
Different Debt: An Addition to the Technical Debt Dataset and a
Demonstration Using Developer Personality
Lorenz Graf-Vlachy

lorenz.graf-vlachy@tu-dortmund.de
TU Dortmund University
Dortmund, Germany

University of Stuttgart, Institute of Software Engineering
Stuttgart, Germany

Stefan Wagner
stefan.wagner@iste.uni-stuttgart.de

University of Stuttgart, Institute of Software Engineering
Stuttgart, Germany

ABSTRACT
Background: The “Technical Debt Dataset” (TDD) is a comprehen-
sive dataset on technical debt (TD) in the main branches of more
than 30 Java projects. However, some TD items produced by Sonar-
Qube are not included for many commits, for instance because the
commits failed to compile. This has limited previous studies using
the dataset. Aims and Method: In this paper, we provide an addition
to the dataset that includes an analysis of 278,320 commits of all
branches in a superset of 37 projects using Teamscale. We then
demonstrate the utility of the dataset by exploring the relationship
between developer personality by replicating a prior study. Results:
The new dataset allows us to use a larger sample than prior work
could, and we analyze the personality of 111 developers and 5,497
of their commits. The relationships we find between developer
personality and the introduction and removal of TD differ from
those found in prior work. Conclusions: We offer a dataset that may
enable future studies into the topic of TD and we provide additional
insights on how developer personality relates to TD.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Risk
management; • Human-centered computing → Open source
software; • Social and professional topics→ Systems develop-
ment; Software maintenance; User characteristics; • General
and reference → Empirical studies;

KEYWORDS
technical debt, developer personality, Teamscale

ACM Reference Format:
Lorenz Graf-Vlachy and Stefan Wagner. 2024. Different Debt: An Addi-
tion to the Technical Debt Dataset and a Demonstration Using Developer
Personality. In International Conference on Technical Debt (TechDebt ’24),
April 14–15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3644384.3644475

TechDebt ’24, April 14–15, 2024, Lisbon, Portugal 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0590-8/24/04.
https://doi.org/10.1145/3644384.3644475

1 INTRODUCTION
1.1 Technical Debt
The metaphorical notion of technical debt (TD) was introduced
by Ward Cunningham more than 30 years ago [9]. Despite slight
variations in the exact definition of the term, there is a reasonable
consensus on TD being a “collection of design or implementation
constructs that are expedient in the short term, but set up a technical
context that can make future changes more costly or impossible” [4,
p. 112]. Over time, despite its inherent limitations [27], the TD
metaphor has gained acceptance and found widespread use in both
academic and practitioner circles [25].

Researchers have identified different types of TD and made ef-
forts to categorize them. Tom et al., for example, identify eight
different dimensions of TD, comprising code, design and architec-
ture, operational processes, among others [29]. Relatedly, Alves
et al. and Rios et al. each distinguish between 15 different types of
TD, including, for example, design debt, code debt, test debt, and
documentation debt [2, 26].

By definition, TD comes with advantages and disadvantages.
Reported advantages lie particularly in increased short-term de-
veloper velocity [24]. Reported disadvantages [6] are decreased
long-term velocity [24], reduced developer morale and motiva-
tion [5, 10, 25], as well as lower code quality and increased uncer-
tainty and risk [29].

Beyond conceptual considerations [27], qualitative studies [10],
and surveys [6], researchers have increasingly become interested
in performing large-scale quantitative studies on TD using data
mined from software repositories [8, 18–20].

1.2 The Technical Debt Dataset and its
Limitations

To enable such studies of TD, Lenarduzzi et al. developed the “Tech-
nical Debt Dataset” (TDD) [21]. It is a dataset of TD (primarily code
debt) in various Apache Software Foundation (ASF) projects written
in Java. It has been used in a variety of studies on TD [8, 18–20].
In its most recent version 2.0, it contains a comprehensive analy-
sis of the main branches of 31 projects. Aside from data obtained
from PyDriller, Refactoring Miner, Jira, and Ptidej, the dataset most
notably includes TD information generated using SonarQube.

Importantly, SonarQube requires the build of a commit to com-
plete before it can provide TD information. For various reasons
(e.g., deficient code or missing dependencies), however, builds may
fail. Consequently, the TDD does not contain complete information
for such commits. According to our own analyses, the SonarQube

This work licensed under Creative Commons Attribution International 4.0 License.

31

2024 ACM/IEEE International Conference on Technical Debt (TechDebt)

https://orcid.org/0000-0002-0545-6643
https://orcid.org/0000-0002-5256-8429
https://doi.org/10.1145/3644384.3644475
https://doi.org/10.1145/3644384.3644475
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3644384.3644475&domain=pdf&date_stamp=2024-06-07


TechDebt ’24, April 14–15, 2024, Lisbon, Portugal Lorenz Graf-Vlachy and Stefan Wagner

analyses were incomplete for more than 60% of commits in the
covered projects.

Recent research has found that this is particularly problematic
in cases where differences in TD between commits are of interest,
because then missing information in either the focal commit or its
parent commit leads to missing data in the ultimate analysis. This
problem has been reported to reduce the size of samples dramati-
cally, potentially impacting the validity of analyses performed on
them. For instance, in the recent study on developer personality and
TD by Graf-Vlachy and Wagner, the authors collected personality
data for 121 developers who made commits that are within the
scope of the TDD, but they could only use data from 19 developers
due to missing TD information in the TDD [13].

Further, it is well-known that TD detection tools may come to
different assessments of TD [17]. As the TDD only contains TD
items from SonarQube, it is thus naturally limited in this way, too.

2 AN ADDITION TO THE TECHNICAL DEBT
DATASET

To address these limitations, we develop an addition to the TDD
that includes information on TD for essentially all commits. The
following describes the used tools, the process of constructing the
dataset, and the resulting dataset itself.

2.1 Teamscale
We develop our addition to the TDD using Teamscale in version
9.1.2. Teamscale is a tool for analyzing code quality and tests [14, 16].
For the Java language, such analyses can be performed directly on
the source code without the need for compiled bytecode. Team-
scale can be run locally and allows the user to access its analyses
through a web interface or a REST API. It has been previously used
in research on empirical software engineering [23]. Teamscale is
commercial in nature but CQSE, the company developing it, offers
free licenses for open-source projects and academic users.

Notably, the philosophy of the company behind Teamscale dis-
courages the use of single-indicator metrics to assess the maintain-
ability of, and thus the TD in, software projects [22]. Consequently,
Teamscale does not provide a singular metric of TD comparable to
SonarQube’s “technical debt” metric (variable sqale_index) that
has been used in prior work [13]. Instead, Teamscale provides vari-
ous detailed measures related to TD. These include, for instance,
excessive nesting depth, cyclomatic complexity, malformed com-
ments, name shadowing, hard-coded credentials, or unused code.

2.2 Construction of the Dataset
We constructed the dataset in the following way. First, we identi-
fied the projects included in the TDD. Although version 2 of the
TDD only includes 31 projects, we opted to additionally include
all projects listed in the original TDD paper (Accumulo, Ambari,
Atlas, Aurora, Beam, MINA SSHD) [21]. Similarly, we decided not to
restrict our analyses to the projects’ main branches as TDD version
2 did but to analyze all branches. We then implemented a Python
tool that performs several steps. First, it clones the repositories
locally. It then imports these local copies into Teamscale, which
is also running locally. Once a project is successfully imported,

Teamscale begins to perform an analysis of all commits in the back-
ground. To ensure complete data availability, our tool waits until
data processing within Teamscale is completed. The tool then uses
Teamscale’s REST API to request all available relevant datapoints
for each commit in each branch of each project. Finally, the tool
writes these datapoints out to the local disk.

We only analyzed Java code.We used Teamscale’s default settings
except for two cases. First, we ensured that Teamscale would not
only analyze the main branch but all branches by enabling “Branch
support”. Second, we switched on the “Preserve empty commits”
commits option to ensure that Teamscale would retain all commits.

Data analysis took multiple weeks on a dedicated Windows
virtual server with eight cores and 192 GB RAM. The analysis
script, the Teamscale configuration file, and the resulting dataset
are available at https://doi.org/10.6084/m9.figshare.24550840.

The dataset and all code are licensed under Apache License 2.0.

2.3 Description of the Dataset
There are two key elements which constitute our new dataset. For
one, there is a folder for each project with JSON files for each com-
mit in the project that includes all information Teamscale has about
the respective commit. This is provided only for advanced use cases.
The filenames include each commit’s hash for easy identification.
In the further analyses of this paper, these files will not be used.

For another, there is a set of CSV files that comprise selected
TD information on each commit in the projects. Specifically, there
are three types of CSV files. First, there is a “report” file. This file
contains various aggregated pieces of information that Teamscale
provides for each commit. This includes, for instance, the number of
parent commits, the number of files in the commit, the lines of code
in the commit, the number of findings added and removed in the
focal commit, and the number of findings above a certain severity
level so Teamscale flags them as “yellow” or “red”, respectively.
Several of these data points are provided as an absolute value for
the focal commit and as a difference to the parent commit. (Note
that Teamscale provides difference data even when the parent is
on a different branch. Although the behavior in the case of merge
commits is not specifically documented, our investigations lead
us to believe that Teamscale compares a focal commit’s data to its
oldest parent commit.) Table 1 describes the “report” file further.

Second, there is a “findings” file. It contains the non-aggregated
information on all Teamscale findings per commit (as identified by
commit hash). This includes 57 different types of findings, catego-
rized into architecture, comprehensibility, correctness, documen-
tation, efficiency, error handling, redundancy, security, structure,
testing, and others. The data is separated out by whether the finding
was added or removed in the focal commit, or found in changed
code, as well as by finding severity (either “yellow” or “red”).

Third, there is a file on “findings_messages”, which provides
the detailed Teamscale messages for all findings per commit (as
identified by commit hash).

All types of files include the project name, the branch name, and
the commit hash as identifiers that allow the data to be linked to
each other as well as to the TDD. (Note that some projects—e.g., Ac-
cumulo and Batik—have renamed their main branches from “master”
to “main” between the release of the TDD and our analyses.)

32

https://doi.org/10.6084/m9.figshare.24550840


Different Debt TechDebt ’24, April 14–15, 2024, Lisbon, Portugal

The “report” output also includes the first commit of the reposi-
tory. For these commits, Teamscale lists the Author Name as “Team-
scale import” but reports no further data through the API although
the web interface shows analysis reports. However, due to the par-
ticular characteristics of these initial orphan commits, it is likely
best to discard these commits in analyses anyway. The “findings”
output does not include any information on these commits.

Each CSV file exists once for each specific project and once in
a combined form that covers all projects. Further information and
statistics on the dataset are available in a separate document in the
data package at https://doi.org/10.6084/m9.figshare.24550840.

Note that our dataset is more extensive than the TDD in at
least three dimensions regarding TD. It covers more projects, more
branches, and it spans a timeframe until the end of October 2023.

Insofar as the two datasets overlap, they can be readily linked
using the commit hashes.

Table 1: Contents of “report” CSV file

Category Variable Notes

Identifiers
Project Project name
Branch Branch name
Commit Hash Commit hash

Commit data

Num Parent Commits Number of parent commits (0 for or-
phans, 1 for regular commits, >1 for
merge commits)

Timestamp Teamscale timestamp of commit
Author Name Name of author
Author Email Email address of author

Analysis results

Files_<val>

• <val> can be “abs” or “diff”
• <color> can be “g” (green),
“y” (yellow), or “r” (red)
• “cnt” = “count”
• “assm” = “assessment”

Lines of Code_<val>
Source Lines of Code_<val>
Longest Method Length_<val>
Maximum Nesting Depth_<val>
Change cnt_<val>
Close Coverage_<val>
Line Coverage_<val>
Num Findings Red_<val>
Num Findings Yellow_<val>
Maximum Cyclomatic Complexity_<val>
File Size assm_<color>_<val>
Method Length assm_<color>_<val>
Nesting Depth assm_<color>_<val>
Comment Completeness assm_<color>_<val>
Cyclomatic Complexity assm_<color>_<val>
Added Findings cnt
Removed Findings cnt
Findings in Changed Code cnt

3 DEVELOPER PERSONALITY AND
TECHNICAL DEBT REDUX

We demonstrate the utility of our dataset in an exploration of the
relationship between developer personality and TD. To do so, we
replicate an analysis of developer personality and TD that was
hampered by the limitations of the TDD [13].

3.1 Description of Original Study
In their recent study, Graf-Vlachy and Wagner used the TDD to
explore developer personality [13] in the context of TD. Specifi-
cally, they studied the relationship between three broad personal-
ity constructs and the introduction and removal of TD. The three
personality constructs are the five traits of the Five Factor Model
(extraversion, agreeableness, conscientiousness, emotional stabil-
ity, and openness to experience), the personality characteristic of
regulatory focus (comprising promotion focus and prevention fo-
cus), and narcissism. They propose that incurring TD is a form of

risk-taking (also see [12]), and they argue that different personality
characteristics relate, through their relationship with risk-taking,
to TD. They find that conscientiousness, emotional stability, open-
ness to experience, and prevention focus are negatively linked to
TD. They find no significant results for extraversion, agreeableness,
promotion focus, or narcissism.

To gather developer personality data, Graf-Vlachy and Wagner
surveyed all 1,555 developers having made any commits that are
part of the TDD version 2. Importantly, they measured all variables
using validated scales [30]. The five-factor model personality traits
were captured using the Ten-Item Personality Measure (TIPI) [11].
Regulatory focus wasmeasured using six items (three for promotion
focus and three for prevention focus) from the Regulatory Focus
Composite Scale (RF-COMP) [15]. Narcissism was captured using
the short version of the Narcissistic Personality Inventory (NPI-
16) [3]. Reliability metrics like Cronbach’s 𝛼 were sufficiently high.

Graf-Vlachy and Wagner also identified developers’ age at the
time of each commit by capturing developers’ age in years and then
subtracting the difference between 2022 and the year in which the
focal commit was made from the provided age.

After accounting for missing data and implausible values, they
obtained complete data on the characteristics of 121 developers.

3.2 Demonstration Using Our Dataset
In the following, we describe our analysis using our new dataset.
Importantly, we do not theorize ex ante about any individual rela-
tionships between personality and TD. Instead, we simply explore
the data to see if we find patterns similar to the ones reported by
Graf-Vlachy and Wagner [13].

Note that, in contrast to their analysis (which only used the
net amount of TD created or removed by a commit), we study the
number of TD items (Teamscale “findings”) that were added in a
commit and those that were removed in a commit separately. For
comparability, we additionally use the difference between the two
values (i.e., the net change) as a third dependent variable.

3.2.1 Sample. Our sample is the result of a merge between the
TDD and our dataset by commit hash. It is thus restricted to commits
made to the main branches of the projects, which also alleviates
concerns over the potentially experimental nature of non-main
branches. We only consider normal commits and drop merge and
orphan commits [1] based on information from the TDD. Merge
commits do not allow a sensible calculation of changes in TD (due to
multiple parent commits) and orphan commits likely have particular
characteristics that may distort the analyses. We further obtained
the developer personality data collected by Graf-Vlachy andWagner
and linked it to our newly developed dataset. Overall, our sample
comprises 5,497 commits from 111 developers. This is substantially
larger than the sample of Graf-Vlachy and Wagner, who analyzed
2,145 commits from only 19 developers [13]. Notably, we still cannot
analyze all commits because even Teamscale does not provide data
for all. This is the case, for instance, for cross-repository commits.

3.2.2 Analysis Strategy. We follow themethod used by Graf-Vlachy
and Wagner [13]. This means that we used panel regressions be-
cause each developer is observed repeatedly, once for each commit
they made. We clustered standard errors at the developer to account

33

https://doi.org/10.6084/m9.figshare.24550840


TechDebt ’24, April 14–15, 2024, Lisbon, Portugal Lorenz Graf-Vlachy and Stefan Wagner

for the fact that such multiple commits from the same developer
are not statistically independent. In our model, we controlled for
developer age at time of commit (from [13]) and lines of code (LOC)
added and LOC removed (from the TDD as Teamscale does not
provide these metrics). To account for unobserved time-invariant
aspects of each project (for instance, specific coding conventions),
we included dummy variables (fixed effects) for each project.

Notably, for the analyses of the number of added and removed
findings, a Poisson estimator would be econometrically appropriate
because these dependent variables are counts [31]. However, be-
cause this estimator did not converge when analyzing our dataset,
we report the results of a random effects panel model instead. Such
a model is the appropriate choice for our third dependent variable,
the net change in findings. We will focus our interpretation of the
results on this dependent variable, also because it allows for a direct
comparison with the original study [13].

All analyses were performed in Stata 17.0. All analysis scripts
are available at https://doi.org/10.6084/m9.figshare.24550840.

3.2.3 Findings. As is evident in Table 2, we find that LOC added
and LOC removed are related to the number of added and removed
findings in the way one would expect. We further find a positive
effect of extraversion on added findings and net change, negative
effects of promotion focus and narcissism on removed findings, and
a negative effect of age at commit on net change. Surprisingly, only
the finding on age at commit is in line with the prior research from
Graf-Vlachy and Wagner [13]. All findings regarding personality
differ. Specifically, we do not reproduce any of Graf-Vlachy and
Wagner’s significant findings, and all our significant findings were
not present in their work [13].

4 DISCUSSION
4.1 Threats to validity
4.1.1 Construct validity. Our measures of TD relies on automated
analyses that may not produce perfectly accurate results. Teamscale
can be configured extensively, but we use the default settings since
we do not have grounds to make a different choice. In particular,
to remain consistent across projects, we do not make use of Team-
scale’s feature to allow for manually identified “tolerated” or “false
positive” findings. Different configurations might lead to different
results. We also use a simple count of findings as our dependent
variables, implicitly assuming that every individual finding repre-
sents the same amount of TD. Future research might wish to weigh
different types of findings differently. Further, Teamscale largely
captures only code debt, but not other types of TD [2, 26, 29].

The used personality data may not be perfectly reliable since
it is based on self-reports using short scales [28]. Finally, develop-
ers’ personality data was collected after they made the analyzed
commits. This time gap might potentially affect the accuracy of the
personality data in case personality would change over time [7].

4.1.2 Internal validity. Despite following prior work in our selec-
tion of control variables, our regressions might suffer from omitted
confounding variables, thus limiting the internal validity of our
study. Sincewe use control variables from the TDD,we can also only
analyze commits that are from the main branches of the projects.
Developers’ characteristics may also be related to whether their

Table 2: Results of panel regression analyses

Added
findings

Removed
findings

Net
change

Extraversion 5.85∗ 2.97 2.88∗
(2.27) (1.85) (1.42)

Agreeableness -4.23 -2.37 -1.86
(3.34) (2.12) (3.62)

Conscientiousness -1.82 -0.24 -1.58
(3.43) (3.40) (2.54)

Emotional stability -0.62 -2.48 1.87
(2.59) (1.97) (2.51)

Openness to experience -3.32 -2.02 -1.30
(3.30) (3.14) (2.48)

Promotion focus 0.63 -1.91∗ 2.54
(1.56) (0.87) (1.73)

Prevention focus -0.46 -0.43 -0.03
(0.67) (0.56) (0.56)

Narcissism -2.12 -2.28∗ 0.15
(1.32) (0.94) (1.42)

Age at commit -0.27 0.63 -0.89∗
(0.50) (0.34) (0.41)

LOC added 0.05∗∗ -0.02∗∗∗ 0.07∗∗∗
(0.02) (0.00) (0.02)

LOC removed -0.02∗ 0.05∗∗ -0.07∗∗∗
(0.01) (0.02) (0.02)

Constant 48.50 47.65 0.85
(52.25) (46.49) (33.72)

Project fixed effects Yes Yes Yes
Observations 5,497 5,497 5,497
Clusters 111 111 111
Dependent variable indicated in top row.
Table reports coefficients, clustered standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

code is incorporated into the main branch in the first place, which
might affect our results.

4.1.3 External validity. As amatter of course, our study is restricted
to developers of large ASF projects. This limits the generalizability
of our results to other contexts, such as smaller or closed-source
projects. Further, although our analyzed sample is much larger than
that of prior work [13], the overall response rate of developers in
the survey capturing personality information is still low, potentially
creating sample selection issues.

4.1.4 Reliability. Reliability is likely of limited concern. All used
personality scales are well-established in psychology. We provide
the script to re-run the Teamscale analyses as well as the dataset.
Unfortunately, we cannot share the dataset that includes personality
data for obvious privacy reasons.

34

https://doi.org/10.6084/m9.figshare.24550840


Different Debt TechDebt ’24, April 14–15, 2024, Lisbon, Portugal

4.2 Implications and Conclusion
First and foremost, our research provides a fine-grained dataset for
future studies of TD. Since we also provide the scripts to generate
the dataset, future researchers can recreate it with other Teamscale
settings however they see fit. In particular, as our dataset fully
integrates with the TDD (by linking via commit hash), we enable
extensions of prior studies conducted with it.

In terms of practical implications, the findings from our demon-
stration using the dataset caution practitioners to not overweight
results from any single study, such as the original study using the
TDD. In fact, we show how an enlarged sample and different mea-
sures of TD may yield very different results. In sum, we hope that
our empirical findings and dataset spur further research into the
link between developer characteristics and TD.

ACKNOWLEDGMENTS
We thank Davide Taibi for information on The Technical Debt
Dataset and Colin Kolbe for development support. We thank CQSE
GmbH for a Teamscale license and for support with setting up the
analysis, and Tobias Röhm for helpful hints.

REFERENCES
[1] Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha, and Barry Boehm.

2018. An exploratory study on the influence of developers in technical debt. In
Proceedings of the 2018 International Conference on Technical Debt (ACM Confer-
ences), Robert L. Nord (Ed.). ACM, New York, NY, 1–10. https://doi.org/10.1145/
3194164.3194165

[2] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Rodrigo O. Spínola,
Forrest Shull, and Carolyn Seaman. 2016. Identification and management of
technical debt: A systematic mapping study. Information and Software Technology
70 (2016), 100–121. https://doi.org/10.1016/j.infsof.2015.10.008

[3] Daniel R. Ames, Paul Rose, and Cameron P. Anderson. 2006. The NPI-16 as
a short measure of narcissism. Journal of Research in Personality 40, 4 (2006),
440–450. https://doi.org/10.1016/j.jrp.2005.03.002

[4] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. 2016.
Managing Technical Debt in Software Engineering (Dagstuhl Seminar 16162).
Dagstuhl Reports 6, 4 (2016), 110–138.

[5] Terese Besker, Hadi Ghanbari, Antonio Martini, and Jan Bosch. 2020. The influ-
ence of Technical Debt on software developer morale. Journal of Systems and
Software 167 (2020), 110586. https://doi.org/10.1016/j.jss.2020.110586

[6] Terese Besker, Antonio Martini, and Jan Bosch. 2017. The Pricey Bill of Technical
Debt: When and by Whom will it be Paid?. In ICSME 2017, IEEE International
Conference on Software Maintenance and Evolution (Ed.). IEEE, Piscataway, NJ,
13–23. https://doi.org/10.1109/ICSME.2017.42

[7] Fabio Calefato, Filippo Lanubile, and Bogdan Vasilescu. 2019. A large-scale, in-
depth analysis of developers’ personalities in the Apache ecosystem. Information
and Software Technology 114 (2019), 1–20. https://doi.org/10.1016/j.infsof.2019.
05.012

[8] Zadia Codabux and Christopher Dutchyn. 2020. Profiling Developers Through
the Lens of Technical Debt. In Proceedings of the 14th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). ACM,
New York, NY, USA, 1–6. https://doi.org/10.1145/3382494.3422172

[9] Ward Cunningham. 1992. The WyCash Portfolio Mangement System. In Adden-
dum to the Proceedings of OOPSLA 1992. 29–30.

[10] Hadi Ghanbari, Terese Besker, Antonio Martini, and Jan Bosch. 2017. Looking
for Peace of Mind? Manage Your (Technical) Debt: An Exploratory Field Study.
In 2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 384–393. https://doi.org/10.1109/ESEM.2017.53

[11] Samuel D. Gosling, Peter J. Rentfrow, and William B. Swann. 2003. A very brief
measure of the Big-Five personality domains. Journal of Research in Personality
37, 6 (2003), 504–528. https://doi.org/10.1016/S0092-6566(03)00046-1

[12] Lorenz Graf-Vlachy. 2023. The Risk-Taking Software Engineer: A Framed Portrait.
In 2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER). IEEE, 25–30. https://doi.org/10.1109/ICSE-
NIER58687.2023.00011

[13] Lorenz Graf-Vlachy and Stefan Wagner. 2023. The Type to Take Out a Loan? A
Study of Developer Personality and Technical Debt. In 2023 ACM/IEEE Interna-
tional Conference on Technical Debt (TechDebt). IEEE, 27–36. https://doi.org/10.
1109/TechDebt59074.2023.00010

[14] Roman Haas, Rainer Niedermayr, and Elmar Juergens. 2019. Teamscale: Tackle
Technical Debt and Control the Quality of Your Software. In 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt). 55–56. https://doi.org/10.
1109/TechDebt.2019.00016

[15] Kelly L. Haws, Utpal M. Dholakia, and William O. Bearden. 2010. An Assessment
of Chronic Regulatory Focus Measures. Journal of Marketing Research 47, 5 (2010),
967–982. https://doi.org/10.1509/jmkr.47.5.967

[16] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. 2014. Teamscale:
software quality control in real-time. In Companion Proceedings of the 36th In-
ternational Conference on Software Engineering, Pankaj Jalote, Lionel Briand,
and André van der Hoek (Eds.). ACM, New York, NY, USA, 592–595. https:
//doi.org/10.1145/2591062.2591068

[17] Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kazman, and Hongzhou
Fang. 2021. On the Lack of Consensus Among Technical Debt Detection Tools. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 121–130. https://doi.org/10.1109/ICSE-
SEIP52600.2021.00021

[18] Valentina Lenarduzzi, Francesco Lomio, Heikki Huttunen, and Davide Taibi.
2020. Are SonarQube Rules Inducing Bugs?. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
501–511. https://doi.org/10.1109/SANER48275.2020.9054821

[19] Valentina Lenarduzzi, Antonio Martini, Davide Taibi, and Damian Andrew
Tamburri. 2019. Towards surgically-precise technical debt estimation: early
results and research roadmap. In Proceedings of the 3rd ACM SIGSOFT Inter-
national Workshop on Machine Learning Techniques for Software Quality Eval-
uation - MaLTeSQuE 2019, Francesca Arcelli Fontana, Bartosz Walter, Apos-
tolos Ampatzoglou, Fabio Palomba, Gilles Perrouin, Mathieu Acher, Maxime
Cordy, and Xavier Devroey (Eds.). ACM Press, New York, New York, USA, 37–42.
https://doi.org/10.1145/3340482.3342747

[20] Valentina Lenarduzzi, Nyyti Saarimaki, and Davide Taibi. 2019. On the Diffuse-
ness of Code Technical Debt in Java Projects of the Apache Ecosystem. In 2019
IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE, 98–107.
https://doi.org/10.1109/TechDebt.2019.00028

[21] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical
Debt Dataset. In Proceedings of the Fifteenth International Conference on Predictive
Models andData Analytics in Software Engineering, LeandroMinku, Foutse Khomh,
and Jean Petrić (Eds.). ACM, New York, NY, USA, 2–11. https://doi.org/10.1145/
3345629.3345630

[22] Rainer Niedermayr. 2016. Why we don’t use the Software Maintainability Index.
https://www.cqse.eu/en/news/blog/maintainability-index/

[23] Rainer Niedermayr, Tobias Röhm, and Stefan Wagner. 2019. Too trivial to test?
An inverse view on defect prediction to identify methods with low fault risk.
PeerJ. Computer science 5 (2019), e187. https://doi.org/10.7717/peerj-cs.187

[24] Ken Power. 2013. Understanding the impact of technical debt on the capacity and
velocity of teams and organizations: Viewing team and organization capacity
as a portfolio of real options. In 2013 4th International Workshop on Managing
Technical Debt (MTD 2013), Philippe Kruchten (Ed.). IEEE, Piscataway, NJ, 28–31.
https://doi.org/10.1109/MTD.2013.6608675

[25] Robert Ramač, Vladimir Mandić, Nebojša Taušan, Nicolli Rios, Sávio Freire,
Boris Pérez, Camilo Castellanos, Darío Correal, Alexia Pacheco, Gustavo Lopez,
Clemente Izurieta, Carolyn Seaman, and Rodrigo Spinola. 2022. Prevalence,
common causes and effects of technical debt: Results from a family of surveys
with the IT industry. Journal of Systems and Software 184 (2022), 111114. https:
//doi.org/10.1016/j.jss.2021.111114

[26] Nicolli Rios, Manoel Gomes de Mendonça Neto, and Rodrigo Oliveira Spínola.
2018. A tertiary study on technical debt: Types, management strategies, re-
search trends, and base information for practitioners. Information and Software
Technology 102 (2018), 117–145. https://doi.org/10.1016/j.infsof.2018.05.010

[27] Klaus Schmid. 2013. On the limits of the technical debt metaphor some guidance
on going beyond. In 2013 4th International Workshop on Managing Technical
Debt (MTD 2013), Philippe Kruchten (Ed.). IEEE, Piscataway, NJ, 63–66. https:
//doi.org/10.1109/MTD.2013.6608681

[28] Frank L. Schmidt and John E. Hunter. 1996. Measurement error in psychological
research: Lessons from 26 research scenarios. Psychological Methods 1, 2 (1996),
199–223. https://doi.org/10.1037/1082-989X.1.2.199

[29] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86, 6 (2013), 1498–1516. https://doi.org/10.
1016/j.jss.2012.12.052

[30] Stefan Wagner, Daniel Mendez, Michael Felderer, Daniel Graziotin, and Marcos
Kalinowski. 2020. Challenges in Survey Research. In Contemporary Empir-
ical Methods in Software Engineering, Michael Felderer and Guilherme Horta
Travassos (Eds.). Springer International Publishing, Cham, 93–125. https:
//doi.org/10.1007/978-3-030-32489-6{_}4

[31] Jeffrey M. Wooldridge. 2010. Econometric analysis of cross section and panel data
(2nd ed. ed.). MIT Press, Cambridge.

35

https://doi.org/10.1145/3194164.3194165
https://doi.org/10.1145/3194164.3194165
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.jrp.2005.03.002
https://doi.org/10.1016/j.jss.2020.110586
https://doi.org/10.1109/ICSME.2017.42
https://doi.org/10.1016/j.infsof.2019.05.012
https://doi.org/10.1016/j.infsof.2019.05.012
https://doi.org/10.1145/3382494.3422172
https://doi.org/10.1109/ESEM.2017.53
https://doi.org/10.1016/S0092-6566(03)00046-1
https://doi.org/10.1109/ICSE-NIER58687.2023.00011
https://doi.org/10.1109/ICSE-NIER58687.2023.00011
https://doi.org/10.1109/TechDebt59074.2023.00010
https://doi.org/10.1109/TechDebt59074.2023.00010
https://doi.org/10.1109/TechDebt.2019.00016
https://doi.org/10.1109/TechDebt.2019.00016
https://doi.org/10.1509/jmkr.47.5.967
https://doi.org/10.1145/2591062.2591068
https://doi.org/10.1145/2591062.2591068
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021
https://doi.org/10.1109/ICSE-SEIP52600.2021.00021
https://doi.org/10.1109/SANER48275.2020.9054821
https://doi.org/10.1145/3340482.3342747
https://doi.org/10.1109/TechDebt.2019.00028
https://doi.org/10.1145/3345629.3345630
https://doi.org/10.1145/3345629.3345630
https://www.cqse.eu/en/news/blog/maintainability-index/
https://doi.org/10.7717/peerj-cs.187
https://doi.org/10.1109/MTD.2013.6608675
https://doi.org/10.1016/j.jss.2021.111114
https://doi.org/10.1016/j.jss.2021.111114
https://doi.org/10.1016/j.infsof.2018.05.010
https://doi.org/10.1109/MTD.2013.6608681
https://doi.org/10.1109/MTD.2013.6608681
https://doi.org/10.1037/1082-989X.1.2.199
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1007/978-3-030-32489-6{_}4
https://doi.org/10.1007/978-3-030-32489-6{_}4

