attachment points between the exoskeleton
and the finger and can be solved analytically [2].

The dynamic model can resolve the unknown torques M1 −M3 under unrestrained motion conditions,
i.e., without additional contact forces acting on the finger, using the projected Newton-Euler equations:

3∑
i=1

[
I
JT
T,iFsum +

Ki
JT
R,iMsum

]
= 0,

with Fsum = mi IaCi − IFi,

and Msum = KiL̇i + Kiωi × KiLi − KiM i.

(2.2)

The sum of forces and moments for each body is computed and projected in the directions compatible
with the kinematic constraints via the transposed individual Jacobian matrices for translation

I
JT
T,i and

rotation
Ki

JT
R,i. The forces Fi and moments Mi are described with respect to the inertial reference frame I

and body-fixed coordinate frames Ki, respectively. Li denotes the angular momentum and ω the angular
velocity of each body.

Given the small magnitudes of moving masses, velocities, and accelerations in the system compared to
the external forces and moments, the model can be approximated quasi-statically with q̇ = q̈ = 0. This
approximation allows for the calculation of M1 − M3 based solely on kinematic data. If necessary, the
kinematic calculation could be extended by q̇ and q̈ for the dynamic case.

System Integration and Control

The system’s adaptability, functionality, and constraints were evaluated through a prototype tested on three
subjects, as illustrated in Figure 2.4. Its rigidity was enhanced by reinforcing the flange between the motor
mount and the back of the hand. Potentiometers were placed at joints A and B due to their extensive range
of motion, which enable optimal sensor resolution utilization and mechanical suitability. The K joint was
chosen for its large range of motion and flexible mounting options for the sensors. In addition, the data
from joint K is essential for comprehensive system analysis, as the kinematic calculations beyond joints
A and B rely on this information. Finger attachments were implemented using adjustable silicone bands,
ensuring adequate force transmission to each finger limb. Hyperextension of the finger joints was prevented
by extending the attachments on their proximal side with small screws. The connection between the motor
and the exoskeleton kinematics was realized by a small pin, allowing a quick and safe motor release. The
12 V power supply of the linear motor was coupled with an emergency stop switch for electrical safety.

The sensor control system architecture incorporates three rotary potentiometers as angular position
sensors. To enhance the accuracy of these sensors and counteract their inherent non-linear behavior,
discrete Analog to Digital (ADC) counts were ascertained at intervals of 2°. Position and force sensor
readings were obtained by an ADC on a Teensy 4.1 microcontroller with a 12-bit resolution. The raw ADC
values were logged onto a Storage Device (SD) card at a frequency of 100 Hz. The actuator position is
controlled via a pulse width modulation (PWM) signal based on the control system’s output [2].

Force Sensor Integration

Force Sensing Resistor (FSR)-type force sensors were integrated into a custom-built mechanical enclosure
(Figure 2.6) to measure the actuation force. The design and placement of the force sensor enclosure
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eliminated typical error sources, ensuring an orthogonal application of the forces on the resistor in both
tension and compression directions. The force sensor unit pivots freely around its rear attachment point. It

Figure 2.6 Exploded view of the FSR sensor integration. The setup ensures an orthogonal application of the applied
forces on the resistor in tension and compression direction [2].

is rigidly clamped to the linear actuator at its front attachment point, acting as an extension of its center
line. The enclosure is made up of two rigid claws, a black and a white one as shown in Figure 2.6. Two
FlexiForce® A201 sensors with a maximum load rating of 45 N were used in the prototype. To achieve linear
sensor response and to adjust the force ranges, two non-inverting operational amplifier circuits were used
to process the voltage readings from the sensors.

Control System

A force thresholding system was implemented for initial testing. The desired actuator trajectory was
calculated in real time and decomposed into a series of target actuator positions. Actuation torque at joint
B was monitored and compared against a preset threshold value. To prevent system oscillations, this
comparison was managed by a two-point controller with a dead-band feature, enhancing system stability
and response. The system adaptivity excludes the control of individual joint trajectories by manipulating
the actuator position. However, the joint angles and joint torques can be determined using the described
kinematic and dynamic models, providing potential input to the control system.

2.2.3 Results

Exoskeleton ROM Evaluation

The ROM is a crucial characteristic of the rehabilitation-focused exoskeleton. An experiment was conducted
in which subjects performed repetitive maximum flexion and extension of the index finger. The exoskeleton
served as a measurement tool, enabling the determination of joint trajectories. The active ROM encom-
passes all potential positions that the fingertip can reach, whereas the functional ROM signifies a subset
of these positions that are essential for executing the majority of daily tasks. The ROM achieved by the
coupling of the exoskeleton with the index finger is also taken into account.

Table 2.2 enumerates individual data and the resultant ROM for each subject. Evaluation of the functional
ROM indicates that the exoskeleton-index finger coupling encompasses 77%, 87% and 100% of the
functional ROM for the three subjects, respectively. As the length of the index finger diminishes from 93 mm
to 87 mm and 85 mm, the corresponding functional ROM expands due to the relative increase in the size of
the kinematic structure, enabling greater distances during flexion. Consequently, positions necessitating
substantial flexion of all three finger joints are unachievable for subject 1. Nevertheless, the exoskeleton
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coupling provides nearly unrestricted movements in a significant segment of the functional ROM, rendering
it suitable for training a wide range of daily life grasping tasks for all subjects.

Table 2.2 Tabulated parameters of the three individual subjects for the index finger and the achievable ROM. Results
from [2].

Subject 1 Subject 2 Subject 3

Gender male female female
Age [years] 27 25 25
Overall Length [mm] 93 87 85

Proximal Phalanx [mm] 41 39 37
Middle Phalanx [mm] 27 24 24
Distal Phalanx [mm] 25 24 24

Functional ROM 77% 87% 100%
Overall ROM 40% 44% 60%

Force Control Interaction Evaluation

Figure 2.7 Experiment setup or force control interaction.

The force control system was evaluated
by limiting the exoskeleton movement for
subject 1. A force-sensitive plate was in-
troduced as an obstacle to the free finger
movement, and the resulting force at the
fingertip was measured, as displayed in Fig-
ure 2.7. The exoskeleton driving torque was
capped at 0.1 Nm, and the resistive forces at
the fingertip were interpreted as increased
joint stiffness by the model. Figure 2.8 il-
lustrates a sharp increase in joint moments
following the finger contact with the force-
sensitive plate.

Upon contact with the plate, a controller-
induced oscillation is observed, attributable
to the maximum and minimum permissible
torques of the drive torque. The maximum
external force on the force-sensitive plate is 1.53 ± 0.1 N, leading to an immediate drop in the measured
torques. The effect manifests differently across the finger joints. The DIP and PIP joints experience
lower torques due to the external contact force, while the MCP joint experiences a more intense torque
accumulation. The angular trajectories remain almost unchanged for the MCP and DIP joints, with only the
PIP joint responding to the altered load. The low standard deviation of the trajectories indicates the system’s
sufficient load-bearing capacity in subject 1. The experiment demonstrates that the exercise intensity can
be tailored to the patient’s hand’s functional state by adjusting the controller’s thresholds, ensuring patient
comfort during therapy.

2.2.4 Conclusion

The section introduced a force-controlled exoskeleton designed for automated rehabilitation of CRPS
patients. The exoskeleton meets critical requirements for CRPS treatment, potentially reducing treatment
costs and simplifying frequent rehabilitation exercises. The system’s integrated position and force sensors
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Figure 2.8 Control intervention for subject 1 during a flexing movement of the index finger with a torque limit of 0.1 Nm
at the actuator over three independent test cycles. The resulting mean ± standard deviation over all cycles are
displayed. The finger hits a force sensitive plate at 7 s, which measures a maximum external force to the fingertip of
1.53 ± 0.1 N [2].
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collect data, including the finger’s ROM and angular and torque trajectories of each joint, enabling objective
quantification of the finger’s functional status. This data assists therapists in monitoring rehabilitation
progress and assessing treatment efficacy. Notably, the recorded resistive torque at varying angular
positions can be used to track changes in joint stiffness over time.

The adaptive kinematic exoskeleton structure allows for a range of force-assisted grasping tasks. The
actuation force on the structure is measured and limited by a two-point controller, thereby capping the
maximum torque at each finger joint. The exoskeleton can provide passive support by applying force to the
fingertip in both directions. The functional ROM covered by the exoskeleton is adequate for rehabilitation
purposes. The system is easy to attach and detach from the patient finger, and suitable for home use due
to its simplicity and affordability. The system is further user-friendly, as the next section demonstrates in
more detail.

2.3 Clinical Application and Integration Study

In the previous section, the development of a force-controlled exoskeleton designed for the rehabilitation
of patients suffering from CRPS was discussed. The system, equipped with integrated position and force
sensors, demonstrated its potential in reducing treatment costs, facilitating frequent rehabilitation exercises,
and providing valuable data for tracking rehabilitation progress and assessing treatment efficacy.

Building on this foundation, this section will investigate the application of this adaptive exoskeleton in a
real-world context, focusing on its integration with a mobile application designed to enhance the rehabilitation
process [3]. This innovative approach not only allows for interactive control of the exoskeleton but also
enables the storage of patient-specific data and incorporates elements of gamification to motivate patients
throughout their therapy. Over a six-week period, the system was applied to three CRPS patients, providing
valuable insights into its practical applicability and the potential for objective therapy evaluation. The design
of the exoskeleton, the mobile application, its game content, and the results of the patient study will be
discussed in detail in the following.

Treatment of CRPS primarily aims to enhance hand mobility and functionality and alleviate pain. Physio-
therapy and ergotherapy, the mainstays of conservative treatment, often yield unsatisfactory results due
to time constraints, the need for expert therapists, and high costs [84, 85]. Conversely, exoskeletons can
provide precise, cost-effective data for monitoring patient progress, enabling daily therapy [90]. However,
many existing exoskeletons require direct fitting to the patient hand or offer adaptive actuation but lack
sufficient sensor applications [93–98].

As discussed in Wilhelm et al. [3], the approach by Dickmann et al. [2] overcomes these limitations by
providing adequate sensing for index finger actuation, motion tracking, and force control. This chapter
extends this approach for clinical use by introducing a mobile application for control, enabling live tracking of
patient data and ensuring easy applicability. The details of this development and its application in a clinical
study are discussed in the following sections.

2.3.1 Methods

Mechatronic System

The mechatronic system, as detailed in Wilhelm et al. [3], builds upon the work of Dickmann et al. [2],
incorporating a Bluetooth control unit and an improved housing for all electrical components. The electrical
circuit, depicted in Figure 2.9, includes the individual electrical components and their specific roles within the
exoskeleton system. The system utilizes three potentiometers for angle measurement of the exoskeleton
kinematics and two FSR units to determine the external force applied by the actuator. The DSDTech HM10
Bluetooth module enables external Bluetooth communication, transmitting signals from the sensors to the
mobile application and receiving commands for executing measurement protocols and actuator trajectories.
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Figure 2.9 Overview of the electrical circuit of the extended exoskeleton from Dickmann et al. [2] and their corre-
sponding use for the exoskeleton system in Wilhelm et al. [3].

Exoskeleton Framework

The exoskeleton architecture is based on the adaptive exoskeleton by Dickmann et al. [2]. The system can
be attached to any hand and provides comprehensive force and torque measurements in the finger joints.
The newly developed application creates an interactive interface between the patient and the exoskeleton,
providing real-time information about the finger and the exoskeleton, enabling therapy via games, and
collecting data for therapy objectification and progress diagnosis.

The application, as shown in Figure 2.10, provides a signal view for all relevant measurement signals of
the finger, including the angular trajectories and corresponding moment curves. A live-view feature offers
an intuitive image of the finger with the exoskeleton in its current position. To motivate patient participation
in therapy, two games were developed: "Bubble Collector" and "Dodge Rectangles". The application also
provides a separate input mask for patient-specific parameters, which are saved and can be edited at
any time. The games were developed with a focus on incorporating established concepts of classical
physiotherapy and ergotherapy, emphasizing the training of fine motor skills of the hand. The games provide
a welcome change in the lengthy and complex treatment of CRPS and thus increase the patient compliance
to regular therapy sessions.

Implementation of Clinical Studies

The study protocol was designed to treat patients with the exoskeleton during outpatient rehabilitation in
addition to conventional physiotherapy. A total of 6 study sessions, each lasting 30 minutes, were conducted
over 6 weeks. Every study session was carried out according to the defined protocol. Before and after each
session, measurements were performed on the hands to assess other objectifiable parameters related to
the progression of CRPS. At the end of the experimental sessions after 6 weeks, the Budapest diagnostic
criteria and the Quick-DASH scores were additionally collected a second time.
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Figure 2.10 The application provides a display of the exoskeleton signals (a), and a real-time representation of the
exoskeleton position (b). To engage the patient, two games, "Bubble Collector" (c) and "Dodge Rectangles" (d), are
incorporated into the application. Figure from Wilhelm et al. [3].

Table 2.3 Demographics of patients from the study used in Wilhelm et al. [3].

Patient Age Sex BMI Duration CRPS Trigger CRPS
1 26 female 32.1 kg/m2 5 years Hand overload when writing
2 68 female 28.3 kg/m2 7 months Elbow fracture
3 44 male 21.3 kg/m2 8 months Wrist fracture

2.3.2 Results

Patient Demographics and Study Protocol

The adaptive exoskeleton was utilized in the treatment of three patients diagnosed with CRPS over a
six-week period, adhering to the outlined study protocol. The patient group comprised two females and
one male. The onset of CRPS in two of the patients was linked to a fracture and a surgical procedure on
the affected limb, while in the third patient, CRPS was triggered by hand overuse during the writing of a
graduate thesis.

Table 2.3 provides a summary of the demographic data of the patients. Each patient underwent a
minimum of six treatment sessions, each lasting 30 minutes. The frequency of sessions was 1-2 per week
for the initial four weeks, followed by a final treatment session at the six-week follow-up. The patients
exhibited high motivation levels and reported a positive experience during the sessions. No complications
or adverse events were reported during or after the trial sessions.

Based on the analysis of the recorded Patient-Reported Outcome Measures (PROM) and the subjective
feedback from the patients, an improvement in symptoms and functionality was observed for all three
patients [3]. The severity of CRPS, as indicated by the Budapest criteria, decreased for each patient.
Furthermore, an enhancement was noted in all areas upon evaluating the Disabilities of the Arm, Shoulder
and Hand (DASH) score. The evaluation outcomes are summarized in Table 2.4.

Measurements of the Exoskeleton

Next we examine the results obtained from the application of the exoskeleton over a six-week therapy
period, as reported in Wilhelm et al. [3]. The exoskeleton was used to record joint and torque curves before
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Table 2.4 Summary of patient progress over a six-week follow-up period, as measured by the QuickDASH and
Budapest Score. A lower score in each case signifies an improvement in the patient condition. Table adapted from
Wilhelm et al. [3].

Score Patient 1 Patient 2 Patient 3
Budapest Pre [174] 6 / 11 5 / 11 7 / 11
Budapest Post [174] 5 / 11 1 / 11 2 / 11
QuickDASH Pre [175] 50% 43% 40%
QuickDASH Post [175] 45% 38% 38%

and after the therapy, providing valuable insights into the progress made by each patient. Figure 2.11
presents a comparative study of these results for the three patients.

The figure showcases the patients’ hands equipped with the exoskeleton and the corresponding joint
and moment curves. The joint curves for the MCP, PIP, and DIP joints, both before and after the six-week
therapy period, are displayed. The motion depicted was generated by the linear motor, with the patient
finger passively following the flexion provided by the exoskeleton.

The angular measurements were derived from solving the kinematic system of the exoskeleton using the
patient-specific parameters. The force measurements also enables the computation of the corresponding
torque curves for the finger joints. These torque curves represent the quasi-static solution of the loading
equations [2] and are displayed beneath each of the joint curves. The curves and the shaded areas around
them denote the mean and standard deviation over five measured trajectories, respectively.

2.3.3 Discussion

The exoskeleton system, comprising of the exoskeleton itself and the accompanying mobile application,
was successfully utilized in the treatment of patients, as discussed in Wilhelm et al. [3]. The user-friendly
design and comfort of the exoskeleton make it easier for patients to use intuitively. The system’s ability to
store individual user profiles and accept patient-specific parameters optimized the measurements and live
views for each patient. The control system effectively responded to force limits, as demonstrated in Figure
2.11 for patient 2 (green), where exceeding the force limit of 6 N halted the movement and immediately
unloaded the finger.

The implementation of gamification in rehabilitation was found to be highly effective. The system
successfully incorporated established concepts from classical physiotherapy and occupational therapy. The
engaging and playful nature of the games encouraged patients to push their limits. The therapeutic approach
of analog mirror therapy and the therapy concept "Graded Motor Imagery" were effectively translated into
a digital visualization and abstraction of the patient real finger onto a virtual model in the video game.
The therapy concept "Exposure in Vivo (EXP)", where the patient consciously accepts pain to achieve an
improvement in therapy outcome, was also observed. Feedback from patients regarding gamification was
consistently positive [3].

The longitudinal study, which tracked the progress of patients over a six-week period, yielded several
observations. All three patients showed a positive therapeutic course, as evidenced by the decrease in
both QuickDASH and Budapest scores. This improvement is also reflected in the torque curves from Figure
2.11. For patient 2, the trajectory could now be applied with the exoskeleton, as the stiffness of the finger
reduced, keeping the external force of the exoskeleton below 6 N during the trajectory. The patient data
obtained from the study was compared with measurements from the healthy subject study of Dickmann et
al. [2]. The comparison showed significant differences in the torque curves of healthy subjects and patients,
with patients consistently showing a higher amplitude in the joint torque curve, primarily due to the higher
stiffness of the patients’ joints [3].
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Figure 2.11 Comparative study of the exoskeleton application from Wilhelm et al. [3] presents the results of patient 1
(blue, top), patient 2 (green, middle), and patient 3 (orange, bottom) over a six-week period. The left side displays the
patients’ hands fitted with the exoskeleton. On the right, the joint curves of MCP, PIP, and DIP joints (top row) and
the corresponding torque curves (bottom row) are shown. The displayed measurements represent the mean (line) ±
standard deviation (shaded) of five individual measurements. Figure from Wilhelm et al. [3].
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Figure 2.12 Comparison between three healthy subjects from the study by Dickmann et al. [2] (displayed on the
left) and three CRPS patients prior to therapy (displayed on the right), as reported in Wilhelm et al. [3]. The top row
illustrates the angular trajectories of the MCP, PIP, and DIP joints, while the bottom row presents the corresponding
torque trajectories. The depicted measurements represent the mean (line) ± standard deviation (shaded) derived
from five individual measurements.

Limitations

The study had several limitations, as discussed in Wilhelm et al. [3]. The small number of patients and
the short treatment period with limited follow-up were significant constraints. Additionally, the collateral
measurements used to objectify the clinical course of CRPS did not show a correlation with the clinical
course due to a large spread of the absolute values. However, the exoskeleton measurements were
very reliable and, along with the validated scores (Budapest criteria and DASH score), documented an
improvement in function and disease outcome. Therefore, the use of exoskeleton measurements to provide
objectifiable data on disease outcome is recommended for further studies.

2.3.4 Conclusion

The successful development and integration of the mobile application, as well as its application to patients,
has effectively extended the exoskeleton system originally proposed by Dickmann et al. The incorporation of
Bluetooth functionality has enabled the flexible and user-friendly operation of the exoskeleton. A comparative
study between the original subject study by Dickmann et al. [2] and the conducted patient study revealed
notable differences in the torque curves of patients, attributable to the increased stiffness of their finger
joints. The follow-up study demonstrated a positive trend in both QuickDASH and Budapest scores, further
supporting the efficacy of the exoskeleton as a valuable tool for rehabilitation and providing objective patient
measurements. Future objectives of this project include expanding the exoskeleton to encompass the entire
hand and further enhancing the mobile application [13].
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3 Diagnostics and Surgical Planning through
Artificial Intelligence-based Image Analysis

Figure 3.1 Section overview.

In this chapter, we address the transformative potential of AI in im-
age analysis for orthopaedic diagnostics and surgical planning. Our
discussion focuses on the role of AI in improving the accuracy and
efficiency of bone tumor detection, kinematic alignment analysis, and
the development of preoperative surgical strategies. This investi-
gation is in line with the broader research question of the benefits
and challenges associated with the use of AI for image analysis in
orthopaedic diagnostics and surgical planning.

Structured to navigate from data acquisition through to clinical ap-
plication, this chapter, as depicted in Figure 3.1, begins by addressing
the foundational element of AI in healthcare: data. The development
of automated planning algorithms necessitates access to compre-
hensive medical datasets, which are pivotal for training accurate and
reliable AI models. Section 3.1 introduces a mobile application specif-
ically designed for the annotation of radiographs, a tool that aids in
the accumulation of medically annotated data essential for algorithm
development.

With a robust dataset in place, we transition to the heart of AI’s
application in orthopedics - the development of algorithms for critical
diagnostics and planning tasks. Section 3.2 focuses on the vital area
of bone tumor detection and classification, illustrating the impact of
automation on enhancing diagnostic accuracy. The narrative extends
beyond tumor detection to the identification of malpositions critical
for orthopedic interventions. In Section 3.3, we present an algorithm
designed for automatic kinematic alignment analysis, capable of detecting and quantifying malpositions,
thereby facilitating precise surgical interventions and reducing the workload immensely.

Finally, the chapter progresses to discuss the integration of these diagnostic capabilities into automated
surgical planning. Section 3.4 evaluates the application of AI in planning corrective osteotomies, showcasing
how AI-powered algorithms can bridge the gap between diagnostic imaging and the formulation of tailored
surgical strategies. This discussion not only highlights AI’s potential to improve patient outcomes through
enhanced diagnostic and planning accuracy but also addresses the complexities and challenges inherent in
integrating these technologies into clinical practice.

3.1 Data Annotation

The rapid advancement of machine learning and deep learning methodologies has significantly influenced
various sectors, including the medical field, where they are used for diagnosis, treatment planning, and
patient monitoring [176, 177]. For the effective implementation of deep learning algorithms, accurate
annotation and labeling of medical datasets are crucial [178]. However, the annotation process often
requires expert knowledge and is labor-intensive, posing a significant challenge [179]. Insufficient dataset
quality control can also compromise the performance and generalization of the resulting algorithms [180].
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Figure 3.2 Overview of the Mobile Annotation App: Users initiate by logging in (a) and proceed to access specific
tasks (b). Images can be annotated either through classification or segmentation (c), with an additional feature for
detailed examination of sub-images (d). Best precision in annotation is achieved when using a tablet and pen.

As a result, recent research has emphasized the development of efficient annotation tools to optimize the
process and alleviate the demands on medical professionals [181, 182].

3.1.1 Methods

To address these challenges, we introduce a novel pipeline that includes the development of a mobile
annotation application and a deep learning pipeline capable of integrating the supplied annotation data
for training. The application was developed using the Flutter framework [183], ensuring compatibility with
Windows, Mac, iOS, and Android platforms. The application supports a variety of annotation techniques,
accommodating user requirements for either classification or segmentation of images and can be seen
in Figure 3.2. Moreover, it allows in-depth analysis of subimages to ensure a thorough examination and
annotation of complex details within medical images. This functionality contributes to the enhancement of
dataset quality and precision.

The primary aim of this application is to facilitate the efficient creation of medical datasets and their asso-
ciated models. Figure 3.3 depicts the model generation pipeline, demonstrating the stepwise transformation
of raw medical data into a functional deep learning model. Upon satisfactory completion of annotation tasks,
the modeling process for recognition networks can commence. The dataset obtained from the application,
consisting of a .txt file for each annotated image and user, is first converted into the Common Objects in
Context (COCO) format [184]. Subsequently, image recognition or classification networks can be trained
and validated using the transformed dataset.

3.1.2 Applicability

The effectiveness of this application was underscored in a recent study by Bloier, Hinterwimmer, et al. [185].
In their research, the authors employed this application as a foundational tool for annotating bone tumors
in radiographs, thereby leveraging the application to gather expert medical data. Utilizing the annotations
obtained through this application, Bloier et al. [185] trained their deep learning algorithms and achieved an
Intersection over Union (IoU) of 87.43% on hold-out test data, despite the constraints of a limited dataset.

Despite the user-friendly nature of the application and the corresponding model, the requirement for man-
ual data transfer between the two components via a USB connection is a potential drawback. Additionally,
the project currently lacks empirical evidence to validate the advantages of the mobile software. However,
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Figure 3.3 Pipeline Overview for Model Generation: (a) Raw data is transmitted to the device (b) for medical expert
annotation (c), constituting the medical application component (I). Subsequently, data is exported and processed for
model generation (II), involving dataset transformation (d), model training (e), and evaluation (f). Additional annotations
may be necessary if evaluation outcomes are inadequate.

with the public release of the application, we anticipate its integration into a variety of projects, which we
expect will provide further evidence of its capacity to streamline the annotation process.

3.1.3 Conclusion

In conclusion, this section presents a novel mobile annotation application and deep learning pipeline, aimed
at expediting and streamlining the process of generating medical datasets and their corresponding models.
The user-friendly interface and intuitive annotation capabilities of the application offer notable advantages
over traditional annotation tools, thereby increasing workflow efficiency and annotation quality. Although
certain limitations exist, such as the necessity for manual data transfer via USB, the application holds
promise for widespread adoption in various research projects.

3.2 Bone Tumor Detection Algorithms

Cancer represents one of humanity’s most significant vulnerabilities. In the field of orthopedics, bone
tumors are among the most life-threatening conditions. Therefore, early and accurate detection is crucial for
improving a patient’s survival prospects. A primary motivation of this research is to enhance support in this
critical area using AI tools, with the goal to provide an additional layer of security for tumor detection and
classification in everyday clinical settings.

The detection and classification of bone tumors have been considerably improved through the use of
DL algorithms. In a collaborative effort with the radiology department of Klinikum Rechts der Isar, a novel
method for automatic bone tumor detection has been developed. This approach involves training a multitask
DL model capable of performing bounding box placement, segmentation, and classification of primary bone
tumors in radiographs [4].

The dataset used in the study [4] comprised radiographs of patients with primary bone tumors. The
dataset was divided into two distinct sets: an internal set and an external set. The internal set was collected
from a single institution and was used for training and validation of the DL model. The external set, collected
from multiple institutions, was used to test the generalizability of the model. The internal set consisted of
135 patients with 145 primary bone tumors. The external set included 41 patients with 41 primary bone
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tumors. The tumors in both sets were annotated by fellowship-trained musculoskeletal radiologists. The
annotations included bounding box placement, segmentation, and classification of the tumors.

3.2.1 Methods

The model, as depicted in Figure 3.4, is based on a Microsoft COCO pretrained mask region–based
convolutional neural network (Mask-RCNN-X101). The input of the model is an image with a resolution
of 800 x 1200 pixels. The developed multitask model allows for simultaneous bounding box placement,
segmentation, and classification of bone tumors on radiographs. Those three tasks represent a different
head of the model, each with a different loss function. The loss functions for segmentation are per-pixel
sigmoid loss and binary loss. The loss function for boundary box placement is the bounding box regression
loss. The loss function for the classification task is the cross-entropy loss. An Adam optimizer with a 0.0025
learning rate at a batch size of two for 5000 epochs is used [4].

1. Radiograph of the
bone tumor

2. Multitask Deep
Learning

3. Analysis:
A: Classification
B: Object detection
C: Segmentation

A: Osteosarcoma 87 %

Predicitons are
improved by
capitalizing on
knowledge gained by
conducting each of
the three tasks
simultaneously

B: C:

Figure 3.4 Overview of the multitask deep learning model based on a pretrained Mask-RCNN-X101. The model
processes 800 x 1200 pixel images (1), simultaneously performing classification (3A), bounding box placement (3B)
and segmentation (3C) of bone tumors on radiographs. Each task corresponds to a different head of the model with a
unique loss function. The model is optimized using Adam with a 0.0025 learning rate for 5000 epochs [4].

The performance of the model was evaluated on both an internal and external test set and the main
results are displayed in Table 3.1 [4]. For object detection, the multitask DL model placed 59.5% of the
bounding boxes correctly (IoU > 0.5), demonstrating an IoU of 0.52 ± 0.34. In 82.0% of cases, there was at
least some overlap between the bounding box and the tumor (IoU > 0). The segmentations performed by
the multitask DL model yielded an average Dice score of 0.60 ± 0.37 on the external test set [4].

Table 3.1 Performance of the DL Model for Identification of Malignant Lesions on the Internal and External Test Sets
and for Tumor Entity Classification, Bounding Box Placement, and Segmentation from Sckacky et. al. [4]. Results
are displayed with direct numerical values in parentheses, 95% Confidence Intervall (CI)s in square brackets, and
standard deviations, where applicable.

Multitask DL Model Internal Hold-Out Test Set External Test Set

Accuracy for malignancy 81.4 (114/140) [75.0, 87.8] 80.2 (89/111) [72.8, 87.6]
Sensitivity for malignancy 59.0 (23/39) [44, 77] 62.9 (22/35) [47, 79]
Specificity for malignancy 90.1 (91/101) [84.3, 95.9] 88.2 (67/76) [81, 96]
Linearly weighted Cohen k for malignancy 0.52 [0.44, 0.60] 0.53 [0.43, 0.62]
Accuracy for tumor entity (16 entities) 42.9 (60/140) [34.7, 51.1] 43.2 (48/111) [34.0, 52.4]
Intersection over union (bounding box) 0.54 ± 0.32 0.52 ± 0.34
Dice score (segmentation) 0.63 ± 0.34 0.60 ± 0.37
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3.2.2 Conclusion

In conclusion, the developed multitask DL model [4] provides a promising tool for the accurate and simulta-
neous bounding box placement, segmentation, and classification of primary bone tumors on radiographs.
The classification performance of the model surpassed that of radiologic residents and was comparable to
that of musculoskeletal fellowship–trained radiologists. This model may improve the diagnostic accuracy
and consequently improve the diagnostic workflow in patients with primary bone tumors. The developed
model and its application in bone tumor detection have been recognized with the Trainee Research prize at
the RSNA and the best abstract award at the DKMSR [186]. The studies have been published in Radiology
[4] and European Radiology [5]. The code is publicly available at:
https://github.com/NikonPic/BonetumorNet and
https://github.com/NikonPic/bonetumor-radiomics.

3.3 Automatic Alignment Analysis for the Lower Limb

In addition to leveraging AI for critical diagnostic tasks such as bone tumor detection, similar models can
be employed in other vital areas, such as the labor-intensive analysis of lower extremity malpositions and
subsequent surgical planning. The development of these models, aimed at simplifying daily operations for
Orthopedic Surgeon (OS), is discussed further below. OA of the lower limbs presents a significant global
challenge, where misalignment plays a crucial role in a variety of musculoskeletal disorders, markedly
influencing treatment outcomes [146, 187–199]. Accurate diagnosis and effective treatment planning
necessitate a thorough preoperative analysis of alignment in the lower extremities, particularly using
anterior-posterior (a.p.) Long Leg Radiograph (LLR). However, this complex process is not only time-
consuming but also prone to inaccuracies [139, 140, 146–149, 188–192, 199].

Advancements in ML and DL technologies promise to improve the precision, reliability, and speed of
these preoperative analyses. Although previous investigations have demonstrated that DL models can
predict single alignment parameters with high accuracy, their practical use remains limited to these specific
parameters [138–149].

In this context, we introduce a DL framework designed to automate the comprehensive assessment of leg
alignment using a.p. LLR images fully. This framework benefits from the collaborative intelligence of master
and expert networks to ensure maximum accuracy, offering a superior alternative to single-parameter
models without the constraints of existing hardware. Multicenter validation studies have shown that our
DL approach reaches a clinical-grade operational standard compared to OS, significantly outperforming
manual evaluations in terms of efficiency [145, 4, 200–204].

Such findings highlight the considerable potential of cutting-edge DL models in enhancing the capabilities
of orthopedic practitioners, especially for tasks that require high accuracy and reliability in diagnosing and
managing lower limb pathologies.

3.3.1 Methods

This study (460/21s), approved by the Institutional Review Board and adhering to institutional privacy
policies, retrospectively analyzed patients who underwent radiographic evaluation prior to lower extremity
malalignment corrective surgery at University Hospital rechts der Isar in Munich from January 2014 to
January 2021. Inclusion criteria comprised conventional preoperative weight-bearing anteroposterior LLRs,
while exclusion criteria included unconsolidated fractures, metal implants or hardware overlaying cortical
bone contours, and inadequate radiographic quality due to severe malrotation or incomplete visualization of
bony structures. The data were partitioned into 60% for training, 10% for validation, and 30% for hold-out
testing. An external validation dataset, equivalent in size to the internal dataset, was procured from the
University of Freiburg.

Depending on patient height, two or three preoperative weight-bearing anteroposterior radiographs were
obtained and merged to produce a full LLR. A ruler and a reference sphere served as length references.

https://github.com/NikonPic/BonetumorNet
https://github.com/NikonPic/bonetumor-radiomics
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Figure 3.5 Comprehensive lower extremity alignment analysis via deep learning algorithm from Wilhelm et al. [6]: (a)
Utilization of standard weight-bearing anteroposterior radiographs for hip, knee, and ankle evaluation.(b) Detection
network processes radiographs, downscaled for memory conservation and optimizing Lcls,i and Lbox,i during training,
while specialized networks examine detected regions at full resolution. (c) Prior to employing expert networks, the
image area optimized for inference aligns the object with the average location in the training dataset. Expert network
training is further extended by segmentation (Lmask,i) and landmark identification (

∑m
j=1 Lkeyp,i,j). (d) Projection

of expert networks’ data onto the hip-knee-ankle radiograph. (e) Result: Automated leg alignment assessment on
radiographs.

Landmark segmentation and annotation were performed on all LLRs, with an internal validation of the
annotation protocol conducted on 50 randomly selected images reviewed by three experienced OS. Labels
and segmentations were created by one OS and verified by a second, with disagreements resolved by a
third OS. These annotations served as the baseline reference for training.

Deep Learning Techniques for Leg Alignment Analysis

A multi-level approach was adopted for automatic detection and labeling of various landmarks and seg-
mentations in a single image focused on leg anatomy. The architecture partitions the entire leg image
anatomically into nine distinct objects, each with segmentation, landmarks, bounding box, and class. An
upstream recognition step identifies sub-objects within the entire image, streamlining the task and bypassing
hardware constraints. Each image region is then directed to expert networks based on their category,
utilizing the original full image resolution. The primary image analysis, comprising landmark placement,
bounding boxes, segmentation, and classification, is conducted by the respective expert multitasking
network.

To enhance the precision of angle calculations, a process that integrates additional intermediate steps,
tailored to the specific anatomy, was introduced. This approach merges information from bounding boxes,
segmentation, and landmarks to augment the result’s accuracy. To further optimize the accuracy of critical
landmarks, specifically those situated on the convex contour of the femoral condyles, a local edge filter was
employed, as discussed in more detail in Wilhelm et al. [6].
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Figure 3.6 Flowchart illustrating the patient population for this study after considering inclusion criteria, exclusion
criteria for the internal (A) and external dataset (B) [6].

Ablation Studies and Lower Extremity Alignment Analysis

Various deep learning architectures were assessed on the internal test dataset to optimize the DL model’s
accuracy. A subsequent ablation study assessed the advantages of anatomical landmark optimization filters.
The DL model landmarks were compared with the combination of the DL model with local edge filters for
points F-1 and F-2. The final automatic landmark detection algorithm generated numerical output for lower
limb alignment, including relevant parameters such as Medial Lateral Patellar Femoral Angle (mLPFA),
Medial Lateral Distal Femoral Angle (mLDFA), Joint Line Convergence Angle (JLCA), Medial Proximal Tibial
Angle (mMPTA), Medial Lateral Distal Tibial Angle (mLDTA), Ankle Mechanical Axis (AMA), Mechanical
Femorotibial Angle (mFTA), Knee Joint Line Obliquity (KJLO), Load on Tibia Plateau (TP), Mechanical Axis
Deviation (MAD) and limb length.

The performance of the fully automated alignment analysis was evaluated by comparing the results with
reference measurements performed by three different experienced human raters for both the internal and
external test data sets. To evaluate inter- and intrarater reliability, segmentation and landmark detection and
reference measurement were performed twice at four-week intervals in 30 randomly selected patients.

3.3.2 Results

From 01/2014 to 01/2021, 687 patients were identified from the institutional database who had a preoperative
weight-bearing a.p. LLR. After applying inclusion and exclusion criteria, 594 patients (mean age 41.1 ±
13.2 years, 182 females, 388 left leg) were included in the study (Figure 3.6). The patient radiographs were
randomly divided into training (n=399, 60%), validation (n=59, 10%), and test (n=136, 30%) datasets.

In the ablation study, the Multi Scale Training Simulation (MS-TrainSim) architecture achieved the highest
average landmark accuracy (1.9 mm ± 2.9 mm), outperforming the Single Scale (SC) architecture (20.9
mm ± 73.9 mm) and the Multi Scale (MS) architecture (3.0 mm ± 6.0 mm). Therefore, the MS-TrainSim
approach was used for all further analyses.

The DL model demonstrated high accuracy in identifying anatomical structures and landmarks necessary
for angle calculation, as shown in Table 3.3. The model detected the reference sphere in all cases (132/132)
and performed measurements on the ruler in the remaining cases (4/4). The mean RMSE for each object’s
landmarks ranged from 0.48 mm ± 1.0 mm (Sphere) to 7.1 mm ± 4.55 mm (Femur Shaft). The Sørensen-
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Table 3.2 The Mean Root Mean Square Error (RMSE) of landmark detections for individual objects were compared
across SC, MS, and MS-TrainSim approaches on the internal test dataset. The results are presented as mean ±
standard deviation (range). Data from Wilhelm et al. [6].

Object [mm] SC MS MS-TrainSim
Hip 6.6 ± 24.8 0.6 ± 0.4 0.6 ± 0.3
Femurtrochanter 6.9 ± 29.4 1.2 ± 1.5 0.9 ± 0.5
Femurshaft 55.5 ± 105.3 17.5 ± 11.0 7.1 ± 4.5
Femurcondyles 6.9 ± 42.4 1.9 ± 2.0 1.7 ± 1.6
Tibiaeminence 12.5 ± 61.6 1.0 ± 1.1 1.1 ± 1.1
Tibiajoint line 6.9 ± 42.4 1.3 ± 1.0 1.3 ± 1.3
Tibiashaft 95.4 ± 139.5 5.8 ± 4.1 5.5 ± 3.5
Ankle 1.1 ± 1.9 1.7 ± 3.5 0.9 ± 1.7
Sphere 8.2 ± 49.5 0.5 ± 1.0 0.4 ± 1.0

Average 20.9 ± 73.9 3.0 ± 6.0 1.9 ± 2.9

Dice coefficient for bounding box placement and segmentation varied between 0.89 ± 0.2 (Ankle) and 0.97
± 0.01 (Femur Trochanter).

Table 3.3 Table shows RMSE for landmark detection, Dice Score for bounding box placement (Dice BBox) and
segmentation (Dice Seg) for each object on the internal test dataset. Data is presented as mean ± standard deviation.
Data from Wilhelm et al. [6].

RMSE [mm] Dice BBox Dice Seg

Hip 0.57 ± 0.29 0.97 ± 0.02 0.97 ± 0.02
Femurtrochanter 0.89 ± 0.54 0.97 ± 0.01 0.97 ± 0.01
Femurshaft 7.1 ± 4.55 0.9 ± 0.06 -
Femurcondyles 1.92 ± 2.67 0.96 ± 0.02 0.97 ± 0.01
Tibiaeminence 1.1 ± 1.12 0.96 ± 0.02 0.95 ± 0.09
Tibiajointline 1.37 ± 1.36 0.96 ± 0.02 0.96 ± 0.01
Tibiashaft 5.48 ± 3.49 0.92 ± 0.04 -
Ankle 0.83 ± 1.65 0.93 ± 0.09 0.89 ± 0.2
Sphere 0.48 ± 1.0 0.95 ± 0.15 0.95 ± 0.15

Interreader reliability for the internal and external test datasets is shown in Table 3.4. For both datasets,
reliability between OS was good to excellent for angular measurements and excellent for absolute distances.
Similarly, reliability between the DL model and ground truth measurements of the OS was moderate to
excellent for angular measurements, and excellent for absolute distances.

Clinically acceptable accuracy details are in Table 3.5. In the internal dataset, agreement between OS
(OS1, OS2, OS3) and the DL model ranged from 13.6% to 100%. In the external dataset, this agreement
ranged from 31% to 100%.

In a comparison of analysis time, human raters took around 100 seconds for full alignment analysis using
MediCAD version 6.0. The DL model, using a consumer-grade personal computer, completed the same
task in about 22 seconds. This was significantly faster (p ≤ 0.01) than human raters on both internal and
external test datasets, making the DL model over four times faster.

3.3.3 Discussion

This study presents a DL model for leg alignment analysis from anteroposterior long-leg radiographs that
exhibits comparable performance to orthopedic specialists in terms of precision, inter-reader reliability,
and clinically acceptable accuracy [138, 145, 205, 206]. The model surpasses human raters in intra-rater
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Table 3.4 Interreader reliability as quantified by Inter Class Correlation (ICC) values on the internal and external test
dataset. Data listed in brackets are 95% CIs. TP, tibial plateau. Data from Wilhelm et al. [6].

Internal

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length 0.99 [0.99, 0.99] - - 0.99 [0.97, 0.99]
Load on TP 0.92 [0.89, 0.95] 1.0 [0.99, 1.0] 0.99 [0.98, 1.0] 0.98 [0.97, 0.99]
MAD 0.99 [0.8, 1.0] 1.0 [0.95, 1.0] 1.0 [0.99, 1.0] 1.0 [0.98, 1.0]
mLPFA 0.98 [0.98, 0.99] 0.95 [0.74, 0.98] 0.95 [0.79, 0.98] 0.99 [0.99, 0.99]
AMA 0.97 [0.95, 0.98] 0.95 [0.68, 0.98] 0.95 [0.62, 0.99] 0.93 [0.9, 0.95]
mLDFA 0.99 [0.98, 0.99] 0.96 [0.93, 0.97] 0.96 [0.94, 0.98] 0.98 [0.97, 0.99]
JLCA 0.92 [0.87, 0.95] 0.87 [0.79, 0.92] 0.92 [0.87, 0.95] 0.73 [0.62, 0.81]
mMPTA 0.99 [0.99, 0.99] 0.81 [0.7, 0.88] 0.82 [0.71, 0.88] 0.97 [0.96, 0.98]
mFTA 1.0 [1.0, 1.0] 1.0 [0.98, 1.0] 1.0 [0.99, 1.0] 1.0 [1.0, 1.0]
KJLO 0.96 [0.94, 0.97] - - 0.95 [0.92, 0.97]
mLDTA 0.99 [0.99, 0.99] 0.98 [0.95, 0.99] 0.99 [0.98, 1.0] 0.97 [0.96, 0.98]

External

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length 1.0 [1.0, 1.0] 0.92 [0.87, 0.95] 0.92 [0.86, 0.95] 0.99 [0.97, 0.99]
Load on TP 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
MAD 1.0 [1.0, 1.0] 0.99 [0.99, 0.99] 0.99 [0.99, 0.99] 1.0 [0.95, 1.0]
mLPFA 0.99 [0.99, 0.99] 0.95 [0.89, 0.97] 0.95 [0.91, 0.97] 0.98 [0.97, 0.98]
AMA 0.97 [0.94, 0.98] 0.98 [0.97, 0.98] 0.96 [0.9, 0.98] 0.94 [0.91, 0.96]
mLDFA 0.97 [0.95, 0.98] 0.98 [0.97, 0.99] 0.96 [0.95, 0.97] 0.98 [0.97, 0.99]
JLCA 0.9 [0.87, 0.93] 0.86 [0.8, 0.9] 0.79 [0.7, 0.85] 0.9 [0.85, 0.93]
mMPTA 0.99 [0.99, 1.0] 0.97 [0.95, 0.98] 0.96 [0.94, 0.97] 0.98 [0.98, 0.99]
mFTA 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
KJLO 0.97 [0.96, 0.98] - - 0.96 [0.95, 0.97]
mLDTA 0.99 [0.99, 1.0] 0.97 [0.96, 0.98] 0.97 [0.96, 0.98] 0.97 [0.95, 0.98]

reliability and processing time [207, 208]. Unlike previous solutions that employed single-task features,
the proposed model adopts a multi-algorithmic ensemble learning approach, guided by a master network
[145, 201–204]. This approach significantly outperforms prior work in landmark detection accuracy and
segmentation tasks [138, 145, 209].

The model’s reliability metrics are robust; it shows good to excellent interrater reliability on an external
test dataset, akin to specialized orthopedic surgeons using FDA-approved digital planning programs [147].
Its deterministic behavior contributes to excellent intra-rater reliability [206]. In terms of clinical accuracy, a
significant proportion of the model’s measurements fall within the clinically tolerable safety margin, matching
or exceeding human assessments [145, 203]. The model offers flexibility in calibration methods based
on the availability of reference objects in the radiographs [147, 210, 211]. Despite a slight compromise in
the precision of absolute distances, it maintains clinically acceptable performance metrics [206]. With a
processing time of 22 ± 1 seconds, the model outperforms specialized orthopedic surgeons by a factor of
4.6 and commercial AI models by a factor of 8.6 [138, 206].

However, the model’s performance is susceptible to anatomical abnormalities and suboptimal radiographic
quality, necessitating human review in such instances [212]. Upon clinical deployment, the DL model
promises substantial benefits in terms of reliability, time-efficiency, and cost-effectiveness for the radiologic
and orthopedic workforce.
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Table 3.5 Clinically acceptable accuracy according to clinically relevant tolerance margins on the internal and external
test dataset. Values represent the percentage of individual cases, in which a clinically acceptable agreement was
achieved. Data from Wilhelm et al. [6].

Internal test dataset

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length (tol=5mm) 56.0 - - 32.8
Load on TP (tol=2%) 94.4 15.2 14.4 90.4
MAD (tol=2mm) 41.6 20.0 26.4 87.2
mLPFA (tol=2°) 93.6 13.6 13.6 96.0
AMA (tol=2°) 99.2 16.8 16.8 98.4
mLDFA (tol=2°) 97.6 55.2 56.8 96.8
JLCA (tol=2°) 82.4 53.6 50.4 91.2
mMPTA (tol=2°) 100.0 56.8 56.0 96.0
mFTA (tol=2°) 100.0 59.2 59.2 100.0
KJLO (tol=2°) 97.6 - - 94.4
mLDTA (tol=2°) 96.8 15.2 16.8 88.8

External test dataset

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length (tol=5mm) 68.5 31.5 30.8 53.9
Load on TP (tol=2%) 95.1 72.7 69.9 86.0
MAD (tol=2mm) 98.6 73.4 74.1 62.9
mLPFA (tol=2°) 90.9 71.3 74.8 88.8
AMA (tol=2°) 100.0 95.8 95.8 99.3
mLDFA (tol=2°) 97.9 94.4 94.4 97.2
JLCA (tol=2°) 97.9 93.0 92.3 98.6
mMPTA (tol=2°) 100.0 93.0 93.0 98.6
mFTA (tol=2°) 100.0 96.5 95.8 100.0
KJLO (tol=2°) 98.6 - - 97.2
mLDTA (tol=2°) 99.3 86.7 86.7 89.5

Limitations

The study faces several limitations affecting its outcomes. Variability in human performance and individual
differences represent fundamental challenges. The DL model’s accuracy heavily depends on the quality
of radiographs; any variation can compromise its performance. Excluding radiographs with hardware
overlapping cortical bones from the training data narrows the model’s applicability, limiting its use in some
clinical scenarios.

Furthermore, the model’s success relies on the normality of anatomical structures and radiograph quality.
Cases with anatomical abnormalities or suboptimal images require human review, impacting the model’s
reliability [212]. Despite these challenges, the DL model offers substantial potential benefits, including
increased reliability, efficiency, and cost-effectiveness, promising significant support for the radiologic and
orthopedic workforce.

3.3.4 Conclusion

The developed DL model provides a thorough analysis of leg alignment on a.p. LLR, matching the precision
and reliability of OS. It did not fail on any image during validation. Moreover, it significantly outperformed
human raters in processing time and consistency of repeated measurements. This demonstrates how ad-
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vanced DL models can enhance orthopedic providers’ capabilities in managing lower extremity pathologies,
particularly in high-volume, precision-critical tasks.

3.4 Automated Preoperative Planning for Realignment Osteotomy

With the help of the presented algorithm for fully automated and comprehensive measurement of the lower
limb, an extension was developed that enables fully automated surgery planning.

The methodology for determining the direction of the osteotomy cut is consistent with current best
practices for medial opening wedge High Tibia Osteotomy (mow-HTO) and specifically aims to connect the
osteotomy entry point to the tip of the fibula, as found in previous studies [213]. This approach is consistent
with the results of safe zone studies demonstrating improved stability of a potential hinge fracture when
externally supported by the ligamentous structures of the tibiofemoral joint [213]. The simulation of the
osteotomy cut provides for 90% of the distance to be traveled to the lateral tibial cortex in order to maintain
a safe margin and position the hinge point at the level of the tibiofibular joint [213].

The algorithm is then trained to replicate the correction result of the osteotomy based on the principles
outlined by Miniaci, Ballmer, et al. [214]. The degree of preoperative malalignment is determined by
the intersection of the load-bearing axis (Mikulicz line) with the tibial joint line. The correction angle
at the osteotomy hinge is then calculated based on the deviation between the preoperative and the
simulated postoperative center of the ankle joint line at the hinge point. The simulation continues until the
osteotomy opening has reached the intended correction, with the gap measurement being derived from the
postoperative simulation using a predefined reference object (e.g. a sphere or a ruler).

For determining the osteotomy’s target, the DL algorithm incorporates two clinically accepted methods.
The "percent-based method" classifies the width of the tibial plateau from 0% (medial tibial cortex) to
100% (lateral tibial cortex) at the Knee Joint Line (KJL), setting the postoperative weight-bearing line to
intersect the tibial KJL between 55-65%, adjusted for associated lesions and procedures [215]. Alternatively,
the "degree-based method" employs the postoperative mFTA to specify the correction magnitude. The
operational flow of the DL model is detailed in Figure 3.7, illustrating the systematic approach to simulating
and planning osteotomy corrections. The algorithm analyzes the complete deformity of the selected
leg and calculates the size, angle and position of the osteotomy gap, which serves as the basis for the
correct repositioning of the leg. The algorithm also takes into account that this osteotomy gap can be
performed either in the femur or in the tibia, depending on the deformity. The physician can use the tool fully
interactively, so that, for example, the positioning of the Mikulicz line and thus the subsequent orientation of
the osteotomy can be changed. This value is fixed at 55% and can be manipulated via a slider [7].

3.4.1 Evaluating Preoperative Planning Accuracy

The validation of preoperative planning accuracy employed the same external dataset as described in
Wilhelm et al. [6]. Three OS were tasked with planning the realignment osteotomy and predicting the
postoperative alignment parameters for both 55% Mikulicz and 1° valgus planning strategies. These
predictions were subsequently compared to those made by the completely autonomous DL model.

The accuracy of preoperative alignment parameters was evaluated against an external test dataset. The
mean discrepancies between the DL model and the OS observations varied from 0.2 ± 0.2° (mFTA) to 1.0
± 1.3° (mLPFA) for angular parameters, and 1.0 ± 1.0 mm (MAD) to 8.4 ± 10.5 mm (leg length) for distance
measurements. Comparatively, discrepancies between OS measurements ranged from 0.1 ± 0.1° (mFTA,
OS1-OS2) to 1.1 ± 1.4° (mLPFA, OS2-OS3) for angular parameters, and 0.6 ± 0.9 mm (MAD, OS1-OS2)
to 12.6 ± 21.1 mm (leg length, OS2-OS3) for distance measurements, as documented in Table 3.6.

For osteotomy parameters, mean differences in gap width varied from 0.5 ± 0.7 mm (OS1-OS3) to 0.5
± 0.9 mm (OS1-OS2) among OS, with a difference of 0.53 ± 0.63 mm between the DL model and OS
in percent-based planning. Degree-based planning showed discrepancies ranging from 0.4 ± 0.6 mm
(OS2-OS3) to 0.5 ± 0.8 mm (OS1-OS2) among OS, and a 0.4 ± 0.5 mm difference between the DL model
and OS. Hinge angle discrepancies in percent-based planning ranged from 0.2 ± 0.4° (OS1-OS3) to 0.3 ±
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Figure 3.7 Example of preoperative-planning for realignment osteotomy using the deep learning algorithm: (a) The
analysis is performed on a standard weight-bearing anterior-posterior radiograph of the hip, knee, and ankle, which is
loaded into the program. (b) The AI algorithm analyzes the image and performs keypoint analysis and segmentations.
(c) The comprehensive alignment is performed based on the network annotations. (d) The realignment surgery is
planned based on the detailed analysis and the expected postoperative alignment is visualized (in this case 55%
Mikulicz planning) [7].

0.8° (OS1-OS2) among OS, and 0.3 ± 0.7° between the DL model and OS. Degree-based planning showed
differences from 0.2 ± 0.4° (OS2-OS3) to 0.3 ± 0.6° (OS1-OS2) among OS, and a 0.4 ± 0.5° discrepancy
between the DL system and OS.

In evaluating the accuracy of simulated postoperative alignment parameters, mean differences between
the DL system and OS ranged from 0.0 ± 0.0° (mFTA) to 1.0 ± 1.5° (mLDTA) for angular parameters, and
from 0.2 ± 0.2 mm (MAD) to 7.7 ± 10.1 mm (leg length) for distance measurements. Mean differences among
OS ranged from 0.0 ± 0.0° (mFTA, OS1-OS2) to 0.8 ± 1.6° (mLDTA, OS1-OS2) for angular parameters, and
from 0.13 ± 0.17 mm (MAD, OS1-OS2) to 7.3 ± 14.6 mm (leg length, OS1-OS2) for distance measurements;
see Table 3.6.
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Table 3.6 Accuracy as quantified by the mean difference of the respective alignment parameters on external test
dataset for 55% Mikulicz planning and 1° valgus planning. The highest accuracy for each parameter is highlighted in
bold. Continuous variables are presented as mean ± standard deviation [7].

55% Mikulicz Planning

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length [mm] 6.73 ± 13.38 3.92 ± 8.3 4.05 ± 11.44 6.8 ± 8.58
Load on TP [%] 0.14 ± 0.19 0.22 ± 0.45 0.15 ± 0.32 0.14 ± 0.33
MAD [°] 0.54 ± 0.49 0.46 ± 0.45 0.35 ± 0.29 1.13 ± 0.57
mMPTA [°] 0.38 ± 0.72 0.32 ± 0.56 0.39 ± 0.97 0.63 ± 0.66
mFTA [°] 0.12 ± 0.11 0.11 ± 0.11 0.09 ± 0.07 0.25 ± 0.14
KJLO [°] 0.41 ± 0.72 0.59 ± 1.27 0.48 ± 1.03 0.71 ± 0.92
mLDTA [°] 0.76 ± 1.55 0.52 ± 0.88 0.49 ± 0.91 1.0 ± 1.46
Correction angle [°] 0.34 ± 0.83 0.24 ± 0.4 0.27 ± 0.68 0.34 ± 0.68
Correction [mm] 0.5 ± 0.88 0.46 ± 0.65 0.49 ± 1.15 0.53 ± 0.63

1° Valgus Planning

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length [mm] 7.31 ± 14.58 4.13 ± 8.61 4.98 ± 13.22 7.67 ± 10.13
Load on TP [%] 0.59 ± 0.44 0.53 ± 0.43 0.41 ± 0.36 1.19 ± 0.63
MAD [mm] 0.13 ± 0.17 0.15 ± 0.26 0.1 ± 0.13 0.19 ± 0.21
mMPTA [°] 0.41 ± 0.62 0.36 ± 0.45 0.41 ± 0.67 0.72 ± 0.62
mFTA [°] 0.01 ± 0.04 0.03 ± 0.07 0.01 ± 0.04 0.02 ± 0.04
KJLO [°] 0.43 ± 0.78 0.43 ± 0.86 0.46 ± 1.06 0.65 ± 0.72
mLDTA [°] 0.81 ± 1.59 0.59 ± 0.98 0.62 ± 1.15 1.05 ± 1.52
Correction angle [°] 0.34 ± 0.59 0.24 ± 0.44 0.22 ± 0.37 0.37 ± 0.48
Correction [mm] 0.52 ± 0.75 0.48 ± 0.55 0.43 ± 0.55 0.44 ± 0.53

3.4.2 Reliability of Preoperative Planning

Evaluating the reliability of the preoperopative measurements, for the OS, interreader reliability ranged from
0.84 (JLCA, OS2-OS3) to 1.0 for angles and from 0.9 (leg length) to 1.0 for distances. Interreader reliability
between the average OS measurements and the DL system ranged from 0.6 (KJLO) to 1.0 for angles
and from 0.98 (leg length) to 1.0 for distances (see Table 3.7). For osteotomy gap specific parameters,
the interrater reliability for the measurement of the osteotomy gap width between the OS was from 0.9
(OS1-OS3) to 1.0. For the hinge angle interrater reliability between the OS was from 0.9 (OS1-OS3) to
1.0. Interrater reliabity between the DL system and the OS was 1.0 for both planning methods for the width
of the osteotomy gap and for the correction angle. In the assessment of the interrater reliability of the
postoperative measurements, interreader reliability, for the OS, ranged from 0.6 (mFTA, OS1-OS2) to 1.0
for angles and from 0.5 (MAD, OS1-OS2) to 1.0 for distances. Between the DL system and the average OS
measurements interrater reliability was from 0.6 (mFTA) to 1.0 (mMPTA) for angles and 0.7 (MAD) to 1.0
(leg length) for distances. Details are provided in Table 3.7.

During validation on internal and external test data sets, the DL system developed demonstrated accuracy
and reliability on a level of expert human raters in fully automated planning of mow-HTOs on a.p. LLR.
Furthermore, it outperformed OS in terms of repeated measurement reliability and allowed for significant
and substantial time savings in osteotomy planning. DL models such as this demonstrate the potential of AI
to assist the orthopedic surgeons by accelerating osteotomy planning in clinical practice.
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Table 3.7 Interreader reliability as quantified by ICC values for 55% Mikulicz and 1° varus planning on the external
test dataset. Data listed in brackets are 95% CIs [7] (in preparation).

55% Mikulicz Planning

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length 0.96 [0.94, 0.97] 0.94 [0.91, 0.96] 0.98 [0.97, 0.99] 0.99 [0.98, 0.99]
Load on TP -0.04 [-0.58, 0.31] -0.08 [-0.62, 0.28] 0.08 [-0.37, 0.39] 0.02 [-0.45, 0.33]
MAD 0.56 [0.3, 0.72] 0.73 [0.59, 0.82] 0.79 [0.66, 0.87] 0.66 [-0.2, 0.89]
mMPTA 0.94 [0.91, 0.96] 0.84 [0.76, 0.89] 0.89 [0.83, 0.92] 0.95 [0.93, 0.97]
mFTA 0.56 [0.23, 0.74] 0.68 [0.49, 0.79] 0.76 [0.62, 0.85] 0.63 [-0.22, 0.87]
KJLO 0.8 [0.7, 0.87] 0.86 [0.79, 0.91] 0.73 [0.59, 0.82] 0.9 [0.84, 0.94]
mLDTA 0.88 [0.82, 0.92] 0.88 [0.82, 0.92] 0.98 [0.97, 0.99] 0.94 [0.91, 0.96]
Correction angle 0.97 [0.95, 0.98] 0.93 [0.89, 0.95] 0.99 [0.99, 0.99] 0.99 [0.98, 0.99]
Correction 0.96 [0.94, 0.97] 0.9 [0.85, 0.93] 0.93 [0.89, 0.95] 0.99 [0.98, 0.99]

1° Valgus Planning

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length 0.96 [0.93, 0.97] 0.93 [0.89, 0.95] 0.97 [0.96, 0.98] 0.99 [0.98, 0.99]
Load on TP 0.6 [0.17, 0.78] 0.69 [0.53, 0.8] 0.76 [0.59, 0.85] 0.58 [-0.22, 0.84]
MAD 0.46 [0.19, 0.65] 0.79 [0.68, 0.86] 0.55 [0.32, 0.7] 0.76 [0.51, 0.86]
mMPTA 0.93 [0.9, 0.95] 0.89 [0.83, 0.92] 0.93 [0.9, 0.95] 0.95 [0.91, 0.97]
mFTA -0.0 [-0.52, 0.34] 0.0 [-0.5, 0.33] 0.09 [-0.37, 0.39] 0.05 [-0.41, 0.35]
KJLO 0.82 [0.73, 0.88] 0.74 [0.61, 0.82] 0.72 [0.58, 0.81] 0.91 [0.84, 0.94]
mLDTA 0.88 [0.81, 0.92] 0.86 [0.8, 0.91] 0.95 [0.93, 0.97] 0.93 [0.9, 0.95]
Correction angle 0.96 [0.94, 0.97] 0.97 [0.95, 0.98] 0.99 [0.98, 0.99] 0.99 [0.98, 0.99]
Correction 0.95 [0.91, 0.97] 0.95 [0.92, 0.96] 0.97 [0.96, 0.98] 0.99 [0.98, 0.99]
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4 Reproducible Joint Analysis through Robotic
Benchmarking Systems

Figure 4.1 Section overview.

This chapter examines the integration of robotics into the field of
orthopaedics, focusing on how these technological advances enable
detailed and comprehensive analysis of human joints, with a particular
focus on the complexities of the knee and hand. This investigation
aligns with the broader research question of how the benefits of
robotics can be utilized for in-depth joint analysis.

Figure 4.1 provides the framework for the analysis and introduces
robotic test benches as key tools to achieve this goal. Several key
challenges and objectives are addressed in this chapter, including the
accurate measurement of biomechanical variables such as forces,
moments, positions and orientations during testing. It also addresses
the variability between different joints, which is a major challenge for
orthopedic analysis.

A foundational aspect of orthopedic research involves analyzing
the complex interplay between applied biomechanical forces and
the resulting joint movements. To this end, the chapter explains
the specialized test setups and control mechanisms designed to
navigate these dynamics. Section 4.1 presents an advanced control
algorithm designed to improve the study of biomechanical systems,
such as the human knee joint, which may initially appear undefined or
insufficiently characterized. The null space is innovatively employed
by this algorithm to strike a balance between force and position
control, optimizing the accuracy of analyses.

The specifics of the robotic test benches designed for the knee and
hand joints are addressed in the subsequent sections. A detailed exploration of the knee joint testbench,
outlining the methodologies and technological solutions employed to uncover new biomechanical insights,
is offered in Section 4.2. Similarly, section 4.3 presents the hand joint test bench, which deals with the
special challenges of hand biomechanics.

4.1 Constraint-Tolerant Control for Biomechanical Systems

The focus of this section is on the introduction of novel compliance control architectures that leverage null
space solutions for the decoupling of force and position control [8]. Unlike traditional control schemes such
as hybrid or impedance control, the proposed architectures offer superior performance in interacting with
uncertain surfaces and materials.

The unique aspect of these architectures lies in their ability to treat 6-DOF manipulators as redundant
systems. This is achieved by creating a virtual redundancy within a reduced workspace. The advantage
of this approach is twofold: it allows for an orthogonal separation of Cartesian degrees of freedom and
eliminates the occurrence of inner singularities.

To validate the effectiveness of these control architectures, experiments were conducted using a standard
industrial robot (Stäubli, RX90B, 6 DOF). The robot was used to actuate two different biomechanically
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inspired models of the human knee joint. The following sections deal with the details of the control algorithm,
its implementation and performance evaluation.

4.1.1 Introduction to Advanced Control Algorithms

The industrial application of robots for tactile tasks has led to extensive research in the area of robot-object
interaction [216, 217]. While significant advancements have been made, challenges in accuracy, stability,
and robustness persist. These control challenges are amplified when robots interact with uncertain or
nonlinear environments.

Existing control strategies generally fall into two categories: Hybrid Position and Force Control methods
[103], and Impedance Control methods [218]. Both approaches have limitations. For instance, Impedance
Control methods suffer from non-deterministic position accuracy and force precision, and their stability is
constrained by achievable impedances [101, 102]. Hybrid methods, although offering fewer parameters,
are limited by their vulnerability to inner singularities [219]. Schindlbeck and Haddadin [217] introduced a
unified control framework that leverages task-energy tanks to enhance passivity and stability in both rigid
and flexible joint robots. This approach addresses the limitations of traditional impedance and hybrid control
methods, offering improved force tracking and compliant behavior.

A different strategy to address these limitations, some researchers have studied the use of null space
solutions to decouple force and position control [220–222]. However, these methods still inherit the
drawbacks of Impedance Control. A more recent framework by Schuetz et al. [104] showed promise but
was not designed for persistent contact situations.

In this section, we introduce two advanced control algorithms for position controlled robots with force-
torque sensing that build upon the framework of Schuetz et al. [104]. These algorithms are designed for
explicit force control and offer a more flexible and efficient solution by leveraging null space separation [104,
223]. The algorithms were developed to address the unmet needs in the control of biomechanical systems,
such as the human knee joint, and are an extension of the work presented in [8].

4.1.2 Related Work for Null Space Control

Hybrid Position/Force Control: A Mathematical Formulation

The hybrid position/force control architecture was initially proposed by Raibert et al. [103]. This control
paradigm employs selector matrices Sx and Sf to partition the Cartesian task space into position-regulated
(δx) and force-regulated (δf ) DOF [103]. The control loops for these error vectors operate in parallel and
are mapped into the joint space. The resultant control torque τc is given by:

τc = gx (SxJ)−1 δx + gf (SfJ)T δf (4.1)

where J is the Jacobian matrix, and gx and gf are linear control functions for position and force, respectively.
The mappings (SxJ)−1 and (SfJ)T project the position and force errors into the joint space.

However, this control scheme has been criticized for its instability, particularly outside inner singularities
[224, 225]. Fisher et al. [221] attributed part of this instability to the non-ideal separation of force and
position DOFs, leading to cross-coupling. To mitigate this, Fisher et al. proposed using reduced Jacobians
for the projections, formulated as:

(SxJ)# = (SxJ)T
(
SxJJTST

x

)−1
, (4.2)

and subsequently revised the control torque equation as:

τc = gx(SxJ)#δx + gf
(
(SfJ)Tδf

)
. (4.3)

Despite these improvements, residual force differences can still induce Cartesian velocities that interfere
with position-controlled DOFs. Null space projections have been suggested as a potential solution to
minimize these effects [8].
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Null Space Control in Redundant Robots

Concurrent with the evolution of Hybrid Position/Force Control, kinematic solutions for redundant robots,
characterized by n > m where n and m are the number of joints and task DOFs respectively, have been
developed. These solutions exploit the null space matrix N , defined as:

N = I − J#J . (4.4)

where I is the identity matrix, and J# is the identity-weighted pseudo-inverse of the Jacobian J [220, 226].
This matrix facilitates the orthogonal projection of the Jacobian and enables the minimization of any cost
function H(q) in the null space through its gradient ∂H(q)

∂q
. The control joint velocity q̇c is thus formulated

as:

q̇c = J#ẋt − αN

(
∂H

∂q

)T
, (4.5)

where α is the stepsize, and ẋt is the task space velocity [226].
Various control architectures have been proposed based on this framework. For instance, Nemec et

al. [227] introduced a hybrid impedance control for a 4-DOF arm robot that utilizes null space to absorb
impacts while maintaining end-effector position and force. Sadeghian et al. [228] and Park et al. [229]
employed similar strategies for lightweight arm robots and multi-contact scenarios, respectively. Platt et al.
[230] presented a multi-priority impedance control that integrates Cartesian and joint impedance via null
space. Recent advancements include surgical applications that leverage null space for patient safety [223].

However, no existing approach effectively decouples force and position targets at the end-effector via
null space modulation at the velocity level. To address this gap, the Tactile Motion Control framework by
Schuetz et al. [104] is adapted [8].

Tactile Motion Control for Redundant Manipulators

In order to enhance stability and performance, especially in applications involving biomechanical specimens
with unpredictable behavior and responses, it is crucial to develop a controller capable of performing both
position and force-controlled tasks in a completely decoupled manner. This necessity arises because
relying solely on position or force control independently is often insufficient in such scenarios.

Building upon the foundational work of Walker et al. [219], Gertz et al. [231], and Chung et al. [232],
Schuetz et al. [104] extended the null space control equation (4.5) by incorporating additional velocity inputs
in task, joint, and null spaces, denoted as u̇t ∈ Rm, u̇j ∈ Rn, and u̇n ∈ Rn, respectively. This extension
allows for the execution of supplementary tasks at different control levels:

q̇c = J#(ẋt − u̇t) − u̇j − N

(
u̇n + α

(
∂H

∂q

)T)
. (4.6)

For the scope of this paper, which aims at task separation via null space, we focus on the null space velocity
extension u̇n:

q̇c = J#ẋt − Nu̇n. (4.7)

Schuetz et al. [104] reduced the 3D contact phenomena to a 1D equation, employing the translatory
Jacobian Jp ∈ R3×n at the impact point and the normalized force vector nf ∈ R3×1. The contact space
velocity ẋp is then formulated as:

ẋp = nT
f Jpq̇c

= nT
f JpJ

#ẋt − nT
f JpNu̇n.

(4.8)

The force-driven velocity at the point of contact, ẋf , is projected onto u̇n as:

u̇n = JT
p nf ẋf . (4.9)
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Combining Equations (4.8) and (4.9), and introducing kinematic variable kn and scalar velocity ẋpt, the
contact relation in Cartesian space is obtained:

ẋp = nT
f JpJ

#ẋt︸ ︷︷ ︸
ẋpt

− nT
f JpNJT

p nf︸ ︷︷ ︸
kn

ẋf .
(4.10)

Applying a linear elastic material law, the contact force rate ḟp is related to ẋp:

ḟp = −cẋpt + cknẋf . (4.11)

The final control law for the null space force controller is then given by:

u̇n =
JT
p nf

ckn

(
cẋpt − 2d

T
fp − 1

T 2

∫
fpdt

)
. (4.12)

This method enables a 9-DOF manipulator to mitigate collision forces but is not optimized for sustained
contact control or multi-directional force application [104, 8, 233].

4.1.3 Null Space Divided Compliant Control

The proposed controller aims to integrate the principles of hybrid motion and tactile motion control to achieve
advanced compliant control capabilities. Specifically, the control law proposed by Schuetz et al. [104]
for palpating undefined surfaces while modulating normal forces is extended. The architecture is further
adapted to manage force control along multiple directions independently. An additional layer of complexity
is introduced by dynamically prioritizing between position and force control within the null space.

Contact Control on an Undefined Surface

For sustained contact control with desired dynamics, the scalar force error δf is defined as the difference
between the desired force fd and the actual force fa at the tool center point:

δf = fd − fa. (4.13)

To account for persistent contact, the actual force rate ḟa is given by:

ḟa = ḟd + 2d
T
δf + 1

T 2

∫
δfdt. (4.14)

Here, ḟp is equated to ḟa as the contact point coincides with the tool center point, and the Jacobians at both
points are identical. The position loop in the main task governs the motion around the surface, utilizing the
position-selected Jacobian Jx:

Jx = SxJ . (4.15)

Substituting the null space matrix of this reduced Jacobian Nx, the joint velocity with modified projections
is:

q̇c = J#
x ẋt − Nxu̇n. (4.16)

The null space velocity input u̇n is adapted to reflect the dynamics from Equation (4.14):

u̇n =
JT
p nf

ckn

(
cẋpt + ḟd + 2d

T
δf + 1

T 2

∫
δfdt

)
. (4.17)

This control law is parameterized by three scalar variables: time constant T , dimensionless damping d, and
stiffness c. It is applicable for tasks requiring modulated contact normal force, such as painting a planar
logo on a curved surface [8].
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Multi-Directional Force Control

The initial framework focused on translational motions with force modulation along a single reference
direction. We extend this to Cartesian space to enable force regulation along multiple orthogonal axes. The
normal force vector nf is decomposed into its Cartesian components nfx , nfy , and nfz :

nf =

 nfx
0
0

+

 0
nfy
0

+

 0
0
nfz


= nfx + nfy + nfz .

(4.18)

The null space velocity, previously defined in Equation (4.9), is generalized to accommodate direction-
dependent force-driven velocities ẋf , ẏf , and żf :

u̇n = JT
p

(
nfx ẋf + nfy ẏf + nfz żf

)
. (4.19)

Each directional velocity has an associated kinematic variable, exemplified by kny :

kny = nT
fyJpNxJT

p nfy . (4.20)

Utilizing the dynamics from Equation (4.14), the scalar velocities at the tool center point are expressed as:

ẏf = 1
ckny

(
cẋpty + ḟdy + 2d

T
δfy + 1

T 2

∫
δfydt

)
. (4.21)

Inserting Equations (4.21) and (4.20) into (4.19), we find that the null space joint velocity is inversely
proportional to the external force component:

u̇n ∝ JT
p nfy

1
kny

ḟay

∝ JT
p nfy

1
nT
fy

JpNxJT
p nfy

ḟay

∝ 1
nfy

ḟay .

(4.22)

This results in higher Cartesian velocities where the external force component is lower. However, this can
lead to infinite velocities and must be deactivated below a certain threshold:

lim
ny→0

(
1
nfy

ḟay

)
= ∞. (4.23)

To ensure smooth transitions, the null space force-driven joint velocity q̇n is low-pass filtered. The extended
framework is compatible with various attitude controls and is implemented solely via the null space calculated
over the selected Jacobian matrix Jx [8].

Stability Analysis

The stability of the proposed controllers is analyzed based on the stability proof for tactile motion control by
Sygulla et al. [233]. The dynamics from Equations (4.14), (4.17), and (4.19) are differentiated and solved
for the control variables under two conditions:

δf̈ = −2d
T
δḟ − 1

T 2 δf, if A (4.24)

δf̈{x,y,z} = −2d
T
δḟ{x,y,z} − 1

T 2 δf{x,y,z}, if B (4.25)

where A and B represent Contact Control and Multi-Force Control, respectively. Both controllers are shown
to be stable outside Jacobian singularities.
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Decoupling Analysis

The framework aims for complete decoupling between position and force control in Cartesian space.
Although hybrid control as introduced by Raibert et al. [103] initially appears decoupled, Fisher et al. [221]
demonstrated that this is not the case. The controllers remain active along non-selected DOFs, leading to
suboptimal performance. The joint velocity equation is reformulated as:

q̇c = (SxJ)#ẋx + (SfJ)T ẋf

= q̇x + q̇f .
(4.26)

Upon projecting the position-selected Cartesian velocity and taking the dot product, the velocities are found
to be orthogonally split: (

SxJ(SxJ)#ẋx
)T

(SxJNxJT ẋf ) = 0. (4.27)

This orthogonality is also confirmed in joint space, validating the effectiveness of the null space division for
decoupling [8]. (

(SxJ)#ẋx
)T (

NxJT ẋf
)

= 0. (4.28)

Force-Prioritized Control Architecture

To enhance the decoupling between force and position control loops, a force-prioritized control architecture
is introduced. This architecture employs a specialized null space matrix Nf to filter position-controlled joint
velocities that are not orthogonal to force-regulated velocities [8]. The control equation is formulated as:

q̇c = Nf (SxJ)#ẋx + (SfJ)T ẋf . (4.29)

The null space matrix Nf is adapted based on the force-selected Jacobian:

Nf = I − (SfJ)#(SfJ). (4.30)

In this architecture, force-controlled DOFs operate in the workspace and have unrestricted access to the
joint space. The position-controlled movements are filtered by Nf , ensuring orthogonality between joint
and Cartesian velocities: (

Nf (SfJ)#ẋx
)T (

(SfJ)T ẋf
)

= 0. (4.31)

4.1.4 Experimental Evaluation

The experimental design aims to evaluate two key aspects of the proposed control architectures: 1) perfor-
mance in nonlinear compliant control tasks, and 2) effects of task prioritization [8]. Two biomechanically-
inspired tasks mimicking the human knee joint behavior serve as testbeds. For details on the contact control
evaluation please refer to the original paper [8].

Evaluation of Multi-Force Control

The Multi-Force Control is assessed through a complex task involving a biomechanical model of the human
knee joint, fabricated additively. The femur is rigidly coupled to the robot, while the tibia is environmentally
fixed and non-linearly connected to the femur via ligament-mimicking ropes (Figure 4.2).

The task requires actuation in multiple Cartesian DOFs to characterize biomechanical properties, such as
range of motion, while minimizing orthogonal loads. The flexion angle is actively adjusted within 0 to 11.5°,
and force components are modulated between 10 and 30 N. The maximum angular velocity is 2.75°/s.

The control scheme demonstrates precise tracking with a maximum flexion error of 0.75° and a mean
error of 0.15°. However, force errors increase during rapid flexion actuation, stabilizing during low-velocity
periods. Key performance indicators are summarized in Table 4.1.
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Figure 4.2 Test setup for the Multi-Force Control. The
robot is attached to an additive manufactured replica
of the human knee-joint constrained by tendons [8].
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Figure 4.3 Flexion (above) and force tracking (below)
of the Multi-Force Control during the described task
execution [8].

4.1.5 Comparative Analysis of Position and Force Prioritisation

To illustrate the trade-offs between prioritizing force and position, a controlled experiment was conducted
where the task trajectories for both control objectives remained constant. In this setup, force tracking was
prioritized as the primary task, while flexion control was relegated to the null space. This adjustment led to
improved force tracking but compromised positional accuracy, as evidenced by Figure 4.4 [8].

The experiment revealed that force errors were substantially reduced to a maximum and mean of 5.23 N
and 0.62 N, respectively. Conversely, positional deviations exhibited a moderate increase, with a maximum
of 1.45° and a mean of 0.38°. The quantitative metrics for this comparative analysis are tabulated in Table
4.5. The key findings can be summarized as follows:

• Force prioritisation yielded minimal force errors, largely unaffected by the positional task. However, it
led to elevated position errors during active movements due to null space filtering.

• Position prioritisation excelled in positional tasks but exhibited a velocity-proportional increase in force
errors.

4.1.6 Comprehensive Assessment of Null Space-Based Control Architectures

In summary, this section has introduced two innovative compliant control architectures—Contact Control
and Multi-Force Control—that exploit null space for effective management of interaction tasks in nonlinear
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Table 4.1 Quality measures of the Multi-Force Control experiment from Wilhelm et al. [8].

Quality Measure Value Unit

Position accuracy < 0.01 °
Force accuracy < 0.1 N

Maximum rotation error |δx|max 0.75 °
Mean rotation error |δx|mean 0.15 °
Root mean square rotation error RMS δx 0.27 °
Maximum Euclidean force deviation ∥δf∥2

max 11.58 N
Mean Euclidean force deviation ∥δf∥2

mean 2.29 N
Root mean square force deviation RMS δf 3.36 N
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Figure 4.4 Comparative tracking performance under
position and force prioritisation. Position errors and
Euclidean norms of force errors are depicted [8].

Figure 4.5 Quality Measures of Multi-Force Control
with Position Prioritisation compared to Force Prioriti-
sation [8].

Quality Position Force
Measure Prioritisation Prioritisation Unit

|δx|max 0.75 1.44 °
|δx|mean 0.15 0.38 °
RMS δx 0.27 0.67 °

∥δf∥2
max 11.58 5.22 N

∥δf∥2
mean 2.29 0.62 N

RMS δf 3.36 0.81 N

systems [8]. These architectures sidestep the pitfalls of Jacobian inversion and inner singularities, offering
a robust and stable solution for kinematic velocity projection.

The minimalistic approach to parameter tuning aligns with the chapter’s broader goals, facilitating efficient
operation of testbenches and easing the transition to digital twin development. The orthogonal decoupling
of force and position tasks achieved through null space utilization is crucial for accurate biomechanical data
evaluation, a prerequisite for subsequent kinematic and dynamic optimizations in Sections 5.1 and 5.2.
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Ultimately, these control architectures serve as a dual-purpose foundation: they enhance the control of
robotic test benches and set the stage for the data-driven creation of patient-specific digital twins. This
dual utility advances the field towards more precise and individualized clinical assessments, meeting the
overarching objectives of this research.

4.2 Ex-Vivo Human Knee Joint Analysis

Figure 4.6 Test bench architecture consisting of an optical measuring system (I), the 6 DOF Robot Stäubli RX90B (II)
with an additional 6 DOF force-torque sensor for external load acquisition, CT imaging (III), and the central evaluation
system (IV) by Wilhelm et al. [9].

Building on the control framework introduced earlier, this section demonstrates its application in biome-
chanical testing. We will develop a robotic testbench that leverages these advanced control strategies to
enhance research in biomechanics and orthopedics and evaluate different Total Knee Arthroplasty (TKA)
strategies in knee joint replacement surgery.

The human knee, a complex joint crucial for movement and weight-bearing, is a key focus in prosthesis
development and human motion analysis [28, 29]. Its complex structure, providing six degrees of freedom,
and the variability of joints present challenges in biomechanical analysis [28]. This complexity underscores
the importance of accurate biomechanical testing, which is essential for predicting in vivo knee loads [234],
developing computational models [235], and informing surgical planning and implant design [236].

Our study aims to contribute to the understanding of knee joint biomechanics, given its significant role in
knee osteoarthritis progression [33, 34, 237], the influence of knee alignment on disease progression [238],
and the knee joint’s susceptibility to injuries [35]. We aim to develop and validate a novel robotic testbench
to study knee joint biomechanics, focusing on various loading conditions and the effects of implant alignment
in TKA.

Previous studies have utilized robotic testbenches and cadaver studies to investigate knee joint biome-
chanics [71–74]. However, their applicability to new measurements remains limited due to their fixed
geometries. This study aims to overcome this limitation by developing a unique robotic testbench for
comprehensive knee joint biomechanics analysis, focusing on diverse loading conditions and aided by
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a cadaveric study. This approach will allow the investigation of knee joint structure interactions and
their response to varying loads, providing valuable insights for improving surgical planning and implant
design [239].

4.2.1 Methods

Robotic Testbench

A 6 DOF robotic testbench, based on the experimental concept of Frey, Burgkart, et al. [75] and extended
by Martinez, Deimling, et al. [240] and Tan, Saier, et al. [241], was used for dynamic investigation of the
human cadaver knee joint (Figure 4.6). The robot records its position and orientation while performing
various tests, such as varus-valgus and internal-external loading tests at different flexion angles.

A fresh-frozen human cadaveric left knee joint was prepared for biomechanical testing. A modified
manual TKA procedure was performed, utilizing an adapter implant for the distal femur (Figure 4.7). The
tibial component was implanted, and an adapter was secured to the bone. Different femoral shields with
internal-external rotation of -5°, 0°, and +5° were attached to the adapter for biomechanical tests.

Figure 4.7 Sequential steps of the modified TKA procedure on a cadaveric knee joint: (a) opening of the joint
capsule to expose the femur, tibia, and patella; (b) resection of the proximal tibia; (c) resection of the distal femur; (d)
implantation of the tibial component and femoral adapter; and (e) switching femoral shields with different internal-
external rotations (-5°, 0°, and +5°) during biomechanical testing [9].

Customized femoral implants were specifically designed and affixed to an adapter to investigate the
effects of various rotational adjustments on cadaveric knee joints, as depicted in Figure 4.8. These implants
were crafted based on segmented CT scans of the knee joint, ensuring precise anatomical alignment.

The robotic testbench system was used to conduct a comprehensive biomechanical assessment of the
cadaveric knee joint. The evaluation involved varus-valgus and internal-external loading tests at multiple
flexion angles for both the native knee joint and TKA conditions with varying implantation rotations.

The collected data was processed and analyzed to evaluate the biomechanical properties of the native
knee joint and TKA conditions. Outcome measures included robotic testbench reproducibility, knee joint
stability, comparison between native and TKA conditions and effects of varying femoral component rotations.
Statistical analysis was conducted to identify significant disparities.

4.2.2 Results

Figure 4.9 illustrates the test and results of the clamped knee joint specimen using the 6 DOF Stäubli
robot, providing motion and force-torque data. The setup includes femur fixation, a force-torque sensor,
and trackers for the femur and tibia. The Stäubli RX90B robot, attached to a native knee specimen,
enables a thorough knee joint biomechanics assessment under various loads, as displayed in Figure 4.9 (a).
Figures 4.9 (b), (c), and (d) show the effects of different forces and torques on knee joint function and
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Figure 4.8 (a) 3D Slicer segmentation of the cadaveric
knee joint, demonstrating the tibia, fibula, patella, and fe-
mur, along with the femoral (upper blue spheres) and tibial
(lower blue spheres) trackers. (b) Tailored femoral compo-
nent designs modeled on Stryker Triathlon TKA implants,
resized and rotated to -5° (internal), 0° (neutral), and +5°
(external). The femoral components are presented on the
axial plane, viewed from the distal end [9].

Figure 4.9 Complete test setup (a), synchronization and movement (b), as well as acquired force (c) and torque (d)
data during the native knee test from Wilhelm et al. [9].

stability. The precision of the testing system is emphasized in Figure 4.9 (b), while Figures 4.9 (c) and (d)
display the measured forces and torques. This experiment could enhance our knowledge of knee joint
biomechanics and inform better treatment strategies for knee-related pathologies.
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Examining Biomechanical Differences in Knee Joint with Various TKA Setups

Figure 4.10 presents the maximum deviation angles and corresponding standard deviations for internal-
external and varus-valgus loading at varying flexion angles. The robotic testbench conducted each test
three times, applying a 5 Nm torque. The figure uses distinct colors and symbols to differentiate between
the native knee and TKA setups, with a provided legend for clarity.

Figure 4.10 Comparison of maximum deviation angles and standard deviations for (a) varus, (b) valgus, (c) internal,
and (d) external loading at 5 Nm across different flexion angles for native knee and total TKA with 0°, -5°, and +5°
implant rotations. Results from Wilhelm et al. [9].

For varus loading as in Figure 4.10 (a) and valgus loading as in Figure 4.10 (b), the native knee shows
superior stability with the smallest deviations (< 2°) from the neutral (zero loading) position. All TKA setups
display reduced stability, with the -5° TKA showing the least stability for varus loading at 90° flexion (> 6°).
The testbench maintains high precision, with standard deviations below 0.5°.

The internal and external loading results from Figure 4.10 (c) and (d) show more variability between the
native knee and TKA variants. Unlike varus loading, the -5° TKA shows the highest stability for internal and
external loading. The +5° TKA closely matches the native knee’s stability, while the -5° TKA shows the
largest deviation. The testbench’s precision for internal-external loading tasks is excellent, with standard
deviations below 0.1°.

Stability Assessment

The Total Deviation Angle (TDA), defined as the angular difference between extreme positions under specific
loading conditions, is used to gauge joint instability. Higher TDA values indicate lower joint stiffness under
the respective loading scenario. Figure 4.11 shows the varying impacts of different TKA modifications,
compared to the native knee, on joint stability under diverse loading conditions. The diagram illustrates TDA
for varus/valgus, as in Figure 4.11 (a) and internal/external in Figure 4.11 (b) loading across a range of
flexion angles under a 5 Nm load, contrasting the native knee with three TKA orientations (neutral 0°, -5°
internal rotation, and +5° external rotation of the femoral component).
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The native knee shows the highest stability with least deviations, while TKA variations show increased
deviations in both loading conditions. The -5° TKA shows the lowest stability in varus-valgus loading at 90°
flexion but highest stability in internal-external loading. The +5° TKA closely mirrors the native knee perfor-
mance, except for the -5° TKA showing the highest deviation. Error bars in the figure represent standard
deviation, emphasizing the precision of the robotic testbench. This analysis highlights the significance of
TKA strategies in preserving knee biomechanics and stability under diverse loading conditions.

Figure 4.11 Kiviat Diagram of the TDA for instability in internal/external and varus/valgus loading for native knee and
TKA variations (neutral 0°, -5° internal, +5° external) across flexion angles under 5 Nm load. (a) Varus/Valgus Loading
and (b) Internal/External Loading. Results show the sum of deviations for both loadings, illustrating the impact of TKA
strategies on knee biomechanics.

Figure 4.11 displays Kiviat diagrams of TDA for instability in internal/external and varus/valgus loading
for the native knee and TKA variations across flexion angles under 5 Nm load. The diagrams, split into (a)
Varus/Valgus Loading and (b) Internal/External Loading, provide a comprehensive view of the impact of
TKA strategies on knee biomechanics. The radial nature of the diagrams facilitates easy comparison of
TDA across different conditions and TKA variations, highlighting biomechanical differences and potential
instabilities. The -5° internal TKA value at 20° flexion was determined through linear interpolation between
values at 10° and 30° flexion.

TKA Variations vs. Native Knee Joint

This section quantifies the differences between the native knee and TKA configurations under varus, valgus,
internal, and external loading. We calculate the MSE across all flexion angles and loading conditions,
assessing TKA variations’ deviation angles compared to the native knee. These deviations are crucial as
they could impact clinical outcomes.

Table 4.2 (top) shows the MSE values for the deviation between the native knee and TKA configurations
under varus and valgus loading. The neutral (0°) TKA showed the lowest mean deviation for both varus
(5.5 ± 5.0) and valgus (0.9 ± 0.8) loading, suggesting superior biomechanical similarity to the native knee.
Conversely, the -5° TKA showed the highest mean deviation for both varus (11.4 ± 14.0) and valgus
(2.1 ± 1.6) loading, potentially leading to less desirable clinical outcomes.

Furhter, Table 4.2 (bottom) shows the MSE values for deviations between the native knee and TKA
configurations under internal and external loading. The +5° TKA showed the minimal mean deviation for
both internal (7.8 ± 9.7) and external (6.0 ± 4.2) loading, suggesting improved joint stability. In contrast, the
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-5° TKA showed the maximal mean deviation, with values of 82.0 ± 105.4 for internal and 41.2 ± 58.3 for
external loading, potentially leading to unfavorable clinical outcomes.

Table 4.2 Deviations between the native knee and different TKA for varus-valgus (top) and internal-external (bottom)
loading evaluated by MSE and the respective standard deviations [9].

Deviations to Native

TKA Varus Valgus Mean

+5° 4.87 ± 7.19 1.93 ± 1.97 3.40 ± 3.67
±0° 5.51 ± 4.98 0.88 ± 0.76 3.20 ± 2.57
-5° 11.36 ± 14.04 2.05 ± 1.55 6.71 ± 7.14

TKA Internal External Mean

+5° 7.78 ± 9.70 5.96 ± 4.23 6.87 ± 4.83
±0° 21.50 ± 27.44 11.14 ± 12.73 16.32 ± 18.03
-5° 81.97 ± 105.40 41.22 ± 58.30 61.60 ± 74.86

4.2.3 Discussion

This study examined the biomechanical compatibility of different TKA variations under various loading
conditions. The neutral 0° TKA showed the least mean deviation under varus and valgus loading, sug-
gesting superior biomechanical compatibility. Conversely, the -5° TKA showed the highest mean deviation,
potentially indicating less desirable clinical outcomes. For internal and external loading, the +5° TKA showed
the least mean deviation, suggesting improved joint stability. Our findings align with previous research by
Bellemans, Colyn, et al. [242], Howell, Roth, et al. [243], and Hutt, LeBlanc, et al. [244], which reported
positive outcomes using kinematic alignment in TKA. The neutral 0° TKA, closer to kinematic alignment,
showed superior performance under varus and valgus loading. Our results also support Rivière, Iranpour,
et al. [245] proposal for a personalized approach to TKA modifications, as the +5° TKA showed superior
joint stability under internal and external loading. The robotic testbench used in this study offers potential
for broad application in biomechanical research. It can accurately simulate complex knee joint kinematics
and manage diverse loading conditions, making it a valuable tool for assessing different TKA variations,
surgical procedures, and implant designs.

This study has some limitations. It used a single knee specimen, limiting the generalizability of the
findings. The study focused on biomechanical compatibility and joint stability, without considering factors like
patient satisfaction and implant durability. The study also did not assess long-term clinical outcomes linked
with different TKA modifications. Future studies should aim to overcome these limitations and investigate
the effects of TKA modifications on a larger and more diverse population.

4.2.4 Conclusions

In summary, this study highlights the importance of TKA variation selection in optimizing biomechanical
compatibility and joint stability. It shows that a neutral TKA variation performs best under varus and valgus
loading, while a +5° variation provides better stability for internal and external loading. These findings
underscore the need for personalized TKA strategies based on individual biomechanical needs. The
study also demonstrates the potential of the robotic testbench in biomechanical research, aiding in the
investigation of various TKA variations and facilitating pre-clinical assessments of new implant designs.
By enhancing our understanding of knee joint biomechanics and TKA variations, we can improve surgical
procedures and patient outcomes following TKA.
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4.3 Ex-Vivo Human Hand Joint Analysis

Having examined the details of the robotic testbench designed for knee joint analysis, it is clear that
biomechanics presents a wide array of research opportunities. The knee, a critical weight-bearing joint,
has its own specific challenges and complexities. Similarly, the human hand, with its complex structure of
tendons, muscles, and joints, offers a rich subject for study. The remarkable dexterity and versatility of the
hand make it a central focus in biomechanical investigations. Moving from lower limb to upper extremity,
the following section introduces a novel approach that combines robotics with hand biomechanics. This
approach aims to investigate the mechanics of grip movements and tendon forces.

4.3.1 Introduction to Hand Biomechanics Analysis

The human hand, known for its structural complexity and multifunctionality, serves as an exceptional tool
for interacting with our environment. The precise coordination of numerous muscles, required even for the
simple act of moving a single finger, results in movements that are profoundly shaped by the viscoelastic
properties of the ligaments, surrounding tissues, and the intrinsic kinematics of the joints [246–248]. This
orchestration enables the hand to perform a wide range of tasks with remarkable precision and adaptability.

Historically, various hand models have been developed to capture the complex nature of the hand, with
the goal of replicating its biomechanical behavior [249–251]. These models, primarily based on Computer
Aided Design (CAD) data, are enhanced by incorporating muscle tractions and hand kinematics. Despite
these advancements, a significant gap persists: the models, which focus heavily on geometry, often
lack comprehensive biomechanical validation. The complexity of hand modeling and the need to define
numerous boundary conditions make the validation process particularly challenging.

An outstanding challenge in this field is the accurate modeling of the thumb, which is due to its unique
joint structure [78]. This has led to innovative modelling approaches that address the contact surfaces and
stabilizing tissues of the thumb, viewing it as a force-controlled multibody system influenced by cartilage
contacts, ligaments and muscles [78].

Although previous experimental studies have shed light on various aspects of hand behavior, they typically
displayed a limited scope, focusing mainly on individual fingers. These studies often failed to consider the
comprehensive relationship between muscle activation, resultant movement, and the forces exerted [79–82].
This narrow focus can overlook the integrated dynamics that characterize the function of the entire hand.

In this research context, we introduce a comprehensive testbench designed to address these existing
shortcomings. Our system integrates force-controlled muscle actuation with the resulting movements and
forces at the fingertips. Enhanced by the capabilities of eight independent motors, this setup allows for the
simultaneous study of multiple fingers, closely replicating real-world grasping dynamics. We particularly
focus on the pincer grip, a quintessential fine motor skill, where the thumb and index finger, in their flexed
positions, come together [252]. This grip, symbolic of sophisticated motor functions, is recreated on a
human specimen by precisely controlling the tendons of both the thumb and index finger.

This study introduces an enhanced version of the force-controlled hand stimulation testbench, equipped
with eight motors. It efficiently captures external force-torque and motion data to analyze the hand’s
response to muscle actuation. Additionally, we apply this test rig to a cadaver hand to simulate complex
tasks, including the pincer grip. This approach enables a more differentiated understanding of hand
mechanics during precise movements.

4.3.2 Testbench Design and Methodology

The testbench, as depicted in Figure 4.12, is an assembly of four primary systems: the force control system,
the optical measurement system (Optitrack©), the central control system, and a video capture camera. The
force control system is a notable feature, integrating eight autonomous motors. Each motor is equipped with
a strain gauge for force detection and an internal angle sensor. The motors, specifically the 9225-160KV
brushless variants, are designed for efficient operation even under significant loads. The force control
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Figure 4.12 Schematic representation of the test bench, featuring an optical measuring system (I), eight force-
controlled motors (II) governed by a central control unit (III), and a video capture system (IV). An integrated 6 DOF
force-torque sensor facilitates external load measurement [10].

system’s output is interfaced with the open-source Vedder electric velocity controller (VESC) [253], ensuring
precise field-oriented control.

The integration of robotics with human hand biomechanics is evident in the testbench’s design. The
OptiTrack© setup, consisting of six cameras, provides real-time position and orientation data, which is
relayed to the force control system. This data stream, synchronized with force and position metrics, is
managed by an application developed on the Isaac Software Development Kit (SDK) [254]. The video
capture system, while primarily used for evaluation, offers potential for AI-driven analyses, such as 3D hand
reconstruction [255].

To emulate the pincer grip, each motor’s actuation is governed by signals characterized by a sine wave,
ensuring precise control over the tendons of both the thumb and index finger. The testbench’s design
emphasizes accurate force control, synchronized sensor data, and real-time operation, setting a robust
foundation for future model-based control implementations.

The hand preparation process involves identifying and anatomical dissection of eight tendons responsible
for the pincer grip. Custom Stereolithography (SLA) 3D-printed navigation trackers are affixed to the finger
bones for position detection using an optical navigation system. The hand’s positioning on the testbench
ensures anatomical alignment of tendons and clear visibility of the trackers. The final test setup is visualized
in Figure 4.13. The data acquisition process captures multiple variables, including position, orientation,
forces, torques, and their derivatives. The setup comprises five rigid bodies tracked by OptiTrack©, providing
comprehensive data for each time step.

The kinematic analysis involves a systematic process to determine the orientations of all rigid bodies at
each timestep. The kinematic optimization for undefined rigid bodies employs an iterative process to finalize
the positioning of the intermediate and proximal phalanges of the index finger and the proximal phalanx of
the thumb. Joint angles in the phalanges are calculated using standard vector methods, ensuring accurate
representation of the phalanx’s deviation from its default position.
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Figure 4.13 Illustration of the test rig and setup: (a) Depicts the precise fixation of the cadaver hand to the test stand;
(b) Provides an in-depth view of the overall test configuration; (c) Demonstrates the execution of the pincer grip,
highlighting the integrated force-torque measurement with a mobile sensor strategically positioned between the index
finger and thumb [10].

4.3.3 Illustrative Results

The results of the study are best visualized through a series of figures that capture the essence of the
research’s findings. These figures provide a comprehensive overview of the hand’s movements, tendon
forces, and the resultant grip strength during both robotic and manual actuations.

1. Robotic Actuation Results: Figure 4.14 presents the outcomes from the robotic actuation. The
figure depicts the movements of the thumb (left) and index finger (right) during the robotic actuation.
The top row showcases the joint angles, while the middle and bottom rows illustrate the forces exerted
by the respective tendons. Notably, there were fluctuations in force control and suboptimal joint
angles, particularly with the MCP joint of the index finger being hyperextended.

2. Manual Actuation Results: Figure 4.15 illustrates the effects of manual actuation on the pincer
grip. The figure highlights the movements of the thumb (left) and index finger (right), with the top row
detailing joint angles and the middle and bottom rows emphasizing the forces from the respective
tendons. Manual actuation resulted in smoother joint angle trajectories and reduced hyperextension
of the MCP angles in the index finger.

3. Pincer Grip Force Evaluation: Figure 4.16 provides a visual representation of the grip force results.
The figure delineates the outcomes from both the robotic and manual actuations, capturing the force
exerted during the pincer grip.

These figures serve as a visual reference to the research’s findings, offering a detailed perspective on the
details of hand movements, tendon forces, and grip strength during different actuation methods.

4.3.4 Key Findings

The main goal of this research was to study the ability of a testbench setup to replicate and measure the
movements and forces characteristic of a human hand during a pincer grip action. The data gathered from
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Figure 4.14 Results from hand testing for the male hand during robotic actuation. Joint angles and tendon forces are
depicted for both the thumb and index finger [10].
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Figure 4.15 Results from hand testing for the male hand during manual actuation. The figure details joint angles and
tendon forces for both the thumb and index finger [10].
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Figure 4.16 Demonstrative grip force measurements for the pincer grip, captured via the force-torque sensor. The
figure contrasts the results from both robotic and manual actuations.

these experiments offer substantial insights into how tendon forces influence the resulting grip strength.
Below are the principal findings from the study:

Successful Execution of the Pincer Grip: The testbench setup, through both robotic and manual
actuation methods, successfully executed the pincer grip. The robotic actuation followed individual sinusoidal
force trajectories for each motor, leading to the achievement of a pincer grip. Manual actuation, on the other
hand, provided enhanced freedom, resulting in more physiologically accurate movements. Both methods
yielded measurable external contact forces, with the robotic actuation producing a force of 0.8 ± 0.1 N
and the manual actuation generating a force of 1.9 ± 0.6 N. The difference in these values highlights the
variability in force outcomes based on the chosen actuation strategy.

In conclusion, the findings from this research underscore the potential of the testbench setup in replicating
the dynamics of a human hand. The insights gained, especially the relationship between tendon forces and
grip strength, can be instrumental in refining robotic hand actuation to achieve desired grip strengths and in
understanding the biomechanics of the human hand.

4.3.5 Implications and Significance

Our research findings offer the path to deepened understanding of the biomechanics of the human hand,
with wide-reaching implications for the domains of robotics and prosthetics. The discrepancies observed
between the forces produced by robotic and manual actuation highlight the inherent challenges in emulating
the biomechanical properties of human muscles through robotic actuators [256]. This non-linear relationship
between tendon forces and grip strength, influenced by factors such as synergistic muscle activation, tendon
interactions, and the mechanical advantages that vary with joint angles, provides invaluable insights. These
can be harnessed to design robotic hands that are more efficient and adaptive, with control algorithms that
facilitate natural grip patterns [257].

In the field of medical prosthetics, the biomechanical insights from our study can enhance prosthetic hand
designs, offering users improved dexterity and functionality [258]. The observed non-linearities in force
outputs, shaped by the combined forces from multiple tendons and changing joint angles, can guide the
evolution of prosthetic hands to more closely mirror natural hand movements [259]. This paves the way for
the creation of prosthetics that are not only more effective but also provide a more intuitive and comfortable
user experience.

Additionally, a notable aspect of our research is the thorough data collection method, which fills gaps
identified in previous studies [81]. By utilizing cadaver hands in our experiments, we achieve precise
measurements, establishing a solid baseline for future research [260]. These data lay the groundwork
for developing biomechanical models that accurately simulate hand movements and forces, effectively
narrowing the gap between theoretical simulations and practical observations. These models are likely to
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be invaluable in fields such as robotics and prosthetics, facilitating the creation of devices that more closely
mimic human biomechanics.

Limitations

This research, while innovative in its exploration of hand biomechanics, was not without challenges. One of
the primary issues faced was with the optical trackers used for data acquisition. These trackers, essential for
our study, occasionally suffered from signal loss, which notably affected the evaluation of the female hand
specimen. As the study progressed, changes in the biomechanical properties of the cadaveric specimens
were observed. These alterations, reminiscent of mummification, could potentially influence the hand’s
response to actuation.

The process of determining joint angles, a crucial aspect of our analysis, also posed challenges. Relying
on manual identification of joint positions introduced variability and potential inaccuracies in our measure-
ments. Even under controlled conditions, environmental factors such as humidity and temperature have
subtly affected tissue properties, thereby influencing the results. Furthermore, the limited diversity of hand
specimens raises concerns about the generalizability of findings. Factors like age, prior hand usage, and
medical history play a significant role in hand biomechanics, and the selected specimens do not capture the
full spectrum of these variables.

4.3.6 Conclusion

In this research project, a detailed investigation of the biomechanics of the human hand was carried out, with
a particular focus on the complex interaction between tendon forces and grip strength. The interdisciplinary
approach, which seamlessly integrated robotics and biomechanics, enabled a successful evaluation of the
test rig. By utilizing both manual and robotic techniques to operate the eight motors, the pincer grip was
effectively executed. This highlights the robustness and efficacy of the test setup. The collected data is
not only consistent with existing literature, but also fills notable gaps, particularly in terms of applicability in
practice. This rich dataset captures the mechanics of the human hand and provides a solid foundation for
future modeling efforts.

As the integration of biomechanics and robotics continues to deepen, the findings from this study provide
a solid foundation for future research. These findings can contribute to the development of prosthetic and
robotic hands and represent a remarkable advance in the field of robotic test rigs for joint analysis.
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5 Personalized Digital Twins through Artificial
Intelligence-based Optimization

Figure 5.1 Section overview.

This chapter addresses the optimization tasks essential for crafting ad-
vanced models in biomechanical systems, as depicted in Figure 5.1.
Our research focuses on the careful analysis and optimization of
biomechanical models based on available data to increase their
precision and efficiency. This effort is pivotal for the generation of
patient-specific digital twins, offering advancements in clinical applica-
tions. This task is in line with our central research question: How can
AI algorithms be applied to highly individualized biomechanical sys-
tems to enhance kinematic and dynamic modeling, thereby facilitating
more accurate and efficient models for analyzing joint behavior?

Our initial efforts focus on refining kinematic models, a project
elaborated upon in Section 5.1. Here, a differentiable kinematic
model is introduced, adapted to specific biomechanical conditions
and further refined to achieve unparalleled accuracy and efficiency in
simulating joint behavior. Given that kinematic boundary conditions
are predetermined, our investigation narrows to defining selected
dynamic parameters, such as stiffness and damping. To cope with the
arising complexity, we pivot to sophisticated reinforcement learning
techniques, as discussed in Section 5.2.

Incorporating AI algorithms is projected to enhance the accuracy
and efficiency of both kinematic and dynamic modeling processes.
These optimization algorithms are crucial for developing sophisticated
digital twins, enabling more detailed and personalized analysis of
patient-specific conditions. Through this chapter, we aim to under-
score the transformative potential of AI in improving biomechanical
modeling.

5.1 Differentiable Forward Kinematics for Kinematic Optimization

In the field of robotics and biomechanics, the accurate identification of joint parameters and the calculation of
both forward and inverse kinematics are essential yet challenging tasks. This section presents an innovative
kinematic optimization technique, which is supported by an architecture based on autoencoders [11].

The proposed method employs a neural network to emulate inverse kinematics. It transforms mea-
surement data into parameters specific to individual joints during the encoding phase. These parameters
are then fed into a pre-established, differentiable model for forward kinematics, resulting in a decoded
version of the initial data. Not only does this approach provide a unified solution to the complexities of
forward and inverse kinematics, but it also reveals new joint parameters that were previously undetected.
The effectiveness of this optimizer has been confirmed through real-world experimental data, particularly
focusing on knee and hand joints.

Moreover, the optimizer serves multiple functions. It not only simplifies the modeling and automation
of kinematics but also facilitates a detailed assessment of various modeling techniques. By evaluating
the differences in reconstruction losses, the advantages of each technique are emphasized. Overall, this
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section highlights the advances in the field of kinematic optimization that can impact both biomechanics
and robotics.

5.1.1 Introduction to Autoencoders and Kinematic Modeling

In both robotics and biomechanics, the tasks of identifying joint positions and performing calculations for
forward and inverse kinematics are crucial. Challenges often emerge when multiple systems evaluate a
single rigid body without awareness of their relative positions, leading to incomplete transformation functions
in forward kinematics [261]. Conventional approaches, while foundational, encounter limitations in terms of
speed and accuracy, particularly in complex robotic systems [157].

Recent advancements have highlighted the effectiveness of neural network-based solutions in overcoming
kinematic challenges. Works by Köker et al. [155], Duka [156], and Jiang et al. [157] have demonstrated the
versatility and accuracy of neural networks in various robotic applications. In the biomechanics domain,
deep learning has provided insights into human movement, as evidenced by studies like those of Henry
et al. [262] and Sun et al. [263]. As a complement to these developments, the concept of differentiable
kinematics has gained traction. Contributions from Ono et al. [158] and Fang et al. [159] have emphasized
the utility of mathematical groups and learning-based methods in kinematic calculations. Software solutions
for differentiable robotics and kinematics have also been introduced [160–162].

In this evolving landscape, autoencoders have proven to be useful tools for kinematic optimization [163–
165]. The research presented in this section introduces an autoencoder-based kinematic optimizer that
processes measurement data (Xmea) to model inverse kinematics and derive joint positions (Q). These
positions are then decoded to reconstruct X̂mea. The optimizer’s effectiveness is validated using data
from knee and hand joints, demonstrating its applicability in both biomechanical and robotic contexts
[11]. The source code for the differentiable forward kinematics and optimization is publicly available at
https://github.com/NikonPic/DiffAutoKin.

5.1.2 Materials and Methods

Differential Kinematics

The study of kinematics frequently employs transformation matrices to establish spatial relationships
between various coordinate frames. These matrices generally consist of a rotation matrixR and a translation
vector p. Vector differentiation plays a crucial role in understanding relative velocity and acceleration in
kinematic systems [264]. Quaternions offer a more compact way to represent the rotation matrix, thereby
simplifying the description of orientations and rotations in 3D space [265]. Our methodology leverages
these matrices for differential kinematics, providing a framework that is fully differentiable, parallelizable,
and algorithmically structured [11].

In robotics and biomechanics, the position of a rigid body in 3D space is often represented using a
transformation matrix To−bi , which indicates the position of body bi relative to an origin frame o. These
positions are usually obtained from tracking systems like OptiTrack [48] or Vicon [47], or calculated from a
forward kinematics model given known joint angles q. Our approach distinguishes between transformations
related to rigid bodies, Tbi , and those dependent on joint positions qi, denoted as Tj(qi).

Hinge joints mainly experience rotational transformations. The position of the rotational axis is represented
by positioni, and its orientation by the axis vector axisi. The transformation matrix for such a joint is
determined through a series of steps, including translation to the joint axis, rotation about the joint axis,
and inverse translation from the joint axis. The kinematic structure integrates both rigid bodies and joints
to define the transformation from the base to the end effector, represented as Teff. This transformation is
expressed as the product of individual transformations associated with each body or joint in the kinematic
chain.

We have also developed a comprehensive software solution that automates the creation of a differentiable
kinematics model. This software parses Multiple Joints in Contact (MuJoCo)-based XML files [266] and is
built on the PyTorch framework [267]. The source code is publicly accessible [11].

https://github.com/NikonPic/DiffAutoKin
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Figure 5.2 Forward Kinematics Model Visualization. The model demonstrates the dependency on joint parameters Θ
and illustrates the transformations To−bi

derived from the kinematic chain [11].

Autoencoder-based Kinematic Optimizer

Building upon the principles of differentiable forward kinematics, we introduce an innovative kinematic
optimizer rooted in autoencoder neural network architectures. Autoencoders are specialized neural networks
designed for unsupervised learning, aiming to efficiently encode data and reconstruct it from the encoded
form. The objective is to minimize the reconstruction error, typically quantified by the MSE [268].

In our approach, the encoder and decoder of the autoencoder serve as the inverse and forward kinematics
models, respectively. Given a datasetXmea of pose measurements, the encoder translates this data into joint
anglesQ. This is achieved through a neural network NNΨ, which models the inverse kinematics. These joint
angles are then decoded using a differentiable forward kinematics model to produce the reconstructed data
X̂mea. This ensures the preservation of mathematical integrity and facilitates gradient-based updates [11].

The primary goal is to minimize the reconstruction error between the measurement Xmea and its
reconstruction X̂mea. This error serves as our loss function, and gradient-based optimization techniques
are employed to iteratively refine the parameters Ψ and Θ.

L(Xmea, X̂mea) = 1
m

m∑
i=1

∥Tmea(ti) − T̂mea(ti)∥2 (5.1)

Ψ∗,Θ∗ = arg min
Ψ,Θ

L(Xmea, X̂mea) (5.2)

This optimization process allows the autoencoder to adeptly handle both inverse and forward kinematics,
providing a comprehensive solution for kinematic analyses.

Regularization Techniques

Introduction to Regularization Techniques To enhance the robustness and generalizability of our
autoencoder-based kinematic optimizer, we incorporated two advanced regularization techniques: Independent
Component Analysis (ICA) and VAE.
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Figure 5.3 Schematic of the autoencoder-based kinematic optimizer. The encoder converts measurement data
Xmea into joint angles Q, while the decoder reconstructs this data using the differentiable forward kinematics model.
Gradients flow through the entire architecture during optimization [11].

ICA aims to decompose a multivariate signal into additive, independent non-Gaussian components [269].
In our model, the goal is to make the components of the encoded representation as independent as possible.
We introduce an ICA-inspired regularization term, LICA, defined as:

LICA =
∑
i ̸=j

cov(qi, qj)2 (5.3)

This term penalizes the squared values of the off-diagonal elements of the covariance matrix of the encoded
representations, encouraging feature independence. It is combined with the primary reconstruction loss
during training.

VAEs extend the autoencoder framework by encoding input data into a probabilistic distribution, adding a
stochastic dimension [270]. The VAE loss comprises both the reconstruction loss and the KL-divergence,
LKL:

LKL = −1
2
∑
i

(1 + log(σ2
i ) − µ2

i − σ2
i ) (5.4)

The reconstruction loss considers the decoder’s output as a Gaussian distribution, with its mean and
variance determined by the neural network and a learnable log standard deviation:

Lrec = −EQ∼qΦ(Q|Xmea)[log pΘ(Xmea|Q)] (5.5)

The overall VAE loss, LVAE, is:
LVAE = Lrec + λLKL (5.6)

where λ is a weighting factor. Both ICA and VAE offer unique advantages: ICA ensures feature indepen-
dence, while VAE enhances latent space smoothness and generalizability. By integrating both, we aim to
create a kinematic optimizer that balances accuracy, robustness, and interpretability.

Experimental Validation

This study evaluated the effectiveness of an autoencoder-based kinematic optimizer, enhanced with ICA
and VAE regularization techniques, on kinematic data from two real-world setups, showcased in Figure 5.4.
We initiated this by converting the primary MuJoCo models, representative of our datasets, into kinematic
representations and subsequently back into MuJoCo’s format for thorough evaluation [11].

The investigation for the hand testbench concentrated on analyzing the joint positions of the index finger,
including the MCP, PIP, and DIP joints, alongside the thumb’s CMC, MCP, and IP joints. For the knee
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Figure 5.4 Experimental setups for kinematic data acquisition: (a) Hand testbench capturing movements of the index
finger’s MCP, PIP, and DIP joints, and the thumb’s CMC, MCP, and IP joints. (b) Data from Wilhelm et al. [9, 10]
representing knee joint motions across multiple DOFs.

joint, known for its complex DOFs, we studied three models reflecting varying degrees of freedom (1 DOF,
2 DOFs, and 3 DOFs) as per the data from Wilhelm et al. [11]. The focus was on pinpointing the most
accurate kinematic representations, with particular attention to the 1 and 2 DOF models.

We further enriched our analysis with VAE and ICA techniques, visualizing the motion axes derived from
these methods. The primary evaluation metric employed was the reconstruction loss, quantified by the
MSE, and applied to a validation subset making up 10% of the total data. The goal was to validate the
efficiency of our autoencoder-based kinematic optimizer, especially in light of the incorporation of ICA and
VAE regularization techniques [11], thereby advancing our understanding and application of these advanced
regularization methods in the context of kinematic optimization.

5.1.3 Results

The performance evaluation of our autoencoder-based kinematic optimizer is central to this section. We
focus on the enhancements achieved through the incorporation of ICA and VAE regularization techniques.
The evaluation employs data from a hand testbench and a knee joint dataset, aiming to identify all joint
axes and solve the corresponding inverse kinematics problem [11].

In the hand testbench experiments, three autoencoder variants were assessed: the standard Autoencoder
(AE), the ICA-augmented Autoencoder (AE+ICA), and the VAE. The experiments had dual objectives:
to validate the model using both simulated and actual measurement data. The decoder model’s axis
parameters were initialized randomly for both scenarios. Figure 5.5 illustrates the training progression
for hand model joint optimization. The AE+ICA variant exhibited the highest error, while the AE variant
demonstrated superior performance, achieving the lowest losses [11].

Turning to the knee joint, its complex structure and multiple DOFs necessitated a detailed evaluation. We
assessed the performance of our optimizer across three distinct models, each representing 1 DOF, 2 DOFs,
and 3 DOFs. Figure 5.6 visualizes the training progression for these knee joint models. A summary of the
MSE values for each model across different DOFs is provided in Table 5.1.

Lastly, all model variants, including AE, AE+ICA, and VAE, provided valid solutions for both forward and
inverse kinematics due to their low reconstruction errors. For further analysis, we focused on comparing the
joint trajectories derived from AE and AE+ICA, using Wilhelm et al.’s dataset [11]. Figure 5.7 illustrates this
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Figure 5.5 Training progression for hand model joint opti-
mization across three independent runs for both simulated
and actual measurement data. The MSE loss is plotted for
AE (blue), AE+ICA (orange), and VAE (green). Adjacent
hand models illustrate the trained joint axes, emphasized
using dotted lines in the respective model colors [11].

Figure 5.6 Training progression for knee joint models
across three independent runs, evaluated using MSE loss
on Wilhelm et al.’s validation dataset [11]. The models
include the standard AE (blue), AE+ICA (orange), and
VAE (green). Adjacent knee models illustrate the derived
joint axes [11].

comparison. The AE+ICA method distinctly separated the flexion axis from the other two axes, whereas the
AE method showed coupled trajectories, particularly during high flexion angles [11].

5.1.4 Discussion on Autoencoder Kinematics

In this section, we investigate the implications of our experimental findings, focusing on the performance
and adaptability of the autoencoder-based kinematic optimizer. The optimizer’s performance is particularly
noteworthy when enhanced with ICA and VAE techniques [11].

Our experiments spanned two primary domains: a hand testbench and a knee joint model. For the
hand testbench, the standard AE and VAE models demonstrated excellent performance in reconstructing
simulated data, with errors around 1×10−5. However, these results indicate room for improvement, as errors
below 1 × 10−10 are generally expected for simulated data. The identified joint axes closely aligned with
the predefined anatomical axes, reinforcing the model’s accuracy. On the other hand, the ICA-augmented
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Table 5.1 Mean MSE values for each variant across different models, averaged over three independent training runs.

Model AE AE+ICA VAE
Hand 9.6e− 05 3.0e− 03 1.6e− 04

Knee 1-DOF 4.5e− 03 4.5e− 03 4.6e− 03
Knee 2-DOF 5.6e− 05 3.2e− 04 3.1e− 04
Knee 3-DOF 1.6e− 07 2.8e− 06 1.7e− 06

Figure 5.7 Joint trajectory compar-
ison for the 3-DOF knee joint us-
ing Wilhelm et al.’s data [11]. The
top graph represents the AE-based
method, while the bottom graph de-
picts the AE+ICA approach. Cor-
responding joint axes are color-
coded [11].

model faced challenges in decoupling inherently independent axes. For models with several independent
single axes, the methods AE and VAE are therefore to be preferred.

In the context of the knee joint, our models were evaluated across different DOFs. The AE+ICA model
excelled in anatomical interpretability, effectively decoupling joint axes in multi-DOF models. The AE model,
while precise, may compromise on this interpretability. The VAE model showed robustness, particularly in
handling noisy datasets, due to its probabilistic treatment of both input and output spaces. For models with
several coupled axes, such as the knee joint, the ICA method is preferred to ensure interpretability.

Our work also presents a comparison between AE and AE+ICA in terms of joint trajectories for the 3-DOF
knee joint model. The AE+ICA model’s ability to differentiate between the flexion axis and other axes aligns
well with anatomical expectations, whereas the AE model’s strategy may not always be biomechanically
intuitive and interpretable.

The integration of autoencoders in kinematic optimization resonates with existing literature. For instance,
the importance of precise trajectory planning highlighted by Li et al. [271] aligns with our objectives. Similarly,
the adaptability emphasized by Sundaralingam and Hermans [272] is evident in our AE and AE+ICA models.
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Our approach diverges by introducing the efficacy of ICA and VAE as regularization techniques, offering
new avenues for kinematic optimization [273, 274].

A limitation of this study is its reliance on only two validation datasets, which may not capture the variability
in joint movements across different populations. Additionally, the models make certain assumptions about
joint constraints and movement redundancies, which may limit their broader applicability. Future work
should aim for a more comprehensive evaluation to validate the derived joint parameters against established
systems.

5.1.5 Conclusion on Autoencoder based Kinematics

In this section, we have recaptured the work originally presented in the paper, focusing on a versatile
autoencoder-based kinematic optimizer [11]. This optimizer is capable of solving both forward and inverse
kinematics across a range of models and datasets. Its architecture is both simple and efficient, making it
an innovative contribution to kinematic optimization. The methodology has been particularly effective in
identifying surrogate kinematic models with low reconstruction errors for anatomically distinct joints, such
as the hand and the knee.

A notable strength of the optimizer is its ability to interpret and identify axes of compromise, a capability
particularly apparent in its handling of the knee joint across various degrees of freedom. This attribute
enhances the detailed analysis of biomechanical systems, showcasing the optimizer’s adaptability and
durability. These results confirm the usefulness of this approach in the fields of biomechanics and robotics
and point to possible areas for further research and development in these fields.

This segment of the research establishes a robust foundation for the kinematic optimization of previously
unidentified biomechanical models. It also facilitates a meaningful comparison between diverse modeling
approaches based on their accuracy in reconstructing measured data. Despite its strengths, the current
methodology is confined to kinematic considerations and does not extend to more sophisticated model
optimization techniques. To address these more complex aspects, advanced methods are developed in the
subsequent Section.

5.2 Model-Free Proximal Policy Optimization for Dynamic Optimization

While differentiable physics-based models offer gradient-based optimization techniques, they often face
challenges in backpropagating to relevant dynamic parameters, particularly in complex biomechanical
systems [166, 167]. This limitation is especially pronounced in robotic applications, where the systems
are frequently treated as black boxes. To address this, model-free solutions like evolutionary algorithms
and reinforcement learning have gained prominence, as they effectively bridge the "reality gap" between
simulated and real-world behavior [168].

Recent advancements in reinforcement learning-based optimization techniques have shown promising
results across various domains, from quantum control [169] to thermal power unit efficiency [170]. These
techniques offer a viable alternative to traditional differentiable models, particularly when the focus shifts
from kinematic constraints to the definition of select dynamic parameters like stiffness and damping
characteristics [171, 172].

The primary contribution of this section is the introduction of a novel reinforcement learning-based
optimization procedure designed to minimize the divergence between measurement data and model
output. This approach enhances the model’s predictive capabilities and is particularly well-suited for
complex systems where differentiable models fall short. Grounded in state-of-the-art reinforcement learning
techniques, specifically proximal policy optimization [275], this work aims to provide a robust and accurate
method for system identification and parameter optimization, thereby advancing the field of robotic control
and optimization algorithms.
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5.2.1 Reinforcement Learning-Based System Identification: Model Generation and Initial
Setup

The process of model generation is outlined in Figure 5.8, which serves as a comprehensive guide for
creating a biomechanical model suitable for reinforcement learning-based optimization.

Figure 5.8 Workflow for generating the biomechanical model. The model is initially created based on segmented
CT data and synchronized robot and tracking data. Further optimization is performed based on the measurement
data [12].

Model generation begins with the acquisition of multimodal data, including CT scans for geometry and
dynamic recordings of position, forces, and torques. This raw data is then processed to create an initial
model using the MuJoCo physics engine [266]. The model incorporates segmented bones and annotated
attachment points for tendons and ligaments, with properties estimated based on existing literature [276,
277]. The dynamic data is temporally synchronized and transformed into the model’s coordinate system.
This enables model manipulation and sets the stage for the reinforcement learning-based parameter
optimization.

The initial model comprises four primary bones, simplified into two rigid bodies for computational efficiency.
Convex collision meshes are generated to simulate realistic bone-to-bone interactions [278]. Attachment
points for significant ligaments are marked and serve as the basis for the model’s dynamic properties.
These properties, encapsulated in the parameter vector ψ, are set as learnable parameters for subsequent
optimization.

Reinforcement Learning-Based Parameter Adaptation

The challenge of parameter optimization in non-differentiable simulators is addressed by formulating it as a
reinforcement learning problem. The objective is to minimize the divergence between the simulated motion
xSim and the measured motion xMea, under the same measured force-torque FTMea.

min
ψ

[xSim(FTMea, ψ, t) − xMea(FTMea, t)]2 (5.7)

The reward function incorporates both the desired motion behavior and the stability of the process:

reward(t) = 1 + λ [xSim(t) − xMea(t)]2 (5.8)

Here, λ serves as a hyperparameter that balances between robust training and asymptotic behavior.
In this setup, the actor in the reinforcement learning framework selects a set of parameters ψ at the

beginning of each trajectory and maintains it throughout, unlike traditional Reinforcement Learning (RL)
where actions are state-dependent. This is formalized as:

πψ(aτ ) = const. ∀ t ∈ τ (5.9)
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The optimization problem can thus be expressed as maximizing the expected reward over trajectories τ :

max
ψ

U(ψ) =
∑
τ

P (τ, ψ)R(τ) (5.10)

The gradient for this optimization problem aligns closely with traditional policy gradient methods:

ĝ = Êt
[
∇ψlogπψ(aτ )Ât

]
(5.11)

PPO is employed for this parameter optimization, given its robust training procedure and enhanced
asymptotic behavior. The full parameter optimization algorithm is shown in Algorithm 1.

Algorithm 1 Proposed algorithm for system identification [12]. Derived from Schulman et al. [275].

Initialize policy parameters ψ0, initial value function parameters η0
while not converged do

Initialize empty set of local trajectories D.
while Number of max timesteps tmax not reached do

Sample a trajectory from the measurement τmea.
Generate the local parameters ψ = πψ and update the simulator.
Set the simulator in position xSim,t0 = xMea,t0 .
Simulate by using FTMea and collect xSim,t.
Append collected trajectory to D.

end while
Compute rewards-to-go R̂t.
Compute advantage estimates Ât for all collected timesteps.
Update the policy by maximizing the PPO-Clip objective:

ψnew = argmax
ψ

∑
τ∈D

∑T
t=0

(
πψ(aτ )
πψold (aτ )Â

πψold (st, aτ ), g(ϵ, Âπψold (st, aτ )
)

,

with g(ϵ, A) =
{

(1 + ϵ)A if A ≥ 0
(1 − ϵ)A otherwise

Update the value function by regression:

ηnew = argmin
η

∑
τ∈D

∑T
t=0

(
Vη(st) − R̂t

)2

end while

To address the increased policy gradient variance arising from constant parameters over long trajectories,
the measurement data is segmented into smaller, randomly selected regions to form localized measurement
trajectories τmea. The simulation model is initialized at the start of each local series, and parameters
are generated via the stochastic policy πψ(aτ ). The motion trajectory xsim is then simulated using the
parameterized model and measured force-torque data. Simulation termination occurs if instability or
excessive velocity is detected. The policy gradient is subsequently computed using an additional value
function Vη to calculate the advantage, thereby minimizing update variance.

Validation of Parameter Optimizer: Experimental Setup and Data Sources

Our validation approach for the parameter optimizer is implemented through two distinct experimental
setups. In the first setup, we utilize a simplified surrogate model of a knee joint, designed to create a
controlled environment for assessing the optimizer’s effectiveness. As illustrated in Figure 5.9 b, the model
features a double plate structure linked by a central rotational joint, with diagonally arranged tendons. This
configuration is intended to mimic basic dynamics of the knee joint. We generate simulated measurement
data from this model, allocating 90% for training purposes and 10% for validation. The primary goal is to
test the optimizer’s ability to precisely identify parameters and reconstruct trajectories.

The second part of our validation employs real-world data, sourced from Wilhelm et al. [9]. Unlike the
surrogate model, this dataset lacks a ground truth, challenging the optimizer to identify plausible parameters
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Figure 5.9 Figure (a) depicts the MuJoCo-simulated knee joint model, illustrating results from CT segmentation and
the pinpointing of ligament attachment sites. This visual emphasizes key skeletal structures alongside the tendons
and ligaments vital to the knee’s dynamic and kinematic properties. Figure (b) presents a schematic of the simplified
surrogate plate model, comprising two plates linked by four tendons around a central rotational joint. Applied external
forces and torques to the upper plate induce simulated movements, forming the basis for the optimization dataset [12].

based on an initial approximation of the knee joint model. The tests were conducted at various flexion angles
and had a total recording duration of 23 minutes, providing a robust dataset for further model identification.

5.2.2 Adaptive System Calibration with Simulated Environments

The efficacy of the optimization algorithm was evaluated within a simulated framework, utilizing the simplified
Mujoco model illustrated in Figure 5.9 b, which was crafted to mirror the controlled conditions of experimental
setups accurately. Through a sequence of five distinct training sessions, the algorithm’s capability to
precisely identify unknown parameters within the simulation was assessed. The training duration extended
over 10000 iterations, with λ set to 1, considering the system exhibited no stability issues. Figure 5.10
systematically showcases the findings from these experimental runs. Figure 5.10 presents the optimization
results from five distinct training iterations. Specifically, Panel (a) illustrates the trajectory of the MSE
parameter across these iterations. Panel (b) compares the initial output of the system with actual empirical
data, while Panel (c) shows the system’s output at the end of the training process. In these graphical
representations, dotted lines indicate the empirical data targeted for approximation, and solid lines depict
the outputs from the simulation model at both the initial and final stages.

The results show a significant decrease in the MSE from values above 1 × 103 to below 1 × 102.
This reduction underscores the optimizer’s capability to fine-tune simulation parameters to closely match
experimental data. The comparison of system outputs before and after optimization, as depicted in Panels
(b) and (c), initially reveals discrepancies between the model predictions and the actual data. However,
the post-optimization results in Panel (c) demonstrate an excellent alignment, with the MSE optimized to
below 5 × 10−4. This precision illustrates the optimizer’s effectiveness in minimizing errors and its ability
to generate validation trajectories that closely replicate real-world phenomena, emphasizing the value of
computational models in accurately simulating physical systems.

An in-depth review of the parameter adjustment over the course of training for the plate model is
provided in Figure 5.11, offering insights into how each parameter evolved during the optimization process.
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Figure 5.10 Outcomes of plate optimization across five independent training sessions are depicted. Panel (a) displays
the MSE parameter evolution throughout the training iterations. Panel (b) illustrates the initial system response in
comparison with the actual measurements, while panel (c) demonstrates the final system response after completion
of the training. Dotted lines represent the ground truth measurements targeted for fitting, whereas solid lines indicate
the simulation model’s current output for plot (b) and (c) [12].

Figure 5.11 presents the optimization trajectory for parameters within the plate system over five training
sessions. It plots the evolution of stiffness and damping parameters, with the actual values used in data
synthesis marked in red. This analysis reveals the optimizer’s success in closely estimating the true
parameters, especially in determining stiffness values. However, a persistent variance in damping values,
particularly for tendon-2, suggests minor challenges in achieving complete accuracy, highlighting areas for
further refinement in the optimizer’s approach.

5.2.3 Automatic System Adaptation for Real-World Data

Transitioning to the application of our detailed knee model, as depicted in Figure 5.9 (a), to real-world
datasets revealed stability challenges within the simulation model. These challenges necessitated care-
ful adjustments to the λ parameter, striking a delicate balance between ensuring system stability and
maintaining the precision of measurements.
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Figure 5.11 Parameter optimization results for the plate system during five individual training runs. The graph shows
the stiffness and damping values evolving over time, with the true values used for data synthesis marked in red [12].

In our efforts to refine the balance between system parameters, we evaluated the effectiveness of
the algorithm for automatic system identification by varying the λ values through five distinct training
iterations, specifically examining λ values of 1, 2, 10, 20, 50. These iterations were thoroughly analyzed to
determine the optimal training approach. The PPO algorithm supported this investigation, targeting precise
identification of the knee model’s system dynamics, as illustrated in Figure 5.12. Training was methodically
carried out in segments of up to 50 time steps, using measurement data until the system either reached
instability or exceeded a predefined critical velocity of vcrit = 20 m/s.

This training evidenced marked improvements in simulation stability and extended episode lengths
across the spectrum of λ values. Notably, exceedingly high λ values, such as λ = 50, corresponded with
reduced episode lengths and heightened training instability. Conversely, a λ value of 20 exhibited optimal
performance in terms of validation dataset simulation accuracy. Lesser λ values, namely 1,2, showed
minimal enhancements in performance.

The optimizer’s refinement of motion trajectories was rigorously assessed against a hold-out validation set,
encompassing measurement trajectories previously unutilized during training. This assessment contrasted
initial simulation outcomes against those from the optimized model, underscoring the accuracy of the system
identification method. As depicted in Figure 5.13, this comparison illustrates significant enhancements in
aligning simulation outputs with empirical data, particularly evident in the improved correlation for position
and quaternion trajectories.

Initially, discrepancies between the model’s predictions and actual measurements highlighted early simula-
tion inaccuracies. Post-training outcomes, however, demonstrate a considerable reduction in validation error
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Figure 5.12 Illustrating the
progress in system identification
training for the knee joint across
varied λ values. Displayed are the
simulation trajectories’ average
lengths (top) and the per-time-step
mean error between measure-
ments and simulation outcomes
(bottom), detailed as mean ±
standard deviation [12].

and a closer approximation of actual motion trajectories by the optimized model. Nonetheless, discrepancies
in certain trajectory components underscore the complexities and limitations inherent in accurately modeling
dynamic systems, signaling areas for further refinement and optimization in our approach to achieving more
precise and reliable simulation results for real-world applications.

5.2.4 Discussion on the Reinforcement Optimizer

This section evaluated a reinforcement learning-based optimizer for system identification in both simulated
and real-world settings. The optimizer demonstrated robust performance in the simulated environment,
effectively minimizing both immediate and long-term prediction errors.

In real-world applications, the optimizer’s efficacy was notably influenced by the hyperparameter λ, with
a value of 20 proving optimal. This highlights the importance of hyperparameter tuning for real-world
performance. The optimizer utilizes PPO to adapt existing models to measured data, thereby extending
simulation duration and system stability. This narrows the gap between simulated and real-world data,
enhancing the model’s general applicability.

The study confirms the optimizer’s utility in complex, potentially non-differentiable systems and sets the
stage for future research aimed at improving its robustness and accuracy. It also reiterates the limitations
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Figure 5.13 Comparing simulated motion trajectories with actual data over a 50-second validation period, focusing on
position data (top) and quaternion trajectories (bottom). Solid lines represent simulation outputs; dotted lines denote
empirical data from the robotic knee testbench, illustrating initial predictions versus optimized model predictions [12].

discussed earlier, such as the challenges posed by cadaveric experiments, the simplifications in the initial
model, and the inherent constraints of the simulated environment.

Limitations

Although the proposed parameter optimizer presents notable advancements, its applicability is restricted. It
is effective only when the system model is explicitly known and the range of parameters can be realistically
narrowed. Furthermore, successful parameter identification critically depends on the adequacy of the
collected data variety, which must support unambiguous parameter determination. However, even with
an optimal data scenario, limitations of the algorithm persist, and it cannot be assured that it will correctly
identify system parameters for every scenario.

Moreover, the identification and modeling of real models for complex joints like the knee remain significant
challenges in research. The optimizer described herein merely facilitates approximate solutions, provided
the fundamental prerequisites are adequately met. Although the solutions demonstrated using MuJoCo
represent a preliminary step forward, they omit crucial joint components such as the menisci and other
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soft tissues. Consequently, the parameters optimized are specific to the current model and do not directly
translate to more complex or realistic models.

Conclusions

This section has introduced a reinforcement learning-based optimizer that utilizes proximal policy optimiza-
tion for system identification in both simulated and real-world knee models. While the optimizer demonstrates
high predictive accuracy, it encounters difficulties in uniquely identifying system parameters. This methodol-
ogy offers exciting prospects for research into complex kinematic systems and underscores the significance
of hyperparameter tuning. Future efforts will aim to improve the optimizer’s robustness and focus on the
necessary prerequisites for data collection to achieve unique parameter identification. Additionally, work will
extend to developing personalized models, broadening the application of this technology.



87

6 Conclusions

This dissertation addresses the central research question: How can an adaptive, multidisciplinary system
for analyzing and predicting joint health be effectively developed in the context of orthopedic patient care?
The primary objective of the studies presented was to integrate cutting-edge developments in medical
informatics, robotics, and orthopedics. This integration led to the creation of a comprehensive toolkit aimed
at enhancing patient outcomes. The effectiveness of this toolkit is demonstrated through various individual
studies conducted as part of this research.

The framework presented in Figure 6.1 consists of four main components, all of which contribute to a
collaborative approach to orthopaedic care. Chapter 2 introduces the concept of wearable technology and
describes preoperative gait analysis using inertial measurement units (IMUs) and postoperative rehabilitation
using an innovative finger exoskeleton. Chapter 3 addresses planning and prediction algorithms that
include important features such as bone tumor detection and limb alignment, which are crucial for efficient
preoperative planning. Chapter 4 focuses on robotic test platforms designed for accurate simulation of
joint dynamics and includes specialized test benches for knee and hand joint analysis. Subsequently,
Chapter 5 examines model optimization, completing the development of the framework. Collectively, these
chapters introduce a versatile, integrated toolset that serves both clinicians and researchers in the field of
orthopedics, enhancing their capabilities in joint health analysis.

Drawing an analogy to the Kalman filter, a well-established recursive algorithm for state estimation cited
in [279], this dissertation similarly adopts an iterative enhancement approach in its structure. Analogous
to the prediction phase of the Kalman filter, the Planning and Prediction Algorithms (Chapter 3) generate
forecasts based on existing datasets and models. These forecasts are enriched with inputs from diverse
sources, such as data from Robotic Testing Platforms (Chapter 4) and Wearable Technology (Chapter 2),
improving the accuracy of the predictions. The refinement of these forecasts mirrors the Kalman filter’s
update phase and is executed by the Model Optimization Algorithms (Chapter 5). This cyclical process of
prediction and refinement, incorporating empirical data from the testing platforms, progressively refines the
initial forecasts. This methodology highlights the dissertation’s effective and flexible framework in tackling
the complexities of human joint management.

The integration of medical informatics, robotics, and orthopedics offers an innovative approach to patient
care and research. Medical informatics serves as the foundation of this strategy, facilitating data-driven
decision-making; robotics enhances precision and automation, particularly in data collection and mechanical
testing; and orthopedics provides essential clinical insights, focusing on the specific needs and treatment
outcomes of patients. This multidisciplinary integration extends beyond the limits of each individual field,
enabling a more thorough analysis of joint health, improving preoperative planning, and enables the creation
of personalized treatment strategies. This approach not only addresses existing research gaps but also
provides a broader view of joint health, equipping clinicians and researchers with an advanced toolkit to
improve patient care.

6.1 Contributions

This research was initiated in response to the increasing age of the global population [14] and the vital need
to maintain mobility and joint health to ensure a high quality of life [15]. Additionally, the growing shortage of
healthcare workers [17] and demographic shifts underscore the urgent need for technological interventions
and automation to address care shortages. The thesis aims to harness the capabilities of AI and robotics
to improve joint healthcare. It proposes the use of robotic wearables for objective patient data collection
and the automation of rehabilitation processes to reduce the burden on orthopedic surgeons. This includes
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Figure 6.1 The contributions in a clinical context, starting with 1) wearables, 2) diagnostics and planning, 3) robotic
test benches and 4) optimization. Each contribution is organized according to its main topic and the connections
between the topics are visualized by dashed lines. The most important links to the clinical workflow are indicated by
the connection to the clinical context at the top. In addition, the corresponding publication status and any research
awards are indicated for each article.

enhancing joint analysis through robotic testbenches and employing AI-based optimization for personalized
treatment planning.

The thesis envisions a seamless integration of robotics and AI into orthopedic care, spanning from
preoperative assessments to postoperative recovery. A comprehensive framework was developed, incor-
porating a multimodal joint analysis toolkit for clinical use. This toolkit includes gait analysis, preoperative
planning, intraoperative support through robotic testbenches, and postoperative rehabilitation assistance
with exoskeletons and optimization algorithms. This integration represents an advancement in delivering
orthopedic care, enhancing both the precision of treatments and the efficiency of recovery processes.

Additionally, the thesis underwent extensive verification and validation, with experiments conducted to
demonstrate the practicality and effectiveness of the developed tools. These experiments validated the
relevance and feasibility of the methods for clinical application, underscoring the reliability and efficacy of
the proposed technologies and methodologies. The collective achievements documented in this thesis
represent advancements in orthopedic care, effectively meeting its objectives and making a meaningful
contribution to the field.
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6.2 Addressing Objectives and Research Questions

This thesis employs a multidisciplinary approach to tackle essential objectives and research questions
aimed at improving orthopedic care, guiding its contributions toward advancements in both technological
innovations and clinical practices. The research investigates the complexities of orthopedic biomechanics,
with a special emphasis on hand and knee joints. It establishes a robust foundation that not only broadens
our understanding but also supports the development of an innovative, adaptive, multimodal framework
designed to address these complexities ([9, 10]).

In addressing the first research question, the integration of wearable and robotic technologies into clinical
orthopaedic workflows, this thesis has demonstrated how real-time objective data can be collected and
utilized for the prevention and rehabilitation of joint diseases. By leveraging IMUs for gait analysis and
exoskeleton technologies for finger rehabilitation ([1–3]), the research underlines the potential of these
technologies to provide critical insights into patient mobility and rehabilitation progress, thereby advancing
personalized orthopaedic care.

The potential benefits and challenges of using AI for image analysis in orthopedic diagnostics and surgical
planning, as outlined in the second research question, have been extensively evaluated. The development
of diagnostic algorithms for data annotation, bone tumor detection ([4]), and limb alignment ([6]) represent
significant strides towards integrating AI into the clinical workflow. These advancements not only improve
the accuracy and reliability of diagnostics but also underscore the challenges of clinical implementation,
including data privacy concerns and the need for algorithmic transparency.

The development and application of specialized robotic testbenches for biomechanical research advance
the investigation into the comprehensive analysis of human joints, addressing the third research question.
These testbenches incorporate sophisticated control algorithms capable of executing multiple tasks with
precision, prioritizing specific functions while dynamically adjusting to the unique biomechanical structures
encountered. This adaptability is illustrated by the introduction of a null-space control system for the
knee testbench ([8]), which demonstrates an innovative approach to managing complex, variable tasks.
The capabilities of these testbenches extend beyond traditional methodologies, enabling high-resolution
in-depth ex-vivo experimentation. They open new avenues for the detailed exploration of the mechanical
properties and dynamic behaviors of knee and hand joints ([9, 10]), with the hand testbench, in particular,
offering fundamental insights into hand mechanics and generating comprehensive, previously inaccessible
multimodal datasets. This work not only underscores the complexity of human joints but also highlights the
critical role that robotics plays in enhancing our understanding and improving the management of orthopedic
conditions. Through these advancements, the thesis contributes significantly to the field, offering a refined
understanding of joint mechanics and the potential for improved diagnostic and therapeutic strategies in
orthopedics.

Finally, the thesis addresses the application of AI algorithms to biomechanical systems for improved
modeling of joint behavior, tackling the fourth research question. Through the development of optimization
techniques, such as kinematic model optimization ([11]), and reinforcement-based optimization ([12]),
this research proposes new methodologies for the accurate and efficient analysis of joint kinematics and
dynamics. These contributions not only advance the theoretical framework for biomechanical modeling but
also promise to enhance the precision of clinical diagnostics and interventions.

6.3 Limitations

This dissertation advances the multidisciplinary analysis and prediction of joint health. However, it is
essential to recognize its limitations in order to achieve a balanced understanding and identify future
research directions.

The framework, while innovative, exhibits a degree of modular isolation. Each module, designed to
address specific aspects of joint health, operates effectively on its own. However, this independence results
in a lack of an integrated, cohesive approach. Such modular isolation potentially limits the ability to achieve
a holistic understanding and treatment of joint health. This is particularly evident in the framework’s focus
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on specific joints, primarily the knee and hand. While this specialization allows for targeted solutions, it
restrictively narrows the framework’s applicability and universality, limiting its utility across a diverse range
of joint types. Integrating the various components of the framework presents its own set of challenges. For
instance, the planning algorithms, a critical component of the framework, do not seamlessly interface with
the multimodal joint analysis and wearable technology. This lack of integration can lead to inefficiencies and
reduced effectiveness. Furthermore, one key projects underpinning the framework in Wilhelm et al. [12] is
still pending peer review. The outcomes of these reviews are uncertain, and the possibility of significant
revisions or rejection could impact the framework’s robustness and reliability.

Another limitation lies in the absence of clinical validation of parts of the presented contributions. Al-
though the framework shows promise in controlled ex-vivo settings, parts of it have not been validated in
clinical environments. This raises questions about its practical applicability and effectiveness in real-world
healthcare scenarios. Additionally, the computational demands of certain algorithms, especially those
involved in planning and predictive modeling, are substantial. This high computational intensity could hinder
the real-time application of these algorithms in clinical settings, where rapid processing and responsiveness
are often crucial. In summary, although the thesis contributes to the field of orthopaedics, these limitations
need to be addressed in order to fully exploit the potential of the proposed framework.

6.4 Achievements

The research and methodologies presented in this thesis have made significant contributions to the field
of orthopedics, influencing both academic discourse and practical applications. The widespread impact
of this work is evident from achievements in various areas, showcasing its relevance and effectiveness in
addressing real-world challenges.

Notably, the development of a bone tumor detection algorithm stands out, which has gained significant
recognition in the healthcare sector. This includes receiving the trainee research prize at the RSNA 2020,
the best abstract award at DKSMR 2021, and being featured on the Radiology journal’s cover in September
2021. Such recognitions not only underline the algorithm’s innovation but also its pivotal role in enhancing
radiological and oncological practices. Additionally, this work has inspired new AI-based projects at our
university, further demonstrating its influence in advancing medical diagnostics AI research. The presented
surgical planning algorithm has also received several awards, including the Digitization Award at DKOU 2023
[280], a second prize for the best paper at AGA 2023 and the award for the best poster at OT Digital 2023.
These awards reflect the algorithm’s novel approach to surgical planning and its potential to surgical
procedures. In addition, this work has driven the development of a new exoskeleton frame that is making
a major contribution to wearable technology in orthopaedics, particularly in rehabilitation and improving
mobility. Releasing data from robotic test rigs as open source will support a culture of collaboration and
knowledge sharing that is essential for future advances in biomechanical modeling. Furthermore, the
introduction of a comprehensive framework for data collection and prediction applicable to different joints
is an essential step towards personalized, precise and efficient orthopaedic treatments. This framework
underlines the comprehensive contribution of this work to clinical orthopaedics and improves treatment
methods.

In summary, the influence of this work extends beyond academic circles as it paves the way for practical
innovation and encourages further research in orthopaedics. The various achievements of this work, which
have been recognized with prestigious awards, have had a profound impact on the medical community and
represent a significant advance in orthopaedic research and practice.

6.5 Future Directions in Orthopedic Robotics and AI

This dissertation establishes a foundational base for future advancements in orthopedics through the
integration of robotics and AI, identifying pivotal areas for research progression. There exists a notable
opportunity for the enhancement of robotic wearables in orthopedics, emphasizing the need for improve-
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ments in ergonomics, user engagement, and durability. The execution of extensive clinical trials and the
application of machine learning for predictive diagnostics stand out as critical steps for advancing these
technologies, aiming to elevate patient care by early identification of joint issues.

The advancement of AI in orthopaedics represents transformative potential for clinical workflows and
requires refined AI models for customized treatment options as well as addressing privacy and computational
efficiency concerns to promote the clinical integration of AI. Investigating the long-term effectiveness of
AI and robotic wearables, ethical guidelines for AI in decision making and its extension to telemedicine
are essential areas for comprehensive studies. In addition, the personalization of treatment plans through
advanced modeling for customized prosthetics and consideration of individual biomechanics signals a
significant shift towards optimizing patient-specific care. This approach, which is being extended to various
orthopaedic conditions, could significantly improve the effectiveness of treatment. In addition, research into
adaptable, modular robotic systems and the integration of AI into the development of orthopaedic implants
will significantly impact patient outcomes, highlighting the importance of understanding the psychological
and social impact of these technologies on patients.

The need for interdisciplinary collaboration is emphasized as a key driver for innovation, with contributions
from clinicians, bioengineers and computer scientists enriching orthopaedic technology development. Such
synergistic efforts are expected to lead to breakthroughs in orthopaedic care, highlighting the multi-faceted
approach required to advance this field.
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ACL Anterior Cruciate Ligament

ADC Analog to Digital

AE Autoencoder

AI Artificial Intelligence

AMA Ankle Mechanical Axis

CAD Computer Aided Design

CI Confidence Intervall

CMC Carpometacarpal Joint

CNN Convolutional Neural Network

COCO Common Objects in Context

CRPS Chronic Regional Pain Syndrome

CT Computer Tomography

DASH Disabilities of the Arm, Shoulder and Hand

DIP Distal Interphalangeal Joint

DL Deep Learning

DOF Degree of Freedom

EXP Exposure in Vivo

FE Finite Element

FSR Force Sensing Resistor

GAN Generative Adversarial Network

HD High Definition

ICA Independent Component Analysis

ICC Inter Class Correlation

IP Interphalangeal

IMU Internal Measurement Unit

IoU Intersection over Union

IP Interphalangeal Joint

JLCA Joint Line Convergence Angle

KJL Knee Joint Line

KJLO Knee Joint Line Obliquity

LLR Long Leg Radiograph

MAD Mechanical Axis Deviation

MCP Metacarpophalangeal Joint

mFTA Mechanical Femorotibial Angle

ML Machine Learning

mLDFA Medial Lateral Distal Femoral Angle

mLDTA Medial Lateral Distal Tibial Angle

mLPFA Medial Lateral Patellar Femoral Angle

mMPTA Medial Proximal Tibial Angle

MoCo Momentum Contrastive

mow-HTO medial opening wedge High Tibia Os-
teotomy

MPJPE Mean Per-Joint Position Error

MRI Magnet Resonance Imaging

MS Multi Scale

MSD Mean Squared Deviation

MSE Mean Squared Error

MS-TrainSim Multi Scale Training Simulation

MuJoCo Multiple Joints in Contact

OA Osteoathritis

OI Osteoarthritis Initiative

OS Orthopedic Surgeon

PCL Posterior Cruciate Ligament

PIP Proximal Phalangeal Joint

PPO Proximal Policy Optimization

PROM Patient-Reported Outcome Measures
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PWM pulse width modulation

RL Reinforcement Learning

RMS Root Mean Square

RMSE Root Mean Square Error

ROM Range of Motion

SC Single Scale

SD Storage Device

SDK Software Development Kit

SLA Stereolithography

TDA Total Deviation Angle

TKA Total Knee Arthroplasty

TP Tibia Plateau

UHD Ultra High Definition

VAE Variational Autoencoder

VESC Vedder electric velocity controller
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List of Symbols

(SxJ)# Reduced Jacobian for position con-
trol.

α Step size in null space control equa-
tions.

δx, δf Position and force error vectors in
Cartesian task space.

q̇, q̈ First and second derivatives of the
minimum coordinates q with re-
spect to time, representing the ve-
locities and accelerations of the fin-
ger joints.

τc Control torque.

Fsum Sum of external forces acting on
a body, calculated for each finger
joint.

gx, gf Linear control functions for position
and force, respectively.

I Identity matrix.

J Jacobian matrix.

Jp Translatory Jacobian at the impact
point.

Jx Position-selected Jacobian matrix.

Msum Sum of moments (torques) acting
on a body, calculated for each fin-
ger joint.

N Null space matrix, facilitating or-
thogonal projection of the Jaco-
bian.

Nf Specialized null space matrix for
filtering position-controlled joint ve-
locities in force-prioritized control
architecture.

nf Normalized force vector.

Nx Null space matrix of the reduced
Jacobian Jx.

p Translation vector.

q Quaternion representing orienta-
tion.

q = (α, β, γ)T Minimum coordinates for the dy-
namic finger model, representing
the angular positions of the three
finger joints.

Sx,Sf Selector matrices for position and
force, respectively.

δf̈ , δf̈{x,y,z} Dynamics differentiated and solved
for control variables in stability and
decoupling analyses.

δf Scalar force error between the de-
sired and actual forces.

q̇c Control joint velocity.

u̇t, u̇j , u̇n Velocity inputs in task, joint, and
null spaces, respectively.

ẋt Task space velocity.

ḟa Actual force rate at the tool center
point.

ẋp Contact space velocity.

ẋf , ẏf , żf Direction-dependent force-driven
velocities.

η0 Initial value function parameters for
reinforcement learning-based pa-
rameter adaptation.

Ât Advantage estimate at time t, used
for computing the policy gradient.

ĝ Estimated gradient for optimization
in policy gradient methods.

X̂mea Reconstructed data from the differ-
entiable forward kinematics model.

λ (AE context) Weighting factor balancing the
reconstruction loss and KL-
divergence in the VAE loss func-
tion.
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λ (RL context) Hyperparameter in the reinforce-
ment learning framework balancing
robust training and asymptotic be-
havior.

D Set of local trajectories collected
during reinforcement learning opti-
mization.

L(Xmea, X̂mea) Loss function representing the re-
construction error between mea-
sured dataXmea and reconstructed
data X̂mea.

MSE Mean Squared Error, a common
measure of reconstruction error in
autoencoders.

NNΨ Neural network modeling the in-
verse kinematics.

rewardt Reward function at time t, incorpo-
rating desired motion behavior and
process stability.

µi, σ
2
i Mean and variance of the i-th com-

ponent in the probabilistic distribu-
tion encoded by a VAE.

πψ(aτ ) Policy in the reinforcement learning
framework, determining the set of
parameters ψ for each trajectory τ .

IFi External forces acting on body i,
described in the inertial reference
frame I.

I
JT
T,i Transposed Jacobian matrix for

translation, relating joint velocities
to linear velocities of body i in the
inertial frame I.

Ki
ωi Angular velocity of body i, de-

scribed in the body-fixed coordi-
nate frame Ki.

Ki
JT
R,i Transposed Jacobian matrix for ro-

tation, relating joint velocities to an-
gular velocities of body i in the
body-fixed frame Ki.

KiLi Angular momentum of body i, de-
scribed in the body-fixed coordi-
nate frame Ki.

KiM i Moments (torques) acting on body
i, described in the body-fixed coor-
dinate frame Ki.

ψ Parameter vector encapsulating
the model’s dynamic properties, set
as learnable parameters for opti-
mization.

Ψ∗,Θ∗ Optimized parameters of the au-
toencoder, including both the neu-
ral network parameters Ψ and the
kinematic parameters Θ.

ψ0 Initial policy parameters for the re-
inforcement learning-based param-
eter adaptation.

τmea Localized measurement trajecto-
ries, used for segmenting measure-
ment data into smaller regions.

axisi Axis vector representing the orien-
tation of a hinge joint.

cov(qi, qj) Covariance between components
qi and qj of the encoded represen-
tation.

positioni Position of the rotational axis of a
hinge joint.

Θ Joint parameters in the forward
kinematics model visualization.

FTMea Measured force-torque, used as in-
put for both simulated and mea-
sured motions.

kn Kinematic variable related to con-
tact stiffness.

LICA ICA-inspired regularization term
aimed at encouraging feature inde-
pendence by penalizing the covari-
ance of the encoded representa-
tions.

LKL KL-divergence in the VAE frame-
work, quantifying the difference be-
tween the encoded distribution and
a prior distribution.

Lrec Reconstruction loss in the VAE
framework, measuring the differ-
ence between the measured data
and its reconstruction from the en-
coded distribution.
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LVAE Overall loss function for a VAE,
combining the reconstruction loss
Lrec and the KL-divergence LKL.

M1 −M3 Unknown torques at the finger
joints, representing either resis-
tance to motion or actuation torque
applied by the patient.

nfx , nfy , nfz Cartesian components of the nor-
mal force vector.

P (τ, ψ) Probability of trajectory τ under pa-
rameters ψ.

Q Joint angles derived from pose
measurements.

R Rotation matrix.

R(τ) Reward associated with trajectory
τ .

T, d, c Scalar variables for time constant,
dimensionless damping, and stiff-
ness, respectively.

Tj(qi) Transformation matrix dependent
on joint positions qi.

Teff Transformation matrix from the
base to the end effector in a kine-
matic chain.

Tbi Transformation matrix related to
rigid body bi.

To−bi Transformation matrix representing
the position of body bi relative to an
origin frame o.

U(ψ) Expected reward over trajectories
τ , optimized by selecting parame-
ters ψ.

Vη Value function used to calculate the
advantage and minimize update
variance in policy gradient compu-
tation.

Xmea Dataset of pose measurements.

xMea Measured motion, used as a refer-
ence for optimizing the simulation.

xSim Simulated motion, dependent on
measured force-torque FTMea and
dynamic parameters ψ.
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