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Abstract: In order to generate a machine learning algorithm (MLA) that can support ophthalmologists
with the diagnosis of glaucoma, a carefully selected dataset that is based on clinically confirmed
glaucoma patients as well as borderline cases (e.g., patients with suspected glaucoma) is required.
The clinical annotation of datasets is usually performed at the expense of the data volume, which
results in poorer algorithm performance. This study aimed to evaluate the application of an MLA for
the automated classification of physiological optic discs (PODs), glaucomatous optic discs (GODs),
and glaucoma-suspected optic discs (GSODs). Annotation of the data to the three groups was based
on the diagnosis made in clinical practice by a glaucoma specialist. Color fundus photographs and
14 types of metadata (including visual field testing, retinal nerve fiber layer thickness, and cup–disc
ratio) of 1168 eyes from 584 patients (POD = 321, GOD = 336, GSOD = 310) were used for the study.
Machine learning (ML) was performed in the first step with the color fundus photographs only
and in the second step with the images and metadata. Sensitivity, specificity, and accuracy of the
classification of GSOD vs. GOD and POD vs. GOD were evaluated. Classification of GOD vs. GSOD
and GOD vs. POD performed in the first step had AUCs of 0.84 and 0.88, respectively. By combining
the images and metadata, the AUCs increased to 0.92 and 0.99, respectively. By combining images
and metadata, excellent performance of the MLA can be achieved despite having only a small amount
of data, thus supporting ophthalmologists with glaucoma diagnosis.

Keywords: machine learning; glaucoma; glaucoma suspects; data annotation; ground truth

1. Introduction

Glaucoma is characterized by the loss of retinal ganglion cells, which results in struc-
tural changes to the optic disc and progressive visual field (VF) defects [1,2]. Multimodal
imaging of the optic nerve head (ONH), such as optical coherence tomography (OCT)
and VF testing, allows for early identification of structural damage so that serious visual
impairments can be prevented by early initiation of treatment [3–6]. However, in contrast,
to manifest glaucoma with a classic VF defect, the distinction between healthy and diseased
discs can be challenging in glaucoma suspected or abnormal optic discs, especially when
large optic disc cupping or areas are present [7–10], which is one reason for referral to a
tertiary eye care center.

Since artificial intelligence (AI), specifically machine learning (ML), aims to make
accurate predictions on new unknown data by training on data patterns, it has been applied
in the field of glaucoma, in which early diagnosis and rapid initiation of therapy could
halt progression [11]. The hope is that an automated ML or deep learning (DL) algorithm
will accurately differentiate between healthy and glaucomatous discs and thus support
ophthalmologists in clinical practice, especially for challenging cases. Thus far, there has
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been significant progress in the development of algorithms that can be used for glaucoma
screening [12–14].

However, despite the progress that has been made in developing AI strategies for
glaucoma diagnosis, significant hurdles still need to be overcome [15] before these advances
can be translated into clinical practice. In order to generate a machine learning algorithm
(MLA) that can support ophthalmologists in the diagnosis of glaucoma, a carefully selected
dataset that is based on clinically confirmed glaucoma patients is required. The process of
labeling or tagging data with information (e.g., glaucoma patient) that makes it understand-
able and usable for ML and AI systems is called data annotation. Since there is no single
test procedure with sufficient sensitivity and specificity, a detailed, clinical examination is
necessary for the diagnosis of glaucoma [6]. Therefore, generating a dataset labeled with a
correct diagnosis, known as the “ground truth”, is both challenging and time consuming.
As any supervised ML or DL approach is dependent on the ground truth as its reference
standard, misclassification could lead to a bias in the trained algorithm. For example,
although the algorithm could have a high performance and could supposedly distinguish
between healthy and sick eyes, this would not correspond to reality if the annotated data
used for the training were already misclassified.

Popular DL and ML inputs are structural and functional imaging tests: fundus images
and OCT [16–18]. Fundus imaging alone for glaucoma diagnosis is unreliable. The Balti-
more Eye Study assessed fundus imaging features independently for glaucoma screening
and reported a sensitivity of 52% and specificity of 85% [19]. As image acquisition is
portable and low cost and is often routinely collected in a standard fashion, it is possible to
compile large training datasets that are optimal for DL algorithms [20,21] at the expense of
the ground truth.

Compared to fundus imaging, spectral domain optical coherence tomography (SD-
OCT) is more accurate in diagnosing glaucoma, with a sensitivity as high as 89% and a
specificity of 95% [22]. The diagnosis relies on an accurate segmentation of retinal layers,
which frequently fails and requires time-consuming post-processing, which often leads to a
reduction in the amount of data available. Thus, datasets with a high ground truth usually
come at the cost of data volume.

It is therefore important to generate a sufficiently large dataset to achieve robust
performance of the algorithm and prevent overfitting, which occurs when a model learns
to fit the training data too closely, capturing noise or irrelevant patterns, which leads
to poor performance on unseen or test data [23]. In order for an algorithm to support
experienced ophthalmologists in clinical practice, the dataset should also correspond as
closely as possible to the real world and should include not only diseased and healthy
patients but also patients for whom glaucoma is suspected in the first place. Generating a
group of patients with suspected glaucoma is particularly difficult, as these are patients
with abnormalities such as optic disc excavation but with no VF defects. A detailed clinical
examination of the patients included is therefore necessary [24–26].

The main objectives of this work are to address these mentioned hurdles using a
dataset consisting of carefully selected and clinically annotated physiologic optic discs
(PODs), glaucoma-suspected optic discs (GSODs), and glaucomatous optic discs (GODs),
and present the results of an ML algorithm. To overcome the problem of a small dataset, the
dataset was artificially enlarged using data augmentation. In the second step, the algorithm
was trained with both fundus images and additional patient metadata.

2. Materials and Methods
2.1. Data Acquisition and Ground Truth Labeling

The dataset used included 1168 eyes of 584 carefully selected patients who underwent
consultation at the University Eye Hospital Münster between January 2018 and December
2020. Patients were retrospectively analyzed and assigned to one of the three groups based
on their clinical examination findings as well as the assessment of a glaucoma expert or
consultant (Table 1).
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Table 1. Distribution of the annotated data population.

Group 1 = GOD 2 = GSOD 3 = POD

n 336 310 321
n = number, GOD = glaucomatous optic disc, GSOD: glaucoma-suspected optic disc, POD: physiologic optic disc.

Group 1—GODs included 336 eyes from patients with GOD cupping with VF defects,
a history of intraocular pressure (IOP) above 24 mmHg, the need for anti-glaucomatous
therapy, an onset of the disease in adulthood, an open and inconspicuous chamber angle,
and the absence of other causes of secondary open-angle glaucoma. The diagnosis was
confirmed in clinical practice by a glaucoma expert from our department.

Group 2—GSODs included 310 eyes from patients who were referred to our institute
by general ophthalmologists as glaucoma suspects based on the optic disc appearance and
who were later judged as normal by glaucoma experts at our institute. By definition, none
of the glaucoma suspects received treatment for glaucoma or ocular hypertension nor had
a history of IOP above 21 mmHg.

Group 3—PODs included 321 eyes from patients with no suspicious findings of glau-
coma or other ocular diseases who received all examinations due to a diseased contralateral
eye (e.g., anterior ischemic optic neuropathy) or drug monitoring. This group also con-
tained eyes from patients with non-organic visual loss who were later diagnosed as healthy
based on MRI of the head or VEP.

All patients received a comprehensive clinical examination, which included a de-
tailed medical history, refraction of the eye, best corrected visual acuity measurement, slit-
lamp bio microscopy, Goldmann applanation tonometry, and indirect ophthalmoscopy
of the ONH. All eyes had structural measures of the ONH as obtained via fundus pho-
tography (Visucam 500, Carl Zeiss Meditec AG, Jena, Germany), confocal scanning
laser ophthalmoscopy (Heidelberg Retina Tomograph, Heidelberg Engineering GmbH,
Heidelberg, Germany), and SD-OCT (Spectralis®, Heidelberg Engineering GmbH, Hei-
delberg, Germany). VF analysis was performed with an automated Humphrey Visual
Field Analyzer II (HFA II, model 750; Carl Zeiss Meditec AG, Jena, Germany) using
the standard program of the 30-2 Swedish interactive threshold algorithm (SITA fast).
Exclusion criteria were a history of optic neuropathies or other diseases that affected the
VF other than glaucoma, presence of any media opacities that prevented good quality
optic disc photographs, Heidelberg Retina Tomograph (HRT) and SD-OCT imaging, or
incomplete data.

2.2. Data Processing

After the pseudonymization of every patient, fundus images for each eye were ex-
ported. The following fourteen (1–14) metadata were exported for every patient. With the
help of a ruler, the horizontal (1) and vertical (2) cup–disk ratio (CDR) was determined
based on the fundus images. To do so, the size of the cup was divided by the size of the disc.
The mean deviation (MD) of the standard automated perimetry (SAP) (3) and the spherical
equivalent (4) were calculated for every eye by adding the sum of the sphere power to half
of the cylinder power. Furthermore, the global Bruch’s membrane opening minimal rim
width (BMO-MRW) (5); global retinal nerve fiber layer (RNFL) thickness (6); and the RNFL
in six subregions: nasal-superior (NS), nasal (N), nasal-inferior (NI), temporal-inferior (TI),
temporal (T), and temporal-superior (TS) (7–12) were measured by the SD-OCT in a circle
with a distance of 3.5 mm to the optic nerve. Finally, both the BMO area (13) and HRT
optic disc size (14) were exported. The main predictors regarding the diagnosis were, in
descending order of importance, RNFL in the TI quadrant, vertical CDR, global BMO-MRW,
and disc area. Due to the difference in age structure between eyes with a POD and GOD,
age was excluded as a datapoint.
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2.3. Machine Learning Workflow

A two-step approach using fundus images only and a hybrid approach of fundus
images combined with the metadata were used, as seen in Figure 1.
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Figure 1. Machine learning (ML) workflow. Figure 1 shows a high-level overview of the entire ML
process we used to classify patients. Several different algorithms for both image classification and
glaucoma diagnoses were used. Legend: ROI = region of interest, CNN = convolutional neural
network, U-Net = convolutional networks for biomedical image segmentation.

After image pre-processing to make the images uniform in size, we applied automated
image segmentation to identify the region of interest (ROI, i.e., the area around the optic
disc). For this purpose, we employed a convolutional neural network (CNN) with convo-
lutional networks for biomedical image segmentation (U-Net) architecture, as proposed
by Ronneberger et al. [27]. The extracted image segments had a size of 320 × 320 pixels.
To increase the number of training samples, we used data augmentation on the fundus
images. Data augmentation involves applying various transformations to the existing data
to create additional training examples, which helps to improve a model’s generalization
performance. We use 90◦ rotations, shifts, and reflections as the data augmentation proce-
dures. For the actual classification of the images, we evaluated different CNN architectures
and finally chose an inception architecture, as illustrated in Figure 2.

Dropout is a regularization technique in DL in which random neurons are temporarily
turned off during training to prevent overfitting. We selected and optimized the hyperpa-
rameters of the CNN automatically with the help of Keras Tuner.

Due to the relatively small number of images, we did not achieve excellent accuracy in
the image classification, especially for the comparison of patients with primary open-angle
glaucoma with glaucoma suspects. To increase accuracy, we extended the classification
algorithm to include patient metadata, as shown in Figure 1. The scores from the image
classification contributed to this classification as one additional data field.

2.4. Statistics

Statistical analyses were performed using SPSS (IBM SPSS Statistics 23.0; IBM, Armonk,
NY, USA). Prism was used for descriptive statistics (Prism 7, GraphPad Software, Inc.,
San Diego, CA, USA). Microsoft Excel (Microsoft® Excel® for Mac 2011, 14.6.2; Microsoft®,
Redmond, DC, USA) was used for data management. The sensitivity, specificity, precision,
and accuracy of the MLA were calculated. Furthermore, the area under the curve (AUC)
was calculated.

The metadata were analyzed using one-way ordinary ANOVA. The level of signifi-
cance was p < 0.05.
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3. Results
3.1. Demographic Data

We included 1168 eyes from 584 patients. There were no significant differences be-
tween the groups regarding visual acuity and spherical equivalent. The ages of the GSOD
(35 ± 20 years) and POD (48 ± 19 years) groups were significantly different from the GOD
group (67 ± 13 years) (p < 0.001 for both). Therefore, age as an additional metadata point
was excluded from the algorithm.

As expected, the MD of the SAP for both the GSOD and POD groups without VF
defects differed significantly (p < 0.001) compared to the eyes with GOD and VF defects.
Eyes with a GSOD excavation had a significantly larger Bruch’s membrane opening area
(BMO-A) (p < 0.001) compared to the POD and GOD eyes. A larger BMO-A also explains
a lower but not pathologically reduced BMO-MRW, as it is distributed over a larger area.
However, the global RNFL, as well as its individual subsectors, did not differ between
healthy and GSOD eyes and was only significantly different (p < 0.001) for the GOD eyes.
The metadata of the population are summarized in Table 2.
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Table 2. Metadata of the study population used.

Group GOD (1) GSOD (2) POD (3)
1 vs. 2

p
1 vs. 3

p
2 vs. 3

pValue M ± SD M ± SD M ± SD

n 336 310 321

Age (years) * 67 ± 13
69 (62; 78)

35 ± 20
28 (18; 53)

48 ± 19
48 (29; 59) <0.001 <0.001 >0.05

Visual acuity
(decimal)

0.68 ± 0.30
0.70 (0.50; 0.80)

0.90 ± 0.20
1.00 (0.80; 1.00)

0.81 ± 0.27
0.80 (0.63; 1.00) >0.05 >0.05 >0.05

Spherical
equivalent (dpt.)

−0.81 ± 2.00
−0.38 (−2.00; 0.50)

−0.61 ± 2.48
0.00 (−1.60; 0.60)

−0.44 ± 2.38
−0.13 (−1.00; 0.75) >0.05 >0.05 >0.05

MD (dB) −7.96 ± 9.82
−4.62 (−12.52; −1.28)

−1.01 ± 2.15
−0.77 (−1.99; 0.39)

−3.34 ± 6.41
−1.41 (−3.52; 0.24) <0.001 <0.001 >0.05

CDR horizontal 0.66 ± 0.20
0.67 (0.55; 0.80)

0.56 ± 0.16
0.59 (0.50; 0.66)

0.33 ± 0.20
0.36 (0.20; 0.45) >0.05 0.01 >0.05

CDR vertical 0.68 ± 0.20
0.69 (0.55; 0.85)

0.53 ± 0.24
0.55 (0.50; 0.61)

0.32 ± 0.20
0.33 (0.20; 0.43) 0.03 0.002 >0.05

BMO area (mm2)
1.97 ± 0.43

1.94 (1.68; 2.27)
2.57 ± 0.57

2.52 (2.21; 2.90)
1.93 ± 0.43

1.88 (1.68; 2.16) <0.001 >0.05 <0.001

Global BMO-MRW
(µm)

197 ± 77
192 (141; 239)

264 ± 40
261 (239; 288)

352 ± 68
347 (305; 389) <0.001 <0.001 <0.001

Global RNFL (µm) 69 ± 19
69 (54; 82)

96 ± 11
98 (90; 104)

99 ± 10
100 (92; 105) <0.001 <0.001 >0.05

NS (µm) 78 ± 28
77 (57; 98)

108 ± 23
109 (93; 125)

113 ± 22
113 (98; 127) <0.001 <0.001 >0.05

N (µm) 59 ± 19
60 (47; 72)

80 ± 13
80 (72; 89)

81 ± 14
81 (71; 91) <0.001 <0.001 >0.05

NI (µm) 78 ± 27
76 (57; 96)

110 ± 26
112 (94; 127)

110 ± 24
109 (94; 126) <0.001 <0.001 >0.05

TI (µm) 91 ± 40
87 (58; 123)

143 ± 23
146 (133; 158)

151 ± 56
147 (137; 160) <0.001 <0.001 >0.05

T (µm) 54 ± 17
53 (42; 66)

68 ± 10
69 (61; 75)

70 ± 12
70 (62; 76) <0.001 <0.001 >0.05

TS (µm) 88 ± 34
87 (58; 113)

127 ± 23
129 (114; 144)

134 ± 20
135 (122; 147) <0.001 <0.001 >0.05

Disc area (mm2)
1.89 ± 0.42

1.83 (1.63; 2.14)
2.37 ± 0.80

2.43 (2.07; 2.73)
1.80 ± 0.49

1.79 (1.48; 2.13) <0.001 <0.05 <0.001

Legend: n = number included; CDR = cup–disc ratio; BMO-MRW = Bruch’s membrane opening minimum
rim width; RNFL = retinal nerve fiber layer; M = mean; NS = nasal-superior; N = nasal; NI = nasal-inferior;
TI = temporal-inferior; T = temporal; TS = temporal-superior; * excluded from metadata.

The distribution of the RNFL at the TI margin of the optic disc, the vertical CDR, the
disc area, and global MRW are seen in Figure 3 and represent a real-world scenario. The
thickness of both the RNFL at the TI margin and the BMO-MRW were evenly distributed in
patients with physiological and glaucoma-suspicious ONHs. The GSODs showed a similar
distribution of CDR compared to the GODs. This was usually due to the fact that these
are macrodiscs, which is why the optic disc area was enlarged compared to the GODs and
healthy optic discs.
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Figure 3. Distribution of the main predictors RNFL at the temporal inferior margin (A), the vertical
Cup–Disc ratio (B), the global BMO-MRW (C), and the disc area (D) of the three groups analyzed.
Legend: GOD = glaucomatous optic disc, POD = physiologic optic disc, GSOD = glaucomatous
suspected optic disc, BMO-MRW = Bruch′s membrane opening minimal rim width, RNFL = retinal
nerve fiber layer, CDR = cup–disc ratio.

3.2. Performance of the Algorithm

The classification of glaucomatous and glaucoma-suspected ONHs (GOD vs. GSOD)
and glaucomatous and physiological ONHs (GOD vs. POD) was performed in the first step
(based on the color fundus photographs only) with a sensitivity, specificity, and accuracy of
more than 75% each, as seen in Table 3. The best results, which are presented here, were
achieved using an inception architecture.

Table 3. Results of image classification.

ML
Performance TP TN FP FN Sn Sp Acc. Pr. F1 AUC

GOD vs. POD 59 47 17 5 92% 73% 83% 78% 84% 0.88

GOD vs. GSOD 48 47 15 14 77% 76% 77% 76% 77% 0.84
Legend: TP = true positive, TN = true negative; FP = false positive; FN = false negative; Sn = sensitivity;
Sp = specificity; Acc = accuracy; Pr = precision; F1 = F1 score, GOD = glaucomatous optic disc; POD = physiologic
optic disc; GSOD = glaucomatous suspected optic disc; AUC = area under the curve.

By combining the images and metadata, the above parameters were increased to over
82% each. The best performance was achieved using a gradient boosting decision tree, as
seen in Table 4.
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Table 4. Results of the classification based on metadata and image scores using an inception convolu-
tional neural network (CNN) architecture.

ML
Performance TP TN FP FN Sn Sp Acc. Pr. F1 AUC

GOD vs. POD 60 60 4 4 94% 93% 94% 94% 94% 0.99

GOD vs. GSOD 52 56 6 10 84% 90% 87% 89% 86% 0.92
Legend: TP = true positive, TN = true negative; FP = false positive; FN = false negative; Sn = sensitivity;
Sp = specificity; Acc = accuracy; Pr = precision; F1 = F1 score; GOD = glaucomatous optic disc; POD = physiologic
optic disc; GSOD = glaucomatous suspected optic disc; AUC = area under the curve.

4. Discussion

In this study, an inception CNN approach was able to automatically and reliably
discriminate between eyes with GOD and GSOD and between GOD and POD using
color fundus photographs. It was especially remarkable that the algorithm was able to
differentiate between suspected and confirmed glaucoma on fundus photographs alone
with good performance, which is a major challenge in clinical practice. Furthermore, CNN
was able to improve this performance and achieve excellent results using a hybrid ML
approach combining the images with metadata.

The strengths of the present study are as follows. First, the annotation of the data
was based on the decision performed in clinical practice by glaucoma experts in a tertiary
ophthalmic center, which leads to a high ground truth for the dataset used. The higher the
ground truth, the better an algorithm can support ophthalmologists in clinical practice.

Second, the dataset included not only images and metadata from healthy or glaucoma
patients but also from patients with suspected glaucoma (discs with cupping due to optic
disc anomalies or macrodiscs), which corresponds to the daily clinical routine.

Third, by using a hybrid approach, data augmentation, and dropout methods, prob-
lems associated with a relatively small dataset were successfully avoided. Due to the
methodology used in the present work, we believe that the generated algorithm could
serve as a safety net mechanism to minimize the risk of misclassification and incorrect
diagnosis and could, therefore, assist ophthalmologists in everyday clinical practice.

Using subjective grading of fundus images only for data annotation—in contrast to a
full glaucoma workup—is a time-saving, low-cost option that allows huge amounts of data
to be processed [17,28,29]. Li et al. [28] labeled 48,116 color fundus images as “referable”
(yes vs. no) for glaucoma based on human graders, achieving an AUC, sensitivity, and
specificity of 0.986, 95.6%, and 92%, respectively.

However, the approach of training DL models to replicate human grading of fundus
photographs for glaucoma raises numerous potential problems. The agreement, even
among experts, on the detection of ONH damage from fundus photographs is only mod-
erate [30–32] and is known to have relatively poor reliability [33]. Furthermore, the as-
sessment of the excavation to determine whether glaucoma exists based solely on fundus
photographs is inaccurate [34,35]. Ophthalmologists tend to undercall glaucoma in small
optic discs but overcall it in physiologically enlarged cups [28]. Thus, if human graders
are used as the reference standard, the algorithms can only perform as well as the human
graders and will essentially learn to replicate these common mistakes. Therefore, when the
annotation of the data is based on abnormalities of the ONH on fundus images solely, such
as a large excavation or large CDR [17,28,29], then no conclusions can be drawn regarding
a secure glaucoma diagnosis [34,35]. Consequently, these algorithms can only distinguish
between likely glaucoma and not glaucoma. Accordingly, algorithms that are based on
subjective grading of the data on fundus images solely are suitable for glaucoma screening
purposes only [36]. Nevertheless, these algorithms can be used to screen large patient
groups for retinal diseases. A commercially available AI software (EyeArt, v2.2.0, Eyenuk,
Inc., Los Angeles, CA, USA) recently received Conformité Européenne (CE) approval and
can be used for the detection of diabetic retinopathy, age-related macular degeneration,
and glaucomatous optic nerve damage in clinical practice [37].
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In contrast, the methodology used in this study makes the proposed algorithm ap-
plicable beyond glaucoma screening in clinical practice. The labeling of the dataset was
based on the diagnosis made by a glaucoma specialist in a tertiary eye care referral center
in Germany after performing a clinical assessment on the patient and having access to a
full glaucoma workup. Thus, a high ground truth could be achieved, which is one strength
of the current study.

Here, the amount of data used in this study is comparable to other studies with similar
methodologies. Noury et al. [38] included 291 normal eyes and 363 glaucomatous eyes
with glaucomatous disc changes on fundus examination, with localized defects on OCT de-
viation or sector maps that correlated with VD defects that fulfilled the minimum definition
of a Hodapp–Anderson–Parrish glaucomatous VF defect and had IOP-lowering treatment
as per the chart review. The study by Medeiros et al. [39] stands out because they used a
large amount of data with a high ground truth. The authors created a dataset consisting
of 8831 eyes of 5529 glaucoma patients or glaucoma suspects that had a comprehensive
clinical examination, including gonioscopy, funduscopy, OCT, and VF testing.

Another problem that arises from the subjective grading of images is the assessment of
patients with suspected glaucoma. During a glaucoma consultation, it is particularly diffi-
cult even for an experienced ophthalmologist to distinguish between healthy and diseased
patients, especially in the early stages of the disease, when glaucoma is first suspected.
Therefore, the algorithm must ideally be trained with data from the mentioned patient
group. Generating such a dataset is particularly challenging, and different approaches to
generate datasets of glaucoma suspects to use for training a DL or ML algorithm have been
described. Li et al. [40] used manual segmentation of fundus photographs and classified
them as glaucoma suspect if any of the following criteria were present: a CDR over 0.7 and
under 0.9, a rim width between 0.1 and 0.05, an RNFL defect, or disc hemorrhage. The
methodologies used by Bhuiyan et al. [41–43], Atalay et al. [41–43], and Li et al. [41–43]
similarly used the CDR as a reference for glaucoma suspects. Seo and Cho [25] used a DL
classification of early normal-tension glaucoma and glaucoma suspects using BMO-MRW
and RNFL. Glaucoma suspects were patients with suspicious clinical features who were
not conclusive for glaucoma, including suspicious optic disc or RNFL changes; significant
systemic, ocular, or family risk factors for glaucoma; or suspicious VF results but IOP within
normal limits. Grewal et al. [44] classified 100 eyes based on optic disc examinations and
divided them into normal (n = 35), glaucoma suspects (n = 30), and glaucoma (n = 35) eyes.
Based on a study of 679 eyes, Yu et al. [45] defined glaucoma-suspected eyes as eyes with
normal VF test results with any of the following criteria: IOP of 22 to 30 mmHg, asymmetric
ONH cupping, or abnormal ONH appearance, or an eye that was the contralateral eye of
unilateral glaucoma.

In our study, patients who were referred to our institute by general ophthalmologists
as glaucoma suspects based on the optic disc appearance and were later judged as healthy
were classified as GSOD. None of the glaucoma suspects received anti-glaucomatous
medication or had a history of an IOP > 21 mmHg, and no VF defects were present. We
believe that our methodology is very objective, and as the dataset consists of healthy
patients and patients with mild, moderate, and severe glaucoma (see Figure 3) with a wide
range of CDRs and RNFL defects, it corresponds to the clinical reality in terms of glaucoma.

However, our time-consuming methodology comes at the expense of the amount of
data. One risk which is associated with the use of a small dataset is overfitting. This can
occur if the model is trained with only a few images or too many training steps. In other
words, the model learns patterns specific to the training data, which are irrelevant to other
data. Thus, the performance of the algorithm when applied to new unknown data (e.g., in
a clinical setting) is worse.

To increase the generalizability of the trained algorithm and avoid overfitting, two
strategies were applied. First, we applied data augmentation to the fundus images, such
as horizontal flipping and random cropping surrounding the ONH center. These data
augmentation techniques increased the amount and diversity of fundus images within
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the training data, significantly improving our model’s performance and generalizability.
Second, early stopping was applied. The selection of the number of steps to complete the
training process was stopped when the absence of further improvement in the performance
of the validation dataset occurred.

Nevertheless, the results and amount of data used in this study are comparable to
those in the literature on glaucoma suspects. Seo and Cho [25] were able to discriminate
between 229 eyes from glaucoma suspects and 168 from patients with normal tension
glaucoma (NTG) with a CNN model using BMO-MRW and RNFL, achieving an AUC of
0.96. In a more recent work by the same research group, they achieved an AUC of 0.94,
discriminating between 255 glaucoma suspects and 245 patients with NTG with a CNN
model using BMO-based optic disc photography [46].

Similarly, in our study, for discriminating GOD from POD and GOD from GSOD on
fundus images solely, robust AUCs of 0.88 and 0.84, respectively, were achieved. Due to the
relatively small number of images, the accuracy we achieved with the image classification
was not excellent, especially for the comparison of POAG patients with glaucoma suspects.
To increase accuracy, we extended the classification algorithm to include patient metadata.
For an algorithm that is intended for screening large numbers of patients, the use of more
than one data source (e.g., fundus images) is not expedient. However, since the proposed
algorithm is designed to support ophthalmologists in everyday clinical practice, it can be
assumed that various metadata are collected and used in the decision-making process, as
this leads to better-informed decision making and improved patient outcomes. Similarly,
we achieved an excellent AUC of 0.99 for discriminating GOD from POD and 0.92 for
discriminating GOD from GSOD using both fundus images and metadata.

Limitations

There are several limitations to this work. First, we used a relatively small dataset.
However, this could not be avoided due to the chosen methodology and the associated time-
consuming data annotation. Nevertheless, problems such as overfitting were circumvented.
Second, other optic nerve diseases besides glaucoma were not included. Therefore, the
algorithm can only be used for glaucoma diagnostics.

Third, despite the expected very high ground truth in the dataset used, it could be
further optimized. Thus, a dataset that is based only on data from patients who have
been monitored over a period of, for example, five years would make the diagnosis even
more reliable.

Fourth, a detailed, time-consuming examination of the patient using different imaging
modalities and automated data export to make the data accessible to the algorithm is
necessary. This means that the algorithm will only be able to be implemented by a very
small number of users.

Since a misdiagnosis by the algorithm could lead to blindness in the patient, it is
necessary to demonstrate the non-inferiority of the algorithm in comparison to a glaucoma
expert before approval in clinical practice. Ultimately, the algorithm is designed to support
ophthalmologists in everyday practice and not to replace them.

5. Conclusions

In this study, we used a carefully selected, large European dataset based on the
diagnosis made by a glaucoma expert at a tertiary care clinic and achieved a high ground
truth. The dataset consisted of patients with POD, GOD, and especially GSOD, reflecting a
real-world scenario in terms of glaucoma. Despite the relatively small dataset in the context
of ML and AI, the algorithm generated in this work was able to robustly distinguish between
patients with GOD, GSOD, and POD on fundus images solely and reached excellent
performance using additional metadata. With the help of the algorithm, ophthalmologists
could be supported in their everyday practice, and the number of co-assessments at a
tertiary center could be reduced.
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