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Abstract

This thesis investigates the potential of neural networks (NNs) as tools for advancing our
understanding of cognition. In recent years, NNs have achieved remarkable performance on a
wide range of tasks, prompting renewed interest from cognitive scientists. Many believe that
NNs can shed light on the neurological processes of cognition. However, critics argue that
NNs lack a theoretical basis, biological plausibility, and the ability to provide explanations.
Motivated by this discourse, the thesis addresses two overarching questions: How valid are
each of the criticisms against the use of NNs in the cognitive sciences, and what are the broader
implications for the epistemic utility of NN models? To answer these questions, the thesis
presents six case studies that use NNs to explore different aspects of cognition.

The first study presents a Transformer model for detecting relapses in patients with mental
disorders. It illustrates how NNs can have pragmatic utility without being based in theory,
biologically plausible, or interpretable. The second study proposes a NN incorporating
a cognitively inspired selective attention mechanism and evaluates it on a benchmark for
grounded language understanding. It shows how NNs can be explicitly connected to theory
by taking inspiration from cognitive science. The third study investigates a hypothesis about
the emergence of writing systems using a sender-receiver game involving two NNs. This study
demonstrates that NNs can serve as working examples of how certain empirical phenomena
may arise.

The fourth study trains a Video Transformer to predict the behavior of animated agents in
simplified social scenarios and benchmarks its performance against both other NNs and
infant behavior. It illustrates that inspecting what a NN learns can prompt questions about
cognitively plausible behavior. The fifth study employs another multimodal Transformer, this
time trained on number-related tasks inspired by developmental psychology. It conducts a
detailed analysis of the model’s behavior and learned representations. This study shows how
NNs can serve as exploratory models when comprehensive theories are lacking. The sixth
study delves into explicit knowledge and reasoning, presenting an approach to modeling
decision-making processes in medical ethics using a fuzzy cognitive map. It exemplifies how
models like NNs can help externalize thought processes and build intuitive understanding.

Each case study constitutes an independent scientific contribution. Taken together, the six
studies demonstrate that the criticisms against using NNs as models in cognitive science are
valid to varying degrees but do not fundamentally undermine their epistemic utility. While
NNs often lack a direct connection to theory and biological plausibility, they can be explicitly
linked to cognitive science literature through careful design of training environments and
architectures. Targeted analyses can often explain the complex dynamics of NNs at different
levels, from high-level model comparisons to low-level mechanistic accounts. Even when
serving primarily as predictive models, NNs can prompt new questions, provide proof-of-
principle demonstrations, and reveal relevant factors for future targeted studies. Ultimately,
their flexibility, scalability, and amenability to analysis make NNs a powerful extension of
the cognitive science toolkit, enabling the investigation of phenomena that were previously
inaccessible to empirical inquiry.
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1 Introduction

The terminology of Artificial Intelligence (AI), particularly within Deep Learning (DL), is
replete with metaphors drawn from the realm of brain sciences. Connectionist models are
“neural networks” made up of “neurons” and “synapses.” They “learn” through backpropa-
gation. Long Short-Term Memory (LSTM) cells “remember” and “forget,” and Transformers
“attend” over their inputs. Indeed, many of the early contributions to the field can be traced
back to researchers interested in the biological mind: Warren McCulloch, Donald Hebb, Frank
Rosenblatt, David Rumelhart, James McClelland, and Geoffrey Hinton were all trained in
neuroscience or psychology. Since the early brain-inspired models proposed by these scientists,
AI has developed into a discipline in its own right, albeit one more concerned with engineering
high-performing systems than with mimicking the human brain. This focus on efficiency and
accuracy has yielded tremendously powerful applications. In a 2023 report on the capabilities
of GPT-4, OpenAI announced that the model could solve parts of tests like the Bar exam, GRE,
or Leetcode [Ope23] – feats that seemed far out of reach only a few years ago.

1.1 Neural networks as models of the mind

As Neural Networks (NNs) have grown in complexity and capabilities in recent years, the
cognitive sciences have turned their attention to these models with renewed interest [SNS21].
Many neuroscientists and psychologists consider NNs promising models of neural computa-
tion [KMK19; Kri15] and have started incorporating them into their research (see Figure 1.1).
They believe that “ongoing advances in DL bring us closer to understanding how cognition
and perception may be implemented in the brain – the grand challenge at the core of cognitive
neuroscience” [SK20, p. 703]. However, not everyone shares this belief, and the issue has
sparked a heated debate in the community [CK19]. In the following, I will briefly outline the
main arguments on both sides, starting with the proponents of a new convergence of AI and
the cognitive sciences. This faction usually stresses two main points:

NNs exhibit activation patterns that correlate with high-level cortical processing in humans.
Models in computational neuroscience before the advent of DL were typically shallow and
used hand-crafted features [KMK19; YD16]. These models could account to some extent for
lower-level perception but were less successful for later stages of neural processing [KM19].
In contrast to these early models, NNs are not designed to fit neural data. Instead, they are
usually optimized on large datasets to perform downstream tasks like categorization [YD16].
Yet, several studies have found that NNs outperform other models in accounting for human
judgments of perceptual similarity [KBO16; PAG17] and for neural activity while process-
ing images [KK14; Cic+16; HK17; Yam+14; Eic+17; Cad+19; GV15] or language [CGK22;
Sch+21]. Given that NNs can handle inputs and tasks of higher complexity than traditional
models of perception, they are seen as a way to expand the scope of cognitive computational
modeling [MP20]. As Storrs and Kriegeskorte put it, “[...] they are the closest we have yet
come to explicit end-to-end models of how perception and cognition might be performed in
brains” [SK20, p. 711].

1



1.1. NEURAL NETWORKS AS MODELS OF THE MIND

Figure 1.1: Number of papers with AI-related keywords in cognitive science venues between
1975 and 2023. Data retrieved from Scopus by searching for publications in journals
and conferences containing “cognitive” or “cognition” in the title. Search results
filtered by the keywords “artificial intelligence,” “machine learning,” “learning
systems,” and “neural networks.”

NNs allow for unprecedented experimental access. The second argument in favor of NNs is
that they offer scientists a higher level of experimental control and access to information than
is available to them with in vivo studies [BMM19]. Researchers can easily record digital neuron
activations, network weights, stimuli, learning trajectories, or gradients. They can then analyze
the receptive fields of neurons or cross-correlations between activations. They can also perform
ablation studies or systematically observe the effect of input perturbations [BMM19]. If one
considers NNs idealized stand-ins for biological brains, these models allow for the fast and
relatively cheap prototyping of new analysis methods [Kri15; CLS18]. Given the possibilities
to “look under the hood” of an AI model, there is also the hope that the investigation of NNs
may lead to valuable insights for cognitive neuroscience [MP20].

On the other side of the divide, opponents of NNs as cognitive models put forth three main
criticisms, namely [CK19]:

NNs have no basis in theory. In contrast to early cognitive computational models, NNs were
not designed to test hypotheses about biological brains [CK19]. Design decisions thus tend
to be informed more by heuristics and engineering goals than by pre-existing theories. As
a result, it is not possible to map components of NNs to corresponding neural circuits or
brain areas [PP20]. Some argue that this theoretical disconnect renders NNs ill-suited for
formulating new hypotheses about brain functions and irrelevant to cognitive science. Merely
using brain-inspired terminology is insufficient to establish a theoretical link between the
disciplines [PP20]. According to these critics, the enthusiasm surrounding DL has led some
researchers to disregard existing knowledge of neural computation in favor of tinkering with
NNs to elicit more human or animal-like behavior. However, such endeavors are deemed
suspiciously akin to engineering-oriented AI research, offering little promise of yielding
scientifically valuable insights [SNS21]. Critics contend that rather than pursuing superficial
behavioral similarities between NNs and humans, efforts should be directed toward theories
of how the mind works [Hom20].

2



1.2. GUIDING QUESTIONS AND APPROACH

NNs are not biologically plausible. Contrary to what terms like “neurons” or “neural
networks” might suggest, NNs lack most of the dynamics of “wetware”. Even proponents
concede that NNs can, at best, be considered highly abstracted models of the brain in that
they consist of simple units that compute linear combinations of their inputs, which are then
passed through some kind of nonlinearity [KMK19]. However, most NNs do not produce
spike-based representations; they have vastly different constraints regarding power efficiency
and memory compared to biological brains, and the standard optimization algorithm in
DL, namely backpropagation, is widely considered biologically implausible [BMM19]. On
a behavioral level, humans and machines exhibit strikingly different error patterns across
many tasks, suggesting divergent underlying representations [SNS21]. In response to the
argument presented above that NNs can account for neural activations, critics have argued
that the equivalence between brains and AI models has been overstated. They contend that
the observed correlations could exist even for activation patterns with vastly different sparsity
and dimensionality [SNS21].

NNs do not offer explanations. The third criticism is that trying to use NNs to understand
the brain merely substitutes one black box for another [MP20]. AI models may fit neural or
behavioral data, but they fall short of arguably one of the most important goals of science:
providing explanations [Gel19; Kay18; SK20]. Cognition researchers are interested in the
capacities of biological agents at different levels, from perception to learning to social dynamics.
Providing a satisfying account of these capacities would mean concisely expressing how they
emerge from the interplay of basic elements [Hom20]. Given the complexity and dynamic
nature of NNs, they are notoriously difficult to interpret [MP20], and tracing the contribution
of components to a specific behavior is a challenge [CK19]. Even if it were possible to garner
good explanations from NNs, these might not translate to biological systems. Although AI
models have shown behavioral similarities to humans in some regards, an infinite number of
systems could produce such behavior using very different processing strategies [KM19]. There
are thus two facets to the explainability problem: Understanding the models themselves and
understanding the target phenomenon, namely biological brains, through these models.

1.2 Guiding questions and approach

As outlined above, proponents argue that NNs can account for higher-level cortical processes
in humans and offer unprecedented experimental access. On the other side, critics contend that
NNs are not informed by theory, are not biologically realistic, and cannot offer explanations.
These arguments warrant a closer examination, as they call into question the epistemic utility
of such models. In this thesis, I will investigate both the merits of the criticisms against NNs
and the potential benefits of employing these models in the study of cognition. To paraphrase
a famous quote by statistician George Box: “No model is perfect, but some are useful”. Can
NNs be useful to the cognitive sciences, and if so, in what way? To sum up, the guiding
question for this work as an integrated thesis is the following:

The use of NNs in the study of cognition has been questioned due to these models’ lack
of theoretical basis, biological implausibility, and inability to provide explanations. How
valid are each of these criticisms, and what are the implications for the epistemic utility of
NN models?

The study of cognition is, of course, a vast field that encompasses many sub-disciplines.
To cover each of them in depth would be beyond the scope of this thesis. Instead, I will
approach the guiding question by discussing six models I built to address problem statements

3



1.2. GUIDING QUESTIONS AND APPROACH
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Figure 1.2: Overview of the interrelationships between “core cognition” domains, explicit
knowledge and reasoning, and cognitive dysfunction. Adapted from Hast [Has14].

in different, representative areas of cognition research. The choice of problem statements was
largely inspired by Kinzler and Spelke’s well-known “core cognition” framework. According
to their proposal, humans – and, to some extent, animals – have an intuitive understanding of
geometry, physical objects, numbers, and the behavior of social agents. These core cognitive
domains make up our tacit knowledge. I elaborate more closely on each domain in section 2.2.2.

Core cognition contrasts with the explicit knowledge we gain through socialization and formal
education in that it emerges much earlier and is usually not taught or articulated. However,
both types of knowledge inform each other and later influence our reasoning. The development
and functioning of the cognitive capabilities outlined above may be impacted by factors such
as developmental disorders, mental illnesses, or brain lesions. Such conditions constitute an
essential part of the study of cognition, as they provide valuable insights into typical and
atypical cognitive mechanisms.

In this thesis, I will present a model that relates to each of the aspects of cognition outlined
in the previous paragraph (visually summarized in Figure 1.2). For every model, I will then
discuss

• How the model relates to the three criticisms against the use of NNs in the study of
cognition

• What kind of epistemic value the model has (if any): What type of knowledge can be
gained from it?

In the first case study, I present a Transformer model aimed at detecting psychotic and
non-psychotic relapses in patients with mental disorders. The second case study focuses on
the core systems of physical objects and layout geometry, where I propose a hybrid model
incorporating a cognitively inspired selective attention mechanism. I evaluate this model
on a benchmark for systematic generalization in grounded language understanding. The
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1.2. GUIDING QUESTIONS AND APPROACH

Table 1.1: Relation between overall guiding questions, sub-areas of cognition research (see
Figure 1.2), and the modeling case studies presented in the chapters of this thesis.

Meta-questions Area of cognition Chapter

• How does the model relate to the criticisms
against using NNs for studying cognition?
• What kind of epistemic value does the
model have, if any?

Cognitive dysfunc-
tion

Ch. 3

Core systems

Objects Ch. 4

Geometry Ch. 5

Social agents Ch. 6

Number Ch. 7

Explicit knowledge and rea-
soning

Ch. 8

third case study explores the cognitive domain of object geometry through a sender-receiver
game setup. Here, I use pre-trained vision and speech models to develop artificial writing
systems whose geometric regularities I compare against human-made letters. In the fourth
case study, I turn to the cognitive domain of social agents. I train a Video Transformer (VT)
to predict the behavior of animated characters in simplified social scenarios and benchmark
its performance against other NNs and infant behavior. The fifth case study employs another
multimodal Transformer, this time trained on number-related tasks inspired by educational
and developmental psychology. I then conduct a detailed analysis of the model’s behavior
and learned representations. Finally, the sixth case study delves into explicit knowledge and
reasoning, presenting an approach to modeling decision-making processes in medical ethics
using a fuzzy cognitive map.

Each study represents an independent and rather different contribution to the Machine
Learning (ML) literature, each of which was or will be published on its own merit. The
technical portions of each work occupy the first halves of their respective chapters and can be
read independently. In the second half of each chapter, I examine the preceding case study
from an epistemic perspective, introducing epistemic concepts as needed to illuminate the
relation of the respective model to the overarching guiding questions. Although epistemology
is typically associated with the study of scientific processes in natural sciences, I believe that
such contextualizations are exceedingly important in empirical fields like ML and cognitive
science as well. In both disciplines, the epistemic goals of a study often remain implicit
[McC09], and the kind of knowledge we can (and cannot) derive from it is rarely discussed. I,
therefore, believe that epistemology can fruitfully inform modeling endeavors in these areas of
research, and I use it as a unifying lens throughout this thesis.

The six models will serve as representative illustrations of epistemic functions that NNs
can fulfill in the cognitive sciences. Table 1.1 shows how each case study relates to the
guiding questions of this thesis and the different sub-areas of cognition research. The more
targeted research questions that motivated the independent study of each model are addressed
within their corresponding chapters. The framing chapters 1, 2, and 9 focus on the overall
contextualization of the individual contributions.

Regarding the use of personal pronouns, for the case studies themselves and the discussions
of the first and sixth case studies, which are based on collaborative publications, I will use
“we/our/us”; otherwise, I will use “I/me/mine” throughout the thesis.
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2 Background

2.1 The epistemology of models

Models join with measurement devices, experiments, theories, and data as one of the key
components of scientific practice [MM99]. Many important contributions across disciplines
have taken the form of models: Bohr’s model of the atom, agent-based models in economics,
the DNA double helix model, the Lotka-Volterra model of predator-prey dynamics – the
list could go on [Gel16a]. Given the de facto pervasiveness of models, it may come as a
surprise that philosophers of science first began to turn their attention to the topic in earnest
in the 1980s [Imb17]. Before this, their focus had mainly been on scientific theories [Gel16a].
Although the epistemological study of models began relatively late, their centrality to science
is now widely accepted [Gel19].

Despite this agreement on their importance, there is little consensus about what models are
and which roles they should play. Part of the obstacle to a comprehensive characterization may
be that, as Nelson Goodman puts it, “Few terms are used in popular and scientific discourse
more promiscuously than ‘model‘” [Goo68, p. 171]. Figure 2.1 illustrates this: models come
in a bewildering array of guises. They can be drawings, 3D objects, mathematical equations,
software – even living organisms [Knu05]. Given that they form such a heterogeneous
ensemble, providing a satisfying unitary account that captures the intrinsic nature of all
models has proven difficult [Dié15]. Instead, philosophers of science have resorted to defining
models according to their function [Gel16c]. Broadly, we can distinguish between two classes
of functional characterization: instantiation and representation [Gel16a].

Figure 2.1: Common co-occurrences with the word “model” in the titles of scientific publica-
tions, colored by discipline. Data collected from Scopus.
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2.1. THE EPISTEMOLOGY OF MODELS

2.1.1 The instantial view

The instantial view regards models as instantiations of a theory [Gel16e]. According to Suppes,
a prominent supporter of this conception, “a theory is a linguistic entity consisting of a set of
sentences and models are non-linguistic entities in which the theory is satisfied [Sup60, p. 290].”
On this account, a model is considered the interpretation of a set of axioms [Gel17; Mor07].
The same set of axioms may allow for different isomorphic interpretations, i.e., models [Gie99].
That is, there will be a one-to-one correspondence between their components [Mor07].

To make this notion more concrete, consider the example of an electric LC circuit and a
bouncing spring [Gie99]. Both systems exhibit sinusoidal behavior, which can be described
by the same abstract differential equation a d2u

dt2 + b u = 0. To calculate the spring’s position
at any time t, we can substitute its position x for u, its mass m for a, and its constant k for
b. To calculate the LC circuit’s current at time t, we can substitute its capacitor charge q for
u, its inductance L for a, and 1

C for b, where C represents capacitance. There are thus direct
analogies between the theory, i.e., the differential equation, and its two instantiations, i.e., the
spring and the circuit (see Figure 2.2).

As the mechanical and circuit models are sometimes used to teach intuition of electrical circuits,
it should be emphasized that the theory being instantiated here is not the lumped electrical
circuit but the differential equation. Typically, models constitute simplifications of their target
systems, omitting certain details to facilitate understanding or analysis. Interestingly, in this
case, the relationship is inverted. The target system – the theory represented by the differential
equation – is simpler than its physical instantiations. Specifically, it ignores factors present
in real-world systems, such as electromagnetic fields and radiation, high-frequency effects,
non-linearities in circuit elements, and resistive losses.

The view of models as instantiations of simple, fundamental theories is attractive in fields
like physics, where the pursuit of first-principles explanations is a central goal. However,
this approach becomes problematic in domains where such explanations remain elusive. In
cognitive science, for instance, academic theories are more modest attempts to bring some
initial clarity and organization to our observations and understanding of the mind. The way
cognitive science divides cognition into different domains, such as perception, attention, and
memory, is somewhat artificial, though, as these categories tend to overlap in reality. This lack
of clear separability reflects the absence of overarching theories that are both parsimonious and
have full explanatory power. As of yet, cognitive science does not afford the type of elegant,
powerful theories that exist in physics and instead has to make do with more piecemeal
explanations that do not perfectly capture the integrated nature of cognition. I contend that
precisely this state of affairs makes it important to scrutinize the goals and limitations of
modeling in cognitive science.

2.1.2 The representational view

The instantial account has come under attack from several fronts. Most recent philosophers
of science consider models as tools of representation rather than as embodiments of abstract
theories [Knu05]. According to this representational view, models give us knowledge because
they capture at least some important aspects of their target systems [Knu21]. In this conception
of models, the focus of analysis shifts from the relationship between theory and model to the
relationship between model and target [Knu11]. However, scholars differ in their opinion of
what this model-target relationship should look like. Within the representational view, we can
broadly distinguish between informational and pragmatic views [Gel17].
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Figure 2.2: Visual representation of the example used to illustrate the instantial view of models
in section 2.1.1. One-to-one correspondences between components of the the-
ory (top), the spring model (left), and the LC circuit model (right) marked with the
same colors. Adapted from Giere (1999).

The informational view For those who emphasize the informational aspects of models,
representation implies an objective relation between the model and its target [Gel16a]. This
relation is independent of the model user’s beliefs or intentions, i.e., the focus is solely on the
model-target dyad [Gel17]. The model’s epistemic value stems from the fact that it contains
information about the systems it depicts: it is similar to the target in important ways [Gie99].
According to particularly strong versions of the informational view, this similarity should
take the form of some kind of morphism [Knu11; Gel17]. There should be a direct mapping
between model and target elements that preserves the relations between components [Knu05].
If a model accurately represents its target, it can “stand in” for the other system [Knu11].
Conclusions drawn based on the model will transfer to the real-world target it depicts [Fen67].
Although attractive in theory, this view has been criticized for failing to take into account an
essential part of representational practices, namely, the model user.

The pragmatic view Pragmatic views of models shift the focus of analysis from the model-
target dyad to a model-target-user triad [Knu05]. Pragmatists maintain that the view of
representation as a faithful structural mapping of the elements of a system is too narrow [Knu05;
Knu11; RK22]. Instead, models function as representations in virtue of the cognitive activities
for which a user employs them [Gel16a]. Essentially, a model is considered a representation
if it is used as such [RK22]. Therefore, one needs to take into account the user’s cognitive
interests, beliefs, and intentions [Gel16a]. A user might, for example, want to derive predictions
from their model, gain a deeper understanding of a phenomenon, or communicate an idea.
According to pragmatic views, a model’s success should be judged by how well it serves its
user’s epistemic goals – not necessarily by its ability to mirror some target [MM99; GP17].

In the extreme, this view risks resulting in epistemic myopia. A model’s success should
not be judged solely by its ability to satisfy a user’s subjective goals, as users may harbor
misconceptions or misjudge whether a model truly serves its purpose. Within scientific
disciplines, models typically need to demonstrate some level of empirical grounding or
theoretical coherence in addition to serving a specific, pragmatic function. Peer-reviewed
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2.2. THE STUDY OF COGNITION

publications rarely accept models that exhibit no correspondence with relevant features of a
target phenomenon. However, the aspects of reality that a model is expected to capture, and the
extent to which it must do so, depend on the specific questions a model is designed to address.
Ultimately, the pragmatic perspective cautions against focusing solely on representational
faithfulness without considering the context of a model’s intended use.

2.1.3 Relation to the guiding questions

NN skeptics in the cognitive science community rarely express their concerns in epistemological
terms. Yet, there are striking parallels between their statements and the different schools of
thought on models in the philosophy of science.

Consider the first criticism against NNs: They have no basis in theory. This objection mirrors
the instantial view that models are, or should be, interpretations of a set of axioms. The second
criticism, namely that NNs are biologically implausible, points to an underlying assumption
that the value of a model hinges on the similarity to its target – in this case, the brain. An ideal
model would constitute a detailed cortical reconstruction à la “Blue Brain Project” [Mar06],
allowing for accurate simulations. This perspective aligns with the informational view of
models. It also relates to the instantial view in that the brain can be seen as an instantiation of
certain physical principles and biological mechanisms (e.g., differential equations governing
neuron spiking, synaptic plasticity rules, etc.). From the instantial perspective, for NNs to be
considered valid models of the brain, there should be a one-to-one correspondence between
the components of NNs and the underlying theory that the brain instantiates.

The third criticism – NNs do not offer explanations – implies that cognitive scientists have
a goal, namely understanding biological cognition, which NNs do not meet. This critique
reflects a pragmatic view: A model’s purpose is to support its user’s epistemic aims, and
failing to do so invalidates its legitimacy. The pragmatic perspective also encompasses the
other two criticisms, as some cognitive scientists may aim for models that accurately represent
theoretical frameworks or faithfully mirror the biological brain.

In summary, the recent debate surrounding the use of NNs in the study of cognition mirrors
an older discourse about the nature of models. It stands to reason that the epistemological
literature on the topic can fruitfully inform the discussion of NNs in cognitive science. After
each of the six modeling case studies in this thesis, I will include a section that briefly presents
some contributions from the philosophy of science related to the case study in question. These
“epistemic background” sections will provide the basis for my evaluation of the epistemic
functions of each model.

2.2 The study of cognition

The framing chapters of this thesis address the usefulness of NNs in the study of cognition,
aligning with the pragmatic view of models discussed previously. As we have seen, pragmatic
accounts maintain that a model’s evaluation must consider its user’s epistemic aims. In the
following section, I will, therefore, attempt to define the scope and goals of cognitive science –
in as much as this is possible, given the inherent breadth and interdisciplinary nature of the
field. I will also provide an overview of Kinzler and Spelke’s ideas on “core cognition”, as this
framework greatly informed my choice of modeling case studies.
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2.2.1 History and definition

Cognitive science has its origins in 1950s North America [Núñ+19]. At this time, psychology
was moving away from behaviorism, the previously dominant paradigm [Mil03]. Behaviorism,
often associated with researchers like Watson and Skinner, focused on the associations between
stimuli and outputs. Whatever the “black box” in the middle did to produce a behavior was
considered unobservable and thus of little scientific relevance. However, the emergence of the
fields of computer science and neuroscience brought with it a growing interest in information
processing mechanisms, both digital and biological [Mil03].

The term “cognitive science” was first used by Christopher Longuet-Higgins in a 1973 com-
mentary on the Lighthouse report. This report, commissioned by the UK parliament, was a
scathing review of the state of AI at the time. Its author, Sir James Lighthill, concluded that
most AI methods only applied to toy problems and would not scale up to the real world. The
report is credited with almost completely dismantling AI research in the UK for about ten
years [RN10]. In his rebuttal to this report, Longuet-Higgins argued that the principal value of
AI was to allow for formulating and testing models in sciences relevant to human thought and
perception: the cognitive sciences [Lon73].

From the very beginning, cognitive science was conceived as an interdisciplinary venture.
Longuet-Higgins’s commentary suggested four main groupings within cognition research:
mathematics, linguistics, psychology, and physiology [Lon73]. This proposal has since been re-
vised, and the most salient conceptualization of the field is now one as the product of synergies
between psychology, linguistics, AI, anthropology, philosophy, and neuroscience [Núñ+19].
The Cognitive Science Society, a flagship institution of the field since 1979, also includes
education in this list [Soc]. The main disciplines are often depicted as a regular hexagon,
which continues to serve as the emblem of cognitive science today (see Figure 2.3) [Núñ+19].

What is it, then, that connects these many disciplines? Because cognitive science spans so
many research areas, it is difficult to pinpoint a cohesive core of the field. Here, I will adopt
a definition proposed by Mekik and Galang, which I feel best captures the center of the
“cognitive science hexagon.” Mekik and Galang propose to view cognitive science as “the
study of how agents perform tasks” [MG22, p. 2]. A task here refers to anything that has to
be done – from daily activities to experimental tasks to computational problems. Mekik and
Galang identify this task-oriented focus as a distinctive feature of cognitive science.

Researchers in this field are typically concerned with operationalizing hypotheses as tasks that
allow for empirical performance measurements. For example, they may study how people
learn and remember new information by testing their recall on word lists or visual patterns,
or examine decision-making processes by having participants play economic games or solve
logic puzzles. Another common research goal in cognitive science is to characterize the effect
of agent and task constraints on internal or external behavior, such as how working memory
capacity influences problem-solving ability or how time pressure impacts decision quality.

In Mekik and Galang’s interpretation of cognitive science, an agent is understood to be any
entity capable of action, covering biological and AI agents alike. Different sub-disciplines may
focus on specific instances of agents and tasks at different levels of analysis. For example,
neuroscientists may study the neuronal dynamics of human or animal brains during cognitive
tasks, while anthropologists may examine the behaviors and decision-making processes of
entire cultures over long timescales. Cognitive science forms a meta-discipline that draws on
these different areas of research to investigate more abstract and general questions [MG22].
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Figure 2.3: “Cognitive science hexagon” representing the six main disciplines of the field.

2.2.2 Core cognition

According to Spelke and her collaborators, humans are endowed with a few specialized
systems that form the foundation for higher-level concepts and skills [Spe22]. Spelke’s view
on these systems’ exact number and nature appears to have changed over time. In this thesis,
I focus on four innate cognitive primitives that have consistently been part of her proposal:
1) intuitions about inanimate objects and their interactions, 2) geometry, 3) agents and goal-
directed actions, and 4) numbers. Spelke argues that these systems have been “hardwired” into
our brains in the course of cognitive evolution [HM19]. Drawing on empirical investigations
from developmental psychology and neuroscience, she shows that core cognitive abilities are
present in infants and animals too early to be a product of learning [Spe22]. Each system is
characterized by a set of signature limits allowing its identification across tasks, ages, species,
and human cultures [SK07]. Spelke, therefore, suggests that these domains form a set of
universal building blocks of cognition [HS04].

Objects The first core system that Spelke proposes represents physical objects and the
principles that govern their motion [SK07]. Objects move as bounded, cohesive entities on
continuous, unobstructed paths. They only influence each other’s motions if they come into
contact with each other. Knowing this allows humans and animals to predict object trajectories
and to perceive shapes and boundaries, even when objects are partly occluded [SV93]. Evidence
of these abilities has been found in newborn infants and baby chicks [LSR96; RV95; Val+06].
Crucially, the object system is constrained: our attentional resources only seem to allow us to
represent and track about three or four objects at a time [SK07]. This signature set-size limit
has been identified in humans across various ages and cultures [RFJ01; ROL03; Gor04]. Our
limitations on object-based attention and visual working memory thus appear to be present
almost from birth and to stay relatively constant throughout our lives [Car00].

Geometry Spelke’s second core system represents geometry. It encompasses two distinct
subsystems: one for layout geometry and one for object geometry [SL12]. Layout geometry sup-
ports spatial navigation. It encodes egocentric distance (proximal-distal) and sense (left-right),
which enables inferences about the relative positions of items and places in one’s environ-
ment [HM19]. This ability has been found in diverse animals, children, and adults [SL12].
Object geometry supports the recognition of smaller objects and their visual properties. Studies
have shown that, throughout the world, people are highly sensitive to shape and geometric
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regularities such as symmetry [Sab+21; Deh+06]. Spelke’s proposal of two core systems for
geometry converges with Goodale and Milner’s two-streams hypothesis [HM19]. According
to this view, object recognition and localization are handled by two separate pathways in
the primate brain, namely the ventral stream (or “what?” system) and the dorsal stream (or
“where?” system) [GM92].

Social agents The third core system represents agents and their actions. Studies have shown
that young infants expect agents to behave differently than passive, inanimate objects. Unlike
objects, agents need not be cohesive or move along continuous paths [SPW95]. Agents can
cause their own motion and can interact with other objects or agents [SK07]. From a very
young age, infants represent agents’ actions as intentional, and they expect agents to move
towards their goals efficiently, i.e., without unnecessary detours [GC03; Woo99]. Infants
use their representations of agents to guide their own actions and to interpret the actions
of others [Spe22]. The agent core system may, therefore, play an essential role in social
learning [SK07].

Numbers The fourth core system is that of numbers. What is meant here is not the mathemat-
ical concept of numbers but a more fundamental ability to represent and compare magnitudes
and quantities. Spelke and her collaborators distinguish between two core systems of numeri-
cal representations [FDS04a]. These are present in various animal species, human infants, and
adults from indigenous groups who were never exposed to mathematical concepts [Hau+03;
XS00; Pic+04a]. The first system allows for precisely representing distinct objects and their
continuous properties, such as size or length [FDS04a]. Due to attentional constraints, this
system can only keep track of a small number of concrete entities at a time [Lei+17]. The
second system can represent much larger numerosities, but only approximately [FDS04a]. It
can also compare groups of objects if the difference in number is significant enough [VV82].

Beyond core cognition According to Spelke, core systems occupy an important middle
ground in cognitive research: they are distinct from sensory or perceptual systems in that they
represent abstract properties and relations. They also differ from the explicit belief systems
underlying our decision-making and reasoning because they operate automatically and appear
to emerge too early to be a product of learning [Spe22]. However, they may serve as scaffolds
for later, more explicit knowledge. E.g., children may build on their core number system to
learn mathematics, and their core agent system may be the foundation for more complex moral
reasoning. Even after acquiring more advanced concepts, core systems persist throughout our
lives and complement, or sometimes compete with, our explicit knowledge [SK07].

Not all researchers concur with Spelke’s proposal of core cognition [Car00; Rip17]. There
continues to be much debate about the existence and nature of “built-in” knowledge in the
brain. My thesis is relatively agnostic to these issues. I take the view that, regardless of
questions about origins and exact definitions, the evidence put forward by Spelke points
to core systems as important “clusters” of cognitive abilities shared by a range of agents,
including animals, children, and adults. They, therefore, provide a useful lens through which I
will explore the broader field of cognition in this thesis. With this brief review, I now turn to
the first case study.
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3 Modeling patient-specific activity patterns
with Transformers to detect psychotic and
non-psychotic relapses

The sciences do not try to explain, they hardly even try to interpret, they mainly make models.

John von Neumann

3.1 Study

The first case study relates to the research area of cognitive dysfunction, specifically psychotic
disorders (see Figure 3.1). The model presented in this study was developed as a submission
to the 2nd e-Prevention Grand Challenge hosted at the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) 2024 [Fil+24]. The objective posed in the e-Prevention
challenge was to identify psychotic and non-psychotic relapses in patients using biosignals
captured by wearable sensors. Our proposed solution is an unsupervised anomaly detection
approach based on Transformers. The submission ranked 3rd on detecting non-psychotic
relapses (Track 1) and 1st on detecting psychotic relapses (Track 2). Therefore, a version
of the following text was included in the 2024 ICASSP proceedings [HGD24]. This case
study represents an engineering-driven approach that is typical for the field of ML. It serves
mainly as a contrast to the less conventional uses of NNs presented later in this thesis, and its
presentation is kept relatively brief.
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Figure 3.1: Situating the first case study in the broader study of cognition. Relevant parts of
the framework marked in orange.
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3.1.1 Introduction

Millions of individuals worldwide struggle with psychotic disorders, which significantly impact
their quality of life and pose substantial challenges to strained healthcare systems [Wai+17].
The increasingly widespread adoption of wearable sensors, paired with advancements in ML,
offers the potential to aid such patients through digital phenotyping [Zla+22]. By continuously
and unobtrusively monitoring physiological and behavioral patterns, subtle indicators of
impending or ongoing relapses can be detected, thereby facilitating timely interventions and
personalized treatment strategies. The e-Prevention project aims to stimulate research in this
nascent but promising area [Fil+24]. The first e-Prevention challenge was held in 2023 and
included two tasks: identifying smartwatch wearers and detecting psychotic relapses. While
submissions scored high on the first task, results on the second task were more mixed. The
second e-Prevention challenge, therefore, focuses on relapse detection, this time including both
psychotic and non-psychotic relapses.

3.1.2 Dataset

The data for this challenge was sourced from the e-Prevention project [Zla+22]. It contained
features extracted from accelerometer, gyroscope, heart rate monitor, sleep, and step data
recorded on several contiguous days by 9 patients for Track 1 (non-psychotic relapse detection)
and 8 patients for Track 2 (psychotic relapse detection). The primary difference between
psychotic and non-psychotic relapses lies in the nature of their symptoms. Psychotic relapses
are characterized by a loss of contact with reality, which can manifest as hallucinations or
delusions. Non-psychotic relapses instead involve symptoms like a depressed mood, fatigue,
or anxiety. Data for both tracks were split into a training set and a validation set by the
challenge organizers. The training set contained only non-relapse data, and the validation set
included relapse and non-relapse days. A held-out test set only available to the organizers was
used for the final evaluation of the challenge. The validation set could not be used for training,
i.e., only unsupervised approaches were allowed.

3.1.3 Methods

Pre-Processing We pre-processed the data using a baseline script provided by the organizers1,
which extracted a set of features from the raw sensor data. These included features such
as heart rate variability statistics or the norm of the recorded linear acceleration, which had
proven helpful in previous work on digital phenotyping [Eft+23]. We added step information
as a feature but did not use the provided sleep data as these were quite unreliable and
negatively impacted model performance. The dataset contained many missing values due to
sensor malfunctions or patients not wearing their watches. For Track 1, we imputed missing
values with the features’ median value for each 5-minute segment of the day for the individual
patients. For Track 2, we omitted segments with missing values.

Models and Training Our implementation built closely on the challenge baseline1. This
baseline was a Transformer-based model, which the organizers trained to predict a patient’s
ID based on the data captured by that patient’s wearable during the day. Transformers are
described in some technical detail in section 7.1.3. The intermediate features from this patient
identification model were then used to train an Elliptic Envelope classifier [RD99] to detect
anomalies, i.e., relapses [Eft+23]. However, we noticed in our data exploration a significant

1https://github.com/filby89/spgc-eprevention-icassp2024
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Table 3.1: Experiment settings used for Tracks 1 and 2 of the e-Prevention challenge.
Track 1 Track 2

Handling of Missing Values Impute median Discard

Sequence Length 72 24

Encoder Layers 2 2

Encoder Heads 8 8

Output Dimension 64 64

Encoder Dimension 64 64

MLP Ensemble no yes

Batch Size 64 16

Dropout Rate 0.1 0.2

Optimizer Adam Adam

Epochs 100 50

Early Stopping yes yes

variability across patients. We also saw that the daily activity patterns of individual patients
tended to change when they relapsed. This observation is consistent with previous findings
that changes in routines, especially sleep behavior, can serve as an important feature in
detecting relapses [Avr+23; Zho+22]. Therefore, we made two major changes to the baseline.

First, we changed the pre-training objective from predicting user IDs to predicting the time of
day that a measurement was taken. The idea behind this was that changes in patient routines
would reflect in model prediction errors. The other main change we made to the baseline
was that we trained an individual model for each patient. Previous work has also found this
to better capture the patients’ characteristic activity patterns [Cal+23; Pan+22]. Additionally,
we made some minor changes in hyperparameters, which we found empirically to improve
performance. Table 3.1 provides an overview of the experimental setups used for both tracks.

There was less data available for Track 2, which increased the risk of overfitting. We, therefore,
used an ensemble of Multi-Layer Perceptron (MLP) prediction heads, each of which we trained
on an 80 % subset of the training data. This served as a form of regularization and improved
performance on the Track 2 validation dataset. Preliminary experiments with ensembles on
Track 1 yielded no discernible improvement over the single-model approach. Given the added
computational overhead of ensembles, we decided to apply them only to Track 2.

Outlier Detection To detect outliers, i.e., relapses, we computed the mean prediction error
for each day in the training and validation sets. We then calculated the mean-normalized error
for each day in the validation set

enorm =
eval � etrain

max(etrain)� min(etrain)
.

A 24-hour period was classified as a relapse day when the mean-normalized prediction error
was above zero, i.e.,

score(enorm) =

(
0 if enorm  0
1 if enorm > 0.
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Table 3.2: Scores on validation and test set for Tracks 1 and 2 of the e-Prevention challenge.
Validation scores are averaged over five independent runs. Our approach ranked 3rd

on Track 1 and 1st on Track 2.
Track 1 Track 2

Val PR-AUC ROC-AUC AVG PR-AUC ROC-AUC AVG

Random Chance 0.326 0.500 0.413 0.349 0.500 0.424

Baseline 0.472 0.614 0.543 0.452 0.594 0.522

Ours 0.680 0.665 0.672 0.694 0.669 0.681

Test PR-AUC ROC-AUC AVG PR-AUC ROC-AUC AVG

Random Chance 0.500 0.430 0.465 0.500 0.347 0.424

Baseline 0.561 0.485 0.522 0.548 0.412 0.480

Ours 0.595 0.574 0.584 0.563 0.444 0.504

For Track 2, we used an ensemble consisting of M = 5 ensemble members to calculate
eval based on the squared Euclidean distance of each prediction pi to the prediction mean
µ = 1

M Âi pi, i.e.,

eval = Eday

h
Ei
⇥
kpi � µk2

2
⇤ i

.

3.1.4 Results

Table 3.2 shows the scores on the validation and test sets for Tracks 1 and 2. Fig. 3.2 illustrates
the rationale behind our approach to use time stamp prediction as a pre-training task. In the
example shown, the model’s prediction error is lower on validation set days without relapses.
Many relapse days show errors especially after midnight and in the early hours of the morning,
indicating a change in activity pattern.

Figure 3.2: Example visualization for the model’s prediction error for Patient 5 in Track 1.
Shown per 5-minute segment, i.e., there are 288 = 24 ⇥ 60

5 segments per day.
Predictions on overlapping segments were averaged.
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3.2 Discussion

In summary, we investigated the usefulness of predicting biosignal measurement timestamps
as a pre-training task for the unsupervised detection of relapses in psychotic patients. We
trained individual Transformer models for each patient to predict the timestamps of biosignal
measurements on non-relapse days, implicitly modeling normal daily routines. The models’
mean-normalized prediction errors were then used as indicators of atypical behavior and, thus,
risk of relapse. We tested this approach in both a single-model (Track 1) and an ensemble
set-up (Track 2) and found that it yielded promising results. Our approach ranked 3rd on
detecting non-psychotic relapses and 1st on detecting psychotic relapses.

Although this case study relates to psychology through its dataset, it reflects the currently
dominant paradigm in ML. The values and goals of the field mainly pertain to performance –
i.e., accuracy or computational efficiency. As in the case study, these are the parameters used
to justify design decisions: if one approach outperforms another, the reasons are of secondary
importance. This attitude is not unique to ML – returning to the epigraph of this chapter,
John von Neumann, in his time, already remarked that “The sciences do not try to explain,
they hardly even try to interpret, they mainly make models. [...] The justification of such a
mathematical construct is solely and precisely that it is expected to work” [Von55, p. 157].

However, this focus on performance is particularly prevalent in ML. What counts is to reach
higher accuracies on public benchmark datasets. These serve as easy points of reference and
comparison in a highly competitive field, where the number of papers published each month
is growing exponentially [Kre+23], and acceptance rates at top-tier conferences have reached
lows around 20% [Pin+21]. Challenges, such as the one presented in this case study, are a
common mode of engagement. Tuning hyperparameters assiduously is seen as progress for
no other reason than that “it works,” in the sense that it produces better results. Our own
work succeeded with a mixture of insights and parameter engineering.

By its own metrics, the performance-driven paradigm described above has led to great
successes in AI. But is such an approach useful when transferred to other fields? This question
relates to a broader debate that arose when “Big Data” came to the scene in the late 2000s.

3.2.1 Data-driven inquiry and the “end of theory”

Data-driven inquiry refers to a mode of research that has data accumulation as its starting
point. Learning then happens through applying methods to extract meaningful patterns
from that data [Zal20]. Although this is certainly not a new approach to science, the techno-
logical advancements of the late 2000s made it possible to conduct data-driven research at
an unprecedented scale [Des+22]. The proliferation of the internet, social media platforms,
sensors, and other digital devices led to a significant increase in the amount of data being
generated. This surge in data availability gave birth to the discipline of data science, whose
techniques researchers from various fields could operationalize and apply to their respective
domains [Des+22]. By some, this was seen as the beginning of a new era of agnostic science
with its own norms and “motley” epistemology [Win01; Leo14; Imb17].

Put pointedly, knowledge could now be generated automatically – without the need for
hypotheses or a deeper understanding of the data. In a provocative article in 2008, Anderson
refers to this shift as “the end of theory” [And08]. He presents a view that “Petabytes allow
us to say: ‘Correlation is enough.’ [...] We can analyse the data without hypotheses about
what it might show. We can throw the numbers into the biggest computing clusters the world
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has ever seen and let statistical algorithms find patterns where science cannot [...] Correlation
supersedes causation, and science can advance even without coherent models, unified theories,
or really any mechanistic explanation at all. There’s no reason to cling to our old ways“ [And08].
The view characterized here is an inductivist, Baconian one [Des+22]. It contrasts with the
classical conception of the scientific method that prescribes starting with a theory, deducing
hypotheses, and then confirming or falsifying them through experiments [Kit14; Des+22].

Many scholars have argued vehemently against this perceived turn to purely data-driven
science. They maintain that data by themselves do not speak [Kit14; Des+22; Fri15]. Data
collection, algorithm selection, and interpretations must be embedded in wider knowledge
and theory to avoid “fishing expeditions,” i.e., unsophisticated investigations with little hope
of contributing to any fundamental understanding [Ell+16]. The associations found by ML
methods do not necessarily reflect causes [Gig20; Vas+21; Des+22]. There is always the risk
of spurious correlations and confounders [Lip18; Leo14; Fri15; Zal20; Vas+21]. Critics in the
cognitive science community have analogously expressed concern over the field’s current focus
on documenting empirical regularities and called for more theory development [Gol22].

3.2.2 AI as an epistemic enhancer

However, not everyone sees the rise of data science pessimistically. Some consider it merely a
logical next step in our centuries-old history of using scientific tools – or epistemic enhancers,
as Paul Humphrey calls them [Hum04]. These are technologies that increase our capacities to
acquire knowledge by augmentation, conversion, or extrapolation.

Augmentation means that we gain access to features of the world we are not naturally equipped
to perceive. An example here would be computerized axial tomography (CAT scans) [Hum04].
Conversion occurs when a phenomenon accessible to one sensory modality is made available
in another [Hum04]. E.g., accelerometer data can be visualized on a screen. Computational
modeling often involves this kind of information conversion [Alv23]. Extrapolation refers
to an expansion of our existing abilities [Hum04]. E.g., a microscope extends our visual
capabilities. Many ML methods provide this type of epistemic enhancement [Alv23]. While
humans have the ability to extract patterns from data, algorithms allow us to do so faster and
on a much larger scale [Fri15]. Analyzing the 136 gigabytes of raw sensor data in this case
study manually would have posed quite a challenge. From a more optimistic perspective of
epistemic enhancement, ML can thus be considered a worthwhile endeavor to exceed our
human limitations when confronted with large quantities of information [Des+22].

It is worth noting that not all uses of AI should automatically be considered epistemic
enhancement. Much ML work is focused on improving the accuracy of practical applications.
In these cases, the trained model may simply be capturing correlations in the data rather than
identifying causal mechanisms. For example, a model designed to predict which products
a customer is likely to buy may perform well on a test set but then fail to generalize if
the underlying drivers of customer behavior shift. This could be due to changes in the
customer’s income, family situation, or product preferences. The model designer may respond
by retraining the model, temporarily narrowing the performance gap, but this does not
address the fundamental issue of missing the true causal factors. Such approaches are closer
to empirical data mining than to data science. Thus, while ML techniques can be powerful
tools for expanding our knowledge, their value as epistemic enhancers depends on how they
are applied.
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Figure 3.3: Overview of relations between human cognition, theory, assumptions, data, model,
and outputs in the first case study. Relevant components performed or generated
by us shown in orange. Components provided by third parties shown in gray.
Circle at the beginning of an arrow indicates the starting point of investigation.

3.2.3 Relation to the guiding questions

Relating the case study to the criticisms from section 1, it is certainly fair to say that model
design was informed more by heuristics than by scientific theory, it is not a biologically
plausible model of the brain, and the only kind of explanation it offers is teleological. Teleology
means to explain by reference to some purpose, goal, or function. The modeling process
is quite typical for NNs (see Figure 3.3). Its starting point is a dataset, often collected and
provided by a third party – here, the challenge organizers. This dataset is explored, which
leads to certain assumptions. In this case, we concluded that it might be helpful to pre-train
the model on predicting the time of day rather than patient IDs and that patient-individual
models might work better than one joint model. These assumptions inform the model design
and training. The model’s outputs are then evaluated – usually by the model designers, but in
this challenge, by the organizers. In the future, digital phenotyping models could be used to
assess the state of the systems that produced the training data, namely, patients with mental
illnesses.

Given that the modeling process began with the data rather than with some scientific hy-
pothesis, the case study could be seen as an example of the much-maligned “end of theory”
approach. The criticism against data-driven inquiry that correlations do not automatically
impart understanding certainly holds here. Do patients relapse because their routines change?
Do the patients’ routines change because of a relapse? Is it a reinforcing spiral? I.e., does a
lack of sleep or physical activity lead to a worse mental state, which then begets less sleep, less
activity, and a further deteriorating psychological condition? The study offers no answers to
these questions. We cannot conclude anything beyond the fact that changes in daily routines
could be helpful indicators of relapses. However, such purely predictive or diagnostic models
might be enough for some use cases. Applications like neural prostheses, brain-computer
interfaces, monitoring patient well-being, or developing and optimizing experimental designs
can have an inherent value, even if that value is mainly pragmatic [CK19].
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Furthermore, a closer look reveals that the kind of modeling practice exemplified in this case
study is not as inductivist as it appears at first glance. Although we begin by exploring the data,
we do so to identify possible explanations of the data’s internal structure. These explanations
may relate to the previous scientific literature. For example, we hypothesized that changes in
patient routines indicate relapses and found support for this in others’ work. This inference
from data structure to explanatory hypothesis is an example of abductive reasoning [Des+22].

Together with induction and deduction, abduction is one of the three most commonly recog-
nized modes of inference. The different modes’ characteristics can be summarized as follows:
“deduction proves that something must be, inductive reasoning shows that something is, while
abduction merely suggests that something may be [Mil10, p. 194]”. Abductive inference is com-
monplace in many fields, including social, political, economic, and cognitive sciences [Des+22;
Kit14]. Besides the informal hypothesizing involved in NN design, the model could also
become embedded into broader scientific practice by inspiring further psychiatric experiments
that allow for causal manipulation.

To sum up, we can conclude from the first case study that a NN need not be derived from
theory, biologically plausible, or offer much in the way of explanation to be useful. Even
models that do not fulfill these criteria can serve as epistemic enhancers. They can convert
information between sensory modalities or expand the domain of our human analytic abilities.
These models can provide value by virtue of their outputs, e.g., optimized experiment designs
or alerts that a patient is relapsing. We can also say that NN modeling is usually an abductive
rather than merely an inductive endeavor. That is, it may be data-driven and approximate but
not wholly disconnected from theory.

Recall, however, that the epistemic goal of cognitive science is to systematically understand
how agents perform tasks. The automatic fitting of a model to a dataset carries little systematic
understanding beyond the actual solution of the problem itself [NPS14]. This kind of pragmatic
“oracle” model may thus not be satisfactory in all cases [SA19]. The following case study,
therefore, tries to go into more explanatory depth.
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4 Modeling the emergence of compositional
generalization on the grounded SCAN dataset
with selective attention

“That’s another thing we’ve learned from your Nation,” said Mein Herr, “map-making. But we’ve
carried it much further than you. What do you consider the largest map that would be really useful?”

“About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards to the mile. Then
we tried a hundred yards to the mile. And then came the grandest idea of all! We actually made a map
of the country, on the scale of a mile to the mile!”

“Have you used it much?” I enquired.

“It has never been spread out, yet,” said Mein Herr: “the farmers objected: they said it
would cover the whole country, and shut out the sunlight! So we now use the country itself, as its
own map, and I assure you it does nearly as well.”

From “Sylvie and Bruno Concluded” by Lewis Carroll

4.1 Study

The second case study relates to the core systems of objects and layout geometry (see Fig-
ure 4.1). Layout geometry supports spatial navigation by encoding sense and egocentric
distance [HM19]. The object system allows us to represent and track physical items. However,
due to our limited attentional resources, it can only handle a few objects simultaneously [SK07].
We take inspiration from these core cognitive systems to equip an AI model with two inductive
biases in the form of a selective attention bottleneck and egocentric location encoding.

The model is trained and tested on the Grounded Simplified version of the CommAI Navigation
tasks (gSCAN), a benchmark dataset that requires an agent to navigate a 2D grid world and
to interact with objects. Our goal is to determine whether including selective attention and
egocentric location encoding can improve accuracy and sample efficiency on this dataset
and, if so, to investigate which factors contribute to performance. The proposed model is
a hybrid architecture that combines layers trained with gradient descent and components
optimized with an evolutionary strategy. Through ablation studies, neuron pruning, and
error analyses, we show that both of the human-inspired inductive biases contribute to
performance. Particularly, the selective attention mechanism drastically improves the model’s
sample efficiency.

A version of this case study was published in the Proceedings of the BlackboxNLP Workshop at
the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP) [HD22a].
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Figure 4.1: Situating the second case study in the broader study of cognition. Relevant parts of
the framework marked in orange.

4.1.1 Introduction

The brain sciences have long been a source of inspiration for novel algorithms and AI archi-
tectures [LKC20; SK20]. For instance, the first connectionist models tried to mimic neural
information structures in an abstracted way [Has+17]. Convolutional Neural Networks (CNNs)
were inspired by the visual cortex’s hierarchical processing of stimuli [YD16]. Reinforcement
Learning (RL) has benefited from temporal-difference methods, which emerged from behav-
iorist psychology research on animal behavior. Deep Q-Networks utilize “experience replay,”
which mirrors episodic memory by randomly sampling and replaying past experiences to
avoid catastrophic forgetting. LSTMs are designed to remember information over extended
time intervals, similar to human working memory – the list could go on [Has+17].

Despite this rich history, the influence of neuroscience and psychology on AI has become rarer
in recent years. As models have grown increasingly powerful and their adoption in industry
has become ubiquitous, the incentive structure has shifted towards solving the problems that
arise when training and deploying NNs at scale [Mom23]. This engineering-focused approach
has led to neural network designs taking more freedoms and adopting solutions alien to mental
processes in the name of pragmatism [PP20]. However, some researchers have argued against
this trend, suggesting that we need to (re-)turn to the brain for inspiration and guidance if
we want to improve AI models [Lak+17; BMM19; GB22a]. For all the progress DL systems
have made over the years, there still exists a gap between state-of-the-art neural networks and
biological minds. One of the aspects in which NNs continue to lag behind human intelligence
is compositional generalization [LB23].

Compositionality refers to the ability to understand and generate complex expressions or
ideas by combining simpler parts according to systematic rules [LB23]. It is what allows us
to produce infinite combinations of known linguistic, visual, or motor concepts, including
combinations we have never encountered before. For instance, if we understand English
grammar and the words “blue,” “car,” and “fast,” we can comprehend the sentence “The
blue car is fast” even if we are hearing it for the first time [PA16]. The ability to reason
compositionally is a desirable property for AI models, as it could lead to more human-like,
robust generalization on out-of-distribution data and increased sample efficiency.
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Compositionality in neural networks has thus been the subject of numerous empirical investi-
gations – with mixed results. Several studies using a variety of NN architectures have found
that models either failed on compositional tasks or succeeded given enough data but did
so without relying on systematic compositional rules [Bar20; LB18; LBL18; SSG19; Key+19;
Hup+20; And+19; Cha+20]. Others found that such architectures could reach compositional
solutions without being explicitly constrained to do so but that this ability varied dramatically
across random initializations of the same model [LKB18; MML20; WSB18].

This work addresses the challenge of compositional reasoning by taking inspiration from the
cognitive science concepts of selective attention and joint attention. Selective attention helps
humans focus on specific parts of their sensory input [Tyn+17]. The ability to concentrate
on certain stimuli while ignoring others is crucial for learning and reasoning composition-
ally [BTT15]. Joint attention is a social form of selective attention. It refers to a shared focus of
two individuals and plays an important role in children’s development [TC07]. By looking
or pointing at specific stimuli, caregivers direct children’s attention to certain inputs [LS20].
This guidance helps children parse their environment into relevant components and scaffolds
their learning process [DMP16]. In the following study, we embed selective and joint attention
processes into the training setup of a neural network to investigate the effect of this inductive
bias on the model’s ability to reason compositionally and its sample efficiency.

Our dataset of choice for this investigation is gSCAN, a challenge benchmark for systematic
generalization in grounded language understanding. The model we use is a hybrid architecture,
containing some weights trained with gradient descent, some optimized with an evolutionary
strategy, and some initialized randomly and left frozen. A detailed justification of these
design choices is given in Section 4.1.4. The architecture has around 60 times fewer trainable
parameters than models previously tested on gSCAN, which allows us to run extensive ablation
studies and error analyses to investigate factors contributing to generalization performance.
Our findings indicate that including selective and joint attention mechanisms helps the model
break down gSCAN tasks into simpler, reusable parts and to combine them compositionally.
The model achieves accuracies comparable with previously proposed, more complex models
on most test splits – even when trained on as little as 2% of the full dataset. On adverb-to-verb
generalization, it outperforms previous proposals by 65 to 86%.

4.1.2 Related Work

Compositional generalization A number of works have addressed the challenge of build-
ing AI systems that generalize compositionally. Neural Module Networks were designed
for visual question answering, and they achieve systematicity by dynamically assembling
question-specific models out of trainable reusable components [And+16a; And+16b; Bah+18].
Other approaches explore ways of encouraging compositional representations in commonly
used state-of-the-art models without major architectural changes. In this vein, Hupkes et
al. [Hup+18] and Baan et al. [Baa+19] find that attentive guidance during training helps
develop small functional groups of neurons that yield more compositional solutions by seq2seq
models on lookup table tasks. Andreas [And20] and Akyürek et al. [AAA20] propose data
augmentation schemes that promote compositional learning in instruction following and
morphological analysis. Ontañón et al. focus on the effect that design decisions such as
position encodings, weight sharing, or model hyper-parameters can have on the compositional
generalization abilities of Transformer models [Ont+22]. Finally Power et al. identify weight
decay as being particularly effective at improving generalization on a binary operation table
task [Pow+21].
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Grounded instruction following Several datasets have been proposed in recent years for
training embodied agents to follow instructions in simulated 2D or 3D environments [Her+17;
Yu+18; Mis+18; Cha+18; YZX18; Der+19; Che+19; Shr+20]. One such dataset is gSCAN,
which was specifically introduced as a benchmark for compositionality in grounded language
understanding and contains nine test splits for assessing different kinds of out-of-distribution
generalization [Rui+20]. Previous approaches to solving gSCAN include language-conditioned
message passing [GHM20], compositional networks [KKB21], neuro-symbolic, dual-system
models [Nye+21], and the introduction of auxiliary tasks [JB21; HB20]. The most successful
model to date uses a general-purpose Transformer architecture with cross-modal attention and
solves five out of nine tasks [Qiu+21].

Neuroevolution Evolutionary Algorithms (EAs) are stochastic, gradient-free methods that
explore multiple areas of a search space in parallel. Our work was particularly inspired
by Tang et al., who combine EA techniques with neural networks to solve vision-based RL
tasks [TNH20]. Their model extracts relevant patches from input images through a hard (non-
differentiable) attention mechanism optimized via an EA rather than more commonly used
techniques like RL. The most attended-to patches are then passed on to an LSTM controller,
which determines the agent’s action. The authors find that this approach significantly reduces
the number of model parameters needed compared to previous methods, as well as offering
increased interpretability and higher robustness to out-of-distribution modifications [TNH20].

4.1.3 Background

Following Tang et al., we make use of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) to implement our selective attention mechanism. However, we use an Echo State
Network (ESN) for the agent’s memory component rather than an LSTM to reduce the number
of learnable parameters needed (see Section 4.1.4). As neither technique is commonly used in
DL, we provide some background on these topics here.

CMA-ES CMA-ES is a black-box optimization algorithm that has been empirically shown to
perform robustly on a range of tasks [Han+10]. It also requires minimal parameter tuning,
which made it the optimization method of choice in the work of Tang et al. that inspired
our architecture. CMA-ES begins by sampling l individual solutions x(g+1)

1 , ..., x(g+1)
l from

a multivariate Gaussian distribution N
�
m(g), s(g)2 C(g)� with mean m(g), step size s(g) and

covariance matrix C(g). The initial mean, step size, and covariance matrix are then adapted
iteratively to increase the likelihood of successful solutions as evaluated by some function f .
Mean adaptation is done by shifting m by the weighted average of the µ best solutions of
generation g [Sha+20]:

m(g+1) = m(g) + cm

µ

Â
i=1

wi
�

x(g+1)
i:s � m(g)�, (4.1)

where cm is a learning rate. The new step size s is determined as follows [Sha+20]:

s(g+1) = s(g) exp

 
cs

ds

 ���p(g+1)
s

���
EkN (0, I)k � 1

!!
, (4.2)

24



4.1. STUDY

where cs is a separate learning rate, ds is a damping parameter, and p(g+1)
s is the next

generation’s conjugate evolution path computed as [HMK03]:

p(g+1)
s = (1 � cs) · p(g)

s +
q

cs · (2 � cs) ·
p

µ

s(g)

�
x(g+1)

µ � x(g)
µ ). (4.3)

Finally, the covariance matrix is updated [HMK03]:

C(g+1) = (1 � ccov) · C(g) + ccov · p(g+1)
c

�
p(g+1)

c
�T, (4.4)

where ccov is another learning rate. For a more in-depth description of the CMA-ES algorithm
please see Hansen et al. [HO01a].

Echo State Networks A basic ESN consists of an input layer Wr
i , a Recurrent Neural Network

(RNN) or so-called reservoir, and an output layer Wo. The reservoir’s state is updated at each
discrete time step as follows:

x[n + 1] = (1 � a)x[n] + a f
�
Wr

i u[n] + Wr
r x[n]

�
, (4.5)

where a is a leak rate, x[n] is the current reservoir activation state, f is a hyperbolic tangent
function, u[n] is the external input, and Wr

r is the reservoir’s internal weight matrix. The ESN’s
output is computed as

y[n + 1] =g(Wox[n + 1]), (4.6)

where g is an activation function. Crucially, Wr
i and Wr

r are randomly initialized and left
untrained. Only Wo is optimized. This leads to considerably faster training times than for
conventional RNNs where all weights are learned [Gau+21]. ESNs’ main areas of application,
therefore, include resource-constrained contexts like robotics and edge computing [Nak20].

4.1.4 Methods

gSCAN Benchmark The gSCAN environment is a grid with objects of various shapes, sizes,
and colors. It is represented as a 16 ⇥ 6 ⇥ 6 array, where 6 is the grid size and 16 is the
dimension of the feature encoding for each grid cell. The agent receives synthetic English
language instructions, which it must carry out using a combination of six output actions.
These actions include walking, turning left or right, pushing, pulling, and staying put. The
agent may be asked to navigate to or interact with a specified object. Objects can be moved by
pulling or pushing, once for light objects and twice for heavy objects.

Instructions may omit attributes if they can be deduced from the context. For instance, the
same object could be referred to as “the small yellow circle”, “the yellow circle”, “the yellow
object”, etc., depending on whether there are other small, yellow, or circular distractor objects.
“Small” and “large” are not descriptions of absolute sizes but are always to be inferred relative
to other objects. All commands can be modified by adverbs, such as “cautiously” or “while
spinning.”. This means the agent may have to look both ways before moving or turn around
four times before each step. Figure 4.2 shows a sample task.

Some input combinations are withheld from the training set. Out-of-distribution generalization
is then assessed on nine separate test splits containing only examples with unseen combinations,
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Figure 4.2: Example of a gSCAN task. Agent represented as a pink triangle.

Table 4.1: Overview of gSCAN’s compositional test splits.
Test Split Held-out Examples

A: Random Random (in-distribution)

B: Yellow Squares Yellow squares as targets if referred to as yellow

C: Red Squares Red squares as targets

D: Novel Direction Targets south-west of the agent

E: Relativity Circles of size 2 referred to as small (references are relative to other grid
objects, not tied to absolute sizes)

F: Class inference Pushing squares of size 3 (heavy objects are pushed/pulled twice)

G: Adverb k = 1 All except k mentions of cautiously (looking both ways before each step)

H: Adverb to verb Commands containing both pull and while spinning (turning 4 times)

I: Length Action sequences of length � 15

listed in Table 4.1. Performance is measured using exact match accuracy of predicted action
sequences. The full dataset has ⇡ 370, 000 training and ⇡ 20, 000 test sequences.

Hupkes et al. propose to distinguish between five types of compositionality, namely, the
systematic recombination of known parts and rules (systematicity), the extension of predictions
beyond lengths seen during training (productivity), robustness to synonym substitutions (substi-
tutivity), dependence on local vs. global structures (localism), and the preference for rules vs.
exceptions (overgeneralization) [Hup+20]. Following this taxonomy, split G tests the model’s
one-shot learning capabilities or overgeneralization. Split I tests for productivity. We mainly
consider splits B, C, D, E, F, and H, which focus on systematic generalization and substitutivity.

Model To solve a task, the agent requires knowledge of the instruction, the grid state, and its
own past actions. The latter is needed to keep track of, e.g., the number of turns completed
when “spinning”.

To create the representation of the language command, we chose an ESN due to its ability to
capture information about all input words and their order in a single vector without requiring
any weight optimization. This fits our goal of keeping the number of trainable parameters
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low for ease of analysis. The instruction to the agent is tokenized, one-hot encoded, and
input sequentially to a reservoir with 400 hidden neurons, which is updated after each token
according to Equation 4.5. All reservoir neurons are randomly connected to an output layer
Wo of size 64, yielding a 64-dimensional command embedding xlang 2 R1⇥64.

The model’s selective attention component is responsible for extracting task-relevant informa-
tion from the input grid. Note that here, we are not referring to the widely used attention
mechanism of Transformer models. Our “attention” is a much simpler form of relevance
computation. We pass the command embedding xlang through a layer Wvis 2 R64⇥16. The
resulting vector is convolved with the input grid at each position to obtain a heatmap over a
grid G 2 R16⇥6⇥6. Thus, Wvis can be understood as a kind of association matrix or learned
filter, which maps between language and visual inputs. The x- and y-coordinates and the
16-dimensional feature vector for the most-attended grid cell g⇤ are then extracted:

g⇤ = arg max
�
(xlang · Wvis) ⇤ G

�
(4.7)

Because this arg max operation is non-differentiable, we follow Tang et al.’s approach of
using CMA-ES to optimize Wvis. However, in contrast to Tang et al., we are working with
feature vectors rather than image patches, and we do not evolve all learnable parameters in
our model. This is because our model has significantly more parameters than that of Tang
et al., and the time and space complexity of CMA-ES is quadratic in the dimensionality of its
objective function. This restricts its application to problems with no more than a few hundred
variables [Var+18]. Therefore, only the selective attention part of the model is optimized using
CMA-ES. The rest is trained using gradient descent. Inspired by joint attention mechanisms
and parental guidance during child learning, the CMA-ES receives auxiliary feedback on
whether the correct target object was most attended to. We also test and report the results for
a version where the CMA-ES only receives as feedback the cross-entropy loss produced by the
agent’s final prediction outputs (see Section 4.1.5).

The action attention part of the model serves as the agent’s “memory" of past outputs. The
command embedding xlang undergoes a self-associative step, where it is passed through a layer
Wlang and multiplied element-wise with the original xlang, yielding a weighted embedding
alang 2 R1⇥64. This is then passed through another layer Wact 2 R64⇥200 and multiplied
element-wise with a vector xact 2 R200⇥1 containing the agent’s one-hot encoded past 20
actions and orientations:

aact = (((xlang · Wlang)� xlang) · Wact)� xact (4.8)

As there is no arg max operation involved, Wact is trained with conventional gradient descent.

The outputs of the selective and action attention modules are concatenated with the agent’s
current x- and y-coordinates and orientation, as well as the original command embedding.
Coordinates of the target cell extracted via the selective attention module are encoded as row-
and column-wise relative distances to the agent. This is motivated by the fact that egocentric
spatial encoding supports navigation in animals and humans and is sometimes used in RL
goal navigation tasks [VC22]. The concatenated inputs are passed to the agent’s controller to
predict the agent’s next step. The controller consists of a normalization layer, a linear layer
with 100 hidden ReLU units, and an output layer of size 6, as the agent has six output options.
In total, the model has a little under 5 · 104 trainable parameters (see Table 4.2), less than 2% of
the 3 · 106 for models previously tested on gSCAN [Qiu+21]. A schematic overview is shown
in Figure 4.3.
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Figure 4.3: Schematic visualization of our model.

Training details The weights of the ESN were initialized with a spectral radius of 0.99 and
a density of 10�2. The leaking rate was set to 10�1. For the CMA-ES, we used a population
size of 8 and an initial normal distribution with standard deviation 10�1. For the part of the
model trained via gradient descent, we used the Adamax optimizer and a learning rate cycle
with an upper boundary of 10�2. Weight decay was set to 10�4, and models were trained
with batch size 4,096 for 100 epochs unless otherwise specified. All performance results are
based on 10 runs. Each run used a different random seed for model weight initialization.
However, the same 10 seeds were used for all tested modified or ablated architectures so that
all compared models started with the same 10 sets of weights. Experiments were implemented
in Pytorch [Pas+19]. The training time for one model was approximately 1.3 hours on the full
dataset. For reference, the gSCAN authors report the training time for their baseline model as
less than 24 hours [Rui+20].

Table 4.2: Overview of our model’s trainable parameters (biases were only used in layer
normalization).

Parameter Size

Hidden layer 28,800

Layer normalization weights 100

Layer normalization biases 100

Output layer 600

Selective attention key matrix 1,024

Self-attention key matrix 4,096

Action attention key matrix 12,800

Total 47,520
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Table 4.3: Exact match accuracy on gSCAN compositional splits. For our model (trained with
auxiliary attention feedback), we report both the performance of models trained on
the full dataset and of those trained on a 10% subset.

A B C D E F G H

Seq2Seq
(2020)

97.7 ± 0.2 55.0 ± 39.4 23.5 ± 21.8 0.0 ± 0.0 35.0 ± 2.4 92.5 ± 6.8 0.0 ± 0.0 22.7 ± 4.6

GECA
(2020)

87.6 ± 1.2 34.9 ± 39.3 78.8 ± 6.6 0.0 ± 0.0 33.2 ± 3.7 86.0 ± 0.9 0.0 ± 0.0 11.8 ± 0.3

Heinze
(2020)

94.2 ± 0.7 86.5 ± 6.3 81.1 ± 10.1 - 43.4 ± 7.0 - - -

Gao
(2020)

98.6 ± 1.0 99.1 ± 0.7 80.3 ± 24.5 0.2 ± 0.1 87.3 ± 27.4 99.3 ± 0.5 - 33.6 ± 20.8

Kuo
(2020)

96.7 ± 0.6 94.9 ± 1.3 67.7 ± 10.8 11.5 ± 8.2 76.8 ± 2.3 98.7 ± 0.1 1.1 ± 0.3 21.0 ± 1.4

Qiu
(2021)

100 ± 0.0 99.9 ± 0.1 99.2 ± 0.9 0.0 ± 0.0 99.0 ± 1.2 100 ± 0.0 0.0 ± 0.0 22.2 ± 0.01

Jiang
(2021)

- - - - - - 4.9 28.0

Nye
(2021)

74.7 81.3 78.1 0.0 53.6 76.2 0.0 21.8

Ours
(100%)

99.7 ± 0.1 73.5 ± 25.4 99.4 ± 0.4 2.2 ± 1.5 97.4 ± 2.0 99.1 ± 0.6 0.0 ± 0.0 98.4 ± 1.1

Ours
(10%)

99.5 ± 0.1 81.6 ± 14.3 99.5 ± 0.2 3.5 ± 2.7 96.8 ± 1.9 98.3 ± 1.7 0.0 ± 0.1 94.2 ± 3.7

Table 4.4: Sequence and attention match accuracies on additional held-out verb-adverb and
shape-color combinations. Original verb-adverb and shape-color splits H, B, and C
shown for reference. All models trained with auxiliary feedback on the full dataset.

Attention
match

Exact
match

Exact match if
attention match

Custom split: Pull while spinning +
push while zigzagging + walk hesitantly

0.98 ± 0.01 0.99 ± 0.01 0.996 ± 0.00

H: Adverb to verb 1.00 ± 0.00 0.93 ± 0.06 0.943 ± 0.06

Custom split: Yellow squares + red
squares + green cylinders + blue circles

0.99 ± 0.01 0.99 ± 0.02 1.00 ± 0.00

B: Yellow squares 0.86 ± 0.14 0.83 ± 0.17 1.00 ± 0.00

C: Red squares 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.00

4.1.5 Results

Performance As shown in Table 4.3, the model with auxiliary attention feedback reaches
competitive accuracy on splits A, C, E, and F. On split H, it outperforms previous proposals
by 65 to 86%. To see if generalization extended to other combinations, we also tested two
custom splits. The first is a variation of task C, where not only red squares but also yellow
squares, green cylinders, and blue circles never appear as targets during training. The second
is an extension of split H, where in addition to “pull while spinning", the agent is never told to
“push while zigzagging" or to “walk hesitantly" during training. The model generalized to test
sets containing only held-out shape-color and verb-adverb combinations, reaching 98.7% ± 1.5
and 98.9% ± 0.5 accuracy, respectively (see Table 4.4).
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Figure 4.4: Exact match accuracy and attention match accuracy on gSCAN compositional splits
for models with idealized selective attention, selective attention optimized without
auxiliary feedback and absolute target locations, and selective attention optimized
without auxiliary feedback and relative (egocentrically encoded) target locations.

Figure 4.4 analyzes the performance of models trained without the joint attention-inspired
auxiliary signal. Instead of feedback on its target choice, the selective attention module only
receives the cross-entropy loss of the model’s final output. Figure 4.4 also compares models
using absolute locations vs. relative target distances. We show both sequence and attention
match accuracy. Sequence match refers to whether an instruction was carried out correctly.
Attention match denotes whether the selective attention module picked out the right target. We
include sequence match accuracy for idealized models receiving perfect target location inputs
for reference. As the attention match accuracy shows, models without an auxiliary signal
do learn to focus on the target in some cases, but their performance exhibits high variation.
Egocentric encodings outperform allocentric ones in both sequence and attention match.

We analyze the mistakes made by the models trained without auxiliary feedback by treating
the task of focusing on the correct target as a classification in its own right and analyzing the
feature-wise confusion matrices of the models (see Figure 4.5). This reveals an accumulated
false discovery rate of 66.5% for the “agent" dimension of the grid cell feature vectors (Figure
4.5a), compared to 0% for the models trained with feedback. Thus models without attentive
guidance tend to overly focus on the agent. The location of the agent does coincide with the
target object’s location around 18% of the time, which might lead to an over-reliance on this
dimension. We also find that models trained without attention supervision struggle more with
under-specified commands. For example, the models focus on an object of the correct color in
ca. 92% of cases when the color is explicitly mentioned in the command (Figure 4.5b). When
the target object is only referred to by its shape or size, the accuracy drops to about 81%.

In the case of split B (yellow squares), performance exhibits a large variation (see Table 4.3).
Out of 10 runs, approximately half always achieve accuracies in the range of 90 - 99% while
the others only reach 35 - 55%. A look at the confusion matrices (not shown) reveals that, on
average, models correctly identify a square as their target object in 97% of test cases. However,
their color accuracy is only around 75%. Taken together, this suggests that the models overfit
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(a) Confusion matrix for the
agent dimension

(b) Confusion matrix for the
color dimensions when color
is specified in the command

(c) Confusion matrix for the
color dimensions when color
is not specified in the com-
mand

(d) Confusion matrix for the
color dimensions when size
is specified in the command

(e) Confusion matrix for the
color dimensions when size
is not specified in the com-
mand

(f) Confusion matrix for the
shape dimensions (always
specified in the command)

Figure 4.5: Confusion matrices of the agents’ selective attention module, trained without an
auxiliary signal.

to the absence of yellow squares. Depending on the random initialization of Wvis, a model may
be more or less predisposed to generalization on this task. In the absence of any samples with
yellow squares that could cause a course correction, this predisposition may be exacerbated
with each update and thus deteriorate performance in higher-data regimes. This would explain
why performance is better for the 10% subset than for the full dataset.

Regarding the low performance on split D (targets southwest of the agent), the problem
seems to be related to navigation rather than to the identification of the correct target. The
model’s attention match accuracy is 100%. However, it cannot find its way to the identified
cell successfully. On average, it ends up in the correct row in 44% of cases, in the right column
in 23% of cases, and never both.

Sample efficiency Besides the model’s accuracy, we are also interested in its sample efficiency.
As shown in Figure 4.6, it achieves around 90% accuracy on splits A and C when trained on
only 1% of the dataset and 90 - 97% accuracy on splits A, C, E, and F with 2% of the data.
This is well below the 40% data requirement threshold identified by L. Qiu et al. for their
cross-modal Transformer model [Qiu+21]. In accordance with our discussion of split B in the
previous section, the exact match accuracy for shape-color splits B and C peaks at the 10%
subset and declines slightly when given more data. Performance on task H increases more
slowly than on other splits and requires at least 10% of the dataset to surpass 90% accuracy.
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Figure 4.6: Sample efficiency on test splits
for models with selective atten-
tion and auxiliary feedback.

Figure 4.7: Sample efficiency on test splits
for models without selective at-
tention.

Figure 4.8: Standardized residuals of a c2-test comparing the wrong predictions of models
trained without vs. with selective attention, on in-distribution data. Circle color
represents absolute value. Red indicates that a feature is over-represented, blue
indicates it is under-represented. Circle size represents the number of occurrences.

Much of this sample efficiency seems to be due to the selective attention mechanism. To
demonstrate this, we train a model without selective attention. Instead of the isolated feature
vector of the most attended-to grid cell, this model’s controller receives the flattened, attention-
weighted whole grid as input. To account for the added dimensionality, we increase the number
of neurons in the controller to 500. Figure 4.7 shows that performance-wise, this causes a
drop-off, but the model still achieves around 90% accuracy on split A (in-distribution data)
when trained on the full dataset. However, the models need to have seen more combinations
to start generalizing. This is also supported by a comparison of the confusion matrices for
models with and without selective attention via a c2-test on split A. Figure 4.8 shows the
strength of the difference between observed and expected values. Squares, the color yellow,
and small object sizes, which are under-represented in the training data, are over-represented
in the incorrect target predictions of models trained without selective attention.

Ablations As shown in Figure 4.9, ablating weight decay or attention over past steps causes
the steepest performance drops in splits E, F, and H. To compare structural differences between
the ablated models, we perform a neuron pruning experiment. We record the activation of
each neuron in the controller’s final layer, multiplied by the neuron’s outgoing weight. We
then sort neurons based on their accumulated contribution to the final model output, and we
test exact sequence accuracy on the gSCAN validation set with the top X% of neurons active,
where X is a variable. The remaining neurons are disabled by setting outgoing weights to 0.
The result is shown in Figure 4.10. All full models require only 13 hidden neurons to solve all
tasks. Without action attention, 16 neurons are needed to reach the final accuracy. For models
without weight decay, pruning any of the 100 neurons leads to decreased performance.
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Figure 4.9: Sequence and attention match accuracies on gSCAN compositional splits with
the full selective attention model, weight decay ablation, and action attention
ablation (all trained on the full dataset).

This difference in learned representations is also illustrated in Figure 4.11, which shows the
weights between the agent’s past actions and the hidden layer of three identically initialized
models with different ablations applied. The model with weight decay and action attention
learns the most sparse weights and focuses on recent steps. The hidden model without action
attention has a similarly sparse hidden layer, but a longer "memory", i.e., it takes into account
past actions from further back in the step sequence. The model without weight decay is very
densely connected.

“Spontaneous" generalization During our ablation studies, we observed that generalization
on the “adverb to verb" split does occur frequently in models without weight decay and action
attention, but only sporadically. As shown in Figure 4.12, performance on split H may spike on
one training batch, then fall again. Higher systematic generalization ability is not necessarily
evident from looking at the performance on in-distribution data – two models can have the
same training loss or test accuracy, but very different out-of-distribution accuracies. Such
spurious generalization behavior may also explain the variation in performance on split H
observed by Gao et al. [GHM20] and Jiang et al. [JB21].

One reason often cited for unstable generalization is sharp local minima [Kes+17]. However, a
visualization of model loss landscapes at various points during training shows relatively flat
planes. The landscapes for training and split H data are simply well aligned for some model-
batch combinations and less so for others (see Figure 4.13). We also investigated whether the
batches used to update the models immediately before out-of-distribution performance spikes
had any special properties that would facilitate generalization. We saved batches that preceded
an increase in split H accuracy of at least 5%, injected them randomly into the training of other
models, and recorded the difference in performance caused. However, we found no statistically
significant improvement over random batches and no statistically significant differences in
feature or label distributions of such “spike" batches.
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Figure 4.10: Sequence accuracy on in-
distribution data for ablated
and unablated models with
different percentages of dis-
abled top contributing neu-
rons.

Figure 4.11: Weights between past agent ac-
tions and the controller’s input
layer, as learned by the full model
(a), model without action attention
(b), and model without weight de-
cay (c).

We did find that batch size had an impact on the likelihood of generalization spikes. We trained
10 models without weight decay on a 2% subset of the training data with batch sizes 256, 512,
1024, 2048, and 4096. All models were initialized with the same random seeds and trained for
the same number of absolute updates. We then sampled the models’ performance on split H
at 50 points in regular intervals during training. As shown in Figure 4.14, generalization
performance with smaller batches was higher but more volatile. Comparing the distribution
of sampled split H accuracies across batch sizes yielded statistically significant Z-scores > 2
between batch sizes  512 and � 2048. This is consistent with previous findings that smaller
batch sizes facilitate better generalization [SL18; Kes+17; Smi+18; HHS17; ML18].

Figure 4.12: Performance on split H during training for a model without action attention.
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(a) (b)

Figure 4.13: Examples of loss landscapes for models trained without weight decay. Lower
planes show the landscapes for a random training batch of size 256. Upper planes
show the landscapes for the entire “adverb to verb" split. For some model-batch
combinations, the two align well (left). For others, less so (right).

4.2 Discussion

In summary, I take inspiration from the cognitive sciences, specifically the concepts of selective
attention, joint attention, and egocentric spatial encoding, and ask whether these mecha-
nisms can improve an AI model’s performance on the gSCAN benchmark for systematic
generalization. It is a common complaint that neural networks may produce high-accuracy
outputs but do not necessarily rely on compositional rules to do so. I would argue that neural
networks are not incapable of systematic generalization, i.e., the flexible composition of known
parts. However, they need to receive atomic input units that are as separated from irrelevant
context as possible. Otherwise, they may overfit to that context and learn solutions that only
perform well on in-distribution data. Factors identified as helpful to generalization, both in the
literature [GB22a] and in this study, all facilitate separating the signal from the noise – singling
out important parts of the input and avoiding the memorization of unimportant parts.

Figure 4.14: Distributions of split H
accuracy sampled dur-
ing training for different
batch sizes.

Figure 4.15: Pairwise comparison of split H perfor-
mance sampled during training for differ-
ent batch sizes. Statistically significant z-
scores � |2| marked bold.
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Concretely, the setup’s selective and joint attention mechanisms help the agent focus on
relevant inputs, dramatically improving its sample efficiency. The action attention part of the
model, which essentially constitutes a filtering step, encourages sparser representations in the
agent’s controller. The egocentric location encoding saves the model from having to extract
information relevant to its action prediction, namely relative position, and from potentially
overfitting to absolute positions. Finally, weight decay supports generalization by serving as a
kind of inductive simplicity bias [Pow+21; Kir+23].

I also find that, even without weight decay and attention, generalization performance may
improve sporadically during training independent of in-distribution accuracy, especially with
smaller batch sizes. However, compositional generalization encompasses a wide range of skills,
and even within systematic generalization, solving one task, e.g., recombining shapes and
colors, may not translate to another, e.g., recombining directions. Several gSCAN tasks remain
unsolved and likely require different inductive biases than the ones presented here.

Returning to the criticisms against NNs, this work would seem to be an improvement over
the first case study: It takes inspiration from the cognitive sciences and tries to go into more
explanatory depth. On the other hand, the model is kept so minimal that it is perhaps even
less biologically plausible than the more complex DL model used to detect patient relapses.
Furthermore, I used methods like ablation studies, confusion matrices, and loss landscape
visualizations to try to understand the factors that help or hinder systematic generalization –
but are these the “right” techniques for explaining a model? To gain a better understanding of
how this case study relates to my guiding questions, it is worthwhile taking a closer look at
the notions of explanation and idealization.

4.2.1 The notion of explanation

Defining what constitutes an explanation is not entirely straightforward, as many disciplines
hold different views on the matter. Broadly speaking, however, we can distinguish between
five notions of explanation: deductive-nomological, inductive-statistical, causal mechanistic,
unificationist, and pragmatic [CK19].

The deductive-nomological notion characterizes scientific explanation as deductive arguments
where a phenomenon (explanandum) logically follows from certain premises and initial
conditions (explanans). The explanans must be true and contain at least one law of nature.
This aligns with the instantial view of models outlined in section 2.1.1. The inductive-
statistical model is more lenient in this regard – it only requires the explanandum to follow
probabilistically, rather than logically, from the explanans [Hem98]. Harkening back to the
discussion of data-driven inquiry in section 3.2, an explanation need not be based on laws
of nature – statistical regularity is enough. This notion contrasts with the causal-mechanistic
account, which maintains that an explanation must enumerate the causal processes and
interactions leading up to it [Sal20].

The unificationist view poses a more high-level requirement: an explanation should unify
diverse phenomena under a joint, simple, and coherent framework [Kit89]. Finally, much like
the pragmatic view of models, the pragmatic notion of explanation emphasizes that one needs
to take the epistemic agent’s interests, goals, and beliefs into account [Fra80]. For example,
a physicist may need a deductive-nomological account, a molecular biologist may want to
uncover causal-mechanistic processes, and a historian may look for unificationist explanations.
But what kind of explanations might a cognitive scientist be interested in?
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A common framework for understanding complex information processing systems, such as
the brain or a computer, is David Marr’s levels of analysis account [Mar82]. Marr distinguishes
between explanations at the computational, algorithmic, and implementational level. At the
computational level, the focus is on what a system is doing and why. “What”-questions may
be answered by describing a system’s behavior in terms of a high-level input-output mapping.
“Why”-questions call for interpreting the system’s behavior as a response to its surroundings.
Rather than seeking answers in the “black box” itself, a computational-level “why”-explanation
looks to the environment in which a behavior is learned and performed [Zed21].

The algorithmic level is concerned with how a system does what it does. “How”-explanations
aim to uncover the states and transitions that govern a given behavior. Finally, the implemen-
tational or “where” level addresses where these states and transitions are physically realized
– which neurons, synapses, or transistors perform a computation. Thus, the behavior of any
cognizer, biological or artificial, affords explanations at different levels [Zed21; KMK19].

What all explanations, be they at the computational, algorithmic or implementational level,
have in common, however, is that they must be wrong [Rud19]. They cannot be completely
faithful to their target system’s computations. Otherwise, the explanans would equal the
explanandum and become superfluous [RL18]. To draw the connection to this chapter’s
opening quote, a map that is the size of a country is not very useful. In this sense, explanations
bear a close resemblance to models.

4.2.2 Understanding from false models

Much like explanations, most scientific models can only ever describe their target systems
imperfectly. They depart from reality in significant ways, omitting vast amounts of detail
and simplifying relationships between entities. By the standards of faithful representation
and causal accuracy, this would make models appear deficient as epistemic tools. At best,
they are grossly distorted caricatures of a small part of reality. At worst, they are entirely
fictional constructs [Gel19]. Nevertheless, scientists keep building and employing these “false”
representations. What is it that enables us to derive insights from models even though they
are – unavoidably – inaccurate depictions of reality?

According to one school of thought, this question rests on a flawed premise: Models are
useful, not although, but precisely because they idealize and approximate. Simplification allows
researchers to break down and systematically address their questions about the world [KV03].
Idealized models can be categorized into different types, of which I will here briefly discuss
three: adjustable models, template models, and non-denotative models.

Adjustable models and Galilean idealization Adjustable models incorporate simplifications
that can be systematically adjusted to increase their realism or accuracy [Dié15]. The kind
of idealization usually involved in adjustable models is sometimes referred to as Galilean
idealization [Gel19]. Galilean idealization simplifies by distortion, altering features of the target
system to make the model more mathematically or conceptually manageable [Wei07]. For
example, Galileo assumed perfectly round spheres and frictionless surfaces in his investigations
of the behavior of bodies in motion [McM85]. This assumption constitutes a distortion of the
real world, where relevant factors like drag forces are at play.

Although adjustable models start with a simplified version of the phenomenon under study,
they should be amenable to de-idealization to be considered successful. There must be a
realistic hope that even though they are literally “false”, they can be linked to the world by

37



4.2. DISCUSSION

adding details back in [Gel19]. For example, thanks to scientific advances like the formulation
of Stokes’ law, we can include frictional forces in models of bodies in motion and no longer
need to resort to Galileo’s perfect spheres and surfaces. However, not all idealizations should
be characterized as temporary simplifications to be “fixed” down the line.

Template models and minimalist idealization As the name suggests, template models func-
tion as templates against which real-world deviations can be measured and analyzed [Dié15].
Unlike adjustable models, the idea of a template model is not to “solve for” the simple case of
a real system first before moving on to more complicated cases. Instead, the template model
sets up an idealized situation that does not exist in reality and looks at how the real system’s
behavior differs from that of the model [Wim87]. Discrepancies between the two can help
identify the presence and magnitude of factors that shape the actual target system’s behavior.
For instance, the Hardy-Weinberg model in population genetics assumes an infinitely large,
randomly mating population without selection, mutation, or migration. No actual population
meets these criteria. However, the model helps scientists understand how deviations from the
predicted gene frequencies can be attributed to evolutionary forces like natural selection or
genetic drift [Dié15]. Template models are related to the idea of minimalist idealization.

Minimalist idealization emphasizes that selective modeling can be part of a purposeful
epistemic strategy [Knu11]. Similarly to physically sealing off intervening elements in ex-
perimentation, isolating causal factors of interest in a model can allow researchers to focus
on a delimited set of interrelationships [Mäk05]. Including only the core features needed to
give rise to a phenomenon is often the very thing that allows a modeler epistemic access to a
problem. It can help make the implications of the model’s central ideas more transparent and
guide the direction of further inquiry [McC09]. In contrast to Galilean idealization, minimalist
idealization is not an ad-hoc measure meant to be corrected as research progresses [Knu11].
Minimal models are not impoverished representations of a target system [Gel19]. Instead,
they are intended to shine a spotlight on the “essential character of the phenomenon in
question” [Wei07, p. 642]. Adding details back in would defeat their purpose.

Perhaps the best-known proponent of minimalist idealization in the cognitive sciences is
Randall D. Beer. Beer introduced the notion of minimal cognition, or minimally cognitive
behavior, to describe the exploration of the simplest forms of behavior that still raise cognitively
interesting questions [Bee96]. This concept is rooted in the idea that even small neural net-
works, devoid of complex computational or representational processing, can exhibit intriguing
behaviors [BM23]. Beer was particularly interested in embodied intelligence and the role of an
agent’s environment in the emergence of cognitive phenomena [Bee21].

Using dynamical systems theory and EAs, he demonstrated how agents modeled after simple
organisms like C. elegans could engage in orientation, navigation, or memorization without
relying on internal symbol manipulation [BM23]. His studies contrasted with the predominant
view at the time, which saw cognition as a set of discrete computational tasks performed by the
brain [BW15]. Crucially, it was not Beer’s goal to create evermore accurate representations of
C. elegans or to graduate to more complex organisms like cats or humans one day. Instead, his
idealized models were intended to demonstrate with a small set of ingredients how cognition
could be understood as an emergent property of dynamic interactions between agents and
their environments [Bee21].

Non-denotative models Non-denotative models involve entities, properties, or mechanisms
that do not correspond to anything in the real target system [Dié15]. Out of the three types of
idealized models presented here, they are the “falsest.” An example of a non-denotative model
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is the luminiferous ether, which was once postulated as a medium for the propagation of light
waves but was later shown not to exist [Mas19]. Despite their fictional nature, non-denotative
models can sometimes be useful in science. They may facilitate calculations, guide research, or
serve heuristic purposes. However, their contribution to genuine understanding is debatable,
as they fail to refer to any real-world counterpart [Dié15]. This begs the question: How do we
know whether a simplification is of the “right” kind? What distinguishes a model based on
legitimate Galilean or minimalist idealization from a non-denotative one?

According to Diéguez, a good idealization is one that, despite being an inaccurate repre-
sentation of reality, serves as a useful tool in scientific inquiry. He outlines several criteria
that can help determine whether an idealization contributes to genuine understanding. He
suggests that a good idealization should not be an oversimplification that excludes relevant
functional factors, which are essential to the target system’s behavior. Idealizations should
not be so far removed from reality that they fail to assist in understanding how a system
behaves under various causal influences or manipulations. Additionally, they should not
rely on a pseudoscientific ontology, meaning they should not postulate entities or processes
incompatible with current scientific understanding. The mechanisms proposed by the model
should offer analogies to those operating within the real system, and the model’s predictions
about related phenomena should not consistently fail. These criteria aim to ensure that the
idealizations facilitate a better understanding of real phenomena and are not merely subjective
or misleading representations [Dié15].

4.2.3 Relation to the guiding questions

With the points above in mind, let us return to the overall questions of this thesis and the
criticisms against NNs as models of cognition – starting with their supposed lack of connection
to theory. At first glance, this work resembles the first case study in that it is centered around a
benchmark dataset provided by a third party and focuses on predictive performance. However,
there are also some major differences in the modeling process (see Figure 4.16). The first
difference is the starting point of the investigation. In the first case study, the impetus came
from the dataset, which prompted the search for a suitable model. In this second case study,
the motivation came from the cognitive science literature, which suggested that factors like
selective attention play an important role in language acquisition, paired with the knowledge
that NNs struggle with systematic generalization. This hypothesis prompted the search for a
suitable dataset to test whether selective attention may be helpful in compositional learning.
The model can thus be said to be more rooted in theory, as it is inspired by findings from
cognitive science.

A second significant difference to the first case study stems from the dataset itself. The gSCAN
benchmark was created by its authors based on their assumptions about human cognition,
specifically compositional reasoning abilities, and how best to operationalize these skills as a
set of tasks. Ruis et al. designed these tasks to test whether NNs could solve them, and if not,
to encourage exploration of “missing ingredients” that might enable systematic generalization.
As gSCAN is targeted towards the ML community, solving the tasks set out in this benchmark
is framed by the authors as ultimately being in service of creating better, more powerful AI
applications. However, in contrast to the first study, accuracy on the dataset is not the end goal
in itself. Instead, gSCAN enables the comparison of a range of models whose performance
serves as an indicator of their fit with a desired, human-like behavior. Thus, both the model
and the dataset in this study were, at least partially, informed by theory and created in pursuit
of questions relevant to cognitive science.
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Figure 4.16: Overview of relations between human cognition, theory, assumptions, data, model,
and outputs in the second case study. Relevant components performed or gener-
ated by us shown in orange. Components provided by third parties shown in gray.
Circle at the beginning of an arrow indicates the starting point of investigation.

Of course, much like the contributions from the brain sciences to AI listed in the study’s
introduction, the translation of inspirations from cognitive science into computational form
takes place at a highly abstract level. This brings us to the question of biological plausibility.
The proposed model and the gSCAN dataset are highly simplified and nowhere near as
complex as the brain or the environments in which we acquire language. However, as
discussed in section 4.2.2, simplification need not be problematic. Minimalist idealization
can be a purposeful epistemic strategy to isolate factors of interest. Previous studies on the
gSCAN benchmark had focused on testing whether generic state-of-the-art DL architectures
can learn compositionally. Here, I took a different approach in line with Beer’s notion of
minimal cognition. Namely, I identified minimal components that an agent needs to solve
(most) gSCAN tasks, and I used this model to analyze when and how generalization occurs.

This bottom-up approach of building a task-specific minimal model has both advantages and
downsides. On the one hand, it allowed me to conduct a wide range of ablation studies and
error analyses, which would not have been computationally feasible with the more complex,
bigger models proposed by others. On the other hand, it limits the study’s applicability
to broader contexts – the proposed model is very tailored to gSCAN. Still, although the
architecture is specific to the dataset at hand, the factors contributing to its performance are
consistent with related work on systematic generalization and likely to also apply to other
situations. While the simplifications in this work were, in this first step, meant to be minimalist
idealizations, they could conceivably be adapted to more complex problems in the spirit of
Galilean idealization. Indeed, I make use of the idea of selective attention in later case studies.

To sum up, while the model in this work is biologically inspired at a very high level, it is fair
to say that it is not biologically plausible. However, it is precisely because of the model’s high
degree of idealization that I can more easily isolate and systematically vary or ablate factors of
interest, namely those that contribute to compositional generalization. This brings us to the
third criticism against NNs: their inability to offer explanations.
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As discussed in section 4.2.1, the notion of explanation is complex. It is difficult to say
when something has been sufficiently explained because, at least according to the pragmatist
perspective, an explanation’s success depends on the individual epistemic agent and the level
of explanation in which they are interested. However, this second work arguably offers more
in-depth explanations than the first by any definition. If the first case study can be said to
provide explanations, they are at the relatively abstract “why” and “what” levels of the Marr
hierarchy.

This second work presents a broader range of explanations. On the “what” level, and related to
the inductive notion of explanation, it looks at model inputs and outputs, including statistically
analyzing error patterns. At the “why” level, the study tries to determine the influence of
certain factors in the agent’s learning environment, e.g., by devising custom train-test splits
or running ablation studies of the auxiliary “joint attention” signal. It investigates some
algorithmic or “how” level questions by ablating model components like action attention or
selective attention. It additionally offers a “where” level analysis of the specific neurons in the
agent’s controller that contribute to its predictions.

Finally, it relates the results of these investigations to previous findings on out-of-distribution
generalization, venturing into the direction of unificationist explanation. Specifically, it con-
textualizes previous proposals on how to enhance compositionality in NNs as methods to
encourage the separation of relevant from irrelevant parts of inputs. On a meta-level, bench-
marking different models on a dataset like gSCAN can also serve as a stepping stone toward
explanation. Comparing different models may reveal relevant success factors and help select
models that constitute promising candidates for further inquiry [CK19].

Overall, we can conclude that NNs can be explicitly connected to theory by taking inspiration
from the cognitive science literature in designing training environments, architectural con-
straints, forms of regularization, or augmented loss functions. As shown in this case study, this
not only allows for the investigation of questions relevant to cognitive science but may, in some
cases, also improve NN performance [Has+17]. NNs can be explained at various levels, and
benchmarking the predictive performance of different models can serve as a stepping stone to
explanation. In the pragmatic view, whether an explanation is successful always depends on
the individual interests of the epistemic agent.

Furthermore, NNs need not be biologically plausible to be of value. As long as we do not
stray too far from reality or postulate entities contradicting current scientific understanding,
minimalist or Galilean idealization can be a viable strategy to facilitate epistemic access to a
model and isolate factors of interest [Dié15]. We should, however, transparently communicate
how such simplifications impact what we can conclude from an investigation [McC09]. The
success of specialized models on artificial tasks in a benchmark like gSCAN does not mean
that systematic generalization has been “solved” by DL. To use a metaphor from this chapter’s
epigraph: maps help guide us by omitting irrelevant details, but it is important not to confuse
the map with the territory.

As mentioned in the introduction of this thesis, there are two facets to the criticism that NNs
do not offer explanations: The issue of understanding the models themselves and the issue of
understanding a target system through these models. This second case study tried mainly to
understand the model and its behavior. In the following section, we will look at how a NN
can be used to explain a real-world phenomenon.
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5 Modeling the emergence of letter shapes with
drawing-based signaling games

The science fiction method is dissection and reconstruction. You look at the world around you, and you
take it apart into all its components. Then you take some of those components, throw them away, and
plug in different ones, start it up and see what happens. That’s the method: restructure the world we
live in in some way, then see what happens.

Frederik Pohl

5.1 Study

The third case study relates to core knowledge of object geometry (see Figure 5.1). According
to Spelke, this innate system underlies our processing of visual properties, such as shape or
symmetry [Deh+06]. This notion is supported by several studies that have used so-called
“intruder tasks”, where subjects must find which of a set of shapes is different, to show that
intuitions of geometric regularity are present in all human groups regardless of age, education,
and culture [Sab+21]. We approach the topic through the lens of analyzing letter shapes, which
can be seen as cultural artefacts that reflect these human geometric preferences.

Specifically, we create artificially evolved writing systems by employing a drawing-based
signaling game involving two AI models. We then explore how different design choices impact
empirical regularities in the surface form of these artificial glyphs and their similarity to
human-created visual signs. Our goal is to explore in silico factors that have been hypothesized
to influence the shapes of letters in human writing systems, as their emergence cannot be
studied in vivo except retrospectively. In our first experiment, we investigate the role of
the models’ perception system on glyph line orientation and symmetry. We find that these
characteristics are impacted by the input statistics of data used to pre-train models and, to
a lesser extent, canvas shape and architectural model properties. Our second experiment
analyzes the grapho-phonemic mapping that emerges when we integrate representations
learned by a DL model trained for speech conversion into our setup.

A version of this study was presented at the 46th Annual Meeting of the Cognitive Science
Society and published in its proceedings [HD24b].

5.1.1 Introduction

Writing is an ancient cognitive technology that has been invented independently several times
in the course of human history [Mor22b]. Even before fully-fledged writing systems, humans
have produced geometric signs since at least the Paleolithic [Dut+20]. Curiously, graphic
codes across times and cultures consistently share certain characteristics. Specifically, glyphs
appear to reflect the input statistics to which our visual system has adapted. Letters tend to
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Figure 5.1: Situating the third case study in the broader study of cognition. Relevant parts of
the framework marked in orange.

display a disproportionate rate of vertical symmetry, which is a feature of, e.g., human faces or
standing bodies [Mor18] and they extensively comprise topological signatures found in natural
scenes [Cha+06; TSZ17]. Furthermore, vertical and horizontal strokes are over-represented
compared to obliques [Mor18]. This cardinality preference has been attributed to our visual
acuity being better for vertical and horizontal lines than for other orientations – the so-called
“oblique effect” [App72]. Finally, there is a tendency towards simplicity, as complex characters
are more effortful to read and produce [Lin+19; MM21]. These findings support an ecological
hypothesis that signs have evolved to accommodate human visual perception.

Several studies have investigated the emergence of graphical conventions using signaling
games where participants communicate through drawing [Gal05; Gar+07; Fay+10; BDL13;
RLG15; Fay+18; Fan+20; Haw+23]. Their primary focus has been on the role of social context
in the construction of sign systems and the trade-off between iconicity and abstraction. A
smaller number of works develop AI models for generating sketches. Most of these models are
trained to convert images into simplified drawings [HE18; Muh+18; Son+18; Cao+19; MH21;
Vin+22; Qiu+22] or to play collaborative or Pictionary-type games [FDH19; Bhu+20].

Similar to previous work, we follow a drawing-based signaling game setup involving two
AI models. However, the sketches produced by the models represent pre-defined classes
rather than aiming to depict a given image faithfully. Thus, our goal differs in that we do not
focus on iconicity, i.e., the visual resemblance between a sign and its referent. Instead, we are
interested in how different design choices impact empirical regularities in the surface form of
artificially evolved glyphs and their similarity to human visual signs. We explore this question
using two experiments. The first experiment investigates aspects of the receiver model’s
perception system that impact glyph stroke orientation and symmetry in abstract graphic
codes. The second experiment takes a step towards modeling orthography by introducing an
aural dimension and a notion of sender-side motor effort minimization.
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Table 5.1: Summary of the sender model’s architecture. C is the number of classes, which
varies by dataset.

Layer Type Input Shape Output Shape Activation Stride Padding

1 Conv2d 1 ⇥ 64 ⇥ 64 64 ⇥ 32 ⇥ 32 LeakyReLU 2 1

2 Conv2d 64 ⇥ 32 ⇥ 32 128 ⇥ 16 ⇥ 16 LeakyReLU 2 1

3 Conv2d 128 ⇥ 16 ⇥ 16 256 ⇥ 8 ⇥ 8 LeakyReLU 2 1

4 Conv2d 256 ⇥ 8 ⇥ 8 128 ⇥ 4 ⇥ 4 LeakyReLU 2 1

5 Conv2d 128 ⇥ 4 ⇥ 4 C ⇥ 1 ⇥ 1 Identity 1 0

6 Flatten C ⇥ 1 ⇥ 1 C - - -

7 LogSoftmax C C - - -

5.1.2 Approach

Our setup consists of a sender and a receiver. The receiver is a visual model – specifically, a
five-layer CNN. An architectural overview can be found in Table 5.1. We use a kernel size of
4 ⇥ 4, batch normalization, no bias, and a leaky ReLU activation with negative slope 0.2 for
the convolutional layers. The sender is a simple linear model that generates a graphic code
consisting of a pre-defined number of glyphs. The criteria that these glyphs should fulfill
vary by experiment. The sender can place up to three lines per glyph on a 64 ⇥ 64 canvas.
We chose the number three because it is the average number of strokes per character across
many writing systems [Cha+06]. Each line is a quadratic Bézier curve defined by the x and y
coordinates of its start, control, and endpoint. The sender thus has to optimize six parameters
per glyph and stroke.

As in the second case study, these parameters are optimized using the CMA-ES algo-
rithm [HO01b]. CMA-ES has been found empirically to outperform other black box optimiza-
tions in a range of applications [Han+10], including activation maximization in CNNs [WP22],
which is closely related to our experimental setup. It also has the benefit of being quasi
parameter-free and allowing us to define non-differentiable loss functions, which is not the
case for gradient estimation methods such as backpropagation.

Our approach is inspired by Park, who explores a similar setup of a CNN receiver and a
sender drawing a set of abstract glyphs with Bezier curves [Par20]. However, we use different
model architectures, loss functions, and optimization algorithms. Our work also diverges in
scope in that Park presents a technical proof-of-concept mainly focused on aesthetics. We
significantly expand on their proposal by systematically analyzing the generated codes, contex-
tualizing them in cultural evolution research on human writing systems, and, in experiment 2,
introducing an aural dimension.

5.1.3 Experiment 1

In our first experiment, we build a computational model of the hypothesis that letters evolved
to reflect the statistics of natural visual inputs. We pre-train receivers on different image
datasets and measure the effect on the symmetry and cardinality, i.e., propensity for vertical
and horizontal strokes, of glyphs produced by the sender.
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Table 5.2: Composition of the NAT dataset.
# class source

5,666 natural landscape
15-Scene [LSP06]: coast, forest, mountain, open country

Flickr [CLL18]

5,500 face CelebA 64x64 [Liu+15]

5,500 plant ImageCLEF 2013 [Goë+13]

5,399 animal Animal Image [Ban23]

Table 5.3: Composition of the H-M dataset.

# class source

2,200 urban landscape 15-Scene [LSP06]: street, suburb, living room, office,
industry, building, inside city, highway

2,200 motorcycle COCO 2017 [Lin+14]

2,200 airplane COCO 2017 [Lin+14]

2,200 wine glass COCO 2017 [Lin+14]

2,200 bowl COCO 2017 [Lin+14]

Datasets Inspired by Changizi et al., we train one model on “natural” images (henceforth
NAT) and one on images of urban landscapes and human-made objects (henceforth H-
M) [Cha+06]. We also include a randomly initialized, untrained CNN for comparison. The
composition of the NAT and H-M datasets can be found in Tables 5.2 and 5.3, respectively. We
resize the shortest side of each image and apply centered crops to obtain 64 ⇥ 64 inputs, which
we gray-scale and normalize. Any images containing text were removed to prevent exposure
to human writing systems. We use 80% of the data for training and 20% for validation. We
also create a dataset of human-made scripts to compare their visual characteristics to those of
our evolved glyphs. This dataset is based on the collection of 116 writing systems analyzed
by Morin [Mor18]. We generate one image per glyph using a consistent font (Noto Sans).
Loma, Woleai, Kpelle, and Afak scripts were omitted as they are not yet part of the Unicode
codespace.

Receiver Model All receiver models’ architectures are identical (shown in Table 5.1), except
for their output dimension C. C is four for the NAT and random models and five for the H-M
dataset. NAT and H-M models were trained for 200 epochs on image classification, using
the Adam optimizer [KB15a], negative log likelihood loss, and a batch size of 64. The final
validation accuracy after early stopping was 86% for both models. Note that receiver models
are not updated further during their interaction with the sender model to avoid overfitting to
the produced glyphs.

Sender Model The sender is tasked with developing a graphic code with 25 glyphs, which
should be perceptually distinct to the receiver. More specifically, it maximizes the distance
between the activations elicited in the receiver by the different glyphs. The sender thus
optimizes for what S. Qiu et al. term symbolicity, i.e., consistent separability in high-level visual
embedding space [Qiu+22]. Let A represent the activations in the receiver’s convolutional
layers. We use embeddings from the receiver’s last layer for most experiments. Each activation
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vector a corresponds to a different glyph. The sender’s loss function aims to maximize the L2
norm between each activation and its closest neighbor:

Loss =
1
|A| Â

ai2A
min
aj2A
aj 6=ai

kai � ajk2 (5.1)

For the CMA-ES optimization of sender models, we use a population size of 32, uniform
random solution initialization, and an initial standard deviation of 0.05. We let models run for
1300 iterations and train ten models per setting. We report averages across these ten models.

Metrics To measure the orientation of glyph strokes, we use Histogram of Oriented Gradients
(HOG) [DT05]. HOG is a computer vision feature descriptor that splits an image into a grid
of cells. For each pixel in the cell, intensity gradients, i.e., edge directions, are computed,
binned into orientations, and counted to obtain a histogram. Contrast normalization may
be applied block-wise for better invariance to lighting changes. An example is shown in
Figure 5.2. HOG is traditionally used for tasks such as object detection. We here re-purpose it
as an automated alternative to the manual coding by which letter cardinality has previously
been analyzed [Mor18]. We use 12 orientations, cells of size 16 ⇥ 16, three cells per block, and
L2 normalization. Before applying HOG, we resize images to 128 ⇥ 128 pixels and apply a
Gaussian blur of size 2 to avoid square pixelation artefacts that would artificially increase
cardinal dominance.

To measure glyph symmetry, conceptually, we place an axis through an image at each angle
between 0° and 179°, mirror it along that axis, and record the overlap for each angle. In
practice, we rotate the glyphs in SVG space by each angle between 0° and 179°. We pad images
to prevent parts of the glyph from rotating out of the picture at certain angles. We then flip the
rotated image vertically, sum-normalize the rotated and flipped rotated images, and convolve
the two via the fast Fourier transform method. Intuitively, this auto-correlation corresponds to
moving the flipped rotated image over the rotated image and computing the overlap at each
point. We use the maximum value of the convolution as a measure of the highest overlap, i.e.,
symmetry, at a given angle. Figure 5.3 shows an example of the process outlined above.

Note that our metric is a more continuous measure of symmetry than used by Morin [Mor18].
In their work, symmetry was coded manually, and only wholly symmetric letters were
considered. Our Bézier curve-based glyphs are more akin to handwriting than standardized
letters and contain a higher degree of noise, e.g., small shifts or rotations. We propose our
automated measure as a way still to capture symmetric regularities in such cases.

Figure 5.2: Oriented gradi-
ents example.

Figure 5.3: Illustration of the steps involved in our symmetry
measure. The example shown is for an angle of 137°.
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Figure 5.4: Histograms of oriented gradients for the pre-training datasets, artificially evolved
graphic codes, and human writing systems. Blue dotted line marks expected
frequency in the uniformly random case.

Results: Stroke Orientation Figure 5.4 shows that vertical and horizontal orientations are
most common in both the NAT and H-M dataset, consistent with previous analyses [Cop+98;
Cha+06; GLS11]. Pre-training on this data promotes a preference for cardinality: Particularly,
gradients near 90° occur with above-average frequency in glyphs evolved for the pre-trained
receivers. In contrast, glyphs optimized for a random CNN show a nearly uniform gradient
distribution. The correlation between orientation statistics of the pre-training dataset and
optimized glyphs is stronger for NAT (R = 0.92, p < 2 ⇥ 10�5) than for H-M (R = 0.68,
p < 2 ⇥ 10�2), likely because NAT models were exposed to more training data.

Although the tendency towards cardinality is less pronounced than in human-made letters, we
find a moderate correlation between orientation characteristics of evolved and human-made
glyphs (R = 0.44, p < 0.15). Overall, the results support the notion that optimizing for a visual
system that has been exposed to natural input statistics can give rise to the preferred line
orientations observed in human writing systems. Analogously to the mechanisms thought to
have shaped human letters, CNN units will be more attuned to common orientations in their
training set [HS21], which the sender may, in turn, exploit to optimize discriminability.

Results: Symmetry We now turn our attention to another aspect of anisotropy: Glyph
symmetry. Figure 5.5 shows that, consistent with human preferences, there is an above-average
tendency towards vertical symmetry in our evolved glyphs, particularly for the NAT setup.
This result is perhaps to be expected from our HOG analysis, as cardinal lines tend to be
symmetrical. However, interestingly, even glyphs evolved for random CNNs show a slight
above-chance symmetry along 45° and 135° angles despite not having been exposed to any
training that could explain this preference.
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Figure 5.5: Z-scored symmetry distribution of artificially evolved graphic codes.

We considered three possible explanations for this phenomenon: 1) a bias introduced by
the CMA-ES algorithm, 2) a bias introduced by the canvas shape, and 3) an inductive bias
of the CNN architecture. To test each of these options, we plotted results without any
optimization (creating glyphs via uniform random sampling), optimization with a circular
mask (resampling any time CMA-ES suggests a solution containing points outside the circle),
and blind optimization (setting loss to constant 0). Figure 5.5B shows that, without any
optimization, there are still peaks at 45° and 135° angles. This speaks against option 1. Blind
optimization closely resembles that for the untrained receiver, suggesting that the random
CNN’s feedback, rather than containing some hidden preference, is basically arbitrary. This
contradicts option 3.

However, the symmetry preferences disappear when using circularly masked optimization,
confirming option 2. Considering that the square canvas is uniformly sampled, a slight
over-representation of points in the four corners will implicitly promote symmetry at 45° and
135° angles as measured by our “overlap” metric. This result relates to the role of physical
constraints imposed by writing materials on the evolution of human scripts. E.g., rectangular
canvases have been considered as a potential cause of cardinal dominance in paintings [Mil07],
and Indian and Southeast Asian scripts are thought to be less angular because they were
written on flexible leaves [Wat94].

Besides pre-training and canvas shape, we identified an additional factor influencing symmetry:
the layer of the CNN receiver used to calculate equation 5.1. Figure 5.6 shows examples of
how optimized glyphs change qualitatively across layers. When we compare the symmetry
of the produced glyphs (Figure 5.7), it is interesting to see that, even in glyphs optimized for
random CNNs, there is a higher level of symmetry at 0°, 90°, 180°, and to a lesser degree at
45° and 135° angles. The tendency is less pronounced for the highest layer. We hypothesize
that this symmetry emerges due to the square nature of the receiver’s convolutional filters,
which partition the input image into overlapping patches. From the sender’s perspective, each
patch essentially represents a separate noisy channel [Sha48].

Given that the sender is limited to contiguous strokes in utilizing these channels, it will tend
to connect grid neighbors, resulting in increased cardinal and oblique symmetry for a grid of
squares. Symmetry is less pronounced in the last layer because this layer’s receptive field spans
the whole image (see Table 5.1), limiting the sender to a single, global channel. To further
illustrate the described effect, we create a setup that mimics the mechanism of CNN filters in a

48



5.1. STUDY

(a)

(b)

Figure 5.6: Exemplary graphic codes evolved for the different convolutional layers of receivers
pre-trained on “natural” images (a) and images of urban landscapes and human-
made objects (b).

Figure 5.7: Comparison of glyph symmetry for codes evolved for different receiver layers.
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(a) (b)

Figure 5.8: Symmetry of graphic codes evolved in binary grid set-ups (a) and binary represen-
tation of an evolved code (b).

simplified way. We split canvases into 4 ⇥ 4 patches and define the signal communicated to
the sender as a 16-dimensional vector with binary entries: 0 if a patch contains no ink in a
square and 1 if it does. We then compare the effect of using a square and a hexagonal grid, the
latter implemented as proposed by Steppa et al. [SH19].

As can be seen in Figure 5.8a, the resulting symmetry distribution for the square grid setup
highly correlates with that of the random CNN (R = 0.91, p < 8 ⇥ 10�72). In the hexagonal
case, the angles of a cell’s neighbors change, increasing symmetry at 30° and 150°. Thus,
although CNNs carry the added complexity of overlapping filters and multiple channels per
filter, the results from our simplified setups lend credence to the proposed explanation for the
symmetry behavior in lower CNN layers.

5.1.4 Experiment 2

The glyphs produced in experiment 1 are far from a full-fledged writing system. They can
be considered closer to emblems, i.e., graphic codes that do not encode a language and lack
the productivity of specialized codes such as musical notation [MKW20]. A graphic code
is only considered writing if it represents words, morphemes, or phonemes [Mor22b]. By
encoding spoken units of meaning, writing vicariously inherits the generality of language: We
can express anything we could say in written form (glottographic principle). In our second
experiment, we take a step towards modeling the development of such a glottographic code
representing language. Our setup differs from experiment 1 in two regards: The first is that
the semantics of the evolved glyphs change from abstract classes to representing linguistic
information. The second is that we add constraints designed to mimic the evolutionary
pressure towards reduced effort in producing and processing writing.

Speech Model Linguistic information is incorporated using a DL model trained for speech
conversion, i.e., transforming source speech to a target voice without changing the content.
This task resembles writing in that the goal is to communicate content in a standardized
form, abstracting away speaker-specific acoustic features. The specific model we use was
proposed and implemented by Niekerk et al. [Nie+22]. It works by extracting features from
HuBERT [Hsu+21], a widely used Transformer-based speech model. HuBERT is pre-trained in
a self-supervised manner on LibriSpeech-960 [Pan+15].
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Niekerk et al. apply k-means (k = 100) to the intermediate representations of HuBERT’s 7th
layer and train an acoustic model to decode the resulting clusters into output speech. However,
we ignore this decoder here and simply use the 100 clusters, which we will henceforth refer
to as units. Note that these units are not explicitly trained to map to phonemes, morphemes,
or syllables. They are simply representations learned by the model to optimally fulfill its
speech conversion task. Note also that the model has only been trained to predict speech
in spectrogram space, not to transcribe it. Its representations have thus not been shaped by
exposure to English orthography.

Sender Model As in experiment 1, the sender model must optimize a graphic code, this
time containing 100 glyphs representing the speech model units. However, instead of creating
maximally distinguishable glyphs, it is tasked with using as few strokes as possible while still
ensuring what S. Qiu et al. term semanticity, i.e., visually preserving the topology of the speech
model’s latent space [Qiu+22]. These constraints reflect two competing pressures on writing
systems: transmission efficiency and referential efficiency [Mor16; Mor18; Kel+21]. We model
them with a frequency penalty and a similarity constraint, respectively.

We allow the sender to draw up to Lmax = 3 strokes. To model transmission efficiency, we
add a penalty P. P calculates how many strokes l were used for a glyph, multiplied by the
relative frequency f with which the unit it represents occurs in natural speech. This term
reflects the finding that, across writing systems, more frequent characters consistently have a
lower degree of complexity [MM19; KMM23]. We collect frequency statistics by applying the
speech conversion model to the Flickr 8k Audio Caption Corpus [HG15] and recording how
many times each speech unit occurs. The penalty is weighted by a factor a, here set to 1

2 .

Pi = a ⇥
✓

1 � li
Lmax

◆
⇥ fi

For the similarity constraint, we calculate the pairwise L2 distance d between the centers of
the N = 100 units in the speech model’s activation space A. We do the same for the images of
the 100 glyphs in the visual receiver model’s embedding space. We normalize each row in the
distance matrices and subtract it from 1 to obtain a measure of similarity s:

sij = 1 �
dij

maxi dij
, dij = kAi � Ajk2

We then minimize the mean absolute distance between the two similarity matrices Svis and
Sspeech. The reasoning behind this is that characters that look similar tend to have similar
canonical pronunciations across orthographies [JTS22]. The combined loss function reads as
follows:

Loss =
1
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Given the added complexity of the problem, we increase our CMA-ES population size to 64
and the number of iterations to 30,000. We initialize solutions to 0.5 with a standard deviation
of 0.1 and use a NAT CNN from experiment 1 as our receiver, with activations taken from layer
4. To mimic the variability inherent to handwriting, we add Gaussian noise to the solutions
with a standard deviation of 0.005

1
2 .
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Association Rule Mining In this experiment, we are interested not only in the surface form
of the glyphs but also in the kind of grapho-phonemic mapping the models produce. We,
therefore, analyze the co-occurrences of glyphs and speech units using TIMIT [Gar+93], a
standard dataset used to evaluate automatic speech recognition systems. TIMIT is designed
for broad phoneme coverage and includes rich word and phoneme-level annotations. For
each sentence in the corpus, we collect the phoneme annotation and the units produced by
the speech model during processing. Having collected co-occurrences, we apply the Apriori
algorithm [AS94] to identify association rules. We generate all rules with a minimum support
of 10�4, minimum confidence of 0.2, and minimum lift of 3. Support here refers to the relative
frequency of a unit-phoneme pairing, confidence refers to the conditional probability of a unit
given a phoneme or another preceding unit, and lift refers to the ratio between confidence and
support [AS94].

Results We show co-occurrences between phonemes and glyphs, representing HuBERT
speech units, in Figure 5.9. Table 5.4 lists the phonemic and phonetic notation used in the
graph. The visualization illustrates that the similarity constraint of our loss function works as
intended: phonetic similarities are reflected visually. For instance, glyphs correlated with the
phonemes s (sea), sh (she), and z (zone) look alike. Similar phonemes often share a glyph, see,
e.g., y (yacht) and iy (beet), or b (bee) and p (pea). Interestingly, some glyphs co-occur with
common phoneme combinations, e.g., “ix ng/ix n”, as used in the English present participle
form, or the word “sh iy” (she). This mapping has some correspondence with human scripts
in that no writing system consistently follows a single organizing principle [Mor22b]. I.e.,
while some scripts may be predominantly syllabic, alphabetic, or logographic, no system falls
into purely one category [Mat92].

Table 5.4: Phonemic and phonetic symbols from the TIMIT lexicon [Gar+93].

Symbol Description

Others

pau pause

epi epenthetic silence

h# begin/end marker (non-speech events)

Symbol Example word Possible phonetic transcription

Vowels

iy beet bcl b IY tcl t

ih bit bcl b IH tcl t

eh bet bcl b EH tcl t

ey bait bcl b EY tcl t

aa bott bcl b AA tcl t

aw bout bcl b AW tcl t

ay bite bcl b AY tcl t

ah but bcl b AH tcl t

ao bought bcl b AO tcl t

oy boy bcl b OY

ow boat bcl b OW tcl t

Continued on next page
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Table 5.4: Phonemic and phonetic symbols from the TIMIT lexicon [Gar+93]. (Continued)

uw boot bcl b UW tcl t

ux toot tcl t UX tcl t

er bird bcl b ER dcl d

ax about AX bcl b aw tcl t

ix debit dcl d eh bcl b IX tcl t

axr butter bcl b ah dx AXR

Semivowels and Glides

l lay L ey

r ray R ey

w way W ey

y yacht Y aa tcl t

hh hay HH ey

hv ahead ax HV eh dcl d

el bottle bcl b aa tcl t EL

Nasals

m mom M aa M

n noon N uw N

ng sing s ih NG

en button b ah q EN

nx winner w ih NX axr

Affricates
jh joke DCL JH ow kcl k

ch choke TCL CH ow kcl k

Fricatives

s sea S iy

sh she SH iy

z zone Z ow n

f fin F ih n

th thin TH ih n

v van V ae n

dh then DH e n

Stops

b bee BCL B iy

d day DCL D ey

g gay GCL G ey

p pea PCL P iy

t tea TCL T iy

k key KCL K iy

dx muddy, dirty m ah DX iy, dcl d er DX iy

q bat bcl b ae Q
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Figure 5.9: Association rules for glyphs and phonemes, encoded using TIMIT notation.
For nodes representing transitions (→), colors corresponding to the individual
phonemes’ categories were combined. Edge width represents rule confidence.
Glyph opacity represents frequency of occurrence.

In addition to preserving phonetic similarity, the evolved glyphs successfully reflect trans-
mission effort. Frequent glyphs, such as those representing closures, pauses, or the sentence
marker h#, tend to be simple, often consisting of a single line (see Figure 5.10). The bulk of the
glyphs evolve to contain between one and two strokes, with only a few low-frequency glyphs
encoded using three. One high-frequency glyph is effectively a space, i.e., it has zero strokes.
Note that this glyph is not contained in Figure 5.9 as we only show rules with a minimum
confidence of 0.2. Consistent with “Zipf’s law of meaning” [Zip49], the high-frequency glyph
in question co-occurs with many different phonemes, diluting its association rules’ confidence.
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Figure 5.10: Glyph frequency vs. complexity for speech-based graphic code.

5.2 Discussion

In summary, I find that, as predicted by the ecological hypothesis of letter shapes, glyphs
that are evolved for models pre-trained on images reflect the statistics of their input data
and display anisotropy consistent with human-made glyphs. I also observe that the square
nature of the canvas and the receiver’s convolutional filters impact glyph symmetry, albeit to
a smaller extent. I then integrate representations learned by a pre-trained speech model as
well as efficiency pressures into my setup. The resulting code yields a hybrid orthography and
shows a Zipfian effect for glyph complexity.

Compared to the second case study, predictive performance plays a very minor role in this
work, and I make almost no attempts at “how” or “where” level explanations of the models
I use. Instead, I focus on analyzing model outputs and try to draw conclusions about a
real-world phenomenon, namely, the emergence of statistical regularities in the shapes of
human-created glyphs. This approach raises several questions: Is it possible to understand a
phenomenon through a model without a detailed understanding of the model itself? And if so,
given that areas like cultural evolution research seldom lend themselves to provable, definitive
answers, what kind of explanation could we hope to gain from models such as the one in this
study? In the following sections, I want to provide some background on a few topics that I
consider relevant to answering these questions: how-actually vs. how-possibly explanations,
the modal dimension of modeling, and the idea of toy models.

5.2.1 How-actually and how-possibly explanations

As mentioned in the introduction to this thesis, there are two aspects to the explainability
problem: The explanation of NNs and the explanation by NNs. Often, explaining the models
themselves is seen as a prerequisite for explaining a target phenomenon through them.
However, Sullivan, for instance, argues against the common notion that the “black box” nature
of NNs inherently limits our ability to understand the phenomena they model [Sul22]. Instead,
she posits that the primary obstacle to understanding is not a model’s opacity but the level of
“link uncertainty” – the extent to which the model is empirically supported and adequately
connected to the target phenomenon.
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If this link is missing, even simple models can fail to provide understanding [Gel16d]. On the
other hand, a complex model that is sufficiently connected to a phenomenon of interest can
help us comprehend that phenomenon without needing to know low-level details. Unless
the explanatory question concerns the implementation itself, a high-level grasp of the model
is enough [Sul22]. This distinction between understanding a model’s workings and using a
model to understand a phenomenon is akin to the difference between knowing how a car’s
engine operates and using it to navigate a city. Both are valuable, but they serve different
purposes. If we accept Sullivan’s argument, this leads us to the question of what kind of
explanations NNs might be able to provide about phenomena of interest.

In section 4.2.1, I briefly discussed different notions of explanation that focused on an ex-
planation’s form or level of granularity. However, there is another, more high-level way
of categorizing scientific explanations according to the purpose they serve – namely, the
distinction between how-actually and how-possibly explanations.

How-actually explanations aim to describe why a particular real-world phenomenon occurs in
the way that it does. They are concerned with identifying the actual causes or mechanisms
behind an event. These explanations are often tied to the idea that there is a correct account of
the phenomenon grounded in the causal history and laws of nature that govern the behavior of
the system under investigation. In the context of scientific models, how-actually explanations
typically involve models that are intended to be empirically accurate representations of real-
world systems. These models strive to capture the relevant causal factors and interactions
responsible for the phenomenon being explained. The success of a how-actually explanation is
judged by how closely the model aligns with the actual behavior of the target system and by
its ability to account for the observed phenomena [Gel19].

How-possibly explanations, on the other hand, are concerned with exploring the ways in which
a phenomenon could occur. They do not purport to describe the actual causes or mechanisms
at work. Instead, they seek to demonstrate that a particular event or pattern is possible
given certain conditions. These explanations are particularly useful when there is uncertainty
about the actual causes. How-possibly explanations are often employed in the early stages of
scientific inquiry, where there may be a lack of detailed empirical data or a well-established
theoretical framework. They serve as a means to probe the space of possibilities, to generate
hypotheses, and to guide further investigation. In this sense, how-possibly explanations can
be seen as a form of speculation, where the goal is to identify potential explanations that
are consistent with what is known and to rule out those that are not [Gel19]. How-possibly
explanations relate more broadly to the so-called “modal” dimension of modeling.

5.2.2 The modal dimension of modeling

Recall from section 2.1 that in a prevalent view of models, they should represent some real-life
entity as accurately as possible. We have seen in the previous chapter that epistemic agents
necessarily (and often felicitously) employ idealization in this process. However, some scientists
seem entirely uninterested in representing existing real-life targets at all [Gel19]. Instead, they
construct models of non-actualized or non-existent systems. E.g., Einstein famously used a
Gedankenexperiment to begin building his theory of general relativity [Eli21].

These models are not failed attempts at representing the real world. They are deliberately
hypothetical systems designed to probe what kinds of causal processes could underlie our
observations [Knu11]. Thus, in addition to representing what we know to be the case, models
can be tools for finding out what might be the case [RK22] – they can serve as embodied
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how-possibly explanations [Gel19]. This kind of inquiry is particularly important in areas
like cognitive science, where many subjects are still poorly understood. It enables researchers
to explore a range of scenarios and test which ones are compatible with our empirical
reality [Gel19]. The capacity to “navigate the possibility space” [Gri+16, p. 122] in this way is
referred to as the modal dimension of modeling. One problem with using models to navigate
the possibility space is that this space is, in theory, infinitely vast. If we accept that a model
need not represent a target system, how do we avoid the problem of link uncertainty? What
stops the model from becoming a “freely floating subject of inquiry, unconstrained by any
concern as to how it might be connected to the real-world facts” [Mäk09, p. 36]?

The answer is that the construction of models is, in practice, constrained by being designed for a
particular purpose. This purpose is informed by existing theories or empirical findings, which
means that much knowledge is built into a model from the outset – often implicitly [Knu11].
Every modeler brings with them their own set of values, assumptions, and expertise. This
context determines the kinds of questions they ask and the choice of modeling ingredients
they employ [Kit14; Sul22]. Therefore, even models of hypothetical systems rarely float about
in a scientific vacuum, waiting to be linked to real-world entities. They are usually already
linked to what we know of the world through the theoretical and empirical considerations
that motivated and enabled their construction [Knu11].

5.2.3 Toy models

When researchers engage in modal modeling, they often employ what are commonly called
“toy models”. Toy models are characterized by two main features: simplification and idealiza-
tion [Gel19]. Simplification refers to reducing model complexity by focusing on a small number
of causal or explanatory factors that are responsible for the target phenomenon. Idealization, as
discussed in section 4.2.2, involves making assumptions that may not hold in the real world but
allow for clearer insights into the system’s behavior or underlying principles. These idealiza-
tions can be minimalist (ignoring certain aspects), Galilean (altering certain aspects), or, often, a
combination of both. Despite their simple and idealized nature, toy models are not trivial; they
allow scientists to cut through the complexity of real-world systems to focus on the underlying
principles that govern behavior [RHH18]. Nobel Prize-winning economist Paul Krugman, e.g.,
has been vocal on the need for toy models alongside econometric simulations [Kru96].

Simplification and idealization are, of course, involved in most types of modeling, and
Reutlinger et al. are keen to point out that there is no sharp boundary between toy models and
other models [RHH18]. Instead, models exist on a continuum, with toy models at the extreme
ends of the simplicity and idealization dimensions. They are kept so simple and idealized
because their primary aim is usually not to predict or explain a phenomenon. Instead, they are
used to gain a qualitative or even a quantitative understanding of how a system might behave
under certain simplified conditions. We can distinguish between two types of toy models:
embedded and autonomous.

Embedded toy models are closely tied to an existing, empirically well-confirmed framework
theory. They are derived from the principles of this theory and are used to explore specific
questions within its domain. Embedded toy models can provide how-actually explanations by
demonstrating how a phenomenon occurs according to the principles of the embedding theory.
For example, an embedded toy model based on Newtonian mechanics to describe the orbit of
a planet around the sun may simplify the solar system by limiting its focus to the gravitational
interaction between two bodies. Despite this simplifying assumption, the model can provide
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a how-actually explanation for the elliptical orbits of planets by highlighting the core causal
factors at play [RHH18].

Autonomous toy models, in contrast, are not directly derived from a well-confirmed theoretical
framework. Instead, they are constructed based on more speculative or idealized assump-
tions to explore phenomena in areas where a comprehensive theory may not yet exist or
is a matter of dispute. Toy models are particularly well-suited for providing how-possibly
explanations [RHH18]. By creating a simple model world where they can freely manipulate
rules and variables, researchers can test out “what-if” scenarios and map out the landscape of
possibilities [Gel19]. Schelling’s model of racial segregation in urban areas is a classic example
of an autonomous toy model. It consists of a grid world populated by agents, each belonging
to a group and slightly preferring to be surrounded by a certain percentage of their own race.
Agents move to new locations until everyone’s preferences are met. The unfolding dynamic
often results in separated groups despite the initial mild preferences, providing a how-possibly
explanation of segregation as due to individual choices [RHH18].

Much like the distinction between toy models and other models, the classification into embed-
ded and autonomous toy models is more of a heuristic than a strict dichotomy. In practice,
models may have varying degrees of connection to established theories [RHH18], and models
may change status depending on the context in which they are used.

5.2.4 Relation to the guiding questions

Against the background outlined above, we can now address the questions from the beginning
of this section and put the present case study into the context of the overall thesis. The
modeling process of this work (see Figure 5.11) is similar to the last case study in that it is
informed by the cognitive science literature. However, this inspiration takes different forms in
the two studies. In the gSCAN case, I was loosely inspired by things we know to be the case:
that object attention is limited, joint attention is helpful in learning, and the brain encodes
locations egocentrically. In contrast, the model in this study is a computational implementation
of a hypothesis of how letters get their shapes – i.e., something we think might be the case.

Writing systems have arisen over millennia under different constraints, such as the availability
and characteristics of writing technologies, but also idiosyncratic choices of a few individuals
that hardened into systems over time because of network effects: Having an accepted writing
system within a culture is better than not having one. As we cannot run controlled experiments
in which we let Sumerian-era humans repeatedly rediscover writing, there is value in running
similar experiments in silico. Similarly, an astrophysicist cannot create black-hole collisions
and must either look for them as they occur or create simulation models.

Thus, another major difference between this case study and the last one lies in the two studies’
goals. The aim in the gSCAN case was to better understand the model so as to ultimately create
higher-performing AI. The present study, on the other hand, has little interest in predictive
performance or even inner model workings. Instead, the model serves to investigate a theory
about a real-life phenomenon. This approach represents a departure from traditional uses of
NNs, which is reflected in the fact that it is not centered on a pre-existing benchmark. Turning
to what this case study can tell us more broadly about the epistemic affordances of NNs, let
us once again consider the criticisms against them one by one, beginning with the concern
that NNs are “unscientific”.
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Figure 5.11: Overview of relations between human cognition, theory, assumptions, data, model,
and outputs in the third case study. Relevant components performed or generated
by us shown in orange. Components provided by third parties shown in gray.
Circle at the beginning of an arrow indicates the starting point of investigation.

As discussed in section 5.2.2, models, even models that do not accurately depict a real-world
target system, are often linked to theory through the questions they are designed to answer. In
the case of this study, all aspects of the modeling setup, including the choice of pre-trained
speech model, the architecture and optimization of sender and receiver models, and the
composition of the image datasets, were driven by my research question of how statistical
regularities in letter shapes may arise. The connection between model and theory is particularly
explicit here in that the model is a computational implementation of an empirically supported
hypothesis. Thus, the model can be considered an embedded toy model that is situated within
a theoretical framework.

By definition, this toy model is highly simplified and idealized, making no pretense of being
biologically plausible. Besides the differences between brains and the AI models used, the
scenario in my setup is not necessarily realistic. For instance, the sender receives a direct loss
signal derived from the internal representation of the receiver. This kind of instant feedback is
more akin to synchronous face-to-face communication than the asynchronous, slow processes
involved in the emergence of most actual writing systems [MKW20; Mor22a]. In future work,
the setup could conceivably be made more complex and cognitively plausible. However,
as discussed in the previous case study, simplifications need not be amenable to Galilean
de-idealization to be of worth. Modeling minimalist, hypothetical scenarios can be helpful in
its own right by allowing us to expand our understanding of the possible as well as the actual.

To draw the analogy to the “science fiction method” from this chapter’s opening quote, I
identify a real-world phenomenon’s core components and mechanisms and create a simplified
version of it by including only the most essential elements I am interested in. Then, I can
use that simplified model to gain a qualitative understanding of the system’s behavior under
the new set of assumptions. For instance, I observed the effect of switching out rectangular
convolutional filters with hexagonal ones.
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In future work, the experimental setup could also be used to investigate the trade-off between
referential and transmission efficiency more in-depth by varying the penalty factor a or code
size N. For example, a code size of 100 is so large that there is room for symbols that encode
composite sounds, as seen in Figure 5.9 – this would presumably not be the case for smaller
codes. Furthermore, HuBERT could easily be replaced by speech models pre-trained on other
languages or augmented with visual input of speakers’ mouth areas [SMH22] to test how this
influences the organizing principles of artificially evolved graphic codes.

Finally, we come to the criticism that NNs do not offer explanations. As mentioned, we
should distinguish between two issues: “can NNs be explained?” and “can NNs help explain
real-world phenomena?” Compared to the gSCAN case, the current study is less concerned
with the first question. In a broad sense, the signaling game can be seen as relating to the
interpretability technique of activation maximization for CNNs [Yos+15] and probing studies of
self-supervised speech models [JPS22]. Similarly to how writing, as a cultural artefact, provides
insights into human cognitive constraints, the evolved graphic codes can be considered a
projection of high-dimensional model representations to a form more familiar to us – providing
a window into these artificial systems of visual and speech perception.

However, the main focus of this case study is on the second question, namely, how can we
use NNs to understand a target system? As discussed above, toy models can provide how-
possibly and, in the case of some embedded toy models, how-actually understanding of real-
world phenomena. In some fields, fully-formed, widely accepted theories and how-actually
explanations may be difficult to attain. In cultural evolution research, for example, there are
few opportunities to directly observe the development of socially shared behaviors [Gal05],
much less manipulate them. In such cases, toy models can highlight potential mechanisms or
patterns that could serve as the starting point for further empirical investigation.

The purpose of the model was not to have the English alphabet or the Indus script re-emerge
as faithfully as possible as a function of societal and technological factors. Instead, I aimed to
explore in some quantitative depth the effects of different constraints on the characteristics
of writing systems that arise. Given that we know which writing systems did, in fact, arise
and the statistical similarities they exhibit, we may intuit or abduce that the constraints placed
on the corresponding model share similarities, in some regards, to those that shaped the
development of human-created glyphs. The model in this study can thus be seen as an
embodied how-possibly explanation, demonstrating how features of “cultural attractors” in
writing systems [Kel+21] could emerge without pre-supposing universal, innate aesthetic
preferences.

Crucially, when using NNs to answer these types of questions, looking inside the “black box”
may not be necessary. The relevant elements of the system can be at the “what” or “why”
level of the Marr hierarchy. In this case study, for example, explanations are mainly based
on higher-level building blocks of the modeling setup, such as the input statistics, network
structure, functional objective, and learning algorithm [KMK19]. Investigating individual
weights or neurons would not have been conducive to the study’s overall goal.

In summary, models, including NNs, are often connected to theory by virtue of the research
questions that motivate their construction and the knowledge built into them. This link can
also take a more explicit form in the case of embedded toy models. Furthermore, NNs can be
of epistemic use without faithfully representing the brain – in fact, they need not represent any
existing target system at all. Models have a modal dimension, meaning they can be used as
tools for exploring hypothetical systems or scenarios. Finally, NNs can not only be the target
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of explanations but can serve as (how-possibly) explanations of real-world phenomena in their
own right. For NNs to serve this function, it may not be necessary to understand the model
itself in detail – high-level “what” and “why” explanations may be enough. The next case
study demonstrates this point more starkly.
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6 Modeling the emergence of intuitions about
agents’ goals, preferences and actions with
Video Transformers

The purpose of models is not to fit the data but to sharpen the questions.

Samuel Karlin

6.1 Study

The fourth case study relates to the core system of agents and their actions (see Figure 6.1).
Although AI has made large strides in recent years, state-of-the-art models still largely lack
these “commonsense psychology” abilities that emerge early on in infant development. The
Baby Intuitions Benchmark (BIB) was explicitly designed to compare these aspects of social
cognition in humans and machines. RNN-based models previously applied to this dataset
were shown not to capture the desired knowledge. Here, we apply a different class of DL-based
model, namely a VT, and show that it quantitatively more closely matches infant intuitions.
We demonstrate through qualitative analyses that the model seems to learn to implicitly track
relevant semantic categories, such as agents, goals, and subgoals. However, we also find that
the VT is prone to exploiting particularities of the training data for its decisions.

The model proposed in this case study placed first in the Machine Visual Common Sense
Challenge’s BIB track at the 2022 European Conference on Computer Vision (ECCV) [HD22c].
Versions of the following text were also presented at the Shared Visual Representations in
Human & Machine Intelligence Workshop at the 2022 Conference on Neural Information
Processing Systems (NeurIPS) [HD22b] and included in the proceedings of the 45th Annual
Meeting of the Cognitive Science Society [HD23].

6.1.1 Introduction

The foundations of “commonsense psychology" emerge early on in a human’s development:
Even pre-verbal infants have expectations about agents’ goals, preferences, and actions [Sto+23].
However, despite the tremendous progress DL has made in recent years, this core component
of human cognition is still lacking in many state-of-the-art models [Lak+17]. When tested
on BIB, a dataset designed to compare the social cognitive abilities of infants and machines,
Behavioral Cloning (BC) and video prediction models based on RNNs failed to show infant-like
reasoning [Gan+21]. We here evaluate a different class of DL model, namely a VT, on BIB.

Recent years have seen the rise of Transformers in various areas of AI, including tasks adjacent
to social cognition, such as trajectory prediction for cars or pedestrians [Yua+21; Li+20; CWS21;
Sui+21; Giu+21; Yu+20] and spatial goal navigation [DYZ21a; CPM21; Fuk+22]. As the
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Figure 6.1: Situating the fourth case study in the broader study of cognition. Relevant parts of
the framework marked in orange.

Transformer attention mechanism is based on computing pairwise interactions [LL22], it
constitutes a promising approach for capturing the relations between, e.g., agents and goals in
the BIB dataset. However, Transformer-based video prediction models require many costly
pairwise computations. They are usually trained and evaluated on datasets like Kinetics-
400 [Kay+17] or UCF101 [SZS12], where video clip lengths range from 7 to 10 seconds – much
shorter than those used in BIB, which may be up to 2 minutes long. We, therefore, implement
some modifications to allow a VT to process BIB episodes and evaluate the resulting model.

We find that the VT quantitatively more closely matches infant intuitions about agents’ goal
preferences and efficient actions than previously tested DL baselines. However, qualitative
error analyses show that the model fails to generalize systematically on some test tasks when
agent or environment dynamics differ slightly from background training observations.

6.1.2 Baby Intuitions Benchmark

BIB is a dataset designed to test whether ML systems can discern the goals, preferences,
and actions of others [Gan+21]. It consists of videos in the style of Heider and Simmel’s
animations [HS44], where agents, represented by simple shapes, carry out actions in a 2D
grid world. BIB follows the Violation of Expectation (VoE) paradigm, i.e., each video has a
familiarization and a test phase. The familiarization phase consists of eight successive trials
during which an agent consistently displays a certain behavior, allowing the observer to form
an expectation of future actions.

The test phase includes an expected outcome (perceptually similar to the previous trials but
involves a violation of expectation) and an unexpected outcome (perceptually less similar but
conceptually more plausible). BIB contains six types of test tasks, outlined in Table 6.1. It
also contains background training episodes with four types of training tasks, which share the
same structure as the test set. However, Gandhi et al. designed the BIB dataset such that only
expected trials are provided in the background training episodes, and only isolated tasks are
trained [Gan+21]. Therefore, the systematic combination of acquired knowledge is needed to
generalize to the test tasks.
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Table 6.1: Overview of BIB tasks.
Familiarization trials Test trial Expected outcome Unexpected outcome

Preference

Agent consistently chooses

one of two goal objects

and moves to

it efficiently

Identical to a
familiarization trial,
but object positions
are switched

Agent moves to
preferred object
at new location

Agent moves to
non-preferred
object at familiar
location

Multi-agent New agent appears New agent moves
to object not
preferred by
familiar agent

Familiar agent
moves to
previously not
preferred object

Inaccessible goal Preferred goal
becomes
inaccessible

Agent moves
to other goal

Agent moves to
other goal, even
though both are
accessible

Efficient agent Agent moves efficiently around
a barrier towards goal

Barrier is removed Agent moves
efficiently

Agent moves
inefficiently

Inefficient agent One agent moves efficiently,
one moves inefficiently

Both agents
move inefficiently

Previously
inefficient
agent moves
inefficiently

Previously
efficient
agent moves
inefficiently

Instrumental action Agent removes a green barrier
(inserts key into lock), then
moves to goal

Green barrier gone
or inconsequential

Agent moves
directly to goal

Agent still
moves to key

Goal-directed actions The preference task (1,000 episodes) tests whether an observer represents
agents as having a preference for goal objects rather than locations. The setup consists of two
goals and an agent whose starting position is fixed. In the familiarization trials, the agent
consistently moves toward the same object. Goal locations and identities are correlated, such
that preferred and non-preferred goals have a similar position across trials. In the test phase,
the two objects appear in positions previously seen during familiarization. However, goal
identities are switched. In the expected outcome, the agent moves to the preferred object. In
the unexpected trial, the agent follows the same trajectory as seen during familiarization and
moves to the non-preferred object (see Figure 6.2).

Figure 6.2: Example of a preference task. Agents move repeatedly to the same goal during
familiarization (left). Goal locations are switched for testing (right). In the expected
outcome (blue solid line), the agent still chooses the same object. In the unexpected
outcome (red dashed line), the agent instead follows the familiar path to its non-
preferred goal.
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The multi-agent task (1,000 episodes) tests whether an observer attributes specific goal prefer-
ences to specific agents. The setup consists of two goal objects appearing at different positions
across trials and an agent with a fixed starting position. Again, the agent moves repeatedly
to the same object during familiarization. In the unexpected test outcome, the agent moves
towards its non-preferred goal. In the expected outcome, a new agent replaces the previously
seen one and moves toward the familiar agent’s non-preferred object. The unfamiliar agent
choosing a new goal should be less surprising than a familiar agent switching preference (see
Figure 6.3).

Figure 6.3: Example of a multi-agent task. Agents move repeatedly to the same goal during
familiarization (left). A new agent appears in the test trial (right). This new agent
choosing the other agent’s non-preferred object (top right) should be less surprising
than the familiar agent doing so (bottom right).

The inaccessible-goal task (1,000 episodes) tests whether an observer understands the principle
of solidity and that physical obstacles may restrict agents’ actions. The familiarization trials are
identical to the multi-agent task. In the expected test trial, a black barrier makes the previously
preferred object inaccessible, and the agent moves to the other goal. In the expected test trial,
the agent switches goal preference despite both objects staying accessible (see Figure 6.4).

Figure 6.4: Example of an inaccessible-goal task. Agents move repeatedly to the same goal
during familiarization (left). The agent switches goals in the test trial (right). This
should be expected if the preferred object is inaccessible (top right) but unexpected
if both objects are accessible (bottom right).
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Efficient actions The efficient-agent task tests whether an observer expects agents to move
efficiently towards their goal. It consists of two subtasks: path control (1,500 episodes) and
time control (1,000 episodes). In both subtasks, the setup consists of one goal object and one
agent. During familiarization, the agent moves efficiently towards the object but must navigate
around a barrier to reach it. This obstacle is removed in the test phase. In both subtasks,
the expected outcome consists of the agent moving efficiently towards its now-unobstructed
goal. For the path control task, a previously seen combination of agent and goal location is
used, and the unexpected outcome consists of the agent moving along the familiar, but now
inefficient, trajectory (see Figure 6.5). For the time control subtask, the goal object is placed
closer to the agent, and the unexpected outcome consists of the agent following a path that is
inefficient but takes the same amount of time as the efficient one.

Figure 6.5: Example of an efficient-agent task. During familiarization (left), the agent navigates
efficiently around an obstacle to reach its goal. The barrier is removed during
testing (right). The agent is now expected to move efficiently (blue solid line) rather
than following the same path as before (red dashed line).

The inefficient-agent task (890 episodes) tests whether an observer forms expectations about the
actions of irrational agents. During familiarization, an agent is shown either moving efficiently
or inefficiently. In the test phase, the agent is shown moving inefficiently to the goal. This
should be an unexpected outcome if the agent previously behaved rationally and unsurprising
if the agent previously behaved irrationally (see Figure 6.6).

Figure 6.6: Example of an inefficient-agent task. Familiarization trials shown on the left, test
trials on the right. An agent that moves inefficiently during familiarization (top) is
expected to continue doing so during testing, whereas an efficient agent (bottom)
beginning to move inefficiently should be surprising.
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Instrumental actions The instrumental-action task (987 episodes) tests whether an observer
can recognize an agent’s action sequences as instrumental and directed towards higher-order
goals. The setup consists of a goal, an agent, a removable green barrier with a lock, and a
key, represented by a red triangle. During familiarization, the goal is obstructed by the green
barrier. The agent collects the key, inserts it into the lock, removes the barrier, and moves
to the goal. In the test phase, a key is still present, but the green barrier is either absent or
no longer blocking the goal. In the expected outcome, the agent moves directly towards the
goal, whereas it still moves towards the now-obsolete key in the unexpected outcome (see
Figure 6.7).

Figure 6.7: Example of an instrumental-action task.

Background training episodes To facilitate the training of ML models, BIB includes many
background episodes that share the same structure, agents, and goal objects as the test set.
However, only expected trials are provided during training. The training set is split into four
tasks. In order to generalize systematically on the test trials, the model needs to combine
knowledge acquired from all four training tasks.

In the single-object task (10,000 episodes), an agent navigates efficiently to a goal object (see
Figure 6.8a). In the preference task (10,000 episodes), the agent consistently chooses one object
over another across trials (see Figure 6.8b). In contrast to the preference test task, both objects are
located very near the agent, so navigation is not trained. In the multi-agent task (4,000 episodes),
the agent moves to a very close-by single goal object (see Figure 6.8c). At some point in the
episode, the agent is replaced with a new agent. This differs from the multi-agent test task,
which has two goals placed farther away, and the new agent only appears in the test trial. In
the instrumental-action task (4,000 episodes), the agent is initially confined by a green barrier,
which it removes with a key to access its goal. It differs from the instrumental-action test task in
that the barrier surrounds the agent rather than the goal.

Because BIB adopts its tasks and paradigm from developmental cognitive science and provides
sufficient data to train DL-based models, it allows for the direct comparison of human and
machine performance [Gan+21]. A critical first step in this direction was taken by Stojnić et al.,
who collected infants’ responses on a representative selection of BIB episodes and compared
them with three state-of-the-art DL models from two classes: BC and video modeling [Sto+23].
Recently, Zhi-Xuan et al. proposed a principled alternative to DL approaches based on a
Hierarchically Bayesian Theory of Mind (HBToM) [Zhi+22]. The results of both works serve as
a comparison in this paper. Note, however, that HBToM requires access to symbolic states and
is specifically engineered to solve BIB-like social cognition tasks. In contrast, the data-driven
baselines and VT model have weaker inductive biases in this regard.
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(a) (b) (c) (d)

Figure 6.8: Examples of training trials, consisting of single-object (6.8a), preference (6.8b), multi-
agent (6.8c), and instrumental (6.8d) tasks.

6.1.3 Methods

Our model consists of a CNN encoder, a Transformer component, a CNN decoder, and a
linear output layer. A schematic visualization is shown in Figure 6.9. The CNN encoder
(Figure 6.9 A ) has two convolutional layers and two max-pooling layers. For each 3 ⇥ 84 ⇥ 84
input image, it produces a 30 ⇥ 21 ⇥ 21 representation, which we concatenate with x- and
y-position encodings, yielding 32 ⇥ 21 ⇥ 21 patches. As attending over every pixel would be
computationally prohibitive, the CNN encoder was designed to reduce the frame’s resolution
by extracting higher-level features while retaining sufficient spatial detail.

After encoding all the frames of an episode in this way, we extract the top-n patches per frame
that display the most significant change compared to the previous frame (Figure 6.9 B ). We
do this for each frame of the familiarization trials. The reason we only use n patches is that
attending over every patch, frame, and trial would be extremely computationally expensive.
N was set to 3, as using a higher number would have exceeded the memory resources in
our training setup, even with our very small batch size. However, it is unlikely that a choice
of n > 3 would have led to substantially better performance, as BIB trials are mostly static.
The only movements stem from the agent and, in instrumental-action tasks, the green barrier.
Therefore, it is rare that more than three patches exhibit a change from one frame to the next.
The extracted patches are fed into the first of three blocks of the Transformer component.

Each block has five layers with eight heads of input dimension 32 and hidden dimension
256. The first block (Figure 6.9 C ) performs cross-attention over the test trial’s encoded first
frame and previous familiarization trials, effectively “priming" the model by calculating the
influence of previous observations on the current input. The results of attending over each
trial are averaged and passed through a self-attention block (Figure 6.9 D ). We then extract
n patches for each frame in the test trial (Figure 6.9 E ) in the same way as we did for the
familiarization trial frames. The patches serve as input to the third attention block (Figure
6.9 F ), which attends over past steps in the test trial. In the final step, the outputs of the
Transformer component are passed through an output layer (Figure 6.9 G ), which produces a
1 ⇥ 21 ⇥ 21 prediction of the agent’s next position and a CNN decoder (Figure 6.9 H ), which
produces a 3 ⇥ 84 ⇥ 84 prediction of the next frame.
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Figure 6.9: Schematic visualization of the Video Transformer architecture.
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Given the model’s two prediction targets, our loss function consisted of the sum of two
terms. The first term was the Binary Cross-Entropy (BCE) loss between the prediction of
the agent’s next step and the actual agent position. To address the imbalance between the
“agent" and “no-agent" class, we employed a weighted version of the BCE loss, which is widely
used in instance segmentation [Jad20]. The second term was the Mean Squared Error (MSE)
between the prediction of the next frame and the actual next frame, upweighted by a constant
factor so that both loss terms were scaled evenly. This second term was introduced because
Transformers may disregard agent identities unless incentivized otherwise [Yua+21]. For tasks
like preference, which relies on the preservation of agent shapes and colors, we thus found that
it improved performance to include an auxiliary reconstruction loss. During evaluation, only
the main BCE loss was used.

As in Gandhi et al., the videos’ frame rate was downsampled by a factor of 5 [Gan+21]. We
used a maximum sequence length of 90. Frame rates of longer sequences were interpolated
to fit the maximum length. Of the BIB background episodes, we used 80% for training, 15%
for testing, and 5% for validation. Models were trained using the Adamax optimizer for six
epochs, after which we saw no further improvement on background training tasks. The batch
size was set to 6 because of the VT’s high memory requirements. We tested the models on
the validation set in five evenly spaced intervals per epoch and saved the model with the
lowest validation loss to avoid overfitting. The total number of trainable parameters in the VT
is 772, 162. For comparison, the two publicly available baseline BC methods by Gandhi et al.
contain 925, 666 and 986, 306 trainable parameters, respectively [Gan+21]. On a 16-core AMD
EPYC 7282 server with six GeForce RTX 2080 GPUs, training time was around 3 hours per
epoch.

Our model shares some commonalities with the BIB baseline DL models but also differs in
several aspects. Both the VT and baseline models use CNNs to encode frames and average
embeddings across familiarisation trials to obtain context vectors. However, we use attention
mechanisms to obtain these embeddings, whereas the baselines used RNNs or MLPs. In
contrast with the BC baselines, we also do not pre-train our CNN encoder separately, and we
do not add the agent’s actions as inputs – only the video frames. Finally, we predict both the
next frame and the agent’s position, while Gandhi et al.’s video modeling approach predicted
only the next frame, and their BC approach predicted only the agent’s next action [Gan+21].

6.1.4 Results

We trained five models on the BIB background training tasks, each with a different random
weight initialization. We report the models’ average performance on the test set of the
background training tasks in Table 6.2 and the performance on BIB evaluation tasks in Table
6.3. The baseline DL models previously tested on BIB used the prediction error of the frame
with the highest loss as their metric of "surprise," as this provided better results compared
to the mean error over entire trials [Gan+21]. In our case, the mean error yielded a higher
performance on most tasks, so we report both metrics here. However, binary VoE accuracies
include no information about the magnitude of the difference in surprisal scores between
expected and unexpected trials. We, therefore, also show z-scored means of both the models’
average prediction error and infants’ looking times in Figure 6.10, as reported by Stojnić
et al. [Sto+23].

70



6.1. STUDY

Table 6.2: Mean squared error of the frame prediction and weighted binary cross-entropy
loss of the agent prediction on the test split of the BIB background training tasks,
averaged over the five trained models.

Training task MSE BCE

Single object 7.05 ⇥ 10�4 1.58 ⇥ 10�2

Preference 7.07 ⇥ 10�4 1.38 ⇥ 10�2

Multi-agent 5.94 ⇥ 10�4 1.32 ⇥ 10�2

Instrumental actions 1.42 ⇥ 10�3 1.33 ⇥ 10�2

Table 6.3: VoE Accuracy on BIB evaluation tasks. VoE Accuracy denotes whether model error
is higher on expected trials than on unexpected trials. VT (Mean) uses the average
error over all test trial frames as the “surprise” metric, whereas VT (Max) uses the
error for the frame with the highest loss. For the VT models, we report the average
accuracy and standard deviation over five models trained on the same data but with
different random initializations. Baselines and VT are data-driven computer vision
models, whereas HBToM uses a principled Bayesian solution that requires access to
symbolic states. Chance level accuracy is 50%.

Baselines VT (ours)

Task HBToM BC-MLP BC-RNN Video-RNN VT (Mean) VT (Max)

Goal-directed
Preference 99.7 26.3 48.3 47.6 82.1 ± 0.0 80.8 ± 0.0
Multi-agent 99.2 48.7 48.2 50.3 49.1 ± 0.0 49.2 ± 0.0
Inaccessible goal 99.7 76.9 81.6 74.0 89.8 ± 0.0 85.5 ± 0.0

Efficiency
Efficient agent 95.8 96.0 95.3 99.5 98.3 ± 0.0 98.4 ± 0.0
Inefficient agent 96.6 73.8 56.5 50.1 29.5 ± 0.1 34.1 ± 0.1

Instrumental actions
Instrumental action 98.5 67.0 77.9 79.9 92.6 ± 0.0 84.7 ± 0.0

Figure 6.10: Z-scored means of the models’ average surprisal scores and infants’ looking times
to the expected and unexpected outcomes in the BIB test episodes.
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Preference In contrast to the DL-based baselines, the VT seems, at least to some degree,
to associate agents with certain goal preferences in the preference task (see Figure 6.10). To
investigate which parts of the familiarization trials the model relied on most, we performed a
form of occlusion analysis. We used only one trial as the familiarization input (performance
was almost identical when using one vs. the full eight trials) and dropped each patch fed into
the first Transformer block in turn. We recorded the z-scored difference in prediction error
between the expected and unexpected outcomes for each patch. An example result is shown
in Figure 6.11. Models tended to rely on either the agent’s last or first step. Averaged over all
models and episodes, the patch with the largest impact on the final prediction was part of the
last two frames of the familiarization trial in 52.6% of cases.

Figure 6.11: Z-scored impact of omitting a patch from the preference familiarization trial.

Multi-Agent Similarly to the other DL models, the VT does not acquire the desired knowl-
edge from the multi-agent background training tasks, which feature both agents moving
towards the same single goal across trials. Note that the infants tested on BIB were, in fact,
more surprised at the supposedly “expected” trials (see Figure 6.10). Stojnić et al. hypothesize
that this may be because of the increased novelty of the new agent. A closer look at the frame
predictions produced by the VTs hints at some confusion regarding the agents’ identity: In
some cases, the model reconstructs the familiar agent in the unexpected trial rather than the
new agent present in the input (see Figure 6.12 for an example). Averaged over all models and
episodes, this was the case 27.9% of the time.

(a) (b) (c)

Figure 6.12: Unexpected multi-agent outcome involving familiar agent (a). Expected outcome
involving new agent (b). Model prediction for expected outcome (c).
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Inaccessible In the inaccessible-goal task, the VT model achieves a higher accuracy than
previous DL models. It exhibits a stronger deviation in surprise than the infants, who were
indifferent on this task (see Figure 6.10). Stojnić et al. posit that infants may have considered
the new barrier in the expected outcome as indicative of a new environment and not carried
over any goal preference expectations from the familiarization trials. Although the VT has
a lower prediction loss on the expected outcome in most cases, it is more “split" than in the
single-object case (see Figure 6.13 for an example prediction). Averaged over all models and
episodes, the entropy of the models’ predictions on the test trial’s last frame was 1.10 for the
expected and 1.47 for the unexpected outcome. For comparison, the average entropy for the
last frame of the single-object background training task was only 0.58.

Figure 6.13: Inaccessible goal task. Predicted agent positions marked blue.

Efficiency As in previous models, the VT’s VoE accuracy on the efficient agent tasks is nearly
perfect – it strongly expects agents to move towards their goal efficiently. This is in accordance
with infants’ intuitions (see Figure 6.10). On the inefficient-agent task, the VT tends to be more
“surprised" at the previously inefficient model moving inefficiently than at the previously
efficient agent doing so. Although not necessarily a desired outcome, this is actually more
in line with the intuitions of infants tested on BIB, who attributed rational action both to
previously efficient and inefficient agents in a new environment (see Figure 6.10).

When we compare the impact of the familiarization trials featuring the efficient vs. inefficient
agent on the VT model (see Figure 6.14), we see that a similar mechanism is at work: The
lowest levels, which attend over past familiarization trials, show differences in activation.
However, these differences all but disappear throughout the higher layers. This leads to the
inefficient agent being treated the same way as the efficient one, which explains the mean
surprise score being almost the same in both cases. The slightly larger error for the inefficient
agent most likely stems from inefficient agents not being seen during training, leading to
higher prediction uncertainty.

Instrumental Actions Compared with the other DL models, the VT performs similarly on
episodes with no barrier and better on episodes with inconsequential or blocking barriers.
Again, infants were indifferent on this task (see Figure 6.10). Stojnić et al. note that they may
have failed to recognize the instrumental actions because they were causally opaque. Although
the VT is correct in most cases in terms of VoE accuracy, it, too, seems to not have entirely
understood the causal mechanism.

The frame predictions show that the model usually expects the disappearance of the key on
the first step, even though the agent has not collected and inserted it. Averaged over all models
and episodes, the VT at least partly predicts the key’s position as the agent’s first step in 47%
of cases, even though the key is mostly far away from the agent. This is most likely because
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Figure 6.14: Avg. difference in the model layers’ activations when processing the episodes’ un-
expected vs. expected familiarization trials, featuring an efficient or an inefficient
agent, respectively.

the key is always right next to the agent in the background instrumental-action tasks, and thus
constitutes its first step. The VT also often predicts the disappearance of the green barrier
towards the end of the episode, even though the key was not inserted. This is most likely
because the green barrier has always disappeared by the time the agent reaches the goal in the
background tasks. Occlusion analyses support this hypothesis: The parts of the test trial that
most contribute to the z-scored MSE prediction error on expected instrumental-action outcomes
were usually the agent’s first and last steps (see Figure 6.15 for an example).

(a) Predicted last frame
and agent trajectory
(yellow).

(b) Z-scored impact of each
test trial patch on final
MSE error.

Figure 6.15: Prediction on an instrumental-action task.

Decoding experiment Inspired by probing analyses of pre-trained language models [Cla+19],
we trained linear regression models to predict the current position of the agent, goal, and
sub-goals (keys and locks) based on the activations in each layer of each VT block. Each linear
model had an input dimension of 256 (8 attention heads per layer, each with dimension 32)
and an output dimension of 4 (one for each prediction target). The models were trained with
the Adam optimizer [KB15b] set to default parameters, using the same epoch number and
batch size as the main experiments described in the Methods section. We used the background
training set for optimization and display the results for the background validation set in
Figure 6.16.

In general, errors decrease in the deeper layers of the attention blocks, indicating more focused
attention heads. The heads in the first block, which attend over familiarization trials, do not
display much specialization regarding the analyzed categories. However, at least in the higher
layers, the agent, key, and lock categories have a comparatively lower decoding error than the
goal category. Note that the agent’s position often corresponds with the key and lock position
for long stretches of instrumental action trials, as the agent waits for the green barrier to
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Figure 6.16: Weighted BCE loss of linear probes trained on decoding the current position of
goals, agents, and sub-goals from attention head activations in each layer. Error
bars indicate standard deviation across the five trained models.

disappear after having inserted the key into the lock. The second block, which self-attends over
the test trial’s first frame, has the lowest decoding error across categories and a particularly
low error for the agent’s current position. The third block shows a clear separation between
categories, with locks and keys displaying a much lower decoding error than goals and agents.
This is presumably because the third attention block autoregressively predicts the agent’s next
step, which, as mentioned, often coincides with the key and lock position while the agent is
waiting in place for the barrier to disappear.

To sum up, the VT seems to have learned to implicitly keep track of relevant semantic
categories, such as agents, goals, and subgoals, which are usually modeled as explicit variables
in Bayesian approaches.

6.2 Discussion

In conclusion, the proposed VT model outperforms previous DL-based baselines on the
preference, inaccessible-goal, and instrumental-actions BIB tasks in terms of VoE accuracy. Its
surprisal scores are also more in line with infants’ expectations than previous DL models,
in that it tends to represent agents’ actions as directed towards goals rather than locations,
and it defaults to expecting rational actions. This suggests that the Transformer’s attention
mechanism can be helpful in acquiring intuitions about agents’ goals, preferences, and actions
purely from predicting the next step in videos.

However, a qualitative analysis of the VT’s errors also demonstrates the pitfalls of this approach:
Models may exploit the particularities of a training dataset in an unintended way [Gar+20;
Gei+20], e.g., by associating the disappearance of the green barrier in the instrumental-actions
task with the agent’s first and last step rather than with the key mechanism. This may be
mitigated with a more realistic data setting, where models can gain experience with diverse
agents and disambiguate causes and effects of instrumental mechanisms interactively in a
manner closer to human infants. The findings also support the benefit of investigating hybrid
architectures that incorporate methods that explicitly model human intuitions, such as HBToM,
to take advantage of both the flexibility of DL-based approaches and the data efficiency and
robustness of principled Bayesian models.
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On a broader level, this case study demonstrates the benefits of employing a plurality and
diversity of models in the study of cognition. It also highlights how the epistemic aims and
success criteria of cognitive science and ML may diverge and sometimes even conflict with
one another. I will elaborate on both of these points in more detail in the following sections.
As we encountered a Bayesian model in this chapter for the first time, I will begin by placing
the Bayesian paradigm within the overall context of modeling approaches in cognitive science.

6.2.1 Approaches to modeling in cognitive science

Cognitive science has undergone significant transformations since its inception, particularly
in how researchers model cognitive processes. This evolution of modeling paradigms has
been deeply intertwined with the technological advancements of the times. The “tools-
to-theory” heuristic suggests that the tools available to researchers not only facilitate the
exploration of cognitive phenomena but also shape the theoretical frameworks that emerge. As
computational tools evolve, they inspire new analogies and metaphors for mental processes,
leading to paradigm shifts in modeling [Gig20].

The early days of cognitive science were marked by the development of symbolic models, influ-
enced by the first digital computers. These computers inspired scientists to consider cognitive
processes as discrete, serial computations akin to the operations of a computer program [Gig20].
In the 1950s and 1960s, researchers like Allen Newell and Herbert Simon developed the first
computer programs that could perform logical reasoning and problem-solving tasks, such
as the Logic Theorist and General Problem Solver. These models conceptualized thought
as the manipulation of discrete symbols according to formal instructions. This approach
emphasized the structured, rule-based nature of cognition, suggesting that the mind operates
by manipulating internal representations of the external world [McC09].

Symbolic models have the benefit of being highly interpretable because they operate through
explicit rules and symbols that can be directly inspected. They naturally support modularity,
allowing for the construction of complex systems from simpler components, and they allow
for precise definitions and formal proofs of model properties. However, symbolic models can
struggle with noisy data and tasks that require generalization beyond the exact conditions
they were programmed for. They can be brittle, i.e., small changes in input or rules can lead to
large, unexpected changes in output. Furthermore, verifying and maintaining symbolic rule
bases is difficult, and incorporating new knowledge typically requires significant manual rule
crafting [IK20]. Despite early successes, these limitations of symbolic AI soon became apparent,
leading to a period of reduced funding and interest known as the first “AI winter [Too+21].”

In the 1980s, connectionist or neural network models emerged as a significant challenge
to the symbolic paradigm. This development was driven by the advent of more powerful
computers and the introduction of the backpropagation algorithm, which enabled the training
of multi-layer networks [PP20]. Connectionism represents a departure from the discrete and
rule-based processing of symbolic models. It posits that cognitive processes emerge from the
interactions of many simple, interconnected processing units. These units, loosely inspired by
the neurons in the brain, work in parallel to process information. Learning in connectionist
models occurs through the adjustment of the strengths of the connections between units
based on experience. Rather than discrete symbols, knowledge takes the form of distributed
representations [Has+17]. This approach has been particularly effective in modeling perceptual
processes and certain aspects of memory.
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In contrast to symbolic models, neural networks excel at learning patterns and generalizations
directly from data, making them more dynamic and adaptable than symbolic models. They
are also more robust to noise and better able to handle ambiguous or incomplete information
effectively. However, connectionist models are often criticized for being “black boxes,” as it
can be challenging to understand how they arrive at a particular decision. Furthermore, their
performance heavily depends on the quantity and quality of their training data. Although
their distributed nature lends itself to leveraging efficient parallel processing, neural network
optimization usually also requires significant computational resources [MP20].

Bayesian models represent a probabilistic approach to understanding cognition. These models
are based on a method of statistical inference in which Bayes’ theorem is used to update the
probability of a hypothesis as more evidence becomes available. They have their origins in
the 18th-century work of Thomas Bayes and Pierre-Simon Laplace. However, it was not until
the late 20th century that these methods began to be widely applied in cognitive science. The
rise of Bayesian models in cognitive science can be attributed to advances in computational
methods, such as Markov chain Monte Carlo, which made it feasible to perform Bayesian
inference on complex models. Bayesian models view the mind as a rational, probabilistic
inference engine that integrates prior knowledge with new evidence to make predictions,
decisions, and interpretations about the world [McC09].

Because Bayesian models naturally incorporate uncertainty, they are well-suited for modeling
decision-making. They can seamlessly integrate prior knowledge with observed data, reflecting
an essential aspect of human cognition: the capacity to deal with the inherently uncertain na-
ture of sensory information by leveraging prior knowledge and probabilistic reasoning [KD18].
In contrast to neural networks, Bayesian models can generalize from limited data by leveraging
prior distributions and are well-suited for continuous learning scenarios where data arrives
incrementally [DS23]. However, performing Bayesian inference can be computationally inten-
sive, especially in complex models. Furthermore, specifying prior distributions and likelihood
functions can be challenging and introduces subjectivity. Scaling Bayesian models to large
datasets or highly complex problems can also be difficult [MP20].

Symbolic, connectionist, and Bayesian models each offer valuable insights into the nature
of cognitive processes, albeit from different perspectives. Symbolic and Bayesian methods
are often used to model so-called “as-if” theories. These theories are characterized by their
highly idealized nature and describe cognitive processes as if they were following a set of
formal rules or statistical principles. As-if models are not necessarily concerned with actual
psychological processes but rather with the outcomes that would result if the mind operated
according to certain rational principles [Gig20]. These models are helpful in exploring how
ideal solutions to problems could be computed but often do not account for the complex,
frequently suboptimal processes used by humans. For example, a large body of behavioral
science suggests that humans are rather poor at estimating conditional probabilities [Pol+87].

To connect this to the discussion in section 4.2.2, as-if models can serve as templates. In
contrast, process models, often implemented as neural networks, are less concerned with
idealized rationality and more with how cognition actually operates, including its limitations
and biases [McC09]. In practice, modelers seldom specify whether a proposal is meant to be
an as-if or a process theory, and the distinction may not always be clear. The same model can
contain as-if components, e.g., for tractability reasons, and other parts meant to model actual
cognitive processes [Gig20].
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The tools we use to model cognition also influence the kind of data we collect and the
experiments we design [Gig20]. If we adopt a symbolic or Bayesian approach, we must turn
our problem into a simplified, tractable task and manually define discrete variables with which
the model can work [MP20]. If we use connectionist models, we usually need to cast the
problem as a differentiable task that can be learned from and evaluated with available datasets.
In each case, there is a risk of overlooking aspects of cognition that do not fit neatly into one’s
chosen framework. Cognitive science can mitigate the impact of an individual paradigm’s
limitations and inherent biases to some degree by employing a plurality of models [CK19].
Different models can complement each other, with the strengths of one model addressing the
weaknesses of another [McC09; MP20].

6.2.2 Conflicting goals in engineering and cognitive science

As touched upon in the previous section, there is a certain element of opportunism to mod-
eling [Knu11]. When new technologies become available, they may be integrated into a
discipline’s modeling practices, shaping how a field frames and answers its research ques-
tions [Gig20]. Similarly, when a model has proven successful in reproducing features of some
phenomenon, it will often be applied to other phenomena, including phenomena within
entirely different disciplines [Knu11]. This can be said to have happened with NNs, which
were taken up by the cognitive science community after having shown success in practical
applications like image recognition or Natural Language Processing (NLP). However, some
scholars have argued that the wholesale adoption of AI models in cognitive science is inadvis-
able because the goals, priorities, and success criteria in engineering and cognitive science do
not necessarily align [McC09; MP20; SK20; Mom23].

Engineering goals are often driven by commercial interests, focusing on short-term, specific,
practical applications [PP20]. They typically prioritize performance optimization, often without
regard to human-like resource constraints [Has+17]. The focus is on creating the most efficient
and powerful systems possible, which may involve leveraging vast computational resources
beyond human capabilities [MC23]. In cognitive science, on the other hand, the goal is often to
create models that accurately reflect the nuances of human cognition, including its limitations
and inefficiencies [SK20]. Cognitive scientists usually engage in basic research that not only
may not have immediate practical applications but indeed conflicts (or may conflict) with
engineering goals. For instance, researchers may want to model human cognitive constraints,
such as limited working memory, attentional bottlenecks, and slower processing speeds, all of
which appear undesirable from an engineering perspective [KMK19].

Therefore, effectively adopting NNs for the purposes of cognitive science arguably requires re-
searchers to change their own “reward function” for what constitutes a good model, which may,
in turn, cause important changes to the traditional ML pipeline. Specifically, it is important to
design ecologically relevant tasks that are informative about underlying cognitive mechanisms
and allow for testing hypotheses about mental processes. Performance assessments on these
tasks should not be restricted to typical ML metrics like accuracy. Instead, models may, for
instance, be evaluated based on their ability to replicate human behavioral patterns, including
error patterns, reaction times, and learning trajectories [MP20]. Besides task performance, an-
other relevant assessment criterion may be how well the way a model internally represents and
processes information aligns with neuroscientific findings and psychological theories [SK20].
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and outputs in the fourth case study. Relevant components performed or generated
by us shown in orange. Components provided by third parties shown in gray.
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6.2.3 Relation to the guiding questions

Putting this fourth study into perspective, the modeling process (see Figure 6.17) is similar, in
a sense, to the gSCAN case. My starting point is a pre-existing benchmark dataset inspired by
certain human behavior patterns. In this case, these are not related to systematic generalization
but to infants’ intuitions about social agents and their actions. However, there are some
major differences to the gSCAN case. One difference is that BIB provides reference data from
human reactions. In contrast, in gSCAN, the “correct” answers were based on the authors’
assumptions about desired behavior.

Another difference is that the human behavior in question has produced not just a collection
of empirical findings but inspired an explicit theoretical framework that informed the design
of the BIB tasks and one of the baseline models, HBToM. This framework views humans as
approximately rational actors and tries to formalize the processes underlying their behavior
using Bayesian inference [BST09; JST20]. It can thus be characterized as an as-if theory, which
sometimes contrasts with the actual human reference data. For example, infant reactions in
the multi-agent, inaccessible-goal,inefficient-agent, and instrumental-action tasks contradicted the
predictions of the rational Bayesian as-if view. Crucially, this theory does not form the basis of
my NN model.

These observations bring us back to the first criticism against NNs: their lack of theoretical
grounding. In the case of this study, it is certainly fair to say that the NN is much less rooted in
theory than the HBToM model. However, this is, in a way, precisely the point. The NN serves
as a proof of concept for how the variables and mechanisms that a cognitive model like HBToM
manually encode could emerge on a sub-symbolic level purely from end-to-end training. As
discussed in section 6.2.1, modeling paradigms in cognitive sciences have different strengths
and limitations, and there is value in fostering a plurality of frameworks that complement
each other.
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Whereas bottom-up, as-if theories like the one embodied in HBToM have the benefit of being
interpretable and data-efficient, they are also relatively rigid and involve manual coding that
introduces subjectivity. As-if models are our way of making a phenomenon graspable to our
human brains; in this way, they perhaps often reveal more about us than about their target
system (which may, confusingly, also be our own cognition). A process model like my NN is
less interpretable and requires more data but is not as constrained by pre-defined hypothesized
structures. It takes a more descriptive than normative approach and thus can broaden the
scope of investigation by revealing unexpected patterns or relationships that may not have “fit
into” existing theories.

The fact that the NN model is, in a way, detached from the theory that inspired BIB also
allows it to raise questions about the benchmark’s suitability for assessing the skills it sets out
to measure. As discussed in section 6.2.2, adapting NNs from an engineering context into
cognitive science requires changes to the ML pipeline. The BIB dataset is an excellent example
of how this can be done. It proposes a set of diagnostic tasks based on cognitive science
theory. It also expands on the typical set of evaluation metrics by including VoE accuracy
and comparisons to human reference data. As with the gSCAN dataset, comparing different
approaches on these tasks can allow for pre-selecting models that show promise in capturing
the essence of the phenomena under study. In this way, benchmarking can contribute to
developing models that are, if perhaps not biologically accurate, at least more cognitively
plausible.

However, as revealed in the error analyses in this case study, the dataset has certain particu-
larities to which the NN adapts during training. For example, the model seems to associate
the disappearance of the barrier with specific time steps rather than, as intended, the causal
key mechanism. This finding raises the question of what constitutes a desired behavior. If
certain time steps always correlate with barriers disappearing in training, should we want the
model to learn this correlation or not? Is the dataset implicitly favoring a paradigm that is
less sensitive to these peculiarities, perhaps without the authors even realizing this? Would
we expect an infant to react similarly if only exposed to this exact training data? If so, what
important factors about an infant’s experience are missing from the training data? And if not,
what critical inductive biases are missing from the model?

By prompting these kinds of questions, an “unprincipled” NN model like the one presented in
this case study can help refine what we mean by “human-like” or cognitively plausible behavior
and what constitutes ecologically relevant training tasks. Thus, while I do try to provide some
“what”, “why”, and, in the case of the instrumental-action task, “where”-level explanations,
the main contribution of this case study is not necessarily a form of understanding, but lies
instead in bringing out points for further inquiry.

To sum up, models that are not directly based on pre-existing theory can have their benefits.
Process models, e.g., in the form of NNs, can allow for a more open-ended exploration
than as-if theories. They can provide alternative or complementary explanations to more
normative frameworks, prompt questions about what kind of behavior we consider desirable
or cognitively plausible, and help us iteratively refine the design of modeling setups that are
suited to the goals of cognitive science rather than engineering aims. The case in the next
section carries forward several ideas from this study. In particular, it follows the approach of
designing cognitively relevant tasks, training a large NN on them, exploring what the model
learns, and comparing its behaviors and representations to those of humans. However, it tries
to do so with more explanatory depth than the present case study.
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7 Modeling the emergence of early number
abilities with Vision-Language Transformers

He had bought a large map representing the sea,
Without the least vestige of land:

And the crew were much pleased when they found it to be
A map they could all understand.

"What’s the good of Mercator’s North Poles and Equators,
Tropics, Zones, and Meridian Lines?"

So the Bellman would cry: and the crew would reply
"They are merely conventional signs!

"Other maps are such shapes, with their islands and capes!
But we’ve got our brave Captain to thank:

(So the crew would protest) "that he’s bought us the best–
A perfect and absolute blank!"

From “The Hunting of the Snark” by Lewis Carroll

7.1 Study

The fifth case study relates to the core system of numbers (see Figure 7.1). Early number
skills represent critical milestones in children’s cognitive development and are shaped over
years of interacting with quantities and numerals in various contexts. Several connectionist
computational models have attempted to emulate how certain number concepts may be
learned, represented, and processed in the brain. However, these models mainly used highly
simplified inputs and focused on limited tasks. We expand on previous work in two directions:
First, we train a model end-to-end on video demonstrations in a synthetic environment with
multimodal visual and language inputs. Second, we use a more holistic dataset of 35 tasks,
covering enumeration, set comparisons, symbolic digits, and seriation.

The order in which the model acquires tasks reflects input length and variability, and the
resulting trajectories mostly fit with findings from educational psychology. The trained model
also displays symbolic and nonsymbolic size and distance effects. Using techniques from
interpretability research, we investigate how our attention-based model integrates cross-modal
representations and binds them into context-specific associative networks to solve different
tasks. We compare models trained with and without symbolic inputs and find that the purely
nonsymbolic model employs more processing-intensive strategies to determine set size.

A version of this case study was published in the journal Cognitive Science [HD24a].
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Figure 7.1: Situating the fifth case study in the broader study of cognition. Relevant parts of
the framework marked in orange.

7.1.1 Introduction

For many adults, tasks such as counting objects or sorting a set of digits appear simple. For
children, however, early number abilities take years to learn. Mastering these skills involves
developing a network of concepts that encompasses language, visuospatial abilities, and
executive functions [Zha16]. This knowledge later forms the basis for more complex capabilities,
e.g., arithmetic. Given the integral role of numbers in our daily lives, questions about how
we learn, represent, and process them have occupied cognitive scientists, neuroscientists, and
psychologists for decades, forming the multidisciplinary field of numerical cognition.

In this field, connectionist computational models have long played an important part. Often
referred to as artificial neural networks, they take inspiration from the way information is
stored and processed in the brain via neurons and synapses. As such, they represent concrete
implementations of ideas on how at least small subsystems in the brain acquire and process
concepts, which can be evaluated against behavioral and neural data. Connectionist models
are thus invaluable tools in elucidating critical aspects of learning processes. Their outputs and
behavior are inherently shaped by their architecture, training algorithms, and hyperparame-
ters. Additionally, and perhaps more insidiously, these characteristics are influenced by the
designers’ choice of input modalities as well as the complexity and variety of tasks addressed.

As we show in a brief literature review in section 7.1.2, numerical cognition researchers have
been able to reproduce observations from human experimental data using a wide range
of approaches. However, many previous computational models operate only on binary
images or vectors. When multiple modalities are involved, these are usually processed via
specialized modules that are sometimes trained separately. Furthermore, computational
modeling studies have mainly focused on a single task type, such as comparing quantities or
counting. This setup contrasts with the way humans acquire number knowledge. Children
learn through interaction with complex multimodal environments where they encounter
number and magnitude concepts in various contexts and concurrently with learning a number
of other skills [FRB82].
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Faithfully reconstructing a child’s brain and experiences is, of course, outside our current
abilities. Still, using overly abstracted inputs may artificially impose a stricter separation of
input pre-processing and task solving than would naturally occur. Furthermore, considering
only isolated skills neglects the interactions between concepts that characterize natural learning
and information processing. The main purposes of this work are to introduce a greater but
still controlled realism into the modeling of early number abilities and to analyze the points of
similarity and difference with empirical research and other models in the literature.

Our approach entails training a model on 35 tasks related to enumeration, set relations,
symbolic digits, and seriation. Our goal is not to optimize model accuracy or training times
on these tasks – in fact, we are precisely interested in cases where the model struggles or
learns more slowly. The tasks draw inspiration from a suite of tests designed to assess young
children’s early number abilities, which includes hypothesized and empirically validated
learning trajectories to serve as comparisons. The model learns end-to-end from video
demonstrations in a synthetic environment with visual and language inputs.

Specifically, we examine the following questions: (1) In which order does the model acquire
tasks, and how does this compare with findings from educational psychology? (2) On a
behavioral level, how do model outputs and error patterns compare with human data and
previous computational modeling studies? (3) On a mechanistic level, to what extent does
input modality or task specialization emerge in the model? (4) On a behavioral and mechanistic
level, what is the effect of removing tasks involving symbolic numbers from the training data?

7.1.2 Related Work

We begin with an overview of previous connectionist models in numerical cognition. Most early
connectionist models in numerical cognition focused on numerosity detection and comparison.
One of the first such studies was that of Dehaene et al. [DC93]. Their modular architecture
processed simple non-verbal visual and auditory inputs using hand-crafted connections
and accounted for several psychophysical effects observed in humans. S. A. Peterson et al.
conducted a computational study on enumeration and proposed two models, one based on the
ACT-R theory [And83] and one a feedforward architecture, which provided good qualitative
fits to results obtained in empirical studies [PS00].

Ahmad et al. introduced a multi-network modular system, also focused on determining input
numerosity [ACB02]. The architecture used various independently trained neural network
types, including recurrent connections and self-organizing maps, and showed some adherence
with experimental data from children. Verguts et al. [VF04] and Verguts et al. [VFS05] studied
the mental representation of numbers using connectionist models inspired by neuro-scientific
findings. They proposed a number representation system using place coding, linear scaling,
and constant variability on the mental number line, reproducing error patterns similar to
humans on number comparison tasks.

Several computational studies have also focused on spatial aspects of numerical cogni-
tion. Mareschal et al. designed a modular cascade-correlation generative network for sorting
arrays of numbers [MS99]. Similar to children, the model showed soft stage transitions and
variation in performance within stages. Gevers et al. extended the work of Verguts et al.
to study the interaction between number and space representations in parity judgment and
number comparison tasks [Gev+06]. Their model exhibited the SNARC effect [DBG93], a
phenomenon where people tend to respond faster to small numbers located to their left and
to large numbers located to their right. Q. Chen et al. further expanded the model, adding
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hand-crafted biologically inspired layers to represent space explicitly and associate numbers
with it [CV10]. The resulting model simulated various experimental data and effects related to
spatial attention and dysfunction.

Many initial computational models had relatively few parameters and sometimes involved
hand-crafted connections. Recently, researchers have increasingly embraced the paradigm
of DL, inspired by the complex, layered organization and functioning of the human cerebral
cortex. Stoianov et al. investigated the emergence of visual number sense using a NN trained
on binary images [SZ12]. They observed that some neural units acted as “emergent numerosity
detectors”, resembling the response profiles of monkey parietal neurons.

Since then, several studies have found number-selective neurons even in randomly initialized,
entirely untrained NNs [Kim+21; NN21], suggesting that signals that co-vary with numerosity
can emerge spontaneously from the statistical properties of bottom-up projections in multi-
layered architectures. When explicitly trained on number tasks, a range of NN models
have been shown to estimate numerosity at a level comparable to humans. Architectures
proposed so far include deep feedforward networks and Differentiable Recurrent Attention
Models [Che+18], stacked autoencoders [TZM20], RNNs [She+21], Deep Belief Networks, and
Hierarchical CNNs [CSS21].

The computational models discussed so far have been systems trained to classify or reconstruct
static inputs usually limited to one modality, such as vision. Several studies have taken a
more embodied approach to number learning, exploring the implications of training agents
that carry out actions in an environment. Most of these investigations have been in the
area of developmental cognitive robotics, where the main focus has been on the benefits of
gestures, such as pointing or finger counting, for learning number representations faster, more
accurately, and more in line with psychological phenomena observed in humans [RCB11;
RCB12; Di +14; De +14; DVC15; Di 17; Di 18; DM19]. Furthermore, Dulberg et al. trained
an Emergent Symbol Binding Network on a subset counting task using a two-step training
curriculum [DWC21]. Although the model was not physically embodied, it was trained by
interacting with an environment via RL.

Most closely related to our work is that of Sabathiel et al. [SMS20b]. Their model consisted of
a LSTM and a convolutional LSTM module and was trained on four tasks: counting objects,
counting events, reciting numbers, and counting out a subset. The model learned these tasks
in a supervised manner in an environment consisting of a 4 ⇥ 4 grid with two binary features
at each location, denoting the presence of an object and the agent’s hand, respectively. The
network developed a strategy of “mentally tagging” objects during counting [SMS20b] and
abstract number representations employed across tasks [SMS20a].

We follow a similar approach in that we train a NN on multiple number-related tasks from
demonstrations and investigate the model’s learned representations. However, we significantly
expand the number of tasks and use more complex visual inputs. Motivated by the recent
successes of attention-based models in processing sequential, multimodal data, we also use a
different architecture, namely, a Transformer. Indeed, we already made use of this architecture
in chapters 3 and 6. We provide some background on Transformers in the following section
because this is the first time that our research questions require us to introspect within the
model.
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7.1.3 Background: Transformers

Transformers are a type of DL architecture first proposed by Vaswani et al. [Vas+17]. While
they originated in NLP, Transformers have since spread to other domains; they are now applied
to many forms of data, including images, videos, audio signals, and protein structures [PG23].
They also form the backbone of the now-ubiquitous Large Language Models (LLMs)s. The
main change Transformers introduced to the field was a shift from sequential to parallel
processing of time series data. Before Transformers, most NLP models used RNNs. In an
RNN, inputs, such as tokenized words or characters, are added one after the other. The model
then learns which inputs and intermediate computation results to retain for how long in order
to succeed on a given task. To do this, it must update its hidden states after each time step, as
they form the inputs for subsequent calculations.

In contrast to RNNs, Transformers receive an entire context window, such as a sentence or
paragraph, at a time. They maintain access to all the information in this window without
having to learn to “remember” it. Because a transformer essentially treats all time steps
independently, it can process them in parallel, leading to considerably faster computation than
the recurrent approach. The main units that carry out the input processing are a transformer’s
attention heads. As the following sections presuppose an understanding of the attention
mechanism, we seek to provide some intuition on the topic with a toy example.

In Figure 7.2, we illustrate the workings of a single attention head with the following toy task:
The model receives a visual input consisting of a circle, rectangle, or triangle, which may be
red, blue, or green. It is asked about this input’s shape or color. Let us assume that our inputs
are a green triangle and the question “What color is this?”. We first translate language and
vision inputs into binary vectors ELang A and EVis B . Note that this is a simplification for
illustrative purposes, not how we encode visual inputs in our actual model (see section 7.1.4).
The binary vectors serve as inputs to the attention head.

One attention head consists of five single-layer neural networks: WV , WK, WQ, WO, and
WPred. The networks’ weights are initially random and learned through training on question-
answer pairs via backpropagation. In our illustration, model weights have already been
optimized. Each network serves a different function. WK C receives language input and
produces activation vectors K D . WQ E receives visual input and produces an activation
vector Q F . Inspired by information retrieval terminology, K and Q are referred to as “keys”
and “queries”[Vas+17]. Query vectors represent what the model is looking for, whereas keys
act as signals to match against the queries.

Because WK and WQ have the same number of output neurons d = 64, K and Q have the
same dimensionality and can be combined via their inner product. This combination allows
the model to relate information from both modalities. We divide the key-query product by a
scaling factor

p
dk and apply a softmax function to keep values between 0 and 1. The result,

A(Q, K) G , is often referred to as an “attention heatmap” [RCW15]. It shows the strength of
the match between the query and each key. A(Q, K) is specific to the context, i.e., combining
the same question with another visual input would result in a different heatmap.

A(Q, K) is combined with the output V I (values) of the value network WV H . Analogous to
how values in databases are the actual data associated with a key, a “value” in the attention
mechanism is a transformed representation of the input (in this case ELang) that contains
the actual content to be focused on. Multiplying A(Q, K) with V yields the attention output
A(Q, K, V) J , which represents the weighted sum of values, where the weights are determined
by the attention heatmap.
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We pass A(Q, K, V) through the output network WO K and feed the result to the prediction
network WPred L . This gives us the correct answer to the question: "green” M . While
the activation vectors in Figure 7.2 are not human-interpretable, we can translate them into
intermediate predictions by directly inputting them to WO and WPred. Doing this for V shows
that each word in the question triggers different answers N . E.g., the “color” vector activates
the output “red”. This pairing is arbitrary – with a different random weight initialization, “red”
might, e.g., be maximally activated by “this”. If we linearly combine the activations according
to our attention heatmap [0.0 0.42 0.57 0.0], we obtain a vector O that translates to the
correct output “green”. A(Q, K) can thus be seen as a “selector” of the most likely answer
among the options encoded in V, based on the linguistic and visual context.

7.1.4 Methods

Tasks Our dataset is based on a curriculum proposed by Resnick et al. [RWK73]. Inspired
by Gagné’s framework of “learning hierarchies” [Gag68], the authors operationalized early
number concepts as a suite of tasks, ordered by what they hypothesized to be an optimal
match for children’s natural sequence of acquisition. In two empirical studies, they turned
many of these tasks into diagnostic tests, which they administered to pre-kindergartners,
kindergartners, and students in their second week of elementary school [WRB71; Wan73].
Thus, the children had been exposed to little or no formal maths education at the point of
testing. The authors applied multiple scalogram analysis [Lin63] to the test scores to identify
dependencies in the relationships among children’s abilities. They then compared the empirical
patterns of acquisition they found against their hypothesized learning hierarchies. Resnick et
al.’s task suite constitutes an excellent basis for our dataset, as it encompasses a wide range of
skills related to the concept of number, including hypothesized and, in part, psychometrically
validated results from human studies. The suite covers enumeration, set comparison, symbolic
numerals, and sorting.

Table 7.1 gives an overview of the tasks we used, ordered by difficulty as hypothesized
by Resnick et al. Table 7.2 shows the developmental trajectories in children’s learning found
by M. C. Wang et al. and M. C. Wang for those tasks that were psychometrically validated. The
grouping into task families in Table 7.1 is not a perfect partition, and some tasks may integrate
skills from other task types. We distinguish between three numerical concepts that may be
involved in a task: quantity, rank, or label [Nie05]. Quantity refers to cardinality, i.e., number
of elements in a set. Rank refers to the serial order of an element. In label tasks, numbers
are used categorically to identify an object. As can be seen, the dataset encompasses all three
usages of number and some tasks that do not explicitly involve numbers but are believed to
support the acquisition of number concepts. We go through the tasks in more detail in the
following, starting with those related to enumeration.

The first three tasks introduce two important counting principles. A1 asks the agent to recite
the count list, starting and stopping at a specified number. Knowing the number sequence,
the so-called stable order principle [GG86], is a crucial numerical concept and arguably the
first mathematical skill a child acquires [SMS20b]. Children typically learn this principle over
several years, between ages 2 and 6 [Mus+14]. In A2, the agent must point at each object in
a set exactly once. A3 combines A1 and A2. It requires the agent to say the correct count
word as it touches each object – the so-called one-to-one principle [GG86]. In the original
curriculum, the child can remove counted objects to decrease the strain on working memory.
In our computational implementation, objects disappear after being grabbed and released.
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The last four tasks involve the enumeration of fixed sets. A4 and A5 are analogous to A3,
except objects do not disappear after being tagged. The set is linearly arranged in A4, reducing
the difficulty of tracking which objects have been counted [PL68; SES74]. In A6, the agent
must touch a stated number of objects without uttering any number words, then stop. A6 is a
version of the give-N task, which has been used in previous studies of children [SC08; Wyn92]
and neural networks [SMS20b; DWC21]. In A7, the agent must point at a set of a given size,
selecting from two to five options. Unlike the other tasks in this unit, which are primarily
concerned with the rank of an element in the count sequence, A6 and A7 require determining
the cardinality of a set without counting aloud.

The second unit involves comparing quantities. In B1 and B2, the agent must point at one
of two sets containing more or fewer objects, respectively. Resnick et al. considered B2 more
challenging than B1, arguing that B2 requires finding a set with extra objects, then choosing its
counterpart. It thus involves negative information, which can be difficult for young children. In
B3 and B4, the agent receives a digit and an object set and must point at whichever represents
the higher (B3) or lower (B4) number. In B5 and B6, inputs consist of five digits and one
set. The agent must point at all digits denoting numbers larger (B5) or smaller (B6) than
the set. In B7 and B8, the agent must decide which of two rows of objects contains more
(B7) or fewer (B8) objects. This task is reminiscent of the Piagetian number conservation test,
where two sets are linearly arranged such that equivalence is easy to determine via 1-to-1
comparison. The arrays are then spaced differently to test whether a child still recognizes the
sets’ equivalence [PGH52]. B9 and B10 are analogous to B1 and B2 but involve three sets.

The third unit relates to symbolic numerals. Children have been shown to start recognizing
and manipulating Arabic digits at around 4 or 5 years of age [GMS07; KKL13; Mus+14; Li+18].
In the first three digit tasks, numbers serve a purely nominal role. In C1, the agent receives
one to five pairs of digits and needs to match them by placing corresponding digits atop each
other. In C2, the agent must point at one of five numerals denoting a stated number. In C3,
the agent is asked to state the name of a given digit. C4 is analogous to A7, except the subset
size specification is now given by a digit rather than a number word, connecting the numeral
to set cardinality for the first time. The following three tasks are ordinal tasks concerned with
relations between numbers. C5 and C6 require the agent to point at the larger and smaller of
two digits, respectively. In C7, the agent must sort two to four digits in ascending order by
dragging them into the correct linear configuration. C8 is similar to A7, except for the set size
being denoted by a digit.

The last set of tasks is related to sorting, one of the skills thought to mark a child’s entrance
into the stage of concrete operations [Res73]. Although most tasks in this unit involve
magnitudes rather than numerosity, it has been suggested that seriation is an essential ability
for understanding the properties of number [Pia61]. Sorting is generally considered a difficult
skill to acquire, learned around 7-8 years of age [Jes78; MK19]. D1, D2, D5, and D6 require the
agent to point at the largest, smallest, darkest, or lightest object in a set, respectively. Resnick
et al. considered these tasks prerequisites for D3, D4, D7, and D8, where the agent must sort
two to six objects according to size by placing them in the correct order. In D3 and D7, objects
differ only in the attribute according to which they are to be sorted. In D4 and D8, they vary
in more attributes, e.g., shape, size, and luminance. Adding irrelevant cues to objects should
make seriation more challenging [TK97]. D9 requires the agent to seriate two to four whole
sets by their size and thus involves both cardinality and rank. In D10, objects are arranged in
one or two rows. The agent must verbally specify the ordinal position of a pointed-to object.

88



7.1. STUDY

Ta
bl

e
7.

1:
O

ve
rv

ie
w

of
th

e
ta

sk
ty

pe
s

in
ou

r
da

ta
se

t.
V

is
ua

li
np

ut
R

ep
re

se
nt

at
io

n
of

re
le

va
nt

nu
m

be
r/

m
ag

ni
tu

de
N

um
er

ic
al

co
nc

ep
t

ID
Ta

sk
de

sc
ri

pt
io

n
N

um
be

r
of

se
ts

N
um

be
r

of
di

gi
ts

W
or

d
(s

ym
bo

li
c)

D
ig

it
(s

ym
bo

li
c)

Se
ts

iz
e

(a
na

lo
g)

O
bj

ec
ts

iz
e

(a
na

lo
g)

O
bj

ec
tc

ol
or

(a
na

lo
g)

Q
ua

nt
it

y
(c

ar
di

na
l)

R
an

k
(o

rd
in

al
)

La
be

l
(n

om
in

al
)

A
1

re
ci

te
co

un
tl

is
t

0
0

x
x

A
2

to
uc

h
al

lfi
xe

d,
un

or
de

re
d

O
s

in
tu

rn
1

0
A

3
en

um
er

at
e

m
ov

ab
le

O
s

1
0

x
x

A
4

en
um

er
at

e
fix

ed
,o

rd
er

ed
O

s
1

0
x

x
A

5
en

um
er

at
e

fix
ed

,u
no

rd
er

ed
O

s
1

0
x

x
A

6
to

uc
h

ex
ac

tly
{n

um
be

r
w

or
d}

O
s

1
0

x
x

A
7

se
le

ct
se

to
fs

iz
e

{n
um

be
r

w
or

d}
2-

5
0

x
x

x

B1
se

le
ct

la
rg

er
of

tw
o

se
ts

2
0

x
x

B2
se

le
ct

sm
al

le
r

of
tw

o
se

ts
2

0
x

x
B3

se
le

ct
la

rg
er

of
a

di
gi

ta
nd

a
se

t
1

1
x

x
x

B4
se

le
ct

sm
al

le
r

of
a

di
gi

ta
nd

a
se

t
1

1
x

x
x

B5
se

le
ct

al
ld

ig
its

la
rg

er
th

an
si

ze
{s

et
}

1
5

x
x

x
B6

se
le

ct
al

ld
ig

its
sm

al
le

r
th

an
si

ze
{s

et
}

1
5

x
x

x
B7

se
le

ct
la

rg
er

of
tw

o
ro

w
s

1
0

x
x

B8
se

le
ct

sm
al

le
r

of
tw

o
ro

w
s

1
0

x
x

B9
se

le
ct

la
rg

es
to

ft
hr

ee
se

ts
3

0
x

x
B1

0
se

le
ct

sm
al

le
st

of
th

re
e

se
ts

3
0

x
x

C
1

m
at

ch
di

gi
ts

0
2-

10
x

x
C

2
se

le
ct

st
at

ed
di

gi
t

0
5

x
x

x
C

3
na

m
e

gi
ve

n
di

gi
t

0
1

x
x

x
C

4
se

le
ct

se
to

fs
iz

e
{d

ig
it}

2-
5

1
x

x
x

C
5

se
le

ct
la

rg
er

of
tw

o
di

gi
ts

0
2

x
x

C
6

se
le

ct
sm

al
le

r
of

tw
o

di
gi

ts
0

2
x

x
C

7
so

rt
di

gi
ts

0
2-

4
x

x
C

8
to

uc
h

ex
ac

tly
{d

ig
it}

O
s

1
1

x
x

D
1

se
le

ct
la

rg
es

tO
in

se
t

1
0

x
D

2
se

le
ct

sm
al

le
st

O
in

se
t

1
0

x
D

3
so

rt
O

s
by

si
ze

(O
s

di
ff

er
in

1
at

tr
ib

ut
e)

1
0

x
x

D
4

so
rt

O
s

by
si

ze
(O

s
di

ff
er

in
>

1
at

tr
ib

ut
es

)
1

0
x

x
D

5
se

le
ct

da
rk

es
tO

in
se

t
1

0
x

D
6

se
le

ct
lig

ht
es

tO
in

se
t

1
0

x
D

7
so

rt
O

s
by

co
lo

r
(O

s
di

ff
er

in
1

at
tr

ib
ut

e)
1

0
x

x
D

8
so

rt
O

s
by

co
lo

r
(O

s
di

ff
er

in
>

1
at

tr
ib

ut
es

)
1

0
x

x
D

9
so

rt
se

ts
by

si
ze

2-
4

0
x

x
x

D
10

na
m

e
po

si
tio

n
of

an
O

in
or

de
re

d
se

t
1

0
x

x

89



7.1. STUDY

Table 7.2: Comparison of hypothesized and observed developmental trajectories in children’s
learning, based on M. C. Wang et al. and M. C. Wang. To be read from left to right.
Only psychometrically validated tasks with direct counterparts in the current study
are shown.

Hypothesized trajectory A1 A3 A4 A5 A6 A7 B1 B2 B9 B10 C1 C2 C3 C4 C5 C6 C7 D9

Empirical trajectory for
numbers zero to five

C1 A1 A3 A5 A4 B2 B1 B9⇤ B10⇤ C2 A7 A6 C3 C4 C5/C6† C7 D9

Empirical trajectory for
numbers six to ten

C1 A1 B1 B2 B9⇤ B10⇤ A4 A3 A5 A6 C2 C3 A7 C4 C7 C5/C6† D9

⇤ Excluded because too few subjects mastered the task
† Not distinguished in psychometric analysis

Data generation We translate the tasks of Resnick et al. into an environment of 259 ⇥ 259
pixels with 4⇥4 black panels, each of size 64⇥64. The panels are separated by white lines
of width 1 pixel and can contain one to ten gray-scale objects or a digit from one to ten,
depending on the task. Objects can be rectangles, triangles, circles, or ellipses. They are
randomly assigned sizes, luminances, and positions. Sizes vary between 8 and 32 pixels in
height or width. Luminances vary between 0.1 and 1.0 to ensure sufficient contrast with the
background. Objects are initially non-overlapping, but occlusion can occur as the agent moves
them around. We represent the agent with the icon of a yellow hand spawned in the upper
left corner of a random panel at environment initialization. The hand can be in one of three
states: open, pointing, or grabbing. At each time step, there are a total of 24 output options.

The agent can move up, down, left, or right by either small, 8-pixel, or large, 64-pixel steps. It
can interact with its environment by grabbing or releasing an object, grabbing or releasing a
whole set, or pointing. It can also output number words from one to ten and the word “stop”.
Unlike previous work, where task IDs were encoded via binary vectors, we prompt the agent
with language inputs such as “sort the numbers” or “which row has fewer objects”. For each
task, we collect 10,000 training examples, 1,000 test examples, and 500 validation examples
using a solver which produces demonstration sequences deterministically.

The solver navigates to its target panel in 64-pixel steps, moving first to the correct row, then
to the correct column. If necessary, it moves on to its target object within the set, following the
same logic. In enumeration tasks, it targets the next untagged object that is closest horizontally,
then vertically. If two objects have the same distance, it prioritizes objects to the right, resulting
in a row-wise tagging order. This is representative of linear spatial strategies employed by
older children [Sha78; WFC87] and adults [PL68] in enumeration tasks. For tasks C1, B5, and
B6, the solver targets the next eligible panel with the smallest Manhattan distance to the agent
and prioritizes panels below, above, to the right, and the left, in that order. When sorting
objects (D3, D4, D7, D8), it goes from darkest or smallest to lightest or largest and places
them next to each other at the top of the panel. It orders them from left to right, which is the
preferred seriation order in many industrialized groups [Pit+21]. Sorting whole panels (C7,
D9) works similarly, but blocking panels may first have to be removed from the grid’s top row.

We programmatically checked for and removed any exact duplicates in the training, test, and
validation sets. For some tasks, such as A1 and C3, duplicates were unavoidable due to the
limited number of task configurations. In these cases, we held out certain combinations that
we only allowed to occur in the train, test, or validation split, respectively. We upsampled
these combinations such that the overall number of examples remained the same across
tasks. Depending on the task, we ensured a uniform distribution of set sizes, prompts, or the
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number of non-empty panels. This runs counter to the suggestion of S. T. Piantadosi that
the developmental trajectory of number knowledge in children is influenced by the Zipfian
distribution of numbers they encounter in everyday experience [Pia16]. However, Testolin et al.
found that human-like psychophysical effects also occurred for NNs trained with flat number
frequencies [TZM20].

We constructed two additional datasets. The first consists of test tasks B1, B2, and D9, with the
difference that one set has 11-15 objects rather than one to ten. We use this to test the model’s
extrapolation on comparison tasks to larger set sizes. The second excludes all tasks involving
digits or number words. The construction of this dataset was motivated by proposals in the
literature that language plays a key role in learning numeracy skills [TV14; HSP18; PR16]
and is a prerequisite for forming certain concepts [GG04; Car11]. Support for this idea comes
from studies of cultures without words for larger, exact quantities, such as the Pirahã, the
Mundurukú, the Tsimane, and Nicaraguan Homesigners. In adults from these cultures, the
ability to represent exact numbers has been found to be limited to the range for which verbal
labels are available [PGP22]. We are therefore interested in the effect that training a model
only on nonsymbolic tasks has on its performance and inner representations.

Model Having described the tasks we aimed to solve, we now present the architecture we
designed to do so. Figure 7.3 shows a visualization of the model. The example in 7.1.3
illustrated the workings of a single attention head – our full model has 512: four attention
blocks, each containing eight so-called attention layers with 16 heads. Each head can be
thought of as a specialized unit that learns to focus on specific aspects of the input data during
training. Using multiple heads in an attention layer allows the model to focus, in parallel, on
different aspects of the input within one processing step (where a processing step is all the
computations performed in one attention layer). The outputs of all heads in an attention layer
are concatenated and then transformed linearly. This aggregation synthesizes the information
from all heads.

The result is passed through a feed-forward block, which consists of a small two-layer neural
network. Inputs to the attention heads and the feed-forward block first undergo normalization.
Normalization and feed-forward block were omitted from the example in Figure 7.3 for
simplicity but are commonly used components of attention layers in deeper models as they
have been found to stabilize training [Lin+22]. We also employ so-called “residual connections,”
where the attention layer’s output is added to its original input before being passed to the next
layer [He+16]. This approach allows later heads to operate on both original inputs and results
from previous heads. Multiple attention layers in an attention block enable the model to learn
increasingly abstract representations of the input data.

Similar to our toy example, the model receives language and visual inputs. The language
input consists of a question or instruction. The visual input is a series of video frames showing
the demonstration sequence produced by the deterministic solver.

To pre-process the language input, we encode each word into a binary vector, analogous to
the example in Figure 7.2. To pre-process the video frames, we extract regions of interest
(ROIs), which may contain individual objects, digits, or an entire panel of objects (Figure
7.3 A ). Such an ROI-based Transformer approach has previously been applied to tasks like
visual navigation [DYZ21b]. We find our ROIs by identifying contours through morphological
transformations and thresholding. Specifically, we extract ROIs by eroding each video frame
with a 2⇥2 kernel, dilating it with a 1⇥1 kernel, and applying a binary threshold of value
15. 15 is the darkest RGB value objects can take in our task environment. We then apply the
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Douglas-Peucker algorithm [DP73] to obtain object contours and their bounding boxes. We
found that this yields ROIs of sufficient quality for our task environment; for more naturalistic
inputs, CNN-based object detectors could be used. We resize all ROIs to RGB patches of size
28 ⇥ 28 ⇥ 3, then flatten them into 2,352-dimensional vectors. We limit the maximum number
of ROIs per frame to 85 due to computational constraints.

Having converted our linguistic and visual inputs to vector form, we feed them into separate
embedding layers (Figure 7.3 B and C ) with 60 and 48 output neurons, respectively. These
are single-layer neural networks, which produce an activation vector, or “embedding”, for
each input. So far, those vectors contain no positional information. Therefore, we concatenate
the visual embedding of each ROI with its central x and y coordinates and original width and
height. For each word embedding, we append a sinusoidal 16-dimensional encoding [Vas+17]
representing its relative position in the sentence. The result is a set of 64-dimensional visual
and linguistic embeddings. They are passed into the first attention block alongside two special
inputs: the class token CLS and the memory token MEM. The CLS contains the model’s prediction,
i.e., which action to take. The MEM vector compresses relevant information in each time step to
be used later in the model. These are initially random, “blank” vectors, which each attention
layer can modify by adding its output to them.

The first two attention blocks integrate language and visual information for individual frames.
As in the example in Figure 7.2, query networks in the first block’s first attention layer receive
visual input, and key and value networks receive language input (Figure 7.3 D ). Merging
multiple modalities in this way is referred to as cross-attention. A self-attention block follows
(Figure 7.3 E ). Self-attention means that inputs do not come from different sources (e.g.,
vision and language). Instead, query, key, and value networks all receive the same inputs – in
this case, the outputs from the first block. Up to this point, we process all frames in parallel
but separately. I.e., each frame is treated independently from previous frames. However, many
tasks set out in section 7.1.4 require knowledge of past time steps.

We address this need for a memory mechanism with the last two attention blocks. In the third
block (Figure 7.3 F ), we give the model access to inputs from past frames. The query networks
of this block’s first attention layer receive the CLS tokens output by the second block. The key
and value networks receive the MEM tokens, concatenated with temporal position encodings
(analogous to the word embeddings). We do this because there can be up to 85 ROIs in a frame
and up to 100 frames in a video. Due to the quadratic complexity of the matrix multiplications
involved in the naive attention mechanism, attending over every object of every previous frame
would be computationally prohibitive. By forcing the model to compress relevant information
into a single MEM vector per time step, we only need to attend over up to 99 instead of 99⇥85
vectors.

In the last attention block, we give the model access to its past outputs. This information is,
e.g., important for tasks that involve counting. Similar to the language input, past actions
are converted to binary vectors and processed by an embedding layer (Figure 7.3 G ) to yield
48-dimensional embeddings, which we concatenate with 16-dimensional temporal position
encodings. These action embeddings serve as input to the key and value networks in the fourth
block’s first attention layer (Figure 7.3 H ). Query networks receive the CLS tokens output by
the third attention block (one for each time step). Finally, the CLS tokens are processed by an
output layer 7.3 I ), yielding a sequence of action predictions.

Training We trained four models in total. The first three were trained on the dataset
containing non-symbolic and symbolic tasks. We used multiple models to determine whether
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Figure 7.3: Schematic of our attention-based model. Inputs consist of Regions of Interest
extracted from each frame in the demonstration videos and a language prompt.
They are processed via four attention blocks, the first two of which attend over
a single time step. The third and fourth blocks take into account past inputs,
compressed into the special MEM token, and the model’s past actions, respectively.
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Table 7.3: Model accuracy on the test set. Tasks are considered solved correctly if the model’s
predictions are identical to the deterministic solver’s action sequence.

Counting
and enumeration

Set
comparison

Numerals Seriation
and ordinal position

ID S N-S ID S N-S ID S N-S ID S N-S

A1 0.99 ± 0.01 - B1 0.99 ± 0.00 0.99 C1 0.91 ± 0.00 - D1 0.93 ± 0.00 0.91

A2 0.97 ± 0.01 0.86 B1+ 1.00 ± 0.00 0.99 C2 1.00 ± 0.00 - D2 0.96 ± 0.00 0.95

A3 0.97 ± 0.01 - B2 0.99 ± 0.00 0.98 C3 1.00 ± 0.00 - D3 0.86 ± 0.01 0.79

A4 1.00 ± 0.01 - B2+ 1.00 ± 0.00 0.99 C4 0.80 ± 0.02 - D4 0.82 ± 0.01 0.74

A5 0.97 ± 0.01 - B3 1.00 ± 0.00 - C5 1.00 ± 0.00 - D5 1.00 ± 0.01 0.99

A6 0.95 ± 0.00 - B4 1.00 ± 0.00 - C6 1.00 ± 0.00 - D6 0.98 ± 0.00 0.98

A7 0.82 ± 0.02 - B5 0.91 ± 0.01 - C7 0.99 ± 0.01 - D7 0.99 ± 0.00 0.97

B6 0.88 ± 0.01 - C8 0.96 ± 0.01 - D8 0.98 ± 0.00 0.96

B7 1.00 ± 0.01 0.99 D9 0.83 ± 0.03 0.64

B8 1.00 ± 0.00 1.00 D9+ 0.84 ± 0.03 0.69

B9 0.96 ± 0.01 0.91 D10 1.00 ± 0.00 -

B10 0.95 ± 0.02 0.87

S models trained on symbolic and non-symbolic tasks
N-S trained on non-symbolic tasks only
+ datasets requiring extrapolation to larger sets of size 11-15

they would display similar final accuracies and training trajectories. The models shared
the same architecture and training setup, but their random weight initialization differed.
Due to the random shuffling of the dataset, they also received training samples in a slightly
different order. The fourth model was trained on the dataset containing only non-symbolic
tasks in order to investigate whether it would display differences in performance or internal
representations. All models were implemented in PyTorch [Pas+19]. They were trained to
predict the deterministic solver’s next output at each time step using cross-entropy loss, which
is a measure of the difference between model predictions ŷ and correct answers y:

L(y, ŷ) = �Â
i

yi · log(ŷi) (7.1)

We used the Rectified Adam optimizer [Liu+20] and gradually adjusted the learning rate using
a schedule with cosine annealing and warm restarts [LH17]. The scheduler exponentially
decayed the learning rate from an initial value of 0.005 to 0.0002 over four passes through the
dataset (epochs), after which it was kept constant. This annealing scheme served to speed up
initial training. To prevent the model from memorizing the training data too much (overfitting),
we used dropout. Dropout is a technique where randomly selected neurons are temporarily
disabled to prevent overreliance on individual units. We used a dropout probability of 0.1.
We also applied early stopping, meaning we performed validations after every half epoch
and stopped training if the model had not improved over three checks. Performance usually
stagnated after around 28 epochs. We trained the models in batches of 512 samples at a time.
Each epoch, including validation, took ca. seven hours on a 16-core AMD EPYC 7282 server
with six GeForce RTX 2080 GPUs.
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7.1.5 Results

Overall performance As shown in Table 7.3, the model performs well on most tasks, with
an overall average accuracy of 93%. Variation across models trained on the same tasks is
minimal, indicating that performance is not sensitive to weight initialization or batch ordering.
When tested on comparison and seriation tasks with sets of larger size than seen in training,
performance is slightly higher, presumably because of the increased contrast between set
sizes. There are, however, tasks on which it consistently reaches lower accuracies, namely,
A7, B5, B6, C4, D3, D4, and D9. A7, B5, B6, C4, and D9 all require the integration of several
subskills: determining the cardinality of, in the case of A7, C4, and D9, up to five sets and
comparing them against either a number or multiple other sets, as well as keeping track of
already tagged or obscured panels. Transformers have no recurrent connections; thus, their
number of attention layers determines the number of “reasoning” steps they can perform.
While the model reaches high accuracy on prerequisites such as, e.g., comparing two sets
(B1 and B2), the abovementioned tasks that require multi-step combinations of such subtasks
appear to strain its capacity.

The lower performance when sorting objects by size (D3, D4) seems to be due to an issue
with size discrimination, as the model successfully sorts objects by luminance (D7, D8). In our
environment, an object’s size equals its surface area, and differences may be as minor as a few
pixels, whereas we enforced larger spacings for color. The model, therefore, needs to retain
very granular information about each shape. This may be why the model’s accuracy when
choosing the smallest or largest object (D1, D2) is 2-7% below its accuracy for choosing the
lightest or darkest object (D5, D6). Errors compound when the model has to compare up to six
objects during seriation.

The model trained only on non-symbolic tasks (denoted as N-S in Table 7.3) does about as
well as the model trained on the full dataset on most tasks related to object attributes, namely
D1, D2, D5, D6, D7, and D8. The lower performance on tasks D3 and D4 can again be ascribed
to an issue of size discrimination – while the accuracy on tasks D1 and D2 is only 1-2% below
the S model, the difference compounds in the case of seriation. The N-S model also achieves
similar accuracies as the S model on the two-set comparison tasks B1, B2, B7, and B8, including
in the case of extrapolation to sets of larger size.

The fact that its performance is not affected by a lack of symbolic training is in line with
findings that it is feasible to compare the cardinality of sets without having mastered symbolic
counting; see studies on cultures with a smaller number lexicon [Pic+04b], nonverbal in-
fants [Xu03], animals [BT98; HCH00; NFM02; Dad+09], and neural networks without counting
knowledge [DC93].

However, the N-S model achieves lower performance than the S model for pointing out all
objects in turn (A2), comparing three sets (B9, B10), and seriation by set size (D9). In the case
of A2, this drop might be because, without the inclusion of the enumeration tasks A3-A6,
the proportion of tasks that require going through a set one by one is lower, thus putting
less emphasis on this skill. In the case of B9, B10, and D9, part of the issue may be that,
without symbolic tasks, the model has less exposure to tasks that involve multiple non-empty
panels. We also hypothesize that the S model can parse and use numerosity information more
efficiently. We investigate this idea further in section 7.1.5.

Training trajectories In addition to the final accuracies reached by the model, we are
interested in the order in which the model’s performance progresses on the different tasks and
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whether this aligns with findings from educational psychology. As mentioned in section 7.1.4,
our dataset was randomly shuffled. While this contrasts with the sequential way children
encounter tasks, neural networks trained on multiple tasks simultaneously have been found
to consistently learn easier samples first [Gra+17; WDN21]. This allows us to compare the
"implicit curriculum" that emerges for our models with the order of acquisition empirically
found by Resnick within and across task families. We show the development of model
performance for each task in the course of training in Figure 7.4.

The order of acquisition for the enumeration tasks follows the order found by M. C. Wang
et al. for numbers from six to ten (see Table 7.2: the count list is learned first (A1), followed
by counting ordered objects (A4), movable objects (A3), unordered sets (A5), subsets (A6),
and finally choosing a set of specified size (A7). M. C. Wang et al. did not validate the task of
touching each object in turn (A2), but this skill was hypothesized to emerge before tasks A4
and A3. However, our model acquires A2 simultaneously with A5 – likely reflecting the tasks’
similar demands on memory, which plays less of a role in A3 and A4.

For set relation tasks, a direct comparison with human data is only possible in some cases,
as B3-B8 were not empirically validated. Regarding the tasks that were tested with children
(B1, B2, B9, B10), accuracies progress as expected: “More” tasks (B1, B7, B9) are learned
before “less” tasks (B2, B8, B10) [Res73; RWK73], and two-set comparisons (B1, B2, B7, B8) are
learned before three-set comparisons (B9, B10). In fact, three-set comparisons were excluded
from analysis by M. C. Wang et al. because too few subjects mastered them. However, unlike
children who first acquire nonsymbolic comparisons, the model begins by learning to select
between a digit and a set. We discuss this in more detail towards the end of the section. B5
and B6 are learned last, reflecting the higher demands on the model: it needs to compare a set
and multiple digits and keep track of tagged digits, making the task more challenging than
just navigating to a single panel and pointing.

For tasks involving numerals, training trajectories only partially align with those found by
M. C. Wang et al. [WRB71] and M. C. Wang [Wan73]. Digit identification (C3) does precede
digit comparison (C5, C6), which precedes seriation (C7). However, matching digits (C1),
which was mastered by human subjects before any other numeral task, is acquired last by the
model. The reason may be that, in our setup, C1 is the only task of its kind and involves longer
and more complex navigational sequences. Learning to state (C2) and select digits (C3) is
also switched compared to children, likely because outputting a number word simply means
activating a single node for our model. In contrast, speech production in humans involves
more complex articulatory coordination.

Seriation and ordinal position tasks were also not empirically validated by the authors of
the original curriculum. However, Jeske investigated prerequisite skills in children tasked
with ordering plastic strips of different lengths and found that selection of the longest strip
preceded correct seriation [Jes78]. In line with these findings and the hypothesized training
trajectory, selecting the largest, darkest, lightest, or smallest object (D1, D2, D5, D6) is achieved
first, followed by object seriation (D3, D4, D7, D8), and finally, set seriation by cardinality (D9).
Naming an object’s ordinal position (D10) is learned earlier than was hypothesized by Resnick.
However, other studies have found ordinal concepts to precede cardinal concepts [Bra73] and
seriation [Sie71] in children.

We now turn to the training trajectories across task families. The first tasks the model learns
are mostly symbolic (A1, C5, C6, C3, B3, B4, C2), followed by non-symbolic two-set comparison
(B1, B2, B7, B8), then enumeration and ordinal position tasks (A4, D10, A3, A2, A5, A6, C8).
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Concurrently, the model learns to select single objects by a specified attribute (D1, D5, D2, D6).
The tasks that develop the latest require comparing or manipulating more than two sets of
objects (B9, B10, D3, D7, C1, B5, D4, D8, B6, D9, A7, C4). Training trajectories show gradual
development, characteristic of neural networks, and consistent with findings from various
aspects of mathematical cognition [MS99; McC+16]. Furthermore, students’ development of
early numerical competencies is not always linear, and their skill acquisition timelines may
differ [PF12]. Similarly, a model’s performance on a task will sometimes drop momentarily
(see, e.g., A6), leading to a dip in average performance and an increased standard deviation.

In general, the tasks acquired faster by the model are ones with less variability across examples,
shorter sequence length, fewer memory requirements, and more exposure – either because
there are limited task configurations that were upsampled or because there are very similar
tasks that can serve as a scaffold. These are features of most tasks involving number words
and digits, which is likely why they are acquired earlier than purely nonsymbolic ones. This
contradicts the order observed in children, who typically develop nonsymbolic numerical
representations before symbolic ones [WRB71; MA16; Li+18].

Give-N task Having looked at training trajectories across the dataset, we now focus on a task
that has received considerable attention in the numerical cognition literature: The give-N task.
A prominent proposal for the developmental trajectory on this kind of task is a series of six
performance levels: pre-numeral-knower, one-knower, two-knower, three-knower, four-knower,
and cardinal-principle (CP) knower [Wyn92; CS06; SC08]. Pre-numeral-knowers will give
random amounts in response to a give-N instruction. One-, two-, three, and four-knowers
can give out one, two, three, and four objects, respectively, but fail at all other numbers.
CP-knowers can solve any give-N task.

According to the knower-level theory, children learn the meanings of numbers one through
three or four one after the other. However, once they uncover the cardinal principle, tasks
with higher numbers are mastered simultaneously. Several studies support this view, although
some have questioned whether a true semantic inductive leap underlies the transition to
CP-knower [DEB12]. Others have found that early stages may be noisier than previously
assumed [WCB19].

Figure 7.5 shows the training trajectory of our model on task A6 separately for each subset
size. The order of acquisition goes from smallest to largest numbers. Performance on subset
size one increases first and remains high. The training trajectory for subset size two shows the
same concave shape but with an accuracy gap of 10-25%, which is only closed towards the end
of training. Subset sizes three and four are learned relatively simultaneously, with an almost
linear development slope. Training trajectories for tasks with subsets of size five and up form
a group of convex-shaped curves.

Although the graph shows no instantaneous transitions, there is a point around epoch 18
during which the performance on subsets larger than two begins to rise more steeply. This
behavior is somewhat in line with the knower-level stages observed in children. However, it
may not necessarily reflect any realization of a fundamental underlying principle. The training
trajectories are likely also shaped by sequence length and the fact that the “visuo-motor”
routines needed to complete tasks with smaller subsets are implicitly contained in those with
larger subsets, leading to more training exposure.

The CP trajectory has previously been modeled computationally. Instead of using a con-
nectionist approach, where knowledge is encoded in a set of weights, S. T. Piantadosi et al.
proposed a model based on Bayesian program induction [PTG12]. The model learned to
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Figure 7.4: Accuracy development across tasks in the course of training. Color encodes perfor-
mance, while size encodes the standard deviation between the three (architecturally
identical) models. Task IDs listed on the left and final model accuracy listed on the
right.

combine pre-defined operations, a so-called language of thought, to count occurrences in a
set. Its training trajectory mimicked the proposed CP leap. The model by Sabathiel et al.
also successfully learned a give-N task, although its learning curves did not follow the CP
trajectory [SMS20b]. Dulberg et al. trained an RL agent consisting of specialized pre-trained
modules to select N items from a binary vector using a curriculum approach [DWC21]. Like
in our model, the agent showed a gradual progression, characteristic of neural networks, but
did exhibit an inflection during training.

Recognizing exact numerosity Having inspected the model’s training trajectories, we now
turn to analyzing the trained model on a “behavioral” level, i.e., investigating its output
predictions and error patterns. Two core numerical systems are often distinguished in the
literature on numerical cognition [FDS04b]: The Object Tracking System and the Approximate
Numerical System. The former is said to sustain the fast and precise enumeration of sets
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Figure 7.5: Accuracy development for the give-N task, grouped by subset size (smoothed).
Shaded regions indicate standard deviation. Dashed line represents the threshold
at which a learner is typically considered an N-knower.

with up to five objects without counting, an ability referred to as subitizing. The latter is
hypothesized to underlie intuitive estimation and approximation of larger sets. This dichotomy
has received support from many investigations of humans and non-human animals [MS82;
Rev+08; HS09; BTA10; Agr+12]. However, it has been challenged by some who suggest
that a single system is responsible for both subitizing and counting [Pia+02]. Whatever the
underlying mechanisms, it has been widely shown that processing smaller numerosities is
more precise than processing larger ones.

To see whether this is also the case in our model, we let it interact with 1,000 instances of a task
environment requiring it to select a set of a given size (A7). We generate an equal number of
tasks for each prompt and plot the target set size against the size of the set chosen by the model
in Figure 7.6. The model shows decreasing accuracy and broader response variability with
increasing target numerosity, in line with human experimental data. However, performance
increases again for larger numerosities. Creatore et al. trained a Deep Belief Network on an
enumeration task and observed a similar effect [CSS21]. They noted that this was an artefact
of the limited range of numerosities used, which is also the likely explanation in our case.

Figure 7.6: Target set size plotted against the size of the set chosen by the model on 1,000
instances of the A7 task environment (choosing a set of stated size).
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(a) Non-symbolic set comparisons (B1, B2) (b) Symbolic digit comparisons (C5, C6)

Figure 7.7: Model loss on symbolic and nonsymbolic comparisons, averaged over time
steps within a task. Error bars indicate standard deviation. Similar graphs
aggregated by average for better visibility (bold, opaque).

Size and distance effects In infants, adult humans, and a variety of animal species, numeros-
ity comparisons are characterized by size and distance effects: comparisons are faster and
more accurate when there is a larger difference between two numbers (distance effect) and
when numbers are smaller (size effect) [DDC98]. I.e., comparing 1 vs. 9 is less error-prone
than 1 vs. 2, and 1 vs. 3 is easier than 7 vs. 9. A prominent explanation for this phenomenon
is that numbers are stored on a “mental number line”, where close-by numbers overlap, and
their noise is proportional to their value [VF04]. In humans, size and distance effects hold for
symbolic and nonsymbolic stimuli [LA15], although they are minute for judgments on number
symbols [BG74].

We analyze whether our model displays symbolic and nonsymbolic size and distance effects
by evaluating its performance on two-set (B1, B2) and two-digit comparison tasks (C5, C6).
Since the model performs very well on these tasks, accuracy is not a meaningful metric to
compare. Instead, we use the model’s cross-entropy loss on the test data, averaged over time
steps within a task. We plot this against the distance between the correct number and its
distractor, shown in Figure 7.7. In both the symbolic (Figure 7.7b) and nonsymbolic (Figure
7.7a) cases, target size one has the lowest error and almost no variation, followed by target
sizes two to five. Errors and variations increase for target sizes six to nine, particularly in
nonsymbolic tasks. Similar to task A7 (section 7.1.5), performance increases for target size ten
– again, likely an artefact of the limited range of numbers used. In line with human behavioral
studies, the error range for nonsymbolic comparisons is higher than for symbolic comparisons.

Applying the logit lens As mentioned in section 7.1.4, the CLS token contains the model’s
prediction. Each attention head can contribute to CLS, gradually refining the prediction until it
is translated to an action by the model’s output layer. However, it is possible to directly read
out the prediction’s state in any intermediate attention layer. This approach has been dubbed
the “logit lens” and shown to provide relatively coherent internal prediction trajectories for
LLMs such as GPT-2 [nos20]. Although our model, unlike GPT-2, is not purely text-based, it
shares the same architecture. It thus lends itself to applying the logit lens.

We evaluate our model on each test task, decode the nascent prediction in CLS at every
attention layer, and log its accuracy. The result is shown in Figure 7.8. We also include the
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logit lens for the model trained without symbolic tasks, denoted as N-S. How early or late
a task reaches high accuracy can be seen as a measure of difficulty – analogous to reaction
time in humans: Some tasks require more processing steps, i.e., attention layers, to arrive at a
solution. Alternatively, the model may resort to higher attention layers because information
about past inputs is only provided after the second attention block (see Figure 7.3).

Outputs of attention layers in the first attention block indicate that they prime the model for
the type of answer called for by a prompt. E.g., when asked for an ordinal position (D10) or a
digit’s name (C3), the initial prediction is a default number such as 5 or 2. For tasks requiring
recognition of a final state, the default output is "stop," while for those calling for selecting a
panel or object, the default is to point. Any correct predictions in these first attention layers are
by chance, e.g., when the agent starts off positioned correctly, then points. The second attention
block shows a decrease in correct default answers, suggesting that inhibitory mechanisms set
in at this stage.

The order of prediction trajectories mostly fits with the sequence of acquisition found in section
7.1.5. The fastest tasks to reach high accuracies are comparisons (B1, B2, B3, B4, B9, B10, C5, C6)
and pure digit tasks (C2, C3). In contrast, tasks involving comparing or manipulating multiple
sets, objects, digits, or knowledge of past time steps require more processing steps. This is
generally congruent with event-related potential (ERP) studies showing that comparison is
associated with modulations of an early component while spatial mappings are associated
with later ERP components [TH18]. Less congruently, digit-set comparisons (B3, B4) are among
the first tasks to reach high accuracy, whereas studies show high switching costs when humans
are asked to compare symbolic and nonsymbolic numbers [LAB12; Fin+21].

The N-S model requires more processing steps than the S model, even when the final accuracy
on a task is similar, indicating differences in internal processing. Notably, the accuracy
progression in the N-S model is gradual for comparisons of two or three sets (B1, B2, B9, B10).
This contrasts with the S model’s prediction trajectories on these tasks, which show sudden
performance increases between attention layers. However, on the ordinal position (D10) and
row comparison (B7 and B8) tasks, the S model’s accuracies increase more steadily. This linear
progression is particularly striking for D10, which also has the benefit of involving only a
symbolic output, making intermediate predictions more human-interpretable. We, therefore,
use this task to investigate the processing underlying such gradual prediction trajectories in
the following section.

Determining ordinal position It has yet to be understood how humans and animals process
non-verbal serial order information. However, behavioral and neural data suggest an imprecise
representation of discrete numerical rank, similar to an analog magnitude mechanism proposed
for cardinality [Nie05]. Studies in humans and macaques have identified brain areas similarly
activated by numerical quantity and rank order information, suggesting a shared system for
these processes [Mar+00; NFM02; NMT03; NMT04]. Determining an object’s position in a
sequence also seems to involve a mixture of cardinal and ordinal number usage in our model.

Figure 7.9 shows two D10 example tasks and how the model’s prediction changes after
each attention layer of the third attention block. Predictions take the form of probabilistic
distributions centered on one or more outputs. These distributions gradually move along the
number line. Note that this happens “silently”: the model is not trained to output numbers at
each time step, only to produce the final answer. The strategy it develops to do so is evocative
of an internal counting procedure. However, it does not necessarily go through the count list
individually. In Figure 7.9b, it starts directly at the end of the first row with “5”, from where
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Figure 7.8: Performance of the model on each of the test tasks when decoding predictions at
each attention layer, specified on the x-axis. “S” in the y-axis labels denotes the
model trained on all tasks. “N-S” denotes the model trained only on non-symbolic
tasks. Accuracy encoded via color.
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(a) (b)

Figure 7.9: Examples of the progression of an individual prediction on task D10 throughout
the attention layers of the model’s third attention block. Visual task input shown
at the top. The agent has to name the ordinal position of the object to which the
yellow hand is pointing. The x-axis shows the ten number word outputs. The
y-axis shows the probability distribution over these outputs, as predicted by the
model, in each attention layer. A dashed line marks the correct output.

it moves up towards “8” (the correct answer), essentially skipping over “6”. This behavior is
similar to adaptive grouping strategies people employ when enumerating larger groups of
objects or solving number line estimation tasks [NFG87; Cam03; SM14; Sch+18]. The model
may also start at the end of a row, following the number line in reverse order (see Figure 7.9a).

These examples indicate that the gradual internal progression found for D10 in Figure 7.8
stems from the model internally tagging one object (or group of objects) per processing step
until it has identified the requested ordinal position. To provide additional support for this
assumption, we plot the accuracy on the D10 test set throughout the third and fourth attention
blocks as a function of the target object’s distance from the nearest row start or end. The result
is shown in Figure 7.10. The model internally reaches its conclusion faster on tasks with target
objects closer to a row’s edge and with target objects in the first row – consistent with the
hypothesis that tasks requiring less “internal counting” involve fewer processing steps.

Integrating multiple modalities In the previous sections, we looked at the model’s outputs
and error patterns in the context of human behavioral data. We now turn our attention to its
internal representations. Many neuroimaging and behavioral studies have investigated where
and how the human brain processes numerical inputs. One prominent proposal, the triple-code
model [Deh92], argues for three codes with which we mentally represent numbers: symbolic
digits, verbal number words, and nonsymbolic quantity representations. The codes are thought
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Figure 7.10: Accuracy on the D10 test set throughout the third and fourth attention blocks as a
function of the target object’s distance from the nearest row start or end. Tasks
with target objects in the first and second row plotted separately.

to depend on distinct neural substrates, with visual inputs such as Arabic numerals most
likely depending on ventral occipitotemporal structures, verbal representations depending on
left frontal and temporal language areas, and analog magnitudes depending on the parietal
cortex [Hub+05]. However, functional MRI (fMRI) studies have shown that numerical tasks,
even those involving only one representational format, activate a distributed network of areas,
including the frontal and parietal lobes [Hub+05].

In this section, we seek to analyze how our model processes and integrates information from
different modalities and whether a similar picture of specialized and integrative areas emerges.
We begin by creating isolated probes of input stimuli from different modalities. We then feed
these isolated inputs to the key, query, and value networks of every attention head in the
model and measure how strongly they react to each probe.

Our visual probes consist of 1,051 representative patches, including digits, different luminances,
the agent’s hand in its three states, shapes of varying resolutions, and panels with object sets
of sizes one to ten. We apply the visual embedding layer (Figure 7.3 B ) to each probe but do
not add size or position information. Instead, we create separate size probes, spaced evenly
from 4⇥4 to 64⇥64, and position probes, spanning 65 locations across the input grid. The
language probes consist of 107 vectors representing every word in the vocabulary, encoded by
the language embedding layer (Figure 7.3 C ) and concatenated with each position at which a
word may appear in the task prompts. Probes for previous actions consist of all 24 possible
outputs encoded by the action embedding layer (Figure 7.3 G ) and 100 isolated temporal
position embeddings.

Finally, we create probes that measure sensitivity to the state of the CLS token. We translate all
possible actions EPred back into internal model representations by applying the output layer
WPred (Figure 7.3 I ) “in reverse”. Specifically, we subtract WPred’s bias term bPred from EPred
and apply the pseudo-inverse W†

Pred:

W†
Pred(EPred � bPred)

T

For each network in each attention head, we record the ten probes that evoke the largest
response, quantified as the sum of the network activations’ absolute values. In Figure 7.11, we
show which modality these inputs belong to and the strength of the response they elicited.
The first two attention blocks integrate language and visual information. Query networks of
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Figure 7.11: Visualization of the sensitivity of every query, key, and value networks in the
model to isolated probes from different input modalities. Opacity indicates the
strength of activation exhibited by a network in response to the input probes.

heads in the very first attention layer receive visual input. Key and value networks receive
language input. As might be expected, query networks in the first block mainly respond to
image patches, and key networks mainly respond to words. The value networks react to a mix
of language, visual, and output predictions (CLS). The partial sensitivity to nascent predictions
fits our observations from section 7.1.5 that the model forms “default” outputs at this level.
Heads in the second attention block primarily integrate visual information, although some
exhibit sensitivity to words.

In the last two blocks, information from past time steps enters the picture. The third block is
interesting because the key and value networks in its first attention layer receive MEM vectors,
i.e., the time step representations produced by the model 7.3 F ). Figure 7.11 shows that these
compressed representations seem to contain a mix of visual, linguistic, and output prediction
information. We also see more sensitivity to output predictions, which matches our finding
from section 7.1.5 that many tasks are already solved at this stage. In the last block, query
networks process a mix of linguistic, visual, and output prediction input, while key and value
networks are predominantly sensitive to previous actions.

Overall, Figure 7.11 paints a picture of a distributed network of specialized processing units
integrating multimodal information. There are very few unimodal heads – primarily in the
second attention block. Most heads consist of a unimodal query network interacting with
key and value networks sensitive to different modalities. In a few heads, particularly in
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higher attention layers, single key, query, or value networks respond to inputs from multiple
modalities.

The effect of symbolic training Having observed in section 7.1.5 that set comparison tasks
require more processing steps in the N-S model than in the S model, we here investigate this
finding further. We run both models on the test data for tasks B1 and B2 and collect the inputs
to the third attention block, as our analysis in section 7.1.5 showed this to be the point where
two-set comparison predictions begin to form. We collect only the time step where the agent is
positioned at the correct set but has not yet selected it to facilitate cross-task comparison. We
visualize the collected CLS and MEM vectors using Pairwise Controlled Manifold Approximation
(PaCMAP) [Wan+21]. PaCMAP is a dimensionality reduction technique designed to preserve
the data’s local and global structure. Figure 7.12 gives insight into the differences between the
internal representations of the S and N-S models and the role of MEM vectors.

We begin with the CLS vectors, which encode the model’s predictions. For task B1, these form
distinct clusters according to the position of the target set relative to its distractor (Figure
7.12a). Within the clusters, tasks with similar number ratios, calculated as the smaller set
size divided by the larger set size, are grouped closer together. However, for the N-S model,
this stratification is slightly less pronounced. There is also a collection of “miscellaneous”
predictions that are not yet well clustered, indicating that further processing steps are needed.
CLS vectors for task B2 (Figure 7.12c) are less neatly grouped than for B1, which fits with the
observation from section 7.1.5 that “less” comparisons are solved in higher attention layers
than “more” comparisons. The PaCMAP for the N-S case is almost circular, reflecting that
many CLS tokens have few neighbors of high similarity. The arrangement indicates that, at this
stage, the vectors still contain perceptual details that have already been abstracted away in the
S model.

We now turn to the MEM vectors (Figures 7.12b and 7.12d), which contain compressed informa-
tion the model deemed relevant enough to “remember” about a time step. The MEM PaCMAPs
closely resemble the CLS PaCMAPs in their differences between tasks B1 and B2 and S and
N-S models, as well as their stratification according to number ratio and target position. This
suggests that MEM and CLS contain similar information. To test this hypothesis, we evaluate
the models on tasks B1 and B2 as before but replace the MEM vectors with CLS vectors after
the second attention block. We see no decrease in performance, confirming that the two are
interchangeable, at least for set comparison. For other tasks, such as A5, doing this does cause
a significant accuracy drop from around 98% to 13%, showing that MEM vectors carry crucial
additional or complementary information in some cases.

We can conclude that set relations are implicitly quite well defined by attention layer 16,
although slightly less so for the N-S model. To quantify this gap further, we train two linear
regression models to predict the size of a task’s larger and smaller set based on the models’ B1
CLS and MEM vectors. We do this for each attention layer in the second attention block. For the
N-S model, the coefficient of determination goes from an average of 83% in the first to 93% in
the eighth attention layer. For the S model, it goes from 83% to 97%, suggesting that it produces
slightly more precise representations of set cardinality earlier, on which its higher levels can
operate. In the N-S model, which appears to require more processing steps, i.e., attention
layers, to determine set size, fewer attention layers are available for higher-level operations
once cardinality information has been determined. This leads to a lower performance on tasks
like set seriation (D9).
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(a) PaCMAP of CLS vectors produced by the S model (left) and N-S model
(right) on task B1.

(b) PaCMAP of MEM vectors produced by the S model (left) and N-S model
(right) on task B1.

(c) PaCMAP of CLS vectors produced by the S model (left) and N-S model
(right) on task B2.

(d) PaCMAP of MEM vectors produced by the S model (left) and N-S model
(right) on task B2.

Figure 7.12: Pairwise Controlled Manifold Approximation (PaCMAP) applied to the CLS and
MEM representations produced by the models trained with both symbolic and
nonsymbolic tasks (S) and on nonsymbolic tasks only (NS), collected after the
second attention block during the processing of two-set comparison tasks (B1, B2).
Proximity of points indicates similarity.
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Visualizing an information flow The analyses presented so far have mostly looked at static
model weights for one or more entire task families. We now want to provide a glimpse into
the dynamics that unfold while processing a single task. We use an information flow graph
in the style of Katz et al., who recently proposed this kind of visualization for LLMs [KB23].
We adapt their tool to our multimodal case to show a snapshot of the information flow in the
model’s 11th attention layer during one time step of the first B4 task in the test set (Figure
7.13). We choose task B4 as it is relatively simple but involves the comparison of a set size and
a digit – in this case, a set of size ten and the numeral four (Figure 7.13 A ). This makes it an
interesting case for investigating the two number formats’ representations. We choose the 11th
attention layer because it is the first point in which the correct action enters the model’s top
five most likely predictions, indicating that the attention layer’s heads play a role in solving
the task. Nodes represent groups of activated neurons. Edges represent interactions, with
width encoding interaction strength.

The attention layer receives the model’s current state as input. This state is a high-dimensional
vector that is not human-interpretable. However, we can translate it to an action prediction by
directly applying the model’s final output layer (Figure 7.3 I ). We show the five most likely
outputs as separate bars (Figure 7.13 B ). Length indicates certainty. The correct answer is
to point because the agent is in the right panel. This action is not yet among the top outputs.
The prediction undergoes normalization (Figure 7.13 C ), which has been found to act as a
“semantic filter” in LLMs by dampening the effect of common inputs and boosting the signal
of rare tokens [KB23]. In our case, normalization does little except increase the likelihood of
the “stop” action.

What follows are the outputs of the key, query, and value networks in the attention layer’s 16
attention heads (Figure 7.13 D - F ), each represented by a node. As we saw in Figure 7.11, the
networks may encode linguistic or visual information. To “decode” their outputs, we compare
their activations with those they exhibited in response to the probes in section 7.1.5 and use
the closest match as node labels. Labels are colored according to modality. We also translate
each network output to an action prediction, as we did for the attention layer input (Figure
7.13 B ). The color of each node represents whether this translation yields the correct action
(pointing) as the most likely (green) or second-most likely (yellow) output. This color-coding
indicates whether a network contributes to the correct prediction.

The results of the interactions between keys, queries, and values pass through the heads’
output layers (Figure 7.13 G ). The individual heads’ outputs are aggregated into an updated
prediction (Figure 7.13 H ). This updated prediction is added to the attention layer’s original
input and processed by further normalization and a feedforward block, which we do not
depict for simplicity. The attention layer shown in Figure 7.13 is a relatively early one, and the
updated prediction it produces is still almost uniform. However, the correct action, pointing,
has now entered the model’s top five predictions due to the contributions from the attention
layer’s heads.

If we consider the mechanism formed by keys, queries, values, and outputs as an associative
process, we see that the model retrieves relevant information, including representations learned
from other tasks. E.g., there are activations for the visual digit ten, a pointing hand, and the
number words “ten” or “four” – none of which are in the task’s immediate input. Most heads
output the action “point”, which modifies the model’s top five predictions to include pointing.
However, the output predictions “three”, “four”, or “five” also appear across the attention
head. This activation of surrounding number outputs can be explained by looking at the
weights in the model’s final output layer.

108



7.1. STUDY

Figure 7.13: A graph of the information flow in the style of Katz et al. [KB23] of the third
attention layer of the first attention block while processing one time step of a B4
task. Nodes represent groups of activated neurons. Edges represent interactions,
with width indicating interaction strength. Nodes are labeled with the most likely
prediction when processed by the model’s final output layer, except for keys,
queries, and values, where we use the probe from section 7.1.5 eliciting the most
similar activation. Node color represents whether activations, when interpreted as
predictions, have the correct action (pointing) as either the most likely (green) or
second-most likely (yellow) output. The graph should be read from left to right
and omits the attention layer’s feedforward block for simplicity.

Figure 7.14 shows the cosine similarity of the incoming weights for each possible output.
Similarity for weights of neighboring numbers is higher than for numbers further away,
leading to a co-activation of close-by numbers in line with Verguts et al.’s proposal of a noisy
mental number line [VF04]. The fact that various visual, spatial, and output prediction nodes
appear in the graph also fits well with Abrahamse et al.’s proposal that performing a task
co-activates perceptual, motor, and goal representations in the brain, binding them into a
context-specific network which allows for cognitive control [Abr+16].

Comparing task processing sequences Our dataset spans a range of number concepts and
task families, which enables us to compare them from various perspectives. So far, we have
looked at the order of acquisition during training in section 7.1.5 and within-model prediction
trajectories in section 7.1.5. Finally, we want to compare the model’s internal activations while
processing different tasks. We run the model on all tasks in the test set and collect each
attention layer’s 64-dimensional attention head outputs at every time step. We average the
recorded activations over the time steps of a single task and sum over the 1,000 tasks in a task
family. We take the pairwise cosine similarity for the aggregated activation vectors of each
task family as a measure of similarity between their activation trajectories. In Figure 7.16, we
present the results in a hierarchically-clustered heatmap.
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Figure 7.14: Cosine similarity of each
output’s incoming weights
in the model’s final output
layer.

Figure 7.15: Cosine similarity between
aggregated activation tra-
jectories for the four tasks
in the dataset involving the
“more” relation, in each of
the four attention blocks.

Figure 7.16: Hierarchically-clustered heatmap of the
cosine similarity between aggregated
activation trajectories for each task in
the dataset.

Two over-arching clusters form – one cluster of mainly cardinal tasks that involve set compar-
isons or exact cardinality (upper left) and one of within-panel seriation and ordinal tasks (lower
right). Within the second cluster, there is a subcluster of set enumeration tasks (A3, C8, A6,
A4, A2, A5), object seriation tasks (D7, D8, D3, D4), and object selection tasks (D5, D2, D1,
D6). Notably, although sorting objects differing in one (D3, D7) and more than one (D4,
D8) attribute showed different training trajectories, the activation trajectories in the trained
model are almost identical. The map also includes a small cluster of tasks with purely verbal
outputs (D10, A1, C3) and one cluster of tasks requiring the manipulation or selection of
multiple panels (D9, C7, B5, B6, C1).

Tasks that involve different number modalities but are otherwise identical show high similarity.
Examples include A7 and C4, C8 and A6, or D9 and C7. This suggests that the network has
learned knowledge and procedures employed similarly in tasks involving different number
formats. We investigate where the model processing diverges when solving versions of the
same task with different number representations in Figure 7.15. The plot compares four tasks
involving the “more” relation (B9, B1, B3, and C5) broken down by attention block. Activation
trajectories diverge most in the lower attention layers, then form clusters according to input
representation formats: B9 and B1 involve only object sets, and C5 involves only digits. B3,
which involves objects and digits, shows equal similarity to both. Activations in the fourth
block are almost identical, most likely because its attention layers do not contribute much to
these tasks and are essentially skipped during processing (see section 7.1.5).
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Several neuroimaging studies have done comparable analyses to investigate activations in
the brain during tasks involving different number representations and magnitudes. Results
indicate that neural overlap depends on task demands [LA15] and that, besides areas thought
to represent numbers, numerical tasks activate more non-specific brain areas related to, e.g.,
general visuospatial skills [Hub+05]. These findings generally fit with the fact that clusters in
activation trajectories in Figures 7.15 and 7.16 in part reflect number representation format
and in part similarities in other visual inputs and action sequences.

7.2 Discussion

In summary, the model’s training trajectories within and across tasks mostly fit with empirical
findings from children where such findings are available. In line with human behavioral
data, the model shows decreasing accuracy and broader response variability with increasing
target numerosity, as well as nonsymbolic and symbolic size and distance effects. Qualitative
analysis of the model suggests an intricately entwined network of specialized and more
general processing units rather than a strictly hierarchical and segregated set of modules.
Using isolated probes, I show where in the model information is integrated via multimodal
attention heads. I explore the interplay between attention heads in action by visualizing an
exemplary information flow. The visualization illustrates how attention heads retrieve cross-
modal information related to, but not necessarily present in, the model’s immediate input. I
compare aggregated activations across tasks and find that overlap in activation trajectories
reflects similarities in inputs and task demands.

Inspired by discussions in the literature on the role of language in numerical cognition, I train a
model only on non-symbolic tasks. The model performs well on two-set comparisons and tasks
related to object attributes, in line with findings that some proto-quantitative skills can develop
without language. However, it performs less well on tasks involving more than two sets. I
compare the internal processing and embeddings of the models trained with and without
symbolic tasks. I conclude that the model trained without symbolic tasks requires more
processing steps to determine set sizes, leaving fewer capacities for more advanced operations
involving multiple sets. This offers a concrete, computationally implemented demonstration of
how differences in exposure to symbolic number tasks can give rise to differences in internal
representations and processing strategies.

In the context of this thesis, this study represents the culmination of several ideas we have
already encountered in the previous chapters. It especially resembles the BIB case in that I
train a large NN on a set of cognitively relevant tasks, analyze what it learns, and compare the
model’s behavior and internal representations to those of humans where possible. This relates
to three topics I briefly want to outline in the following sections: Aristotelian vs. Galilean
psychology, epistemic opacity, and exploratory modeling in science.

7.2.1 Aristotelian and Galilean psychology

The distinction between Aristotelian and Galilean psychology refers to two different approaches
to psychological research and theory, as characterized by Kurt [Kur31]. These approaches
diverge in their methodologies, perspectives on psychological phenomena, and the emphasis
on understanding or categorizing behaviors and mental processes. Note that, despite its name,
Galilean psychology is not directly related to the notion of Galilean idealization discussed in
section 4.2.2.
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Aristotelian psychology is defined by its reliance on categories derived from everyday observa-
tions, such as "normal" vs. "pathological." This approach is top-down, meaning it starts with
broad taxonomies into which it fits encountered phenomena. Explanation takes the form of
subsuming observations under broader categories or laws without necessarily investigating
the underlying mechanisms. The focus is on consistency and replicability. Variability is often
dismissed as noise or as something outside the scope of scientific inquiry. Researchers using
this strategy prioritize group averages, which are thought to capture the essence of the forces
governing behaviors and mental processes [HC17].

Much of cognitive neuroscience can be said to follow this paradigm, as observations are often
considered “explained” when they have been attributed to the activation of a particular part of
the brain [Hom20]. According to Hommel, the Aristotelian approach may be unavoidable in
the early days of a field but is ultimately “limited to re-describing the available findings in a
modeling language [Hom20, p. 1297]”.

In contrast, Galilean psychology seeks a more nuanced, mechanistic understanding of psycho-
logical phenomena. It moves away from binary categorization and instead explains behaviors
and mental processes in terms of gradations and common principles. This approach does not
rely on everyday categories but begins with basic, well-understood mechanisms and tries to
use them to explain a broad spectrum of observations. The emphasis is on identifying the
components and processes that underlie behavior and cognition. Variability, both inter- and
intra-individual, is seen as important data that a good mechanistic theory should account for
rather than as noise to be ignored [HC17]. Hommel has argued that achieving progress in the
field of cognitive science requires moving towards a more Galilean psychology [Hom20].

But do NNs lend themselves to developing the kinds of mechanistic theories that this approach
calls for? We have seen in the glyph study how a NN can provide how-possibly explanations
of a target phenomenon without presupposing a deep understanding of the model itself.
However, when the target phenomenon in question concerns how the mind performs certain
computations, it becomes necessary to “look under the hood” of the model – a challenge in
the case of NNs, as they can exhibit very complex dynamics.

7.2.2 Epistemic opacity and explainable AI

Humphreys defines a system as epistemically opaque relative to a cognitive agent X at a time t
if the agent does not know all the Epistemically Relevant Elementss (EREs) of the system at that
time [Hum09]. EREs are the components, processes, or steps within a computational system
that must be understood to fully grasp how the system functions and produces outcomes.
These elements can include algorithms, data transformations, and the underlying logic that
drives the system’s behavior. Crucially, epistemic opacity is not an inherent property of a
system but is relative to an agent’s knowledge and capabilities [Zed21]. A system might be
opaque to one person but transparent to someone with different expertise or resources.

Humphreys also discusses the concept of “essential” epistemic opacity, which occurs when
it is practically impossible for an agent to know all the EREs of a system – not because of a
lack of effort, intelligence, or technology, but due to the agent’s very nature [Hum09]. I.e.,
there may be cases where our fundamental cognitive limitations prevent us or any agent with
similar constraints from ever completely understanding a system [Alv]. According to some
accounts, NNs are instances of such inherently and unavoidably opaque systems; the sheer
volume and complexity of the operations involved make it impossible for us to grasp every
detail at once, and trying to explain them is futile [Bur16; Rud19; Alv].
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However, not everyone shares this view. Indeed, there is a whole field within ML, Explainable
Artificial Intelligence (XAI), which aims to demystify the workings of NNs. This drive toward
developing interpretability methods is fueled by a mix of practical, ethical, and epistemological
reasons.

One of the primary motivations for XAI is to build user trust and encourage the adoption of
ML models, particularly in high-stakes areas such as healthcare and finance [Vel20; Kri20].
In these domains, the reliability of AI systems is crucial, as their decisions can significantly
impact individuals’ lives. Moreover, the ability to explain AI decisions is not just a technical
necessity but represents a moral obligation to ensure fairness and accountability in AI-driven
outcomes [Dig20]. This is especially pertinent as legal frameworks in various jurisdictions
increasingly mandate transparency in AI-based decision-making processes. From the perspec-
tive of developers and researchers, better insights into models’ inner workings may enable
the identification and correction of errors or biases, thereby improving performance and
fairness [ZZ18; WF21; Pra+22]. Additionally, shedding light on which features significantly
influence predictions could provide a deeper domain-specific understanding of the processes
and phenomena being modeled [RL18; WF21].

Yet, while most scholars agree that it would be desirable for ML models to be interpretable,
there is very little consensus about what interpretability means and how to achieve it [DK17;
Lip18; Wat21]. To name a few prominent proposals, Doshi-Velez and Kim define interpretabil-
ity as the ability to explain an ML system or to present it in understandable terms to a
human [DK17]. Similarly, Lipton discusses notions of transparency, suggesting that a model
might be considered transparent if a person can contemplate the entire model at once or if
each part of the model admits an intuitive explanation [Lip18]. However, such definitions often
run into a recursive problem by relying on terms like "understandable" or "intuitive," which
themselves require further clarification [Sul22]. Others, such as Ratti and López-Rubio, attempt
to define interpretability using more pragmatic criteria, like the ability to perform precise and
successful material manipulations based on the information provided by the model [RL18].
Despite these and numerous other attempts to define and quantify XAI terms, the field still
lacks clear, agreed-upon definitions for interpretability and its cognates [Kri20].

Krishnan puts forward that XAI researchers struggle to pin down these concepts because “there
is not, in fact, anything that it is to be an interpretation or an explanation of an algorithm. There
are only [. . . ] lists of facts that are more or less useful for particular purposes” [Kri20, p. 491].
To connect this back to Humphreys’ idea of epistemic opacity, interpretability, explainability,
or transparency are not inherent system properties. Instead, they are specific to the model,
its EREs, and the epistemic agent. Following this line of thought, it is certainly possible to
try to make specific models for specific situations easier to grasp for a particular user group.
However, searching for blanket definitions or universal metrics might not be a coherent or
achievable goal.

In this way, NNs have something in common with brains: They are highly complex systems
that we can probe in ad hoc ways to answer specific questions. However, we do not have
an all-encompassing grasp of their behavior and underlying mechanisms. In situations like
these, where comprehensive theoretical frameworks are still missing, scientists often employ
exploratory modeling techniques.
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Figure 7.17: Comparison of toy models and exploratory models.

7.2.3 Exploratory modeling

The “standard view” of science traditionally emphasizes the role of experiments as a way to
test hypotheses and theories. According to this view, experiments are primarily designed to
confirm or falsify specific predictions. This perspective strongly emphasizes the deductive-
nomological notion of explanation, where experiments are seen as a means to validate the
causal mechanisms posited by a theory. However, this “standard view” does not fully capture
the diversity of experimental practices in science. Besides hypothesis testing, experimentation
can also have important exploratory uses, including generating hypotheses in the first place.
Exploratory experimentation and modeling are particularly relevant in contexts where a well-
formed body of theoretical knowledge is not yet available, or the subject matter does not lend
itself to a straightforward theoretical description [Gel16b]. This is arguably the case in many
areas of the cognitive sciences [McC09; JK17; Zer+19].

In this way, exploratory models have much in common with toy models, especially autonomous
ones. Both types of models focus on the modal dimension of modeling and can be used to
generate how-possibly explanations. However, toy models and exploratory models are not
entirely synonymous. Toy models can be independent of or embedded in theory, while
exploratory models are used when no established theory exists. Toy models are highly
simplified and idealized to the point of stylization. Exploratory models, on the other hand,
can vary in complexity and detail.

Finally, the primary aim of toy models is to provide qualitative understanding, while ex-
ploratory models aim to guide future research. They are not necessarily intended to provide
definitive answers but to open up new lines of inquiry and help formulate more precise
questions. In that way, exploratory models can lay the groundwork for more focused investiga-
tions in the form of toy models, which can, in turn, help refine or expand the scope of initial
explorations [Gel19]. Figure 7.17 summarizes the similarities and differences between toy and
exploratory models.

Gelfert distinguishes between four functions of exploratory models [Gel16b]. The first use is
as a starting point for future inquiry. These models allow scientists to identify key variables
and their possible interactions and outline the scope of the research. By doing so, they can
highlight areas that require further investigation and lead to new hypotheses that can be tested
empirically. The second use is as a proof-of-principle demonstration. In this context, a model
is constructed to show that some mechanism or process could, in principle, feasibly lead to
the observed phenomenon. The third use is to generate potential explanations for observed
phenomena. These models allow scientists to identify which accounts are more consistent
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with the available evidence and help narrow down the range of possible explanations. The
fourth use is to assess the suitability of the target phenomenon for investigation. These models
can help re-evaluate the boundaries and characteristics of a phenomenon, leading to a more
precise and operational definition.

Despite the ability of exploratory modeling to offer important insights, it comes with some
caveats that require careful consideration. Models, by necessity, simplify the complex phe-
nomena they aim to represent. This simplification is a double-edged sword; it makes models
tractable and accessible but can lead to misrepresenting or overlooking critical aspects [McC09].
It is, therefore, crucial not to conflate a model with the reality it seeks to explain – to distinguish
the map from the territory, as it were. Understanding a model can be an important step in
understanding a target system, but they are not the same thing [Gel16b; Sul22].

Furthermore, it is essential not to conflate how-possibly with how-actually explanations. The
inferences drawn from exploratory models are often under-constrained, and multiple models
may account for the same data [Fri15]. Therefore, a model’s ability to fit existing data does not
necessarily validate it as a true representation of the underlying processes [McC09]. Conversely,
a model’s failure to fit data could be due to seemingly minor implementational or conceptual
choices [YD16]. It does not automatically invalidate the core ideas of a model. Misinterpreting
model success or failure can lead to premature conclusions about the validity of the hypotheses
being explored [McC09].

Finally, as previously discussed, there is rarely such a thing as a “perfect and absolute blank”
in modeling – our observations are significantly shaped by the theories and concepts we
already hold. Much like idealization, this, too, has benefits and drawbacks. As discussed in
the third case study, the background knowledge and assumptions built into our models are
what link them to scientific theory and the world, even if they are not accurate representations.
They can help guide exploration in what would otherwise be an infinitely large space of
possibilities [JK17].

However, the fact that all modeling is “theory-laden” means that every step, including data
collection, pre-processing, data interpretation, labeling, and algorithm design, is infused with
some degree of - often implicit - bias [Kit14; Leo14; Bur16; Zer+19; Des+22]. While there is
no way to avoid this altogether, it is important to acknowledge how existing theories and
expectations shape the series of decisions involved in modeling because these affect the model’s
behavior and the knowledge we can derive from it.

In DL models, so many parameters are optimized algorithmically, outside our direct control as
designers, that this can impart a false sense of objectivity or “blankness”. In reality, however,
the learning process is influenced by a series of decisions based on implicit knowledge.
For example, I chose the architecture and size of my models with the expectation that this
would elucidate aspects I was interested in studying. As I became more familiar with the
models, I refined my choices to navigate the various trade-offs involved between computational
resources and predictive performance. For some decisions, such as the proportions of data
used for training, validation, and testing, I relied on best practices in the field of ML. Other
hyper-parameters I chose based on my experience with similar projects.

In that regard, I am no different than other cognition researchers working with complex
models. However, I attempted to generalize the problems across input modalities as well as
task types in such a way that it reduced my ability to make choices that were highly targeted to
or optimized for narrow tasks and datasets. This was an effort to increase the applicability and
generalizability of the models, even if it came at the cost of optimizing for specific benchmarks.
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Figure 7.18: Overview of relations between human cognition, theory, assumptions, data, model,
and outputs in the fifth case study. Relevant components performed or generated
by us shown in orange. Components provided by third parties shown in gray.
Circle at the beginning of an arrow indicates the starting point of investigation.

7.2.4 Relation to the guiding questions

The modeling process involved in this study resembles several of the previously presented
cases (see Figure 7.18). It is similar to the glyph study in that my starting point lies in the
cognitive science literature, which informs the design of my dataset. I train large NNs on this
dataset and analyze their behaviors and internal representations. This top-down approach
contrasts with many of the previous models in numerical cognition, which are often simpler
and involve components with manually defined semantics. In this regard, the case study is
similar to the BIB case, where the NN also presents an alternative to a model based on a
different paradigm (in the case of BIB, HBToM). However, I analyze the NN’s inner workings
in more depth. Thus, the goal is not just to prompt new questions and inquiries, as with the
BIB study. Instead, I aim to better understand the model – analogous to the gSCAN case – and
potentially to inform the theory that inspired the study – analogous to the glyph case.

This feedback loop between cognitive science literature and model assessment leads us back
to the first criticism against NNs, namely, their lack of connection to theory. As discussed in
section 5.2.2, most models are linked to our knowledge of the world through the questions
they are designed to investigate. In this study, the literature on numerical cognition heavily
informed the dataset design, model analysis, and interpretation of results. However, as has
perhaps become apparent in the study, this is not a field where many definitive, widely
accepted theories exist. There are still more open questions than answers, and competing
proposals and models abound. Thus, numerical cognition is an area where exploratory
modeling can be helpful. In section 7.2.3, I outlined the four functions of exploratory models
according to Gelfert. Two of these functions are especially relevant to this work: exploratory
models as proof-of-principle demonstration and as a starting point for future inquiry.

Regarding the first function, this study reinforces and amplifies previous findings that early
number skills can emerge from the general learning mechanisms of NNs. E.g., the model’s
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“implicit curriculum” forms without imposing an order of task presentation or explicitly mod-
eling maturational changes, which have been hypothesized to underlie transitions in children’s
learning [MK19]. It produces size and distance effects without an innate, spatially orga-
nized “mental number line”, a prevalent explanation for this phenomenon in humans [ZPU02;
Har+13]. In general, it develops a network of specialized and more general processing
units. This functional organization emerges from objective-based training without enforcing
topological constraints on model connections.

Of course, these findings do not preclude the presence of certain neural structures supporting
number skills in the brain. However, they demonstrate that innate circuitry is not the only
possible source of explanation. The model can thus help inform and expand our views on
numerical cognition, moving towards a more nuanced Galilean approach to psychology.

Given that the model reaches high accuracy on most tasks, including comparisons requiring
extrapolation to larger set sizes, it could also serve as a starting point for further in silico
exploration of hypotheses about the biological mind. Discrepancies between model and human
behavior are particularly interesting in this regard because they provide clues about factors at
play in human learning that may be missing in the setup [McC09; CK19].

For instance, the proposed model learns symbolic tasks faster than non-symbolic ones. I
attributed this to symbolic tasks involving less variability and, often, shorter sequence length.
A more human-like acquisition order may arise with a more realistic dataset where digits
vary in appearance, and outputting number words requires producing individual phonemes.
Alternatively, symbolic tasks may be introduced later in training, or changes to the architecture
may be needed. Furthermore, future work could investigate the role of maturational changes
in learning by gradually increasing model capacity and comparing internal representations or
processing strategies to those emerging from a priori full-scale models. The model could also
be ablated to simulate hypotheses about developmental disorders.

Turning to the second criticism, biological implausibility, it is certainly fair to say that the NN
used in this study does not accurately represent the brain. It is much more computationally
limited, its neuronal dynamics differ, and training and inference are split into separate phases
that do not reflect organic learning processes [SK20; LKC20]. However, the modeling setup
represents a step forward from previous proposals regarding cognitive plausibility.

Many of the studies outlined in section 7.1.2 used comparatively small models, abstracted
inputs, and few specific tasks, as this was conducive to their goal of understanding model
representations and processing. In DL, models are trained on naturalistic data and evermore
general tasks. However, the focus is generally on performing well on benchmark datasets
rather than analyzing the models’ inner workings. While there is undoubtedly room and good
reason for both approaches, I have tried to find a middle ground: I use a large, relatively
general-purpose NN. I train it on the circumscribed domain of early number knowledge, then
analyze it in depth. Many of my analyses reveal representations and processing strategies that
could only emerge from a sufficiently complex, i.e., more cognitively plausible setup.

Employing NNs in smaller, controlled environments that capture essential properties of natural
experience and focusing more on the “how” than the “how well” can benefit both cognitive
science and AI. Cognitive scientists can use AI developments to broaden their models’ scope,
allowing them to analyze phenomena that cannot emerge when studying isolated concepts.
For AI researchers, better insights into NNs can yield a more realistic assessment of model
capabilities and motivate improvements in architectures or input data. For example, analyses of
the proposed model pointed to the limitations of its purely feedforward nature, underscoring
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the importance of recent efforts to introduce recurrent weight sharing and adaptive halting
mechanisms to Transformer-based architectures [Mes+22; CT22].

As seen throughout the study, design decisions at every level significantly impact what a model
can be taught. Even two models with identical architectures and similar task performance may
develop diverging internal processing mechanisms if trained on different inputs. Fields such as
cognitive science and developmental psychology have long studied the experiences that shape
what and how we learn. This expertise can inform the design of ecologically relevant training
inputs that induce more human-like representations and processing in NNs, ultimately making
them more cognitively plausible.

We now come to the last criticism against NNs, namely, their supposed inability to provide
explanations. Scaling up to more cognitively plausible tasks inherently introduces a higher
level of complexity, both in the inputs and in the increasingly powerful models needed to
process them. As discussed in section 7.2.2, some consider these models instances of essentially
epistemically opaque systems – i.e., systems that we will never fully grasp due to our cognitive
limitations as humans. While it may be true that an all-encompassing understanding of these
model’s inner workings is out of reach, the preceding discussion illustrates that NNs are not
the entirely impenetrable black boxes they are often made out to be. Specifically, I hope I have
shown that the ubiquitous Transformer models can be made more interpretable through the
application of appropriate analysis techniques.

Because NNs allow for almost unfettered access, they can be subjected to various analyses.
Researchers can causally manipulate individual elements, continuously collect data at different
levels of detail, and selectively lesion or stimulate models in a way that is currently impossible
with biological brains. When guided by specific research questions, it is thus possible to
identify EREs of a modeling setup and to provide explanations at different levels of the Marr
hierarchy. These can range from comparing the effect of exchanging a higher-level building
block, such as the training dataset, to producing lower-level mechanistic accounts, such as the
one presented in the section 7.1.5.

To sum up, in many areas of research, comprehensive theoretical frameworks are not yet
available. In such cases, NNs can serve as exploratory models. Much like the captain’s blank
map in the chapter’s epigraph, open-ended inquiries involving models that contain fewer
rigid assumptions can have their benefits. Unlike purely bottom-up, descriptive models, they
have the potential to produce surprising results that diverge from the expected behavior. Such
results can provide proof-of-principle demonstrations or a starting point for future inquiry,
including the design of more targeted empirical studies with human participants.

While such models may fall short of how-actually explanations, they can help us expand our
views on a topic and perhaps support a shift towards a more nuanced Galilean approach
to psychology. Given the ability of NNs to process complex inputs, they can help cognitive
scientists expand the scope of phenomena they are able to model. Conversely, AI developers
can take inspiration from the cognitive sciences to design ecologically relevant training envi-
ronments and potentially move towards more cognitvely plausible models. Finally, NNs are
amenable to a much wider range of post-hoc analysis techniques than biological brains.

In section 7.2.3, I have briefly presented the four uses of exploratory models proposed by
Axel Gelfert: starting points for future inquiry, proof-of-principle demonstrations, generating
potential explanations, and assessing the suitability of a target phenomenon. This case study
and the three studies preceding it have mostly served the first three uses of exploration. In the
following chapter, I will present a model that illustrates the fourth exploratory function.
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8 Modeling decision-making processes in
medical ethics with Fuzzy Cognitive Maps

It seems to me that the test of “Do we or do we not understand a particular subject in physics?” is,
“Can we make a mechanical model of it?

William Thomson

8.1 Study

The sixth case study relates to explicit knowledge and reasoning (see Figure 8.1). As this is
quite a broad topic that could fill several theses in its own right, the case study focuses on
a specific example: the reasoning involved in decision-making in medical ethics. Although
machine intelligence applications are becoming increasingly prevalent in healthcare, medical
ethics remains largely unexplored from a technical perspective. We propose an approach based
on Fuzzy Cognitive Maps (FCMs), which builds on Beauchamp and Childress’ prima-facie
principles. The FCM’s weights are optimized using an EA to provide recommendations
regarding the initiation, continuation, or withdrawal of medical treatment. The final model
approximates the answers provided by our team of medical ethicists reasonably well and offers
a high degree of interpretability.

The model was developed as part of an interdisciplinary collaboration between the Chair
of Data Processing and the Institute of History and Ethics in Medicine at the Technical
University of Munich. We first presented our approach in an article in the American Journal
of Bioethics in 2022 [Mei+22a]. The paper elicited several responses from the medical ethics
community [SHK22; Cha22a; DES22; CD22; BP22; Rah+22; Cha22b; GB22b; KG22; BFG22;
Sab22; DFR22; PB22], to which we replied in a separate article [Mei+22b]. We also produced
a companion paper geared towards a more technical audience, which was published in the
proceedings of the 2022 International Conference on Fuzzy Systems [Hei+22]. The following
text is based mainly on this technical companion paper but also contains fragments of the first
two publications.

8.1.1 Introduction

Some ethical questions that arise in clinical settings have obvious answers. Others are more
complicated. Should doctors continue treating a child who still has a small chance of long-term
survival against her will? Should one carry out a procedure that has adverse medical effects
when the patient insists on being treated this way? Should medical personnel put a person on
a ventilator following a suicide attempt when she had signed a do-not-resuscitate order many
years ago? These are just some examples of medical ethical dilemmas in which our moral
intuitions appear to give conflicting advice.
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Figure 8.1: Situating the sixth case study in the broader study of cognition. Relevant parts of
the framework marked in orange.

The need for ethical counseling triggered the appointment of clinical ethics committees. In
the early 1980s, only 1% of US hospitals employed ethics committees, and on average, they
reviewed not more than a single case per year [You+83]. Nowadays, ethics committees are in
operation in most major hospitals [16]. Not only is the number of clinical ethics committees
increasing, but so is the number of cases that are brought before these institutions [SMP12].
Among other reasons, this is due to advancements in healthcare technology that enable doctors
to carry out procedures that raise entirely novel ethical questions [Per92; FM01].

In recent years, ML technology has become more and more prevalent in medicine. ML-based
systems are now being used to support physicians in areas like disease diagnostics, medical
image analysis, care coordination, or precision medicine [Hab+21]. Yet, despite the growing
number of clinical ethics cases brought before committees, the realm of ML approaches to moral
decisions remains largely unexplored. To our knowledge, the only attempts at such a system
were GenEth [AA18] and its predecessor version, MedEthEx [AAA06]. Both are ethical
dilemma analyzers proposed by Anderson et al., which use Inductive Logic Programming
(ILP) to codify decision principles for medical ethics dilemmas.

Although these studies delivered interesting first results, they applied to a restricted set of cases,
namely, ones in which mentally competent patients refuse to undergo treatments that medical
professionals judged as being beneficial for them [AAA06]. An updated version also included
a scenario in which patients are reminded to take their medication [AA18]. In addition to
the studies’ limited scope, ILP is known to struggle with noisy inputs and non-symbolic
domains where data is inexact or uncertain [EG18]. In clinical reality, however, medical staff
face a wide variety of situations, and there is seldom an “objectively correct” solution. A
system designed to provide ethical guidance in medicine can, therefore, be expected to receive
contradictory inputs from different experts across cases. Since translating such conflicting
instances into purely symbolic representations using classic ILP would be difficult, we here
propose a different approach based on FCMs.

We argue that fuzzy technology is especially well-equipped to handle such an ambiguous
domain and that FCMs are an intuitive tool for modeling medical-ethics decision processes.
We present an FCM that covers a variety of cases regarding the initiation, continuation, and
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withdrawal of medical treatment. We further show how such a model can be optimized to
approximate expert recommendations with relatively little data using an EA. We begin by
providing some background on medical ethics, FCMs, and EAs. We then introduce our FCM
model, the data set used to optimize it, the pre-processing steps we applied, and the details of
our implementation. We report on the quantitative evaluation of our experiments as well as on
qualitative results. Finally, we discuss the strengths and limitations of our approach and point
out ways in which our work could be used and expanded upon.

8.1.2 Background

Medical ethics So far, applications of machine ethics have mainly been focused on situations
like trolley dilemmas in autonomous driving (see, e.g., Awad et al. (2018). A major challenge
for such undertakings is to a) choose an appropriate ethical theory and b) translate often
vague ethical concepts into computer-friendly representations. Clinical ethics is in a uniquely
advantageous position in this regard. This is because there exists a set of four prima-facie
principles, introduced in 1979 by Beauchamp and Childress, which today is the dominant
methodology for doing bioethics and is regarded by many as the de facto standard in the
Western world [Vea20]. Beauchamp and Childress’ approach facilitates our choice of ethical
framework, both because of the consensus surrounding it and because it lends itself well to
algorithmic implementations. The four principles are [BC13]:

Beneficence: medical interventions should promote patients’ well-being. The treatment
option that will offer the greatest benefit to the patient should be selected. A benefit would be
an increase in life expectancy, an improvement in the quality of life, or both.

Non-maleficence: medical interventions should not harm the patient. This is often in conflict
with the principle of beneficence since there are very few treatment options that are completely
free of risks and side effects.

Patient autonomy: medical interventions should only be carried out in accordance with the
patient’s preferences.

Justice: the distribution of costs and benefits within the healthcare system should be adequate
and fair; in contrast to the other three principles, justice does not only pertain to the individual
patient but governs the allocation of medical resources throughout the whole community.

Fuzzy Cognitive Maps FCMs were first proposed by Kosko in 1986 [Kos86] and have since
been adopted across a variety of domains, such as social and political sciences, robotics,
medicine, or environmental studies [PS13]. They are a graph-based way of modeling a set of
concepts C = {C1, C2, C3, . . . , CM}, represented as nodes, and the cause-and-effect relationships
between them, represented as weighted directed edges W : C ⇥ C ! [�1, 1]. Each node takes
on a fuzzy value, which represents how active a concept is at a given point in time. Each edge
is assigned a fuzzy weight, where positive values represent a causal increase, and negative
values represent a causal decrease. The absolute weight value determines the magnitude of
the causal effect one concept has on another.

To simulate a chain of causal reasoning for the modeled domain, the values of C for each time
step are calculated as the weighted sum of their input concepts, passed through a non-linear
function. Equation 8.1 displays the most widely used activation rule for FCMs, where A(t)

i
is the activation value of concept Ci at the time step t and wji denotes the value of the edge

121



8.1. STUDY

between Ci and Cj. A is applied iteratively until a stop condition is met and produces a state
vector with updated activation values for all concepts at each time step. f denotes a transfer
function that ensures the activation values of all concepts stay within the desired range, usually
a sigmoid or hyperbolic tangent function [Fel+19].

A(t+1)
i = f

0

BB@
M

Â
j=1
i 6=j

wji A
(t)
j

1

CCA (8.1)

This update mechanism is similar to the one used in neural networks, and indeed FCMs can
be seen as “interpretable recurrent neural networks that include fuzzy logic elements during
the knowledge engineering phase”[Fel+19, p. 1710]. However, in contrast to most traditional
neural networks, the strength and polarity of the weights between nodes are usually not
learned via backpropagation. Instead, it can either be specified manually by domain experts
or learned using Hebbian, error-driven, or hybrid approaches [Fel+19].

Evolutionary algorithms An EA is a probabilistic search method inspired by evolution. It
starts with a pool of solutions, the so-called “population". At each generation, the fitness
of each solution, also called a chromosome, is evaluated. Each chromosome is made up of
a collection of solutions for individual parameters to be optimized (genes). Depending on
their fitness value, chromosomes may be chosen for the next generation. Some solutions are
randomly selected to produce new solutions through crossover and mutation operators. Since
their introduction in the 1970s, EAs have been applied to optimization problems in a variety of
fields, such as biology, finance, and engineering [Kum+10].

8.1.3 Methods

Fuzzy Cognitive Map Design Due to their intuitive visualizations as causal graphs, FCMs
lend themselves well to communicating ideas in interdisciplinary studies such as ours. We
made use of this by first consulting our team of medical ethicists regarding the parameters
they considered relevant when assessing cases. Our joint goal was to find a set of concepts
sufficient to cover a range of situations but not so large as to make the model overly specific
and complex. We then proposed several visual representations of how these concepts might
be connected and iteratively refined our FCM based on the ethicists’ feedback. The resulting
graph is shown in Figure 8.2.

The largest part of the FCM relates to the concept of autonomy. When patients possess full
decisional capacity, doctors should normally follow their treatment preferences. In the case
of comatose or otherwise incapacitated patients, one consults the advance directive – if such
a document was drafted and if it applies to the situation at hand. Doctors can also obtain
consent to a treatment from the patient’s surrogate decision-maker. If the patient’s preferences
cannot be established, doctors proceed according to what is deemed to be in the patient’s
best interest [Bun19], essentially relying only on beneficence and non-maleficence. These
different sources of obtaining consent may also conflict – for instance, when an advance
directive is only partly applicable and clashes with the surrogate’s instructions.

We model this decision process using three types of nodes: input, intermediate, and output.
Input nodes represent all the facts of a medical case, e.g., whether the patient is considered
an adult (the age of majority varies between countries). For input nodes, the values are
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Figure 8.2: Causal graph of the proposed model. Input nodes are shown in light gray, nodes
representing Beauchamp and Childress’ principles in blue, nodes representing
intermediate decisions in dark gray, and the output node in yellow. Gains and
losses in quality of life and life expectancy undergo pre-processing as outlined in
section 8.1.3. Dark gray nodes are also fully connected amongst each other (not
shown for the sake of simplicity).

given by the user, and activation stays constant. The output node represents the system’s
recommendation regarding the intervention in question. It takes values between 0 and 1, where
0 means strongly opposed to, and 1 means strongly in favor of an intervention. Intermediate
nodes represent concepts such as Beauchamp and Childress’ principles.

The concepts of beneficence and non-maleficence receive as inputs the gains and losses
in quality of life and life expectancy that the intervention in question will likely bring about,
as estimated by a doctor. Autonomy is determined by the patient’s possession of decisional
capacity and whether they are an adult or a minor. Autonomy does not influence the output
node directly. Instead, together with other inputs relating to, e.g., advance directives and
surrogates, it influences a set of intermediate decisions, such as following the patient’s wishes
or their advance directive. These intermediate decision nodes, in turn, influence the final
outcome. More than one intermediate decision at a time may be correct, e.g., if the surrogate’s
wishes are in agreement with the patient’s. In total, our final model consists of 12 input nodes,
8 intermediate nodes and one output node for the recommendation regarding the intervention.

We decided to exclude cases involving the principle of justice. This is for two reasons: first,
the handling of medical ethics cases in which justice is a major factor is partly dictated
by regulations that vary from country to country. To implement these juridical differences
computationally would have been impractical. Secondly, the question of how to define and
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quantify fairness is still a hotly debated topic in the field of MI. Many, often conflicting,
metrics have been proposed, but as of yet, no consensus on the matter exists [VR18]. For now,
we therefore focus on cases involving only the principles of autonomy, beneficence, and
non-maleficence.

As the transfer function for our node activations we chose a modified sigmoid function

f (x) =
1

1 + e�r(x�b) (8.2)

where r and b are parameters optimized individually for each node. The reasoning behind
this is that some aspects of cases in medical ethics, such as autonomy, may be almost binary,
whereas others, such as beneficence, are more continuous. By making the activation function’s
slope and offset optimizeable parameters, the model can take this into account.

Dataset The data set used in this study consists of 69 cases sourced from the medical ethics
literature [AS89; DHP10; FM01; JB16; PP10; Per92; SG08]. It includes case types such as
pregnancy and abortion, consent in minors, advance directives and consent in adults, patients’
refusal of treatment, requests for provision of futile treatment, withdrawal of treatment, and
issues in mental health. For each case, we collected 20 input features, listed in Table 8.1. We
also collected a ground truth label specifying a medical ethicist’s intervention recommendation,
expressed as a number from 0.0 (strongly opposed to the intervention in question) to 1.0
(strongly in favor), as well as the proposed intermediate decisions. For each case, our team of
ethicists filled out a form with questions pertaining to these 20 input features.

Pre-processing Features 1 – 3, 5 – 7, and 9 – 18 in Table 8.1 are re-scaled to range [0, 1].
Features regarding treatment preferences (13, 16, 18) are re-scaled to range [-1, 1], with
unknown or not applicable values located at zero:

xnorm = (b � a)
x � min(x)

max(x)� min(x)
+ a (8.3)

where a and b are the lower and upper bound of the desired range, respectively.

Loosely inspired by Kahneman and Tversky’s prospect theory [KT13], the input values
regarding the potential risks and benefits of an intervention are pre-processed to take into
account the patient’s risk preferences regarding potential benefits vs harms of an intervention,
as well as their preferences regarding their emphasis on quality of life vs life years. To do this,
we map all “objective" inputs concerning probabilities for risks and benefits, as well as quality
of life, to a “subjective" value. For probabilities, we use

p⇤ =
dp

dp + (1 � p)
(8.4)

where d is different for potential risks and benefits, and a large value of d corresponds to a
high-risk/high-gain attitude. It is determined by the patient’s preference (feature 20) and the
empirically chosen mapping given in Table 8.2. Figure 8.4 shows the objective and subjective
probabilities for a gain or loss of value 1.0, for different patient preferences.
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Table 8.1: Overview of dataset features.
Category Feature Possible values

Health status 1
Estimated years left to
live if intervention was
not begun (or not continued)

[0,100]

2 Patient’s current
quality of life

{very poor, poor, fair, good,
very good, excellent}

Beneficence 3
Estimated years left to
live if intervention was
begun (or continued)

[0,100]

4 Estimated positive effect
on patient’s quality of life

{none, marginal,
moderate, significant}

5
Estimated duration of
positive effect on
patient’s quality of life

[0,100]

6
Estimated likelihood of
positive effect on
patient’s quality of life

{very low, low, fair, high, very high}

Non-
maleficence

7
Estimated years of life
lost due to (continuing)
the intervention?

[0,100]

8 Estimated negative effect
on patient’s quality of life

{none, marginal,
moderate, significant}

9
Estimated duration of
negative effect on
patient’s quality of life

[0,100]

10
Estimated likelihood of
negative effect on
patient’s quality of life

{very low, low, fair, high, very high}

Autonomy 11 Patient’s capacity
to consent

{definitely incapable, marginally capable,
moderately capable, definitely capable}

12 Age of majority reached {Yes, No}

13 Patient’s current
preference

{definitely treat, rather treat, rather
not treat, definitely not treat}

14 Valid advance directive {Yes, No}

15 Applicability of
advance directive

{fully applicable, partly applicable,
marginallyapplicable, not applicable}

16 Patient’s written
preference

{definitely treat, rather treat,
rather nottreat, definitely not treat}

17 Familiarity of surrogate
with patient’s wishes

{fully familiar, partly familiar, marginally
familiar, not familiar}

18 Recommendation of
surrogate decision maker

{definitely treat, rather treat,
rather nottreat, definitely not treat}

19
Patient’s emphasis on
gains in life expectancy (+1)
or increase in quality of life (-1)

[–1,+1]

20 Patient’s risk preference

{very high risk/very high gain,
high risk/high gain,
medium risk/medium gain,
low risk/low gain,
very low risk/very low gain}
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Figure 8.3: Example screenshots of our user interface for collecting model inputs.

Table 8.2: Mapping of patient risk profiles to values for d.

Patient preference Value of d for gains Value of d for losses

very high-risk/very high-gain 5 0.1

high-risk/high-gain 4 0.5

medium-risk/medium-gain 1 1

low-risk/low-gain 0.5 4

very low-risk/very low-gain 0.1 5
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Figure 8.4: Examples of the mapping of “objective" probabilities for potential consequences of
an intervention to “subjective" probabilities, according to a person’s risk preferences.

For weighting quality of life, we use

q⇤ =
aq

aq + (1 � q)
,

where a =

(
1

1�2c , 1  c  0
1 + 2c, 0 < c  1

(8.5)

and c denotes the parameter which was input by the ethicist as feature 19.

Gains and losses in quality of life and life years are considered separately and calculated as
follows:

qdec = q⇤base · (1 � kdec)

qinc = q⇤base · (1 + kinc)
(8.6)

Dq⇤dec = q⇤base � q⇤dec

Dq⇤inc = q⇤inc � q⇤base
(8.7)

Qgain = p⇤inc · Dq⇤inc · min(tinc, tbase, tI) (8.8)

Qloss = p⇤dec · Dq⇤dec · min(tdec, tbase, tI) (8.9)

Tgain = p⇤inc · ( q⇤base · max(0, tI � tbase)

+ Dq⇤inc · max(0, tinc � tbase)

� Dq⇤dec · max(0, tdec � tbase) )

(8.10)
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Tloss = p⇤dec · ( q⇤base · tloss

+ Dq⇤inc · max(0, tinc � tI)

� Dq⇤dec · max(0, tdec � tI) )

(8.11)

where :
qbase = quality of life without intervention

tI , tbase = years left to live with/without intervention
tloss = years lost due to intervention

kdec, kinc = harm/benefit to quality of life
qdec, qinc = worse/better quality of life after intervention
tdec, tinc = duration of harm/benefit to quality of life

pdec, pinc = probability of harm/benefit occurring
Qdec, Qinc = total subjective gain/loss in quality of life
Tdec, Tinc = total subjective gain/loss in years of life

Figure 8.5 shows the effect of this kind of pre-processing. Given the choice between a life
twice as long but at half of the current quality of life or a shorter life at a higher quality of life,
the option will look subjectively different depending on what one values more, even though
the objective product of time and quality is the same. Analogously, an operation that comes
with the risk of an earlier death but entails an increase in the quality of life will appear more
attractive to a patient who focuses on potential benefits and is prepared to take risks to obtain
them. It will look less attractive to someone who is more risk-averse.

Evolving the Fuzzy Cognitive Map We optimize the model with an EA to learn three sets
of parameters: b and r used to calculate the transfer function for each node and the weight
matrix W that determines the sign and strength of all the connections in the graph. Given the
FCM’s 21 vertices and 54 connections, there are 96 learned parameters (two values per node,
one per connection). The initial values for b are drawn from a random normal distribution
with a mean of 0.5 and a standard deviation of 0.05. The initial values for r and W are drawn
from a random uniform distribution in the interval [1.5, 5] and [�1, 1], respectively. Weights
on the diagonal of the adjacency matrix are not optimized and are held constant at 1.0. We let
the algorithm run for 1000 generations and 30 solutions per population. Per generation, seven
parent solutions are chosen using steady-state selection. We use random mutation and set the
percentage of genes to mutate to 0.05. The fitness function utilized to evaluate each generation
is the multiplicative inverse of the Root Mean Squared Error (RMSE)

Fitness =
1

RMSE
(8.12)

RMSE =

s
ÂN

i=1(yi � ŷi)2

N
(8.13)

where N is the number of cases, y is the prediction of the model calculated using the current r,
b, and W parameters, and ŷ is the ground truth provided by the human annotators.
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Figure 8.5: Schematic visualization of the re-weighting of quality of life and probabilities for the
estimated consequences of an intervention, depending on the patient’s preferences.
The first case (top row) shows a scenario without uncertainties regarding patient
outcomes. The intervention doubles the patient’s life expectancy but halves their
quality of life. The “subjective value” areas for the scenario without the intervention
(gray) and with the intervention performed (blue) are equal to a neutral person
(center). For a person preferring quality of life (left), the gray area is larger than
the blue. For an individual emphasizing years of life (right), the blue area is larger
than the gray. The second case (bottom row) shows a scenario where there is an
equal probability that an intervention may improve the patient’s quality of life and
reduce their life expectancy. This yields equal-depth subjective value cubes for a
neutral person. To a risk-averse individual (left), the negative outcome looks more
probable and the positive less likely. For a risk-tolerant person (right), the opposite
is the case.

8.1.4 Results

Evaluation metrics Due to the small size of our data set, we evaluated the model with
stratified k-fold cross-validation. The number of folds was set to 3, and the remaining
parameters were left at their default values. The cases were stratified by case category. For
each of the three folds, ten models were optimized using each fold’s training set. Models
were run for a maximum of 50 timesteps and stopped earlier if the difference between all
node activations in two successive time steps was  0.01. We then compared the output of a
model’s intervention recommendation to the labels in a fold’s test set. We report the average
performance over the 10 models as well as the standard deviation, using Mean Absolute Error
(MAE) and the model’s binary accuracy as metrics.

MAE =
ÂN

i=1 |yi � ŷi|
N

(8.14)
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Acc =
(TP + TN)

TP + FP + TN + FN
(8.15)

TP stands for true positives, TN for true negatives, FP for false positives, and FN for false
negatives. We here regard cases in which both the prediction and the ground truth > 0.5 as
true positives, cases in which both the prediction and the ground truth  0.5 as true negatives,
cases in which the prediction > 0.5 and the ground truth  0.5 as false positives, and cases in
which the prediction  0.5 and the ground truth > 0.5 as false negatives.

Performance One challenge in trying to optimize and evaluate a decision-making model for
cases in medical ethics is the scarcity of available data. Collecting examples is a labor-intensive
task, as each case must be annotated and assessed by an expert. We were, therefore, not able
to collect a very large data set. Furthermore, in ethics, the right course of action is much more
debatable than in nearly any other domain, with even experts occasionally disagreeing about
what to recommend in one and the same case. We nonetheless report a quantitative measure
of the models’ deviation from the consensus between our experts. However, our main focus
in this evaluation is on how the evolved model emulates the decision-making process, i.e., on
qualitative results.

Table 8.3 shows the average MAE and classification accuracy over three folds and 10 different
models. As can be seen, the models approximate the training cases very well, but performance
experiences a drop in test cases – a classic sign of overfitting. This is not too surprising on a data
set as small as this one. One may also notice that, for our input data and FCM configuration,
applying evolved activation functions yielded much better results than the commonly used
tanh activation function. We present some examples of these evolved activation functions in
the next section.

Evolved activation functions Figure 8.6 shows node activation functions that have been
adapted through the EA. The function for autonomy almost resembles a step function, leading
to an activation only if both of its inputs (decisional capacity and age of majority) are high
enough. This is in line with regarding decisional capacity in patients as a binary notion, which
many clinicians indeed do. The evolved function shown for beneficence, which receives
inputs preprocessed as described in section 8.1.3, is almost linear. The evolved function for
intervention has a more conventional sigmoid shape, close to what is often used in FCMs
and output layers of neural networks.

Evolved weights Inspecting the static weights of an FCM tells only part of the story, as
dynamic effects emerge from the interplay of input data, activation functions, and weights over
multiple time steps. However, we do see some elements that are in accordance with human
ethical intuition, such as the status of the patient’s decisional capacity and the variable “age of
majority" having an equal influence on autonomy, and autonomy having a positive influence
on follow the patient’s wish.

Table 8.3: Results of 3-fold cross-validation over 10 models.
Activation function Avg. MAE Avg. Acc.

Train Test Train Test

tanh 0.47± 0.33 0.47± 0.33 0.50± 0.05 0.50± 0.06

evolved 0.11± 0.07 0.23± 0.12 0.92± 0.10 0.75± 0.20
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Figure 8.6: Examples of evolved concept activation functions.

Figure 8.7: Heatmap of a model’s evolved weights.
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Figure 8.8: Activation values of the model’s nodes over the course of simulation for two
example cases – one concerning the competent refusal of treatment (top) and the
other concerning advance directives (bottom). In the first case, the model quickly
converges to a fixed point, whereas it enters a limit cycle in the second case. In both
cases, the intervention recommendation (light green) and the ground truth (dotted)
are below 0.5, which would constitute a correct classification.
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Example Simulations To show the components inspected above in action, we visualize the
activations for the concepts in the FCM over time for two example cases. In Figure 8.8a, a
Jehovah’s Witness refuses a blood transfusion that would save their life. The ethically “correct"
answer in this case is not to intervene because the patient has taken this choice fully informed
and in possession of decisional capacity. In the simulation, activations for the concepts of
Follow the patient’s best interest and Intervention initially increase but quickly fall
again as the concept of Follow the patient’s wish begins to dominate.

In Figure 8.8b, an adult patient with multiple sclerosis has signed a do-not-resuscitate order
many years ago. After a suicide attempt, her husband wants doctors to continue treating
her. Here, the concepts of Follow the advance directive, Follow the patient’s best
interest, and Follow the surrogate’s wish are in conflict. This is a rare example in which
the system entered a limit cycle. Most simulations converged to fixed points. Although limit
cycles are often regarded as something to be avoided in FCMs [MA06], here they provide
an interesting figurative illustration of the ethical dilemma at play. Despite oscillating, the
activation magnitudes show the ethically correct ordering – Follow the advance directive is
highest, next comes Follow the patient’s best interest, then Follow the surrogate’s wish.
The activation for Intervention also stays between 0.0 and 0.3 and thus below or around the
expert-specified solution of 0.4.

8.2 Discussion

In this case study, we showed that an FCM with evolved activation functions and weights
could be used to model the decision-making process behind several categories of medical
ethics cases, and we found the model’s main advantage to be its high interpretability. Because
nodes and edges have human-assigned semantics, FCMs can be intuitively visualized as
causal graphs – and weights, activation functions, and simulation runs can be meaningfully
inspected. Furthermore, the FCM permits the addition, deletion, and modification of nodes
and connections. This way, the model can also be adapted to regional, cultural, and juridical
differences or expanded to accommodate more types of medical ethics cases.

Although our model was already able to approximate expert decisions to some extent with
our limited data set, more examples would be needed to reach higher accuracies. Collecting
additional data from different ethicists would also allow us to better estimate inter-annotator
agreement and compare it with the model’s deviation from human-provided answers. Further-
more, data pre-processing steps could be adapted to handle more realistic disease progressions,
and Beauchamp and Childress’ principle of justice could be integrated into our existing FCM.

As it stands, the model would not be ready for clinical use but could, for example, be used
for educational purposes such as training medical students and aspiring ethicists. Another
possible use case would be to collect data from ethicists of different cultures or institutions.
One could then make use of the interpretable properties of the FCM by evolving separate
models for the different sets of ethicists and inspecting the similarities and differences between
the various evolved decision models. Both of these potential use cases relate to the idea of
models as mediators, which I briefly outline below.
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8.2.1 Models as mediators

Morrison and Morgan’s account of models as mediators sees models as essential tools that
bridge the gap between theoretical frameworks and observations. Models are constructed
with elements from both theory and empirical evidence, as well as additional components that
may not be directly derived from either domain. This construction grants models a form of
partial autonomy, which enables them to mediate between theory and the world. Models can
operationalize theories so that their empirical implications may be explored. Models can also
simulate conditions that are difficult or impossible to replicate in reality, thereby extending the
reach of scientific investigation. Because of their status as partially independent tools, they can
provide a kind of epistemic access that is not available through either pure theory or direct
observation alone. We can distinguish between two ways in which models may be a source of
learning: model use and model construction [MM99].

Learning from using models Knowledge and understanding are usually seen as the result of
successful explanations [Dié15]. However, explanation is not the only path to learning. Polanyi
uses the term “tacit” to describe the kind of knowledge that cannot be fully captured through
explicit instructions or formal language but is instead acquired through experience and practice.
In the context of scientific modeling, researchers often develop a tacit “feel” for a model’s
behavior and implications. They may, for instance, develop an intuitive understanding of how
certain parameters affect the system’s behavior, how to interpret model results, and what a
model’s strengths and limitations are. This implicit knowledge emerges through hands-on
experience with a model and is often challenging to articulate or teach directly [Gel16b].

There are several ways in which models can support tacit learning. As concrete artefacts,
models provide a physical or virtual embodiment of theoretical concepts or systems [Knu11].
By manipulating these models, epistemic agents can explore the implications of changes in
variables or conditions in a controlled, observable manner [JS06]. This interaction can help
transform abstract concepts into tangible experiences that foster a deeper understanding of un-
derlying mechanisms or principles [Knu11]. It provides a direct, experiential form of learning
that is often more impactful than passive observation or theoretical study alone [Gel16d].

By providing a physical or visual representation that can be interacted with, models help
to externalize thought processes [Knu11]. Making complex ideas more accessible in this
way can be helpful on an individual level, but it also facilitates collaborative learning and
communication [JS06]. Models can serve as powerful tools for sharing ideas or theories in an
intuitive manner [Gel16d]. Allowing multiple users to engage with a model simultaneously
can promote discussion, debate, and collective problem-solving [JS06]. In contexts like edu-
cation and interdisciplinary research, models can thus bridge communication gaps between
participants with diverse backgrounds and expertise [Knu05].

Learning from constructing models In addition to the epistemic value of interacting with
an existing model, the process of model building itself can be a significant source of tacit
knowledge [MM99; RK22]. Building a model compels epistemic agents to engage actively
with a subject matter and articulate their current understanding and personal theories about
it [MM99]. It requires identifying and delineating problem spaces and encourages the formula-
tion of specific epistemic aims [GP17]. Much like the process of writing, modeling represents a
way of externalizing ideas and facilitating cognitive processing and reasoning [Knu11].

Constructing a model can help make tacit knowledge explicit and organize it in a way that
allows learners to critically examine their assumptions and understanding [MM99]. Through
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this examination, they can identify gaps in their knowledge, misconceptions, and areas
requiring further exploration [GP17]. The result is usually a continuous, iterative process of
model refinement that leaves a “cognitive residue” [SPG91]. I.e., the result of modeling is not
just the external artefact but also the builder’s mental model and internal conceptual change.
Furthermore, when modeling takes place in collaborative settings, it allows learners to pool
their knowledge and construct a shared understanding of a system, process, or set of domain
principles [JS06].

8.2.2 Relation to the guiding questions

Among the works discussed in this thesis, this sixth and last one likely represents the most
atypical use of ML models. At first glance, the building blocks of the modeling process
are the same as we have previously seen (see Figure 8.9). As in most of the case studies so
far, a domain-specific theory or body of literature (in this case, Beauchamp and Childress’
prima-facie principles) forms the starting point of our investigation. This theory informs both
the design of our FCM and how we collect the input features and human judgments that make
up our dataset. In contrast with the case studies presented so far, these design decisions were
made in collaboration with medical ethicists. As discussed in previous chapters, this process
was, as is unavoidably the case in all modeling endeavors, also shaped by implicit assumptions.
In traditional ML fashion, we then train our model and assess its accuracy on the dataset.

However, the model’s performance is of secondary importance in this case. It only serves to
show that the proposed approach works well enough to provide a proof of concept. Instead,
the study’s main contribution lies in operationalizing medical ethics theory into a concrete
model. This model can then be used to communicate ideas across disciplinary boundaries
and form the basis to discuss both the suitability of the approach and, potentially, the human
decision processes it was designed to replicate. Let me briefly elaborate on the second point.

The model is optimized to mimic human labelers’ judgments on medical ethics cases. These
judgments are informed by the labelers’ values and priorities, which affect how they weigh
the factors of a case against each other. This weighing is usually a more or less implicit
process. However, the tacit assumptions that underlie human decisions may manifest in certain
patterns, which the model can be expected to capture when trained on the labelers’ decisions.
Analyzing what the model has learned could thus help us better understand how human
experts reason about medical ethics cases, including any unconscious subjective biases that
play into their decisions and may go unnoticed otherwise [Hey+17; Haa+20].

With the points above in mind, let us return to the guiding questions of this thesis, starting
with the objection against NNs due to their supposed lack of theoretical basis. The case study
illustrates how models can mediate between theory and the world. By operationalizing an
abstract theory like the prima-facie principles and translating it into a concrete FCM, we can
explore its empirical implications in a way that is not possible by simply looking at words on
a page. As a matter of fact, even calling the qualitative and mutually conflicting prima-facie
principles a theory may be an over-statement by quantitative standards. In line with the fourth
function of exploratory modeling proposed by Gelfert (see section 7.2.3), bringing the empirical
implications of such a framework to light can help raise new questions about the suitability of
the model’s target system.

Indeed, several of the commentaries sparked by our original target article discussed whether
principlism (or the way we implemented it) was an appropriate basis for decision-making
in medical ethics [GB22b; BFG22; PB22; Rah+22; DFR22]. Thus, the case study serves as an
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Figure 8.9: Overview of relations between human cognition, theory, assumptions, data, model,
and outputs in the sixth case study. Relevant components performed or generated
by us shown in orange. Components provided by third parties shown in gray.
Circle at the beginning of an arrow indicates the starting point of investigation.

example of how a model can provide a “tool for critical self-reflection by [...] revealing causal
assumptions, uncovering limitations of its adopted variables of interest [...] and suggesting the
need for alternatives” [AG19, p. 445].

The second criticism against NNs, namely, their lack of biological plausibility, certainly applies
here. Out of all the case studies in this thesis, this model is perhaps the furthest from
representing the biological brain: It consists of only 21 nodes, all of which have manually
defined semantics. In that sense, the FCM is more akin to the bottom-up cognitive models we
sought to complement with our top-down NN approach in the last two case studies. However,
it is precisely the model’s simplicity and human-interpretable components that allow it to
fulfill its exploratory and, as we will come to shortly, explanatory epistemic aims. Thus, the
study serves as another case in point that maintaining a plurality of models is important
in any discipline, as different modeling paradigms can have complementary strengths and
weaknesses.

Finally, this case study brings a new perspective to the third criticism against neural networks,
i.e., their inability to provide explanations. I have previously discussed the two issues contained
in this criticism, namely, whether we can explain neural networks themselves and whether we
can explain phenomena through neural networks. As in previous case studies, we include some
post-hoc analyses of, e.g., model weights or activation functions. However, what is particularly
interesting about this study is that it demonstrates that explanation in the traditional sense
does not constitute the only path to understanding a model or a real-world phenomenon.

As emphasized in the models-as-mediators account by Morrison and Morgan, the fact that
models are manipulable artefacts allows for a kind of interaction that can foster a tacit “feel”
for a system. In our specific case, the FCM indicates how Beauchamp and Childress’ principles
are weighted and even provides graphical visualizations of this process. Since the model can
be visualized as a directed causal graph with human-designated semantic meanings, one can
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understand and interpret these weightings in terms of cause-effect chains. Observing the
model’s behavior, therefore, enables users to compare its processing of the respective case to
their own reasoning, which will be instructive irrespective of whether one agrees or disagrees
with the machine-generated solution.

Importantly, this kind of model interaction is possible in real time. Gaining hands-on experi-
ence through engaging with reactive systems is undoubtedly more informative for users, such
as medical students or aspiring ethicists, than working solely with static training devices like
ethics books. The causal structure embedded in the FCM allows for probing counterfactual
scenarios and for assessing the quantitative impact of individual parameters: how does the
weighting of the principles of beneficence, non-maleficence, and autonomy change if one drops
a particular assumption or adds a novel one? What influence does the modification of each
variable exert on the final recommendation? Through this kind of self-guided exploration,
users can build up an intuitive understanding of the model and its target domain that would
be difficult to acquire through verbal explanation alone.

In addition to the model’s explanatory potential for users, it also served as a valuable tool in
our interdisciplinary collaboration as designers. Producing a concrete implementation of a
model of medical ethics decision-making required us to engage deeply with the topic and
articulate our collective understanding and perspectives. The process compelled us to identify
key ethical dilemmas, evaluate different theories regarding whether and how they could be
operationalized, and clarify our epistemic aims with the project. Through testing a range of
scenarios and model architectures, we iteratively defined our scope and converged on a shared
understanding of what we were modeling. Thus, the act of constructing the FCM presented
in this case study not only resulted in an external artefact. It also left a lasting imprint on
our mental models and conceptual frameworks that a more conventional form of explanation
could not have provided.

To sum up, models, including neural networks, can serve as mediators between theory and the
world and provide a kind of epistemic access that is not available through abstract frameworks
or observation alone. Models such as the one presented in this study can serve as tools
for externalizing thought processes, communicating ideas, and assessing their suitability.
Furthermore, hands-on experience with models can lead to a tacit, intuitive understanding
of a model and its target system that may be difficult to achieve with conventional, verbal
explanations. Importantly, neural networks can fulfill these epistemic functions without
needing to be biologically plausible.
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9 General discussion

Mirrors are wonderful things. They appear to tell the truth, to reflect life back out at us; but set a
mirror correctly and it will lie so convincingly you’ll believe something has vanished into thin air, that
a box filled with doves and flags and spiders is actually empty, that people hidden in the wings or
the pit are floating ghosts upon the stage. Angle it right and a mirror becomes a magic casement; it
can show you anything you can imagine and maybe a few things you can’t. Stories are in one way
or another mirrors. We use them to explain to ourselves how the world works or how it doesn’t. [...]
Fantasy is a mirror, a distorting mirror, and a concealing mirror set at 45 degrees to reality, but a
mirror nonetheless, which we use to tell ourselves things we might not otherwise see.

Neil Gaiman

In this thesis, I set out to examine the debate surrounding the use of NNs in the study of
cognition. I began by outlining the key arguments on both sides of this discussion. Namely,
proponents highlight both the ability of NNs to account for higher-level cortical processing and
the level of experimental access that in silico studies offer. On the other hand, critics argue that
NNs lack a theoretical basis, are not biologically plausible, and do not provide explanations. I
then explored how these criticisms relate to different philosophical perspectives on the nature
and role of models in science. This led me to the following questions: How valid are each
of the three criticisms against the use of NNs in the study of cognition, and what are the
implications for the epistemic utility of NN models?

I explored these questions through six case studies, each focusing on a different aspect of
cognition research. Each case study addressed a set of targeted questions and posed its
own implementational challenges. Mirroring the structure used throughout this thesis, I first
summarize my technical approaches to overcoming those challenges in Table 9.1. For each
case study, I then provide an overview in Table 9.2 of how each NN model relates to the three
criticisms and what kind of epistemic value it can offer.

As shown in Table 9.1, I employed a diverse range of models, from state-of-the-art DL
architectures to more classic or less well-known techniques – often within the same study.
These choices were made by taking into account the epistemic goals of each work. Because my
thesis operates at the intersection of ML and cognitive science, these goals reflect the epistemic
interests of both disciplines. The first two studies align mostly with the performance-driven
paradigm dominant in DL. In the fourth and fifth studies, I made use of similar DL techniques
but adapted them to the aims of cognitive science. I employed cognitively-inspired diagnostic
tasks and performed more critical, in-depth post-hoc analyses than are commonly offered in
ML publications. The third and sixth studies represent a less typical way to employ NNs,
namely, as tools for simulating and learning from hypothetical scenarios. Taken together, I
hope these works demonstrate the wide range of uses to which we can put the ML toolbox
and how we can benefit from drawing on a plurality of modeling paradigms.

Informed by the six case studies, I now want to return to my guiding questions and summarize
my overall conclusions.
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Table 9.1: Overview of the technical challenges, methodology, and results of the six modeling
case studies.

Case study 1: Modeling patient-specific activity patterns with Transformers to
detect psychotic and non-psychotic relapses

Task Identifying psychotic and non-psychotic relapses in patients using
biosignals captured by wearable sensors

Challenges • Missing and corrupted real-
world data
• Only unsupervised anomaly
detection possible
• Inter-patient variability

=) Feature engineering and data
preprocessing
=) Proposed timestamp predic-
tion as pre-training task
=) Patient-individual models

Model(s) used Transformer (ensembles)

Optimization Backpropagation

Model analyses N/A

Results Ranked 1st on Track 2 and 3rd on Tracks 1 of the 2024 ICASSP
e-Prevention Grand Challenge

Case study 2: Modeling the emergence of compositional generalization on the
grounded SCAN dataset with selective attention

Task Investigating the potential of two human-inspired inductive biases
(selective attention and egocentric location encoding) to improve
performance and sample efficiency on gSCAN

Challenges • Implementation of selective at-
tention
• Identification of factors con-
tributing to performance

=) Non-differentiable attention
module optimized via EA
=) Minimal model to allow for
extensive analyses

Model(s) used • ESN
• MLPs

Optimization Backpropagation and CMA-ES

Model analyses • Ablation studies
• Neuron pruning
• Statistical error analyses
• Loss landscape visualization

Results • ⇡ 60 times fewer parameters than previously proposed models
• Accuracies comparable with previously proposed models on
most test splits, even when trained on only 2% of the full dataset
• Outperforms previously proposed models by 65 to 86% on
adverb-to-verb generalization
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Table 9.1: Technical challenges, approaches, and results of the six case studies. (Continued)

Case study 3: Modeling the emergence of letter shapes with drawing-based signaling
games

Task Exploring factors in silico that have been hypothesized to influence
the shapes of letters in human writing systems

Challenges • Approximating human com-
municative situations
• Lack of pre-existing datasets
• Lack of automated metrics for
letter shape analysis

=) Drawing-based sender-
receiver game setup
=) Self-composed datasets
=)Used HOG and proposed
a symmetry metric based on
auto-correlation

Model(s) used • CNNs
• HuBERT (pre-trained, self-supervised speech model)
• Linear models

Optimization Backpropagation and CMA-ES

Model analyses • Statistical analyses and visualization of evolved glyphs
• Ablation studies
• Association rule mining on evolved glyphs

Results Identified statistics of pre-training data, canvas shape, and
architectural model properties as relevant factors

Case study 4: Modeling the emergence of intuitions about agents’ goals, prefer-
ences and actions with Video Transformers

Task Testing the ability of the Transformer attention mechanism to cap-
ture relationships between agents and their goals from observation

Challenges • Input dimensionality (length
of BIB video clips)
• Preserving agent identities

=) Selective attention using only
top-k patches
=) Auxiliary reconstruction loss

Model(s) used Video Transformer

Optimization Backpropagation

Model analyses • Statistical error analyses
• Occlusion analyses
• Visualization of layer activations
• Decoding experiment using linear probes

Results Ranked 1st in the Machine Visual Common Sense Challenge’s BIB
Track at the 2022 European Conference on Computer Vision
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Table 9.1: Technical challenges, approaches, and results of the six case studies. (Continued)

Case study 5: Modeling the emergence of early number abilities with Vision-
Language Transformers

Task Comparing the behavior and internal representations of a model
trained on a range of early number skills to humans

Challenges • Lack of existing datasets
• Model opacity

=) Self-created dataset
=) Design of targeted analyses
and adoption of XAI techniques

Model(s) used Multimodal Transformer

Optimization Backpropagation

Model analyses • Analysis of training trajectories
• Targeted error analyses
• Logit lens
• Probing studies
• Ablation studies
• Visualization of embeddings
• Visualization of an information flow
• Activation pattern comparisons

Results • Model behavior largely aligns with reported human data
• Emergence of functional organization in the model

Case study 6: Modeling decision-making processes in medical ethics with Fuzzy
Cognitive Maps

Task Examining the feasibility of an AI-based decision support system
for medical ethics cases

Challenges • Choice of ethical framework
• Operationalization of abstract
ethical principles
• Accounting for patient-
specific preferences
• Lack of existing datasets
• Subjectivity of ethical judg-
ments

=) Used prima-facie principles
=) Close collaboration with
medical ethicists
=) Individual pre-processing
based on prospect theory
=) Creation of suitable dataset
=) Supplementation with quali-
tative evaluation

Model(s) used FCM

Optimization EA

Model analyses • Inspection of evolved weights and activation functions
• Visualization of example simulations

Results • Approximates judgments of medical ethicists fairly well
• Handles a much wider range of cases than previous proposals
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Table 9.2: Overview of the relation between the guiding questions of this thesis and the six
modeling case studies. Degree to which the three criticisms against NNs apply
listed on the left. Implications for the epistemic utility of NNs listed on the right.

Case study 1: Modeling patient-specific activity patterns with Transformers to detect
psychotic and non-psychotic relapses

Connection
to theory

Very limited:
• Only loose connection through
abductive inference
• Patterns identified through in-
duction as potential inspiration for
follow-up real-world experiments

=) For some use cases, NNs can
have pragmatic utility as epistemic
enhancers by virtue of their predic-
tive performance without necessar-
ily having to be based in theory,
biologically plausible, or provide
much in the way of explanation.

Biological
plausibility

Very limited:
• Not considered

Ability to offer
explanation

Very limited:
• Only teleological

Case study 2: Modeling the emergence of compositional generalization on the
grounded SCAN dataset with selective attention

Connection
to theory

Moderate:
• Model and dataset at least par-
tially informed by theory and cre-
ated in pursuit of questions rele-
vant to cognitive science

=) NNs can be connected to the-
ory by taking inspiration from the
cognitive science literature in de-
signing training environments, ar-
chitectural constraints, forms of
regularization, or augmented loss
functions. This not only allows for
the investigation of questions rele-
vant to cognitive science but may,
in some cases, also improve NN
performance.

Ability to offer
explanation

Moderate:
• On an individual level, offers
explanations at different levels of
the Marr hierarchy
• On a meta-level, comparing dif-
ferent models on a dataset like
gSCAN can serve to reveal relevant
success factors

=) NNs can be explained at vari-
ous levels, and benchmarking the
predictive performance of differ-
ent models can serve as a stepping
stone to explanation. Whether an
explanation is successful always
depends on the individual needs
of the epistemic agent.

Biological
plausibility

Limited:
• Translation of inspirations from
cognitive science takes place at a
highly abstract level

=) Idealization may decrease bi-
ological plausibility but can be a
useful epistemic strategy to isolate
factors of interest.

Continued on next page
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Table 9.2: Relation between guiding questions and the six case studies. (Continued)

Case study 3: Modeling the emergence of letter shapes with drawing-based signaling
games

Connection
to theory

Considerable:
• Computational implementation
of an empirically supported hy-
pothesis

=) NNs are usually connected to
theory by virtue of the research
questions that motivate their con-
struction and the knowledge built
into them. This link can take a
more explicit form in the case of
embedded toy models.

Biological
plausibility

Very limited:
• Highly simplified and idealized
toy model

=) NNs can be of epistemic use
without faithfully representing the
brain – in fact, they need not repre-
sent any existing target system at
all. Models have a modal dimen-
sion, meaning they can be used
as tools for exploring hypothetical
systems or scenarios.

Ability to offer
explanation

Moderate:
• Model serves as an embodied
“how-possibly” explanation of
empirical regularities in letter
shapes

=) NNs can not only be the tar-
get of explanations but can serve
as (how-possibly) explanations of
real-world phenomena in their
own right. For NNs to serve this
function, it may not be necessary to
understand the model itself in de-
tail – high-level “what” and “why”
explanations may be enough.

Case study 4: Modeling the emergence of intuitions about agents’ goals, preferences
and actions with Video Transformers

Connection
to theory

Limited:
• Dataset (but not NN model) in-
formed by cognitive science theory

=) Process models in the form of
NNs can allow for a more open
exploration than as-if theories.

Biological
plausibility

Very limited:
• Direct comparison with human
infants on a behavioral level, but
no attempt at increasing plausibil-
ity of the model itself

=) Analyzing what NNs learn
can prompt questions about what
kind of behavior we consider desir-
able or cognitively plausible, and
help iteratively refine the design of
modeling setups that are suited to
those goals.

Continued on next page
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Table 9.2: Relation between guiding questions and the six case studies. (Continued)

Ability to offer
explanation

Limited:
• Provides some “what”, “why”,
and “where”-level analyses, but
mainly serves to raise questions
rather than provide explanations

=) NNs can provide alternative
or complementary explanations to
more normative frameworks, and
serve as starting points for future
investigations.

Case study 5: Modeling the emergence of early number abilities with Vision-
Language Transformers

Connection
to theory

Limited:
• Educational psychology in-
forms dataset design, and model
analyses are contextualized within
the numerical cognition literature

=) When comprehensive theoret-
ical frameworks are not yet avail-
able, NNs can serve as exploratory
models that provide a starting
point for future inquiry or proof-
of-principle demonstrations.

Biological
plausibility

Limited:
• No attempt at increasing biolog-
ical plausibility of the model itself,
but increased task and model com-
plexity provides a step towards
more cognitively plausible models
compared to previous work

=) Given the ability of NNs to
process complex inputs, they can
help cognitive scientists expand
the scope of phenomena they are
able to model. Conversely, AI de-
velopers can take inspiration from
the cognitive sciences to design
ecologically relevant training envi-
ronments and potentially move to-
wards more cognitively plausible
models.

Ability to offer
explanation

Considerable:
• Uses a wide range of techniques
from interpretability research to
investigate model behavior and
representations

=) NNs are amenable to a much
wider range of post-hoc analysis
techniques than biological brains.

Case study 6: Modeling decision-making processes in medical ethics with Fuzzy
Cognitive Maps

Connection
to theory

Considerable:
• Designed to operational-
ize Beauchamp and Childress’
prima-facie principles

=) Models, including neural net-
works, can serve as mediators be-
tween theory and the world and
provide a kind of epistemic access
that is not available through ab-
stract frameworks or observation
alone.

Continued on next page

144



9.1. VALIDITY OF THE CRITICISMS AGAINST NEURAL NETWORKS

Table 9.2: Relation between guiding questions and the six case studies. (Continued)

Biological
plausibility

Very limited:
• Consists of only 21 nodes, all
of which have manually defined
semantics

=) Models can be used for
externalizing thought processes
and communicating ideas without
needing to be biologically plausi-
ble.

Ability to offer
explanation

Considerable:
• Provides a reactive tool through
which users can explore medi-
cal ethics dilemmas and build up
an intuitive understanding of the
model and its target domain

=) Hands-on experience with
(NN) models can lead to a tacit
understanding of a model and its
target system that may be difficult
to achieve with conventional expla-
nations.

9.1 Validity of the criticisms against neural networks in the study of
cognition

I begin by discussing the validity of the three criticisms against the use of NNs. I will briefly
recapitulate each argument and then provide my responses to it, drawing from the modeling
case studies and epistemological discussion I have presented in this thesis.

9.1.1 Lack of basis in theory

The first criticism against the use of NNs in the study of cognition is that these models were not
designed to test hypotheses about biological brains. Design decisions in DL are more informed
by heuristics and engineering goals than pre-existing knowledge of neural computation. Thus,
critics argue there is an insufficient theoretical link between AIs and cognitive science.

Most (NN) models are implicitly linked to what we know of the world. It is true that the
field of DL is primarily focused on task performance and computational efficiency rather than
testing hypotheses about biological brains. However, the construction of models is always
informed by some degree of theory or existing knowledge. This includes performance-focused
models such as the ones presented in chapters 3 and 4. Every modeler brings with them
a set of values, assumptions, and expertise that shape the kinds of questions they ask and
the modeling choices they make. Even models of hypothetical systems, such as the one in
chapter 5, are rarely developed in a theoretical vacuum but are connected to our understanding
of the world through the considerations that motivated their creation.

The connection between NNs and theory can be strengthened in several ways. The connec-
tion to theory can be enhanced by building on the cognitive science literature when designing
and training NNs. This can take different forms: explicitly building “embedded toy models”
(as in chapter 5), designing ecologically relevant learning tasks and environments (as in chap-
ters 6 and 7), or building cognitively inspired inductive biases into NNs through architectural
constraints, regularization techniques, or loss functions (as in chapter 7). Taking inspiration
from cognitive science in this way not only allows for the investigation of questions relevant to
the study of the mind, but may also improve the performance of NN models.

Less principled (NN) models can have exploratory benefits. At the same time, the lack of a
strong underlying theory can actually be beneficial in certain contexts. As noted by Thomas

145



9.1. VALIDITY OF THE CRITICISMS AGAINST NEURAL NETWORKS

S. Kuhn, paradigms influence the kinds of questions that can be asked [Kuh97]. In contrast
to highly idealized as-if theories, process models like the ones discussed in chapters 6 and 7
can take a more open-ended, descriptive approach. They thus have the potential to uncover
unexpected patterns or relationships that may not “fit into” existing frameworks. This move
towards a more nuanced Galilean psychology can be particularly valuable in contexts like
cognitive science, where widely accepted theories are often not yet available.

In such cases, exploratory modeling with NNs can serve as a starting point for future inquiry,
provide proof-of-principle demonstrations, suggest potential explanations for observed phe-
nomena, and help assess the suitability of a target phenomenon for investigation. Thus, rather
than being hindered by a lack of theory, researchers can leverage this flexibility to take a more
inductive, data-driven approach to uncover patterns and mechanisms that may then inform the
development of more robust theoretical frameworks. The exploratory phase can lay important
groundwork and open up new lines of inquiry that would not be possible if the research was
overly constrained by existing theory from the outset.

9.1.2 Biological implausibility

The second criticism against the use of NNs in the study of cognition is that NNs lack most of
the dynamics of biological neural networks. For instance, they do not produce spike-based
representations, have different constraints regarding power efficiency and memory, and use
the biologically implausible backpropagation algorithm for training. Critics argue that this
renders them useless as stand-ins for the brain.

Isomorphic representation is not always necessary and can even decrease epistemic use-
fulness. The criticism that NNs are not biologically plausible is a valid one. It is true that
NNs lack many of the dynamics and constraints of biological “wetware”. Even proponents
concede that NNs can, at best, be considered highly abstract models of the brain. However,
the biological plausibility of a model is not always a relevant or necessary criterion for its
epistemic utility. All models, to some degree, are “false” or inaccurate depictions of reality.
The act of modeling inherently involves idealization and simplification. This can take the form
of Galilean or minimalist approaches, depending on whether an idealization is meant to be
“corrected” or not. The key is to ensure that the model does not diverge too far from reality,
rely on pseudoscientific ontology, or have insufficient predictive power. However, when these
conditions are fulfilled, idealization is often the very thing that allows us epistemic access to a
system. For example, our ability to derive insights from the models in chapters 4 and 5 hinged
on omitting factors irrelevant to the core phenomena being modeled.

Cognitive science and AI can inform each other to create more plausible models. Cognitive
science and AI can work together to create NN models that, while not necessarily biologically
accurate, are at least more cognitively plausible. As shown in chapter 7, adapting the ML
pipeline to the epistemic purposes of cognitive science, rather than relying on existing ML
benchmarks and performance metrics, can help model cognitive phenomena that only emerge
at a sufficiently high level of complexity. Creating more cognitively grounded tasks, such as
gSCAN or BIB, and using them to benchmark different NN models can aid in pre-selecting
promising candidates for further inquiry. On the other hand, AI researchers can benefit from
carefully designing their modeling setups and drawing on insights from cognitive science.
Incorporating expertise on the experiences that shape human learning can inform the design
of ecologically relevant training inputs, which can induce more human-like representations
and processing in NNs in desirable ways.
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9.1.3 Inability to offer explanations

The third and last criticism against the use of NNs I have considered in this thesis is that they
do not offer explanations. Critics argue that the “black box” nature of NNs inherently limits
our ability to understand both the models themselves and their target phenomena.

Epistemic opacity is not an inherent property of (NN) models. The question of whether NNs
can offer explanations is a complex one that does not have a simple yes or no answer. As we
have seen, there are many different notions of what constitutes an explanation: deductive-
nomological, inductive-statistical, causal mechanistic, unificationist, or pragmatic accounts,
explanations at the “what”, “why”, “how”, or “where” level of the Marr hierarchy, and how-
actually vs. how-possibly explanations. Throughout this thesis, I have aligned myself with
the pragmatic view that epistemic transparency is not an inherent property of models but is
contingent on what the user is trying to understand. Thus, we cannot make a blanket statement
about the explanatory power of NNs because it depends on the user’s prior knowledge, the
type of explanation sought, and how the model is being used.

If guided by specific questions, NN models afford a wide range of explanations at different
levels of analysis. It is true that DL models can appear as opaque systems that are difficult –
perhaps even impossible – for humans to fully grasp. NNs may not lend themselves to the
same types of explanations as traditional computational models. However, as seen throughout
this thesis, this does not mean they cannot be analyzed and leveraged for scientific inquiry.
When guided by specific research questions, NNs can be examined at different levels of
granularity to offer inductive-statistical, causal mechanistic, and unificationist explanations at
the “what”, “why”, “how”, or “where” levels of Marr’s hierarchy. In line with arguments by
NN proponents, these models provide a higher level of experimental access than human brains.
As shown in chapter 5, they also allow for the simulation of scenarios that are impossible
to replicate in reality. This makes NNs not only useful for inspiring research on biological
cognition but also intrinsically interesting to cognitive scientists. After all, cognitive science is
the study of how agents, including artificial ones, perform tasks.

NNs can be used to explain external phenomena without a complete understanding of the
model itself. Besides trying to answer questions about NNs themselves, researchers can also
leverage these models to gain insights into the target phenomenon of biological cognition.
NNs may not be able to provide detailed deductive-nomological “how-actually” explanations
of the brain, as they often lack the nuanced representations and dynamics of biological neural
networks. However, they can still serve as useful “how-possibly” explanations if they are
sufficiently connected to the real-world system of interest. Importantly, this approach does
not require a complete understanding of the NN model itself. The EREs that drive a target
phenomenon can often be found at higher levels of abstraction. For example, chapter 5
provided a how-possibly explanation of statistical regularities in letter shapes, and chapter 7
demonstrated how a lack of exposure to symbolic numbers could decrease performance on
non-symbolic comparisons. In both cases, the most relevant ERE was the dataset.

Explanation is not the only way toward understanding. Finally, (NN) models like the one
proposed in chapter 8 can provide an alternative path to understanding that goes beyond
traditional forms of explanation. They can serve as “mediators” between theory and data. By
interactively exploring the behavior of NNs, users and designers can build up tacit knowledge
and intuitions about a model or a problem domain. This hands-on experience with a model’s
inputs, outputs, and internal representations can yield insights that are difficult to capture
through verbal theorizing or mathematical analysis alone. In this view, models are not just tools
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for testing theories but active participants in the process of understanding. By engaging with
the model’s behavior, users can develop new questions, refine their conceptual frameworks,
and gain a feel for the space of possible explanations.

9.2 Epistemic functions of neural network models

The case studies presented in this thesis illustrate the diverse epistemic functions that NNs
can serve in the cognitive sciences (see Figure 9.1). They can be leveraged for prediction,
exploration, and explanation - often in complementary ways [CK19].

Prediction NNs designed with a focus on predictive power can be helpful in two key ways.
First, they can act as tools to reach practical aims. In these applications, the model’s output is
the primary epistemic goal rather than providing an explanation of the underlying mechanisms.
For example, a NN trained on real-time sensor data could detect or predict when a patient
with schizophrenia is likely to experience a psychotic episode, allowing clinicians to intervene
proactively. In such cases, the model’s predictive performance is the main criterion for success,
not its interpretability or alignment with theory.

Second, predictive benchmarking, where NNs are evaluated on standardized datasets like
gSCAN or BIB, can serve as a starting point for further inquiry and explanation. These
comparative studies can point to promising candidate models that warrant more in-depth
analysis and guide model selection for subsequent explanatory work. Additionally, analyzing
the factors that contribute to a model’s predictive success, such as architectural choices or
training regimes, can provide insights into the underlying principles governing the target
phenomenon. So, while predictive benchmarking does not itself constitute an explanation, it
can serve as a stepping stone by identifying models worthy of further investigation and by
suggesting hypotheses about the factors driving predictive performance.

Exploration Additionally, NN models can serve an exploratory function, opening up new
avenues for research. One key way they contribute to exploration is through proof-of-principle
demonstrations. For example, the second case study showed that selective and joint attention
mechanisms could improve compositional generalization by helping to isolate relevant inputs.
The fourth case study showed that the Transformer attention mechanism could be helpful
in learning semantic categories like social agents and goals from end-to-end training, and in
capturing the relationships between these categories. Finally, the fifth case study demonstrated
how phenomena like “implicit curricula” of early number skills, size and distance effects, and
functional organization could emerge from the general learning mechanisms of NNs. While
not definitive, such results can motivate and guide further inquiries.

NN models can also help assess the suitability of a cognitive phenomenon for computational
modeling. E.g., the sixth case study on decision-making in medical ethics operationalized
Beauchamp and Childress’ prima facie principles into a NN. The model provided a tangible
proposal of how these principles could be applied, sparking debate among commentators
in the medical ethics community. By implementing the abstract principles in computational
form, the model facilitated scrutiny of their empirical implications and suitability as a basis
for moral reasoning. This demonstrates how models, including NNs, can serve as a way to
communicate ideas, form the basis for discussion, and perhaps ultimately help concretize and
re-evaluate theoretical constructs.

148



9.2. EPISTEMIC FUNCTIONS OF NEURAL NETWORK MODELS

Pr
ed

ic
ti

on

D
N

N
s 

as
 to

ol
s 

to
 r

ea
ch

 a
 p

ra
ct

ic
al

 a
im

Pr
ed

ic
ti

ve
 b

en
ch

m
ar

ki
ng

 a
s 

a 
st

ep
pi

ng
 s

to
ne

 to
 e

xp
la

na
ti

on

C
as

e 
st

ud
y 

1 

Ex
pl

an
at

io
n

D
N

N
s 

as
 m

ea
ns

 to
 te

st
 h

yp
ot

he
se

s

O
pa

qu
en

es
s 

of
 D

N
N

s 
as

 a
n 

in
te

ri
m

 s
ta

ge
 to

 
be

 o
ve

rc
om

e 
by

 p
os

t h
oc

 e
xp

la
na

ti
on

s

Ex
pl

or
at

io
n

A
ss

es
sm

en
t o

f t
he

 s
ui

ta
bi

lit
y 

of
 th

e 
ta

rg
et

Pr
oo

f-
of

-p
ri

nc
ip

le
 d

em
on

st
ra

ti
on

s 
to

 m
ot

iv
at

e 
fu

rt
he

r 
in

qu
ir

y

C
as

e 
st

ud
y 

2 

C
as

e 
st

ud
y 

3 
C

as
e 

st
ud

y 
6 

C
as

e 
st

ud
y 

5 
C

as
e 

st
ud

y 
4 

Figure 9.1: Overview of the main epistemic functions served by the models in the six case
studies presented in this thesis. Loosely based on Cichy and Kaiser [CK19].
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Explanation Finally, NNs can be leveraged to provide explanations in two distinct ways. First,
they can serve as computational implementations of hypotheses about cognitive phenomena,
enabling those hypotheses to be tested and refined. For example, in the third case study,
I evolved glyphs for NNs exposed to different pre-training data and evaluated how well
the resulting glyphs’ geometric characteristics matched those of human writing systems.
Analyzing the glyph shapes resulting under different training regimes provided support
for the ecological hypothesis that writing systems reflect the visual statistics to which our
perceptual system has adapted. Thus, NNs can serve as tools for operationalizing hypotheses
in a way that enables them to be empirically evaluated.

Second, when the goal of a study requires a detailed understanding of a NN itself, there is a
wide range of post-hoc explanatory techniques available. While NNs may initially appear as
opaque black boxes, researchers can “look under the hood” to some considerable degree. For
example, the fifth case study on numerical cognition used methods like the logit lens, specific
error analyses, probing the representations encoded in different heads and layers, visualizing
model embeddings, and illustrating an information flow to shed light on the model’s inner
workings. Thus, even though NNs are highly complex, it is possible to design experiments to
investigate specific questions about what a model has learned using interpretability tools.

9.3 Conclusion

As Neil Gaiman notes in this chapter’s opening quote, mirrors “appear to tell the truth, to
reflect life back out at us.” In much the same way, models are typically expected to accurately
represent and reflect their target phenomena. They are tools that allow us to observe, measure,
and understand what is happening around us – and inside our minds. However, Gaiman also
points out that mirrors can “lie so convincingly” when set at the right angle. Similarly, models
can distort or simplify reality to make it more comprehensible. They are inherently reductive -
they cannot capture the full complexity of the world and must necessarily focus on certain
aspects while omitting others in order to be useful.

Models, like “magic casements” can also “show you anything you can imagine and maybe
a few things you can’t.” They allow us to explore hypothetical scenarios, test theories, and
imagine alternative realities that may not yet exist. Just as mirrors can transport us to fantastical
realms, models can open up new vistas of understanding and possibility. Ultimately, models
are tools we use to “tell ourselves things we might not otherwise see.” They are reflective
surfaces that allow us to grapple with the world’s complexities, uncover hidden truths, and
envision new possibilities. In this and all the ways above, scientific models, including NNs,
can be seen as mirrors - distorted, reductive, and yet profoundly illuminating.
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