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We explore the possible phases of a condensed dark matter (DM) candidate taken to be in the form of a
fermion with a Yukawa coupling to a scalar particle, at zero temperature but at finite density. This theory
essentially depends on only four parameters, the Yukawa coupling, the fermion mass, the scalar mediator
mass, and the DM density. At low-fermion densities we delimit the Bardeen-Cooper-Schrieffer (BCS),
Bose-Einstein condensate (BEC), and crossover phases as a function of model parameters using the notion
of scattering length. We further study the BCS phase by consistently including emergent effects such as the
scalar-density condensate and superfluid gaps. Within the mean-field approximation, we derive the
consistent set of gap equations, retaining their momentum dependence, and valid in both the nonrelativistic
and relativistic regimes. We present numerical solutions to the set of gap equations, in particular when the
mediator mass is smaller and larger than the DM mass. Finally, we discuss the equation of state and
possible astrophysical implications for asymmetric DM.
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I. INTRODUCTION

The nature of dark matter (DM) remains to a large extent
a mystery. Like ordinary matter, it is possible that it consists
of an asymmetric population of particles [1]. Additionally,
DM may be in a cold and dense state in several regions of
the Universe, for instance at the core of galaxies and dwarf
galaxies [2–5] or, if captured, inside of dense and cold stars
[6–8] or in the form of nuggets of DM [9,10]. It is even
considered that DM particles can condense and make dark
stars [11,12]. Much like ordinary condensed matter, it is
then conceivable that DM particles manifest complex,
emergent behavior at low densities, like superfluidity.
This may have various implications, from the formation
of proto-DM halos to the dissipationless transport of heat,
to vortex formation during DM halo mergers, or simply for

the equation of state of DM, which is essential for the study
of compact DM object formation and evolution.
Incidentally, superfluid DM is a possibility that is much
studied, usually in the form of fundamental scalar DM, see
e.g., [13–15]. Here, we focus on the less studied possibility
that condensed fermionic DM particles can be superfluid,
see e.g., [16,17].
More precisely, we explore the possible superfluid

phases of a very simple and yet quite rich asymmetric
DM model. It consists of a DM Dirac fermion ψ with a
Yukawa coupling to a spin 0 (ϕ, a real scalar) mediator.
This theory rests essentially on three parameters on top of
the DM density; the DM mass, the mass of the mediator,
and the Yukawa coupling. For simplicity, we neglect a
possible self-coupling of the mediator. Since spin-0 boson
exchange is attractive, at low densities and depending on
the parameters, this fermionic DM may either form
dimolecules that could be in a Bose-Einstein condensate
(BEC phase), or Bardeen-Cooper-Schrieffer pairs (BCS
phase). The thermodynamic description of the BEC and
BCS phases are qualitatively different, since in the BEC
phase there are true difermionic bound states, see e.g., [18].
But, in either cases, such DM should be superfluid at low
enough temperatures. The problem turns out to be quite
complex, so our aim here will be to set the ground for more
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phenomenological studies. In particular, we will focus on
the thermodynamic properties of this simple DM model at
zero temperature and will delineate which phases can be
formed as a function of model parameters and DM density.
This will allow us to address a question regarding the
gravitational collapse of such DM, if it is accumulated at
the core of neutron stars [19,20]. This requires the
determination of the overall normalization of the gaps
and hence necessitates a more careful treatment that goes
beyond the standard, textbook BCS approximations.
Our plan is as follows: In Sec. II we set up the model and

establish at which phases (BCS or BEC) DM may form at
low temperatures, depending on the model parameters. To
do so, we characterize the strength of Yukawa interaction at
finite density using the concept of scattering length (see
also Appendix B). Next, in Sec. III, we focus on the case
where DM particles are in a BCS phase. We derive the
consistent set of gap equations, taking into account the
change of DMmass at finite density due to the formation of
a scalar condensate. The gap equations are solved numeri-
cally in Sec. III D and, where possible, comparison is made
with analytical solutions. We show that in the large DM
density limit the system is generically in the BCS phase.
We next discuss in Sec. IV some possible implications for
DM phenomenology, ranging from DM in neutron stars to
dwarf galaxies. Finally, we draw conclusions in Sec. V.
Several technical results which may be of interest to a
broader audience can be found in Appendixes A–F.

II. LOW DENSITY PHASES OF A
YUKAWA THEORY

Our starting point is a degenerate gas of Dirac fermions
ψ (the asymmetric DM) with a Yukawa coupling g to a real
scalar ϕ (the mediator)

L¼ iψ̄∂ψ −mψ̄ψ þ μψ̄γ0ψ þ 1

2
∂μϕ∂

μϕ−
1

2
m2

ϕϕ
2 − gψ̄ψϕ:

ð1Þ

The fermion ψ and the mediator ϕ are singlets of the
Standard Model (SM) but ψ is charged under a global dark
Uð1Þ symmetry. Therefore, μ is the chemical potential
conjugate to DM fermion number N in a volume V,
corresponding to a DM density n ¼ N=V ≡ hψ̄γ0ψi. The
expectation value h…i is on the ground state of the system,
here taken to be at finite fermion density but at zero
temperature. For a degenerate gas of free fermions g → 0,
the chemical potential is equal to the Fermi energy EF,
μ ¼ EF ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ k2F
p

and n ¼ k3F=3π
2.

In Eq. (1), m and mϕ denote the bare fermion and boson
masses at zero density. Both are modified in a medium and,
in particular, at finite density. The most dramatic effect is
the change of the fermion mass. In this case, physically, the
scalar operator ψ̄ψ has a nonzero mean, ns ¼ hψ̄ψi > 0

[21]. In turn, ns sources the scalar field due to its Yukawa
interactions with the fermions

δL
δϕ

¼ 0 → m2
ϕhϕi þ ghψ̄ψi ¼ 0;

which consequently changes the mass of the DM

m� ¼ mþ ghϕi → m� ¼ m −
g2

m2
ϕ

nsðm�Þ; ð2Þ

see Fig. 1 for a diagrammatic representation. We have
expressed the fact that ns is itself a function of the effective
fermion mass.1 This effect implies that the effective fermion
mass decreases with increasing fermion density. For a given
value of Yukawa coupling and the mediator mass, at low
enough densities, ns is close to the DM fermion number
and m� ≈m. However, as the density increases, the in-
medium mass m� decreases and eventually tends to zero
(m� → 0), see Appendix A.2

The change of the fermion mass is of course not the
only effect of Yukawa interactions. If the attraction due to
spin-0 particle exchange is strong enough, fermions can be
bound into dimolecules at low densities. These bound states
behaves as bosons and can condense into a Bose-Einstein
condensate (BEC) at low enough T. Nevertheless, even if
attraction is weak such that no true bound state can be
formed, Cooper instability can lead to the formation of
Bardeen-Cooper-Schrieffer (BCS) pairs. The distinction
between the two possibilities is not sharp and which of
these situations is realized at low densities depends on the
parameters of the theory. The transition between the BEC

FIG. 1. The tadpole is nonvanishing at finite density. This
corresponds to a scalar density condensate hψ̄ψi which modifies
the effective mass of the fermions in the medium.

1See also Ref. [22,23] for an application of this effect to SM
neutrino clustering.

2Inclusion of self coupling term of the mediator in the scalar
potential (λϕ4) qualitatively changes the picture in two ways. The
equilibrium values of in-medium fermion mass gets bounded by
below, i.e.,m� → m

ffiffiffi
λ

p
in the limit of large λ. The second effect is

related to the effective mass of the mediator, which would scale as

meff
ϕ ¼ mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2VðhϕiÞ=m2

ϕhϕi2
q

[24].
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and BCS states as these parameters vary is continuous or a
crossover [25].
In the nonrelativistic limit, the nature of the low-density

phase can be qualitatively understood by examining the
scattering length (a) of the fermions. While this is part of
the standard toolbox of condensed matter physics, it is less
common in the high-energy physics literature. A notable
and interesting exception is Ref. [26], in which the
scattering length is put forward as a convenient tool to
discuss the properties of interacting DM. The most relevant
feature of the scattering length is that, while in the Born
approximation aBorn ≲ 0 for an attractive potential, a > 0
signals the possibility of forming a bound state [27] and so
a BEC. For convenience, we summarize the basic and
relevant properties of the scattering length in Appendix B.
For a Yukawa interaction, the s-wave scattering length

for the singlet, spin 0 channel reads

lim
k→0

k cot δ0ðkÞ ¼ −
1

a
; ð3Þ

where δ0ðkÞ is the s-wave phase shift. Obtaining this
quantity requires solving the Schrödinger equation for
the scattering problem. A much used approach, valid in
the limit of large particle separation compared to the
effective range of the interaction, is to approximate the
attractive potential by a contact interaction (a delta function
in other words) and to reexpress the scattering problem in
terms of the scattering length [28]. Applied to a degenerate
system of fermions at finite density with Fermi momentum
kF, the phases can then be characterized in terms of the
dimensionless parameter kF a, with a dilute system corre-
sponding to jkF aj → 0, while the sign indicates the phase
of the system [29–31]. Consequently, the BEC phase
corresponds to small positive values of kFa, physically
corresponding to a scattering length smaller than the
particle separation, while the BCS regime is characterized
by small negative values of kF a. Finally, the crossover
regime is realized for large absolute values of kF a. This
corresponds formally to a diverging scattering length jaj,
and is called a unitary Fermi gas in the literature [32].
In this work, so as to map the model parameters of the

theory (1) to the possible phases of condensed DM, we go
beyond the above contact interaction approximation and
compute directly the scattering length by solving the
Schrödinger equation. We solve the scattering problem
using the numerical method proposed in [26] which is also
summarized in Appendix B for reference. In doing so, we
can determine parameters of the Yukawa theory for which
DM particles are clearly in the BCS (large negative kF a) or
in the BEC (large positive kF a) phases. This result is
depicted in Fig. 2 as function of the dimensionless param-
eters β ¼ αm=mϕ with α ¼ g2=4π and the ratio of length
scales kF=mϕ. The Born approximation corresponds to
β ≪ 1 (also denoted b in the DM literature [33]), so we

can expect the onset of bound-state formation (and thusBEC
phases) to be around β ≳ 1. However, the sign of a changes
each time a new bound-state channel opens, so the relation
between the possible phases and the parameters is complex.
The other parameter (kF=mϕ) is simply a measure of the
mean particle separation over the range of the Yukawa
potential, large kF=mϕ corresponding to large densities. In
Fig. 2, the red shaded regions indicate the BCS phase, which
we define to correspond to ðkFaÞ−1 < −1, a valuemotivated
by the results obtained based on the contact interaction
approximation, see e.g., [30]. The cyan shaded regions are
characterized by ðkFaÞ−1 > 1 and are delimiting the BEC
phase. The gray shaded area show the intermediate cross-
over phase, −1 < ðkFaÞ−1 < 1. The unitarity limit is
reached when kFjaj → ∞, indicating crossover regime at
all densities, which is seen as a feature in Fig. 2. Further, for
finite densities, the cases of antiresonance kFa → 0 are
captured by the peaks delimiting BEC to BCS transitions.
We conclude that, for fixed kF=mϕ, the BCS, BEC, and

crossover regimes alternate as we change the value of β.
However, for large values of β, i.e., large coupling or small
mediator mass limit, the system is more likely to be in a
BEC or, at large densities, in crossover regimes. Whereas,
in the opposite limit, the interaction is not strong enough to
form bound states and the DM fermions are expected to be
in a BCS phase at low temperatures.
The above considerations are based on a very simple

criteria, essentially the sign of the scattering length, a low-
momentum/short-range parameter, indicative of the possible
outcomes of a system of fermions at relatively low DM

FIG. 2. Contours of ðkFaÞ−1. Red shaded regions are charac-
terized by ðkFaÞ−1 < −1 indicating BCS regime. In the cyan
shaded regions ðkFaÞ−1 > 1 indicating BEC regime, and the gray
regions correspond to possible BEC-BCS crossover with
−1 < ðkFaÞ−1 < 1.
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densities kF ≪ m. Notice that there only two possibilities for
fixed parameters, either BCS or BEC at low densities with a
crossover at increasing densities. This behavior is manifest
in the approximation of a contact interaction, see [30].
However, these considerations neglect the fact that the
effective mass of the fermion m� changes, an effect which
is particularly dramatic at larger densities. To take that effect
in a self-consistent way, in the next section we derive the gap
equations for the BCS phase in complete generality by
retaining the mediator mass and momentum dependence of
the anomalous propagators. On that basis, we shall argue
that, regardless of the phase at low densities, the fermions are
in a pure BCS phase at large densities, corresponding to
kF ≳m�. That only a BCS phase is possible in the relativistic
regime is probably due to the fact that it is not possible to form
bound state of relativistic particleswith aYukawa interaction.

III. BCS PHASES

We have so far described the low density phases of the
Yukawa theory with no reference to the details of super-
fluidity, such as the bound-state wave functions [25]. In this
section we study in detail the BCS gap matrix Δ≡ hψcψ̄i,
with ψc being the charge conjugate of ψ , see Fig. 3. We
analyze its Dirac structure so as to decompose them into
simple gap functions, derive the corresponding gap equa-
tions and finally solve them, taking into account their
interplay with other in-medium density effects, in particular
the scalar condensate and its impact on the DM mass. We
aim to show the evolution of the gaps with varying density,
from the nonrelativistic to the ultrarelativistic regimes, an
aspect that has not yet been studied as far as we know. This
implies that we will focus our study on the red regions
shown in Fig. 2, i.e., for small values of β, in the
nonrelativistic regime. However, we will argue that, for
fixed β, a BEC phase becomes a true BCS phase at large
densities.
The techniques to derive the gap equations for a

potentially relativistic fermionic system at finite density
are well-established. In this section, we first analyze the
Dirac structure of the gap matrix,Δ, which is a 4 × 4matrix
(for one flavor of DM) and can be decomposed using the
Dirac matrices. We follow the approach set up in [34] and
in particular [35], in which the Yukawa theory is studied in
detail in the massless limit, m ¼ 0; mϕ ¼ 0. Then to derive
the gap equations, we follow the energy functional
approach of [36,37], (see also [38] for the Yukawa theory),

which is based on the so-called Hubbard-Stratonovich
transform. In particular, we were inspired by [39] to take
into account the variation of the DM mass through the
scalar condensate.

A. Gap Dirac structure

We will consider a general ansatz for the 4 × 4 gap
matrix Δ ¼ hψcψ̄i. We work in the rest frame of the
fermion gas, which is assumed to be infinite and homo-
geneous. In this case, one can be easily convinced that the
Δ matrix can be written as a sum of up to 8 translation
invariant terms that can be expressed using the Clifford
basis of matrices built upon the Dirac γμ and γ5 [34,35]. As
the Yukawa theory preserves parity, we expect that the gap
matrix is also parity symmetric. Also, the ground state is
expected to be rotationally invariant. This implies that
pairing of fermions should be in the JP ¼ 0þ channel. This
allows us to express the gap matrix Δ in terms of only three
gap functions (the gaps in the sequel),

Δ≡ hψcψ̄i ¼ Δ1γ5 þ Δ2γ⃗ · k̂γ0γ5 þ Δ3γ0γ5: ð4Þ

The task is then to determine self-consistently these gaps,
together with the scalar condensate

ns ¼ hψ̄ψi: ð5Þ

While this is not a new problem, to our knowledge it has not
been worked out in the framework of the Yukawa theory.
We will show that the Δi’s strongly depend on ns though
the effective fermion mass m�, while the dependence of the
scalar condensate on the gaps is mild.

B. Quasiparticle dispersion relations

The next step is to examine the spectrum of fermionic
excitations (quasi-particles) near the Fermi surface, see
Appendix D 1 and [30]. For a free degenerate gas, the
dispersion relations are simply

ϵ�ðkÞ ¼ jωk � μj; ð6Þ

with ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and the subscript −ðþÞ correspond-

ing to fermion (antifermion) excitations. These dispersion
relations can be read off directly from Lagrangian (1).
Simply put, this means that it costs little energy to create a
fermionic excitation near the Fermi surface,

ϵ−ðkÞ ≈ vFjk − kFj; ð7Þ

with vF ¼ dϵ=dkjkF ¼ kF=μ and k > kF for a particlelike
excitation while k < kF for a holelike excitation. The
linearity of the dispersion relation for particle/hole excita-
tions near the Fermi surface is valid both in the non-
relativistic and relativistic regimes. For antiparticles,
however, the cost is at least ϵþ ≈ 2μ.

FIG. 3. Diagrammatic representation of fermion BCS
condensate.
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If the gaps are nonvanishing, it is tedious to derive the
dispersion relations but the final result can be approximated
by the following fairly simple expression

ϵ2� ≈ ðω� μÞ2 þ
�
Δ1 �

�
k
ω
Δ2 þ

m�
ω

Δ3

��
2

; ð8Þ

where again −ðþÞ corresponds to particle (antiparticle)
excitations, see Appendix D 1 for details. We have assumed
that the gaps are smaller than the chemical potential, which
we expect to be the case in the BCS phase. As far as we
could judge, our ansatz is consistent with results derived in
[34], albeit with a distinct approach. It generalizes the
results presented in [35], where the focus was only on the
ultrarelativistic regime, m ¼ 0, in which case only Δ1;2 ≫
Δ3 are relevant. As the gap functions are momentum
dependent, in principle the dispersion relation Eq. (8)
interpolates between the nonrelativistic and relativistic
regimes. This also goes beyond the simple ansatz put
forward in [30], where only the Δ1 pairing channel is
retained in the nonrelativistic regime. This is consistent
with setting Δ2 ¼ 0, whose contribution to the dispersion
relation is suppressed if k ≪ m. This leaves open the
possible relevance of Δ3 in this regime. Notice however
that its contribution is also related to a possible distinction
between particle and antiparticle excitations.
This motivates the introduction of the new gap functions

Δ̃� ¼ Δ1 �
�
k
ω
Δ2 þ

m�
ω

Δ3

�
; ð9Þ

and

κ̃ ¼ m�
ω

Δ2 −
k
ω
Δ3: ð10Þ

We expect and will verify that κ̃, which is orthogonal to
Δ̃� − Δ1, is relatively small compared to Δ� in the non-
relativistic and ultrarelativistic regimes. Indeed, in the
relativistic limit, Eq. (9) suggests that Δ̃� ≈ Δ1 � Δ2 and
jκ̃j ≈ −Δ3. Whereas in the nonrelativistic limit, Δ̃� ≈
Δ1 � Δ3 and jκ̃j ≈ Δ2. In either case, κ̃ should be relatively
small. This intuition is supported by the numerical results,
see Appendix E 3. So in the sequel, we simply set κ̃ to zero.

C. Gap and scalar condensate equations

With the dispersion relation Eq. (8) at hand, we now
derive the gap equations in the mean-field approximation.
To do so, we follow a variational approach based on the so-
called Hubbard-Stratonovich transformation [40,41]. In
this framework, a potential gap function, say Δi, is
introduced as an auxiliary field in the expression for the
free energy, Ω ¼ −T lnZ=V ¼ −pðμ; TÞ at finite fermion
density (and temperature), i.e., Ω → Ω½Δi�. Minimizing the
free energy with respect to the gap function correspond to

the true ground state of the system at finite density and, by
the same token, a gap equation for the corresponding gap
function. An extra complication is the presence of the scalar
condensate ns. To take this into account, we follow the
approach put forward in [39]. Alternatively, one can derive
the gap equations in the mean-field approximation using
the Wick theorem, see e.g., [42], p. 441. Finally, recall that
n ¼ −ð∂Ω=∂μÞT (here assumed to be at T ¼ 0).
Altogether, the gap functions and scalar condensate are

thus determined, imposing

∂Ω
∂Δ1

¼ 0;
∂Ω
∂Δ2

¼ 0;
∂Ω
∂Δ3

¼ 0;
∂Ω
∂ns

¼ 0: ð11Þ

Thus we obtain the following equations, which we have
expressed using the Δ̃� combination of gap functions,

ns ¼
−g2

m2
ϕ

X
η¼�

Z
∞

0

dk k2

2π2

�
m�
ωk

�
ωk þ ημ

ϵηðkÞ
− 1

�

− η
k
ωk

κ̃ðkÞ
ωk

Δ̃ηðkÞ
ϵηðkÞ

�
; ð12Þ

Δ̃�ðpÞ ¼
g2

32π2
X
η¼�

Z
∞

0

dk
k
p

�
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

∓ η
kp

ωpωk

�
−2þm2

ϕþk2þp2

2kp
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

�

� η
m2�

ωpωk
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

�
Δ̃ηðkÞ
ϵηðkÞ

: ð13Þ

Here, the gap equation for κ̃ is omitted as it is expected to
be subdominant in all regimes, see Appendix D 2 for the
complete set of gap equations. While having a relatively
simple structure, these expressions call for some explan-
ations. Consider first the equation for ns. It is easy to verify
that, in the limit of zero gap, it reduces to Eq. (A1) with an
integral over the volume of the Fermi sphere of radius kF.
Note that we have renormalized the expression for ns by
subtracting the vacuum part; hence the −1 in the first term
of Eq. (12). We further find that ns is momentum
independent, and the presence of nonzero gaps manifests
as the second term in the equation. This term is proportional
to κ̃ and represents a parametrically minor correction to the
gapless expression.
Now consider the equation for the gap Δ̃�, Eq. (13).

The limit mϕ ≫ kF ≫ m, corresponds to the case of
contact interactions and relativistic fermions. In this case
the above system reduces to the well known simple BCS
gap equation [30]

Δ1 ¼
g2

2m2
ϕ

Z
d3k
ð2πÞ3

Δ1

2ϵ−ðkÞ
; ð14Þ
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see also Appendix D 2. Note however, that in general, the
gap functions are momentum dependent. The standard BCS
approximation assumes that the gap is momentum inde-
pendent and hence constant. This requires the introduction
of a cutoff on the integral over momentum. The cutoff may
be dictated by physical considerations, for instance it may
be set by the Debye screening length in the case of ordinary
superconductivity. Such a cutoff also sets the overall
normalization of the gap. In the case of Yukawa inter-
actions, it is not clear a priori which cutoff scale can be
introduced. Furthermore, we want to have a handle on the
overall scale of the gap functions. In such a situation, the
best way forward is to keep the full momentum dependence
of the gap functions, which by construction should vanish
in the limit of large momentum. So, the advantage of our
consistent set of gap equations is that we can in principle
integrate the above equations all the way to infinity without
having the need to introduce spurious cutoff dependence.
Finally, note that we have not considered possible in-
medium corrections to the mediator mass mϕ. These
corrections are OðgμÞ, and contributes positively to its
mass. We neglect them for simplification, but one should
keep in mind that for large coupling or massless mediator,
they may play an important role [35].

D. Solutions to the gap equations

In this section we present the numerical solutions to the
set of gap equations, together with the scalar condensate.
We use a method called matrix inversion and developed in
Ref. [43] (see Appendix E 2). We present our findings in
Fig. 4, for various representative values of parameters of the
theory, i.e., the Yukawa coupling and mediator mass. In the
left panel we show the results for both heavy and
moderately-heavy mediator masses of mϕ ¼ 5 m (in blue)

and 0.5 m (in red), for g ¼ 3ð2Þ in solid (dashed), respec-
tively, including the effects of scalar density condensate.
For the case of a heavy mediator we recover the familiar
BCS solution [30], see Appendix E 3. In the case of the
moderately heavy mediator, we obtain solutions which are
parametrically different from the BCS case. We interpret
this to be due to the fact that interactions are not pointlike
(or contact interaction) contrary to the standard BCS
approximation. In particular, we show that the gaps can
be substantially larger at relatively small densities.
Nevertheless, the exponential fall off, typical of BCS
gap solutions, is recovered at moderate densities. At very
large densities or, in other words, in the relativistic limit, we
find that the solutions to the gap equations do not depend
on the mediator mass. For the whole range of DM densities,
we find that the gap is always substantially smaller than the
kinetic energy at the Fermi surface, see the dotted line
labelled ϵF −m. Here, we also clearly see the impact of the
scalar density condensate at intermediate densities, where
the solution behaves similarly to a relativistic system. For
comparison, the gray dotted lines show the evolution of the
gaps neglecting the change of the effective mass m�. In
other words, the effect of the shift of the mass of the DM is
to drive more rapidly the system into the relativistic regime.
In the right panel we present the results for light mediator

with mϕ ¼ 0.13 m for the same values of couplings as in
the left panel. As expected, the solution in the high density
regime behaves parametrically as in the left panel.
However, at low densities the situation could be drastically
different from the left panel depending on the value of g.
This is best understood through the low-density phase
diagram of the Yukawa theory put forward in Fig. 2. For the
case g ¼ 3ð2Þ, corresponding to β ¼ 5.5ð2.4Þ, we see that
the system is in BCS (BEC) phase at low densities. As we
increase the density, both the cases are in a crossover

FIG. 4. The solution to the gap equation including the effect of scalar density condensate is shown as function of dimensionless
variable kF=m. In the left panel we show the results for values of g ¼ 3 (solid curves) and g ¼ 2 (dashed curves). Blue (red) colored
curves correspond to mediator mass mϕ ¼ 5 m (mϕ ¼ 0.5 m). Dotted gray curves represent the solution to the gap equation with
m� ¼ m. The right panel follows the same scheme as in the left panel but correspond to mϕ ¼ 0.13 m. The green shaded region
represents crossover regime. See text for details.
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regime at kF ≈ ja−1j ¼ 0.07m. Interestingly, for this choice
parameters the scattering length turns out to be the same in
magnitude but opposite in sign. In light of these observa-
tions, we can now understand the low density regions
shown in the right panel of Fig. 4. For g ¼ 2, at low
densities, we argue that the system is in the BEC phase. The
solution yields the gap to be constant and much larger than
k2F=2m. Although we get a solution for the gap, it does not
represent a small perturbation to the Fermi surface, i.e., the
chemical potential is no longer given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

p
but

should evolve towards the binding energy of the would-be
DM molecules [25]. To obtain the correct solutions in this
regime, we would need to simultaneously solve for both the
gaps (and the scalar condensate) and for the chemical
potential. This would require a more sophisticated analyti-
cal and numerical approach than the one we have consid-
ered, so we leave this particular situation for possible
future works. Whereas, for g ¼ 3, at low densities the gap is
exponentially suppressed, indicative of the nonrelativistic
BCS phase. As we approach densities close to kF ≈ ja−1j ¼
0.07 m, the system goes to the crossover regime; for which
we do not present any solution and it is shown as the shaded
region. Regardless, at very large densities, the system
becomes relativistic (this is further enhanced by the
decrease of the effective mass) and, as the formation of
true bound state becomes impossible, the system makes a
transition to the relativistic BCS phase, a feature which
seems to be novel.

IV. ASTROPHYSICAL CONSTRAINTS
AND IMPLICATIONS

A. DM self-interaction constraints

In the context of DM self interactions, in Fig. 5, we
show the phase diagram of the Yukawa theory in the
kF=m −mϕ=m plane for a dark matter candidate of mass
m ¼ 1 GeV for g ¼ 3 (left) g ¼ 2 (right). The gray dotted
line corresponds to kF ¼ mϕ. We overlay the constraints on
the dark matter self-interaction cross section at the scale of
the Bullet cluster, requiring σ=m≲ 1 cm2=g at a velocity of
v ¼ 2000 km=s. For such DM candidate, we find that
am > 20 is excluded. The corresponding excluded media-
tor mass range mϕ is shaded in gray. As could be expected,
the unitarity regime are excluded, as is most of the very
light mediator regime. The very fine viable intervals of mϕ

correspond to vanishing self-interactions, i.e., a → 0. This
nicely illustrates the possibility for a dark sector to manifest
emergent phenomenon like superfluidity, while being not
entirely excluded by self-interaction constraints on DM.

B. Condensed dark matter halos

The possibility that DMmay be in a degenerate fermionic
gas phase and form a core at the center of galaxies and dwarf
galaxies has been put forward in the literature, see e.g.,

[3–5], albeit for noninteracting particles. More recently,
possible superfluid phase for DM in the context of dwarf
galaxies was studied in Ref. [17], in a model of ultralight
dark-QCD matter parametrized by rescaling the known
QCD CFL phase [44]. It is well known that the Yukawa
theory shares qualitative features at finite densities with
quark matter [35]. We now consider the possibility that DM
particles that make up the halos of galaxies (e.g., dwarf
spheroidal galaxies) could manifest emergent phenomena
described in our work, in a simpler model such as the
Yukawa theory. We first present the equation of state (EOS)
for the Yukawa theory3 and then showcase a possible
realization of condensed DM halos at galactic scales.
In the left panel of Fig. 6 we present the EOS in

dimensionless units, for the case of free degenerate fer-
mions (dashed), and for attractive self-interactions (solid),
see also Appendix F for further details. The strength of
interaction in this case is most conveniently characterized
by the parameter C2

ϕ ¼ 4=3αm2=ð3π2m2
ϕÞ. The curves

shown in red, cyan, and magenta, correspond to values
of C2

ϕ ¼ 3, 10 and 100, respectively.
At relativistic densities (ρ ≫ m4), each of the EOS

obtained in the presence of attractive interactions reproduce
that of the relativistic Fermi gas, P ¼ ρ=3. However, in the
nonrelativistic regime (ρ ≪ m4) significant departures from
the free case appear. Due to the emergence of the scalar
density condensate, at large values of C2

ϕ, m� ≪ m, and
hence the relation P ∼ ρ is valid down to densities ρ ∼m4�.
Additionally, the presence of attractive self-interactions
lead to the appearance of a critical saturation density
analogous to the nuclear saturation density, at which P
vanishes for a finite ρ. Close to the saturation density, the
EOS is very stiff and the system becomes incompressible.
Interestingly, for such densities, the pressure of the inter-
acting gas is much smaller than that of the free case. This
would lead to more compact self-gravitating configurations
of the DM cloud, when compared to the free case. It is also
seen that, as the system contracts and ρ becomes larger (for
example during its evolution towards gravitational col-
lapse) the pressure quickly rises above the values of the free
case, hence hindering collapse, as described above.
In the right panel of Fig. 6, we present the mass-radius

relationship for a few representative cases depicted in the
left panel. We have obtained these configurations by
solving the Tolman-Oppenheimer-Volkoff equations with
the EOS presented in the left panel. Particularly, we have
considered the free degenerate EOS (C2

ϕ ¼ 0) and the
mildly interacting EOS (C2

ϕ ¼ 3). As is well known, for
free degenerate fermions M ∝ R−3 [3,4,45], and such DM
candidates cannot simultaneously reproduce typical DM
halos of both dwarf spheroidal and large galaxies.

3See the description of the so-called “liquid phase” in
Appendix F.
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However, if DM has sufficient attractive self-interactions,
as exemplified in the Yukawa theory, stable solutions exist
for incompressible configurations which behave as
M ∝ R3. An estimate of theM − R relationship is given by

�
M

1 08 M⊙

��
kpc
R

�
3

≈ 4500

�
1

C2
ϕ

��
m
eV

�
4

: ð15Þ

As shown in the figure, such configurations could lead to
halo masses and sizes that are both typical of dwarfs (blue
shaded regions) and large galaxies (green shaded regions).
Due to their incompressible nature, both halos would

exhibit cored profiles. It is interesting to note that perhaps
only the inner cores of halos are in such configurations,
while the outer regions could be at temperatures high
enough for the scalar condensate to not play any role.
A comprehensive analysis of such phenomena could, for
example, be captured by a piecewise EOS correctly
interpolating between the cold, compact core and a hot,
less dense outer halo.
Light fermionic dark matter candidates are clearly

challenging to reconcile with the formation of cosmic
structures. For m < 2 keV, the Fermi pressure is itself
sufficient to modify substantially the matter power spec-
trum [5,46]. Nonetheless, if the DM particles are bound in

FIG. 5. Contours of ðkFaÞ−1 as a function of Fermi momentum and mediator mass. We have setm ¼ 1 GeV. Color code is the same as
Fig. 2. The hatched shaded regions are excluded by bullet cluster limits on the self-interaction cross section of DM, σ=m > 1 cm2=g.

FIG. 6. Left panel: Equation of state of a condensate-dominated system for different values of the effective coupling C2
ϕ (solid). The

dashed curve corresponds to the noninteracting case. Right panel: Mass-radius relationship of self-gravitating configuration of
interacting, condensate-dominated (solid) and noninteracting (dashed) systems for different DM bare masses. The blue (green) shaded
regions correspond to the typical size and mass of the DM halo of dwarf spheroidal (large) galaxies [3]. The blue star indicate the
benchmark point M ¼ 108 M⊙ and R ¼ 1 kpc, representative of a typical dwarf spheroidal galaxy.
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difermionic molecule, for example in the BEC phase, at
early time, such bounds could be alleviated.

C. DM in neutron stars

We now turn to discuss the impact of superfluid gaps on
the fate of captured asymmetric DM in the core of neutron
stars (NS). More precisely, DM particles in the galactic halo
can be efficiently captured by NS [6,47]. For any given
neutron star of mass M and radius R, the maximal rate of
DM accretion is given by the so-called geometric rate
corresponding to scattering cross section πR2=N ∼
10−45 cm2, where N is the total number of target neutrons
in the NS. The maximum number of accumulated DM in
the NS over its life time of 10 Gyrs is given by

Nacc ≈ 1042
ρ

0.4 GeV=cm3

1 GeV
m

: ð16Þ

After DM thermalization with the medium [7,48–50], the
DM thermal sphere can collapse to a black hole. For
noninteracting fermion DM particles, this happens as soon
as the number of accumulated particles exceeds the
Chandrasekhar limit given by Nch ≈M3

pl=m
3.

In Ref. [19], it was suggested that in the presence of
attractive self-interactions, such as in the Yukawa theory,
the above Chandrasekhar limit could be parametrically
reduced to ∼ðmϕ=m

ffiffiffi
α

p Þ3Nch. Soon after, Ref. [20] pointed
out that as the DM thermal sphere shrinks the DM density
increases therefore the emergence of scalar density
condensate should be accounted for consistently in the
calculation. Therefore, DM particles become relativistic
at smaller densities than in the free case and the
Chandrasekhar limit is not parametrically modified.
In this section we comment on the impact of superfluid

gaps on the above scenario. To this end, the order parameter
Δ should be evaluated. As an example, we choose the
model parameters m ¼ 200 GeV, mϕ ¼ 1 MeV, and
α ¼ 10−3, as exemplified in Ref. [19]. We find that at
low densities, for these parameters, the system finds itself in
the BEC phase, and consequently the gaps are much larger
than the chemical potential. However, at higher densities,
fermions become relativistic and the system transitions to
the relativistic BCS phase. At this stage we can estimate the
values of the gap using our relativistic BCS analytical

approximation given by Δ ≈ 4
3
kF exp ð− 8π2

g2 Þ exp ð−
4π2m2

ϕ

g2k2F
Þ

[see also Appendix E, Eq. (E19)]. This yields the numerical
value of the gap to be exponentially suppressed and thus
negligible. While the BEC phase may change the equation
of state at low DM densities [25], we conclude that at large
densities, in the BCS phase this has little impact on the
equation of state of the DM with a Yukawa interaction and
thus the conclusions of [20] are essentially unchanged.

V. CONCLUSION AND PERSPECTIVES

We have developed a formalism to study possible phases
in the Yukawa theory. To this end, we have brought
together concepts originating from the theory of non-
relativistic scattering, the physics of high-density nuclear
matter, and phenomena that are realized in condensed
matter systems, and have presented our findings in the
context of particle dark matter at finite density. By
computing the scattering length in the Yukawa theory
we have found that DM could be in BCS, BEC or crossover
phase, depending on the parameters of the theory at low
densities. We have further explored the BCS phase. To do
so we have computed superfluid energy gaps, including the
effects of the scalar density condensate; by retaining the
mediator mass dependence and deriving the consistent set
of UV finite gap equations for the three most dominant
pairing channels. We have found that at large densities (or
ultrarelativistic limit) DM finds itself in the BCS phase,
irrespective of the phase realized at low densities.
As an application of our formalism we have examined

whether captured asymmetric fermion DM in the core of
neutron stars can collapse to a black hole in models with
attractive DM self-interactions, for DM mass ∼GeV. Even
in the presence of large attractive interactions, it was
pointed in Ref. [20] that collapse to a black hole is impeded
due to the emergence of scalar density condensate, and that
the Chandrasekhar limit remains the same parametrically as
that for free degenerate fermions. In this work, we have
studied the interplay between the scalar density condensate
and superfluid gaps consistently. We have found that
further accounting for the superfluid gaps does not quali-
tatively change the conclusions drawn in Ref. [20], since
the gap contribution to the pressure is small and positive,
with scaling ∝ μ2Δ2.
By consistently computing the EOS in the Yukawa

theory, we have also explored the possibility that halo
DM could realize cored density profiles due to emergent
density effects, at both small and large scales, correspond-
ing to dwarf galaxies and other large galaxies. We have
found that the impact of the scalar density condensate is
important and dominates over that of superfluid gaps.
There are various directions for further phenomenologi-

cal enquiry. In this work we have focused on identifying the
possible phases of condensed DM with a Yukawa inter-
action, on self-consistently determining the gaps and the
scalar condensate and the impact of the latter on the
energetics of the system. The next natural step would be
to examine the transport properties of such systems. On
astrophysical scales high-density regions of DM are found,
e.g., in dwarf spheroidal galaxies, or at the center of more
massive galaxies. Examining velocity dispersion data of
several Milky-Way dwarf galaxies would in principle
provide a window to determine the phase of DM.
Moreover, since superfluidity is realized through breaking
of the global Uð1Þ we expect formation of strings and
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vortices. Observations of galaxy-galaxy mergers and/or
dwarf galaxy-host galaxy mergers might provide a way to
probe DM phases. Finally, depending on how dark sector
couples to the visible sector dark stars or hybrid stars could
exist in the Universe. Gravitational wave observations of
mergers of such objects with black holes, neutron stars, or
white dwarfs, would pave the way in testing the scenario
through waveform template fitting.
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APPENDIX A: SCALAR CONDENSATE

The scalar condensate at finite density ns ¼ hψ̄ψi has
peculiar properties [21]. In particular, it leads to the
vanishing of the effective fermion mass at large densities.
A simple application of the decomposition of ψ in terms

of creation/destruction operators gives

ns ¼
m
2π2

½kFEF −m2 log ððkF þ EFÞ=mÞ�; ðA1Þ

for kF ≪ m, ns ≈ n ¼ hψ̄γ0ψi ¼ k3F=3π
2 while for kF ≳m,

ns ≈mk2F=2π
2. This scalar condensate leads to a modifi-

cation of the fermion mass through m�¼m−g2=m2
ϕnsðmÞ.

Replacing m by m� in the argument of ns gives a self-
consistent, mean-field approximation for m�. Alternatively,
one can start from the grand partition function of the
Yukawa theory Eq. (1)

Z ¼ e−βVΩ; ðA2Þ

where Ω is the (Landau) thermodynamical potential
Ω ¼ −pðT; μÞ. At nonzero temperature β ¼ 1=T, integrat-
ing over the fermions and replacing the field ϕ by a
constant mean-field value ϕ0 gives

Ω ¼ −
Z

d3p
ð2πÞ3

�
ðjωþ μj þ jω − μjÞ þ 2

β
lnð1þ e−βjω−μjÞ

þ 2

β
lnð1þ e−βjωþμjÞ

�
þ 1

2
m2

ϕϕ
2
0: ðA3Þ

One recognizes contributions from fermions and antifer-
mions. Note also, ω ¼ ωkðm�Þ with m� ¼ m − gϕ0. In the
limit T → 0, the integral reduces to the first term which can
be written as

Ω ¼ −
2

2π2

�Z
∞

0

dpp2ωþ
Z

pF

0

dpp2ðμ − ωÞ
�

þ 1

2
m2

ϕϕ
2
0: ðA4Þ

There is an infinite contribution from vacuum which can be
renormalized away, see below. Then, minimizing Ω with
respect to ϕ gives

ϕ0 ¼
g
m2

ϕ

1

π2

Z
kF

0

dkk2
m�
ω

¼ g
m2

ϕ

nsðm�Þ: ðA5Þ

Within the same mean-field approximation, the energy
density of the Yukawa gas is written as

ϵ ¼ ϵ�FG þ 1

2
m2

ϕϕ
2
0; ðA6Þ

with the free gas contribution

ϵ�FG¼2

Z
k<kF

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2�

q

¼ 1

8π2
½kFE�

FðE�2
F þk2FÞ−m4� lnððkFþE�

FÞ=m�Þ�; ðA7Þ

and the Fermi energy E�
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2�

p
. Now we examine

the energy density above. In the nonrelativistic limit,
kF ≪ m, this gives

ϵ ≈m�
k3F
3π2

þ k5F
10mπ2

þ 1

2
m2

ϕϕ
2
0; ðA8Þ

with m� ≈m − g2k3F=ð3π2m2
ϕÞ and ϕ0 ≈ gk3F=ð3π2m2

ϕÞ, so

ϵ ≈mn −
g2

2m2
ϕ

n2 þ k5F
10mπ2

: ðA9Þ

Notice that a factor 1=2 comes from the 1=2m2
ϕϕ

2
0 term.

This reproduces the leading term derived in [19] from the
potential energy of a sphere of N particles with a short
range attractive interaction,
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ϵ ¼ ϵFG −
9α

8m2
ϕ

�
N
R3

�
2

; ðA10Þ

here R is the radius of the sphere, ϵFG is the free Fermi gas
energy density, and α ¼ g2=4π. At very small kF, the
energy density ϵ ∝ n. If gm=mϕ is large enough, it becomes
negative. However (at large densities) when

n ∼m2
ϕm=g2; ðA11Þ

m� approaches zero. The energy density is then as a
relativistic gas,

ϵ ≈
k4F
4π2

: ðA12Þ

We conclude this appendix with a brief note about the
vacuum contribution to ns. The above discussion is for a
renormalized ns so that ns ¼ 0 for T and μ ¼ 0. The
vacuum contribution is potentially infinite being given by

hψ̄ψi0 ¼ −2m
Z

d3k
ð2πÞ3

1

ωðkÞ ∼ −mΛ2; ðA13Þ

for some cutoff scale Λ2. This leads to a negative ns and so
a positive contribution to the fermion mass. Following the
logic of above leads to the Nambu–Jona-Lasinio mecha-
nism of chiral symmetry breaking, in which case the
effective dressed mass is

m� ¼ m −Ghψ̄ψi0 ≥ 0; ðA14Þ

whereG is some effective coupling (dimension 1=M2). The
chiral limit is m ¼ 0 and a scalar condensate contributes
dynamically to yield a nonzero fermion mass,m� ∝ hψ̄ψi0.
At finite density, the contribution to ns is positive and
nonzero if and only if m ≠ 0, i.e., the opposite to the
vacuum case so to speak.

APPENDIX B: SCATTERING
IN YUKAWA THEORY

The scattering length is a basic quantity used to study the
onset of BEC and, more generally, low energy scattering
processes. It is less commonly encountered in DM liter-
ature, see however [26] for applications to DM self-
scattering in galaxies and dwarf galaxies. It is particularly
useful to characterize in simple terms complicated, possibly
strongly interacting scattering systems in terms of a
physical observable such as the scattering length.
The wave function in the CM frame of two nonrelativ-

istic particles is of form

ψ ¼ eikz þ fðθÞ e
ikr

r
; ðB1Þ

with scattering amplitude fðθÞ and differential cross
section dσ=dΩ ¼ jfðθÞj2. In the case of s-wave scattering,
which is dominant for many systems (e.g., a pair of
identical fermions in a singlet spin configuration), the
scattering amplitude is constant fðθÞ ¼ f0. In terms of
the s-wave phase shift δ0,

f0 ¼
1

2ik
ðe2iδ0 − 1Þ: ðB2Þ

Then, for low-energy scattering k → 0, the wave function
can be written as

ψ ≈ 1 −
a
r
; ðB3Þ

where the scattering length (a) is given by

lim
k→0

k cot δ0ðkÞ ¼ −
1

a
: ðB4Þ

In this limit σ ¼ 4πa2. For a > 0, the vanishing of the wave
function signals the possibility of bound state formation
[27]. For instance, for a neutron-proton (n-p) pair in a spin
S ¼ 1 triplet state, the scattering length is a ≈þ7 fm
corresponding to the formation of a deuteron bound state.
There is no n-p bound state with in the spin singlet state
S ¼ 0, but the s-wave scattering is very large (∼ resonant)
at low energies, corresponding to a ≈ −20 fm. A resonance
corresponds to a phase shift δ0ðkresÞ ¼ π=2 and through
Eq. (B4), to a change of sign of the scattering length.
Formally, the scattering length is infinite if δ0 → π=2 as
k → 0. In the condensed matter literature such systems are
called unitary Fermi liquids. Similarly, for a neutron-
neutron (n-n) interactions in the s-wave, a ≈ −17 fm; the
nuclear interaction between two neutron is attractive, but
not large enough to form a real 2-body bound state.
The relevance of all of this is that an attractive inter-

action, for instance through a Yukawa coupling may,
depending on the parameters of the theory, lead or not
to formation of bound state at low energies. Thus corre-
sponding to a BEC or a BCS state, respectively, see e.g.,
[30]. In the following we will reproduce the results of
scattering length in Yukawa theory by solving the
Schrödinger equation (following Ref. [26]) and use these
findings to study phases of Yukawa theory.
The interaction Yukawa potential in coordinate space

takes the form

VðrÞ ¼ �α
e−mϕr

r
; ðB5Þ

where α ¼ g2=ð4πÞ and mϕ is the mass of the force
mediator. The phase shifts due to DM self scattering are
obtained by solving the Schrödinger equation for the radial
wave function (Rl;k) through the equation
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1

r2
d
dr

�
r2
dRl;k

dr

�
þ
�
k2−

lðlþ1Þ
r2

−mVðrÞ
�
Rl;k ¼ 0; ðB6Þ

with boundary condition rRl;k ¼ 0 at r ¼ 0. As discussed
in detail in Ref. [26], with change of variables, the above
equation could be reexpressed in terms of spherical Hankel

function of the first kind hð1Þl . This results in the following
equation for the phase shift

dδl;kðrÞ
dr

¼ −km r2VðrÞRe½eiδl;kðrÞhð1Þl ðkrÞ�2; ðB7Þ

which is to be solved with boundary conditions δl;kð0Þ ¼ 0

and δl;k → δl at r → ∞. Having determined the phase shift,
the s-wave scattering length is obtained by

a ¼ −lim
k→0

tan δl
k

: ðB8Þ

For comparison we also compute the scattering length
for Huelthen potential. The interaction potential in coor-
dinate space in this case reads

VðrÞ ¼ �α
e−mϕr

r
∼�αδ

e−δr

1 − e−δr
; ðB9Þ

with δ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2ζð3Þp

mϕ [51]. The s-wave scattering length for
this potential can be derived by solving the Schrödinger
equation as above. However, for the Huelthen potential
analytical solution exists for the scattering length and the
effective range of the interaction [26,51,52], which are
given by

a ¼ 1

δ
ðψ ð0Þð1þ ηÞ þ ψ ð0Þð1 − ηÞ þ 2γÞ; ðB10Þ

re ¼
2a
3
−

1

3δ3ηa2
ð3½ψ ð1Þð1þ ηÞ − ψ ð1Þð1 − ηÞ�

þ η½ψ ð2Þð1þ ηÞ þ ψ ð2Þð1 − ηÞ þ 16ζð3Þ�Þ: ðB11Þ

Here, η ¼ ffiffiffiffiffiffiffiffiffiffiffi
αm=δ

p
and ψ ðnÞðzÞ are polygamma functions of

order n and γ is Euler-Mascheroni constant.
In Fig. 7 (left) we present the scattering length in units of

the mediator mass (mϕ) as a function of dimensionless
variable β ¼ αm=mϕ, for Yukawa (Huelthen) potential in
solid (dashed) lines. Blue (red) color indicates instances
where the scattering length is positive (negative). As
expected, we find that the Huelthen potential could be
a good approximation for the Yukawa potential. In
Fig. 7 (right) we show 1=ðkFaÞ as a function of α, for
the case mϕ=m ¼ 0.13 with kF=m ¼ 10−2, for Yukawa
(Huelthen) potential in black (gray) colors. We conclude
that the Huelthen potential is qualitatively accurate enough
to describe the unitary limit.

1. BCS-BEC crossover

We end this appendix by recalling the well known
phenomenon of BCS-BEC crossover in the limit of contact
interactions. This transition is best parameterized in terms
of the s-wave scattering length of the theory in the non-
relativistic limit at finite density. For such a system, within
the constant gap approximation, the equation for energy
gap and the chemical potential for given a scattering length
should be solved simultaneously [30]. The gap equations
take the form

−
1

kFa
¼ 2

π

�
2

3I2ðμΔÞ
�

1=3
I1

�
μ

Δ

�
and

Δ
EF

¼
�

2

3I2ðμΔÞ
�

2=3
; ðB12Þ

FIG. 7. Left panel: scattering length is shown as a function of dimensionless parameter β for Yukawa and Huelthen potential in solid
and dashed lines, respectively. Right panel: we show ðkFaÞ−1 as a function of α for specific values of kF=m ¼ 10−2,mϕ=m ¼ 0.13. The
red regions indicate BCS phase while the blue regions indicate BEC phase.
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with

I1ðzÞ ¼
Z

∞

0

dx x2
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − zÞ2 þ 1

p −
1

x2

�
and

I2ðzÞ ¼
Z

∞

0

dx x2
�
1 −

x2 − zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − zÞ2 þ 1

p
�
: ðB13Þ

There two classes of asymptotic solution to Eq. (B12)
depending on the sign and magnitude of the dimensionless
parameter kFa. For large and negative values of ðkFaÞ−1,
the chemical potential μ is close to the Fermi energy and the
gap is exponentially small as could be expected in the BCS
theory. For large and positive values ðkFaÞ−1, the parameter
μ receives large corrections making it negative, which
indicates the formation of difermionic molecules and their
condensation, often referred to as the BEC phase. While the
limit ðkFaÞ−1 → 0 corresponds to the unitary limit, where
the phase of matter is neither in BCS nor in BEC phases,
called the crossover regime. Quantitatively, ðkFaÞ−1 < −1
delimits well the BCS phase from the crossover. The BEC
and crossover regimes are similarly delimited by the
inequality ðkFaÞ−1 > 1 [30,53]. The BEC-BCS phase
transition is illustrated in Fig. 8. In theories with light
mediators the interactions can nevertheless be considered to
be short-range at low enough densities. Analogous to
contact interactions, the scattering length in these theories
can be used to understand the phase diagram of non-
relativistic systems.

APPENDIX C: CONDENSATION
IN THE YUKAWA THEORY

Cooper pairing according to BCS theory in metals results
from an extremely small effective attractive interaction
between electrons sourced by background lattice of pos-
itively charged ions. In weakly-coupled theories Cooper
pairing is a collective phenomena in which the Cooper pairs

are spatially separated at distance scales larger than the
average separation between the constituent fermions of the
system. In contrast to difermionic molecules that are
bosonic, physically Cooper pairs are thought to be
quasi-particles that could be called a boson. Formation
of Cooper pairs could also be sourced by fundamental
attractive interaction between fermions. To this end, we
consider a simple model where fermion (ψ) interacts by the
exchange of scalar boson (ϕ) through an attractive Yukawa
potential, given by

L ¼ ψ̄ði=∂þ γ0μ −mÞψ þ 1

2
ð∂μϕ∂μϕ −m2

ϕϕ
2Þ − gψ̄Γψϕ;

ðC1Þ

where Γ ¼ Iðiγ5Þ for scalar (pseudo scalar) couplings. The
chemical potential is denoted by μ and gð> 0Þ is the
coupling constant. The bare fermion (boson) mass is
denoted by m (mϕ). The fermion ψ and the mediator ϕ
are singlets under the SM gauge group. However ψ is
charged under a dark global Uð1Þ symmetry conserving
dark fermion number. The spontaneous breaking of this
global symmetry results in modes that propagate with
energies smaller than Fermi energy, the so-called Cooper
pairs. Consequently the system exhibits superfluidity (and
not superconductivity) at finite density and temperature
[35]. The Dirac structure is analogous to single-flavor,
single-color limit of QCD. This simple structure already
captures essential features and dynamics of superfluidity
that could arise in models that have particles charged under
more nontrivial groups [30].
The study of fermion-fermion condensate (gaps) and

fermion-antifermion condensate (scalar condensate) is well
established through the computation of partition function
Zðμ; T; VÞ, within the mean-field approximation. The
partition function and the action reads

Zðμ; T; VÞ ¼
Z

Dψ̄DψDϕeS; ðC2Þ

S ¼
Z
x
L

¼
Z
x;y

�
ψ̄ðxÞG−1

0 ðx; yÞψðyÞ − 1

2
ϕðxÞD−1ðx; yÞϕðyÞ

�

− g
Z
x
ψ̄ðxÞΓψðxÞϕðxÞ; ðC3Þ

with the inverse propagators defined as D−1ðx; yÞ ¼
δ4ðx − yÞð∂μ∂μ þm2

ϕÞ and G−1
0 ðx; yÞ ¼ δ4ðx − yÞði=∂þ

γ0μ −mÞ, for scalar mediator and fermionic particles,
respectively. We follow the standard finite temperature
field theory notation for space-time integral, abbreviated asR
x ≡

R 1=T
0 dτ

R
d3x [54].
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FIG. 8. BCS-BEC cross over for contact interactions.
Reproduced from Ref. [30].
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The model presented here is reminiscent of the so-called
σ − ω model of dense nuclear matter interactions [21].
Broadly speaking, protons and neutrons feel a long-range
attractive force, arising from the exchange of a scalar
meson (σ), and a short-range repulsive force, due to
exchanges of a vector boson (ω). Thus, Eq. (C1) corre-
sponds to the case of purely attractive interactions, i.e.,
when the ω meson plays little role. The features of our “σ
model” often shares qualitative similarities that appears in
the description of formation of large bound states of nuclei
which appear beyond a particular value of saturation
density, and with molecular interactions via van der
Waals forces.
We proceed by first integrating out the mediator (ϕ).

Since superfluidity is the phenomenon at the surface of the
Fermi sea, the most relevant scale in the problem is
identified to be the Fermi momentum (kF). Before we
begin, however, it is instructive to ponder whether it is
justified to integrate out the mediator also when mϕ is the
smallest scale in the problem (i.e., mϕ ≪ kF). The answer
is provided in [55]. For completeness we reiterate the
arguments here and specify by what we mean by integrat-
ing out the mediator in the context of superfluidity, and the
resulting computational advantage. The partition function
in Eq. (C2) sums over all possible configurations for the
fields. Shifting the scalar field arbitrarily does not change
any physical quantities. For example, we can shift the scalar
field the following way; ϕðxÞ → ϕðxÞ − i

R
y FðyÞDðy; xÞ

with FðxÞ≡ gψ̄ðxÞΓψðxÞ. After integrating over all the
field configurations of Dϕ we get the new effective action
for the fermions

S0 ¼
Z
x;y

½ψ̄ðxÞG−1
0 ðx; yÞψðyÞ

þ g2ψ̄ðxÞΓψðxÞDðx; yÞψ̄ðyÞΓψðyÞ�: ðC4Þ

The effective approximation is reasonable to describe the
formation of cooper pairs since the mediator ϕ is never
produced on shell around the Fermi surface. In other words
the momenta exchanged between fermions that would form
a cooper pair is always in the t-channel. Note that s-channel
diagram is absent due to the presence of a finite chemical
potential. The scattering is causal and space-like (q2 < 0).
Thus, for extremely large mϕ ≫ kF;m the bosonic propa-
gator in momentum space scales simply as m−2

ϕ . Whereas,
in the limit mϕ ≪ kF;m the propagator scales as t−1. The
exchange momenta can never be much larger than the
Fermi momentum due to degeneracy, as the fermions very
close to the Fermi surface effectively participate in scatter-
ing. In this work we keep the momentum dependence of the
bosonic propagator explicitly and examine in detail how the
superfluid gap depends on mϕ and momentum of the gaps.
The above procedure clearly brings the fermion bilinears in

quadratic form, thus easing the computation of partition
function. Before we get into details in the next section, we
first examine the possible combination of bilinear that can
get expectation values.

1. Scalar density condensate

The number density of ψ is conserved. Therefore the
mediator ϕ (scalar) will couple to the number density.
Diagramatically this is shown in Fig. 1. In terms of Wick
contractions, we have

g2

2
ψ̄ðxÞΓψðxÞ
j j

Dðx; yÞψ̄ðyÞΓ̄ψðyÞ
j j

; ðC5Þ

where the contractions are taken one at a time. This in effect
modifies the free fermion propagator through the correction
to the bare fermion mass. Thus the in-medium mass of the
fermion could be written as m� ¼ m − Σ, with

ΣðxÞ ¼ g2

2
Dðx; yÞhψ̄ðxÞΓψðxÞi ¼ ΣðyÞ

¼ g2

2
Dðx; yÞhψ̄ðyÞΓ̄ψðyÞi

⇒ in medium correction to mass;

where the minus sign appears due to the fermion loop (see
Fig. 1). The self-energy Σ is related to the scalar density
through Σ ¼ g2ns=m2

ϕ. Finally, note that if the mediator
were to interact with pseudo scalar couplings to the
fermions (i.e., Γ ¼ iγ5) Σ is identically zero. Thus, we
do not expect any in-medium correction to the bare mass
for pseudoscalar interactions.

2. Fermion-fermion condensate: Cooper pairs

As mentioned above, in the presence of attractive
interactions (however small), the Fermi surface is unstable
and generically leads to mixing between particles and holes
at the edge of the surface that manifests as Cooper pairs.
Diagramatically, this is shown in Fig. 3, where the blob
represents the gap function. In contrast to fermion-anti-
fermion condensate (scalar density condensate), Cooper
pairs in a superfluid are condensates of fermion-fermion
pairs. The BCS contribution to this condensate are obtained
by the followingWick contraction of the 4-point function in
Eq. (C4),

g2

2
ψ̄ðxÞΓψðxÞDðx; yÞψ
j j

ðyÞΓ̄ψðyÞ
j j

:

Thus the object that will get an expectation value is of the
form ψðxÞψðyÞ, i.e. fermions at two different coordinates
behave collectively in the same way. Clearly, the product
ψψ (or ψ̄ ψ̄ ) is not well-defined. With the introduction of
charge conjugate spinor (ψc ≡ Cψ̄T), the Cooper pairs can
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now be written as ψψ̄c, where C ¼ iγ2γ0. In the following
appendix we describe the Dirac structure of the gap and
derive the gap equations.

APPENDIX D: THE CONSISTENT SET
OF GAP EQUATIONS

We outline the derivation of the set of consistent gap
equations from the free energy (Ω) starting from the
effective action Eq. (C4). The four-fermion interaction part
in Eq. (C4) describes all possible 2 → 2 scattering proc-
esses involving the fermions. Due to the biquadratic nature
of this term we cannot perform integrations over ψ and ψ̄ to
obtain the partition function. One possible way to correctly
describe the superfluid ground state of the system is to
approximate the above biquadratic term as a product of a
fermion bilinear and a fermion condensate, the so-called
mean field approximation. To this end, we rewrite the four-
fermion interaction in Eq. (C4) in terms of the usual spinor
ψ and its charge conjugated counterpart ψcðxÞ ¼ Cψ̄TðxÞ,
as described in [30,35]. In the mean field limit, the
fermion bilinears ψcðxÞψ̄ðyÞ (ψðyÞψ̄cðxÞ) and ψ̄ðxÞψðxÞ
(ψ̄cðxÞψcðxÞ) are approximated by their expectation values
and small fluctuations around their expectation values,
respectively. Additionally, the mean fields are assumed to
be static. Assuming Dðx; yÞ ¼ Dðy; xÞ, we have

ψ̄ðxÞψðxÞψ̄ðyÞψðyÞ

¼ 1

2
½ψ̄ðxÞψðxÞψ̄cðyÞψcðyÞ þ ψ̄cðxÞψcðxÞψ̄ðyÞψðyÞ�

−
1

4
Tr½ψcðxÞψ̄ðyÞψðyÞψ̄cðxÞ þψðxÞψ̄cðyÞψcðyÞψ̄ðxÞ�:

ðD1Þ

The following fermion bilinears can get expectation
values

ΣðxÞ ∼ hψ̄ðxÞψðxÞi ¼ hψ̄cðxÞψcðxÞi
⇒ in medium correction to mass

Δþðx; yÞ ∼ hψcðxÞψ̄ðyÞi ⇒ superfluid energy gap

Δ−ðx; yÞ ¼ γ0½Δþðy; xÞ�†γ0 ∼ hψðxÞψ̄cðyÞi: ðD2Þ

The parametric and function forms of Σ and Δþ have
been computed individually in several works, most notably
in refs. [20,35]. In this work we want to consistently
capture condensation in multiple channels (see below). In
the mean field approximation, we capture one-particle
irreducible (1PI) diagrams. The most general ansatz for
the structure of Δ in the rest frame of the medium must
be consistent with Grassmanian nature of the fermions,
i.e., they should not vanish upon antisymmetrization.
Depending on the model at hand, parity and helicity
impose restrictions on the allowed gap structure. In general,

the ansatz can contain up to eight terms (expressed in the
basis of linear combination of γ matrices) that are trans-
lationally invariant [34,35]. Assuming parity is not violated
and that the condensation is in J ¼ 0þ channel, one
possible ansatz for the fermion pair Dirac structure (that
would dominate) and the scalar condensate would have the
form

Δ≡ hψcðxÞψ̄ðyÞi ∼ Δ1γ5 þ Δ2γ · k̂γ0γ5 þ Δ3γ0γ5: ðD3Þ

Of the possible eight structures only four structures apply
to the case of scalar mediators as they are parity conserving.
As we have only one type of fermionic particle ψ in the
fundamental theory, only three gap structures are most
significant, and contribution from Δ7 is identically zero.
As mentioned before, we include all channels of con-

densation within a single framework. To this end, we
suitably modify and closely follow the imaginary time
coherent state path integral formalism as presented in
[39,56,57] and simultaneously include all possible channels
of condensation. Having identified the relevant gap struc-
tures we introduce fermionic (bosonic) auxiliary fields Φ�

αβ
(Σαβ) that captures the degrees of freedom of the low-energy
theory via Hubbard-Stratonovich transformation (HST).
We introduce Hubbard-Stratonovich auxiliary fields Δ,

Δ̄ and ρð≡nsÞ. The transformation is carried out by
inserting two ’fat identites’ into the partition function.
The first for the scalar condensate being

1 ∝
Z

Dρ exp

�Z
x;y

−
1

2
ðψ̄ψ − ρÞ g

2Dðx; yÞ
2

ðψ̄ψ − ρÞ

−
1

2
ðψ̄cψc − ρÞ g

2Dðx; yÞ
2

ðψ̄cψc − ρÞ
�
: ðD4Þ

For the fermionic HS fields the following Gaussian
integral is introduced

1∝
Z

DΔ̄DΔexp

�Z
x;y

−
1

2
ðΔ−ψcψ̄Þ

g2Dðx;yÞ
2

ðΔ̄−ψψ̄cÞ

−
1

2
ðΔ̄−ψψ̄cÞ

g2Dðx;yÞ
2

ðΔ−ψcψ̄Þ
�
: ðD5Þ

Rewriting Eq. (C1) in terms of the auxiliary fields results
in the following interaction Lagrangian in coordinate space

Lint¼
1

4
fψ̄αðxÞψαðxÞþ ψ̄c;αðxÞψc;αðxÞgΣββðyÞ

−
1

4

1

g2Dðx;yÞΣααðxÞΣββðyÞ

−
1

2
ψ̄c;αðxÞΦþ

αδðx;yÞψδðyÞ−
1

2
ψ̄αðxÞΦ−

αδðx;yÞψc;δðyÞ

−
1

4

1

g2Dðx;yÞΦ
þ
αδðx;yÞΦ−

δαðx;yÞ; ðD6Þ
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with

Dðx; yÞ ¼ ð∂2x þm2
ϕÞ−1; ðD7Þ

Φþ
αδðx; yÞ ¼ g2Dðx; yÞΔαδðx; yÞ; ðD8Þ

Φ−
αδðx; yÞ ¼ g2Dðx; yÞΔ̄αδðx; yÞ; ðD9Þ

Σαβðx; yÞ ¼ g2Dðx; yÞραβðxÞ: ðD10Þ

Notice that now the Lagrangian (D6) is quadratic in ψ ;ϕ
thus enabling integration over the fundamental fields ψ ;ϕ.
In other words we can trade integration over fundamental
fields for an integration over auxiliary fields. In other
words, setting the auxiliary fields to their vevs (i.e., the
mean-field approximation) allows for computing the path
integral of a theory of free particles, albeit with anomalous
(i.e., off-diagonal) propagators. To this end, we go to
momentum space by Fourier transforming the fields that
are in coordinate space. We now treat the action to be a
functional of charge conjugated spinor ψc as well (cf. [30]),
resulting in the following action in Nambu-Gorkov space
(i.e., 8 × 8 matrix)

S ¼
X
k>0

Ψ̄
S−1

T
Ψ −

1

g2
V
T

X
k;q

ΣααðkÞD−1ðkþ qÞΣββðqÞ

−
1

g2
V
T

X
k;q

Φþ
αδðkÞD−1ðkþ qÞΦ−

δαðqÞ; ðD11Þ

with the new spinors defined as

Ψ̄≡ ðψ̄ ; ψ̄cÞ and Ψ≡
�

ψ

ψc

�
: ðD12Þ

The inverse propagator reads

S−1 ¼
�
=kþ μγ0 −mþ Σααð0Þ Φ−ðkÞ

ΦþðkÞ =k − μγ0 −mþ Σββð0Þ

�
:

ðD13Þ

We now have all the ingredients at hand to write down
the free energy of the theory through the partition function
that reads

Z ¼
�Y

k>0

Det
S−1ðiωn; kÞ

T

�
1=2

× exp

�
−

1

g2
V
T

X
k;q

ΣααðkÞD−1ðkþ qÞΣββðqÞ

−
1

g2
V
T

X
k;q

Φþ
αδðkÞD−1ðkþ qÞΦ−

δαðqÞ
�
: ðD14Þ

Inserting our ansatz for the gap structure Eq. (D3) in the
above and exploiting the fact that the determinant of a
matrix is the product of its eigenvalues [ϵiðkÞ], the
Helmholtz free energy reduces to the form

Ω≡Ωϵ þ ΩΣ þΩΦ;

Ω ¼ −
T
V
logZ

¼ −
T
V

X
k

X
i¼�

1

2
log

ω2
n þ ϵ2i ðkÞ

T2

þ 1

g2
X
k;q

ΣααðkÞD−1ðkþ qÞΣββðqÞ;

þ 1

g2
X
k;q

D−1ðkþ qÞðΔ1ðkÞΔ1ðqÞ − k · qΔ2ðkÞΔ2ðqÞ

− Δ3ðkÞΔ3ðqÞÞ: ðD15Þ

We note that at this level the difference between the
contribution of the scalar condensate and the gap functions
is factor four. By setting the HST fields to their expectation
values a stationary phase analysis can be performed [36,37]
and the dynamics of the low energy theory that describe
condensed DM can be examined. The advantage of HST is
now manifest.
The expression for the free energy of the system above

includes the contribution of 1PI diagrams only. The
contribution of Ωϵ is UV finite upon subtraction of the free
energy of fermion in the noninteracting theory. The scalar
density condensate contribution ΩΣ is also finite owing to
their momentum dependence. However, the contribution
from the gaps ΩΦ are UV divergent which implies
divergent pressure. To remedy this problem one should
consistently include 2PI contributions [44], which is the
CJT formalism. Upon inclusion of these diagrams the free
energy contribution of the gaps reads

ΩΦ ¼ −
X
η

Z
d3k
ð2πÞ3

1

2 ϵηðkÞ
ðΔ2

1ðkÞ þ Δ2
2ðkÞ þ Δ2

3ðkÞÞ:

ðD16Þ

1. Dispersion relation

The roots of the determinant of the inverse propagator
are four fold degenerate. The dispersion relations take the
form

ϵ2� ¼ μ2 þω2 þΔ2
1 þΔ2

2 þΔ2
3

� 2ðμ2ω2 þ 2μkΔ1Δ2 þm2�Δ2
2 þΔ2

1Δ2
2 þ 2m�μΔ1Δ3

− 2m�kΔ2Δ3 þ k2Δ2
3 þΔ2

1Δ2
3Þ1=2: ðD17Þ

The effective mass is denoted by m� ¼ m − Σð0Þ and the
energy is ω2 ¼ m2� þ jkj2. The dispersion relation for
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particles (antiparticles) corresponds to ϵ− (ϵþ). In the above
expression all the gap functions are momentum dependent.
Admittedly not much physics can be extracted from the
above expression. However, we know that the gap func-
tions are not larger than the chemical potential upon
including the momentum dependence in the energy gaps
[35]. We make use of this fact and expand the dispersion
relation in Δi=

ffiffiffiffiffiffi
μω

p
and a posteriori check that they are

consistent. The approximated dispersion is of the form

ϵ2� ≈ ðω� μÞ2 þ
�
Δ1 �

�
k
ω
Δ2 þ

m�
ω

Δ3

��
2

þ
�
m�
ω

Δ2 −
k
ω
Δ3

�
2

� ðm�Δ2 − kΔ3Þ2
μω

: ðD18Þ

We further note that the last two terms approach zero as
m� → 0 or jkj → 0. We believe neglecting the last two
terms is nevertheless a good approximation as all the
relevant dynamics are encoded in the first few terms.
This results in the following much simpler dispersion
relation

ϵ2� ≈ ðω� μÞ2 þ
�
Δ1 �

�
k
ω
Δ2 þ

m�
ω

Δ3

��
2

: ðD19Þ

For convenience we introduce the parameters

Δ̃� ¼ Δ1 �
�
k
ω
Δ2 þ

m�
ω

Δ3

�
; ðD20Þ

κ̃ ¼ m�
ω

Δ2 −
k
ω
Δ3: ðD21Þ

As stated in the main text, when m� → 0, the gap Δ̃� ≈
Δ1 � Δ2 and jκ̃j ≈ −Δ3. In the nonrelativistic limit as
k → 0, the gap Δ̃� ≈ Δ1 � Δ3 and jκ̃j ≈ Δ2. The gap
parameter Δ̃− is the same as the order parameter d obtained
in Bailin and Love, see Eq. (3.54a), evaluated at the Fermi
momentum kF.

2. Gap equations and scalar condensate

We use a variational approach to derive the gap equa-
tions. Upon setting the auxiliary fields to their expectation
values we minimize the free energy Eq. (D15) with respect
to the gap parameters, i.e., nontrivial energy gaps would be
the solution to

∂Ω
∂Δ1

¼ 0;
∂Ω
∂Δ2

¼ 0;
∂Ω
∂Δ3

¼ 0;
∂Ω
∂Σ

¼ 0: ðD22Þ

The gap equations take the form

Δ1ðp0; pÞ ¼ g2
T
V

X
k

X
η¼�

Dðp − kÞ Δ̃ηðkÞ
k20 − ϵ2ηðkÞ

; ðD23Þ

Δ2ðp0; pÞ ¼ −g2
T
V

X
k

X
η¼�

ηDðp − kÞk · p
k
ωk

Δ̃ηðkÞ
k20 − ϵ2ηðkÞ

;

ðD24Þ

Δ3ðp0;pÞ¼ g2
T
V

X
k

X
η¼�

ηDðp−kÞm�
ωk

Δ̃ηðkÞ
k20− ϵ2ηðkÞ

; ðD25Þ

Σðp0; pÞ ¼ g2
T
V

X
k

X
η¼�

2
Dð0Þ

k20 − ϵ2ηðkÞ
�
m�
ωk

ðμþ ηωkÞ

− η
k
ωk

κ̃ðkÞ
ωk

Δ̃ηðkÞ
�
: ðD26Þ

A few comments are in order. We need to perform the
Matsubara sum in k0 ¼ ið2nþ 1ÞπT. As we are interested
in stationary solutions, we suppose that Σ and Δ depend
only on three momentum k. Furthermore, as in Pisarski and
Rischke [35], we assume that the exchanged boson has zero
energy, i.e., p0 ¼ k0 ¼ 0. This removes the k0 dependence
of the gaps. This approximation is justified, as k ∼ μ. For
large energy exchange of bosons, the fermions lie far away
from the Fermi surface (which implies that it is too
expensive to have an energy gap). Note that, these con-
siderations are reminiscent of Eliashberg theory of super-
conductivity where the energy dependence of the gap is
retained while the momentum dependence is neglected
[58]. The final set of gap equations in the T → 0 limit reads

Σð0Þ ¼ −g2

m2
ϕ

X
η

Z
d3k
ð2πÞ3

�
m�
ωk

�
ωk þ ημ

ϵηðkÞ
− 1

�

− η
k
ωk

κ̃ðkÞ
ωk

Δ̃ηðkÞ
ϵηðkÞ

�
; ðD27Þ

Δ̃�ðpÞ¼
g2

32π2
X
η

Z
∞

0

dk
k
p

�
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

∓ η
kp

ωpωk

�
−2þm2

ϕþk2þp2

2kp
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

�

�η
m2�

ωpωk
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

�
Δ̃ηðkÞ
ϵηðkÞ

; ðD28Þ

κ̃ðpÞ ¼ g2

32π2
X
η

Z
∞

0

dk
k
p

�
−η

m�k
ωpωk

×

�
−2þm2

ϕ þ k2 þ p2

2kp
log

m2
ϕ þ ðpþ kÞ2

m2
ϕ þ ðp − kÞ2

�

− η
m�p
ωpωk

log
m2

ϕ þ ðpþ kÞ2
m2

ϕ þ ðp − kÞ2
�
Δ̃ηðkÞ
ϵηðkÞ

: ðD29Þ
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Note that we have renormalized the expression for the
scalar density condensate by subtracting the vacuum part
(hence the −1). We find that the condensate contribution is
momentum independent. The advantage of having a con-
sistent set of gap equations is that we can integrate the
above equations all the way to infinity without having the
need to introduce spurious cutoff dependence.

a. The BCS limit of the gap equations

We now consider the limit mϕ ≫ kF;m, i.e., when the
mediator mass is the largest scale. We aim to recover the
well-known BCS equation from the above set of equations.
In the relativistic limit (m� → 0), we find that

Δ1 ¼
g2

2m2
ϕ

Z
d3k
ð2πÞ3

Δ1

2ϵ−ðkÞ
; ðD30Þ

the gap channels Δ2 and Δ3 being identically zero in the
heavy mediator, relativistic limit. Within the BCS approxi-
mation, the gaps are assumed to be momentum indepen-
dent. Such an assumption signifies possible UV divergence
for the gap equation.
In the nonrelativistic limit (ω → m), we find that

Δ̃− ¼ g2

2m2
ϕ

Z
d3k
ð2πÞ3

Δ̃−

ϵ−ðkÞ
; ðD31Þ

κ̃ðpÞ ¼ p
m

g2

2m2
ϕ

Z
d3k
ð2πÞ3

Δ̃−

2ϵ−ðkÞ
; ðD32Þ

with Δ̃þ being identically zero. In this limit, two pairing
channels Δ1 and Δ3 dominantly contributes to Δ̃−. The gap
equation for Δ̃− is, up to a factor of 2, the BCS gap
equation. Note that κ̃ retains an overall momentum
dependence κ̃ ∝ p=m, hence it is suppressed compared
to Δ−.

b. T ≠ 0 Case

The above equations were evaluated in the limit T → 0
corresponding to temperatures well below the critical
temperature of phase transition. More generally, the gap
equations including the dependence of finite nonzero
temperature takes the form

Σð0;TÞ¼−g2

m2
ϕ

X
η

Z
d3k
ð2πÞ3

�
m�
ωk

�
ωkþημ

ϵηðkÞ
tanh

�
ϵηðkÞ
2T

�
−1

�

−η
k
ωk

κ̃ðkÞ
ωk

Δ̃ηðkÞ
ϵηðkÞ

tanh

�
ϵηðkÞ
2T

��
; ðD33Þ

Δ̃�ðp;TÞ¼
g2

32π2
X
η

Z
∞

0

dk
k
p

�
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

∓η
kp

ωpωk

�
−2þm2

ϕþk2þp2

2kp
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

�

�η
m2�

ωpωk
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

�
Δ̃ηðkÞ
ϵηðkÞ

tanh

�
ϵηðkÞ
2T

�
;

ðD34Þ

κ̃ðp;TÞ¼ g2

32π2
X
η

Z
∞

0

dk
k
p

�
−η

m�k
ωpωk

×

�
−2þm2

ϕþk2þp2

2kp
log

m2
ϕþðpþkÞ2

m2
ϕþðp−kÞ2

�

−η
m�p
ωpωk

log
m2

ϕþðpþkÞ2
m2

ϕþðp−kÞ2
�
Δ̃ηðkÞ
ϵηðkÞ

tanh

�
ϵηðkÞ
2T

�
:

ðD35Þ

APPENDIX E: SOLUTION TO THE
GAP EQUATION

In this appendix we present the numerical results we
have obtained. Before we discuss the numerical results it is
instructive to examine the analytically solutions in the BCS
theory (i.e., for contact interactions) for nonrelativistic
systems. We work in the constant gap approximation,
i.e., we introduce a cutoff scale in order to understand
the dependence of the solution on the parameters of the
theory. However, in the numerical results we present no
approximation schemes are used.

1. Nonrelativistic ansatz in the BCS limit

The gap equation in the nonrelativistic heavy mediator
limit is given by Eq. (D31), with the upper limit of the
integral being some cutoff associated with the system [30]
(for electronic superconductors the cutoff would be the
Debye frequency). However our setup is more general than
the case of electronic superconductor and hence we need to
know what the cut-off associated with our system is. To this
end we follow the approach of renormalization for short
range interactions from ultracold physics as discussed in
Ref. [16,59] (reminiscent of renormalization scheme is
Pisarski and Rischke [35] but in the nonrelativistic limit).
The renormalized gap equation (and their solution) takes
the form

m2
ϕ

g2
¼

Z
kc

0

dk
2π2

k2

2ϵ−
−
mkc
2π2

�
1 −

kF
2kc

log
kc þ kF
kc − kF

�

¼ −
mkF
2π2

log
mΔ
k2F

þmkc
2π2

�
1 −

kF
2kc

log
kc þ kF
kc − kF

�
: ðE1Þ
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In the above we have introduced a cut-off momentum
k2c ¼ 2mðEc þ μÞ. This way the rhs of the renormalized
gap equation converges as kc → ∞ and Ec ≫ μ.
In obtaining the above we have also assumed mΔ ≪ k2F

and mΔ ≪ ϵkF ≪ k2F, with ϵ ≪ kF. Thus, the solution to
Eq. (E1) is

m2
ϕ

g2
≈ −

mkF
2π2

log
mΔ
k2F

ðE2Þ

Δ ≈
k2F
m

e
−
2π2m2

ϕ

g2mkF : ðE3Þ

Adding the condensate contribution does not bring about
further complications. The Fermi momentum is defined as
k2F=ð2mÞ ¼ μþ g2=m2

ϕn, with fermion number density n.
For this case, one finds a parametrically similar solution as
above when we proceed following Eq. (B12).
The solution in the relativistic limit is similar and reads

Δ ≈ μe
−
4π2m2

ϕ

g2μ2 : ðE4Þ

These ansatz are exactly applicable only in the case of
strictly contact interactions. For all other cases the full set
of gap equations should be solved numerically.

2. Structure of momentum dependent gap equations
and their numerics

Momentum dependent gap equations are of the form

ΔðpÞ ¼ −
Z

Kðp; k0Þ Δðk
0Þ

ϵ−ðk0Þ
d3k0

ð2πÞ3 ; ðE5Þ

with the kernel function denoted by Kðp; k0Þ and the
dispersion relation written as ϵ−ðk0Þ. The task is to solve
for ΔðpÞ.
In mathematics, the above equation is called the non-

linear Fredholm equation of the first kind (NLFEFK). It is
well known that a direct brute-force solution to the above
equation is very sensitive to the initial guess value and
consequently unreliable.
In the context of superfluidity in high density neutron

matter where such energy gap equations are often encoun-
tered, new techniques have been proposed to overcome the
numerical difficulty imposed by Eq. (E5). One such
technique is discussed in Refs. [43,60,61], where
Eq. (E5) is rewritten in the form of nonlinear Fredholm
equations of the second kind (NLFESK), which is more
tractable and offers numerical stability in all regimes
without making severe physical assumptions.

NLFESK takes the form

yðxÞ ¼ FðxÞ þ
Z

Gðx; tÞHðyðtÞÞdt; ðE6Þ

where Gðx; tÞ is the kernel function and the nonlinearity is
hidden in the function HðyðtÞÞ. In the context of gap
equation the first step is to recast Eq. (E5) in the form
Eq. (E6), as suggested by Ref. [43]. The idea is that the
kernel function Kp;k0 ≡ Kðp; k0Þ can be written as a sum of
variable separable parts close to the Fermi surface (i.e., at
p ¼ k ¼ kF), and a remainder part that is nonzero only
away from the Fermi surface (i.e., the excitations/deforma-
tions of the sphere). More strictly Kp;k0 ≥ 0 or Kp;k0 ≤
0∀p; k0 ∈ ½0;∞� (as they are our integration limits).
Furthermore, FðxÞ; yðxÞ∶½0;∞� ↦ R. These conditions
seem to be trivially satisfied by the gap equations we
have. The ansatz can be written as

Kp;k0 ¼ KðkF;kFÞ|fflfflffl{zfflfflffl}
propagator func at Fermi surface

× ϕðpÞϕðk0Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{corrections close to surface

þ Wp;k0|ffl{zffl}
remainder function≡all deformations away from Fermi surface

;

ðE7Þ

with

Wðp;kFÞ ¼ WðkF;k0Þ ¼
!
0; ðE8Þ

ϕðkFÞ ¼ 1 and ϕðpÞ ¼
�
Kp;kF

KkF;k0
ϕðk0Þ

�
k0¼kF

; ðE9Þ

ϕðpÞ ¼ Kp;kF

KkF;kF

; ðE10Þ

where the separable function is ϕ, and the remainder
function is Wp;k0 that vanishes on the surface, and
KðkF;kFÞ ¼ Kðp ¼ kF; k0 ¼ kFÞ. Using the above two con-
ditions in Eq. (E7), we obtain the following:

Wk;k0 ¼ Kk;k0 −
1

KðkF;kFÞ
Kðp;kFÞKðkF;k0Þ: ðE11Þ

Thus the gap equation Eq. (E5) becomes

ΔðpÞ ¼ −KðkF;kFÞϕðpÞ
Z

ϕðk0Þ Δðk
0Þ

ϵ−ðk0Þ
d3k0

ð2πÞ3

−
Z

Wp;k0
Δðk0Þ
ϵ−ðk0Þ

d3k0

ð2πÞ3 ; ðE12Þ
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ΔðkFÞ ¼ −KðkF;kFÞ

Z
ϕðk0Þ Δðk

0Þ
ϵ−ðk0Þ

d3k0

ð2πÞ3 ; ðE13Þ

then we have

ΔðpÞ ¼ ϕðpÞΔðkFÞ −
Z

Wp;k0
Δðk0Þ
ϵ−ðk0Þ

d3k0

ð2πÞ3 ; ðE14Þ

ΔðkFÞ ¼ −KðkF;kFÞ

Z
ϕðk0Þ Δðk

0Þ
ϵ−ðk0Þ

d3k0

ð2πÞ3 : ðE15Þ

To obtain the last equation (constraint equation) we have
set p ¼ kF in the reformulated gap equation above. As
suggested by refs [43,60,61], it is numerically convenient
to divide both sides by the normalization of the gap at
Fermi momentum and recast the equations in terms of
dimensionless variables, by introducing the so-called shape
function yðpÞ ¼ ΔðpÞ=ΔðkFÞ,

yðpÞ ¼ ϕðpÞ −
Z

Wp;k0
yðk0Þ

ϵ−ðk0; yðk0ÞÞ
d3k0

ð2πÞ3 ; ðE16Þ

1 ¼ −KðkF;kFÞ

Z
ϕðk0Þ yðk0Þ

ϵ−ðk0; yðk0ÞÞ
d3k0

ð2πÞ3 : ðE17Þ

Notice that the above equations are finally of
the form Eq. (E6), with F≡ ϕ, Wk;k0 ≡G and
yðk0Þ=ϵ−ðk0; yðk0ÞÞ≡HðyÞ.

3. Results

As mentioned previously, we solve the full gap equation
keeping the momentum dependence using techniques
described in Refs. [43,60] (see above). We systematically
present results for the full set of gaps below. We begin with
the discussion of the solution of gap equations in the
absence of scalar density condensate. These results are
shown in Fig. 9. All but the right panels are the same as in

FIG. 9. The solution to the gap equation excluding the effect of scalar density condensate is shown as function of dimensionless
variable kF=m. In the upper-left panel we show the results for values of g ¼ 3 (solid curves) and g ¼ 2 (dashed curves). Blue (red)
colored curves correspond to mediator massmϕ ¼ 5 m (mϕ ¼ 0.5 m). In the upper-right panel we show the individual pairing channels
Δ1,Δ2,Δ3 (equivalently Δ̃−; Δ̃þ; κ̃) as a function of kF=m. In the lower-left panel the results for values of g ¼ 3 (solid curves) and g ¼ 2
(dashed curves) are presented corresponding to mϕ ¼ 0.13 m. The green-shaded region represents the possible crossover regime. In the
lower-right panel the shape functions are presented for model parameters g ¼ 3 and mϕ ¼ 0.13 m, at various values of kF=m.
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Fig. 4 (see gray dotted curves) but where the effect of the
scalar density condensate is neglected, i.e., Σ ¼ 0. In the
top-left panel we show in this scenario the numerical results
for heavy mediator masses mϕ ¼ 5 m (blue curves) and
moderately heavy mediator masses mϕ ¼ 0.5 m (red
curve), for g ¼ 3ð2Þ in solid (dashed) respectively, neglect-
ing the effect of the scalar density condensate. In blue dash-
dotted (dotted) is given, for g ¼ 3ð2Þ, the following
analytical ansatz

Δ̃−ðkFÞ ¼
4

3
kF exp

�
−
8π2

g2

�
exp

�
−
4π2m2

ϕ

g2k2F

�
; ðE19Þ

for which good agreement is found with the numerical
results in the heavy mediator mass regime. The first
exponential factor was derived in Ref. [35] under the
assumption of massless fermions, the second exponential
factor is the well-known BCS ansatz. In the top-right panel,
we show the solutions for the gaps for each individual
pairing channel, as well as along the two orthogonal
directions, Δ̃ and κ. As discussed in the main text
(Sec. III), we find that not all the pairing channels
contribute at all densities. At small densities Δ̃− is the
largest gap and it is dominated by the combination of
pairing channels Δ1 − Δ3. At large densities however Δ̃þ
dominates through the combination of pairing channels
Δ1 þ Δ2. These results are consistent with expectations,
even though the transition from one regime to the other had
not been worked out so far. Also, as anticipated, at all
densities κ is subdominant, Δ3 (Δ2) being small in the
relativistic (resp. nonrelativistic) limit. Finally, we note that
the dominant gap combination, Δ̃, smoothly evolves as the
system changes from the nonrelativistic regime to the
relativistic regime. The bottom panels focus on the light
mediator case with mϕ=m ¼ 0.13. In the left panel we
present the gaps evaluated at k ¼ kF for g ¼ 3ð2Þ in solid
(dashed). In the right panel we show the momentum
dependence of the gap Δ̃−ðkÞ, the so-called shape function,
at representative values of densities, kF ¼ 0.01, 1, 10,
represented by markers. At large momentum (k ≫ kF), the
momentum dependence of the gap is found to be ∼k−1.85,
ensuring self-consistent UV convergence of the gap
equations. At low densities, the gap can exhibit one (or
multiple) change of signs, and this is exemplified by the dip
of the shape function for the lowest shown density,
kF ¼ 0.01. For such choice of parameters, the gap is
negative at large momentum, but nevertheless goes
smoothly to 0 as k → ∞.
The effective mass m� as a function of density is shown

in Fig. 10, for the same model parameters considered in the
above figures and in the main text. We follow the same

color scheme. The nonrelativistic regime kF=m < 1 and
relativistic regime kF=m > 1 are delimited by the vertical
gray dashed line. For the lowest effective coupling C2

ϕ, i.e.,
comparatively largemϕ=m and low g, the effective massm�
deviates from the bare mass m in the relativistic regime.
The effect of the scalar density condensate on the gaps is
thus expected to be small, see the blue curves along their
gray dotted companion in the right panel of Fig. 4. At low
densities, as mϕ=m becomes smaller than unity, for the
studied choice of the coupling, large impact on the gaps due
to the scalar density condensate are expected. This is in
particular shown by the differences between the red curves
along their gray dotted companion in the left panel of
Fig. 4. A similar effect is also seen in the right panel
of Fig. 4.
In Fig. 11, the focus is put on the dependence of the

shape functions on the scalar density condensate for light
mediator masses. The bottom-left panel is the same as the
right panel of Fig. 4, the markers represent the densities at
which the shape function is given on the bottom-right
panel. As before, the gray dotted lines correspond to the
case of no scalar density condensate, Σ ¼ 0. For g ¼ 3 and
mϕ=m ¼ 0.13, due to the change in the effective mass, at
moderate density kF=m ¼ 1, the system is however rela-
tivistic as kF=m� ≫ 1. In turn, the shape function for
kF=m ¼ 1 closely resembles that for kF=m ¼ 10, albeit
shifted to lower kF. Note that this is dissimilar to the case of
Σ ¼ 0. The top-left panel differs from the top-right panel of
Fig. 9 by the fact that in the limit kF → ∞, Δ3; κ̃ → 0, as
both gaps are proportional to the effective mass m� instead
of the bare mass m. This vindicates the simplification we
proposed in the expression for the dispersion relation, see
also Sec. III B.

FIG. 10. The effective fermion mass as a function of dimen-
sionless Fermi momentum kF=m, evaluated assuming there are
no Cooper pairs.
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APPENDIX F: THERMODYNAMICS
AND PHASE DIAGRAM

Building upon the solutions obtained for the gaps and
condensate, we can now determine the free energy of the
system of fermions and study its phase diagram. We
evaluate them in the limit of zero temperature. As the
interaction between the fermions is attractive, a gas to
liquid transition is expected at large fermion densities [21].
The free energy of the system when superfluid gaps are
only a small correction is given by [54]

Ω¼−2T
Z

d3p
ð2πÞ3 ½logð1þe−βðω�−μÞÞþ logð1þe−βðω�þμÞÞ�

þ1

2
m2

ϕϕ
2
0; ðF1Þ

where ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� þ p2

p
. The pressure P is simply minus

the free energy and takes the following form at zero
temperature [20]

P¼−Ω¼ m4

3π2

�
−

φ2

2C2
ϕ

þ
Z

kF=m

0

x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þð1−φÞ2

p dx

�
; ðF2Þ

where we have denoted φ¼Σ=m and C2
ϕ ¼ 4αm2

χ=ð3πm2
ϕÞ.

The adimensional condensate renormalizes themass asm� ¼
mð1 − φÞ and C2

ϕ is the effective coupling strength. The
energy density ϵ (not to be confused with the dispersion
relation ϵ�) at zero temperature is then found through

ϵ¼ μn−P¼ m4

3π2

�
φ2

2C2
ϕ

þ 3

Z
kF=m

0

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þð1−φÞ2

q
dx

�
;

ðF3Þ

FIG. 11. Complimentary to Fig. 4, the results for the gaps including the effect of scalar condensate are shown. In the top-left panel, the
dashed curves show the individual pairing channels Δ1, Δ2, Δ3, while the solid curves correspond to Δ̃−; Δ̃þ; κ, for g ¼ 3 and
mϕ ¼ 0.5 m. In the top-right panel we show a few shape functions corresponding to marked points in the left panel. In the lower-left
panel the results for values of g ¼ 3 (solid curves) and g ¼ 2 (dashed curves) are presented corresponding to mϕ ¼ 0.13 m. The green
shaded region represents the possible crossover regime. In the lower-right panel the shape functions are presented for model parameters
g ¼ 3 and mϕ ¼ 0.13 m, at various values of kF=m as indicated by the corresponding markers.
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where the number density of particles is given by
n ¼ k3F=3π

2. Alternatively, the energy density of the fer-
mions is simply given by the integral over all momentum of
the Fermi-Dirac distribution weighted by the energy of each
mode. The chemical potential is then related to kF by μ2 ¼
m2� þ k2F wherem� is the effectivemass of the fermions in the
medium. Subsequently, φ is determined through the follow-
ing equation

φ

C2
ϕ

¼ 3

ZkF=m
0

x2
1 − φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ð1 − φÞ2
p dx: ðF4Þ

This equation is the same as that of Eq. (D27) when the gaps
are zero. Furthermore, it is easy to accommodate for
repulsive interactions by introducing a vector boson. Such
simplified system has been treated extensively in the nuclear
physics literature (the so-called σ − ω model) in order to
understand the properties of nuclear matter at very high
densities.Neutrons, protons interact attractively by exchange
of the σ meson and repulsively by exchange of the vector
mesonω. Condensation of σ renormalizes the nucleonmass,
condensationofω (more precisely, the0th component of hωμi
by virtue of rotational symmetry) renormalizes the chemical
potential. By fitting the couplings gσ;ω to measured quan-
tities, some characteristics of nuclear matter can be repro-
duced. Interestingly, this system is similar in spirit to a
Lennard-Jones-type potential and some features are expected
to be shared between the nuclear matter and more mundane
matter. For the scenario that is treated here, i.e., DM, the same
parallel can be made, with the attractive interaction rising
from the exchange of the scalar mediator and the degenerate
Fermi pressure at relativistic Fermi momentum balancing it.
Thermodynamic quantities of the system are obtained for

a given m and C2
ϕ by solving Eq. (F4) for φ at every kF and

then computing PðkFÞ and ϵðkFÞ. The pressure and energy
density of a free gas (no interactions) is recovered by taking
the limit C2

ϕ → 0 which, in turn, sends φ → 0 and the in-
medium mass becomes the bare mass, m� → m.
It is interesting to first consider the binding energy per

fermion as a function of density. This broadly paints the
behavior of the system. In Fig. 12 we show ϵ=mn as a
function of the adimensional density ðkF=mÞ3 for a few
illustrative values of the effective coupling. For C2

ϕ ≪ 1 the
noninteracting case is recovered. For C2

ϕ > 1.09, the bind-
ing energy becomes bigger than the rest mass of the
fermions and therefore a global minima develops at high
density. This signals that the matter in the system can clump
into stable bound states of high densities, the so-called
nuggets [9,24], which are identified as the liquid phase.
To understand better the behavior of the system at

different DM densities and coupling, the isothermal curves
of the pressure P as a function of volume v ¼ 1=n are
shown in Fig. 13; such figures are reminiscent of textbook

treatment of the van der Waals equation of state, see for
example [62]. The inverse coupling τ ¼ 1=C2

ϕ plays a role
analogous to the temperature. Indeed, at high τ (small C2

ϕ)
the system can only be in the gas phase whereas at small τ
(high C2

ϕ) the system can be put in a high-density phase.
The conjugate variable to τ is identified to be the square of
the scalar density φ2, as seen from the expression of free
energy above. For C2

ϕ > 0.841, the pressure PðvÞ start
developing a local minima for small volumes, and for C2

ϕ >
0.885 the minima becomes global with the pressure
dropping below 0. Therefore for strong enough inter-
actions, some parts of the PðvÞ curves have dP=dv > 0,
meaning that the compressibility of the system is negative
and that these regions are unstable under any small
perturbations. If prepared in such states, the system is
expected to collapse to a mixture of low and high density
matter at the same pressure.
Constructing the physical EOS is a matter of finding the

equilibrium states and of identifying the metastable and
unstable configurations. Let us summarize how the physi-
cal EOS is built from the standard Maxwell constructions
[62]. The Gibbs-Duhem relation dμ ¼ −sdT þ vdP pro-
vides, at constant temperature (in our case, it would be
constant τ), a relation between the chemical potentials
between two states A and B taken to be, say, at low and high
density, respectively and the area under the curve vðPÞ
between those two states

μB − μA ¼
Z

B

A
vðPÞdP; ðF5Þ

which, of course, depend on the coupling. For appropri-
ately chosen states A and B, it possible for the chemical

FIG. 12. Binding energy per particle as a function of density for
different coupling C2

ϕ. The blue dotted line corresponds to a free
gas. Below ϵ=mn ¼ 1 (dashed green), matter can clump into
nuggets.
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potential of, say, B, to be bigger, lower, or equal to the
chemical potential of A. As can be seen on the right of
Fig. 13, many different state share the same equal pressure
P but different volumes v. The essence of the Maxwell
construction is, for an EOS PðvÞ, to identify the two states
A and B such that they are at equal pressure and at the same
chemical potential. Using Eq. (F5), this amounts to looking
at two points on the PðvÞ curve such that the areas between
the curve and a constant P line (which is the pressure of
both the state A and B) is the same below and above.
In Fig. 13, the green curve (C2

ϕ ¼ 0.9) showcases this
construction.
In the right panel of Fig. 13, we show μðPÞ for the free

case, and for C2
ϕ ¼ 0.9, 1.09, 1.12, respectively. Following

the Maxwell construction of the physical EOS, the physical
isocoupling for C2

ϕ ¼ 0.9ð1.09Þ is explicitly shown and are
presented as the solid green (red) line respectively, while
the unphysical isocoupling in shown as dashed lines. As the
coupling grows, the gas to liquid phase transition happens
at smaller and smaller densities. Interestingly, for C2

ϕ >
1.09 the Maxwell construction cannot be made as there are
no pairs of states with different densities but with the same
μ and P. Technically, for large enough coupling, the area
between the P < 0 region of the curve and P ¼ 0 hori-
zontal axis is bigger than the area under the curve of the
region where P > 0, even if integrated up to infinite
volume. Amusingly, a similar feature is encountered in a
fluid analogy to black hole thermodynamics [63].
As mentioned before, the EOS in this model closely

resembles that of the Lennard-Jones potential and so a
similarity between both phase diagrams is expected. This is
mostly conveniently seen in P − τ plane which is shown in
Fig. 14 (left panel) using the effective coupling C2

ϕ ¼
4αm2

χ=ð3πm2
ϕÞ and the number density n=m3. We now

interpret the phase diagram presented on the right panel of

Fig. 14. Given a coupling C2
ϕ, a system of DM particles at

density n=m3 and in an equilibrium configuration could
behave as a ‘gas’ (blue regions) or as a ’liquid’ (orange
regions) or coexist as a mixture of the two (green regions)
or in the so-called fluid phase (purple regions), respectively.
It is also possible for the system to have no equilibrium
configuration strictly speaking but to be instead in
metastable (very long lived) or unstable states; the region
where such behavior occurs is show in hatched red. In the
context of our DM model, say captured at the core of
neutron stars, we can assume that such a situation could not
be realized.
At this point, it may be instructive to distinguish what we

mean by fluid, gas and liquid phases. As is evident from the
phase diagram, the gas phase corresponds to low density
configuration of the system at moderate C2

ϕ ≈ 1. Therefore,
the expected behavior is very similar to a noninteracting
degenerate Fermi gas. For similar and larger values of the
coupling, the liquid phase is characterized by very large
densities. Near the saturation density, indicated by a solid
orange line, the EOS of the liquid phase closely resembles
that of an incompressible fluid [20]. The intermediate
coexistence region is reached as we increase the density
for similar values of coupling. This transition from the gas
phase happens to be of first order [54]. Furthermore, in the
so-called fluid phase there are no phase transitions, and
consequently the system smoothly goes from the limit of
noninteracting Fermi gas to a relativistic one.
Finally, we briefly address the possible impact of the

superfluid phase on this phase diagram. We find that
the presence of superfluid phase only gives as small
correction to the pressure (as the gaps are parametrically
smaller than the kinetic energy at the Fermi surface). More
precisely, the gaps contributes positively to the total
pressure ∝ μ2Δ2ðkFÞ. Qualitatively, the correction to pic-
ture in Fig. 14 is modest.

FIG. 13. Maxwell construction of the physical equation of state. Left panel: Pressure is shown as a function of volume. Right panel:
the chemical potential is shown as a function of pressure. The dashed and red dotted states do not correspond to equilibrium
configurations.
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